
AAD-A 394 ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND ABERD--ETC F/6 19/1
A COMPARISON OF BARREL-HEATING PROCESSES FOR GRANULAR AND STICK--ETC(U)
AUG 82 A W HORST

UNCLASSIFIED AR8RL-MR-03193 SOI-AD-F300 070 NL

EEEEEEEEEEEEEEEEEEEEmmmmEE



4)-Ioo 0

MEMORANDUM REPORT ARBRL-MR-03193

A COMPARISON OF BARREL-HEATING

PROCESSES FOR GRANULAR AND STICK
PROPELLANT CHARGES

Albert W. Horst

August 1982

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
BALLISTIC RESEARCH LABORATORY

ABERDEEN PROVING GROUND, MARYLAND

C;

LUJ Approved for public release; distribution unlimited.

m--T ECTIE
AUG 9 92

82 08 02 117,



Destroy this report when it is no longer needed.
Do not return it to the originator.

Sacondary distribution of this report is prohibited.

Additional copies of this report may be obtained
from the National Technical Information Service,
U. S. Department of Commerce, Springfield, Virginia
22161.

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

rho use of trod* flwu or mwufaoaturwp.' ww i~un thisa iportdes ot oo'wtiute inNdo rm t of m y do nriat prduat.

46



*SECURIT CASFATOOF THIS PACE Mhon dds Enftm4 . TO
Memorandemorndu ReportBR-M019

Granular and Stick Propellant Charges 6. PERFORMING ORO. REPORT NUMBER

7. AUTHOR(s) I. CONTRACT OR -GRANT NUMSER(m)

Albert W. Horst

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

U.S. Army Ballistic Research LaboratoryARAWOKNINUER
ATTN: DRDAR-BLI 1L,161102AH43
Aberdeen Proving Ground, MD 21005 ______________

I 12.?TOL FIC A N NR1. REPORT DATE

Arm .mme ITsIIyMRI V1 A~ R"Deve1opment Command August 1982U.S. Army Ballistic Research Laboratory (DRDAR-BL) 13. NUMBER OF PAGES

Aberdeen Proving Ground, MD 21005 2

14. MONITORING AGENCY NAME 6, AIJORESS(it fifermnt from Controlling Offie) IS. SECURITY CLASS. (of tU report)

UNCLASSI FIED
Ia. OECL ASSI lC ATI ONI DOWNGRADING

SCHEDULE

IS. 0I3TRIBUTION STATEMENT (of this Eaport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (elm.o obftact ontorod i al1ock*0 11dEifnt hown Rert)

10. SUPPLEMENTARY NOTES

1S. KEY WORDS (Cothua n reerse side it necesmy mad Identity by Moeak mmmiber)

Interior Ballistics
Guns
Stick Propellant
Barrel Erosion

21 ABTRACT (CIome oi ees toft% N neessmA I I slf p leeck smoo)

The natural flow channels offered by propelling charges composed of bundles
of stick propellant significantly reduce the resistance to gas flow when compared
to that of granular propellant charges, virtually eliminating potentially
damaging pressure waves in the gun chamber. However, this same feature which
reduces pressure waves may also result in more propellant remaining in the
chamber, burning behind the origin of rifling, and perhaps increasing barrel
erosion. In this study, a two-phase flow interior ballistic code (NOVA) is

Do~~cotne on3 revers ow9 ovdsesomit

JAW V S WI EmwO O 51SOEZUNCLASSIFIED

SECUOITY CLASSIFICATION OP THIS PAh" (Mm. Dae MR wNe*



UNCLASSIFIED
SCURiTY CLAWIFICATION OF THIS PA(U[bin am." *

employed to compare propellant motion and heat transfer processes for
ballistically-equivalent stick and granular propellant charges. A large
difference in the motion of the solid phase during ignition and combustion is
predicted for the two configurations, leading ultimately to an approximately
300 K higher maximum wall temperature for the stick propellant charge.

UNCLASSIFIED
SMCURITY CLASSIFICATION OP THiS PASEVYIU' Data ter**



TABLE OF CONTENTS

Page

LIST OF ILLUSTRATIONS ...... ................................. 5

I N.MCNCLUDIGE ................................................... 7

111. RESULTS ... *...................................2

TV. CONCLUDING REMARKS* ................................ 1

DISTRIBUTION LIST .......................................... 19

Acession 
For

TTS GRA&I _

L'TTC TAP

By ... ....
DU~trllbu' __

Avai1bi 1 Codes

Dizt ' Spocial

3



LIST OF ILLUSTRATIONS

Figure Page

1. Predicted Bore-Surface Temperature Histories..................13

2. Maximum Predicted Wall Temperature8 .............o.......14

3. Calculated Distributions of Propelant ....................... 15

4. Predicted Gas-Velocity Profiles.......... .................... .16

JL

tiiu u



NOMENC ATURE

D.p particle diameter

Dh hydraulic diameter

h convective heat transfer coefficient

kf thermal conductivity of gas at film temperature

Pr Prandtl number

q heat transfer rate

RT tube radius

ReD Reynolds number

Tg gas temperature in core flow

To bore-surface temperature

u gas velocity in core flow

C macroscopic bed (or bundle) porosity

hf gas viscosity at film temperature

Pf gas density at film temperature
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I. INTRODUCTION

Stick propellant is finding increasing application in high-performance
artillery charges. Currently employed in a number of European top-zone
propelling charges, stick propellant is now being introduced into US
artillery as a product improvement to the existing 155-mm, M203 (Zone 8S)
Propelling Charge. Further, its use is all but assured in future Enhanced
Self-Propelled Artillery Weapon Systems (ESPAWS) under consideration in the
United States.

The current popularity enjoyed by stick propellant can be attributed to.
a number of very desirable ballistic advantages associated with its use,
some of them only potential but others clearly demonstrated. The natural
flow channels associated with bundles of sticks reduce the resistance
offered to gas flow by several orders of magnitude when compared to that
resulting from the tortuous path required of flow through a granular
propellant bed 1 . Locally high pressure gradients cannot therefore be
supported in a stick propellant charge, and potentially damaging
longitudinal pressure waves are all but unseen. In addition, the regular
packing of propellant sticks yields higher loading densities than for
randomly packed granular propellant, allowing equivalent performance with
stick propellant charges using a slightly increased mass of a lower energy,
lower flame-temperature propellant formulation. It is widely purported, and
not unreasonable to expect, that the lower flame temperature should lead to
increased barrel life and perhaps reduced muzzle flash and blast.
Alternatively, a larger possible charge mass of the existing formulation may
allow performance increases in an otherwise volume-limited gun system. With
such worthwhile benefits in the offing, exploitation of the stick propellant
concept certainly appears well-motivated.

In this paper, we wish to raise concern in respect to one of these
potential benefits - that of increased tube life with stick propellant
charges. Under the assumption that heat transfer to the tube wall is the
dominant mechanism for gun barrel erosion, the use of cooler propellant made
possible by the higher packing density of propellant sticks has been deemed
adequate to assure a reduction in barrel wear. However, an interior
ballistic analysis scheme devised by Nordheim 2 during World War II purports
heat transfer to the tube at the origin of rifling to be strongly affected
by the distribution of burning propellant grains in the gun tube. According

to this picture, heat transfer would be the greatest when the burning
propellant remained in the chamber; the least when the propellant was
uniformly distributed throughout the gun. Thus, the very feature of stick
propellant which reduces pressure waves should also reduce motion of the

1 F.W. Robbins, et at, "Experimental Determination of Stick Charge Flow
Resistance," 17th JANNAF Combustion Meeting CPIA Publication 329, Vol. II,
pp. 97-118, November 1980.

2 L.W. Nordheim, H. Soodak, and C. Nordieim, "Themal Effects of Propellant
Gases in Eosion Vents and uns," NDRC Armor and ordnance Report No. A-
262, National Defense Research Committee, Washington, DC, ach 1944.
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solid phase considerably, leading to increased heat transfer to the tube and
perhaps increased erosion rates as well.

Indeed, recent calculations3 based on Nordheim's hypothesis yielded an

18% higher heat input for a stick propellant charge assumed to remain in the
chamber when compared to a granular propellant distributed throughout the
gun. These calculations were performed using ballistically-equivalent
candidate stick (XM208) and granular (XM203E2) propellant charge
configurations for the US 155-mm, M198 Towed Howitzer. The same study
reports limited experimental measurements of heat transfer for the two
charges (without wear-reducing additives) to differ by 13%, the stick
propellant charge again yielding the larger value. In fact, based on
Nordheim's analysis, the flame temperature for a ballistically-equivalent
stick propellant charge -mst be reduced by 300K to obtain comparable heat
transfer to that of the granular propellant, top-zone, 155-mm howitzer
charge. While Nordheim's analysis is admittedly crude and confirmatory
experimental data sparse, further study of this problem appeared warranted
in view of the major commitment to stick propellant under consideration by
the US Army.

II. THEORY

4Calculations reported in this paper were performed using the NOVA
code , a two-phase, unsteady flow representation of the interior ballistic
cycle. The balance equations describe the evolution of macroscopic flow
properties accompanying changes in mass, momentum, and energy arising out of
interactions associated with combustion, interphase drag, and heat
transfer. Functioning of the igniter is included by specifying a
predetermined mass injection rate as a function of position and time.
Flamespreading then follows from axial convection, with grain surface
temperature deduced from a heat transfer correlation and the unsteady heat
conduction equation, and ignition based on a surface temperature
criterion. Noteworthy features of NOVA pertinent to this study include
mechanisms leading to motion of the solid phase (explicit description of
igniter functioning, interphase drag forces, the gas pressure gradient, and
intergranular stresses) and the processes of heat transfer to and conduction
in the tube wall.

While the code remained unchanged except for input data for granular
and stick propellant charge calculations, differences do exist in the forms
of correlations employed within the code to relate those microprocesses
responsible for interphase drag and intergranular stresses for the two
propellant geometries to the overall governing equations for macroscopic

3J.R. Ward and I.C. Stobie, "On the Erosivity of Stick and Granular
Propellant," USA ARRADCON, Ballistic Research Laboratory, Aberdeen
P.oving Ground, AID (report in preparation).

4p.s. Gough, "THE NOVA CODE: A User's Manual, Volume 1. Description and

Use," IHCR 80-8, Naval ordnance Station, Indian Head, AD, December 1980.
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flow in the gun. Reference is made to the empirical, steady-state
correlations of Ergun5 and Andersson6 for resistance to flow through fixed
and fluidized beds of granular propellant, while drag is deduced from heat
transfer by means of a Reynolds analogy for stick propellant, where it is
expected to be dominated by the boundary layer. Similarly, intergranular
stress in a granular propellant bed is described as being an irreversible
function of bed porosity, while a stick propellant bundle is treated as
being elastic and capable of sustaining tension as well as compression. In

both cases, individual grains/sticks are assumed incompressible.

Convective heat transfer to the tube is calculated using a simple
turbulent pipe flow correlation7 based on a hydraulic Reynolds number to
account for the presence of the solid phase:

q - h (T - T )

kf
0.8 0.41

Dh [0.023 Re Pr

where

ReD -P fu Dh/pf

2eRT/[I + 2RT

P

The local temperature at the inside surface of the tube is then determined,
as driven by the convective boundary condition, using an approximate cubic

profile integral solution to the one-dimensional heat conduction equation.
This approximation has been previously shown8 to produce a 2% error in
predicted temperature change for a constant heat flux and 6Z for a linearly
increasing flux.

Results presented are not to be interpreted as firm, quantitative
predictions of wall temperature. Certainly such confidence awaits a
considerably more detailed representation of the microprocesses occurring in
the chemically-reacting, unsteady (and perhaps multiphase) boundary layer,

5 S. Ergun, "Fluid Flow through Packed Columns," Chem. Eng. Progr., Vol.
48, pp. 89-95, 1952.

6K.E.B. Andereson, "Pressure Drop in Ideal Fluidization," Chem. Eng. Sci.,
Vol. 15, pp. 276-297, 1961.

7J.P. Holman, "Heat Transfer," McGraw-Hill, 1968.

8C.W. Nelson, "On Calculating Ignition of a Propellant Bed," ARBRL-MR-
02864, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving
Ground, MD, September 1978. (AD A062266)

11



as well as processes occurring on the bore surface itself. Nevertheless,
the NOVA code provides a phenomenologically much more complete picture of
the interplay of charge motion and heat transfer than does Nordheim's
procedure, and quantitative trends revealed during this study may warrant
consideration by the charge design community.

III. RESULTS

Figure I presents bore-surface temperature histories at the origin of
rifling calculated for ballistically-equivalent, top-zone, granular (M203)
and stick (XM208) propellant charges for the 155-mm, M198 Howitzer. The
M203 charge employs a conventional seven-perforation granulation, while the
XM208 made use of charge-length, slotted, single-perforation sticks. Both
charges employ the same M30A1 propellant formulation, yet significantly
higher wall temperatures are predicted for the stick propellant charge.
Loci of maximum wall temperatures as a function of axial position for the
two charges are displayed in Figure 2, again indicating a more severe
heating environment associated with the stick propellant.

If Nordheim's hypothesis is correct, the mechanism for this difference
should involve a difference in the motion and distribution of the burning
propellant, an integral part of the two-phase flow dynamics described by
NOVA. Figure 3 depicts the distribution of solid propellant at various
times during the interior ballistic cycle for the two propellant
configurations. The granular propellant, indeed, becomes more widely
dispersed in the gun tube during much of the combustion phase, resulting in
a significant portion of the total charge burning ahead of the origin of
rifling and hence not contributing to its erosion. Virtually all of the
stick propellant, however, is predicted to remain in the chamber during the
combustion cycle. While these distributions do not mimic precisely the
limiting-case assumptions of Nordheim, the data of Figure 3 clearly identify
the difference in granular and stick propellant motion as an important
factor in barrel heating and perhaps erosion.

A logical extension to Nordheim's hypothesis might include the role of
gas velocities in the heat transfer process. Figure 4 depicts gas
velocities for the two charges at the moments of their respective maxima at
the origin of rifling. While it must be cautioned that these figures
represent core-flow velocities, we note again that the lowered resistance to
flow offered by the stick propellant charge leads to a condition which
exacerbates heat transfer to the tube.

To confirm this effect, an additional calculation was performed
employing the granular propellant configuration, this time with the
interphase-drag friction factor reduced to a value corresponding to stick
propellant I . As expected, propellant motion was substantially less than
that predicted for the unmodified granular propellant (also shown in Figure
3); further, the predicted maximum bore-surface temperature rose to nearly
1500K.

12
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Finally, we recognize the compensating effect associated with the use
of a cooler propellant (i.e., lower flame temperature) made possible by the
higher loadable charge weights of bundles of sticks. Specifically, the M203
Product Improvement Program (PIP) calls for replacement of M3OAI granular
propellant with M31E1 stick propellant. However, based on computed results
for this propellant formulation, also shown in Figure 1, the accompanying
decrease in flame temperature of approximately 400K is not sufficient to
compensate for the increase in bore-surface temperature at the origin of
rifling associated with the stick geometry.

IV. CONCLUDING REMARKS

A phenomenologically reasonable hypothesis has been presented that
suggests that stick propellant geometries may be inherently more erosive
based on hydrodynamic considerations alone. Calculations employing the NOVA
code substantiate earlier predictions to this effect based on the simple
analysis of Nordheim. While quantitative predictions of bore-surface
temperature provided by the current analysis mast be viewed with some
uncertainty, we have no justification for rejecting the basic message that
stick propellant erosivity may not equate with granular propellant
erosivity. Planned commitments to stick propellant charges warrant
immediate experimental investigation of this problem. Perhaps the use of
several tiers of shorter sticks being considered to facilitate propellant
manufacture and blending may also be shown to promote distribution of the
burning propellant throughout the gun tube. If this can be accomplished
without the return of undesirable pressure waves, the problem of excessive
heat transfer, if real, may be eliminated.

17
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