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I. INTRODUCTION

Infrared-emitting diodes have high power output, small spatially
incoherent radiating surfaces, and potentially low price that would make
them useful as radiation sources for coherent optical correlators. Limited
spatial coherence reduces alignment accuracy requirements, and to some extent,
also scale and orientation accuracy. One limitation of the diode is that it
has too broad a bandwidth to be used in a typical coherent correlator.

The basic Fourier transform relationship of a typical coherent optical
correlator contains wavelength as one of the factors: the transform scale
is proportional to wavelength. With a broadband radiation source, only the
transform generated by a narrow portion of the bandwidth matches the scale of
the filter. To correct this problem, an achromatic Fourier transform system
is needed.

This report compares and evaluates two achromatic Fourier transform systems

described in the literature. The performance of the simplest system is estima-
ted and experiments performed with it are describe&. A bibliography of recent
reports and publications on coherent optical correlators from the Research
Directorate, United States Army Missile Command at Redstone Arsenal, Alabama,

in included.

II. ANALYSIS AND COMPARISON OF PROPOSED ACHROMATIC FOURIER TRANSFORM SYSTEMS

- Three publications contain the original derivations and descriptions of
achromatic Fourier transform systems. The first by KatylI describes a system
in which lateral and axial magnification is held constant and an approximate
optical system for implementing it is described. Morris2 uses a somewhat
similar approach but with great detail and a thorough analysis. He also
proposes how to implement the system with greater accuracy than in Katyl's
paper. Collins 3 uses a linear system analysis approach and includes error
analysis of an approximate implementation of his system.

In order to compare the expected performance of the Morris and Collins
achromatic Fourier transform systems, a ray tracing analysis approach was
used. Figures l(a) and (b) show the two systems. A ray originates at the
input plane at a distance y1 above the axis in a direction determined both by

the frequency of an assumed test grating and the wavelength of radiation.
An equation is then written for the intercept of this ray with the output
plane assuming perfect thin lenses and using small angle approximations. The

r equations used for these calculations are as follows:

el1= Af - y1/F1  1

1Robert H. Katyl, "Compensating Optical Systems. Part 3: Achromatic Fourier
Transformation," Appl. Opt. 11, p. 1255 (May 1972).

2G. M. Morris, "Diffraction Theory from Achromatic Fourier Transformation,"
Appl. Opt. 20, p. 2017 (June 1981).

3G. D. Collins, "Achromatic Fourier Transform Holography," Appl. Opt. 20,
p. 3109 (September 1981).
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Figure 1. Geometry for ray trace analysis
of achromatic Fourier transform.
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where X is the wavelength of light, f is the spatial frequency of the test
grating and -yl/Fl is the angular ray direction change by the lens of focal

length F1 in contact with the grating. At other lenses, the ray direction

change AO is given by

A6 - -y/F ,(2)

where y is the ray intercept of the lens and F is the focal length.

An expression for the ray Y3 intercept at the last, the Fourier transform,

plane is given for Figure l(a) by

Y3 = Yl + 2FOl + FAe2 (3)

where

Ae2 = -Y2/F= -(y1 + XfF - ylF/FI)/F 2  (4)

Substitutions of Equations (1) and (4) into Equation (3) yields the result

Y3 = XfF(2 - F/F2 ) + Yl(l - 2F/F1 - F/F2 + F 2/F1F2 ) (5)

The desired result is to have Y3 independent of X and y1 , or

y3 X ofF , (6)

which implies that the coefficient of y1 in Equation (5) should equal to zero.

Equating Equation (5) to Equation (6) yields the required focal lengths of the
two lenses:

1/F1 = (l/F)(1 - X/X ) (7)

1/F2 = (l/F)(2 - X /X) . (8)o

These results are the same as derived by Morris in Equations (18) and (19).
Since Y3 is independent of y,, the achromatization is space invariant. The

first lens, described by Equation (7), consists of a position achromat of
focal length F and negative lens whose focal length is inversely proportional
to the wavelength of light, -FX / . This element is a holographic lens.

0

The second lens described by Equation (8) consists of a positive achromat
of focal length F/2 and a negative lens whose focal length is proportional to
the wavelength of light, -FX/X . This lens cannot be easily implemented,0

although Morris has designed a rather exact approximation. The above lens
combination can be roughly approximated by a single element holographic lens.

5



This can be explained as follows: let A X 0 + AN which then gives

2 -A = 1 + AN - (AX/X 2 + (9)

as the required coefficient of 1/F. If instead, the coefficient of 1/F is
that of a holographic lens, X/A, then

A/A 1 + AX/A . (10)
0 0

Thus, the first two terms of Equation (1) are the same as those of Equation
(9), while the higher order terms of Equation (9) are not generated by the
holographic lens.

The achromatic Fourier transform system derived by Collins can be
analyzed in a similar way. Because this system contains two achromatic lenses
besides the two initially unspecified lenses, the derivation is much more
complex. The equations for Figure l(b) are:

Y5 
f Y1 + 4F61 + 3FA82 + 2FA63 + FAG4  

(11)

81 = fX - Yl/F1  (12)

AG2  / -Y2/F2 = -(y, + FGo)/F 2  (13)

AG3 = -Y3/F3 = -(yl + 2FGI 
+ FAG2 )/F3  (14)

AG4 m -Y4 /F4 = -(y + 3FGI + 2FAG2 + FAG3 )/F4  " (15)

Equations (11) through (15) yield an expression for Y5 :

Y5 = -XfF(F/F3) + yl
[-l = F2/(F1F3 )] (16)

Letting y5 = AofF and setting the coefficient of y, = 0, we can solve for the

two unspecified focal lengths:

1/F 1 = -(l/F)(X/A ) (17)

1/F3 = -(1/F)((a/X) (18)

As before, the first lens contains a negative holographic lens but without the
achromat; the second lens again requires a lens where focal length is
proportional to the wavelength of light. This lens can be approximated by
the lens

1/F3 = I/F(-2 + X/Ao) (19)
3 0

consisting of a negative achromat of focal length F/2 and a positive holographic

zone plate of focal length FA0 /A.

6



Comparison of Equations (7) and (8) with Equations (17) and (18) shows
that both systems require the same type of lenses: one holographic lens and
one with focal length proportional to wavelength. In this respect, both systems
are similar. Since the Morris proposed system has 2F overall length while the
Collins system has 4F length and, besides that, needs two additional achromatic
lenses, the Morris system was selected. Several additional calculations were
made about the Morris system.

A spacing was introduced between the object plane and the first lens in
Figure l(a). The calculated values were the same as in Equations (7) and (8),
indicating the achromatization is independent of input image position.

A grating was added halfway between the first and second lens element as
shown in Figure 2. Using small angle approximations and choosing the carrier
frequencies of lens F1 and F3 to be half of the grating frequency at plane 2,

again the same expressions were found for F1 and F3. This indicates that the

required holographic lenses could be recorded on a carrier frequency without
destroying the achromatic properties of the system.

Also, Equation (20) in the Morris paper was examined. This equation
indicates that an achromat plus a negative holographic lens is needed to correct
for residual phase errors. The negative holographic lens could be implemented
by recording the matched filter with a diverging reference beam, as in Figure 3.
The achromatic lens is of no importance since, typically, an achtomatic lens
is used anyway to focus the diffracted beam.

Finally, the achromatized system was compared with a chromatic Fourier
transform system. In the chromatic system, the ray intercept is given by

y = XfF

= A fF(l +A)/A ) , (20)
0 0

where the Ai/X. term represents an error. A similar expression can be0

derived for the achromatized Morris system using two holographic lenses:

I2
=,X fF [1 - ( 1XfZo)2] . (21)

Thus, the error is reduced by the factor lx/Xo . Since the expression

N = (22)

was presiously derived4'5 where N it the number of resolved points that can

4J. Upatnieks, "Optical Correlatoz with Laser Diode Sources," Final Report
for Battelee Task Order No. 1095 (October 1979).

5J. G. Duthie, J. Upatnieks, C. R. Christensen, and R. D. McKenzie, Jr.,
"Real-Time Optical Correlators with Solid-State Sources," SPIE Vol. 231,

International Optical Computing Conference (1980).
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Figure 2. Modified Morris achromatic Fourier transform system.
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Figure 3. Filter recording geometry that includes the equivalent
of a negative holographic lens.
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be correlated by a light source of bandwidth AX, then it is reasonable to

deduce from Equations (20) to (22) above that

N = (/A)2 (23)

for the approximate achromatic system.

III. EXPERIMENTS

Figure 4 shows the achromatic Fourier transform coherent optical
correlator that was assembled. Two holographic lenses were recorded on
Kodak 649F emulsions in dichromated gelatin, as was the grating. The carrier
frequencies of the two holographic lenses were the same, and the grating
frequency was twice that of the lenses. This system prevented the undiffracted
light from reaching the Fourier transform plane. An argon laser was set up
nearby so that either a mercury arc lamp or the laser could be used as the

light source.

After the system was set up, the point focus of the light source was
observed in the Fourier transform plane with a microscope. With a spectrally
unfiltered mercury arc lamp as the source, a slight chromatic aberration was
visible. It was found that this aberration could be corrected by adjusting
the position of lens L which caused the light incident on the input plane

to be noncollimated.

Two crossed Ronchi rulings were then inserted at the input plane and the
Fourier transform was observed. Some chromatic dispersion was visible which
could be corrected by adjusting the spacing between lens L2, L3 , and the

grating. The required adjustment for the two orthogonal directions of the
transform was somewhat different, thus complete correction could be achieved
for only one direction. Figure 5(a) shows a photograph of the spectrum with a
chromatic Fourier transform system and Figure 5(b) shows the spectrum taken

with the achromatic Fourier transform system.

-4.--f L-4--~. ~ *Ah

Figure 4. Experimental achromatic Fourier transform system.
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(a)

(b)

Figure 5. Fourier transforms of two crossed gratings:
(a) with chromatic system and (b) with
achromatic system. The Ronchi rulings had
8 1/nrn and 10 2/mm frequency, and the light
source was a mercury arc lamp.
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Several matched filters were constructed of an aerial view of Huntsville,
Alabama, with an argon laser light source operating at 514.5 nm wavelength.
Correlations were obtained both the the argon laser as well as with the
spectrally unfiltered mercury arc lamp. Figure 6 shows the correlation lines
formed by the mercury green line at 546 nm and the amber line at 578 nm
simultaneously. Similar results were obtained laser year6 with the mercury
arc lamp and a chromatic Fourier transform system. In that case, however,
correlation could be obtained at one wavelength at a time.

Correlations with a mercury arc lamp could be observed only when an
ordinary matched filter was copied onto dichromated gelatin to improve its
efficiency. Even then, the light level was very low and measurements with
a TV camera and line scan recording could not be made. Overall light
efficiency of the achromatic system was lower than that of a chromatic
system because the holographic lenses and the grating were somewhat lossy,
with about 25 percent overall efficiency.

Several observations were made concerning the achromatic correlator:

* With argon laser green light, about 0.02iW/cm2 object illumination
was needed to form a barely visible correlation spot.

* With a 1000-watt mercury arc lamp, 380-mm focal length collimating
lens and 25-um diameter pinhole filter, the object irradiance was

at 0.7 to 1.5 vW/cm2 at the object plane.

* Comparison of the correlation peaks obtained with 25-um and 100-m
diameter pinholes showed a slight increase in correlation spot
diameter with the 100-pm diameter pinhole. This effect was
probably caused by imperfect achromatization of the system.

• Best correlations were obtained with an object transparency that
was an aerial photograph of Huntsville, Alabama. This photograph
contained high spatial frequencies.

* The holographic lenses had several deficiencies: considerable
light scattering and less than maximum possible diffraction
efficiency. In coherent light, the scattered light strongly
correlated with the filter; in broad-spectrum light, only the
object correlated because the noise was not achromatized.

* Although the holographic elements had very high efficiencies
when measured in the monochromatic light in which they were made,
the diffraction efficiencies were strongly wavelength dependent
since the Bragg condition was satisfied only for one wavelength.
However, in an application using a high power light emitting
diode, which has a relatively narrow bandwidth, this may not be
as bothersome a deficiency as with the mercury arc lamp source.

6j. Upatnieks, "Coherent Optical Correlation with Semicoherent Light Sources,"

Final Report for Battelle Delivery Order No. 1432 (December 1980).
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(a)

(b)

Figure 6. Correlations obtained with the achromatic
Fourier transform system: (a) dispersed
correlation peak and (b) integrated correlation
peak with a mercury arc lamp.
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IV. SUMMARY AND CONCLUSIONS

A ray tracing method of analysis was developed and applied to the two
proposed achromatic Fourier transform systems. The analysis indicated that
both proposed systems should work equally well. The needed wavelength
dispersive elements can be approximated with holographic optical elements
(HOE's). A modification was introduced to the simplest of the two systems:
a grating was added which allowed the HOE's to be recorded on a carrier and
without a grating in contact with each of the two elements. This arrange-
ment allowed a reduction of the needed diffractive elements from four to three.
and prevented undiffracted light from reaching the Fourier transform plane.

An achromatic Fourier transform system was assembled and tested.
Correction of chromatic dispersion of focus and frequency spectrum were
achieved over approximately 32 nm bandwidth at a center wavelength of 562 rim.
Matched filters were fabricated and correlations were achieved with broadband
light over 3'2 nm bandwidth. The correlation peak was difficult to observe
due to low light outputs of the lamp and the losses by the HOE's,

Improved results should be possible by making several improvements in
the system. First, the efficiency of the HOE's and gratings should be
improved and scattering level should be decreased. Second, a brighter light
source, such as the Ozram 100-watt mercury lamp, in conjunction with low-
aberration imaging lenses, should be used. The potential increase in available
light with the lamp is at least a factor of five. Matched filters should be
recorded on dichromated gelatin and their efficiency optimized to the frequency
band corresponding to the object.

M4any questions remain unanswered concerning the achromatic Fourier
transform system. All of the analysis to date is based on idealized thin
lens and small angle approximations. More thorough analysis is needed to
determine its expected performance and limitations. Such analysis could be
done, for example, with ray tracing programs such as the HOAD. Precise
experimental investigation also would be useful. The HOE elements and
gratings should be fabricated and tested with the same care as high-quality
lenses before they are used in an optical system.

The experiments described here proved that correlators can be
achromatized over the bandwidth range of a typical infrared-emitting diode.
However, the construction of the required HOE's and alignment of the system

at an invisible oavelength will not be a simple task.

1
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