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I - INTRODUCTION

Multiple frequency-shift keying (MFSK) entails choosing one of N
frequencies as the carrier or center frequency for each transmitted
symbol in a ccmmunication system. When frequency hopping is super-
imposed on IFSK, resulting in an FH/MFSK system, the set of N possible
frequencies changes with each hop.

In an ideal FH/MFSK system, each frequency of the frequency sets is
randomly selected for each successive hop. This strategy precludes the
judicious spacing of jamming signals to exploit the structure of the
frequency sets and increases the resistance to repeater jamming.1

However, a more practical implementation, which requires only a single
frequency synthesizer instead of N, selects frequencies having a fixed
relation to each other but a randomly chosen location within the total
bandwidth. Figures 1 and 2 depict the main elements of receivers
appropriate for these two strategies. Each receiver is noncoherent (a
coherent receiver is generally impractical) and implements hard
decisions. After the dehopping, separate code symbol decisions are made
and the demodulated symbols are applied to a decoder, which produces the
decoded message. The N frequencies are separated enough so that the
received signal produces negligible responses in the incorrect bandpass
filters.

*L 
n

PAT1 

fre ue cy- op in patterns.
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Figure 1. PH/MPSK receiver with hard-decision decoding and multiple
frequency-hopping patterns.o

ID. J. Torrieri, Principles of Ki11tary Communication System, Artech .:
House, Dedham, KA (191).
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Figure 2. FH/MFSK receiver with hard-decision decoding and single
frequency-hopping pattern.

Soft-decision decoding offers a significant performance advantage
for FH/MFSK systems operating in partial-band jamming if the presence or
the absence of jamming in each channel can be accurately determined so
that symbol erasures can be used. 2 ' 3  However, an accurate measurement
of the jamming state in the presence of signal and jamming power varia-
tions is not possible in most practical cases. When no information
about the jamming is available, a metric can probably be found that
yields a performance for a soft-decision system that is slightly better
than the performance of the corresponding hard-decision system.
However, it is doubtful that the performance advantage is sufficient to
justify the increased implementation complexity of a system with soft
decisions, and if the metric depends upon the signal level, as is prob-
able, additional implemntation difficulties are entailed. Thus, we
consider only hard-decision decoding except for concatenated codes
(sect. 4). Appendix A summarizes those aspects of coding theory that
are needed subsequently. An analysis of soft-decision decoding for a
particular metric is given in appendix B.

If the errors in the demodulated symbols are assumed to be independ-
ent, the general coding equations and inequalities of appendix A can be
used to determine the error-rate performance of an FH/MFSK system with

2B. K. Levitt and J. K. Omura, Coding Tradeoffs for Improved
Performance of FH/JEFSK Systems in Partial Band Noise, National
TelecommunIcatlons Conference, 2 (1981), D.9.1.

3A. J. Viterbl and I. N. Jacobs, Advances in Coding and Modulation
for Noncoherent Channels Affected by Fading, Partial Band, and Multiple- .
Access Interference, in A. J. Viterbi, ed., Advances in Communication.
Systems, 4, Academic Press, Inc., New, York (1975).
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hard-decision decoding. This assumption is reasonable for fast frequen-
cy hopping, in which there is a frequency hop for every MFSK symbol.
Fbr slow frequency hopping, in which there is less than one hop per MFSK
symbol, the assumption is reasonable if symbols are interleaved over a
sufficient number of hop periods. The deinterleaving in the receiver
disperses bursts of errors, thereby facilitating the removal of errors
by the decoder.

2 * BLOCK CODES

When a block code is used, each group of m information bits is
encoded as a symbol, and then each group of w symbols is encoded as a
codeword of c code symbols that are transmitted. Since a codeword
represents mw information bits, there must be 2mw possible codewords.
In an FH/MFSK system, one of N = 2m frequencies is selected as the
carrier for each transmitted symbol.

Let Pib denote the probability of an information bit error in the
decoded output and d denote the minimum distance between codewords. For
binary frequency-shift keying, let Pb denote the channel bit error
probability, which is the probability of an error in a demodulated code
bit. It is shown in appendix A that for hard-decision decoding of
binary block codes, Pib is approximately given by

d
ib c i b b-c-i

i-[(d+,w/21
(1)

1 cc-i

E imp~Ail - )Ci

i=d+1

where (x] denotes the largest integer less than or equal to x. For the
nonbinary Reed-Solomon codes, the approximate expression is

d
[ (C)p I P.,-

c+1 2~ -Pa aib 2c2  i- [(d+1)/2]

(2)

i-d+1
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where c 2 - 1, d c- w + 1, and P. denotes the channel symbol error
probability, which is the probability of an error in a demodulated code
symbol.

Since an exact derivation of P. is difficult when partial-band
jamming causes different amounts of jamming powers to enter the N re-
ceiver filters, we use a union bound (app A). A code symbol error
occurs if the correct envelope sample does not exceed the other N - 1
envelope samples. Since the probability that a particular envelope
sample exceeds the correct one is a function of only two envelope sam-
ples, it is the same as Pb' the channel bit error probability of a
frequency-hopping system with binary frequency-shift keying. Thus, the
union bound is

Ps I- (N - 1)Pb ,N > 2 •(3)

If N > 2, the inequality is strict. If N = 2, we have P5 = Pb ° When
this inequality is substituted into equation (2), we obtain an upper
bound for Pib* This bound becomes tighter as (N -)P b decreases.

The total number of frequency channels available for frequency
hopping is denoted by M, and the number of jammed channels is denoted by
J. By definition, J < N. We assume that the jamming power is the same
in all jammed channels and that the received signal power is independent
of which channel is used for transmission of the signal. We assume
either that the possible frequency channels are chosen randomly for each
hop (which is true by definition for the system of fig. 1) or that the
jammed channels are randomly chosen. Equation (3.13) of Torrieri I gives

n I

(M- n sn (4)

nmn 0  LJ

where

no M max(0,J + 2 - M) , n, , min(2,J) (5)

The Sn depend upon the form of the jamming. In the referenced text,1
the Sn are determined for narrowband jamming and noise janmng. Since
it is described by simpler mathematics, noise jamming is considered

ID. J. Torrieri, Principles of Nilitary Communication Systems, Artech
House, Dedham, MA (1981).
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here. The noise jamming is modeled as a Gaussian process with a flat
power spectrum over each jammed channel. We assume, as does the refer-
enced text, 1 that the receiver contains ideal nondistorting bandpass
filters with disjoint passbands. Consequently, the equations derived
for the Sn are in terms of signal, thermal noise, and jamming powers.
When matched filters are used, it is straightforward to verify (see
Haykin4 for a similar derivation) that the formulas of the referenced
text1 for noise jamming are valid if we replace the signal power by the
symbol energy and replace the thermal noise and jamming powers by the
corresponding power spectral densities. The value of Sn is the same for
a bandpass-filter receiver and for a matched-filter receiver if the
product of the symbol duration and the noise bandwidth of the bandpass
filters is unity. Let Rs denote the signal power, Nt the thermal and

background noise power in a channel, and N the jamming power in a
jammed channel. Equations (3.30) to (3.32) of the referenced text1 give

R
S = -exp , n =1, 2,3 (6)
n 2Nt + nNj)

Combining equations (4) and (6) yields

P ('n)J-n) (x 5 (7)nmn

n=n0

The parameters M, Nt , J, and Nj depend upon the coding. Let M.
denote the number of channels that are available for frequency hopping
if an uncoded binary modulation is used. When MFSK and coding are used
but the information rate (or the message duration) and the total hopping
bandwidth are preserved, the number of available channels becomes ap-
proximately

M - int(r) MB

where int(x) is the largest integer contained in x and re is the ratio
of information bits to transmitted code symbols. For block codes, r. -
mw/c. The thermal noise power becomes

ID. J. Torrierl, Principles of Nilitary Communication Systems, Artech
House, Dedham, MA (1981).

4S. Haykin, Comunication Systems, John Wiley & Sons, Inc., New York
(1978).
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Ntu

Nt  r , (9)

where N is the thermal noise power for uncoded binary modulation. The
number of jammed channels is approximately

J = int(pM) , (10)

where 1 is the fraction of the total hopping band that contains jam-
ming. If the jamming power is uniformly distributed and the channels
are disjoint, then

N
N. t (11)) J

where Njt denotes the total jamming power distributed in the total
hopping band.

In the following examples,* we assume that Mu = 1000. Figures 3 and
4 depict Pib versus V for uncoded binary communications and the Golay
(23,12) code, respectively. The improvement due to the coding and the
sharpness of the peaks in Pib increases with the signal-to-noise ratio,
Rs/Ntu, and decreases with the total jamming-to-signal ratio, Njt/Rs.
The optimal band occupancy for the jammer increases with Njt/Rs. Fig-
ures 5 to 7 depict the maximum value of Pib as a function of Njt/Rs,
assuming the optimal band occupancy for the jammer, Rs/Ntu = 20 dB, and
various block codes. Thus, these figures illustrate the worst-case
performance of an FH/MFSK system operating against partial-band jamming
that can be optimized. Instead of using Njt/Rs, the abscissas can be
expressed in terms of EWNoj, where Eb is the energy per information bit
and N~j is the power spectral density that corresponds to uniform jam-
ming over the total hopping band. A straightforward evaluation gives
(in decibels)

E%/Oj (dB) = -Njt/Rs (dB) + Mu (dM) + BuTb (dB) (12)

where Bu is the frequency-channel bandwidth for uncoded binary modu-
lation and Tb is the information bit duration.

*The computer programming was provided by Thomas Wright of the
Countermeasures/Counter-Countermeasures Center.

10
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Figure 3. Information bit error probability for no coding, binary hard
decisions, and partial-band jamming.
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Figure 5. Worst-case performance for binary block (CDV) codes with hard
decisions.
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Figure 6. Worst-case performance for repetition codes with hard
decisions.
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Figure 7. Worst-case performance for Reed-Solomon (c,w) codes with hard
decisions.

The Reed-Solomon codes of figure 7 are among those providing the
best performance against optimal partial-band jamming for given values
of N - c + 1. The best codes tend to have rates between one-half and
one-third. Since inequality (3) is used, the curves of figure 7 are
actually upper bounds for the worst-case performance. A comparison of
figures 5 and 7 shows that the Reed-Solomon codes do not offer a signif-
icant performance advantange over the Golay (23,12) code unless the
required Pib is less than 10- 5 and N > 32, which requires a complex
system implementation.

Comunication systems are often required to provide a bit error
probability below a specified value. Thus, a measure of performance for
these systems is the signal-to-total-jamming ratio required to achieve
the specified Pib* For example, if an FH/MFSK system with repetition
coding must provide Pib - 10-3, then figure 6 indicates that c - 7 is
the optimal choice for minimizing the required value of Rs/Njt or,
equivalently, maximizing the value of Njt/R that can be tolerated.

#4
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3o CONVOLUTIONAL CODES

For convolutional codes and hard-decision Viterbi decoding, Pib is
given by the equations of appendix A and equations (7) to (11). Viterbi
decoding is preferable to other convolutional decoding procedures when
jamming is capable of causing relatively high error rates. If v bits
are transmitted for every b bits shifted into the encoder register, then
r. = b/v.

Hard-decision decoding of rate 1/2 and rate 1/3 codes results in an
error rate approximated by

7
Pib = I A(df + i)Q(df + i) (13)

where the A(df + i) are listed in table A-2 and

6 6-i
6)P - 6b)-  , 6 is odd

i=f( 6+1 )/2
Q(6) = (14)6-1 + i1 + 6 ]6/2

S ()Pb( I " Pb) 2 /6)[pb(l - Pb)
i=6/2+1

6 is even

For orthogonal convolutional codes of constraint length K, r s = 2 -K and

Pib is approximated by a truncation of the right-hand side of inequality
(A-27).

Figures 8 to 10 illustrate the worst-case performances of an FH/MFSK
system with rate 1/2, rate 1/3, and orthogonal convolutional codes, I
respectively. It is assumed that Mu = 1000 and Rs/Ntu = 20 dB. In
figures 8 and 9, performance always improves with constraint length. In
contrast, figure 10 indicates that orthogonal convolutional codes with K I
- 4 perform better than codes with K = 3 only if the required Pib is
less than approximately 10-4.
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Figure 8. Worst-case performance for rate 1/3 convolutional codes with
hard decisions.
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Figure 10. worst-case performance for orthogonal convolutional codes
with hard decisions.

4, CONCATENATED CODES

A concatenated code uses multiple levels of coding to achieve a
large error-correcting capability. Figure 11 is a functional block
diagram of an PH/MFSK system with concatenated coding that consists of
two successive stages of coding. The inner interleaver and deinter-
leaver are unnecessary for fast frequency hopping. For slow frequency
hopping, they insure the random distribution of errors at the input of
the inner decoder. The outer deinterleaver, which requires a corre-

UTA

Figure 11. P H/MFBK system with concatenated coding: (a) transmitter
and (b) receiver.
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sponding outer interleaver, is usually necessary to redistribute errors
in the output of the inner decoder so that symbol errors are distributed
randomly at the input of the outer decoder. Pbr the reasons stated in
section 1, hard decisions are desirable in the inner decoder when opti-
mal partial-band jamming is possible.

Analytical expressions can often be derived for Pib' the probability
of an information bit error at the output of the outer decoder. If the
inner code is a binary block code, the bit error probability at the
output of the inner decoder, Pb1' is determined for hard decisions from
the right-hand side of equation (1)1 that is,

d1

1l - c 1 -b

1 i-[(d1+1)/2]

(15)

+ ccI
c 1 (bi( -1 'b

i=d 1+1

where d 1 and c 1 refer to the inner code. Equations (7) to (11) give

Pb. The ratio of information bits to transmitted code symbols is

r M rri (16)

where rso is the ratio of information bits to outer-code symbols and rsi
is the ratio of outer-code symbols to inner-code symbols. The deinter-
leaver provides independent errors at the input of the outer decoder.

Thus, if the outer code is a binary block code and hard decisions are

made, then Pib is given by equation (1) with Pb1 substituted in place of
Pb and d and c referring to the outer code. If the outer code is a rate
1/2 or rate 1/3 binary convolutional code and hard decisions are made,
then Pib is determined from equations (13) and (14) with Pb1 replacing
Pb"

As specific examples, figures 12 and 13 depict the worst-case per-
formances against partial-band jamming of systems with repetition codes
as the inner codes, Mu - 1000, and R IN t 20 dS. In figure 12, the

outer code is a Golay (23,12) code; fn figure 13, the outer code is a
convolutional code of constraint length 7 and rate 1/2. The figures
illustrate that the degree to which the repetition code improves or
degrades the performance of the outer code alone varies with the re-
quired P b" In the system implementation, the outer interleaver and the
outer deinterleaver are unnecessary.

17
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Consider a Reed-Solomon outer code and a binary inner code. If
there are m bits in a Reed-Solomon code symbol, the outer decoder can
convert a burst of m errors at the inner-decoder output into a single
symbol error, thereby reducing Pib at the outer-decoder output. The
outer deinterleaver operates on symbols, rather than bits, following a
serial-to-parallel conversion, and decorrelates errors in successive
Reed-Solomon code symbols.

For a block inner code, an efficient design sets the number of
information bits in the block codewords, wl, equal to an integer times
m, and symbol deinterleaving prevents an inner codeword error from
affecting adjacent symbols in a Reed-Solomon codeword. If w, = m, the
probability of a Reed-Solomon code symbol error, PJ' is equal to the
word error probability produced by the inner decoder. By analogy with
inequality (A-I) and equation (A-2), we have the approximation or equal-
ity

Ps c1)P - Pb) 1  (17)

i=[(d 1 + )/2)

when hard decisions are made by the inner decoder. Assuming hard deci-
sions in the outer decoder, Pib is determined from equations (2) and
(17). Figure 14 shows examples of the worst-case performance, assuming
that Mu = 1000 and Rs/Ntu = 20 dB.

At the output of a convolutional inner decoder using the Viterbi
algorithm, the bit errors tend to occur over spans of several constraint
lengths. Consequently, the outer deinterleaver should be designed to
ensure that two input symbols at a distance less than the usual largest
error span result in output symbols that do not belong to the same Reed-
Solomon codeword. Assuming that the bit error rate is no more than one-
half in spans with errors, then the bit error probability at the inner-
decoder output is less than one-half times P.. Thus, for rate 1/2 and
rate 1/3 convolutional inner codes with hard decisions,

7
P a>2 1 A(df+i)Q(df+1) , K>m , (18)

iO

where the inequality is needed to make the bound reasonably tight. Hard
decisions in the outer decoder and ideal symbol interleaving yield a Pib
with a lover bound determined by equation (2) and inequality (18).
Figure 15 depicts examples of the worst-case lower bounds for Mu - 1000,
Rs/Ntu - 20 dB, and an inner convolutional code with K = 7 and r = 1/2.

19
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Figure 14. Worst-case performance for concatenated codes with outer

Reed-Solomon (c,w) code, inner binary block (clW 1 ) code, and hard

decisions.
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Figure 15. Worst-case performance for concatenated codes with outer

Reed-Solomon (c,w) code, inner convolutional code (K = 7, r 1 1/2), and
hard decisions.
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Soft-decision decoding in the outer decoder is possible if the inner
decoder produces symbol metrics. Fbr a practical example, consider an
FH/MFSK system with a repetition code of length c1 as the inner code.
The demodulator produces a series of logical "ones" and "zeros." The
inner decoder counts n,, the number of ones in each group of c I bits
representing an outer-code symbol. The symbol metric associated with an
outer-code one is n I , whereas c, - n, is associated with an outer-code
zero. The outer decoder forms cumulative metrics that are the sums of
symbol metrics. The selection of the largest of the cumulative metrics
determines the decoded output.

System performance can be determined by first evaluating Z, which is
defined by equation (A-35). If there are j errors in the c I bits
representing outer-code symbol i, then the difference between the symbol
metric corresponding to the incorrect symbol and the one corresponding
to the correct symbol is

m 1(2,i) - m1 (1,i) - 2j - c I • (19)

A straightforward calculation yields

z - min (1 c Jexp[s(2j - cl)] (20)

0=<

where Pb is determined from equations (7) to (11) and (16), and rsi =
1/cl. If, for example, the outer code is a rate r convolutional code,
then Pib can be determined from inequality (A-19) with b = 1 and P. =

Pib" Since the Chernof f-Jacobs bound of appendix C applies,
o- 1/2 and Pib is approximated by

i =I A(df + i)z , (21)

i-0
where the A(df + i) are listed in table A-2. Hquation (16) implies that
ra M r/cI.

As a specific example, figure 16 illustrates the worst-case perform-
ances against partial-band jamming of FH/MFSK systems having outer
convolutional codes with K - 7 and r - 1/2, inner repetition codes with
c I = 2, 3, 4, or 5, Mu - 1000, and Rs/Ntu - 20 dB. Pbr a required Pib =

10- 5 , the optimal choice for c I is 3. Comparing figures 13 and 16
indicates that for c1 - 3, a soft-limiting outer decoder requires a
signal power of approximately 1.5 dB less than a hard-limiting one does
to provide Pib 10-5"

21.
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Figure 16. Worst-case performance for concatenated codes with outer
convolutional code (K = 7, r = 1/2), inner repetition code, hard inner
decisions, and soft outer decisions.

5 * LIMITER-DISCRIMINATOR DEMODULATION

Frequency-hopping systems with continuous-phase frequency-shift
keying (CPFSK) offer reduced spectral splatter and a potentially im-
proved performance. 1  After each frequency hop, a binary CPFSK system
shifts between two frequencies separated by h/Tb, where h is the devia-
tion ratio and Tb is the channel bit duration. Demodulation is done by
a limiter-discriminator 4 in general, but differential demodulation is
also possible. Thus, the PH/MFSK receiver differs from the receiver of
figure 1 or figure 2 in that the envelope detector is replaced by a
limiter-discriminator or differential detector.

1D. J. Torrieri, Principles of Military Communication Systems, Artech
House, Dedham, MA (1981).

4S. Haykin, Comunication Systems, John Wiley & Sons, Inc., New York
(1978).
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The theory of limiter-discriminator demodulation5 provides compli-
cated expressions for P(E), the bit error probability in the absence of

frequency hopping. However, the theoretical P(E) can often be ade-

quately approximated by a simple equation such as

P(E) =. erfc , (22)

where erfc( ) denotes the complementary error function, Eb/NO is the
energy-to-noise-density ratio, and C is a parameter that depends upon h
and the product of T and the noise bandwidth, B. The best performance
in white Gaussian noIse results when h = 0.7 and BTb = 1. The corre-
sponding value of t, obtained by fitting equation (22) to the theoret-
ical curve, is approximately 0.75. In contrast, equation (22) with
t 0.78 gives P(E) for a coherent MSK system with a minimum correla-
tion coefficient.

4

Although the frequency of a CPFSK signal varies, its compact spec-
trum allows it to be considered a single-channel modulation for which
there is only a single carrier frequency between hops. It follows from

equation (22) with BTb = 1 that the channel bit error probability for a

frequency-hopping system with binary CPFSK is

Rerfc N) +-10 J erfc (23)b TM Nt +t

Applications of equation (23) with = 0.75 (instead of eq (7))
yield wjrst-case performances for frequency-hopping systems with
limiter-discriminator demodulation that are typically on the order of 4

dB better than the performances of analogous systems with envelope-
detector demodulation. Figure 17 illustrates the potential performances

against optimal partial-band jamming when the concatenated codes of

figure 16 are used with CPFSK and limiter-discriminator demodulation.

The improvement increases with the number of inner-code repetitions.

The potental performance of an PH/CPFSK system is significantly
degraded in practice by the effects of frequency-hopping transitions,
which were ignored in deriving equation (23). The degradation becomes
more prounounced as the hopping period decreases. Nevertheless, CPFSK
appears to be the most attractive choice for the data modulation of most

frequency-hopping systems.

4S Haykin, Communication Systems, John Wiley & Sons, Inc., New York

(1978).
5 R. F. Pawula, On the Theory of Error Rates for Narrow-Band Digital

FN, IEEE Trans. Communications, 29 (November 1981), 1634.
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Figure 17'. Worst-case performance for limiter-discriminator demodu-
lation and concatenated codes with outer convolutional code (K = 7, r
1/2), inner repetition code, hard inner decisions, and soft outer deci-
sions.
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APPENDIX A

In this appendix, the basic facts of coding theoryl - 3 are summa-
rized and used to derive equations for the error probabilities of en-
coded systems.

A-1 . BLOCK CODES

In digital communication systems using block codes, information is
transmitted as blocks of symbols called codewords. Each symbol is
selected from an alphabet of possible symbols. In binary communi-
cations, the two possible symbols are the logical "one" and the logical
"zero." If each of the codewords can be expressed as linear algebraic
sums of linearly independent code vectors (sequences having the same

length as the codewords), the code is called a linear block code. Fbr
binary data, the code bits generated by a linear block code are modulo-
two sums of the information bits. A systematic block code is a code in
which the information symbols appear unchanged in the codeword, which

also has additional parity symbols. The code rate is defined as the
ratio of information symbols to the total number of symbols in a code-
word.

The Hamming distance between two sequences with an equal number of
symbols is defined as the number of positions in which the symbol of one
sequence differs from the corresponding symbol of the other sequence.
The minimum Hamming distance between any two possible codewords is
called the minimum distance of the code.

After the waveform representing a codeword is received and demodu-
lated, the decoder uses the demodulator output to determine the informa-
tion symbols corresponding to the codeword. If the demodulator produces
a sequence of discrete symbols and the decoding is based on these sym-
bols, the process is called hard limiting or a hard decision. Con-
versely, if the decoding is based on analog or multilevel quantized
samples of the waveform, the process is called soft limiting or a soft
decision. The advantage of soft-decision decoding is that reliability
or quality indicators are used in making the decisions.

When hard decisions are made, a maximum-likelihood decoder assumes
that the correct codeword is the one that differs in the least number of
positions from the demodulator output sequence. Correct decoding occurs
if the number of incorrect symbols in the demodulator output is less

1A. J. Viterbi and J. K. Omura, Principles of Digital Communication
and Coding, McGraw-Hill Book Co., New York (1979).

2G. C. Clark and J. B. Cain, Error-Correction Coding for Digital

Communications, Plenum Press, New York (1981).
3W. W. Peterson and E. J. Weldon, Error-Correcting Codes, 2nd ed.,

The MIT Press, Cambridge, MA (1972).
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APPENDIX A

than half the rinimum distance, d, between codewords. For some codes,
it is possible to decode correctly in some cases where the number of
errors exceeds d/2 because of the sparseness of the codewords in the
vector space. By ignoring this possibility, we can bound the probabil-
ity of error in a decoded word, which is denoted by Pw. In a (c,w)
block code, c code symbols represent w information symbols. We assume
the statistical independence of errors in demodulated code symbols,
which can often be ensured, if necessary, by appropriate symbol inter-
leaving. Since there are (c) distinct ways in which i errors may occur
among c symbols,

c
(Cp 1-P -i(A-1)

i=[(d+1)/2]

where tx] denotes the largest integer less than or equal to x, and Ps is
the channel symbol error probability, which is the probability of error
in a demodulated code symbol. The tightness of this bound depends upon
the decoding algorithm. If the algorithm makes no attempt to correct
[(d + 1)/2] or more errors, then Pw is equal to the bound.

A perfect code is a block code such that every c-symbol sequence
is at a distance of at most c from some c-symbol codeword, and the sets
of all sequences at distance c from each codeword are disjoint. There-
fore, perfect codes correct exactly c = (d - 1)/2 errors, where d is
odd, and fail to correct more than e errors. Assuming the independence
of symbol errors, we can replace inequality (A-I) with

c
c =ii p P c-i (A-2)

i=(d+1 )/2

The only known perfect binary codes are the Hamming codes, repeti-
tion codes of odd length, and the Golay (23,12) code. In a Hamming
(c,w) code, the numbers of code bits and information bits are related by
c - 2c - w - 1. Since d = 3 for Hamming codes, they are capable of cor-
recting all single errors and detecting two or fewer errors. Equation
(A-2) applies with Ps = Pb' where Pb is the channel bit error probabil-
ity, which is the probability of error in a demodulated code bit.

Repetition codes have one information bit represented by c code
bits. Fbr hard-decision decoding, c is odd and the decoder decides the
logical state of the information bit according to the states of the
majority of the demodulated bits. Thus, the decoder can correct all
combinations of (c - 1)/2 or fewer errors, but no patterns of more
errors. In this case, Pw is the probability of error in a decoded
information bit, which is denoted by Pib" Since d C, equation (A-2)
becomes
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cc

Pib ()d Io - Pb) c -  
(A-3)

i=(c+1 )/2

The Golay (23,12) code has d = 7 and, thus, can correct three bit
errors. The extended Golay (24,12) code is formed by adding an overall
parity bit to the perfect Golay (23,12) code, thereby increasing the
minimum distance to d = 8. As a result, three or fewer errors can
always be corrected and one-sixth of the code vectors with four errors
can be corrected.I Five or more errors are never corrected. Thus,
assuming the independence of bit errors, the word error probability for
the extended Golay code is

24

P ( 4 )p4(l ) +2 ( 4 )pb(I - b)

i=5 V

The extended Golay (24,12) code is usually preferable to the Golay
(23,12) code, which usually gives a slightly better performance in the
presence of white Gaussian noise, because it allows a less complex
decoding implementation and it has a code rate of exactly one-half,
which simplifies the system timing. The design of an extended Golay
decoder may be simplified if no attempt is made to correct four
errors. In this case, equation (A-4) must be replaced by inequality
(A-l) with c = 24, d = 8, and Ps = Pb"

The most important nonbinary block codes are probably the Reed-
Solomon codes, 2 ' 3 which provide the largest possible minimum code dis-
tance of any linear code with specified values of c and w. A Reed-
Solomon code has an alphabet of 2

m symbols and c = 2m - 1 symbols per
codeword, where m is the number of bits per symbol. If the codeword
represents w information symbols, the minimum distance is d = c - w +
1. Since the Reed-Solomon codes are not perfect codes, inequality (A-i)
applies to hard-decision decoding.

To compare codes with different numbers of information symbols
represented by the codewords, we need the probability of an information
symbol error, Pis, at the output of the decoder. Since not every word
error results in a symbol error, Ps < P . Since for every linear
block code there exists a systematic lineawr block code that is equiva-
lent in performance, 1 ' 3 practical block codes are usually systematic

IA. J. Viterbi and J. K. Omura, Principles of Digital Communication
and Coding, McGraw-Hill Book Co., New York (1979).2G. C. Clark and J. B. Cain, Error-Correction Coding for Digital
Comunicatlons, Plenum Press, New York (1981).

3W. W. Peterson and E. J. Weldon, Error-Correcting Codes, 2nd ed.,
The MIT Press, Cambridge, MA (1972).

29



APPENDIX A

and, thus, systematic codes are assumed in the subsequent analysis.
Given that a word error occurred, the probability of an information
symbol error for a systematic code is the same as the probability of
error in any symbol of the codeword. The latter probability is at least
d/c because an incorrectly chosen codeword is at least a distance d from
the correct codeword, assuming that the decoder attempts to decode all
possible received sequences. Thus,

S <p < P (A-5)
cw- is- w

Since an incorrectly chosen codeword is often exactly a distance d from
the correct codeword, the lower bound is usually tight unless Pw is
large.

Consider practical codes for which Pw is given approximately or
exactly by equation (A-2). Let A(i) denote the event that i symbol
errors occur in a demodulated word of c code symbols at the decoder
input. Then Pis is equal to the summation over i of the product of the
probability of A(i) and the probability of an error in a decoded infor-
mation symbol given A(i). For [(d + 1)/2] < i < d, the latter proba-
bility is approximated by d/c; for d < i < c, it is approximated by
i/c, the probability of an error in a demdulated code symbol at the
decoder input given A(i). Therefore, for hard-decision decoding,

d C-i
p. - 1 jP(1 -
Pis :L (i s( Ps

i=C(d+1)/2]
(A-6)

+ ; i( )P (1 - Ps)c i

i Ed 1

The right-hand side of this equation is always within the bounds of
inequality (A-5) and gives Pis = 1 when Ps = 1, as desired.

For binary communications, Pis is equal to the probability of an
information bit error, Pib" Thus,

d
i-(d+1 ) 1c-iPib " -( /2 (1)Phi Pb)

(A-7)

c

+ ~ i(C)%(1 - b)
~i ,d+l
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Fbr repetition codes, equation (A-7) reduces to equation (A-3), as
desired. Equation (A-7) and the bounds of inequality (A-5) are compared
in figure A-i for the Golay (23,12) code.

1-

II
1.1 I

POimmoll1 OF CllVNK OT I01

Figure A-i. Information bit error probability as function of channel
bit error probability for Golay (23,12) code.

In nonbinary communications, an information symbol represents m
information bits. We assume that an incorrectly decoded information
symbol is equally likely to be any of the remaining symbols in the
alphabet. Among 2e equally likely symbols, a given bit is a one in 2m- 1

cases and a zero in 2u-1 cases. Thus, when there are 2m - 1 equally
likely incorrect symbols,

Pib 2m Pis (A-8)

For Reed-Solomon codes, equations (A-6) and (A-8) and c - 2' - I imply
that
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c +)1 S)c-i
i 2 1J2c E i-=(d+1)/21

(A-9)

+ i ( ilP sC ' -p c -
i -d+1

for hard-decision decoding.

The Hamming weight of a codeword is defined as the number of
nonzero symbols in a codeword. For binary codes, the Hamming weight is
the number of ones in a codeword. The set of Hamming distances from a
given binary codeword to the other valid codewords is the same for all
codewords. 1 ' 3 Since the set of distances from the all-zero codeword is
the same as the set of weights of the nonzero codewords, the set of
weights is equivalent to the set of distances. Analytical expressions
for the weight distribution are known for the Hamming and Reed-Solomon
codes. 2 ' 3 The weight distributions of other codes can be determined by
examining all 2 w valid codewords if w, the number of information bits,
is not too large. The weight distribution of the Golay codes is listed
in table A-i.

TABLE A-i. WEIGHT DISTRIBUTION OF GOLAY CODES

Number of codewords
Weight

(23,12) code (24,12) code

0 1 1
7 253 0
8 506 759

11 1288 0
12 1288 2576
15 506 0
16 253 759
23 1 0
24 0 1

4096 4096

1A. J. Viterbi and J. K. Omura, Principles of Digital Communication
and Coding, McGraw-Hill Book Co., New York (1979).2 G. C. Clark and J. B. Cain, Error-Correction Coding for Digital
Communications, Plenum Press, New York (1981).

3 W. W. Peterson and F. J. Weldon, Error-Correcting Codes, 2nd ed.,
The MIT Press, Cambridge, MA (1972).
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A soft-decision decoder makes decisions by selecting the largest
of the cumulative metrics, which are measures of the likelihoods of
codewords. An upper bound for Pw follows from fundamental considera-
tions. Because of the countable subadditivity of probability measures,
the probability of a finite or countable union of events Ani n = 1, 2,
* * o, satisfies

P(U An) < P(An) * (A-10)

n

In communication theory, a bound obtained from this inequality is called
a union bound. Let N(6) denote the number of codewords having
weight 6. Let Q(6) denote the probability that the cumulative metric
for an incorrect codeword at distance 6 from the correct codeword ex-
ceeds the cumulative metric for the correct codeword. The union bound
and the relation between weights and distances imply that

P < I N(6)Q(6) , (A-11)

w6

where the summation is over all values of 6 for which there are valid
codewords. Metrics are defined so that Q(SI ) < Q(62 ) if 61 > 62. Thus,
in terms of the minimum distance, d, we have the much weaker bound

P < (v - 1)Q(d) , (A-12)

where v is the number of valid codewords. This bound is useful when the
only known parameter of a code is the minimum distance between code-
words. The bound is tight if the distances from a given codeword are
all close to d.

For a repetition code, Pib = Q(c), where c may be even or odd for
soft-decision decoding. In other cases, approximate expressions for Pib
and Pis can be obtained by combining inequality (A-11) or (A-12) with
the lower bound of inequality (A-5) and equation (A-8). For example,
using table A-i, we obtain

i a [759Q(8) + 2576Q(12) + 759Q(16) + Q(24)] (A-13)Pib 3

for the extended Golay (24,12) code.
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A-2 . CONVOLUTIONAL CODES

A convolutional encoder converts an input of b information symbols
into an output of v code symbols that are a function of both the current
input and preceding information symbols. A convolutional encoder can be
implemented with a shift register and linear logic. The outputs of
selected register stages are added modulo-two to form the code
symbols. After b symbols are shifted into the register and b symbols
are shifted out, a commutating switch reads out v code symbols in se-
quence. The code rate, which is the ratio of input symbols to output
symbols, is r = b/v. The constraint length, K, is defined as the total
number of shift register stages in the encoder.

We assume that a Viterbi decoder is used to generate the infor-
mation bits in the receiver. Let a(6,i) denote the number of paths
diverging at a node from the correct path, having Hamming distance 6 and
i information symbol errors over the unmerged segment. Let df denote
the minimum free distance, which is the minimum distance of any unmerged
segment from the correct path. Let Q(6) denote the probability of an
error in comparing the correct path segment with a path segment that
differs in 6 symbols. From the union bound, it can be shown that the
probability of an information symbol error after Viterbi decoding is
bounded by 1 ,'2

Pis < 7 a6iQ6 (A-14)
i s b i = 1 6 d f

For binary codes, Pis is equal to the probability of an information bit
error, Pib o

Among the convolutional codes of a given code rate and constraint
length, the one with the best distance properties can sometimes be
determined by a complete computer search. After elimination of the
catastrophic codes, for which a finite number of demodulated bit errors
can cause an infinite number of decoded information bit errors, the
codes with the largest value of df are selected. Then the values of the
total information weights,

A(6 = i ia(6,i) , 6 > df ( A-15)

IA. J. Viterbi and J. K. Omura, Principles of Digital Communication
and Coding, McGraw-Hill Book Co., New York (1979).2 G. C. Clark and J. B. Cain, Error-Correction Coding for Digital
Communications, Plenum Press, New York (1981).
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are examined for each of the selected codes. All codes that do not have
the minimum value of A(df) are eliminated. If more than one code re-
mains, codes are eliminated on the basis of the minimal values of A(df +
1), A(df + 2), . .. , until one code remains. Fbr binary codes of rate
1/2 and rate 1/3 and constraint lengths up to 9 and 8, respectively, the
optimal codes have been determined. 4  Fbr these codes, table A-2 lists
the corresponding values of df and A(df + i), i = 0, 1, . .. , 7. In
terms of A(df + i), equation (A-14) becomes

Pis 1 A(df + i)Q(df + i) . (A-16)

TAME A-2. PMAW VALUES POR BEST CONVOLUTIONAL COOS

K AC) r ,(df) A(df + 1) ACd +.2) A(df .3) A(df + 4) A(df + 5s A(d + 6) A(df + 7)

3 1/2 5 1 4 12 32 80 192 448 1024

4 1/2 6 2 7 18 49 130 333 836 2069
5 1/2 7 4 12 20 72 225 500 1,324 3680
6 1/2 8 2 36 32 62 332 701 2,342 5503 -
7 1/2 10 36 0 211 0 1404 0 11,633 0
8 1/2 10 2 22 60 148 340 1008 2,642 6748

9 1/2 12 33 0 281 0 2179 0 15,035 0
3 1/3 8 3 0 15 0 58 0 201 0
4 1/3 10 6 0 6 0 58 0 118 0

5 1/3 12 12 0 12 0 56 0 320 0
6 1/3 13 1 a 26 20 19 62 86 204

7 1/3 14 1 0 20 0 53 0 184 0

8 1/3 16 1 0 24 0 113 0 287 0

If a binary code is used and the Viterbi decoder makes a hard
decision on each demodulator output bit, an exact expression for Q(6)
can be written. When the correct path is compared with an incorrect
one, correct decoding results if the number of incorrect bits in the
demodulator output is less than half the number of bits in which the two
paths differ. If the number of incorrect bits is exactly half the
number of differing bits, then either of the two paths is chosen with
equal probability. Assuming the independence of bit errors, it follows
that

(6)PC1 - b , 6 is odd

i-(6+1 )/2

Q(8) ( (A-17)

6- 6/
:I CiPbC' + b) -i (6/2)[Pb(1 - Pb)]

1-6/2+1
6 is even

4J. P. Odenvalder, Optimal Decoding of Convolutional Codes, Doctoral
Dissertation, University of California at Los Angeles (1970).
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where Pb is the probability of error in choosing between the correct bit
and an incorrect one.

It is shown below that when soft decisions are made, Q(6) can
often be bounded by a function of the form

Q(6) < LZ , (

where a and Z are independent of 6. Inequalities (A-16) and -If)
imply that

a zdf+i
P -a A(df + i)z f (A-19)

i=0

In principle, A(6) can be determined from the augmented gener-
ating function, T(D,I), which depends upon the structure of the convolu-
tional code. 12 An expansion of the augmented generating function has
the form

T(D,I) = [ a(6,i)DIi 1 (A-20)
i-i 6=dr

The derivative at I 1 1 is

3T(D,I) = ia(6,i)D6

i=1 -d f(A-21)

d + +i
= A(d f+iODf

i=O

Thus, the bound for Pis' given by inequality (A-16), is determined by
substituting Q(6) in place of D6 in this expansion and multiplying the
result by 1/b. For soft-decision decoding, equation (A-21) and inequal-
ity (A-19) imply that

1A. J. Viterbi and J. K. Omura, Principles of Digital Comiunication
and Coding, McGraw-Hill Book Co., New York (1979).

2 G. C. Clark and J. B. Cain, Error-Correction Coding for Digital
Comunications, Plenum Press, New York (1981).
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< 3T(D,I) (
is a- b II-,D-Z (A-22)

Closed-form expressions for T(D,I) are known for the orthogonal
and the dual-k convolutional codes. The encoder for an orthogonal
convolutional code of constraint length K generates one of 2 K orthogonal
binary sequences of lenqth v = 2 K for each input bit. Thus, the rate of
the code is 2-K, The augmented generating function can be shown to be1

ID Kv/2,1_672
T(D,I) /fK, - D/2) (A-23)

1 - DV/' 2 { I[ - D(V/2)(K- )]}

Differentiation yields

8T(D,I) DKV/ 2 (I - D/2)2  
(A-24)

31 I-1 (1 - 2Dv/2 + DKv/2)2

Since b - 1 and pi s - Pib' equation (A-24) and inequality (A-22) give

z Kv/2(1 __ l212 K
Pib <  - + ZKv/2)2 , v = 2 , (A-25)

for soft-decision decoding.

To determine Pib for hard-decision decoding, we must first expand
equation (A-24) in powers of D because equation (A-17) does not have the
form of inequality (A-18). We use the identity

-2 1 n-i1ii

[i - (x + Y]- r n(x + y)n - n (n 1 1 )x'yn- ' '  (A-26)
n-i n-i irn0

and substitute Q(M) in place of D The result is
m n-ido <  n - n. ( I ) i n -i - 1 -

P II n (1 0 )(-l)' 2  {Q[2' 5( - i - 1 + Li + K)]ib-n-i i-,O i

(A-27)

- 2Q(2K-
1(n - i + Li + K)] + Q[ 2 K- n -i + 1 + Li + K)11

where Q[ I is given by equation (A-17).

IA. J. Viterbi and J. K. Omura, Principles of Digital Comunication
and Coding, McGraw-lll Book Co., New York (1979).
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A dual-k code is a nonbinary convolutional code. The encoder
shifts one k-bit information symbol at a time into a shift register of
2k binary stages (two symbol stages). For each information symbol, a
rate I/v encoder generates v code symbols. Each code symbol is one of
2 possible symbols and may be transmitted as one of 2 modulated sig-
na ls.

Among the dual-k codes, the codes with the best distance proper-
ties can be shown to have 5

(2 - 1)D2Vl

T(DI) (2 k (A-28)
1 - I[vD7- 1 + (2k - 1 - v)DV ]

which implies that

3T(DI)I = ( 2 k - 1)D 2 v (A-29)

[I I - - vDv-' - (2k - 1 - V), v1
2  "

Analogously to equation (A-8), the probability of an information bit
error is related to the probability of an information symbol error by

Pib = 
2 k- 1  P is ° (A-30)

For soft-decison decoding, equations (A-29) and (A-30) and inequality
(A-22) with b = 1 give

a2k-1 Z2v

Pib -[ v -1 _ (2 - 1 v)zV] 2  .A-31)

A-3. SOFT-DECISION DECODING

The function Q() can be defined in general as the probability
that the cumulative metric for an incorrect sequence at distance 6 from
the correct sequence exceeds the cumulative metric for the correct
sequence. For block codes, the sequence is a codeword; for convolu-
tional codes, the sequence is a path segment. In soft-decision de-
coding, the sequence with the largest associated metric is converted
into the decoded output. Let m0 (k,L) denote the value of the cumulative
metric associated with sequence k of length L. To derive inequality
(A- 18), we consider additive metrics of the form

5j. p. Odenwalder, Dual-k Convolutional Codes for Moncoherently
Demodulated Channels, International Teleetering Conference (1976), 165.
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L
m0 (k,L) = [ m 1 (k,i) , (A-32)

i=1

where m (k,i) is the symbol metric determined from code symbol i. Let k
= 1 label the correct sequence and k = 2 label an incorrect one at
distance 6. By suitably relabeling the 6 symbol metrics that may differ
for the two sequences, we obtain

Q(6) = P[m 0 (2,L) > m0 (l,L)]

=p [ml(2,i) -ml(l,i) ]  > '

where P[A] denotes the probability of event A. The right-hand side of
this equation can be bounded by the inequalities of appendix C. We
obtain

Q(6) < a min E xp [m1(2,i) - m1(l,i) (A-34)
O<s<s1 i=

If inequalities (C-8) and (C-9) are satisfied, which is the usual case
in practice, then inequality (A-34) represents the Chernoff-Jacobs bound
and a = 1/2; otherwise, inequality (A-34) represents the Chernoff bound
and a = 1. The assumption that the m1 (2,i) - m1(1,i), i = 1,
2, . .. , 6, are independent, identically distributed random variables
and the definition

Z min E[exp{s[m1(2,1i) - m1 (1i)]] (A-35)
0<ss 1

yield

6Q(6) < QZ * (A-36)

The assumptions required to establish this inequality are reasonable in
most practical cases, especially when symbol interleaving is used.

Calculations for specific communication systems operating in white
Gaussian noise have shown that soft-decision decoding gives a superior
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performance relative to hard-decision decoding. Approximately 2 dB of
additional signal power is required for a hard-decision receiver to
produce the same error rates as the corresponding soft-decision re-
ceiver. However, soft-decision systems are much more complex to im-
plement and may be too slow for the processing of high information
rates. Quantization is necessary in soft-decision receivers because
digital computations are performed in the decoders. Since the appro-
priate quantization levels depend on the signal, thermal noise, and
interference levels, automatic gain control is required. Finally, when
the interference is not similar to white Gaussian noise and has unknown
parameters, the appropriate soft-decision metric is often difficult to
determine, may be a function of the signal level, and may not yield a
significant performance advantage relative to hard-decision systems.
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Figure B-i depicts a noncoherent frequency-hopping multiple
frequency-shift keying (FH/MFSK) receiver that implements soft
decisions. After the dehopping, the received signal passes through an
MFSK demodulator. The detector outputs are sampled once every code
symbol. After each sampling time, the appropriate quantized sample
value is added to the stored values in one or more accumulators in the
decoder. When block codes are used, each accumulator is associated with
a possible codeword. All the code symbols in a received sequence are
sampled, and then the final accumulator outputs, which are called the
cumulative metrics, are compared. The codeword associated with the
largest metric value is then converted into the decoded output. When
convolutional codep are used, each cumulative metric is associated with
a particular code path. The decoded output is the sequence corre-
sponding to the path having the largest cumulative metric.

link-ONE~r

mN (,L)= L 2 , (B Ii.

r - -- -"-

Figure B-1. FH/MFSK receiver with soft-decision decoding.

Let Rki represent the ith quantized sample value that enters accumu-
lator k. We consider the cumulative metric defined by 

L 2Mo0(k,TL) -- N5i(-)

where L is the number of samples used. This metric is chosen because it
is mathematically tractable and it is known to be optimal for Rayleigh
fading.

To apply the general coding results of appendix A, we must evaluate I
Z, which is defined in equation (A-35). In the subsequent analysis, the
degradation due to imperfect quantization is neglected. Let R ii denote
a sample value from the detector that receives the intended signal plus

noise and interference. Let R2i denote a sample value from a detector
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that receives only noise and interference, which are approximated by
band-limited white Gaussian processes. Suppose that an intended signal
with power Rs and form

s (t) =VR cos wt (B-2)I s

is received during each hop. It is shown elsewhere1 that

R2 = Z2 + Z2  ,1i ii 21

(B-3)R2i  f z2i + z2i
2i Ui 4i

where the Zni, n = 1, 2, 3, 4, are independent Gaussian random varia-
bles. The expected values are

(B-4)

E[Z 2 1] = E[Zi] -- i -

The variances are

vA(z 1 i) = vAR(z 2 i) = N, ,
(B-5)

VAR(Z3i) = VARZ 4 i) N2  '

where N1 is the total noise power (thermal noise plus interference)
accompanying the signal and N2 is the total noise power in the other
detector output. The conditions for the Chernoff-Jacobs bound with s 0 >
0 (see app C) are satisfied by R2 - R2

2i 1i

We assume that R2 and R2i are statistically independent of each
other and from hop to hop, that is, for all values of i. Then equation
(A-35) becomes

1D. J. Torrieri, Principles of Military Communication Systems, Artech
House, Dedham, MA (1981).
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Z min Elexp(sR2i )]Efexp(- s R 2i 3] , (B-6)
O<s<s2

where s1 is the largest value of s for which the expected values remain

finite. Fbr a Gaussian random variable x with mean m and variance 
2 , a

direct calculation yields

r2 11/ sin2  1

Etexp(sXJI exp s < (B-7)

F1 2s1 _ 2a2

Using equations (B-3) to (B-5) and (B-7) in equation (B-6), we can

evaluate the conditional expectations given the values of N1 and N2. ,l
Substituting X = 2sN, we obtain

Z= min CM) , (B-8)

O<X<N1 /N 2

where

exp _N1

f_______ 
Ni

C(N 2 E < X N .(B-9)

and the expected value is with respect to NI and N2.

There are four possible values of the pair (N1,N2 ), depending upon

which of the two detectors are jammed. For J jammed channels out of M

total channels, the associated probabilities, P[ 1, are derived from

elementary combinatorial analysis. The results are

(M - 2)
J

(M)
p[l I N 2  = = JN F(0,M- -2) , (B-l0)

1M )

P[NI . NtiN 2 Nt + Nt] - (M) F(1,M - 1) , (B-12)
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=(N N N + i (2,M) ,(B-1 3)PIN1 = N2  Nt + N. (j-)

where Nt is the thermal and background noise power in a channel, N. is
the jamming power in a jammed channel, and

, a < J<b
FVa, b) = (B-14)

0 , otherwise

Combining equations (B-9) to (B-14) gives

(M - 2 )F(0,M- 2ep RsJ

(c) (i- 2
CM

s

(N)N
2)1- N ) x)

Nt + N )

(!B-15)

-J 2)(,M )x Rs

+N t

()1+ + J LN.N
J Nt

(M 2 )F(2,Mfex 4 (. .T NA ~

-M( X2)

0 < + N
t
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This equation can be expressed in terms of p, tu , Ntu, and N.t by using
equations (8) to (11) in the main body of the text. The tpper bound
on A is the smallest value of NI/N 2 out of the three possibilities. By
using numerical analysis, A can be chosen to minimize C(M), thus provid-
ing Z.

Soft-decision decoding with the metric of equation (B-i) provides a
poor performance relative to hard-decision decoding against optimal
partial-band jamming. As an example, figure B-2 shows the upper bound
of Pib for a dual-k convolutional code and 0 < P < 0.1. Equations
(B-15), (B-8), (8) to (11), and inequality (A:31)-are applied with
a- 1/2, k = 3, v 4, r. = 3/4, M- 1000, and Rs/Ntu = 20dB. The
graph illustrates the vulnerability of the soft-decision decoding to

jamming concentrated over a small portion of the total hopping band.

I4

i-i
I-1 MM 110

I #A #A #A an
MarU -O -

Figure B-2. Information bit error probability for dual-3 convolutional
code (v - 4), soft-decision decoding, and partial-band jamming.

Decoding errors are primarily due to interference that causes a
single term in the summation to dominate the cumulative metric of equa-Stion (B-1). Clipping the Rki would improve performance, but an effec-
tive implementation requires an accurate measurement of the signal
power, which is often impractical.
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The moment generating function of the random variable X is defined
asi

M(s) = E[eX] J exp(sx) dF(x) (C-,)

for all s for which the integral is finite, where E[ ] denotes the
expected value, s is a constant, and F(x) is the distribution function
of X. In general, M(s) is defined for some interval including the
origin. Let P[ ] denote the probability of the event in the brackets.
For all nonnegative s,

P[X > 0] = f dF(x) < exp(sx) dF(x) (C-2)

Comparing equations (C-I) and (C-2), we conclude that

P[X > 0] < M(s) , 0 < s < s i , (C-3)

where s1 is the upper limit of the interval in which M(s) is defined.
To make this bound as tight as possible, we choose the value of s that
minimizes M(s), which we denote by so. Thus,

P(X > 0] S , (C-4)

where so > 0 and

K(so) = min (s) . (C-5)
O<s<s 1

The right-hand side of inequality (C-4) is called the Chernoff bound.
Since M(O) - 1, the Chernoff bound is not useful unless M(s0) < M(0).

If the moment generating function is finite in some neighborhood of
s - 0, we may differentiate under the integral in equation (C-I) to
obtain the derivative of H(s), which is

1P. Billingsley, Probability and Measure, John Wiley & Sons, Inc.,
Nev York (1979).
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)= f x exp(sx) dF(x) . (C-6)

It follows that N'(0) = E[xJ. Differentiating equation (C-6) gives the
second derivative,

M"(s) = x2 exp(sx) dF(x) o (C-7)

This equation shows that M"(s) > 0, which implies that M(s) is convex in
its interval of definition. Suppose that

E(X) < 0 , P(X > 0) > 0 * (C-8)

Then N'(0) < 0 by the first assumption, and M(s) + w as s + - by the
second. Since M(s) is convex, it has its minimum value at some positive
s - so. We conclude that if s, > 0, inequalities (C-8) are sufficient
to ensure that the Chernoff bound is less than unity and sO > 0.

The Chernoff bound can be tightened if we assume that X has a den-
sity function, f(x), that satisfies

f(-x) > f(x) (C-9)

for all x. Suppose that M(s) is defineu in the interval s2 < s < s.?
where s2 <0 and s > 0. Then 2

N(s) exp(sx)f(x) dx

- f exp(sx)f(x) dx + f exp(sx)f(x) dx

> [exp(sx) + exp(-sx)]f(x) dx

21. M. Jacobs, Probabillty-of-Error Bounds for Binary Transmission on
Slowly Fading Rician Channel, IEE Trans. Inform. Theory, 12 (October
1966), 431.
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f 2 cosh (sx) f(x) dx

> 2 f f(x) dx

=2P[X > 0]

Thus, we obtain the Chernoff-Jacobs bound:

P[x > 0] <- 7 (s0 ) (C-10)

where

M(so) = min M(s) .
(C-11)

92<5<s1

The parameter !, is not required to exceed zero in this case. However,
if sI > 0 and inequalities (C-8) hold, then the Chernoff-Jacobs bound is
less than 1/2 and so > 0.
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