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INTRODUCTION

i The property of randomness, or random behavior, is an essential element in many areas of
scientific research and application. For example, the presence of random behavior is a key re-
quirement in digital computer simulation studies. Such a simulation requires a mechanism for
generating sequences of events in which each sequence obeys a specific probability law. The
probability law most frequently encountered in simulation work assumes that events in the "J
sequence are independent and identically distributed; for example, each event in the sequence
might be assumed to follow a normal distribution with the same mean and variance while each
event occurs purely by chance and is not related to the occurrence of any other event in the !
sequence.

It is desirable to have a generating mechanism that can produce random variates from
many different probability distributions. Probability theory establishes the fact that variates
can be generated from a wide variety of distributions, provided that a sequence of independent
uniform random variates on the interval (0,1) can be generated. In a uniform (0,1) distri-
bution, each possible number in the range zero to one is equally likely to occur. Thus, the
need for an efficient algorithm for generating uniform variates cannot be underestimated.

Computer algorithms for generating random numbers produce sequences that are de-
terministic; i.e., each number is completely determined by its predecessor and, therefore, all
numbers in the sequence are determined by the starting number. While such sequences are not
truly random, they appear to be so. Since the actual relationship between one number and its
successor has no physical significance in most applications, this nonrandom character is not
really undesirable. Sequences of numbers generated deterministically are referred to as pseudo-
random,

This report is concerned with recommended statistical methodology for evaluating candi-
date pseudo-uniform random number generators; specifically, those that produce sequences
of real numbers U, U,, U2 ,.... that behave as though each number is independently selected
at random from the uniform distribution with range zero to one. The symbol U(0,1) will
be used to denote a continuous uniform random variable that takes on values between zero and
one.

There are several ways to produce a sequence of numbers on a digital computer that
looks like a sequence of U(0,1) random numbers. The most widely used method involves
generating a sequence of integers xo, Xl , Xz, s X by means of a linear congruential generator
of the form
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where X0 # 0 represents the starting value, a 2 0O is referred to as the multiplier, ¢ 2 0 is
called the increment, and m is the modulus (m > Xu, m > a, m > ¢). A corresponding sequence
of real numbers is then formed via the relationship U, = X_/m.

Ultimately, ali congruential sequences produce a cycle of numbers that is repeated
endlessly. This repeating cycle is referred to as the period of the sequence, and the length of
the period can never exceed m. Since such sequences should have relatively long periods in
order to be useful, the numbers Xo, a, ¢, and m must be properly chosen. The terms rmulti-
plicative congruential generator and mixed congruential generator are commonly used to refer
to linear congruential generators with ¢ = 0 and ¢ # O, respectively. For a detailed discussion
of the construction of good linear congruential generators as well as a description of other
methodas for generating U(0,1) random numbers on digitai computers see Knuth (1969).

Thus, any candidate uniform random number generator should be carefully examined to
ensure that the numbers it produces are adequate for the desired experimental purposes. Of
prime importance is that the candidate generator pass a collection of statistical tests designed
to expose departures from independence and uniformity. The failure of a generator to possess
these properties can produce severely misleading results in simulation studies. Fishman (1973)
points out that it is also desirable for the candidate generator to be dense and efficient: a dense
generator contains enough digits so that there are no wide gaps between assumable values
on the unit interval; an efficient generator produces random numbers quickly and utilizes
minimal storage in the computer. It should be emphasized that random number generators
cannot be adequately evaluated in theory. Instead, one must generate a set of pseudo-random
numbers from the candidate generator and perform statistical tests on them.

In the near future, NSWC will begin installing a new general-purpose computer system,
which will include a machine-dependent pseudo-uniform random number generator. Since the
use of random number generators is widespread among scientists and researchers in simulation
and analysis studies at NSWC, the Mathematical Statistics Staff (K106) felt that it was important
to develop a computer program that could be used to subject this generator to a battery of
statistical “‘tests of randomness.” The results of these tests could then be used to judge the
adequacy of the generator for producing sequences of ranaom variates that give the appearance
of coming from the U(0Q,1) distribution. In addition, this program could also be used to test
the adequacy of other candidate pseudo-uniform random number generators designed for use
on this or any other computer system. The identification of a “bad” generator would result
in its being rejected for use. One or more new generators would then be constructed and
similarly tested until a “good” generator was found. Clearly, the early detection of ‘“bad”
pseudo-uniform random number generators is highly desirable.

The program written to meet the above requirements, RANDOM, is programmed
in FORTRAN 1V for the CDC 6700 computer system at NSWC. RANDOM performs 11
different statistical tests of randomness on a single sequence of 10,000 pseudo-uniform random
numbers produced by the candidate generator (Appendices A and B present an input guide and
sample output, respectively, for RANDOM). These tests are referred to as statistical tests of
hypothesis and are designed to reveal departures from randomness. A statistical hypothesis
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is a statement to be tested that is either accepted or rejected at a prescribed level of signi-
ficance, which was chosen to be five percent for each of these tests.

For an elementary description of the theory of statistical hypothesis testing, the reader
is referred to Walpole and Myers (1978). The number of empirical tests of randomness chosen
for inclusion in RANDOM is by no means exhaustive. Rather, an attempt was made to include
those tests that have proven most useful in characterizing randomness. These 11 tests are
described in detail in the next section.

Much has appeared in the literature concerning random number generators. The interested
reader is referred to Hull and Dobell (1962), Jansson (1966), and MacLaren and Marsaglia
(1965), in addition to the previously mentioned sources.

TESTS PERFORMED IN PROGRAM RANDOM

This section is devoted to a detailed description of each of the 11 statistical tests of
hypothesis employed in program RANDOM. The order of discussion here is identical to the
order in which these tests are executed in RANDOM. Each test is applied to the same input
sequence of 10,000 real numbers Uo, Ul, U,, .., U9999, which purports to be uniformly
distributed between zero and one. For additional details and historical remarks on most of
these tests see Knuth (1969).

MEAN AND VARIANCE TESTS

This test (actually two separate tests that “belong”™ together) is more appropriately classified
as a test on moments of a distribution vice a test on randomness. The U(0,1) distribution has
a mean of 0.5 and a variance of 1/12 (equivalently, a standard deviation of 0.2887). The test
on the mean is designed to determine whether or not the sample average of the 10,000 pseudo-
uniform variates properly approximates the hypothesized mean of 0.5.

The sample mean is approximately distributed as a normal random variable with mean
0.5 and variance (1/12)/10,000 = 8. 33 X 10°6. Hence, for a test at the five-percent level of
significance, the hypothesis that the true mean is 0.5 is rejected if the sample mean lies outside
the interval 0.5 + 1.96 X (8.33 X 10-5)% or (0.4943, 0.5057).

Similady, the test on the variance (actually on the standard deviation) is designed to
determine whether or not the sample standard deviation properly approximates the hypothesized
standard deviation of 0.2887. Hald (1952) shows that the sample standard deviation is
approxunately normally distributed with mean O0.2887 and variance (1/12)/20,000

= 4,166 X 1075 in this case. Thus, at the five-percent level of significance, the hypothesis
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that the true standard deviation is 0.2887 is rejected if the sample standard deviation lies
outside the interval 0.2887 * 1.96 X (4.166 X 10~¢)*, or (0.2847, 0.2927).

FREQUENCY TEST

To determine whether or not the input sequence of N = 10,000 real numbers consists of
numbers that are, in fact, uniformly distributed between zero and one, divide the theoretical
range of these numbers into 100 categories each of length 0.01. Let

p; = probability that an observation falls into category i
. = expected number of observations in category i
Oi = number of observations that actually fall into category i

In this case, p, = 0.01 and E, = Np, = 100 for all i. Then the statistic

, 10 (O, - E)? 100 (O, - 100)
Xt =3 E =X 100

i=1 i i=1

is approximately distributed as a chi-square random variable with 99 degrees of freedom.
It is this statistic upon which the frequency (or equidistribution) test is based.

Note that the statistic X? is always either positive or zero. If the observed frequencies
are close to the expected frequencies, the value of X2 will be small, while observed frequencies
that are not close to the expected frequencies will produce large values of X2. Small values of
x? support the hypothesis of uniformity, while large values of X? lead 1o rejection of the
hypothesis. At the five-percent level of significance, the critical value for the test is found
to be 123.2253. Thus, if the computed value of X? equals or exceeds this value, the hypothesis
that the input sequence contains numbers that are uniformly distributed between zero and one
is rejected.

In addition to performing the above test, program RANDOM displays a frequency table
for the 100 categories and produces a graph of the cumulative frequency distribution, both
based on the input sequence of 10,000 numbers.

KOLMOGOROV-SMIRNOV (K-S) TEST

Let X be a continuous random variable. Then, the cumulative distribution function (c.d.f.)
of X, denoted by F(x), is defined by
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F(x) = P(X €x) for all x.

Given a sample of N independent observations of X, the empirical c.d.f. F\ (x) is defined as I

number of observations < x

Fy(x)= N

Fy (x) will generally differ from F(x). However, if FN (x) differs from the assumed c.d.f. F(x)
by too large a margin, one would have reasonable grounds for rejecting the hypothesis that
F(x) is, in fact, the correct population c.d.f. This reasoning is the basis for the K-S test.

The test statistic is based upon the maximum absolute deviation between the ordinates of
the empirical cd.f. and the hypothesized c.d.f. at common abscissa values and is given by

N

.
E D,, = max |FN(x)—F(x)|.
;

1 If the value of Dy is too large (ie., if it exceeds a chosen critical value), the hypothesis that
) the assumed F(x) is the true F(x) is rejected.

L Of concern is the comparison of a sample c.d.f. based on N = 10,000 observations with
an assumed U(0,1) c.d.f. The comparison is to be made using 10,000 different abscissa values.
Using the same symbols defined for the frequency test with p, = 0.0001 and E, =Np, =1 for
all i, the appropriate K-S test statistic becomes

{4

i
; £ 0.-(GxE)
N j=1 ) 1

N==m?x N , i=1,2,...,N i

where N = 10,000. According to Harter (1980), the critical value for this test at the five-
percent level of significance is 0.01356. Hence, if the computed value of Dw,ooo equals
or exceeds this value, the hypothesis that the input sequence represents a sequence of random q
variates drawn from a U(0,]) distribution is rejected.

MAXIMUM OF t TEST

Consider the input sequence of N real numbers Uo’ Ul y ey UN—] assumed to have come
from a U(0,1) distribution. Define g

Vj = max (Utj’ Utj+l s ey Utj+t~l) i




for 0 < j < n where N = nt. It is easy to see that Vj has c.d.f. given by
F(x)=x!, 0<x<1 )
since
P [max (U, U,, .., U) <xI]

=PlU, <x, U, <x,..,U <x]

=XeXo..oX = xt
The K-S test can then be applied to the sequence V, V5w,V by evaluating

Dn = m’?x | Fn(x) -Fx) 1.

If D, exceeds the prechosen critical value, the hypothesis that the true c.d.f. is given by
Equation 1 is rejected. This, in turn, implies that the input sequence UO, U], w > U does

» U“N-1
not represent a sequence of random variates drawn from a U(0,1) distribution.

To apply the maximum of t test to the input sequence of N = 10,000 observations,
n = 100 and t = 100 were selected so that Equation 1 becomes

Fx)=x'90, 0<x<1.
Next, the V’s are ordered from smallest to largest; i.e.,
Vo Vis s Voo
where Vi < V| <.. < Vg,. The equation
x100=¢  0<c<]

is solved for x, yielding

Equation 2 is then evaluated at n = 100 values of c; i.e.,, ¢ = 0.01, 0.02, ..., 1.00. For example,
for ¢ = 0.01, x == 0.9550. Then, for each x the sequence V/,, V; y s V;9 is used to determine
the value of the sample c.d.f.

uuamber of V' values < x
100

6

Floo® =




|
|

N

These values are then used in computing the K-S test statistic

~
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D = max | Floo(x) - F(x) | .
X

100

The critical region for a test at the five-percent level of significance is D00 = 0.13403
(Owen, 1962). Hence, F ,,(x) represents the sample c.d.f. formed by the maximum values
from consecutive blocks of t = 100 numbers and D, ;4 is the maximum absolute deviation !
between this sample c.d.f. and the corresponding theoretical c.d.f. Therefore, the hypothesis v
to be tested is that this maximum deviation is not significantly different from the maximum 1
deviation obtained had the input sequence come from a U(0,1) distribution. If Dlooexceeds .
the above critical value, this hypothesis is rejected. '

GAP TEST

Given the input sequence of N = 10,000 real numbers Uo, Ul, .y U9999, this test
examines the lengths of *‘gaps” between occurrences of U, in some prespecified range. A chi-
g square test statistic, akin to the one used in the frequency test, is then used to determine
whether or not the observed numbers of gaps of each length are sufficiently close to their
corresponding expected numbers, which would support the hypothesis that the input sequence
represents a sequence of random variates coming from a U(9,1) distribution.

Choose two real numbers a and § such that 0 < a <@ < 1. Consider the input sequence
Uy, Uy, .., Uy_, to be a cyclic sequence with Uy,; identified with U.. Next consider the
lengths of consecutive subsequences Uj, U,- PR Uj +; in which U, lies between « and
but the other U values do not. Such a subsequence defines a gap of length r. If n of the N
numbers Uo’ Ul, .. » Uy_, fall into the range a < Uj < B, then there are n gaps in the
cyclic sequence. Let

Z = numberofgapsoflengthr, O0<r<t
Z, = number of gaps of length t or greater
p = probability that a < U,. <B.

Then, p = - a. Furthermore, let

p, = probability of observing a gap of lengthr (0<r<1t)
p, = probability of observing a gap of length t or greater.
7




_yp(l-p), Osr<t-1
p; (]__p)l‘ r= t
It can be shown that the test statistic
) Zx: (Z, - np,)?
X< = —_—
=0 npr

is approximately distributed as a chi-square random variable with t degrees of freedom.

In program RANDOM, the values of «, § and t have been chosen to be

a=0.30
g =0.60
t=8

The critical value for the chi-square test at the five-percent level of significance is then found
to be 15.5073. The hypothesis to be tested is that the observed number of gaps of each length
is not significantly different from the number expected if the input sequence had come from a
U(0,1) distribution. If the computed value of X? equals or exceeds the above critical value,
this hypothesis is rejected.

POKER TEST
Consider subdividing the input sequence of N = 10,000 real numbers into k = 2000 groups

of five successive numbers, (USj’ U51+1’ s U5j+4), 0 < j < k. Then, convert the U, into the
integers Yi according to the following scheme:

1 if U € [002]
2 if U € (0.2 04]
Y,= {3 if U € (04,06]
4 if U € (06 08]
5 if U € (08 1.0].




Each quintuple is then classified into one of five disjoint categories based on the number of
distinct values in the set of five integers. Each quintuple may be thought of as representing
a “‘poker hand”. The five categories are

five different = all different

four different one pair

three different two pairs, or three of a kind
two different full house, or four of a kind
one different five of a kind.

1}

A chi-square test based on the observed and expected number of quintuples in each
category can now be used, provided that an expression for the probability that a quintuple
contains m different values can be formulated. Let p,, represent this probability. In general,
consider k groups of n successive integers in which the integers may range from | to d,
inclusive. The probability p,, can be formulated as the ratio

number of n-tuples with exactly m different integers

total number of n-tuples

from m =1, 2, ... , d. The denominator of this ratio is d". The numerator is the product of
the number of ways to partition a set of n elements into exactly m nonempty disjoint sub-
sets, denoted by S;’“) , and the number of permutations of m things from a set of d objects,
namely d (d - 1) *+¢ (d - m + 1). The required probability then becomes

d@-Dec(@d-m+ 1)
Py = "

n
The notation Sfl"" is used here to denote Stirling numbers of the second kind. (Tables
of Sfl"‘) may be found in Abramowitz and Stegun, 1964). In this application, d = 5, n = 5, and
m=1, 2, 3,4, 5. The required Stirling numbers are

(m)
Sn

s =1
52V =15
§3) =25
54 =10
53 = 1.
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Thus, the probabilities that a quintuple contains m = 1, 2, 3, 4, 5 different values are

p, = 0.0016
p, = 0.0960
p; = 0.4800
p, = 0.3840
ps = 0.0384
5
Note that 3 p_ =1, as required.
m=1
Letting
Ei =  expected number of quintuples in category i
O. = observed number of quintuples in category i

fori=1, 2, ..., t, the test statistic

) Et: (O, - E)?
X?=3 ————
i=1 E,

is approximately distributed as a chi-square random variable with t - 1 degrees of freedom.
Since there are k = 2000 quintuples in our application,

E =kp, =2000p, i=1,234,5.

The above chi-square test statistic is employed with t = 5 categories and t - 1 = 4 degrees of
freedom. The critical value for this chi-square test at the five-percent level of significance is
9.4877. The hypothesis being tested is that the number of poker hands of each type does
not differ significantly from the expected number of hands of each type obtained when the
input sequence does, in fact, come from a U(0,1) distribution. If X2 equals or exceeds the
above critical value, this hypothesis is rejected.

COUPON COLLECTOR’S TEST

This test is related to the poker test in much the same way as the gap test is related to
the frequency test. The input sequence of N = 10,000 real numbers UO, Ul, o Ugggg is

converted into the sequence of integers Yo’ Yl ) ey Y9999 according to the following scheme:

10

IS ¥ SN




1 if U € [002]
2 if U € (02,04]
Y, = 3 if U € (04,0.6]
4 if U € (06,038]
s it U € (08, 1.0]
These integers represent different ‘“coupons” to be collected. A ‘“‘coupon collector sequence”
is a subsequence of Yo, Yl » s Yog99 of the shortest length required to contain each of the
integers one through five at least once. Begin by observing the length of the sequence Y,
Y,, .. required to obtain a “complete set” of the integers one to five. If this length is denoted
by r, then the first coupon collector sequence is Y, Yl, .y Yr_l. This process is then
repeated starting with Y, Y. - tO obtain additional coupon collector sequences until the

entire input sequence is exhausted.

In general, consider the lengths of coupon collector sequences that contain the integers
one through d. Consider compiling the frequencies of occurrence of the lengths of these
sequences. Choose an integer t > d such that all sequences whose lengths are greater than or
equal to t are considered to be in the same category. Then, each sequence length can be
classified into one of t -~ d + 1 distinct categories.

A chi-square test based on the observed and expected number of coupon collector seq-
uences in each category can now be developed. Expressions are needed for (1) P, the probability
that a sequence containing at least one of each of the integers 1, 2, ... , d is of length r, and
(2) Py the probability that a sequence containing at least one of each of the integers 1, 2,
.. , d is of length t or greater. The derivations of p_and p, that follow reflect the fact that
the shortest sequence that contains at least one of each of the integers one through d in each
case is desired. Following the development in the poker test, the expression

‘E S )

dl’ T
represents the probability that an r-tuple contains exactly d different values, where
d'=dd - 1)Xd-2)++* 1 and S:(d) denotes a Stirling number of the second kind, as before.

Hence,

4
q =1-559
represents the probability that an r-tuple is “incomplete” (ie., it does not contain all d dif-
ferent integers). It is clear, then, that
d!

- - LU
P,=q, =1~ g1 st(-l)
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Also, ford < r <,

P, = qr-l - qr
d! d!
= —_ d _ - — ¢ld
- [l - dr-! S&-i] [l dr Sr )]
d! d!
= = Qd) _ = d
- dr S§ ) dl‘—l S:-i

d!
- —_ d d
= - a5

From an addition identity involving Stirling numbers of the second kind,
(d=-1) = ¢(d) _ d)
S‘_l ) S d Sr(—l .

Hence, the required probability can be expressed as

p =4 S, d<r<t.

In programming this test for inclusion in RANDOM, d = 5 and t = 15 were chosen. These
choices give rise to the following probabilities:

ps = 0.038400000

pe = 0.076800000

p; = 0.099840000

ps = 0.107520000

ps = 0.104509440

Pio = 0.095477760

Piy = 0.083816448

P2 = 0.071639040

pis = 0.060112994

Pia = 0.049791565

pis = 0.212092753
15

Note that ) p, = 1 as required.

=5

Let n represent the total number of coupon collector sequences observed in the sequence

Yo, Yl, s Y9999. Further, let

v
Py
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Z = observed number of coupon collector
sequences of length r, d<r<t
and
Z = observed number of coupon collector

sequences of length t or greater.

Then, the test statistic

t (Z - np)?

2 o L v
D
=d T

is approximately distributed as a chi-square random variable with t - d degrees of freedom.
This test statistic is applied here with t --d + ] = 11 categories and t - d = 10 degrees of
freedom. The critical value for this chi-square test at the five-percent level of significance is
18.3070. The hypothesis to be tested is that the observed number of coupon collector
sequences of each length does not differ significantly from the expected number obtained
when the input sequence does, in fact, come from a U(0,1) distribution. Hence, if the com-
puted value of X? equals or exceeds the above critical value, this hypothesis is rejected.

It is of interest to note that when it is assumed that the input sequence is random, the
number of successive Y s that need to be examined, on the average, before a complete set of
*‘coupons” has been found is 11.4166. Hence, with N = 10,000 numbers, one would expect
to observe 876 coupon collector sequences on the average if one applied the coupon collector’s
test repeatedly a large number of times, each time using a different input sequence of

N = 10,000 real numbers Uo’ Ul s> Ugggo-

PERMUTATION TEST

In this test, the input sequence of real numbers is subdivided into k groups of n elements
each, ie., (U n+l’ s Un#n-l)’ 0 < j < k. Assuming that equality between U’s does
not occur, the elements in each group can have n! possible relative orderings or permutations.
Since the probability of occurrence of each of these orderings is p, = I/n,i=1,2, .. ,n!
a chi-square test with t = n! categories can be applied to the observed and expected number of

n-tuples of each type.

In programming this test for inclusion in RANDOM, n = 3 was chosen. Thus, k = 3333
triples comprising the first 9999 numbers in the input sequence were observed. Let A, B, and C
represent the elements in a triple where A is the smallest value, B the middle value, and C the
largest value. Then, the 3! = 6 possible orderings are (A, B, (), (A, C, B), (B, A, O), (B, C, A),
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(C, A, B), and (C, B, A). An algorithm was used to count the number of times each of these
triple types was observed in the input sequence. These observed frequencies were then used in
evaluating the chi-square test statistic with t = 6 categories.

If

E

expected number of triples in category i

0

1

observed number of triples in category i
fori=1, 2, ..., t, then the test statistic

t (0, - E)
i=1 E,

X% =

is approximately distributed as a chi-square random variable with t - 1 degrees of freedom.
Note that in this application,

E, = kp, = (3333)(1/6) = 555.50

for all i. The critical value for the above chi-square test with t - | = 5 degrees of freedom at
the five-percent level of significance is 11.0705. The hypothesis under consideration is that the
observed number of permutations of each type is not significantly different from the expected
number obtained when, in fact, the input sequence comes from a U(0,1) distribution. The
hypothesis is rejected if the computed value of X2 equals or exceeds the above critical value.

RUNS TEST

A method for testing the input sequence of real numbers U,. U, s U9999 for “runs
up” and “runs down” is presented. A run is defined as an unbroken sequence of observations

in which all of the numbers are either increasing or decreasing. Consider the subsequence

U>U,, <U,,<.<U, >V

itptl

The numbers U;,; through U;,, define a “run up” of length p. Similarly, the numbers U;, ,
through U,, p Would define a “run down” of length p if the direction of each of the inequality
signs above were reversed. If the input sequence is representative of a sequence of random
numbers drawn from a U(0Q,1) distribution, then neither the total number of runs up nor the
total number of runs down should be excessively high or excessively low. Moreover, the
frequency with which various lengths of runs up and runs down occur requires careful
examination. The observed numbers of runs up and runs down of a particular length should not
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differ greatly from their corresponding expected numbers. In the ensuing paragraphs, tests on
both the number of runs and the lengths of runs will be discussed.

Define
R; = number of runs of length = p
and
Rp = number of runs of length p exactly

= R; - R;”
Expressions for the means of R_ and R’ and the covariances between R_ and R_, R’ and
R;, and Rp and R; are given in ﬁnuth (1569). These expressions are functions of the length of
the input sequence, N. The covariance between Rp and Rq measures the interdependence
between these two variables. If p = q, the covariance between Rp and R _ is equivalent to the
variance of Rp. Wolfowitz (1944) has shown that Rl, Rz’ s Rtil, R{ become normally
distributed as N - oo, with means and covariances given by the aforementioned expressions.
These results are sufficient to permit the development of tests on both the number and lengths
of runs.

Let
R = total number of runs
t-1
= Y R+tR

j=1

Then, the random variable
- R - E(R)
R [var(R)]* !

has a standard normal distribution (i.e., mean zero and variance one). Here, E(R) and Var(R)
denote the mean and variance of the random variable R, respectively.

The hypothesis to be tested is that the observed number of runs up is not significantly
different from the expected number of runs up obtained when the input sequence comes from
a U(0,1) distribution. Hence, to perform a test at the five-percent level of significance on the
total number of runs up, compute Z, and compare it to the interval (-1.960, 1.960). If Z,
falls outside this interval, the hypothesis is rejected. This same test is applied to the observed
number of runs down.
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An algorithm that counts both runs up and runs down is employed in RANDOM. The
value of t was chosen to be six in this application. With N = 10,000, E(R) = 5000.50 and
Var(R) = 833.4166 for both runs up and runs down.

In developing a test on the lengths of runs up (or runs down), we note that the usual
chi-square test is not applicable, since adjacent runs are not independent. The following pro-
cedure circumvents this difficulty. Let

R, - ER), i=12,.,t-1
a-{

R - E(R)), i=t

Let C = (c; ) denote the t x t matrix of covariances between the random variables R R
R: ;> and R ie, ¢ 14 is the covariance between R and R while c, is the covanance
between R and R Now, let the tx t matrix A = (a ) denote the mverse of C. Then, the

test statlstxc

X= QG
1<i, j<t

is distributed as a chi-square random variable with t degrees of freedom when N is large. Again,

= 6 was chosen in this application. Hence, the number of runs up and runs down of lengths
one through five and six or longer are counted in program RANDOM and the same test is
applied to both runs up and runs down. The critical value for this chi-square test with six
degrees of freedom at the five-percent level of significance is 12.5916. The hypothesis to be
tested is that the observed number of runs up (down) of each length is not significantly dif-
ferent from the expected number of runs up (down) observed when the input sequence comes
from the U(0,1) distribution. If the computed value of X? equals or exceeds the above critical
value, this hypothesis is rejected.

It is interesting to note that both the permutation and runs tests do not depend on the
U’s being uniformly distributed; they require only that the probability that U U] is zero
for i # j. Hence, these tests can be applied to pseudo-random sequences other than those
generated from a U(0,1) distribution.

SERIAL TEST FOR SUCCESSIVE PAIRS

This test is designed to determine whether or not successive pairs of numbers are uniformly
and independently distributed. Begin by converting the input sequence of N = 10,000 real

numbers U, U, .. , Ugyyq into a sequence of integers Yo, Yyo o Y9999 by multiplying
each U, by 10 and truncatmg the decimal. Hence, 0 < Y, < 9 for all i. Then, subdivide the
sequence Yy Y, » Y9999 into 5000 pairs of two successxve integers and count the

frequency wnth wluch the pair (Yn, 2,,1) =(q, 1) occurs for 0<j <5000 where
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0 < q, r < 10. These 5000 observed pairs of integers are then used to fill a 10 x 10 frequency
table in which the first integer of the pair determines the row number and the second integer
determines the column number of the cell to which that pair belongs. Since the probability
that a randomly selected integer pair will belong to a particular cell is 0.01 for all cells, a chi-
square test based on the observed and expected number of pairs in each of the 100 categories
can be used.

Let

E. = expected number of times the integer pair
(i, j) occurred

O.. = observed number of times the integer pair
(1, j) occurred

for 0 < i, j < 9. Then the test statistic

- 2
9 9 (Oij Eij)

=L L —¢

i=0 j=0 ij

is approximately distributed as a chi-square random variable with 99 degrees of freedom.
Since 5000 integer pairs are to be assigned to 100 categories, E;; = 50 for all i and j. The
number of degrees of freedom used in this test is justified by the fact that the E;; are not
estimated from the observed frequencies (Freund, 1962). The critical value for this chi-square
test at the five-percent level of significance is 123.2253. The hypothesis to be tested is that
the observed distribution of successive pairs of numbers does not differ significantly from the
expected distribution for an input sequence of random variates from a U(0,1) distribution.
Hence, if the computed value of X? equals or exceeds the above critical values, this hypothesis
is rejected.

SERIAL CORRELATION TEST

Consider the input sequence of real numbers Uy, U;, .. , Ugggg. To determine if the
values in this sequence are related in any special way to the values h units apart for some h,
the test for serial correlation, which computes a measure of the amount that U;,, depends
on U, is used. This measure of dependency is called the serial correlation of lag h and represents
the correlation between pairs of equally spaced observations from a sample. Let N represent
the number of elements in the sample to be considered. Serial correlation can be defined in
one of two ways (Bennett and Franklin, 1954):

1. In the circular definition, U;,, = U;,,_N is defined for i + h 2 N. Circular serial
correlation is useful in detecting periodic effects in a sequence of observations.
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2. In the noncircular definition, the pairs that depend upon use of the definition U, ,
= Uj,p_y for i + h > N are omitted and the serial correlation between the remaining pairs

is computed. Noncircular serial correlation is useful in detecting trends in a series of observa-
tions.

The test for serial correlation employed in RANDOM is taken from Wald and Wolfowitz
(1943) and is performed using both the circular and noncircular definitions. The theory behind
this test requires that N be a prime number; hence, N was chosen to be 9973, the largest prime
number less than or equal to 10,000. Serial correlations are usuallv computed only for small
values of h in practice, since most of the important dependencies occur at those values. For this
reason, only lags one through 10 were considered in RANDOM. Thus, the first 9973 numbers
in the input sequence were used to compute the statistic

R, =Z U, U h=1,2,..,10

where fori+ h > 9973, Uiep = Uisnogog3 andi=0,1,2,..,9972
(circular definition)

i=0,1,2,..,9972-h .
(noncircular definition)

The mean and variance of the random variable R,'l are given by

(s? - S,)
E(R))= ——
(Ry) n-1
and
2 _ 4 _ 452 - 2 _g )
, 83-8, S}-4S8S,+455, + si-25, (3-8,
Var(R,) = + - 3
n-1 (n- 1)}n-~2) (n-1
9972
where S, = Y U¥ is the kth power sum of the observations. It can be shown that R,
i=0

approaches the normal distribution for large N. Hence, the random variable

R} - E(R!)
zZ =—
b [Var(R})]%

has a standard normal distribution (i.e., mean zero and variance one). To perform the tests
for serial correlation, compute Z, for all 10 values of h and for both the circular and non-
circular forms. For tests at the five-percent level of significance, compare each computed value
of Z, to the interval (-1.960, 1.960). The hypothesis under consideration is that the serial
correlation between observations seperated by lag h is not significantly different from the
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correlation for an input sequence of random variates from the U(0,1) distribution. If any Z
falls outside the above interval, the corresponding hypothesis is rejected.

It should be noted that the above test does not depend on the U’s being uniformly dis-
tributed. The test is nonparametric in the sense that it assumes only that the U’s represent a
random sample from a distribution with continuous cumulative distribution function.

EVALUATING THE CANDIDATE RANDOM NUMBER GENERATOR

The previous section described 11 statistical tests of hypothesis designed to detect de-
partures from randomness for the pseudo-uniform random number generator under consider-
ation. This section will present some guidelines for interpreting the results of these tests; the
case in which the candidate generator fails one or more tests is included.

Before proceeding with a discussion of the interpretation of test results, it would be
beneficial to reconsider the testing process itself. In testing for randomness, one looks for
behavior that is not actually present in one’s sequence, since the process of pseudo-random
number generation is deterministic; yet, we require that the numbers so produced exhibit the
semblance of randomness (Overstreet, 1972). Thus, some degree of subjective judgment should
accompany the evaluation of test results in order to reach a final decision to accept or reject
the candidate generator.

A statistical test of an hypothesis that leads to its rejection is said to be “significant”;
otherwise, it is “nonsignificant.” Recall that each of the statistical tests of randomness is
performed at the five-percent level of significance. For an individual test, this means that the
probability is 0.05 that the test will incorrectly conclude that the candidate generator is not
sufficiently random to be useful, when, in fact, the generator does produce sequences of
humbers that exhibit the hypothesized characteristics of U(Q,1) variates. Now, suppose that the
“good” candidate generator was used to generate a large number of sequences of length N such
that each sequence was obtained through the use of a different starting “seed” value. If each of
these sequences were then subjected to the same statistical test of randomness, the test pro-
cedure would incorrectly conclude that approximately five-percent of these sequences were
products of *‘bad” generators. In other words, even a “good” generator will fail any of these
tests five percent of the time. It is in this sense that the rejection of the hypothesis of random-
ness is interpreted at the five-percent level of significance.

The collective interpretation of a set of tests for randemness is difficult. The need for
making several tests is clear. Even “bad” generators will pass some of these tests, while failing
others; hence, subjecting a “bad” generator to only a few tests may be insufficient to identify
it as “bad.” On the other hand, the use of numerous tests is not totally free from criticism,
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since some of these tests are dependent, although the degree of dependence is either unknown
or extremely difficult to assess. Hence, when interpreting the results of a series of tests, the
significance levels should be viewed as a general indication rather than as a specific prediction.

Any statistical hypothesis testing procedure can result in one of two decision errors:
rejection of a correct hypothesis, or acceptance of a false hypothesis. The size of each of
these errors is measured in terms of its probability of occurrence. In this report, the size of
the first error is controlled at 0.05, but no attempt has been made to assess the probability
of accepting a false hypothesis. However, as N increases, this latter probability decreases.
Hence, the large N value used in these tests ensures that the probability of accepting a false
hypothesis will be reasonably small. Since a statistical test of hypothesis is not significant unless
it results in a rejection, a test that does not detect lack of randomness does not imply that the
sequence being tested is random. For this reason, the phrase “fail to reject the hypothesis”
rather than *‘accept the hypothesis” is used when stating the conclusions. The advantage, then,
of performing several tests of randomness on a sequence is that the feeling of confidence in
using the proposed generator is increased if a relatively high number of nondetections is
obtained. A reliable generator (i.e., one that produces numbers that are sufficiently random) is
one that performs well when subjected to extensive testing.

One final comment regarding the testing of pseudo-uniform random number generators
is in order. A candidate generator should not necessarily be discarded just because it fails one
or two of the tests for randomness, since statistical testing permits failures for a good generator
a small proportion of the time. If a failure is observed for a certain test, this test should be
closely examined to see if the reasons for failure can be ascertained. Was the decision to reject
the hypothesis a borderline one, or was the test highly significant? Was the failure merely a
result of random variation, or was it the result of a serious deficiency of the generating scheme
itself? It is recommended that program RANDOM be rerun one or more times using different
input sequences, each generated by a different starting seed value, in the hopes of shedding
some light on these questions.

Thus, no firm quantitative guidelines currently exist for deciding whether or not to accept
a candidate generator. We note, however, that if we assume that the 11 tests in RANDOM are
all independent, then the probability of obtaining one or more rejections in the 11 tests is
about 0.43 if, in fact, all of the hypotheses are true! This observation can serve as a general
guideline when deciding whether to accept or reject a candidate generator. The decision is
still largely subjective and should be made only after careful examination of the test results.

20




BIBLIOGRAPHY
Abramowitz, M. and 1. A. Stegun, Handbook of Mathematical Functions, Applied Mathematics
Series 55, U.S. Department of Commerce (National Bureau of Standards, 1964).

Bennett, C. A. and N. L. Franklin, Statistical Analysis in Chemistry and the Chemical Industry
(New York: John Wiley and Sons, Inc., 1954).

Fishman, G. S., Concepts and Methods in Discrete Event Digital Simulation (New York: John
Wiley and Sons, Inc., 1973).

Freund, J. E., Mathematical Statistics (Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1962).

Hald, A., Statistical Theory with Engineering Applications (New York: John Wiley and Sons,
Inc., 1952).

Harter, H. L., “Modified Asymptotic Formulas for Critical Values of the Kolmogorov Test
Statistic,” The American Statistician, 34 (1980), No. 2, pp. 110- 111,

Hull, T. E. and A. R. Dobell, “Random Number Generators,” S/AM Review, 4 (1962), pp. 230
- 254,

Jansson, B., Random Number Generators (Stockholm: Almqvist and Wiksell, 1966).

Knuth, D. E., The Art of Computer Programming: Volume 2/Seminumerical Algorithms
(Reading, Mass.: Addison-Wesley, 1969).

MacLaren, M. D. and G. Marsaglia, “Uniform Random Generators,” Journal of the As-
sociation of Computing Machinery, 12 (1965), pp. 83 - 89.

Overstreet, C., Jr., A FORTRAN V Package for Testing and Analysis of Pseudorandom Number
Generators, Technical Report CP - 72009, Computer Science/Operations Research Center,
Institute of Technology, Southern Methodist University (Dallas, Texas, 1972).

Owen, D. B., Handbook of Statistical Tables (Reading, Mass.: Addison-Wesley, 1962).

Wald, A. and J. Wolfowitz, “An Exact Test for Randomness in the Non-Parametric Case Based
on Serial Correlation,” Annals of Mathematical Statistics, 14 (1943), pp. 378 - 388.

Walpole, R. E. and R. H. Myers, Probability and Statistics for Engineers and Scientists, 2nd
Edition (New York: Macmillan, 1978).

Wolfowitz, J., “Asymptotic Distribution of Runs Up and Down,” Annals of Mathematical
Statistics, 15 (1944), pp. 163 - 172.

21

-




APPENDIX A

INPUT GUIDE
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The 10,000 data points used as input may be read in from punched cards or a permanent
file. The following data card is required for either option:

1-5

11-80

Columns

CARD TYPE 1

Variable

P

FORM

Description Format

IQP = 1: data follows I5
on punched cards

IQP + 1: data attached
via TAPE 5 with
input format (E22.14)

Format of input data 7A10
cards (used only
if IQP = 1)

DECK SET UP

ATTACH, LG@, RAND@M, ID = N1W.

ATTACH, SYSLIB.
LIBRARY, SYSLIB.

ATTACH, TAPES, datafile.

LGO.
7/8/9
Card Type 1

data cards if 1QP = 1

6/7/8/9

A-3

[used if 1QP # 1]
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APPENDIX B

SAMPLE OUTPUT

The U(0Q,1) random number generator currently in use on the CDC 6700 computer system
at NSWC is called RANF. This generator has been widely used in simulation and analysis
studies at NSWC. Ten thousand U(O,1) variates were generated from RANF using the starting
floating point seed value of 3571.0 and stored on a permanent file. These numbers were then

processed by program RANDOM to illustrate the program’s output. The sample printout for
this case is shown in this appendix.
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