
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE rUSI.. 0... &....gj

REPORT DOCUREt4TATIOt PAGE 8FR OPEIGFR
1REPORT HUM69 .GOTACESO S. RECIPIENTS CATALOG MUM11ER1

MAC-TR-82-135 AI -)IIJD.
4. TITLE (mad SWIM111e) S. TYPE OF REP"ORT & PERIOD COVEREDJ Final Technical Report

SOFTWARE TESTING MEASURES 1 Jun 80 - 30 Sep 81
6. PERFORNG 0O4G. RepORT- NUMENR

CR- 4-9 93
1. AliTHOR*a S. CONTRACT ON GRANT NUMISRI'.)

W. Heidler A. Kerbel F00-0C08
J. Benson A. Pyster F00-0C08
R. Meeson

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT.t PROJCT. TASC
AREA A WORKICAAU.ER

General Research Corporation 62702F
P 0 Box 6770 58l2
Santa Barbara CA 93111 5812

11. CONTROL-LING OFFICE NAMIE AND ADDREKSS Q2. REPORT *ATE

Rome Air Development Center (COEE) May 1982
Griffiss AFB NY 13441 1362uemai AE

14. MONITORING AGfEY NAME 6 ADDRIESS4Hfdifferen fivm Coafr.iina. Office) 1%. S-CURITY CLASS. (of tie p.,t)

Same UNCLASSIFIED
ISO DECLASSI PIC ATION/ DOWNGR ACING

IS. DISTRIBUTION STATEMENT (.f ti,, RRANDf)

Approved for public release; distribution unlimited.

17. DISTRISUIITION STATEMENT (at the 0681 6t tered in Block 2.It different Ino Neod)

Same

IS. SUPPLEMENTARY NOTES
Z' RADC Project Engineer: Frank S. LaMonica (COEE)

IS. KEY WORDS (00mtbhu on foama, Side At 114c,11001Y e- Id~ntfI. 6Y blck ftinbw)
Software testing .
Computer program testing
Testing and vericiation techniques

2VASTRACT (anitllla -ows old* If OWOMM dm bpet III 601k DNOS!.)
This report examines the current state of development of automated
software testing'techniques. The report identifies and describes tech-
niques that are useful for detecting errors in software. It also
examines techniques for proving the correctness of programs, f or debugging
(locating and correcting errors), and for producing documentation
automatically. The techniques are evaluated in the areas of effective-
ness, reliab#11, cost, and ease of use--criteria for each of these

DO I AN*? 1473 DOITIOIS or I NOV611 Is OUSO"LETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (SB..n D"00Enw

i NCLMSIFIED

ISCURITY CL*UIPCAT@U OF ThIS PAG9(ftba atw ome

categories was developed as a part of the study effort. Profiles are
presented for fie mjor categories of test techniques--each profile
describes in detail the capabilities of a technique, the automated tools
that Siport it, the types of errors that it can detect, its degree of
dependence on user skill and judgment, its applicability to various

types of software, and its costs in terms of analysis time and computer

resources. Important features and shortcomings of the techniques are

discussed. The appendices to the report include: a set of guidelines

for testing software; a survey of available automated tools which sup-
port the techniques, an automated bibliography of testing, and a
description and results of an experiment with assertion testing.

Ae;so T or-

i 0

3XItificatlow

By

Availabtlity
Codes

A A,.1 and/or

UNCLASSIFIED
SuZCUITV CLASSFICATIO| OP 'Pi- VAR DMO

'~ PSP~h ~* - -

CONTENTS

SECTION PAGE

1 INTRODUCTION AND SUIMMOARY 1-1

1.1 Evaluations of the Test Techniques 1-1

1.2 Further Analysis of the Test Techniques 1-1

1.3 Prospects for Improvements in the Test
Techniques 1-13

2 AUTOMATED SOFTWARE TESTING TECHNIQUES 2-1

2.1 Source Code Static and Structural Analysis 2-1
2.2 Dynamic Testing Techniques 2-15
2.3 Symbolic Execution and Formal Verification 2-24

3 SOFIWARE TESTING METRICS 3-1

3.1 The Goals and Problems of Developing Metrics 3-1

3.2 Measures of Test Technique Effectiveness 3-6

3.3 Measuring Testing Costs 3-19

4 COMPARISONS OF THE SOFTWARE TESTING TECHNIQUES 41..4-

4.1 Effectiveness 4-1
4.2 Reliability 4-4
4.3 Cost 4-10

4.4 Ease of Use 4-17

5 CHARACTERISTIC PROFILES OF THE TECHNIQUES 5-1

5.1 Static Analysis 5-1
5.2 Executable Assertions 5-23

"1 - --'.--...- - -- - + + ' '"- "- - -i u i. , - .-- -,

SECTION PAGE

5.3 Structural Testing 5-41

5.4 Functional Testing 5-56

5.5 Formal Techniques 5-66

6 OTHER CAPABILITIES OF TEST TECHNIQUES AND TOOLS 6-1

6.1 Error Location 6-2

6.2 Error Correction 6-8

6.3 Debugging Thols 6-11

6.4 Documentation 6-14

6.5 Contribution of Test Techniques to Software
Quality Evaluation 6-16

7 PROSPECTS FOR IMPROVEMENTS IN THE TEST TECHNIQUES 7-1

7.1 Static Analysis 7-2

7.2 Executable Assertions 7-4

7.3 Structural Testing 7-7

7.4 Functional Testing 7-8

7.5 Formal Techniques 7-10

8 AREAS FOR FURTHER RESEARCH AND INVESTIGATION 8-1

8.1 Studies and Experiments 8-1

8.2 New Test Techniques and Tools 8-2

APPENDIX

A GUIDELINES FOR TESTING SOFTWARE A-i

B TEST TOOLS SURVEY B-1

C ANNOTATED BIBLIOGRAPHY C-1

D AN ASSERTION TESTING EUPERIAM D-1

1iv

i iv

4 ___-"%mad

TABLES

No._______________________ PAGE

1.1 Rankings of the Five Test Techniques 1-4

1.2 Profile Swimary - Static Analysis 1-7

1.3 Profile Summary - Executable Assertions .1-8

1.4 Profile Sumary - Structural Testing 1-9

1.5 Profile Sumnary - Functional Testing 1-10
1.6 Test Technique: Problems and Solutions 1-14

3.1 The TRW "Project 5" Error Classification System 3-8
3.*2 Completeness Metrics for the Test Techniques 3-14

4.1 Ranking of the Techniques Based on Range of Error[Types Detected 4-2
4.*2 Major TRW Error Categories Addressed by Test Techniques 4-3

4.3 Sensitivity of the Techniques to Human Factors 4-6
4.4 Application of Test Techniques In the Life Cycle 4-9

zing Language 4-15

4.6 Test Tool Availability by Host Computer Manufacturer
and Programing Language 4-15

4.7 Ease of Use Ratings 4-18

5.1 Static Test Tools 5-6

5.2 Static Error Detection Methods (SQLAB tool) 5-9

5.3 Results of Static Testing for the TRW Error Types
Often Detected by Static Analysis 5-14

5.4 Time Overhead of Static Tools 5-18

5.5 Storage Requirements of Static Tools 5-21

5.6 Executable Assertion Preprocessing Tools 5-29

5.*7 Error Types Detected by Assertions In GRC Error

Seeding Experiments 5-31
5.8 Results of Error Seeding Experiments for Executable

Assertion Testing 5-35

5.9 Computer Overhead of Assertion Testing 5-38

5.10 Capabilities of Instrumentation Tools 5-45

V1

v.

TABLES

No. _______________________ PAGE

5.*11 Error Types Detected by Structural and Functional
Testing 5-46

5.12 Error Types Detected by Special Values Testing 5-60

6.1 Error Location and Correction Capability Rankings 6-1

6.2 Location Metric Applied to Static Error and Anomaly
Types 6-6

6.3 Corrective Actions Suggested by Static Analysis
Diagnostics 6-9

6.4 Correction Metric Applied to the Static and Dynamic
Techniques 6-1l

6.5 Test Tools with Debugging Capabilities 6-13

6.6 HIL-STD-438 CPCI Part 11 Specification 6-15

6.7 Documentation Produced by Static Analysis Techniques 6-16

6.8 Test Technique Support for TRW Quality Factors 6-19

6.9 Test Technique Support for GE Quality Factors 6-21

A. 1 Life-Cycle Phases and Testing Activities A-12

A.2 Application of Test Techniques in the Life Cycle A-13

A.3 Software Testing Guidelines A-14

A.4 Order of Applying Testing Techniques A-19

A. 5 Test Techniques Required to-Achieve Each Software
Quality Level A-22

D1 Test 1 Results D-7l

D2 Errors from Major TRW Error Categories Seeded in Test 2 D-10

D3 Test 2 Results D1

1 INTRODUCTION AND SUOEARY

- This report examines. the current state of development of automated

software testing techniques. The report identifies and describes

techniques that are useful for detecting errors in software. It also

examines techniques f or proving the correctness of programs, f or

debugging (locating and correcting errors), and for producing documen-

tation automatically. The techniques are evaluated in the areas of

effectiveness, reliability, cost, and ease of use--criteria for each of

these categories were developed a. a part of the study effort. Profile.

are presented for five major categories of test techniques-each profile

describes In detail the capabilities of a technique, the automated tools

that support it, the types of errors that It can detect, its degree of
dependence on user skill and judgment, its applicability to various

types of software, and its costs in terms of analysis time and computer9
resources. Important features and shortcomings of the techniques are
discussed. The appendices to the report include: a set of guidelines

for testing software; a survey of available automated tools which

support the techniques; an annotated bibliography of testing; and a

description and results of an experiment with assertion testing.

1.1 EVALUATIONS OF THE TEST TECHNIQUES

Five general types of automated test techniques are treated in

this study. Each technique Is described in detail in Chapter 2. The

e Static analysis - a general term given to all procedures

which check the syntax and semantics of a program without

running the program. It includes such checks as data flow

analysis, type checking, and standards checking.

a Executable assertions - logical expressions in the language

of the program being tested. Assertions can check the

values that variables in the program may assume, the

relationship among variables, the flow of control, and the

hitoyofcmpttin Voatos farton ar

reported to the user of the program through an error

message.

0 Structural testing - programs have natural groupings of

structural elements, such as statements, branches, and
paths. The purpose of structural testing Is to increase the

percentage of 'all of the structural elements in a program

that are executed in a series of tests. Tools are used to

determine whether a structural element is actually executed.

0 Functional testing - a method for systematically developing

test cases for a program. Test cases are selected on the2
basis of the functions that a program is supposed to perform
and by analyxing the inputs to and output of the program.

0 Formal techniques - symbolic execution and formal verifi-

cation. Symbolic execution attempts to produce a mathe-

matical expression for a program's output in terms of its

input variables. Formal verification seeks a mathematically

rigorous proof that a program satisfies its specifications.

In addition to these five techniques, there are tools available

which provide assistance in debugging (locating and correcting errors)

and In determining how efficiently a program uses computer resources.

This report in mainly concerned with program testing, validation, and

verification; however, the debugging and performance measurement

capabilities of software tools are treated briefly in Chapters 2 and 6.

Chapter 3 presents measures developed for evaluating these

techniques. The masures cover the general areas of effectiveness,

reliability, cost, and ease of use. The effectiveness criteria are:

j 1-2

0 The kinds of errors detected

0 The percentage of total program errors detected

A reliable testing technique is one that is effective in detecting

errors regardl.ess of the conditions under which it is applied. In

particular, effectiveness should not depend heavily on the abilities of

the people applying the techniques.

A technique should also be applicable to as wide a range of

testing environments as possible--batch and Interactive programs,

numerical and non-numerical applications, real-time and non-time-

critical systems, etc. Therefore, the three reliability criteria which

we have selected are:

0 Insensitivity to human factors

* Reliability for various error types

* Insensitivity to characteristics of the program being tested

The cost criteria are:

* Analysis time required

0 Computer resources

0 Cost of tools

The ease of use criteria are:

* User skills required

0 Degree of user Involvement

0 Analysis required for error detection and location

The literature on testing was searched extensively for data on

which to base our evaluations. Several experiments on the effectiveness

and costs of automated testing had previously been performed at CRC, and

these were analyzed. Persons who had recently completed projects which

*used structural testing and formal verification were contacted and

1-3-

interviewed about their experiences. An experiment using executable

assertions to test programs with real and artificially introduced errors

was performed (Appendix D).

The evaluations are presented in Chapters 4 and 5. Chapter 4

compares the techniques in each category, using rank-orderings where

appropriate. Table 1.1 shows these rankings. Chapter 5 contains

profiles of each of the five techniques.

Error Insensitivity
Types to Human Overall Ease

Technique Detected Factors Cost of Use

Static analysis 4 1 1 1

Executable assertions 2 4 3 4

Structural testing 3 2 2 2

Functional testing 1 3 4 3

Formal verification - 5 55

Our oncusins romthe evaluations can be summarized as follows:

0 Thre i notenough data or experience with automated

tesingtodetermine a most effective technique. The widest

rag ferrors can be detected by functional testing; the

mostlimtedrange by static analysis. However, the

1-4

techniques complement each other In important ways if theyf are used together.

0 Static analysis is the moat reliable technique, since it is

highly automated ad therefore least susceptible to human

error. Functional testing, executable assertions, and the

formal techniques all depend heavily on the skill of the

tester in order to produce effective results.

* The formal techniques can be applied to the most narrow

range of program types. Symbolic execution is feasible only
for smali segments of code. So far, formal verification has

been successfully applied only to small programs and in

proving the security properties of operating system.

* Static analysis is the least expensive technique. it

requires little work from the user, and In an efficient

implemention requires overhead comparable to a compiler.

0 Executable assertions and structural testing require similar

amounts of computer resources. However, executable asser-

tions also increase the amount of effort required to code a

program.

* The costs of all of the dynamic test techniques (executable

assertions and structural and functional testing) are very 4

sensitive to the number of runs made of the program being

tested. It is difficult to estimate the number of runs

required to thoroughly test a program.

IxI

require a large amount of highly skilled work.

1-5

* Static analysis in the easiest technique to use. It is the

most highly automated and requires the least skill an the

part of the user.

* Executable assertions are rather difficult to use because it

takes special skill and knowledge to write effective

assertions.

e Structural testing does not require as much skill as

functional testing or writing assertions, but provides

little automated assistance in generating test data or

detecting errors.

0 Functional testing is not now highly automated, although

there are many tools available to assist in various tasks-

must be done manually and there are no criteria of test

thoroughness to guide the process.

Tables 1.2 through .1.5 miemarlse the available experience with

using the four static and dynamic test techniques. Although the formal

techniques have not been applied by software developers other than

researchers in the field of formal verification, some successes have

recently been achieved with them. These are described in Sec. 5.5.2.

1-

PRFILE SUMMCARY STA1.2 ANALYSIS

EFECTIVENESS

Types of Errors Detected
Data handling errors
Interf ace errors
Data definition errors
Data base errors
Documentation errors

Percentage of Total Program Errors Detectable
(based on available data): 161 to 55Z

RELIABILITY

Static analysis is highly automated, so error checking is applied
* consistently. Because it is automated, human error is unlikely to

corrupt the testing process. But static testing has inherent
limitations; there are few types of errors that it can consis-
tently catch.

Static testing is usually most effective during the early stages
of program development. Static analysis can be used vith equal
ease on large and small program. The features and standards of
new programing languages make sow static checks unnecessary.

COST _ _I

Analysis Tim - requires only the execution of a test tool and
examination of its output.* Saves tine since it replaces manual

Computer Resources -tool execution time is only two to four times4
compile tim for an efficient tool. Storae costs vary according
to the tool and computer system used.

In

TABLE 1.3
PROFILE SUNARY - EXCUTABLE ASSERTIONS

V

EFFECTIVENESS

Types of Errors Detected
Computation errors
Logic errors
Data input errors
Data handling errors
Interface errors
Data definition errors
Data base errors

Percentage of Total Proaram Errors Detectable
(based on available data); up to 80Z.

RELIABILITY

How reliable assertions are depends upon how well the person
writing than understands the way his program is supposed to
operate. Assertions have to be debugged Just like the rest of a
program.

The test data used has a great effect on the reliability of
executable assertion testing. Test data must cause assertions to
be violated or errors will go undetected.

Not all error conditions can be described in assertions, and
sometimes only weak conditions can be imposed through assertions.

Assertions are useful throughout the software life cycle and on
Sprogram of all sizes.

COST
Analysis Time - Increases the coding and debugging effort accord-

ing to the number of assertions used. Assertions may cmprise
anywhere from 5Z to 50Z of the total code.

Computer Resources - Also varies with the number of assertions
used. Available data suggest the following estimates:

Increase In compilation time 5-125Z
Increase In execution timea 0-401
Increase In size of object code: 6-15Z

1-

TBLE 1.4

PROFILE SIMARY - STRUCTURAL TESTING

21?ECTIVENESS

Ties of Errors Detected
Camputation errors
Logic errors
Data handling errors
Data output errors

Percentage of Total Program Errors Detectable

(based on available data): 20% - 90%I/
RELIABILITY

The test data used has a great deal of influence on the relia-
bility of structural testing. Input data that tests boundary
conditions or singularitlee and demonstrates the operation of
program functions should be used when doing structural testing.

Structural testing is guaranteed to find errors only when a
program path handles all input data incorrectly. Since this is j
not the case for all errors, structural testing alone cannot
ensure that a program is operating correctly.

COST
Analysis Tim - requires the user to generate teat data and
analyze output for errors. Experience suggests one-half to twoi days per error found.

Comuter Resources - instrumentation tools generally require a 20%
- 100 increase in object program size, and a 21- 501 increase in
execution time.

1-9 i

- I- - - - - -- ---. -- .- - -

TABLE 1.5

PROFILE SUMMARY - FUINCTIONAL TESTING

EFFECTIVEMESS

Types of Errors Detected
Computation errors
Logic errors
Data input errors
Data handling errors
Data output errors
Interface errors
Data definition errors
Data base errors
Operation errors
Documentation errors

Percentage of Total ProLram Errors Detectable

(based on available data): 502 - 90Z

RELIABILITY

Functional testing requires the user to exercise skill and
judgment In selecting test data and in determining the correctness
of program output. Methodology advances have shown how to do
effective functional testing, but not how to choose test data
efficiently.

There is no data on the reliability of functional testing for
different error types.

Functional testing works well under top-down program development,
since functional capabilities are available early in the life
cycle. Functional testing of large, complex programs can be
difficult and error-prone. The technique has been proven effec-
tive for mathematical software, but problems of testing non-
numeric programs have not ben addressed.

COST

Analysis Time - this is the most significant cost involved in
, ; functional testing. Time is needed to generate test data and to

examn the output for errors. Total costs depend on the number
of test runs made.

* Comnuter Resources - tools that support functional testing require
very little overhead and can provide a significant cost savings
over manual methods.10

1.2 FUR KN ANALYSIS OF THE TEST TIC IQIMS

Besides detecting errors in programs, automated testing techniques
can help the user to locate and correct errors. The techniques can also

be beneficial in providing documentation and in evaluating the overall
quality of a plece of software. These topics are discussed in Chapter

6.

Static analysis can provide a great deal of information about the
location of errors. It can isolate errors In module interfaces,
violations of coding standards, and instances of mixed-mode arithmetic
to a single statement. Static analysis labels the type of error

detected, which is useful information for correcting errors.

Assertion testing vill locate errors to the code segment betveen
the last branch point (i.e., IN or other decision statement) and the
assertion violated, if a thorough set of assertions is used. Structural
testing can only locate an error to an entire path through a program.
Functional testing itself provides no error location information.

errorThe test techniques should be used to retest a program after an

error has been corrected. A metric of the efficiency of a technique for
retesting is:

(number of retesting runs) x (amount of code exercised in one retestina run) N

amount of code changed

' For static analysis this ratio is one test of one module per

module changed. Functional and assertion testing used by themselves
require all tests to be rerun when an error is found. Structural

II

testing gives an indication of what code is affected by a test run, so
that not all tests mist be rerun.

1-Il

1 t~ - ----- - -- - - - - --. - , - -

4 -w

Testing techniques can be used to provide program documentation

and support the evaluation of software quality. Static analysis

techniques supply much of the information for these and they could be

enhanced to provide more.

In Sec. 6.4 we give a summary of the reports produced by static

analysis and relate then to the program documentation reports required

by IL-STD-483. Assertions can also be useful in providing in-line

program documentation, although they do not replace other documentation

which is traditienally required.

Testing techniques can also be used to support the determination

of overal software quality. Software quality has been defined by a set

of desirable characteristics (maintainability, testability, etc.) in two

studies, one by TRW1 and the other by General Electric. 2 These charac-

teristics are related to measurable properties of the software (number

of comments, length of modules, etc.). The testing techniques can

support the measurement of these properties in hres ways:

0 By directly measuring the property as part of the testing

process*

0 By providing information from which a measurement can be

derived.

o f By adding the property to the software during the process of

testing.

l. W. Bonhu, at. al., Characteristics of Software Ouagtt, TR Systems

Group Report No. TU-S-73-09, December 28, 1973.
J. A. McCall, P. K. Richards, and G. Walters, ,,ctlos in Software
(ualit, Mtric Data Collection and Validation, General lectric Co.,

| under contract to Rome AiLr Development Ceter, Report go. tAlC-YTR-77-
369, Vol. II, November 1977.

1-12 i i

e~- * * mn --- -- -- *- - -- - d-

4t

We found that the mst properties were supported by static

analysis. In all, we estimated that 421 of the Tl properties were

supported by testing techniques and 32Z of the GE properties were

supported. Details of our analysis are presented in Sec. 6.5.

1.3 PROSPECTS FOR IPRVDIIETS IN THE TEST TECHNIQUES

We expect each test technique to be improved in the future. The

improvements will come as a result 'of advanced software engineering

technIques-specifically the use of new programming languaes-and from

combining several techniques into Integrated, comprehensive testing

tools. This subject is discussed in Chapter 7.

Table 1.6 summarizes our expectations for Improvements in the

techniques. For each technique, the table lists current problem and

anticipated solutions.

i1
11

i,1-13

TABLE 1. 6

TEST TECHNIQUE:a PROBLUMS AND SOLUTIONS

Technique Problem Solutions

1. Static Extraneous type Improved programing
Analysis error warnings languages

Extraneous data Libraries of global data
flow error flow information;
warnings algorithms to detect

unexecutable paths

2. Executable No guidelines Heuristics for assertion
Assertions for placing placement and contents

assertions

Difficulty in writing Language extensions for
assertions assertions

3. Structural No mechanism for Combine with executable
Testing error detection assertions

and reporting

Requires test Use symbolic execution
cases to be to generate test cases
constructed
manually

4. Functional Requires testing Automated tools for
Testing separate program independently testing

sections manually program parts, keeping
track of test data, and
input regions tested

5. Formal Poorly supported More powerful tools and
Techniques by automated better user interfaces

tools

lot widely More training In formal
accepted methods for programers

1-14

2 AUTOMATED SOFTWARE TESTING TECHNIQUES

Automated sof tware testing techniques have been classically

separated into static analysis techniques and dynamic testing tech-

niques. Tests that require analyzing only the program source code fall

under static analysis techniques. Tests that require running the

program fall under dynamic testing techniques. Never techniques such as

symbolic execution and program proving, however, blur this distinction.

Static, dynamic, and formal techniques are complementary testing

methods. Each individual kind of analysis or specific run-time check

covers a different (but usually overlapping) set of possible program

errors. The kinds of common programming errors detected by these

techniques are listed In the following discussion whenever a clear

assessment can be made. The technique profiles in Chapter 5 provide

more complete information on their effectiveness for a wide variety of

errors.

2.*1 SOURCE CODE STATIC AND STRUCTURAL ANALYSIS

Static analysis is a general term f or all analysis and checking

which requires only the program source code as input. For example, all

the syntax checking done by a compiler would be included under static

analysis. Additional static checks frequently not performed by com-

pilers have been provided by automated test tools. These include tests

for uninitialized variables, type conflicts, module interface conflicts,

and incorrect parameter usage, to name just a few.1

Structural analysis is a subcategory of static analysis that deals

*with the flowchart-like structure of program source code. This kind of

alysts can Identify unreachable code, infinite loops, 2 anreusv

1 1Leon J. Osterweil, and Lloyd D. Fosdick, "DAVE - A Validation Error
Detection and Documentation System for FORTRAN Programs," Software:
Practice and Experience, Vol. 6, No. 4 (Oct-Dec. 1976).

2 Hore, the toerm unrachable code 'and infinite loov refer to structural
characteristics, and not the corresponding logical characteristics,
which are more difficult to detect.

2-11

4t

'F

procedure calls. It can also provide helpful documentation on the
procedure-calling structure of large programs.

For this study of software testing measures the various static

analysis techniques are grouped into five subcategories:

* Program error detection

* Program anomaly detection

0 Assertion checking

* Test data generation

0 Program documentation

Error detection techniques include techniques that will identify program

conditions that cannot be interpreted correctly, i.e., "hard" errors.
Anomaly detection techniques include techniques which provide warnings

for program conditions that violate "good" usage and are likely to

produce errors. Static assertions are--a means to provide additional
error checking. Test data set~eration and progrm documentation are tvo

more ways static analysis supports software testing. Each of these

categories is developed n detail below.

2.1.1 Detectable Progran Errors

A number of program errors can be detected by automated (static)

analysis of program source code. These errors are program conditions
which invariably lead tJ incorrect computations. The principal examples

of such errors are:

• Infinite loops - programs containing non-terminating

computations.

0 Module interface conflicts - mismatching actual and formal

parameter specifications, including type conflicts and
al* sing.

1Richard N. Taylor and Leon J. Osteraeil, "Anomaly Detection in Concur-
rent Software by Static Data Flow Analysis," IEEE Transactions on
Software Engineering, Vol. SE-6, No. 3, pp. 265-278 (May 1980).

2-2

* Recursive procedure calls -procedures which directly or

indirectly call themselves.1

a Uninitialized variable. - attempt to use data which has not

been defined.

a Deadlock - concurrent processes waiting for each other to

respond.

Infinite Loops

Although some programs are supposed to run indefinitely (e.g.,

operating systems and embedded control programs), most programs and all

individual modules should be free of non-terminating computations.

Structured programing techniques have largely reduced this problem by
restricting the use of the GOTO statement. In "unstructured" programs

infinite loops can be detected by analyzing a flowchart-like graph of
the program's organization. Any point in the program which cannot be

infinite loop. This analysis is one of the structural analysis tech-

niques.

In structured programs, DO-WILE and UEPEAT-UNTIL types of loops

can be checked to see that variables in the loop exit conditions are

modified within the body of the loop. This check does not guarantee

loop termination but can identify certain errors that can lead to

infinite loops such as incorrect exit conditions and missing statements

in the loop body. Formal verification of loop termination is considered

beyond the scope of most static analysis tools. Several high-level

system programing languages include LOOP or CYCLE statements for

explicit coding of non-terminating loops where they are required.

1FORTRAN and COBOL do not support recursion.

1. 2-3

Module Interface Conflicts

There are three primary static checks which can be made between

procedure (and function) definitions and calling statements.

0 Number of parameters

0 Type correspondence between parameters

0 Aliasing of global data

Conflicts in the number and type of parameters between procedure

definitions and their calling statements are detected by maintaining a

central database for module interface information. The actual arguments
supplied in a calling statement can then be matched with the formal

parameters from the procedure definition. Several common programming

errors which can be detected by this kind of analysis include.

* Missing arguments in procedure (and function) call state-

ments

* Extraneous arguments in calls

* Arguments listed out of order

* Wrong variable passed as an argument

a Wrong procedure called

The first two of these errors are detected by simply checking for the

correct number of arguments. The second two can be detected when the

datatypes of the actual and formal parameters do not match. The last

error can often be detected using both of these techniques when the

wrong procedure is called with parameters meant for the right one.

Additional information can be stored in the database so that modifica-

tions; to a procedure definition can be traced back to all calling

statements to aid program maintenance.

2-4

Aliasing in computer programs is a condition where a single

storage location can be referred to by more than one variable name.

This is considered a programing error because of the side-effect of all

aliased variables being modified by an assignment to any one of them.

Additional aberrations appear when various different parameter passing

methods are considered. The two primary sources of aliasing which can

be detected by static analysis are:

0 Global data passed as procedure arguments

0 A single variable passed in two argument positions

Additional complexity results when array elements are potentially

aliased. In this case warning messages are usually sufficient to get

the programer to verify the absence of aliasing conditions.

Recursive Procedure Calls

Complex processing tasks can often be described most concisely as

recursive procedures or functions. However, several high-level pro-

gramming languages, including FORTRAN and COBOL, do not support recur-

sive procedure definitions. Recursive procedure calls can be identified

by loops appearing in the calling graph structure of a program. In

FORTRAN and COBOL programs, the calling graph structure must be loop-

free. JOVIAL programs can be checked to see that only procedures

declared with the "REC" attribute are used recursively.

Uninitialized Variables.

References to program variables before meaningful values are

assigned to them are considered to be in error. Many computer systems (
initialize all program variables automatically. However, programs which

rely on this system-dependent feature will not run properly on other

computer systems which do not perform (the same) initialization.

Uninitialized variables are detectable by data flow analysis which

determine* the sequence of set and use operations on all program

variables. Any set/use sequence which does not start with a set

operation indicates an uninitialized variable.

2*
b2-5

L

Deadlock

Deadlock is a condition where concurrent processes become

1"stalled" waiting for one another to signal the continuation of a

computation. When no progress can be made because all processes have

reached a "wait" state, the system is said to be deadlocked. Two

approaches to handling the problem of deadlocks are available: pre-

vention, or avoidance. Deadlocks are prevented by ensuring that the

conditions necessary for their occurrence cannot exist. Unfortunately,

deadlock prevention can often only be achieved at a significant cost in

resource utilization. Methods of guaranteeing analytically that a

system is deadlock-free have been developed for a few applications.

Taylor and Osterweil 2 describe how static data flow analysis could be

used to prevent a few special forms of deadlock.

I Detection or avoidance of deadlock means incorporating fault-

tolerance into a system. The way processes request and use resources is

monitored dynamically. Algorithms are applied which determine that a

deadlock has occurred or is about to occur. When a problem is found,

corrective action must be taken. The merits of a few approaches to

deadlock detection are discussed by Gligor and Shattuck.3

2.1.2 Detectable Program Anomalies

A somewhat larger class of abnormal or error-prone program

constructs, which may or may not really be errors, can be identified by

additional static analysis techniques. Because these program anomalies

IE. G. Coffman, N. J. Elphick and A. Shoshani, "System Deadlocks," Coi-
puting Surveys, Vol. 3, No. 2 (June 1971), pp. 67-78.
2 . N. Taylor and L. J. Osterweil, "Anomaly Detection in Concurrent

Software by Static Data Flow Analysis," IEEE Transactions on Software
Engineering, Vol. SE-6, No. 3 (May 1980), pp. 265-278.

* 3
V. D. Gligor and S. H. Shattuck, "On Deadlock Detection in Distributed
Systems," IEEE Transactions on Software Engineering, Vol. SE-6, No. 5
(Sept. 1980), pp. 435-440.

2-

2-6

do not necessarily affect correct computations, they are usually flagged

vith warning messages by automated tools. Program structures which are

considered to be anomalous include:

e Violations of coding standards

e Mixed-mode expressions

0 Data flow anomalies

0 Unreachable coded

e Unreferenced statement labels

Each of these categories is elaborated in more detail below.

Coding Standards

Modern software engineering techniques for program development

often restrict the use of certain constructs provided in high-level

programing languages. The principal examples of this are the restric-

tions often placed on the use of the GOTO statement. Structured control

statements provided in modern languages (or by pre-processors for older

languages) have reduced the need for COTOs to a few special circus-

stances, such as recovering from processing errors. For most practical

purposes the GOTO can be relegated to the class of program anomalies and

reported by static analysis warnings.

Additional examples of modern thinking on programing techniques

which impose restrictions on the "free use" of facilities provided by 4

programing languages Include:

a Requiring declaration of all program variables so that no

default characteristics are mistakenly inherited

0 Limiting the size of program modules as a method of en-

couraging program modularity

2-7

0 Limiting the depth of structured statement nesting to reduce

module complexity

* Limiting the length of individual statements to reduce

expression complexity

These restrictions allow the detection of errors caused by misspelling

identifiers (since they wifl have been declared using a different

spelling) and tend to reduce mistakes due to source code complexity.

Psychological studies have shown, for example, that people have trouble

interpreting expressions with more than five levels of parenthesis

nesting.
1I

Mixed Mode Expressions

Computational expressions requiring the implicit conversion of

program data from one type to another are called mixed-mode expressions.

Modern software engineering philosophy says that such Implicit con-

versions, like default attributes, are error-prone and should be
avoided. In cases where datatype conversions are required, the explicit

conversion operations are usually very simple. Where code can be

rewritten to eliminate datatype conversions, it is often simplified.

Errors which can be caught In some cases by disallowing mixed-mode

expressions Include:

eUsing the wrong variable in an expression

0 Loss of computational accuracy due to truncation

0 Assigning a value to the wrong variable

Programing languages with "strong typing" rules, such am JOVIAL and

Ada, do not provide Implicit type conversions as does FORTRAN. Bence,

more modern languages already enforce these rules.*

a G. A. Miller, "The Magical Number Seven, Plus or Minus Two: Some
Limits of Our Capacity for Processing Information," Palchol. eview
Vol. 63, pp. 81-97, 1956.

1 2-8

Data Flow Anomalies

Data f low analysis was originally developed as a technique for

program optimization. Several ways were found to improve program

efficiency by transformations based on the sequence of assignment and

references to variables. Software quality researchers observed that the

same conditions which led to optimization also indicated several kinds

of program errors.* Hence, data f low techniques have been incorporated

into static analysis tools for program validation.

In the previous section on error detection (2. 1. 1), data f low and

set/use analysis led to the detection of uninitialized variables. There

are other patterns of assignment and references to variables which are

considered anomalous, although they are not always erroneous.* If a

variable Is set twice without any possible references to its first

value, then the first assignment can be eliminated-or there is some2

error because of a missing reference. If the operation of the code is
correct, then the first assignment can (and should) be removed to

improve program efficiency and readability.

Another data flow anomaly is a variable which is set but never

used afterwards.* The final assignment could be eliminated if it were

indeed not needed. This anomaly often occurs In program loops where a

variable is updated at the end of the loop for the next iteration. When

the loop terminates, the final value assigned may never be used.* The I
warning message produced by data flow analysis will encourage the

progranmer to verify that the code is not in error. Sometimes, but not

always, loops can be restructured to eliminate the anomaly.j

Programs which have been repeatedly modified often contain

declarations of variables and parameters that are no longer used. This

anomaly reflects incomplete modification and is always a source of

bewilderment when further modification is attempted. Often these

eltraneoue variables (end particularly the unused parameters) indicate

2-9

program errors. Data flow analysis can easily identify such anomalies

because the list .of set/use references will be empty for unused vari-

ables and parameters.

The following list summarizes the kinds of errors that can be

detected by data flow analysis:

0 Extraneous assignment statements

• Extraneous variables and parameters

• Missing variable and parameter references

• Statements out of sequence

• Uninitialized variables

Uninitialized variables and extraneous variables and parameters can

always be detected. The other errors must be confirmed manually when

anomalies are detected.

Unreachable Code

Program segments which cannot be reached from any other part of

the program are called unreachable or "dead" code. Such code can never

be executed and, hence, is not logically part of the program. This

anomaly is much more likely to occur in "unstructured" programs,

especially during modification. Programs with unreachable code may run

correctly; therefore, unreachable code is not always considered a "hard"

error. The presence of such code indicates either poor editing or a

misconception on the progranmer's part. When program storage space is

at a premium, however, unreachable code should be classified as an error

even if the program is otherwise correct.

Structural analysis techniques detect unreachable code by locating

disconnected flow-graph components. One solution to the unreachable

code problem is to automatically eliminate the offending program

segments. Certain optimization techniques cas sometimes result in

unreachable code, and hence, optimizing compilers usually provide dead
code elimination to minimise program storage requirements. I

2-10

Another class of unreachable code is "logically" dead code which

cannot be reached because the conditions for its execution can never

occur. For example, in

if n>O or n<1O then

Statement-A

else

Statement-B

endif

the condition (n>O or u<lO) is always true so Statement-A will always be

selected and Statement-I is, therefore, logically unreachable. Techni-

ques for identifying logically dead code are usually classified as

formal techniques which are more powerful than those normally employed

in static analysis.

Unreferenced Statement Labels

An unreferenced statement label is similar to a dead code anomaly,

in that it is usually either caused by an oversight or is the result of

a modification to the program. Unreferenced labels may not cause a

program to run incorrectly, but they should be removed because they can

confuse a reader of the code. Many compilers, as well as static tools,

detect unreferenced statement labels.

Statement labels are a major source of errors in languages like

FORTRAN IV that have no structured control constructs. in addition to
- ,nreferencad labels, FORTRAN programmers have problems wi~th putting a

label on the wrong statement, using the wrong label n a GOTO, or

forgetting a label altogether. A compiler will catch the latter

problem, since the label supplies Information needed to generate the

object code. The other errors cannot always be caught by static

techniques. However, if a misused label causes another type of error to

occur, then some of the other static error and anomaly chocks discussed

In this section may detect this condition. These Include:

2-11

0 Infinite loops

0 Uninitialized variables

* Data flow anomalies

* Unreachable code

2.1.3 Assertion Checking

At least two kinds of program assertions can be checked by static

analysis techniques.- They are parameter and variable usage assertions

and units assertions. other assertions about the state of computations

and the correctness of results are discussed in sections on dynamic and

formal testing (Sees. 2.2, and 2.3).

Input/output Assertions

Parameter and variable usage assertions are statements about how

may be used for

* Input only

e Output only

* Modification (input and output)

Variables may be

0 Local

e Global

Local variables must be declared in the local scope of the module and

follow correct set/use rules.* Global variables can be further classi-

fied by their input/output usage.

Input/output assertions provide a specification of the planned

usage of parameters and global variables against which the actual usage

can be checked.* In correct programs this information is redundant since

* it could be derived from the code*. However, during program development

and In maintenance task* these assertions quickly identify specification

2-12 ~

violations. Also, there Is no run-tie overhead associated vi.1 these

assertions because all the analysis is done statically.

Sowe examples of program errat* which can be detected by input/

output assertion checking are:

9 Inadvertent modification of input-only data

a Illegal use of the "old" value of output-only data

e Input-only or output-only use of data which Is supposed to

be modified

Violations in the first two of these categories are usually considered

errors f or reporting purposes.* The third group contains many anomalies

which are not always errors. Such anomalies Indicate either program

errors or Incorrect assertions.

Units Assertions

In many engineering and physics problems it is standard practice

to check consistency of the physical units used in the calculations as a

check on the results. This technique can be used in programs as well by

specifying the units f or variables through assertions. Static checking

for units violations is an extended form of type checking. Addition of

real variables, f or example, with different units such as feet and

meters, becomes a mixed-mode operation which can be reported as an

error. Units checking must also include knowledge of equivalent units
such as VOLTS - ANNWMS x OURS to avoid extraneous warnings.

2.1.4 Test Data Generation

Generation of test data for dynamic testing is a good example of

how static analysis can support other testing techniques.. Several

static analysis tools have been developed to aid in producing test data.

These tools analyze COBOL source program f or file format information

and can create test data files with randomly generated values. The

2-13

4 .. , -L-- - - -

created files serve two purposes: they can be used as sample data for

exercising the program and they can be chocked manually to see if they
conform to program specifications and data entry forms. Both applica-

tions can provide valuable Information.

Random data generation is usually not sufficient, however, for

thorough dynamic testing and program validation. Programs must be

tested on invalid. as well as valid data to verify correct error pro-

cessing. Also, special combinations of input data must be used to

exercise a program thoroughly. Random test data is usually not effec-

tive in these cases but other techniques such as symbolic execution can

provide the needed testing support.

2.1.5 Program Documentation

A very Important product of static analysis, in #d~tion(to error

and warning messages, is program documentation. Docujatn reports

do not explicitly indicate program errors but it is oJn pssible to

detect additional errors manually by studying the re to. For
program maintenance and modification, static analysis docu ntation is

of tremendous value. Below is a list of some of the klds of docu-
mentation which can be produced from information colected by static

analysis tools.

0 Global cross-reference report indicating *put/butput usage

for variables in all modules.

s Nodule invocations report indicating the calling modules and

showing all calling statements.

0 Module interconnection report shoving the. program's module

calling structure.

0 Special global data reports for variables in COMMON blocks

and CCO(POOLS.

0 Program statistics ncluding total size. Umber of modules,

b2-14

2-14 .,:

* a i

I

module size distribution, statement type distribution, and

complezity measures.

e Summaries of analyses performed, program statistics, and

errors and varnings reported.

The interested reader will find a variety of example documentation

reports in the uder's manuals for tools such as FAVS, I JAVS,2 and CAVS. 3

2.2 DYNAMIC TESTING TE =NIQUES

Dynamic testing covers all program testing techniques which

involve running compiled code and observing the output produced. These

techniques are divided into the following categories for our discussion:

0 Program testing facilities - intended primarily for de-

tecting the presence of program errors

0 Program debugging facilities - intended primarily for

locating errors once they are detected

• Program performance measurement

In this section we discuss tools and techniques for both detecting

program errors (testing) and locating them for correction (debugging).

Many techniques classified under "testing" are equally helpful in

program debugging. Those listed under "debugging," however, are

designed to isolate error sources and are considered less useful for

verifying that large programs operate correctly.

1D.N. Andrew* and R.A. Melton, FORTRAN Automated Verification System
User's Manual, General Research Corporation CR-l-75A/1 (April 1980).
2 aC. nnon and N.B. Brooks, JOVIAL J73 Automated Verification System

Functional Description, General Research Corporation CR-1-947 (March
1980).

3K. Sharp, R. Melton, and G. Greenburg, COBOL Automated Verification
System Functional Description, General Research Corporation CR-2-970
(November 1980).

2-15

Most of the techniques diacussed here are batch oriented for use

in teating software destined f or production applications. The only
interactive testing facilities found were "teat harness" programs which

allow a user to control teat parameters. A number of interactive

debugging tools have been developed for popular high-level prograiming
languages. However, no testing tools (as opposed to debugging tools)

were found for languages designed primarily for interactive use.

2.2.1 Proaram Testing Facilities

Techniques intended primarily for detecting the presence of

prograis errors ca be further grouped into the following categories:

0 Executable assertions

e Structural testing, supported by instrumentation tools

e Functional testing, supported by test harness techniques

Structural testing includes several methods of evaluating testing

thoroughness by different measures of teat coverage.* Test harness

techniques aea used to exercise individual program modules and sub

system with more rigorous teats than can usually be applied in system-

level teats. Each of these categories is elaborated on below.

Executable Assertions
1I

An assertion is a logical statement about the state of a compu-

tation within a program. Formal verification techniques use assertions

to prove properties of program. For dynamic testing, it is possible to

evaluate assertion statements during execution and check to see that the

specified conditions bold. Assertion violations are typically reported

an the standard output media where they are difficult to ignore. The

basis of testing with assertions is trying to force the program into

violating the conditions expressed in the assertion statements.

I J- P. Damon and S.H. Saib, "A Software Quality Assurance Experiment,"
* - Software q~uality and Assurance Workshop, pp. 87-91, San Diego, Nov.

2-16

Most coon prograsing languages do not include assertions as a
statement type. (Ada does, but COBOL, FORTRAN, JOVIAL, PL/I, and Pascal

do not.) However, it is relatively easy to translate an assertion into

an "if" statement to test the asserted condition, using a preprocessor

or other translation technique. Many structured programing prepro-
cessors and several compilers provide assertion statement translations.

Assertion testing requires the insertion of meaningful assertion

statements in the program to be tested. This can be an onerous task if

the program is large and not well structured. If the assertions are

inserted during program development, however, several advantages are
gained: the task is distributed over time; the assertions often

reiterate program specifications and hence can be cross-checked man-
ually; module and subsystem tests can include assertion testing; and a

very stylized form of internal program documentation, formed by the

assertions, is kept up-to-date for testing purposes.

The purpose of structural testing is to ensure that the test

program has been explored thoroughly. Several measures of the thorough-

nses of structural testing can be used:

s Statement coverage

s Decision-to-decision path or branch coverage

s Linear code sequence coverage

s Dynamic data flow analysis

The simplest measure of testing thoroughness is the percentage of

statements executed during a test rum. This test coverage statistic can

be used as a testing criterion by setting a goal such as "95 percent

typically report the number and percentage of statements covered and

identify the statements that were missed. Current tools have not yet

incorporated automatic test case generation to maximize coverage

2-17

metrics. While this may be a possibility for the future, selecting data

to exercise particular statements is a manual task at present.

Unfortunately, the statement coverage technique has some pitfalls

and several kinds of program errors may go undetected even with 100

percent coverage. Two obvious tests which can be easily missed are

testing both the "true" and the "false" branches of an "if" statement

which has no "else" clause, and testing a "while" loop where the it-

eration condition is initially "false" so that the loop body is not ex-

ecuted. The first test could indicate a missing "else" clause, and the

second, an incorrect loop termination condition or improper loop

initialization.

Two techniques have been developed to overcome some of these

problems using program units called "decision-to-decision paths"
S(DD-paths) and "linear code sequence and jump" (LCSAJ'e) - I Both of

these techniques provide improved testing based on covpr-ge metrics.

DD-path instrumentation records the path taken at each branch point

(based on the program's flow graph) and at procedure and function entry

and return points. LCSAJ's are based on a program's source text rather

than on its flow graph. Each contiguous sequence of executed source

statements forms an LCSAJ. Hence, an LCSAJ can be described by its

starting and ending line numbers, and the number of the line where

execution proceeds after the break.

Howden has shown that decision-to-decision path or "branch"

coverage testing is more effective than statement coverage.2 The

experiment conducted by Woodward et al. indicates that LCSAJ coverage is

usually lower than DD-path coverage for a given test. This means

1
IM. Woodward, D. Hedley, and M. Hennell, "Experience with Path Analysis

and Testing of Programs," IEEE Transactions on Software Engineering,
Vol. SE-6, No. 3 (Hay 1980), pp. 278-286.
2William Howden, "Theoretical and Empirical Studies of Program Testing,"
IEEE Transactions on Software Engineering, Vol. SE 4, No. 4 (July
1978), pp. 293-298.

2-18

) I
I .'

that a more rigorous test is usually required to attain a given level of
coverage using the LCSAJ measure. Although this is not always true for

incomplete tests, complete LCSAJ coverage subsumes complete D-path

coverage.

Woodward also developed a generalized coverage measure based on

multiple LCSAJ sequences. The first level in this hierarchy of testing

metrics is the basic coverage measure. The next level requires, in

addition, testing all possible pairs of successive LCSAJ's. In general,

the Nth level in this scheme requires testing all possible sequences of

N or fever consecutive LCSAJ's. The same strategy can be applied to
sequences of DD-paths to improve testing coverage. Pairwise DD-path

coverage effectively tests all possible compositions of operations

performed between decision points, and is, intuitively, a more complete

test than simple branch coverage.

There are tvo areas of difficulty in the current state of DD-path

and LCSAJ testing methodology. One is the distortion in the metrics

caused by infeasible sequences of program code. Coverage statistics are

currently based on all possible structural or textual sequences, a

measure which does not account for logically impossible combinations.
Hence a rating of 100 percent coverage may not be attainable even though

all feasible sequences of code are tested. Identification of infeasible

code sequences would make these measures more accurately reflect the

degree of testing achieved. Infeasible paths, however, are often not

amenable to completely automated detection because of program size.

Semi-automated techniques using symbolic execution, for example, may
prove to be the most effective way to determine if code sequences which

have not been exercised are indeed logically impossible.

The second difficulty is that of generating test data to maximize

coverage measures. Test coverage reports typically indicate the code

segments missed in a test run. However, determining the data values

2-19

required to travers, a particular sequence of statements in a large
program can be a complex task. Branching conditions based on non-linear

transformations of the input data seem to cause the most difficulty.

Symbolic execution and formal verification techniques could aid this

t ask in an integrated testing and verification
facility.

The general strategy for all structural techniques is to add

software "probes" to a program under test to record information about
the program's execution behavior. Instrumentation tools can insertI probes automatically. Running an instrumented program produces a trace
file containing information from each test probe encountered. After a

test rum, the trace file is read by an analysis program to condense the
data and report test results. The differences between the various

instrumentation tools stem from the kinds of information extracted by 1
the test probes and the analyses of the trace file data.

A method for detecting data flow anomalies dynamically is de-
scribed by Huang,. Test probes record all set and use references to

program variables during execution. The trace file is then analyzed for

anomalous data references. This approach can detect anomalous array
references which cannot be detected by static data flow analysis.

Functional Testingt and Test Harness Techniques

Functional testing involves the creation of test data based on

program requirements specifications followed by the verification that
the output produced meets the requirements. 2 This technique is often
used by software buyers in preparing acceptance tests for new software.

J . C. Huang, "Detection of Data Flow Anomaly Through Program Instrumen-
tation," IEEE Transactions on Software Engineering, Vol. SE-5, No. 3
(May 1979), pp. 226-235.

2Wlliam Rowden, "Functional Program Testing," IEEE Transactions on
Software Engineering, Vol. SE-6, No. 2, pp. 162-169 (March 1960).

2-20

Clear, well written, and testable program requirements obviously

contribute significantly to the quality of testing that can be accom-
plished by this method. These tests, however, can be created early in

the softvare development cycle and can serve as additional detailed

specifications f or program designers and implementers.

A software test harness is a program which provides an environment

for testing individual software modules as vell as cosplete programs.

Typically, it includes:

0 Acting as a substitute "main program"' for the software underI test

0 Filling in for missing software components

Controlling the execution of a teat2

* Monitoring a test's progress

The facilities provided by a software test harness correspond to the

test and measurement equipment on an electronic technician's workbench.

Sam of the advanced features found In test harness tools include:

* Automatic test control

* Automatic test data generation

0 Interactive test control

* Test history accounting

* Verification of computed results

Unfortunately, no single teat harness currently provides all of these

capabilities.

Frederick J. Drasch, and Richard A. Blown, "IDBUG: A Tool for Program
*Development," Proc. Software Quality Assurance Workshop, San Diego,

November 15-17, 1978, pp. 106-110.

2-21

Most teat harnesses are designed as debugging tools for locating

known errors and provide low-level testing controls. The techniques,

hovever, could also be applied equally well to testing software at a

higher level and verifying its correct operation. For example, de-

bugging harnesses typically do not keep track of path coverage. Their

low-level control, however, is ideal for special values testing. The

combination of these facilities with a well engineered human interface

would make a very effective test tool.

2.2.2 Program Debusgingt Facilities

The emphasis of the testing techniques discussed above is on

detecting the existence of program errors. Locating errors for cor-

rection is a different task with different requirements for automated

support. 3everal of the testing techniques already described also

provide useful debugging information. All of the static analysis

techniques, for example, can provide excellent error-locating diag-

nostics, often indicating the exact source of an error. Using execu-

table assertions is one of the best ways to produce good error diag-

nostics during program execution. Most of the other dynamic techniques

produce no error diagnostics per ee. Path coverage information,

however, can be very helpful in reducing the scope of a search for

program bugs.

Executable assertions provide excellent debugging information when

the asserted conditions are not too complex. Assertion violation

reports typically refer to the source code line number where the

assertion appears and are interspersed with the normal program output.
Hence, the programer is able to determine both the location of the

violated condition and the context of the error. Keeping assertions

*simple maximizes the amount of information reported. That is, the

statements

* ASSERT (N1O)

ASSERT (N<-100)

2-22

provide better diagnostic information than

ASSERT (N>O and N'-100)

which states the same conditions.

If a relatively simple teat case can be constructed to illustrate

a program error, then path coverage reports can help reduce the scope of

the search for the error. These reports indicate which paths have been

exercised by the test data that expose the error. The simplest such
test case, therefore, traverses the fevest number of extraneous (i.e.,

correct) paths and focuses the programer's attention on relevant parts

of the program source code.

Additional tools have been developed to help locate errors once

they have been detected. These include several kinds of trace facili-
ties and dump formatters. A tracing tool produces a continuous log of

the operations being monitored such as statements, procedure calls, or
assignment to individusl variables. Program errors typically appear as

incorrect sequences of operations in trace logs. Identifying missing,

extra, or out-of-order operations will usually lead a programer to the

error.* One dravbae.k of this technique is that sequence anomalies may be
as difficult to find in very long trace logs as the errors themselves.

Some tracing tools allow the user to turn the trace log on and of f

dynamically to reduce the amount of output generated.1

Modern program dump facilities provide useful information for

locating errors which cause abnormal program termination. The Immediate

cause of an aborted program execution, the source cods module name and
line number, and the sequence of procedure invocations at the time of

the fatal operation are reported. In addition, the values of program

Ri. it. Griswold, J. F. Po.4., and I. P. Polousky, TejOL4Program-
* min& LannAmze (2nd ad.), Prentice-Hall, 1971, Chapter 8.j

p 2-23

variables may be reported. The actual error(s) which precipitated the
abnormal termination can usually be determined from this information.
Octal or hexadecimal core dumps are not considered tools for debugging.
However, there are commercially available tools which attempt to

interpret raw core dumps and produce reasonable diagnostic reports.

2.2.3 Program Performance Measurement

A classical method for measuring program performance using dynamic

testing techniques is to record the elapsed CPU time at the entry to and
exit from every procedure invocation. This data is then condensed and
reported shoving the total and average times spent In each program
module. Most computer operating systems provide procedures for obtain-

ing the necessary timing information, although there is no standard (
For program segments with extreme timing requirements, execution

time can be determined statically by summing the execution times of the
individual machine instructions which will be executed. These analyses

typically assume that no delays or interrupts will interfere with the
normal sequence of operations. Of course, instruction-set timing

figures are unique to each make and model of computer, so these are not
very general-purpose tools.

2.3 SYMBOLIC EXECUTION AND FORMAL VERhFICAT4OHI Two of the largest areas of current active research in software
testing techniques are symbolic execution and formal program yeri-
fication. Symbolic execution is a method of interpreting programs by
deriving mathematical expressions for the values of variables rather
than actually computing their numerical values. The expressions
produced show a perspective of the progress of computations which is
very different from other mans of testing such as tracing intermediate

1Datayro Directory of Software, Datapro Research Corporation, August
1980.

2-24

values.* The additional information obtained from symbolic execution has

been shown to improve detection of several kinds of program errors.

Formal verification is a more rigorous approach to software

testing which involves proving properties of computations performed by

programs. This technique provides probably the highest degree of

assurance of program correctness but is also the most difficult to

apply. Two prerequisites for formal verification of a program are

precise specifications of the inputs and required outputs for theI computation, and formal specifications of the semantics of the pro-
graming language used. Program correctness in proven by showing that,

given the specified input conditions and the rules of the programing
language, execution of the program will terminate and produce the

desired output conditions.2

Automated tools which support these techniques are discussed in

the following sections. All of the tools which have been implemented
recognize either specially designed mini-languages or restricted subsets

of full-fledged languages. They are typically vehicles for research in

program testing and verification, and are not commercially available

software products.

Symbolic Execution
2

Symbolic execution has been described by King as an intermediate

technique between dynamic testing and formal program verification.
Instead of executing a program with test input data, the inputs are rep-

resented "symbolically" and the output produced is in the f orm of

1William E. Bowden, "Symbolic Testing and the Dissect Symbolic Kvalua-
tion System," IEEE Transactions on Software Engineering, Vol. SE-3, No.
4 (July 1977), pp. 266-278.
2James C. King, "Symbolic Execution and Program Testing," CACM, Vol. 19,
No. 7 (July 1976), pp. 385-394.

- - -~ - 2-25 .-

mathematical expressions rather than computed results. For example, a

loop to sum the elements of an array

SUM - 0. 0

DO (I - 1,4)

SUM - SUM + A(I)

END DO

when symbolically executed would yield the expression

SUM - A(l) + A(2) + A(3) + A(4)

Such results are readily checked formally or informally for correctness.

The symbolic executioni of an example program with errors, used by
khowden, Iproduced

SIN(X) - X+ X3 /6.0 + X5/120-0

for the approximate value of the sine function. The errors are easily

spotted by comparing this result with the expected solution,

SIN(X) - X - X 3/6.0 + X 5 /120.0 - X /5040.0

The results of dynamic testing of this program would probably have

indicated some lack of accuracy in the result.* The symbolic execution,

however, for this example, provides considerably more information about

the nature of the errors.

The two major components of a symbolic execution tool are a

program interpreter and an expression simplifier. The interpreter is

responsible for recognizing program statements and translating their

execution into algebraic expressions. This task is very similar to

1 Bowden, op. cit.

2-26

compiling or interpreting a program and computing actual results rather
than symbolic results.

Expression simplification is the key to making symbolic execution

palatable to human users. The expressions produced by the interpreter

can become quite complicated in just a few steps of computation. For

example, the "raw" form of the expression for the correct sine function

above is

sIN(X) - ((X + X * (-x*x/(3.0 * 2.0)))

+ X * (-X*X/(3.0 * 2.0)) * (-X*X/(5.0 * 4.0)))

+ X * (-X*X/(3.0 * 2.0)) * (-X*X/(5.0 * 4.0))

* (-x*x/(7.0 * 6.0))

which is not easy to identify as a correct solution. Considerable

knowledge of algebraic transformations and simplifications must be built

into the interpreter to produce readable output.

Symbolic execution for program testing has been uniformly pre-

sented as an interactive technique. Users select symbolic values to be

displayed and control program interpretation at a very low level. This

approach has been successful for testing small example programs and

segments of larger programs. However, this degree of detail limits the

effectiveness of the technique in testing large scale programs.

Formal Verification

A formal verification of a proRram's correctness is a proof of the

following theorem:

If all of the initial conditions hold at the start
of execution, then, when the program terminates,
the final conditions will be satisfied.

Hence, both the initial and final conditions must be defined in

sufficient detail and precision so that mathematical proof techniques

2-27

--- -

can be applied. I Also, the semantics of the programing language must

be defined with sufficient rigor to allow logical reasoning about each

step of the computation.

Tools which have been developed to support formal program veri-

fication can be grouped into three categories:

* Proof generators

€ Proof verifiers

0 Verification condition generators

These are listed in decreasing order of computational complexity-

A proof generator will take a program along with its initial and

final assertions and derive the theorem by a sequence of logical

operations. Of course, if the program is not correct then the theorem

cannot be proved and this process will fail. Proof generators are

complex programs vhich can interpret the assertions and program state-

ments, apply complex rules of inference and various heuristic proof

strategies, and eventually determine if the input program satisfies the

assertions.

Proof verifiers solve the simpler (by comparison) problem of

checking a manually generated proof. Additional assertions must be

provided manually along with any lemas which the proof verifier will

need to validate each step from assertion to assertion. The proof

verifier need only interpret sequential program statements and be able

Rlobert W. Floyd, "Assigning Meanings to Programs," Proc. Sm p • in

Asslied Mathematics, Vol. 19, American Math. Soc., Provincetown, R.I.
(1967), pp. 19-21.

2C.A.R. Boar* and Niklau Virth, "An Axiomatic Definition of the
Progrming Language PASCAL," Acta Informatica, Vol. 2 (1973), pp.
335-355.

2-28 :*
i -

K

to apply simple rules of inference. An advantage of this approach is

that a program error can be isolated to a small segment of code for
which the initial and final assertions art fully specified.

Verification condition generators typically use symbolic execution

techniques and work "backward" fro the final assertion to derive the

necessary pre-conditions for each statement in the program. If the

initial assertion implies the pre-conditions for the first statement

then the program is correct. Verification condition generators,

however, do not provide the facilities to determine whether this

implication holds. Although some systems do attempt to simplify the

* expressions generated, the greatest difficulty with this approach is the
complexity of the automatically generated assertions.

2-29 f

3 SOFTWARE TESTING METRICS

It Is important to examine testing in the context of the overall

software development process. A comprehensive evaluation of the

software testing techniques described in Chapter 2 should determine

costs in time, manpower, and computer resources of using them.

Unfortunately, the current state of knowledge precludes a detailed

"cost-benefit" approach to evaluating test techniques. This report can

ake no comparisons of the "amount" of quality enhancement provided by

the various test techniques. Instead, we develop various effectiveness

and cost criteria and rate the individual techniques on these.

3.1 THE GOALS AND PROBLEKS OF DEVELOPING METRICS

In any science, measurements are tools which help in making

judgments about the behavior of a system. When software is being

tested, many kinds of judgments must be made. For instance:

* What is thhAau e of the errors in the software -- how many

--silere a, what kinds, where are they?

* What methods can be used to find the errors effectively and

inexpensively?

0 How can one be sure that the software works correctly at any

point in time?

It is very desirable to have measures which provide a quantitative

basis for making such judgments. However, many aspects of software

testing cannot be quantified. This section discusses how testing
measures can be useful to managers of software development projects. It

also considers the problems involved in making such measurements.

3-1

3.1.1 Management Concerns in Testing Software

Advanced software testing techniques are being used by industry

and government, but practices vary widely. A survey of 60 software

development projects in the US aerospace industry concluded that only
12% of the projects surveyed had formal standards on how to plan for

tests, and only 41% produced formal quality assurance plans.

Consideration of the full software life-cycle is critical to
proper management of software development in general and testing in
particular. Testing must be formally incorporated into the software

development plans from the beginning of a project, and procedures for

configuration management that institute control of change and inte-

gration must be in place early. The great danger in haphazard manage-
ment and lack of ,' aning is that "by the end of the validation/veri-

fication phase (at installation time), corporate level management cannot

do a great deal more to influence tle quality of the product. " 2 If

things are going wrong with a project, management must find out and take

corrective action as early as possible.

The overall quality of a software product is composed of many

factors. Testing should improve the quality of a software project in

each of the areas discussed below.

Correctness may be thought of as the lack of errors in a program.

Programs, particularly large ones, usually have errors, so sometimes it

is desirable to try to judge "how correct or incorrect" a program is.

An estimate of the number of errors remaining in the program is one

R. Thayer, A. Pyster, and R. Wood, Results of a Survey on Management
Techniques and Procedures used in Software Development Projects by the
U.S. Aerospace Industry, S4-ALC/*ME TR 79-54, Volume II.J. S. Cooper, "Corporate Level Software Management", IEEE Transactions

on Software Engineerin, Vol. SE-4, No. 4 (July 1978), p. 324.

3-2

_6!

"degree of correctness" metric. Another metric that has been used is an

estimate of the program's reliability. Here reliability has a meaning

similar to the use of the term in the hardware context--how often will

the program fail? These measures are considered in greater detail in
Sec. 3.2

Compliance with specifications. - whether the program does every-

thing that it is supposed to do, in the way that it is supposed to. To

simplify matters, we discuss testing with the assumption that specifica-

tions are given and fixed. We also assume that a functional specifica-

tion is available which can be used to determine if the program is
operating correctly. Traditionally, testing detects errors only if the

errors are reflected in the program's output behavior. However, certain

test tools are useful for assuring compliance with other specifications

-for instance, instrumentation tools can help to increase the speed of

execution of a program.

Cost may not normally be thought of as a measure of software

quality, but the two are intimately connected in the government and

corporate environment. Testing is an important link between quality and

cost since it is a major determining factor of both. In Sec. 3.3 we

examine the effect of testing on total software development costs.

Other desirable characteristics -there are some standard software

quality characteristics which should be present in a finished software
product regardless of vhether they are covered in the product's formal

and ease of use.- Boehm, et al., 1havo constructed a "Software Quality

B1. W. Boehm, J. R. Brown, M. Lipow, "Quantitative Evaluation of
Software Quality-, Proceedings - 2nd International Conference on
Software Engineering, San Fr-ancisco, October 13-15, 1976, pp. 592-605.

3-3

Characteristics Tree" (whose elements are commonly known as "-ility"

measures) which covers many of these items. Such qualities tend to be

very difficult to measure quantitatively. In Sec. 6.5 we look at how

the test techniques can contribute to assuring that these qualities are

present in software.

If we impose the same standards of rigor on software measurements

that are required of measurements in the physical sciences, the follow-

ing must exist for a software metric to be properly defined:

a A principle of operation known to hold for all applicable

software

* A quantity with well-defined units to be measured

* An accurate means of performing the measurement

* A means of directly relating the quantity measured to a

software quality or test effectiveness characteristic

Unfortunately, software metrics typically fail to satisfy at least

one of the above criteria. Perhaps the most difficult of these criteria

is the first, since many important rules about the behavior of softwareIhave not been firmly established. It may well be that the f ield of
software testing, since it deals with man-made objects and systems

rather than those developed by nature, must be content with the status
of "inexact science", which is sometimes accorded to the social scien-

ces. If this is the case, the scientific methods of measurement and

experimentation, while still quite valid activities in the discipline,

should be expected to lead only to heuristic approaches or "rules-of-4

t thumb" for problem solving rather than to exact formulas.

For most software quality concepts, quantitative measures alone do

not provide a complete basis for evaluation. A good example of this IsI
the problem of determining the adequacy of the documentation of a piece

3-4

of sof tware. A metric cannot measure the relative importance of the

documentation reports produced against those not produced, or evaluate

how easy the produced documentation is to understand and use. The

process of evaluating software quality and test effectiveness Must

proceed under the awareness that qualitative evaluations should accom-

None of the above criticisms of software metrics should be

interpreted as denying the fact that good metrics can provide valuable
management and technical information. Five areas in which metrics can

make contributions to testing and software development are listed below.

0 Metrics can guide the testing process by identifying what

needs to be tested and indicating what test techniques might

be most useful.

0 Metrics provide a means of recording project status.

a Metrics can provide parameters for cost estimation.

0 Metrics can provide aids to software maintenance, both as a

form of documentation of the development of the system and
as predictors of the location and severity of possible

problem areas.

0 Metrics may be used in formulating requirements for systems

that are expected to fulfill some measurable criteria.

Examples of such requirements include minimum standards of

test coverage or operational reliability.

3.1.3 Practical Problems with Software Quality and Testing Metrics

Although software metrics have received a great dea1 of study,

there is still a need for experience and data on their use in "live"

development projects. Data has been gleaned from experiments with

small, well-understood programs and pout-facto analyses of completed

projects, but there are some obstacles to the collection of data from

t 3-5

ongoing projects. These include:

* Data collection requires extra record keeping during the

testing stage, which is already burdened with data and

details.

a Persons responsible for the quality of a project (from

prograers on up) may f eel that the data will be used to

form unfair evaluations of their work.

* It is very difficult during "live" conditions to control

the elements of human ability and judgment that affect both

data collection and the outcome of the project itself.

Test techniques that require user intervention and judgment are

very difficult to rate in terms of effectiveness because human factors
need to be taken into consideration. This report does not address the

problem of measuring the skill with which a (human) tester applies test

required to apply the techniques.

3. EASURES OF TEST TECHNIQUE EFFECTIVENESS

The metrics that we consider in this section can help to make the

following judgments about the effectiveness of a test technique:

* What kinds of errors will the technique detect?

0 How many of the errors in a program can be detected by using

the technique?

a How completely has the technique been applied at any point

in the testing process? Is it possible to apply the

technique exhaustively, or is the number of tests that can

be made essentially infinite?

* When can testing stop?

3-6

3.2.1 Types of Errors Detected

Enumerating error types requires the use of an error classifi-

cation system. We chose to use the one developed at TEW 1, partly

because it had been used in previous GRC studies2 , 3 of test techniques.

The error categories in this scheme are listed in Table 3.1. We had

hoped to use the TRW error classification to develop a chart which

listed the error types detected by each of the test techniques.

However, we later decided that this approach would not be valid. The

main problem with this classification scheme is that it emphasizes

instances of errors, while testing is often concerned with only the

symptoms of errors.

Errors in computer programs are caused by faulty human actions.

But it is often convenient to classify errors at the level of the

computer instead of putting them in human terms. To do this, we need to
make a distinction between an error in a program's source code and the

effect that it has on program operation. The source code problem can be

termed the "instance" of the error, while the run-time problem is the

"symptom".

1T. A. Thayer et. al., Software Reliability Study, Rome Air Development
Center RADC-TR-76-238, August 1976, pp. 3-18 to 3-20. This is the
"Project 5" error classification. This document is hereafter referred
to as "the TRW report". The report has recently been published by
North-Holland, New York.

2C. Gannon, R. N. Heeson, and N. B. Brooks, An Experimental Evaluation
of Software Testing, General Research Corporation CR-1-854, Kay 1979.
3J. P. Benson and D. M. Andrews, Adaptive Search Techniques Applied to
Software Testing, General Research Corporation CR-1-925, February 1980.

I-7

143 _.-- 7 - =. . = -

TABLE 3.1
THE TRW "PROJECT 5" ERROR CLASSIFICATION SYSTEM

(Source: Thayer, et al., pp. 3-18 to 3-20)

A 000 COMPUTATION EoRS

A 100 Incorrect operand in equation
A200 Incorrect use of parenthesis
A7300 Sign convention error
A400 Units or data conversion error
A7500 Computation produces an over/under flow
A"600 Incorrect/inaccurate equation used
A700 Precision loss due to mixed mode
A780 Missing computation
A"900 Rounding or truncation error

3000 LOGIC M03

5 100 Incorrect operand in logical expression
3-200 Logic activities out of sequence
3 300 Wrong variable being checked
3400 Missing logic or condition tests

500 Too many/few statements in loop
B3600 Loop iterated incorrect number of times

(including endless loop)
3 700 Duplicate logic

C00 AT INT f aERORS

C 100 Invalid input read from correct data file
C"200 Input reed from incorrect data fileC--300 Incorrect input format
d"4oo incorrect format statement referenced

C500 End of file encountered prematurely
C600 End of file missing

D000 DATA HMLING ER1OS

D 050 Data file not rewound before reading
D-100 Data initialization not done
D-200 Data initialization done Improperly
D300 Variable used as a flag or index not set properly
D-400 Variable referred to by the wrong name
D"500 Bit manipulation done incorrectly
D-600 Incorrect variable type
D"700 Data packing/unpacking error
0-800 Sort error
D-900 Subscripting error

1 000 DATk OUTPUT ERRORS

1 100 Data written on wrong file
E"20o Data written according to the wrong format statement
1300 Data written in wrong format
-400 Data written with wrong carraige control

E7500 Incomplete or missing output
1-600 Output field size too small
i-700 Line count or page eject problem
1800 Output garbled or misleading

3-8

TABLE 3.1 (Concl.)

F_000 INTERFACE ERRORS

F 100 Wrong subroutine called
F7200 Call to subroutine not made or made in wrong place
F7300 Subroutine argunts not consistent in type, units,

order, etc.
F 400 Subroutine called is nonexistent
F--500 Software/data base interface error
7P600 Software user interface error
F-700 Software/software interface error

G 000 DATA DEFINITION ERRORS

G 100 Data not properly defined/dimensioned
G-200 Data referenced out of bounds
C300 Data being referenced at incorrect location
G7400 Data pointers not Incremented properly

H000 DATA BASE ERRORS

H 100 Data not initialized in data base
1200 Data initialized to incorrect value
1 300 Data units are incorrect

I000 OPERATIOQ ERRORS

1 100 Operating system error (vendor supplied)
17200 Hardware error

1-300 Operator error
17400 Test execution error
1500 User .isunderstanding/error
17600 Configuration control error

J000 OTHER

J 100 Time limit exceeded
j"200 Core storage limit exceeded
J-300 Output line limit exceeded
J-400 Compilation error
J 500 Code or design inefficiency/not necessary
J-600 User/programner requested enhancement
J-700 Design nonresponsive to requirements
J-800 Code delivery or rdelivery
j900 Software not compatible with project standards

K 000 DOCUMENTATION RERORS

K 100 User manual
-200 Interface specification

C300 Design specification
1400 Requirements specification
C500 Test documentation

XO000 PROBLE REPORT REJECTION

=0001 No problem
10002 Void/withdraw
10003 Out of scope - not part of approved design
10004 Duplicates another problem report
X0005 Deferred

3-9
iI

6I

The following example illustrates the distinction between the

cause, instance, and symptom of an error.

REAL FUNCTION hREA(R)

DAT& P /3.14159/

AREA - PI * R**2

RETURN

END

Here the DATA statement has been typed incorrectly - "P" should be

"PI". This is the error at the human level, or the "cause" of the

problem. However, at the source code level, the program contains an

uninitialized variable, "PI", and one that is set and not used, "P".

This is the instance of the error. To a user of the routine, the

problem is that the area is computed incorrectly; this is the symptom of

the error.

For most of the TRW categories, it is very difficult to decide

whether to give a technique credit for being able to detect that type of

error. For example, a few error categories correspond exactly to

certain static error and anomaly checks (e.g. "D100 Data initiali-

zation not done" with the static "uninitialized variable" error); but

other categories (e.g. "D_400 Variable referred to by the wrong name")

describe errors that static analysis may or may not catch. Similarly,

only a few of the error categories describe aspects of program behavior

that are diagnosed during dynamic testing.

The misspelling error presented above might be classified in any

of the following ways under the TRW scheme:
I

0 A_100 Incorrect operand in equation

- A 800 Hissing computation ("PI-P" would correct the

problem)

3-10

8 • ...

0 D_100 Data initialization not done
Is D 200 Data initialization done improperly

* D_400 Variable referred to by wrong name

There are no detailed, written descriptions of the TRW error

categories, so which of these five should actually be chosen depends

entirely upon the interpretation and preferences of the individual doing

the classifying.

Now consider how this same error looks to each of the test

techniques which we are evaluating:

0 Static Analysis will report two data flow violations:

P "P is set but not used", and "PI is used but not set".

* Dynamic testing must catch the fact that the value returned

by the function is wrong.

* Formal testing will find the error when it cannot be

established that "P1" has a value close to what is desired.

The only close correspondence between a TRW error category for

this err'nr and a test technique detection method is the category "D 100"

and the "PI used but not set" message from static analysis. None of the

error categories suggest the ways that the dynamic or formal techniques

would detect the error.

In Sec. 4.1 we present a chart which shows the major TRW error

categories that are addressed by each test technique. The chart Is

based on experience with the test techniques in error seeding experi-
ments and real projects. The relationship between the techniques and

the error categories is empirical, not analytical. As we note in Sec.

4.2, only in a very few cases is there a high degree of certainty that a

test technique will detect a particular TRW error type.

3-11

3.2.2 The Percentage of Program Errors Detected

A natural question to ask about a test technique is how many of

the errors in a program can be detectel by using the technique. This

can be expressed with a metric as the ratio:

Number of errors detected
Total number of errors in a program

Studies which have produced error detection ratio data for the

test techniques have been of four types:

* Case studies of on-going develonment projects

* Analysis of historical data from real projects

* Experiments using "artificial" programs and/or errors

0 Theoretical analyses in which test techniques were not

actually applied

Of these methods, the most scientific are the case studies;

unfortunately, only a few have been performed. Historical data is less

acceptable because often it does not link the detection of an error

explicitly to the use of a test technique. Experiments cannot duplicate

the process of developing a major piece of software. Not enough is

known to "analytically" determine error detection ratios for the test

techniques without actually applying them.

Studies which have provided values for the error detection ratio

metric are cited in the profiles of each test technique in Chapter 5.

The results were obtained under widely varying conditions, and represent

initial attempts at determining representative data for the metric. The

data currently available is not sufficient to make conclusive quanti-
tative comparisons between different test techniques on the basis of

this metric.

3-12 '

3.2.3 Completeness-of-Testing Metrics

The general form of a completeness metric is the ratio:

Number of tests performed
Total number of tests possible

The completeness metric for each of the test techniques is given

in Table 3.2. The metric takes a specific form for each test technique.

For some of the techniques, 100% completeness is achievable, while for

others it is a practical impossibility. Lover and upper bounds on the

completeness ratio-representing minimum acceptable and maximum feasible
levels of testing for each technique-would be very useful to have.

Unfortunately, such bounds have not been determined for those techniques

for which 100% completeness cannot be achieved.

The completeness metric for static analysis assumes that the tool

or technique used makes a fixed number of qrror and anomaly checks

whenever it is used. When comparing the effectiveness of static testing

when different tools are used, one must consider the different types of

checking that are done. In general, errors found by static analysis
are violations of the semantics of the programming language. Therefore,
a metric for rating static analysis tools is:

Number of semantic error types checked
Total number of semantic errors

The problem with the completeness metric given for executable

asertion testing is that it is hard to estimate the number of asser-

tions that are required. In Sec. A.5.3 of Appendix A (Guidelines for

Testing Software) we present a list of locations where assertions should

appear in a program. The completeness metric for assertion testing

should be calibrated to the number of these locations that exist in a
program.

3-13

IOw

a 0.

-4Aj A

6A 4

2a 'a m

a 0
S41

4 m MIA0

'aa

aa 1

144AjI

Several different structural units can be used in the completeness

metric f or structural testing. These include statements, branches,

combinations of branches, and paths. Complete branch coverage, which

subsumes statement coverage, is possible for almost all programs. It is

usually impossible to test all paths in a program, or even all possible

combinations of N or fewer branches if N is 3 or more.

Functional testing is the most "open-ended" of the test techniques

considered-the number of possible tests is always very large, and so

the completeness metric is not very helpful. For example, testing all

input combinations for a program with six input variables, each of which

may take on three values, requires 729 test cases. The completeness

metric gives no information about the relative importance of the tests*

that are run and not run.

The limitations in applying formal techniques are determined by

the ability of the test tool or the user to simplify complicated

symbolic expressions and to provide information necessary to proceed

with the formal reduction of the program. An incomplete symbolic
execution is one in which there is some output variable for which a
symbolic expression in terms of input variables and constants has not

been derived.- An incomplete formal verification exercise is one in

which the truth or falsehood of an assertion about program behavior has

not been established.

3.2.4 How Long Should Testing Continue?

For the techniques of functional testing, executable assertions,

and path testing, 100% complete (exhaustive) testing may be a practical

impossibility. Under these circumstances, some other criterion for

ending the testing process must be used. We present three possibleI

. A "marginal benefit" metric, which indicates when the value

of additional tests becomes negligible.I

3-15

e Techniques for estimating errors--the number of errors

actually found can be compared to this number to indicate

whether testing has been thorough enough.

* Reliability models, which attempt to predict the distri-

bution of failures during the operation of the program.

The "marginal benefit" of running an additional test case is the

number of errors found by running that rest. Paige and Balkovich

tests run and the number of errors found. The basis for their hypothe-

sis is that initial teats sift out a large set of errors that are more

easily detected, and that a second peak in the curve occurs when test

cases are run that were not anticipated by the programmers. However,

their analysis is not linked specifically to the test techniques dis-

cussed in this report.

One way of estimating the number of errors in a program is by

using the technique of error seeding. To estimate the number of errors

in a program, one can artificially introduce new errors (by changing

correct program statements) and then apply an error detection process.

114. R. Paige and E. E. Balkovich, A Test Plan for a Structured Program,
General Research Corporation 314-165811, May 1972,-p. 25.

3-16

00

ILL

i Co

0

TESTING EFFORT (NUMBER OF TESTS)

Figure 3.1. Marginal Test Benefit as Hypothesized by Paige and Balkovich

A maximum-likelihood estimate of the number of errors in the program is

then:

En x (r - k)]

where r is the number of statements in the program,

n is the number of errors introduced,

k is the number of errors detected (real and seeded),

[] indicates the greatest integer function.

'G. J. Schick and R. W. Wolverton, "An Analysis of Competing Software
Reliability Models," IEEE Transactions on Software Engineering, Vol.
SE-4, No. 2 (March 1978), pp. 112-114. -

3-17 1

Another way to estimate the number of errors in a program is to

use a complexity metric. No firm analytical basis exists for the use of

a particular complexity measure, since no single aspect of program

structure can explain the behavior of the entire program. Nevertheless,

a considerable body of data supports the use of complexity measures as

error estimators.

Halstead1 developed a set of metrics which are based on counts of

the number and incidence of operators and operands in a program. He

proposes an "effort" metrid E, which is to be proportional to the number

of errors in a program. Effort is estimated from the operator and

operand count by the formula:

(N I+ N 2) x log (n I + n 2)

E= (2/n 1) x (n 2IN 2)

where N, a total number of occurrences of operators

N 2 total number of occurrences of operands

n number of distinct operators

a number of distinct operands

1 M. H. Halstead, Elements of Software Science, Elsevier North-Holland,
1977.

3-18

Llod ad Lpowdescribe a model which estimates the mean time to

next failure of a program. The model assumes a Poisson distribution for
the number of errors detected during a time interval of the testing

process, with the mean of the distribution being proportional to the
number of errors in the program at the beginning of that interval. The

mean time to failure for the program is computed as:

1
eW x W (N -n)

where e mean time to failure

W - the proportionality constant for the number of errors

detected (calibrated for the program)

N-estimated number of errors in the program2

n - number of errors detected in the test interval

3.3 MEASURING TESTING COSTS

We look at two areas in our analysis of the costs of software

testing: the direct co-ts of applying the individual techniques, and

the cost savings achievable by using the techniques. The direct costs

of automated testing include the human skills and time, computer

resources, and tool procurement or development costs. Potential cost

'D. K. Lloyd and M. Lipow, Reliability: Management, Methods, and
Mathematics, Second Ed., 1977, pp. 514-521. Published by the author.,
who are with TRW Systems and Energy Division, Redondo Beach, Cali-
fornia.

3-19j

savings are analyzed in terms of the early detection of errors and

increased testing efficiency that automated techniques can provide.

We cannot give estimates of how much, in dollars, it costs to use

the techniques. This is because dollar costs depend upon the tool being

used and the particulars of the test environment. However, ye do

provide "cost workgheets" as part of the characteristic profiles of each

technique in Chapter 5. These worksheets give the prospective test

technique user a way to form an estimate of testing costs, based on his

knowledge of the size of his testing problem and the per-unit costs of

human and computer resources.

3.3.1 User Skills and Time

The skills required to use a test technique indicate the profes-

sional level that the tester must have. For example, most static

testing tasks can be performed by someone with a rudimentary programing

background and no knowledge of the application area of the program being

tested. On the other hand, formal verification requires a high degree

of familiarity with proof techniques and a detailed knowledge of the

program being tested and its application area.

We have accumulated a few pieces of data on the amount of analysis

time used during applications of the test techniques. There is not

enough data to develop with confidence any "average analysis time"

values. We have included the available data in the characteristic

profi-es in Chapter 5 to reflect some people's experiences with the test

techniques.

3.3.2 Computer Resources

The computer resource requirements of automated test techniques

take two different forms. In the cases of static analysis sad formal

testing, the source code of the program being tested is operated upon by

the test software. Thus, the overhead of these techniques is the cost

of running the test tool.

3-20

On the other hand, dynamic testing requires repeated executions of

aversion of the program being tested that may have been instrumented or

had assertions placed in it. The number of runs made in dynamic testing

depends on how thorough the user wants the testing to be and on how many

errors are in the program.

Some standard is needed to ake comparisons of computer costs

across different computer system and target languages. It sees

natural to compare the cost of static analysis to that required to

comnpile the same program. Similarly, the cost of making a dynamic test
run can be compared to running an unaltered version of the so program.

The compilation and execution time benchmarks yield good approximations,

but not exact formulas, for the computer resources used in testing.

Size statistics on automated test tools inclAde the amount of
memory required to execute the tool, the naer aad sise of temporary

and permanent data bases, and the tool's I-put and output character-

istics. Although this information is hidrly tool-dependent, there are

similarities in the operation of the tools Leplamenting each technique.

We present the size statistics of a few representative tools as part of

each characteristic profile.

3.3.3 Tool Procurement Costs

The cost of acquiring a test tool may be a small part of total

testing outlays if a user expects the tool to be employed in a large

number of test efforts. However, tool procurement my require a large

initial expense under certain conditions. Test tools have not been

built for all possible combinations of test techniques, computer

systems, and target languages. if no tool exists f or a computer and

language similar to what a user desires, he mist assume that his tool
procurement costs will be nontrivial.

3-21

3.3.4 Cost Savings Provided by Automated Techniques

Lipow presents a simple cost tradeoff model of the decision as to

whether to use a test tool. According to the model, the use of the tool

is worthwhile if:

C A < P x N x (C0 - CT)

where CA - cost of acquiring and applying the tool

P - additional proportion of errors discovered by the tool

N - number of errors detected by testing without the tool

C - average cost of detecting an error during the opera-0
tions phase

CT = cost of detecting an error during testing

M. Lipow, "Prediction of Software Failures", Journal of Systems and

Software, Vol. 1, No. 1 (1979), pp. 74-75.

3-22 .,

. ...-

4 COMPARISONS OF THE SOFTWARE TESTING TECHNIQUES

Good software testing techniques should be effective, reliable,
inexpensive, and easy to use. This report explores how good current

techniques really are. In this chapter we make some general comparisonsI, of the four test techniques used for error detection, along with formal
verification. The comparisons are based on the metrics discussed in the

last chapter and on some other criteria presented here. In Chapter 5 we

look at each technique in depth.

We have ranked the five test techniques from best to worst for

many of the criteria. We do not designate a most effective test

*technique; ef fectiveness is a complicated and controversial subject.

Static analysis is rated the most reliable, least expensive, and easiest

to use of the techniques.

We must point out that static analysis is the most fully-developed

of the test techniques. A fairly large number of static analysis

packages have been in use since the aid-197Os. Meanwhile, methodologies

for structural, functional, and executable-assertion testing are still
being developed, and fully automated implementations of these methods
have not yet appeared. Formal techniques have survived a period in

which their legitimacy was under attack, and practitioners are just

beginning to develop formal tools for use outside the laboratory.

4.1 EFFECTIVENESS

We use two indicators of the effectiveness of a test technique:

* The range of error types that it can detect

* The percentage of all errors in a program that it actually

does detect

J 4-1 1

In Table 4. 1 we display our rank-ordering of the static and

dynamic test techniques, based on the range of error types that they can

detect. Formal verification is omitted because we are not sure how a

proof system would cope with all of the types of errors in the TRW
scheme. Our treatment of effectiveness in evaluating formal verifit-

cation is different from that used for the other techniques. The major

TRW error categories addressed by each test technique are listed in

Table 4.2.

TABLE 4.1

RANKING OF THE TECHNIQUES BASED ON RANGE OF ERROR TYPES DETECTED

(1 - best)

1. Functional testing

2. Executable assertions

3. Structural testing

4. Static analysis

We have used a great deal of judgment in evaluating the range of

errors detected, especially for the dynamic test techniques. Maost

program errors can be detected by dynamic testing if a test case that

reveals the errors happens to be selected. We tried to determine

whether each type of error in the TRW scheme fits the "purpose" of the
test technique being evaluated. This is especially hard for functional

testing, since functional testing can be roughly described as findinp

ainput data that is likely to cause the program trouble. We rate

functional testing very highly on the range of errors that it can

detect--but we also feel that some experiments need to be done to verify

this.

4-2

TABLE 4.2

MAJOR TRW ERROR CATEGORIES ADDRESSED BY TEST TECHNIQUES

TRW Major Static Executable Structural Functional
Error Categories Analysis Assertions Testing Testing

Coputation Errors x X X

Logic Errors x x x

Data Input Errors x x

Data Handling Errors X x X x

Data Output Errors x X

Interface Errors X X

Data Definition Errors z • X

Data Ease Errors x x x

Operation Errors

Documentation Errors x X

4-

*o .

In Sec. 3.2.2 we discussed the use of an error detection ratio

metric. This metric, our second indicator of test technique ef fec-

tiveness, is the ratio:

Number of errors detected
Total number of errors in a progra-m

At present, no one knows enough to predict that a test technique

will detect a particular minimum, maximum, or average percentage of the

errors in a program. While ye believe that, generally, static analysis

will detect fever errors than dynamic testing, there may veil be cases

where this is not so. We do not rank-order the techniques on the basis

of percentage of errors detected, because current knovledge is insuff-

icient to support such a conclusion.

4.2 RELIABILITY

We gauge the reliability of a technique by the variation in its

effectiveness over different testing applications. There are three main

causes of such variation: the human factors involved in testing, the

kinds of errors that the techniques detect, and the characteristics of

the programs being tested. We discuss these causes in Chapter 5 but ye

also want to highlight them here.

Of the five techniques, static analysis is least susceptible to

human error, is most consistent in applying error checks, and varies

least in the way it works for different kinds of programs. We have

declared it to be the most reliable technique on this basis. However,

the reliability of all the techniques, including static analysis, it

less than ideal due to the following factors:

All of the techniques are susceptible to human error and

abuse.

* There are very few error types (from the TRW classification

4-4

scheme) that can be eliminated with certainty by any type of

testing or program proving.

0 Data on the use of the test techniques shows a large

variation in the percentage of errors that are detected in

dif ferent programs.

4.2.1 Human Factors Involved in Testing

Three things are required of a person who is using any of the test

techniques:

0 He must have some knowledge and control of the program

development process in order to plan and conduct tests.

* He must carry out the mechanics of using the tools.

. He must use skill and judgment to help in the error detec-

tion process.

Any of those areas may be sources of problems which reduce the

effectiveness of the techniques. These problems can be reduced by

making test techniques flexible, easy to use, and highly automated, and
by developing standard methodologies to support them.

In Table 4.3 we rank the techniques according to their sensitivity

to human factors. Static analysis is much less sensitive to human

errors and limitations than the other techniques. Static testing is the

most automated technique and has the most developed methodology. Most
of the elements of skill and judgment have been removed from static

testing because the 'error checking is easily understood and automati-

* cally applied.

4-5j.

TAB LE 4. 3

SENSITIVITY OF THE TECHNIQUES TO HUMAN FACTORS

(1 =Least sensitive)

1. Static analysis

2. Structural testing

3. Functional testing

4. Executable assertions

5. Formal verification

Testers have varying degrees of influence over project manapement,

and this can affect the reliability of the tests. For example, a

programmer who needs to check out his own code may not have access to

other modules.- This makes static global data flow analysis impossible;

it can also make functional testing difficult or meaningless. Tn

general, the following things need to be under control of the tester for

effective use of the test techniques:

0 Static analysis needs information about the behavior of

global variables.- This may come from design doctuments,

module stub libraries, or code.

* Dynamic testing requires that the tester be able to deter-

mine whether the code is operating properly. The test

environmsent needs to be as similar to the operating environ-

ment as possible -- realistic input data should he used, all

interfaces should be simulated, and other special conditions

(for example, timing considerations) need to be provided.

0 Formal verification involves proving the consistency of the

code and its specifications. Changes will need to be made

4-6

in both code and specifications to allow a proof to be

completed. Formal verification needs to be planned in-

tensively from the beginning of a project.

In Sec. 4.4 we discuss the degree of automation and the user skill

requirements of the test techniques. The more automated a technique is,

the less opportunity there is for human mistakes to corrupt the results

of a test. Automation also increases the thoroughness of testing and

ensures that proper methods are adhered to.

4.2.2 Kinds of Errors Detected

In the characteristic profiles we discuss the error types for

which the techniques are most and least effective. We also examine the

reliability of each technique for those error types that it detects most

effectively.

If a technique is completely reliable for an error type, then

testing with the technique can guarantee that no errors of that type are

present in a program. However, very few error detection methods can

find errors with IOOZ certainty. This is true even of static analysis,

which is usually thought of as highly reliable. For example, static

data flow analysis produces very weak results for subscripted variables

(see Sec. 5.1.3).

If given enough information, static testing can detect all

occurrences of the following error types:

• Module interface errors

* Coding standards violationsI

* Mixed-mode arithmetic

0 Unreferenced statement labels

We know of no other error types that can be detected with complete

certainty by any type of testing. It would be nice to associate a

4-7

probability measure with error detection. Such a metric would comple-

ment the error detection ratio as a gauge of technique effectiveness.

However, not enough is currently known about error detection to do this.

4.2.3 Program Characteristics

In the characteristic profiles we look at how the test techniques

are affected by some characteristics of the program being tested. These

characteristics include:

* The life cycle phase in which testing is being conducted

* Program size and complexity

* The type of program and its intended application (numerical

or nonnumerical, real-time or noncritical, etc.)2

* The language and design methods used

In Table 4.4 we indicate the life cycle phases in which the use of

each test technique is appropriate. The fact that one technique must be

used later in the life cycle than another does not imply that it is

inferior. Testing is needed throughout the development period, and

different techniques should be called on at different times. But since

it is cheaper to correct errors earlier in the life cycle, testing

should begin as early as possible.

The other program characteristics cannot be treated as neatly as

life cycle phase. The assertion testing experiment (Appendix D)

investigates the relationship between program complexity and testing. In

the technique profiles we comment on the usefulness of the techniques

for certain application areas. We also mention a few ways .that advanced

programing languages and design techniques have facilitated testing.

4-8

r H

TABLE 4.4

APPLICATION OF TEST TECHNIQUES IN THE LIFE CYCLE

Coding Test Operations
and and and

Checkout Integration Installation Support

Static Analysis X X X X

Executable Assertions X X X

Structural Testing X X

Functional Testing X X X

Formal Verification X X

Researchers have only recently begun to look at the problems of

testing real-time and distributed systems. Such programs have special

error conditions besides those that are found in non-time-critical.

programs running in a si.gle-processor environment. The five test

techniques described in this report do not address the problems of

synchronizing concurrent processes, allocating shared resources, and

many other important issues. However, some progress has been made in

applying the test techniques to other than conventional programs:

I

0 Taylor and Osterweil describe how the techniques of static

data flow analysis can be extended to detect certain error

and anomaly types in concurrent programs.

0 Executable assertions can provide fault-tolerance for

programs susceptible to hardware and communication (as well

as processing) errors. Assertions can also provide security

during sharing of resources.

* Instrumentation tools, which give coverage data to support

structural :esting, can be used to measure the speed and

frequency of execution of program segments. This in-

formation can be used to improve the efficiency of tme-

critical code.

* Formal verification has been used to establish the security

of the comiunicatloas in a computer network (see Sec. 5.5).

Proof of other properties of distributed and time-critical

systems is an active research area.

4.3 COST

This report has two goals in evaluating the cost of test tech-

niques. First, we want to develop a fairly complete list of the

resources required to use a technique. Second, we present some data

from actual test experiences to give a general idea of the significance

of the resources.

IR.N. Taylor and L. J. Osterweil, "Anomaly Detection in Concurrent

Software by Static Data Flow Analysis," IEEE Transactions on Software
Engineering, Vol. SE-6, No. 3 (May 1980).

4-10

It is generally agreed that static analysis is the cheapest test

technique to use, with the dynamic techniques being significantly more

expensive, and the formal techniques much more expensive than the

dynamic techniques. In Figure 4.1 we show an order-of-magnitude

comparison of the costs of static, dynamic, and formal testing using

current technology.

One reason for the cost differences is the nature of the tech-

niques: static testing requires only a single execution of a source code

analyzer; while dynamic testing requires repeated executions of the test

program and analysis of each set of test results; and formal techniques

involve difficult intellectual labor with limited mechanical support.

However, static analysis is also the most fully-developed of the test

techniques. We predict that in the next ten years static testing will

remain the cheapest technique, but the cost gap between it and the other

techniqu will close to some extent.

1000

tw

I- ,..I
C,, ,o0

.00

-> 10 !

STATIC DYNAMIC FORMAL
ANALYSIS TESTING VERIFICATION

Figure 4.1. Relative Costs of Static, Dynamic, and Formal Testing

4-11

4-1

I im •m I

4.3.1 User Skills and Time

Although modern software testing tools are highly automated, some

techniques still require special skills and a significant degree of user

involvement for their application. The most completely automated

techniques are those of static analysis. Static error detection,

anomaly *detection, static assertion checking, and code auditing require

little familiarity with the program under test or its application area.

Static analysis can be easily applied, for example, by dn independent

testing team without thoroughly understanding the program or :he problem
it solves.

Structural testing requires strong programming skills to analyze

test results and devise new test data. A deeper understanding of the

application problem area also helps but is not essential. Path testing,

for example, identifies the program paths traversed by a set of test

input data. The tester must be able to determine how to adjust the

input data to exercise and test the remaining paths.

Functional testing, executable assertions, and formal program

verification require a much more complete understanding of the appli-

cation problem area and the program's requirements and specifications.

This Is in addition to the programming skills described above. Func-

tional testing requires analysis of the domains of all input data and

identification of special values and special combinations of function-

ally related values. Identifying loop-invariant relationships for

executable assertion testing is equally difficult. Formal proof systems

are very complex and require extensive training to be used effectively.

4.3.2 Computer Resources

The automated techniques require a greater amount of computer

resources than the manual test techniques that have been traditionally

used. The extra computer costs must be weighed against the benefits of

more thorough testing and the manpower savings that automated techniquesI

4-12I

L

can provide. The computer resource overhead required by a technique can
be tool-dependent and problem-dependear.

Static analysis requires the application of a code analyzer which

may also build a data base for use by other automated tools. One

application of the static analysis tool is necessary per code version

tested. The computer time and storage needed by static tools used to be

a serious impediment to their use on large programs. However, now there

are tools available whose resource requirements are linear functions of

program size.

Executable assertion testing, instrumentation, and test harnesses)

all require that additional code be inserted into a program before it is

executed. The. overhead required by assertions and test harnesses can(
vary a great deal.. The overhead required by instrumentation tools

depends on the level at which instrumentation is performed (statement,

branch, or module) and the size and complexity of the code. The data

cited in Secs. 5.2 suggest that assertions require from 01 to 50%

increase In program execution time and about a 10% to 15% increase in
storage. Instrumentation tools generally require a 2% to 50% increase

in execution time and a 20 to 100% increase in program size.

Functional testing may be conducted without automated assistance,

so the minimum execution time and storage overhead for this technique is

zero. However, functional testing requires a large number of program

executions, so computer time costs and restrictions are important

factors in its use. The number of executions required to perform

functional testing depends on the degree of testing completeness

desired, the nature of the errors in the program, and the difficulty of
detecting and correcting errors,

The amount of computer resources used by the formal techniques is

highly dependent upon the difficulty of obtaining the results desired.

4-13 i

Some tools will continue indefinitely to seek a needed verification con-

dition or expression simplification, while others will stop and await

new information from the user. The tools which support the formal tech-

niques are typically written in LISP and use garbage collection algor-

ithms during execution - thus they can be very slow. The application of

formal techniques to a medium-sized or large program is likely to

require a significant amount of computer, as well as human, time and

resources.J

4.3.3 Procurement Costa

The availability of automated testing tools for specific program-

ming languages and host computer systems is growing. As Table 4.5

shows, most currently available tools are for ANSI FORTRAN. Static

analysis and instrumentation are the most comor. techniques supported by
the tools surveyed. Table 4.5 reflects the predominance of toolsI' developed for CDC and IBM host computers as well as the predominance of
FORTRAN. New testing tools are being developed to fill in obvious gaps
in the current tool availability picture. However, the balance of test

tool availability is expected to remain high for FORTRAN and for the

major computer manufacturers.

4.3.4 Cost Savings Provided by Automated Techniques

Several studies have indicated that the use of automated test

tools can result in substantial cost savings over traditional manual

testing methods.

0 Albertsa reports that "the use of automated instruction and

path checkers ... catch between 67% and 100% of the errors

(in a program) and between two to five months earlier than

they would otherwise have been detected." He estimates the

1D. S. Alberts, "The Economics of Software Quality Assurance," National
Computer Conference, New York, APIPS Press, June 1976, p. 441.

4-14 1

TABLE 4.5

TEST TOOL AVAILABILITY BY TEST TECHNIQUE
AND PROGRLAMMING LANGUAGE

ANSI Structured All
FORTRAN FORTRAN JOVIAL COBOL Others

1. Standards 3 0 1 0 0

2. Static Analysis 12 3 2 1 3

3. Test Data
Generation 2 1 0 0 2

4. Test Harness 4 0 0 3 2

5. Instrumentation 7 2 1 2 2

6. Debugging Aids 1 0 0 3 1

27. Dynamic Analysis 5 2 3 0 0

8. Symbolic Execution 5 1 1 0 4

9. Formal Verification 0 0 0 0 6I10. Mutation Analysis 1 0 0 0 0

I TABLE 4.6

I TEST TOOL AVAILABILITY BY HOST COMPUTER

I MANUFACTURER AND PROGRAMMING LANGUAGE

Host Computer
Manufacturer FORTRAN COBOL JOV IAL All OthersICDC 13 0 3 1

IHoneywell 4 1 1 0
-IBM 14 3 1 4

Univac 7 1 0 0

All Others 8 1 1 4

4-15 I

total cost savings by the use of automated tools in a

$ half-billion dollar software development project as $25

million, due to productivity increases averaging 10%. (This

assumes that 50% of the project costs occur during the

development phase.)

0 Deutsch 1has claimed an overall saving in testing costs from
using structural testing. The money saved is due toa

higher error detection rate early in the development cycle

by using a tool, as shown in Fig. 4.1. He estimates a net

saving of over five times the cost of using the tool.

* The increase in test efficiency and effectiveness of a

specific automated tool is documented by Brown, et al. 2The

instrumentation tool PACE was used to analyze a large flight

trajectory program that had previously been tested without

automated aids. The earlier testing process had produced 33

test cases which exercised only 85% of the subprograms in

the package.- PACE helped to identify a set of six test

cases which exercised 93% of the subprograms. Use of the
smaller set of test cases provided for increased coverage

while significantly reducing the time required to perform

the tests.

MH. S. Deutsch, "SoftwarR Project Verification and Validation", Con-
puter, April 1981, pp. 54-70.

J.* R. Brown, A. J. DeSalvio, D. E. Heine, and J. G. Purdy, "Automated
Software Quality Assurance', inProgram Tes ehd (W. C. Hetzel,
ed.), Prentice-Hall, 1973, pp. 201-

4-16

4.4 EASE OF USE

A sumary of the difficulty of using the test techniques is pre-

sented in Table 4.7. The table rates the techniques in the categories
of user skills required, degree of user involvement, and analysis

required to detect and locate errors. The skills required to use the
test techniques were described in Sec. 4.3.1 above and in Chapter 5.
The way the techniques help to locate errors is discussed in Sec. 6.1.

Static analysis is the easiest technique to use and is rated low

in all three categories. The most time-consuming chore associated with
static testing is sorting out the extraneous warning messages that are

generated for data flow and mixed mode anomalies. Extraneous warnings

are a significant problem in static testing, but the analysis required

for other forms of testing Is still much greater.

The dynamic test techniques are rated more difficult than static
analysis in all three categories. To perform dynamic testing, the user

has to manually prepare sets of input data and, in the case of assertion

testing, add statements to the source code of the test program. To
formulate effective assertions that check computations or to develop

sets of input data that test boundaries of program function domains, a
tester needs a high degree of understanding of a program's requirements

and principles of operation. In the case of structural testing, the
path analysis and coverage information that tools provide can substitute

for such expertise.

Neither functional nor structural testing have any automatic

mechanism for indicating that an error has occurred during a test run.
Assertion violations are called to the tester's attention by a printed

message, but the cause of the violation is not necessarily close to the

location of the violated assertion.

4-17

TABLE 4.7

EASE OF USE RATINGS

DGREE ANALYSIS FOR
USER OF USER ERROR DETECTION

TECHNIQUE SKILLS INVOLVEMENT AND LOCATION

STATIC ANALYSIS L L L

EXECUTABLE ASSERTIONS H M M

STRUCTURAL TESTING M M H

FUNCTIONAL TESTING H M H

FORMAL VERIFICATION VH H H

EXPLANATION OF RATING SYSTEM

User Skills

L - Familiarity with the program trader test or its application area is
not required. Testing could be conducted by a party independent
of the programing team with little documentation or training.

M - Protrantmg skills and familiarity vith the structure of the test
.a are required. Expertise in the program's application area

Aot required.

S - Specialized programing and testing skills are required. Familiarity
with the program's application area is very helpful for effective
tasting.

VIR - Uses specialized mathematical techniques that may be unfamiliar to
a programer.

Dearee of User Involvement

L - The testing process (test initiation and execution) is fully auto-
mted. No manual preparation of inputs or source code or guidance
of test execution is necessary.

M - Som manual preparation is required before a test can be performed.
The test itself is 8one automatically.

a - User must anually operate the test tool during performance of the
test.

Analysis for Error Detection and Location

L - Most of the error types detected are indicated automatically. In
addition, the source or location of a large number of errors is
identified.

N - Errors are detected automatically. User analysis is usually re-
quired to locate the cause of the error.

H - User analysis is required to both detect errors and locate them.

4-18

I

Formal testing requires a great amount of user effort and analy-

sis. operating an algebraic expression simplifier or developing formal

verification conditions are specialized skills not commonly possessed by

those who write and test applications programs. Formal techniques are

not designed to simplify the process of error detection. Their purpose

is to make it possible to determine rigorously that a program satisfies
its specifications.

I4 1

*........- nami-

5 PROFILES OF THE TECHNIQUES

5.1 STATIC ANALYSIS

5.1.1 Summary of the Technique

Static analysis is a collection of analysis and testing methods

that do not require the execution of the subject program. Static

analysis can identify errors, enforce good coding practices, and provide

information that is useful for dynamic testing and program maintenance.

Static analysis is almost completely automated, so it is easy to use.

There are static tools available for most programming languages and

computer systems.

Capabilities

Static analysis includes any method of testing which involves only

the examination of program source code. Static analysis can accomplish

several things:

* It can detect and locate certain types of program errors.

0 It can identify program anomalies-characteristics that in

some cases produce errors.

0 It can identify constructions that do not conform to a

standard syntax.

It can determine whether variables are used in accordance

with the programmer's intentions.

a It can help to generate test data for dynamic tests.

It can provide documentation reports.

In Sec. 2.1.1 we presented five types of programming errors that

can be detected by static techniques. The errors are detected by

5-1

analyzing the control structure and data flow of the source code. These

errors are:

* Structurally infinite loops--loops which provide no possi-

bility of termination because there are no exit points

* Module interface conflicts--mismatch of actual and formal

parameters

0 Recursive procedure calls, either direct or indirect

* Uninitialized variables

* Structural deadlock in concurrent programs

Five types of programming anomalies can be detected by tools which

examine statement syntax, analyze control structure and data flow, and

tabulate program statistics. These activities are necessary for other

static analysis functions (error detection and documentation), so

anomaly detection does not require a major extension of the capabilities

of a tool. Anomaly detection increases the number of errors that static

testing can find; however, the user must determine which identified

anomalies are in fact errors. The five anomaly types are (see Sec.
I 2.1.2):

• "Questionable" coding practices, such as over-use of GOTOs

* Mixed-mode expressions

0 Data-flow anomalies: variables set and not used, extraneous

variables, consecutive assignments to a variable without

intervening use

0 Structurally unreachable code

* Unreferenced statement labels

Static analysis detects instances, rather than symptoms, of most

errors and anomalies. It also gives their location, which makes static

tools very useful for debugging as well as testing programs. We discuss

the debugging capabilities of static analysis in Chapter 6.

5-2

!

Compilers enforce the syntax standards of a language by rejecting

code that has unacceptable constructs. However, compilers usitally

represent "dialects" of a language, which may include features that are

peculiar to one host machine or operating system. Special tools have

been developed to ensure that a program complies with a more rigorous

set of language standards, so that the program can be used in a wider

range of environments. A few examples of such "standards enforcement"

tools are found in the tools survey in the first interim report.

Two types of assertions can be checked by static techniques:

variable usage assertions and units assertions. Variable usage asser-

tions describe how a variable is intended to be used in a module:

strictly as input, strictly as output, or both as input and output. The

static tool can check to see if the actual use of the variable is the

same as what was intended. Units assertions tie units (feet, volts,

dollars, etc.) to variables. A tool can check to see that expressions

that must agree in unit (e.g. both sides of assignment statements) do

agree after algebraic simplifications are made.

Two kinds of test data generation capabilities can be built into a

static tool. One kind is mainly used in COBOL-based tools: the tool
identifies the names and types of input variables, and determines input

file format information from program input statements. Actual values

for the input variables are then selected randomly.

The other static test data generation method is an adaptation of

symbolic execution. Input values which will cause a given program *ath

to be executed can be obtained by examining the predicate conditions

along the path. Automated methods of determining the predicate con-

ditions can produce satisfactory results in some cases, but not always.

We have identified six types of documentation reports that static

tools generate. Such reports are useful for building "off-line"

5-3

documentation (reference manuals, user guides) for programs. They also

provide invaluable aids to maintenance and modification, especially for

large programs. The six report types include:

0 Variable cross-reference reports

* Module invocation reports

0 Module interconnection matrices

* Global data reports

0 Program statistics

* Summaries of all static analysis functions performed

Operation

*Static analysis is a very easy test technique to use. All1 of the

static functions described above, except for assertion checking, can be

performed on a program without any preparation or modification of the

source code whatsoever. The only inputs required by a typical static

tool are the test programns source code and a small set of instructions

controlling the operation of the tool. Testing is fully automated,

except for the analysis required to determine errors froro detected

anomalies.

Static analysis is also very flexible) since it can be used on

amounts of code ranging in size from one module to a very large program.

Parts of programs can be tested and a full analysis of global properties

still performed; this is done by using "stub module libraries", which

supply information about missing modules.

1The use of stub libraries in the SQLAB tool is described in 4.~
et al., Advanced Software Quality Assurance Final Report, .cr.R

search Corporation CR-3-770, May 1 978, pp. 43144

Automated Tool Support

There are a large number of static test tools available. These

tools cover a fairly wide range of languages and computer systems.

Table 5.1 summrizes the static tools that were surveyed in the first
Interim report.

5.1.2 Effectiveness

Static testing can detect a surprisingly wide range of error

types. It is best at catching data handling and Interface errors, worst

at finding computational, logic, and input/output errors. Data on the

percentage of program errors detected by static analysis ranges from 161
to 551.

Types of Errors Detected

The following error types from the TRW error classification system

*have counterparts in the static error and anomaly checks listed above.

0 A_400 Units or data conversion errors

s A_700 Precision loss due to mixed mode

0 D 100 Data initialization not done

0 D 600 Incorrect variable type

F F300 Subroutine arguments not consistent In type, units,

order, etc.

0 F F400 Subroutine called is nonexistent

There are other TRW error categories that may be caught by static

testing In some cases. Many of these categories describe errors that

may be associated with data flow anomalies or structural control flow

problems (infinite loops, dead code). However, these error types cannot

*always be detected statically. For example, the "A 100 Incorrect

operand in equation" error can be caught by data flow analysis if the

operand used is uninitialized, but probably won't be otherwise. These

error categories include:

s-sj

adI

U2)

* A_100 Incorrect operand In equation

0, A_800 Missing computation

0 B 100 Incorrect operand in logical expression
a B_200 Logic activities out of sequence

B 1300 Wrong variable being checked

B 1400 Missing logic or condition tests

S, B_600 Loop iterated incorrect number of times (including

endless loop)

& D_200 Data Initialization done improperly

* D_300 Variable used as a flag or index not set properly)

0 D 400 Variable referred to by the wrong name

0 F_100 Wrong subroutine called

* F_200 Call to subroutine not made or made in wrong place

0 G_100 Data not properly defined or dimensioned

N 1300 Data units are Incorrect

* J_500 Code or design Inefficient or not necessary

We found two studies which discuss the effectiveness of static
test techniques for different error types. The TRW report presents an

analysis of how many errors In the Project 3 study would have been

caught by four types of static test tools. 1 The tools that they

considered are:

0 Code standards auditor

* Units consistency analyzer (processes units assertions)

*Pages 4-168 through 4-171 of the TRW Report. Project 3 used an error
classif ication scheme that was later changed slightly to form the
Project 5 scheme which we discussed In Se. 3.*2.*1.

5-7

. Set/use checker (global data flow analysis)I:I

a Compatibility checker (examines calling sequences for

errors)

TRW determined that these four types of tools could detect

significant percentages of errors1 in the following categories for one

software project:

* Computational (151)

a Logic (91)

• Input/Output (171)

a Data handling (4Z)

0 Routine/Routine interface (78Z)

• Routine/System software interface (72Z)

• Data base Interface (10O1)

0 Global variable/compool definition (62Z)

The ability of the SQLWB tool to detect different types of errors

was also analysed by GRC. The error types considered are from an error

classification scheme developed by Logicon. 3 The GRC report describes

ways that static testing (and other test techniques) might cope with

each error type. The findings are summarized In Table 5.2.

Error Detection Ratio Data

ge found six sources of data on the percentage of errors In a

progra that were detected by static testing.

IThe error categories listed are those for which at least one tool would

catch 91 or more of the total errors In the category. See Table 4-34
on p. 4-169 of the T Report. This study is an example of historical
data gathering so the actual percentages are somewhat speculative.
S. R. Saib, at al., Advanced Software Qualit Assurance Final Report,

General Research Corporation CR-3-770, May 1978, pp.111-122.
3 J. A. Dana and J. D. Ulissard, Verification and Validation for TerminalDefense froram Software Th of toa I

5-8

4

TABLE 5.2

STATIC BERIC DETECTIGN METHODS (SQLAB TOOL)

Error Type Detection Method

I. Data/instruction access and Data flow analysis, sode/type check-
storing ins, and units assertions can catch

wrong variable names. Data flow
analysis and documentation review
can catch missing COMMON statements.

2. Equation computation and Units assertions can catch some
arithmetic incorrect operators.

3. Branch and jump Misplaced statement label may result
in structurally infinite loop or
dead code.

4. Incorrect constant value Type checking identifies inconsis-
and data formats tent data types. Data flow analysis

detects undefined and multiply-
defined data.

S. Specification violation due Documentation review and module
to incorrect implementation interface conflict checking can

detect missing or extra modules and
incorrect use of routines.

6. Incomplete or erroneous Units assertions can catch dimen-
specifications *Lou errors in equations.

7. Logic and sequencing Documentation and data flow ana-
lysis can sometimes catch out-of-
sequence operations.

5-9

0 Rubey, et al. studied several software projects. Of a total

of 376 errors found during the development and validation

phases of the projects, static analysis caught 167, or 44Z.

0 GRC 2conducted an experiment using a FORTRAN missile
trajectory program with 57 modules and 5000 lines of code.

Forty-nine errors were seeded Into the program and the SQLAB

tool's static test capabilities ware used. light errors

(161) were detected.

* As a preliminary to that study, aRC looked at eight sall

(loe than 30 source lines) program from Kernighan and
Plauger. These programs contain 26 "typical" programing ~
errors. Static testing with SQLAB found 10 errors (381),

and testing with DAVE (data flow analysis only) found 8

0 TIN estimated that a code standards auditor would have

caught 26.3Z of all errors In the Project 3 study. 4 They
also estimated that a set/use checker would catch 14.32 and

a' compatibility checker 10.71 of the errors In Project 3.

They made no estimate of the combined effectiveness of these

tools.

1R. J. Rubey, J. A. Dana, P. V. Biche, "Quancitative Aspects of Software
Validation",* IEEE Transactions on Software Ingineerigg, Vol.* SZ-i, No.
2 (.June 1975), p. 153.

2C. Gannon, R. N. Meeson, N. B. Brooks, An EZperimsntal Evaluation of
SoftareTesisGeneral Research Corporation C-1-854, Way 1979,p.

3 . V. Kernighan and P. J. Plauger, The Elements of Programing Style,
First Edition, Mc~raw-ill * 1974.* The results of the GE experiment

* are cited on pp. 2-1 and 2-2 of Gannon, et &I.

Pgs4-169 an 4-170 of tjh* TRW Report contain this data.

S Howden1 studied the errors found in a release of the IMSL

Scientific Subroutine Package. Be determined that 27 of the

49 errors, or 55Z, could have been caught by static analysis

techniques.

* Bowden 2 also conducted a study of six programs written in

four different programing languages. He states that two of

the 28 errors present could be caught by checking routine

interfaces, and four could be caught through anomaly

analysis. This represents 211 of the total errors in the

programs.

5.1.3 Reliability

Static analysis is highly automated, so error checking is applied

consistently. Because it is automated, human error is unlikely to

greatly corrupt the testing process. But static testing has inherent

limitations; there are few errors from the TW classification that it

can catch with a high degree of consistency. It is usually most

effective during the early stages of program development. Static

testing can be used with equal ease on large and small programs. The

features and standards of new programing languages sake some static

checks unnecessary.

Htman Factors

Since static analysis is highly automated and easy to use, the1 1 abilities of the tester are not as important to the reliability of the

technique as s the case for dynamic and formal testing. The mechanics

of using static tools are simple; tests can be conducted by someone

1W. E. owden, Effectiveness of Program Validation Methods for Scien-

tific Proarams, National Bureau of Standards GCR 78-148, 1978, p. 53.

.1. Blowden, "Theoretical and Empirical Studies of Program Testing",
IJE Transactions on Software Engineering, Vol. 53-4, No. 4 (July
1978), p. 296.

5-11

unfamiliar with the code being tested. All error and anomaly checking

is performed by the computer, so the degree of thoroughness and at ten-

tion to detail is much greater than what could be achieved manually.

There are two areas in which human factors can influence the

success of static testing. First, as mentioned in Sec. 4.2.1, global

data flow analysis needs information about the behavior of variables in

all modules of a program. This information may be unavailable under

certain circumstances; for example, to a prograer who wants to check

out now cods for a small part of a large project. However, the infor-

mation could be made available from sufficiently detailed design

documents.

Skill and judgment is involved in sorting out errors from theI

wernIvS messages produced by anomaly checking. Sometimes it is easy to
decide whether a message indicates an error Is present; but sorting

through a long list of such messages can be tedious, and there is the

danger that an important warning will be overlooked when a lot ofI
eintraneous ones are discarded. Data-f low and mixed-mnode anomalies can

be symptoms of subtle errors, and should get acre than cursory attention I
from the tooter.j

Kinds of Errorsj

Because they are automated, static tools are very consistent in

1 applying error checking. As shown In Sec. 5.1.2 above, these checks can
result In the detection of a wide range of error types. In Sec. 4.2.2,

we stated that static testing should catch all occurrences of module

calling sequence errors, coding standards violations, and mixed-mode

arithmetic. These correspond to the following error types from the TRW

classification scheme:

5-12

0 F.300 Subroutine arguments not consistent in type, units,

order, etc.

0 J 900 Software not compatible with project standards (only

some of these will be caught)

. A 700 Precision loss due to mixed mode

However, static analysis has some limitations which keep it from

detecting a high percentage of errors in all programs. These include:

* Only a very weak form of data flow analysis can be performed

for arrays with variable subscripts. A static tool can

consider the entire array to be one variable; if it does

this, an assignment to any element "initializes" the array.

Similarly, if any element of the array appears in an

expression the array is considered "referenced".

0 Static tools can only analyze structural aspects of a

program's control flow. For example, a static tool will

detect the dead code if an unlabeled statement follows an

unconditional GOTO; but it cannot detect the problem if it

is caused by the predicate of a branching statement (e.g. an

"ELSE" clause following "IF (M) 0 OR N < 10)" Is logically,

but not structurally, dead code.)

Much more research mst be done before we can associate error

types from a classification scheme like TRW's with detection probabili-

ties for static analysis. However, the error seeding experiment

performed by Gannon, at al., at CGC indicates that static testing will

not alwys catch the types of errors listed at the beginning of Sec.

5.1.2. Table 5.3 shows those error types that were seeded and the

results for static testing with the SQIAB tool.

5-13

S - - - - -- - - - - .

TABLER 5.3RESULTS OF STATIC TESTING FOR TE RW E130 TYPES

OFTEN DETECTED BY STATIC ANALYSIS
(Source: Gannon, at al., Table 5.2, p. 5-5)

Error Type No. Caught No. Missed

A_100 Incorrect operand in equation 0 2

A 400 Units or data conversion error 0 1

A_800 Missing computation 0 2

B_100 Incorrect operand in logical 0 1
expression

B_200 Logic activities out of sequence 0 1

B300 Wrong variable being checked 0 3

B 400 Missing logic or condition tests 2 1

* B600 Loop iterated incorrect number of 0 1
times (including endless loop)

D_100 Data initialization not done 1 0

D 200 Data initialization done improperly 0 2

D_400 Variable referred to by vrong name 1 1

1_200 Call to subroutine not made or made 0 2
in wrong place

G 100 Data not properly defined/dimensioned 1 1

H 300 Data units are incorrect 0 4
2

Program Characteristics

We believe that static testing is most effective when used early

in the development of a program. The evidence is conflicting on this
-the IMSL data from Howden, where 55Z of the errors ware detected by
static methods, is for programs that had been in use for a substantial

period of time. But if static analysis is used imediately after code

is written, and after major revisions are made, It should screen out

5-14

most data initialization errors and identify many of the grosser

programing mistakes that were made.

The data compiled by Rubey, et al., support this contention.
Their study compared static analysis with dynamic testing. They noted

that static analysis caught most of those errors that were detected

early (the first 40% of the validation phase), while dynamic testing

caught most of the errors found during the remainder of the validation

effort. They concluded that:

... the execution and (static) analysis methods are
complementary; the analysis methods detect the
earlier-perhaps easier-errors, while the execution
methods continue to detect errors after the analyais

methods are unproductive."
1

It is no harder to test large programs with static analysis than

it is to test single modules or small programs. 2 The do-tumntation

produced by static tools can be very useful in dynamic and formal

testing of large programs. Program statistics and complexity measures

can be computed from documentation reports to help plan other form of

testing.

Static analysis is useful for testing all types of programs: data

flow, variable type compatibility, and interface errors are problem in

programs of every application. Static testing does not provide infor-

mation about timing characteristics, which are important to real-time

* and interactive programs. The general problem of deadlock in concurrent

systems is not addrersed very effectively by the structural deadlock

detection capabilities of static tools.

1iubey, et a1., p. 153.

2Early static test tools required excessive amounts of computer time and
storage to process large amounts of code. However, recently tools have
been built which can easily accomodate most large programs. See
subsection 3.1.4 on the computer resources required by static analysis.

5-15

Structured programming languages with strong data typing eliminate

the need for some of the static checks described here. In effect, the

compiler for these languages performs some of the functions of a static

test tool. The static checks that are built into advanced languages

such as PASCAL and ADA include:

e Module Interface compatibility checking

e Coding standards enforcement

0 Mixed-mode anomaly checking

In addition, most advanced languages permit recursive procedure

calls.

There is no reason why more static checking cannot be included in

compilers. As programners become familiar with static analysis and

recognize Its value, they will want compilers that have static testing

capabilities.

5.1.4 Cost

Static analysis requires a minimal amount of time from the user.

The computer time and storage needed by static tools used to be a

serious impediment to their use on large programs. However, now there

are tools available whose resource requirements are linear functions of

program size. Managers can make good estimates of their total static
testing costs by looking at the computer costs f or a f ew runs of the

tool on code of similar size.

Analysis Tine

Static testing requires a very small investment of time on the

part of the user. There is little to learn about using a tool. The

only code change that needs to be made before a static test can be run

is to add assertions about variable usage and units, and this is

optional. To test a piece of code, the user just selects the options

and invokes the tool.

5-16

Some time is requirecl to examine the output from a static test

run. Error messages must be associated with mistakes in the code, and

the user must decide whether each warning message from anomaly checking

indicates a real error. However, static testing actually saves time for

the tester, because it clearly identifies errors and helps to locate and

correct them (see Chapter 6).

We found only one bit of data on the amount of analysis time

required by static testing. In the GRC experiment with the missile

trajectory program (5000 source lines), two person-hours were required

to look over the output of the static tool and find the errors that it

indicated in the program.l

Computer Resources '
In Table 5.4 we show the time required to run several static tools

on some different-sized programs. Notice that the time required per

line of source is nearly constant for PAyS, while it increases with the

size of the program for DAVE. The efficiency of PAYS was improved

dramatically over an earlier version, which required an exponentially
2

increasing amount of computer time to handle large programs.

The developers of DAVE state that the tool runs in time that is

"linearly proportional to the product of the number of edges in the flow
3

graph (of the test program) and the number of program variables." They

have not had the opportunity to streamline their tool's operation. To

do this, they must tailor the tool's data handling to the word length of

1C. Gannon, et al., op. cit., p. 1-11. The testers were professionals
with 5-10 years of experience in the computer field, and were familiar
with the tool being used.
R~. A. Melton, PAYS Enhancement Final Report, General Research Corpora-

tion CR-3-75411, December 1980, p. 2-1.
3L. J. Osterveil and L. D. Fosdick, "DAVE - A Validation Error Detection
and Documentation System for Fortran Programs;, Software - Practice and
Experience, Vol. 6, No. 4 (October-December 1976), p. 473.

5-17

JII

_ _1 L

.4 P
aoIt

01 b

.4 P 4 .

a particular machine; the current version of DAVE is designed for

maximum portability.

Unfortunately, we don't have data on the time required to compile

the programs listed in Table 5.4. Hiowever, our experience with the FAVS

tool has been that:

0 It takes three to four times as mich execution time to

perform FAVS static analysis on a FORTRAN program as It does

to run the same code through the FORTRAN compiler.

0 For programs written in a structured FORTRAN dialect, It

takes only two to three times as long to do lAVS static

checking as it does to preprocess and compile the same code.*

Smith1 states that DAVE required from 25 times the compilation

time (for 800 lines of code) to 130 times the compilation time (for 7200

lines) in tests on CDC machines.

Static tools require the following to be stored as permanent

files:

* The tool itself

* Any data from previous static runs that can be used to test

code that has been modified or added to a program

The second type of permanent file includes "stub module libraries"
(see Sec. 5.1.1) and other data necessary to reconstruct an old test

run. A tool may not be able to produce certain types of documentation

from such a f Ile. The way the library file works varies widely from

tool to tool.

K. A. Smith, Evaluation of Verification and Testing Tools for FORTRAN
Programs, NASA Technical Memorandum 60205, July 1960, p. 3.

5-19

The temporary storage required to make a static test run includes
the following:

* Enough core to permit the tool to execute

* Symbol tables for all variables and other operands

* Information about each executable statement

* The test program's calling tree and control flow graph

The symbol tables built by static tools are very similar to those -*

used by compilers. The statement information is used in producing

documentation, while the calling tree and flow graph are used in data

flow and interface analysis. The sizes of these files depend upon the

* size and complexity of the program being analyzed and on the type of

checking that the tool can perform.

Table 5.5 gives some data on the storage required by three static

test tools in particular installations.

Static tools typically produce three kinds of output:

* A listing of the source code of the test program

* Error and warning diagnostic messages

* Documentation reports (at the user's option)
4N

Occasionally, a static test run will produce an excessive amount

of output. This is especially likely to happen when a large program is

analyzed for the first time.

Procurement Costs

A version of the FACES tool sells for $1590. The static testing

capability of KXVPSOu costs $14,000 (only $6000 if you already have the

tool's controller). The documentation option of RZVPSOO costs an

additional $4000.

5-20

....-

0 m

0

16.

*2 IL

I-. s t it
J~~i 066 A" 1

%A W

a IL

~ 4 6Ibd 6m-*

'4 9.4. . 0

5-21

4 Cost Worksheet

Since so little analysis time is involved in static testing the

major cost of using static analysis is the computer cost.

It is a good idea to benchmark a static tool on a f ew different-

sized programs when it is first obtained. This should be relatively

inexpensive, and will give project managers a good Indication of how

much it will cost them to test their software.

A manager of a software project should plan to make several runs

of the static tool on his code, since a new test has to be made each I
time code Is revised.

3-22

5.2 EXECUTABLE ASSERTIONS

5.2.1 Summary of the Technique

Executable assertions are special statements Inserted into the

source code of a program. They allow the programer to specify, con-

ditions that are required for correct operation of the program. If such

a condition. does not hold during execution of the program, this fact Is

reported via an error message. The programmer can also specify actions

to be taken when an assertion Is violated.

Most compilers do not recognize and translate assertions--an

assertion preprocessing tool must be used. The tool generates code, In

the ese language as the rest of the program, which carries out the

* condition checking and error handling logic for the assertion. Differ-

ent preprocessing tools recognize different forms of assertions. A pro-

gramr can augment a loe powerful tool by writing code to do some of

the condition checking.

There are assertion preprocessors available for most programing

*languages. However, most of the current tools lack sow desirable

features. Some work is being done to develop more advanced assertion

preprocessors and to incorporate assertions into compilers.

* Capabilities

Executable assertions are constructs added to a programming

something has gone wrong In a program, ad permit the programmer to

general form of an executable assertion is:

ASSERT condition;

FAIL block;

Here "condition" Is an expression that can be evaluated logically

(as TRUE or WALSE) during execution of the program. The "fail block" Is

optional-it contains the error-handling code.

Assertions nost be translated into executable code. This is

usually done by a preprocessing tool, although som compilers will

accept and translate assertions. The kinds of conditions that can be

checked by assertions, and the syntax f or declaring these conditions,

vary from tool to tool.* The types of assertions accepted by a tool are

often referred to as its "assertion language".

The general form of a translated assertion is:

IF (NOT condition) THEN

Print error message;

Execute fail bloek

MN IF

Executable assertions can do the following things:

" Indicate that a program is operating Incorrectly

" Help the programser to locate errors*

: Indicate that a program is being used improperly

* Provide fault-tolerance in a program

0 Express specifications and design intentions as in-line

documentation of the program

e Form the basis for a formal verification of a program

Executable assertions can detect any error that can be expressed

as a condition In the assertion language. Some Important examples of

such errors are:

0 The result of a computation Is outside of a range of

reasonable values, or is Inconsistent with another result.1* A variable does not behave as Intended: It changes value

when it should not, or it does not change In the desired

5-24

0 Control flow is incorrect: the branch taken is incompatible

14 with program conditions, or a special case is not handled

properly.

* A call to a routine results in an unacceptable condition on
return.

0 The output of a routine is incorrect.

Assertion violations are reported with the location in the source
program whbere the violation occurred. This can help isolate the

location of the coding error that caused the violation. We discuss how

assertions are used In debugging in Sec. 6.1.

Assertions can also guard against an improper use of a program or

routine that is otherwise correct. This is done by Imposing conditions
on the inputs to the code. Yau, et al. describe how assertions can be

used to protect data structures from misuse or accidental destruction.

Andrews 2 discusses how the " fail block" feature can be used to

recover from error conditions or to provide "graceful degradation" In a

program's performance. We feel that fault tolerance is an important

feature of executable assertions, but this topic is beyond the scope of

this report.

~S. S. Tau, J. L. Ramy, R,. A. Hicholl, "Assertion Techniques for
Dynamic Monitoring of Linear List Data Structures", The Journal of
2System and Software, Vol. 1 (1980), pp. 319-336.
D. M. Andrews, "Software Fault Tolerance Through Executable Asser-
tions," Proceedings -Twelfth Annual Asilomar Conference on Circuits,' System, and Computers, November 1978, Pacific Grove, California.

5-25

The presence of assertions in program code is a form of documenta-

tion. Assertions are useful when code is being modified, since they

remind the programmer of conditions which most hold for the program to
operate correctly. Sometimes specif ications for a program can be stated

directly as assertions.

Formal techniques use assertions to prove the correctness of a

program (see Sec. 5.5). To successfully verify a program, a more

extensive set of assertions is needed than what will typically be used

in a testing effort. Assertions written for testing can be used in a
verification effort, and the assertions generated during program proving

have all the properties of executable assertions discussed here.

bdeeOpedatind porme"a h aetm stecd tef o

The user must decide what assertion checks to make, encode than in

the assertion language, and insert them in the code. Assertions should

several reasons:S

* Writing the assertions increases the programmer's under-

standing of the purpose and design of the program.

0 The assertions themselves will have mistakes which have to

be debugged.

* Assertions are useful throughout the life of the program.

0 Adding a full set of assertions to a large already coded

program is a tedious job that no one will want to do.

Diffrentassertion languages permit different conditions to be
"serted.* However, a programmer can write code in the source language

to get around the shortcomings of his preprocessing tool. Som useful

constructs which have been included in assertion languages include:

____ 5-26

0 ASSERT Cexp), where "exp" is any legal logical (boolean)

valued expression in the source language, including a

function

* A form of the first-order predicate calculus which checks

multi-element data structures. These constructs look like:

ASSERT (ALL i IN range) condition

ASSERT (SOME i IN range) condition

where "I" is a duy index to the data structure, " range"

describes the limits on the index over which the assertion

is to hold, and "condition" is any legal condition in the

assertion language involving the indexed elements of the

data structure.

0 Notation which refers to previous values of variables. In

this way, iterations can be checked to see that the progres-
sion of values for the same variable is correct. The

assertion language may provide shorthand such as:

OLD (var,num),

where "var" is the nae of a variable, and "nun" indicates

which previous value is desired (1 means the last, 2 the one

before that, etc.).

This may be accomplished in more primitive assertion

languages by adding special variables.

1I
* Notation which specifies flow of control. Chow has

suggested that assertions could check the order that

variables are defined and referenced on a path with con-

structs like:

'T. S. Chow, "A Generalized Assertion Language," Procedings-2nd
International Conference on Software Engineering, October 196 Sa
Francisco, p. 395.

5-27 J

*1

PATH IS (REP var; DEF var),

where "var" is the name of a variable.

This kind of checking can be done with simpler assertion

tools by using a set of flags or counter variables.

Automated Tool Support

Tools which process executable assertions exist for most common

high-order languages. Table 5.6 lists those covered in the tools survey

and gives the languages and computer systems for which they operate.

None of these tools accept all of the types of constructs described in

the last subsection. Taylor1 describes a more elaborate preprocessor

which is being developed for HAL/S. AD has an assertion construct

equivalent to the first type listed above.

5.2.2 Effectiveness

Assertions can be used to detect a wide variety of errors. They

are most effective against computation errors, and have been shown to

catch high percentages of data handling and logic errors, too. However,

It is more difficult to write assertions that catch these last two types

of errors.

N

I. f. Taylor, "Assertions in Prograsing Languages", SIGPLAN Notices,
Vol. 15, No.1 (January 1980), pp. 105-114.

.7oA

5-28

TABLE 5.6

EXECUTABLE ASSERTION PREPROCESSING TOOLS

Source: Sec. 2 of First Interim Report

Tool Languages Computers

ACES FORTRAN CDC, IBM

JAVS JOVIAL J3 CDC 6400, HIS 6080/6180

J73AVS JOVIAL J73 ITEM AS/5, DEC20

PET FORTRAN CDC 6000/7000,
IBM 360/370 OS,
UNIVAC 1100

SQIAB FORTRAN, PASCAL, JOVIAL J3B CDC 6400/7600

TPL FORTRAN?

V-IFTRAN" FORTRAN Any system supporting

FORTRAN

Only a small amount of data is available on the percentage of

program errors detected by assertions. The studies done at GRC have

indicated that an extensive set of assertions can catch more than 70% of

total errors.

Types of Errors Detected

Assertions detect violations of conditions that must hold during

the execution of a program; hence, they deal almost exclusively with

symptoms of errors. There is only one error category In the TRW scheme
which describes a condition which can almost always be tested for with

* an assertion: "G-200 Data referenced out of bounds." However, studies

of assertion testing have shown that many errors from the following

major categories can be caught:

5-29

* A_000 Computation ErrorsI B_000 Logic Errors
_ 00 Data Input Errors

0 D 00 DataHandling Errors

* F 000 Interface Errors

G G000 Data Definition Errors

* H 000 Data Base Errors

The rest of the major error categories usually cannot be addressed

by executable assertions because they involve things that are external

to the program itself. For example, data output errors (E_000) cannot

t be detected if the output devices and the routines that control them are

separate from the test program (as is usually the case).

Benson and Saib 1showed how assertions can be used to detect

computational, logic, and data handling errors. They seeded three
errors of each type into a test program and formulated assertions to
detect the errors. Their conclusions were:

" "Assertions are most valuable for catching computational

ranges and by stating approximate bounds on the results of

computations."

" "Data handling errors can usually be detected by assertions

which specify ranges, units, scale factors,.... They f elt

that static analysis is usually better at this, however.

1J. P. Benson and S. H. Saib, "A Software Quality Assurance Experiment",
Proceedings of the Software Quality and Assurance Workshop, San Diego,

4 Noavember 1978, pp. 87-91.

Ilbid., pages 88 and 90.

5-30

0 "Logic and sequencing errors are the most difficult to

detect using assertions."

Two experiments have been conducted at GRC in which errors from

the TW scheme have been seeded into test programs. 1 Since each

experiment used only a small number of errors, the sample sizes for each
error category are hardly statistically significant. However. the two

sets of results are consistent with each other and show assertions to be

most effective for computational errors. Table 5.7 compares the results

of the two experiments for those major error categories which were

* seeded in both tests.

TABLE 5. 7

PERCENTAGES OF ERRORS DETECTED
IN SELECTED MAJOR ERROR CATEGORIES

DURING ASSERTION TESTING EXPERIMENTS

Percent of Errors Detected

Benson and
Major Error Category Andrews Test 2

A 000 Computation Errors 80% 83%

B_000 Logic Errors 60Z 73Z

D_000 Data Handling Errors 78% 80%

'The first experiment is described iii J. P. Benson and D. M. Anidrews,

Adaptive Search Techniques Applied to Software Testing, General Re-
search Corporation CR-1-925, February 1980. The other one is the Test
2 results described in Appendix D.

5-31

Error Detection Ratio Data

We can cite three results on the percentage of errors detected

during experiments with executable assertions. Unfortunately, there is

no data from live experience with assertion testing.

0 The first set of assertions developed by Benson and Andrews

detected nine of 24 seeded errors, or 38%. By adding more

assertions, they were able to detect eight more errors, for

a total of 712.1

* The results of Test 1 of the assertion experiment described

in Appendix D were 21 out of 24 errors detected, or 87%. In

this experiment, the errors were known when the assertions2

* The set of assertions used in Test 1 was tested for a

different set of seeded errors in Test 2. This time 25 of

34 errors were caught, or 74%.

5.2.3 Reliability

Hov reliable assertions are depends upon the person writing them.

To write good assertions, a programner must understand the way his

program is supposed to operate, be familiar with the assertion language,

and be thorough in his use of assertions. Assertions have to be

debugged just like the rest of a program.

The test data used has a great effect on the reliability of

executable-assertion testing. Test data must cause assertions to be

violated or errors will go undetected. To be effective, assertion

testing should be combined with a systematic method of generating test
data, such as structural or functional testing.

1 .P. Benson, D. M. Andrews, ibid., p.1-9.

5-32

Assertions are an imperfect method of error detection for two main

reasons: not all error conditions can be described in assertions, and

sometimes only weak conditions can be imposed.

Assertions are useful throughout the software life cycle and on

programs of all sizes. More research needs to be done on the use of

assertions in specific application areas.

Human Factors

Writing assertions is a creative activity. We have proposed some

guidelines on where assertions should be located and what kinds of

conditions they should check for (see See. 7.2 and Appendix D).

However, the final responsibility for developing an effective set of

assertions lies with the user.

To wri.te assertions, a programmer needs to understand how the

handling assertion constructs-this comes with a little experience. To

write good assertions, a programmer must then do the following:

* He must find out enough about the application area of the

program to develop tight bounds on the values of variables '

and the results of computations.

* He must write assertions which can trap special error

conditions such as logic and data flow errors. This can be

difficult when using an assertion language of limited power.

* Re must be thorough-all conditions that can be checked for

assertions must be identified.

Assertions have to be debugged after they are put In a program.

Assertions are musceptable to many programning errors, including:

5-33

0 The asserted condition is misstated:

. A computation or value needed in the assertion is omitted.

The input data used to teat a program affects the reliability of

executable-assertion testing. Assertions won't be violated if they

aren't exercised. When they are exercised, they won't be violated under

all conditions. We do not discuss test data -generation methods in this

section, since executable assertions can be used regardless of the way

test delta is chosen. But as an indication of how Important test data is

to the effectiveness of assertions, we note that 43% of the undetected

errors in Benson and Andrews' experiment might have been detected if

more tests had been run.1

Kinds of Errors

The error conditions checked by assertions most be stated In the

assertion language. A fairly wide range of errors can be addressed by

assertions, but the constructs have their limitations. For example, no

assertion language permits statements like "I IS INITIALIZED"; at run

time, the variable X has a value, whether by accident or design. In

general, assertion conditions must describe symptoms of errors which canI

be expressed using information available within the executing program.

It is often necessary in an assertion to use a rather loose check

on the value of a variable or result of a computation. Such an asser-

tion will allow some errors to go undetected. For example, it may be

possible to check the results of a numerical algorithm only to within a

few orders of magnitude of the desired precision without using the ie

algorithm to produce the check value. In such cases, assertions can

only act as a filter for some programing mistakes-the accuracy of the

results must be verified by other mans.

This is based on an examination of Table 6. 1, p. 6-2 of Benson and
Andrew.

5-34

In Table 5.8 we show the error categories used in the two error

seeding experiments performed at GUC (Senson and Andrews and the Test 2

experiment from Appendix D. The numbers of errors detected and missed

are tallied for each category. More studies should be performed to make

statistically significant sample sizes available in each category.

Program Characteristics

Assertions are useful throughout the lifecycle of a program. They

force the prograer to consider the program's purpose and specifica-

tions as he codes. They help to detect and locate errors during testing

and verify corrections during retesting. The documentation supplied by

t assertions is useful during maintenance.

course, larger programs require more assertions for effective testing.

The relationship between the size and complexity of a program andE

the number of assertions that should be used to test it was explored in

the assertion testing experiment described In Appendix D. The widely

used Halstead and McCabe metrics were not found to be good indicators of

the number of assertions needed.

Research should be done on the use of assertions in programs of

various applications and in real-time and systems programs. There may

be nev assertion constructs that would be useful in special situations,

such as describing timing conditions in concurrent program.

5.2.4 Cost

V The costs of assertion testing depend on the number of assertions

-* placed in the code, the difficulty of writing and debugging them, end

* the number of test runs made with the asserted program. There is little

data or experience that can be used to gauge the magnitude of these

costs. Writing and debugging assertions can be expected to add signi

5-35

TLEBI 5.5a
RESULTS OF ERROR SEDIN X RI FOR

llZCUT ABLE ASSERTION TESTING

Error Type go. Caught No. Kissed

A 100 Incorrect operand in equation 2 1

A 200 Incorrect use of parenthesis 1 0

A_300 Sign convention error 3 0

A 500 Computation produces an over/under flow 1 0

A 600 Incorrect/inaccurate equation used 1 1

A 800 Missing computation 1 0

B_100 Incorrect operand in logical expression 0 1

B 200 Logic activities out of sequence 3 1

B 300 Wrong variable being checked 1 2

B_400 Missing logic or condition tests 5 1

B 500 Too many/few statements In loop 1 0

B_700 Duplicate logic 1 0

C 100 Invalid Input read from correct data file 2 0

D_100 Data initialization not done 2 2

D 200 Data initialiation done Improperly 1 0

D300 Variable used as a flag or index not 1 0
set properly

D 400 Variable referred by the wrong name 3 0

D_500 Bit manipulation done incorrectly 1 0

D 600 Incorrect variable type 3 1

F100 Wrong subroutine called I I

F 200 Call to subroutine not made or made in 1 0
wrong place

F 700 Software/softvareointerface error I I

G 100 Data not properly def ined/dIseesioned I I

G 300 Data being reerenced at incorrect I 1
location

H100 Data not inilalised In date bee. 2 09 200 Daa initialsed to correct valu 2 1I

3300 Data units are Incorrect 0 1

5-30

* I

f icantly to costs at the beginning of a project, while the overhead of

making test runs should not be as great. Kor. research on the use of

assertions in program development is badly needed.

Analysis Time

Developing an effective set of assertions for a program requires a

considerable investment of time. The siz. of the job depends on the
number of assertions needed to check for possible error conditions ad

the difficulty of formulating them. Presently there is no measure of

how "well-asserted" a program is; it would be very nice to have such a

measure, to use in test planning and to guide formulation of assertions.

Unfortunately, we also have no data on the analysis time for

assertion testing of a program. In the absence of such information, we

postulate that the time required to write a given number of assertions

is on the order of the time to write the same number of lines of source

code. We have already comented on the similarity of the tasks of
writing a program and developing the assertions for it.j

The other major task associated with executable assertion testing

is examining the assertion violations to determine the program errors

that caused them. However, this does not represent analysis time beyond

that required by conventional testing, because the same test runs would

have to be debugged without the information provided by the assertionI. violations. Assertions save time (once they are debugged) because they
help to locate errors as well as to detect them.

Computer Resources

Like the analysis cost, the computer resources used in assertion

testing depend upon how thoroughly assertions are used. The categories

of computer overhead are:

0 The time required by the preprocessor and compiler to turn

the assertion into executable code

5-37

* The extra execution time required by the assertion checks

* The extra space required by the source and executable

versions of the program due to the assertions

The preprocessor and compiler overhead will be incurred each time

either the assertions or the code are changed. The execution time

overhead will be incurred once for each test run. Once a production

versei- of the program is achieved, the assertions can be removed by
recompiling the program with the assertions disabled. In this way, the

execution time overhead is not incurred by the end-user of the program;

but he also does not have the protection that the assertion checking

could provide him.

We have some data on the overhead for some assertion testing

experiments. The experiments are described here, and the overhead data

is presented in Table 5.9.

TABLE 5.9
COMPUTER OVERHEAD OF ASSERTION TESTING

Percent Increase In

Compile Execution Storage
Source Time Time Space

SQLAB code 5.5% 41 8

Radar Simulation 56Z 12Z 13.5Z

Yau, et al. (4 programs) 55-125Z 0-40% 6-12%

5-38

.--.- ---- .--

0 The SQLAB tool was used to preprocess assertions placed in

Its own code.1 Assertions were added for abotit 40% o he

decision statements, or roughly one assertion for every ten

executable statements. Few fail blocks were included.

* Benson and Saib used a 1000-line radar simulation to

demonstrate the use of assertions in providing fault-

tolerance. All decision statements had assertions and fail

blocks, for a ratio of one assertion to every five execu-

table statements. 2 SQLAB was the preprocessing tool.

0 Yau, et al 3 tested four JOVIAL programs of roughly equal

load size (17000 words). They used the JAVS tool to pre-

process the assertions. They give no data on the density of

assertions in their paper.

Occasionally, an assertion test will produce an excessive amount

of output. This is most likely to happen when testing a program with a

loop in it-if an assertion is violated every time through the loop,

this may mean a lot of violation messages. Some tools allow the user to

write his own error message routine; a limit on the number of violation

messages can be imposed in that case.

Procurement Costs

j The V-IPTRA tool, which preprocesses assertions and structured

* .control constructs for FORTRAN, sells for $6370.

1Saib, at al., op. cit., p. 170.
2Andrews, et al., op. cit., pp. 334-335.
3Yau, at al., op. cit., pp. 334-335.

5-39

-~- I

Cost Vorksheet

The costs of executable assertion testing are sumarized in the
forual:

Cost of writing and debugging assertions

Overhead per test run x Number of test runs

The heat available estimate of the cost in analyst time to develop

the assertions is the cost to write ant equivalent amount of code. For

the aRC experiments cited in Table 3.9, this represents ten to twenty

percent overhead in coding and debugging costs.* Studies of real

development projects should be made to refine this estimate.

The compile time overhead tends to be higher then the executionl

overhead for assertions; so testing is most efficient if the assertions

are debugged early and as many program errors as possible are detected

between code changes. The number of test runs depends on the test data

generation method used.

5-40

5.3 STRUCTURAL TESTING

5.3.1 Suaoiry of the Technique

Structural testing (also known as branch or path testing) de-

scribes a goal rather than a method of testing. The goal in to increase

the amount of code tested. It is impossible to test all the paths or

combinations of branches in a large program. It in possible to teat all

branches. For effective testing, all branchew and as many paths as

possible should be tested.

J Instrumentation tools are used to determine how much coverage is

achieved In a test run. These tools can also provide timing data,

execution traces, and other information. However, the tester himself

must formulate input data and, decide whether the program has run

correctly for each test.

Many instrumentation tools have been developed in the last ten

years.* Tools are available for most prograuming languages and com-

puters.

Capabilities

The purpose of structural testing is to ensure that a program is

thoroughly exercised. Several measures of thoroughness, or test

coverage, can be used to quantify this goal. The measures are based on

structural units of the source code of the program being tested-hence

the term "structural" testing. The structural units we will consider

at*:

0 Statements, which in this context means executable state-

oento

0 :ranches, which correspond to the outcomes of each decision

statement In a program

5-41

* Combinations of branches (this is similar to the Linear Code

Sequence and Jump (LCSAJ) metric defined by Woodward, et

al.);and

* Paths, which correspond to distinct ways of executing a

program from entry to exit.

For all but very simple programs, exe.cution of all program paths

or of ali possible combinations of branctbes is impossible. Coverage of

all branches, which implies execution of all statements, is a reasonable

goal for large programs. However, there are many errors that will go

undetected if attention is not paid to the combinations of branches

which are executed. So In a sensi* structural testing is open-ended: all

branches and as many different paths as possible should be executed.

Automated tools can be used to tell how much coverage has been

achieved in a test run. The program must first be run through a

preprocessor, which inserts code that collects the coverage information

during execution. This is usually called "instrumenting" the code.

Structural testing is an iterative process; the user compares the amount

of coverage achieved to his goal, then tries to formulate new test data

to increase the coverage.

The code that collects coverage data can collect other information

as well. The nature of this information depends on the tool used and

the level at which the code is instrumented. If probes are inserted

after every statement in the program, then the entire history of the

execution of a program can be recorded. Of course, instrumenting at the

statement level will incur significant computer overhead. To determine

1M. Woodward, D. Hadley, and M. Hennell, "Experience with Path Analysis
and Testing of Programs," IEEE Transactions on Software Engineering,
Vol. SE-6, No. 3 (May 1980), pp. 278-286.

5-4

branch coverage, it is only necessary to insert probes at every decision

statement.

Structural testing, and using an instrumentation tool, can provide

the tester with the following information:

0 It can reveal untested parts of a program, so that new test

efforts can be concentrated there.

* Data on the frequency of execution of parts of a program,

and the time required to execute them, can be tabulated.

This information can be used to make the program more

efficient.

The range of values assumed by a variable (high, low,

average, first, last) can be recorded and checked for

" A trace of what has occurred at each statement in a section

of code can be printed. This can be useful when debugging.

* The data flow patterns of variables can be analyzed from the

execution trace file.'1 In this way errors and anomalies in

the use of subscripted variables can be detected.

Operation

An instrumentation tool requires the test program source code as

Input. Usually another file in the source language is produced that has

the probes in it. The tool also needs information about the control

* structure of the program-if the tool also performs a static analysis of

J. C. Huang, "Detection of Data Flow Anomaly Through Program Instru-
mentation", IEEE Transactions on Software Engineering, Vol. SE-5, No. 3
(May 1979), pp. 226-235.

5-43

the program it can use the tables produced there. Most tools allow the

user to control the level of instrumentation and to designate what parts
of the program are to be instrumented.

There is no automated mechanism for error detection in structural

testing. The user must recognize ertirs by looking at the output of the

program. We describe how other test techniques can be used to help

detect and locate errors during structural testing in Chapter 6 and in

Sec. 7.3.

When a user finds errors in his program during the courae of

testing and makes code changes to correct them, the new version of the

program must be run through the instrumientation tool again.

Automated Tool Support

There are a lot of instrumen~tation tools available. They accommo-

date most major high-order languages and many computer system. Table

3.10 lists the tools surveyed in the first interim report. Most of the

tools do not have all of the capabilities described above-however, all

can at least provide coverage information.

There are automated tools associated with other test techniques

that can help generate test data for structural testing. Some static

tools provide "reaching set" information, which gives the branch condi-

tionis along the paths to a statement. Symbolic execution extends this

approach by attempting to form an algebraic expression for the branch

conditions in terms of input variables. Unfortunately, these methods

have not proven very successful in practice; they do not often simplify

the job of generating test data for complicated programs.

5.3.2 Effectiveness

When test data Is carefully chosen, structural testing can be very

effective. TRW determined that a combi-aation of structural and func-

tional testing could detect a high percentage of many types of errors

from the Project 3 study.

45-4

.4 z

~N

1.4

0 0

00 w

5-45

The available data on the percentage of program errors detected by

structural testing varies over a wide range. One branch testing study

determined that 21% of a sample of errors could be detected; another

study concluded that structural testing could catch 92% of the errors in

a different set of programs. Structural testing has been shown to be

I Ieffective for detecting errors early in the development life cycle.

Types of Errors Detected

The TRW error categories are not very useful for analyzing the

effectiveness of structural testing. However, the TRW report examined

the effectiveness of a combination of structural and functional testing

for the errors in the Project 3 study. Their results can be considered

a sort of upper bound on the effectiveness of structural testing-what

happens when coverage is driven up by input data that is most likely to

catch errors. The percentage of errors from each major category that

TRW estimated could be detected this way is shown in Table 5.11.

TABLE 5. 11
ERROR TYPES DETECTED BY STRUCTURAL AND FUNCTIONAL TESTING

Source: Table 4-32 of the TRW Report

Error Category Percent Detected

Computational 87.4%

Logic 79.61

1/0 98.51

Data Handling 76.9%

Operating System/Support Software 1001

Routine/System Software Interface 27.*31

Tape Processing Interface 1001

User Interface 89.61

Data Base Interface 1001

Global Variable/Campool Definition 87.51

Documentation 64.71

Requirements Compliance 751

5-46

Error Detection Ratio Data

We found five pieces of data on the percentage of errors detected

in various programs by structural testing:

• Howden studied six programs written in different languages.

Of 28 total errors, he determined that branch coverage

testing would detect 6, or 211. Complete path coverage

could detect 18 errors, or 64%.

0 Howden also studied the effectiveness of structural testing
2

for the errors in the IMSL programs. He determined that

branch testing could detect 13 of the 42 errors considered,

or 31%. Path testing detected an additional 3 errors, for a

total of 38%.

0 Mangold3 determined that structural testing could detect 206

of a set of 224 errors, or 92%.
4\

0 Gannon, et al.4 used branch testing on the eight Kernighan

and Plauger programs that we discuss in Appendix D. They

found 18 of the 26 errors, or 69Z.

I

* TRW esti=Lted that structural and functional testing

combined could detect 72.91 of the errors in the Project 3

study.
5

1W. E. Howden, "An Evaluation of the Effectiveness of Symbolic Testing",
Software-Practice and Experience, Vol. 8 (1978), p. 387.
2W. E. Howden, "Functional Program Testing", IEEE Transactions on

Software Engineering, Vol. SE-6, No.2 (March 1980), p. 167. Howden
evidently considered a different set of errors here from the IMSL study
cited on p. 5-11.

3E. R. Mangold, "Software Error Analysis and Software Policy Impli-
cations", IEEE EASCON, 1974, pp. 123-127.
Gannon, et al., op. cit., p. 2-2.

5Table 4-33, p. 4-162 of the TRW Report.

5-47 .

I 0

Deutsch 1 provides other evidence of the effectiveness of *true-Itural testing. After the traditional checkout of the separate units of
a large program (170,000 lines of code, 400 unite or threads), the

RXVP8O" tool was used to get complete branch coverage of each unit.

Some 400 additional errors were discovered in this way. His paper gives

no information about the percentage of total program errors that this

constituted.

5.3.3 Reliability

The test data used has a great deal of influence on the relia-

bility of structural testing. Input data that tests boundary conditions

or singularities and demonstrates the operation of program functions

should be used when doing structural testing.

Structural testing is guaranteed to find errors only when a

program path handles aUl input data incorrectly. Since this is not the

case for all errors, structural testing alone cannot ensure that a

program is operating correctly.

Human Factors

A great deal of skill and judgment is required to formulate test

data for structural testing.* Because test data generation tools are

inadequate, the tester n=st rely on his knowledge of the program to find

ways to execute previously unexplored areas of code.* It is also very

important that each set of test data be designed so that program errors

are revealed. Gannon, et al. emphasixe that "(structural) testing

should always be coupled with stress or boundary condition testing."2

1M. S. Deutsch, "Software Project Verification and Validation", Com-
puter, April 1981, pp. 66-67.
2Gannon, et al., op. cit., p. 1-12.

5 -48

Instrumentation tools give good feedback on the amount of coverage

achieved by each test case.* This documents the thoroughness of struc-

tural testing, and ensures that full statement or branch coverage is in

fact achieved. The user must judge the thoroughness of path or LCSAJ

testing of large programs because complete coverage is impossible.

Types of Errors Detected

Bowden Idefined four types of programing errors and looked at how

reliable structural testing is for each of them. His approach is quite

theoretical-he defines a "reliable test" and proves theorems aboutIreliability. He treats only the case of complete path coverage, since
this is the easiest to handle sathematically.

Even though they are not based on "practical" experience, Howden' s

results provide a lot of insight into how structural testing operates.

The essence of most of his arguments is that every input that causes a

particular path to be executed must be handled incorrectly by a program

in order for it to be guaranteed that structural testing will catch the

error. We briefly summarize his findings for each error type:

* Computation errors: structural testing will catch many of

these errors, but it is Impossible in general to tell how

Many.

* Domain errors: these occur when an error in a decision

statement causes some inputs to be handled by the wrong part

of the program. Structural testing Is guaranteed to catch

this error type only if the part of the program handling the

incorrect cases no longer handles any of the ones it is

1W. E. Howden, "Reliability of the Path Analysis Testing Strategy", IEE
Transactions on Software Engineering, Vol. SE-2, No.3 (Sept. 1976), pp.
208-215.

£ 5-49

supposed to.* For exam, using "OT" instead of "12 In an

IF statement will be detected; but if "CE" was intended the

error may not be found.

0 Subcase errors: these occur when a program fails to distin-

guish a subcase of the input data, instead handling it like

other data which is processed correctly. Structural testing

is not reliable for this type of error-there is no guaran-

tee that test data which belongs to the incorrectly handled

subcase will be chosen to execute the path.

0 Combinations of errors: errors that structural testing can
detect singly may not be detected when other errors are

present. This can happen if errors "mask" each other for

some inputs.- Errors may change the nature of the paths in
the program and the inputs to each path-this can make the
reliability results for single errors invalid.

It is best to do structural testing after some initial coverage is

obtained by other testing methods. It Is easier to achieve thorough

coverage for smll amounts of code, so structural testing should be used

at the module or unit testing level if possible. Structural testing of

large and complex programs is difficult, but these are the programs that

most need thorough test coverage.

Good design and coding techniques can do a lot to make structural

testing easier. Structured programing makes test data generation

easier, since the control flow is easier to read and understand.

Structural testing can be used with program of any type of

application. The timing information provided by instrumentation tools

Is useful in improving the efficiency of time-critical routines.

5-50 [

5.3.4 Cost

The most expensive part of structural testing is the analysis
needed to develop test data and examine output for errors. We need more

experience with structural testing before we can develop good estimates

of analysis time and cost. Available data suggest that using structural

testing to debug programs requires 0.5 to 2.0 person-days per error

found.

There is a good deal of data available on the computer overhead of

instrumentation tools. The amount of overhead depends on several

factors, including the level of instrumentation and the options sel-

ected. Generally, instrumentation tools require:

0 A 20 -100% increase in program size

a A 2 -501 increase i execution time

There are a lot of comercially available instrumentation tools,

most of which sell for less than $10,000.

It is hard to estimate the total costs of structural testing,

because o one knows how to estimate the analysis time or number of test

runs required. A user of structural testing on a large software project

claimed a significant cost saving over traditional testing methods.

Analysis Tim

A significant amount of time is required to do structural testing.

In each test iteration, input data must be developed and the results of

the test run must be examined for errors.- There is currently no way to

estimate the number of test runs needed to achieve a given level of

tcoverage in all programs. Zeil and White 1have obtained some nice

results for programs with linear branch conditions, but most structural

testing to date has proceeded by trial and error.

LGannon, at al., op. cit., Table 1.3, p. 1-11.

5-51

Gannon, at al., used branch testing to debug (detect and locate)

errors in a 5000-line trajectory analysis program. Errors were seeded

into the program one at a time, and the set of tests which provided the

branch coverage was run. An average of three person-hours of analysis

was required for each error found.

Deutch reported that it required about two person-days per error

for the 400 errors found in his use of branch testing. This includes

the time to formulate the test cases and the debugging time. 2

Computer Resources

The categories of computer overhead for instrumentation tools are

similar to those for assertion tools; preprocessing and compile time,
execution time, and program storage. The way the overhead is incurred

is similar too-one preprocessing run is needed per version of the test

program, and execution overhead is incurred on each test run. One

difference between assertions and instrumentation is that instrumen-

tation tools must spend some time processing the data collected at the

end of a test run.

The overhead of instrumenting a program depends on:

* The tool used

* The level at which the code is instrumented

* The options selected-execution and variable value traces

take lots of storage and time

I The structure of the tes: program-more branches means more

probes

II

Gannon, et al., op. cit., Table 1.3, p. 1-11. h
"Deutsch, op. cit., p. 67.

5-52 vi

4!

We have data on the overhead required by several instrumentation

tools:

0 JAVS instrumentation doubles the size of the source and

executable files, and increases execution time by 50%.

Instrumenting and compiling the source code requires .09 CP

hours per 1000 statements on an HIS 6180 computer.

* J73AVS produces instrumented programs that are 1.5 to 2

times the original source file size. Execution time is

increased by 50%. Instrumentation requires 4 to 8 CP

seconds per 1000 statements on an ITEL AS/5.2

t Two sets of data are available on NODAL. Used to test a

very large program on an IB4 360 (177 routines, 254K bytes

of core per overlay), the tool increased execution time by

7% and core storage by 30%. On a somewhat smaller program

on a UNIVAC 1108 (61 routines, 40K words per overlay), it

increased execution time by 2% and storage by 20%.
3

* Tests of PET on a CDC Cyber 173 gave the following results:

execution time increased by 20 - 50%, storage required by

executable code increased by about 30%.
4

* The developers of ACES report a 20% increase in both
5

execution time and storage overhead for their tool.

1C. Cannon, N. B. Brooks, JAVS - Jovial Automated Verification System,
General Research Corporation CK-1-722/1, June 1978, pp. E-2 and 1-3.
2C. Cannon and R. F. Else, op. cit., pp. D-1 and D-2.

3
Viewgraph copies distributed by Mr. Richard Maitlen, TRW Applied
Software Laboratory, Redondo Beach, CA.

4K. A. Smith, op. cit., p. 6.
5C. V. Ramamoorthy and S. F. Ho, "Testing Large Software with Automated
Software Evaluation Systems", in Current Trends in Programing Method-
ology, Volume II (I. T. Yeh, d.), Prentice-Hall, 1977, p. 146.

5-53

.,

Most of the output produced by instrumentation tools takes the

form of concise reports. Information on coverage, timing, values of

variables, and data flow can be presented in a few pages. However,

execution traces can produce tons of output. They should be used with

care. To avoid unnecessary overhead during other phases of testing, an

uninstrunented version of the test program should be used once struc-

tural testing is finished.

Procurement Costs

Here are the costs of the comercially available instrumentation

tools from the tools survey in the first interim report:

* INSTRUMINTERS I & I-$5000 each, permanent license.

0 OPTIM4ZU III (also has special debugging features)-$9750

to $28,500 depending on options.

0 RXVP8O"-$16,000 (only $8000 if you already have the static

option or controller).

0 V-IFTRAN" (also preprocesses assertions and structured

FORTRAN constructs)-$6370.

A survey of software tools performed by the National Bureau of

Standards in 1977 reported the typical price range of instrumentation

tools to be $2000 to $6000.1

Cost Worksheet

The total costs of structural testing are sumarized by:

1i. T. Hardy, B. Leong-Hong, and D. W. Fife, Computer Science 4 Technol-
ogy: Software Tools: A Building Block Approach, Nat'l Bureau of

SStandards Special Publication 500-14, August 1977, p. 8.

5-54

If

Computer overhead per test run x Number of test runs

+

Cost of analysis involved in generating test data and

examining test output

The computer overhead, for a test run can be estimated fairly

accurately from the type of information given in the "Computer Re-

sources" subsection above. However, it is difficult to estimate the

number of teat runs needed.

The major component of testing expenses is likely to be analyst

costs. More experience with structural testing is needed to develop a2

way to estimate this.

Deutsch claims an overall saving in testing costs from using

structural testing. The money saved is due to earlier detection of

errors in the development life cycle compared to traditional testing
methods. The estimated net saving is over five times the cost of

structural testing.

Detsh op. cit., p. 67.

5-5

5.4 FUINCTIONAL TESTING

5.4.1 Sumary of the Technique

Functional testing means generating test data based on knowledge

of the functions performed by the test program and of the nature of its

inputs. A large number of test cases can be generated this way for most

programs. Thus, functional testing is open-ended; there are no metrics

to indicate the thoroughness of testing or to tell when testing can

stop.

Functional testing is supported by tvo types of automated tools--

test harnesses and stress testing tools. Test harnesses make it

possible to test partially completed programs, and to test large

programs with complicated external interfaces. Test harnesses also haveI

special debugging features--these are described in Sec. 6.3.

Stress testing tools use mathematical optimization techniques to

automatically generate test data. The objective of stress testing is to

find test points where a program exhibits undesirable behavior.

Capabilities and Operation

Functional testing Is really traditional testing 1 -the objective

is to generate test data that will find errors in a program. Functional

testing is sometimes referred to as "black box" testing, because

detailed information about the program's internal structure need not be

used to formulate the test data. Instead, test data is chosen in the

following ways:

1 Bowden made the term "functional testing" prominent in his seminal
paper "Functional Program Testing" (op. cit.). Elsewhere (p. 2 of "A
Survey of Dynamic Analysis Methods", in Effectiveness of Program
Validation Methods for Scientii Programs) he has admitted that "The
traditional reurmnsbsdprogram testing method is functionalI ~ ~~testing." 53

I,

0 Data is chosen to explore whether the program correctly

performs the functions that it is intended to perform. The

i nctions should be described in the requirements and

specifications for the program.

0 The inputs to the program are ex-mined. Using knowledge of

the quantities they represent and how the program functions

ought to operate on them, the set of possible values for

each input variable can be partitioned into "subdomains".

Test data sets are generated by taking combinations of

samples from each subdomain.

0 Some measure of the program's output behavior is defined.

Test data is sought which drives this measure toward an

undesirable value. Techniques from mathematical optimi-

zation can be used to do this.

Sometimes in the literature these test data generation methods are

considered separately. The input subdomain method is also referred to

as "special values testing"; the last method is sometimes called "stress
testing".

Like structural terting, functional testing has no automatic

method of error detection; errors are found by manually examining the

test program's output. To an even greater degree than structural

testing, functional testing is open-ended-the number of test cases that

can be generated by the methods listed above is almost always very

large, maybe even infinite. No analogues of coverage metrics exist to

gauge the thoroughness of functional testing.

Automated Tool Support

Two types of automated tools support functional testing:

5-57

0 Test harnesses (sometimes called test drivers)

• Stress testing tools

A test harness provides an environment for testing individual

software modules as well as complete programs. The tool can fill in for

missing program components, including a main program. Test harnesses

are most useful in an interactive environment--there they can be used to

start, terminate, or interrupt execution at an arbitrary point in a

program. Most test harness tools have some debugging capabilities-

these are discussed in Sec. 6.3. Test harness tools are listed along

with other debugging tools in Table 6.5 (p. 6-13).

A stress testing tool such as GRC's Adaptive Tester can automa-

tically generate test data. The tool tries to find input data that will

cause undesirable behavior in the test program. To do this, the user

must come up with a numerical measure or program behavior-this is

called an "objective function". Various techniques can be used to

maximize (or minimize) the value of the objective function; most of

these assume that the objective function has certain continuity pro-

perties.

5.4.2 Effectiveness

Functional testing can be used to detect all types of errors. The
TRW analysis of combined functional and structural testing shows that a
high percentage of most error categories can be detected. Special

values testing alone detects a significant number of errors in many

categories.

IC. G. Davis, "Testing Large, Real-Time Software Systems", Infotech
State of the Art Report - Software Testing, Infotech International,
Berkshire, England, Vol. 2, pp. 85-105.

55

The three error detection ratio data points for functional testing

range f rom 50% to 90%. Functional testing cani be used effectively at

the unit testing stage. Automated stress testing has been shown to be a

highly efficient way to detect error.

Types of Errors. Detected

In Sec. 5.3.2 we described the TRW study of the effectiveness of aI

combination of structural and functional testing for the Project 3

errors Cthe results are summarized in Table 5.11, page 5-46). Unfor-

tunately, TRW did not distinguish between the two techniques. We cite

the high percentage of errors detected in a wide range of error cate-

gories as evidence of the effectiveness of functional testing.

TRW did consider the use of special values testing alone on the

Project 3 er-ors. This type of testing was also included in the study

of the combination of structural and functional testing. Table 5.12

lists the error categories and percentages for special values testing.1

Error Detection Ratio Data

It is strange that relatively few studies of the effectiveness of

the "traditional" testing method have been done, but that is the case.

In addition to the result for combined structural and functional testing

from the TRW Project 3 study (72.9% of total errors detected), we have

only three other pieces of error detection ratio data to report for

functional testing.

. Howden determined that functional testing could detect 14 of

28 errors (501) in the sample from six programs in different

languages.
2

I Special values testing is called DSET (for Data Singularity and Extreme

Test) testing in the TRW Report.
2W. E. Howden, -An Evaluation of the Effectiveness of Symbolic Testing,"I

5-59

TABLE 5. 12

ERROR TYPES DETECTED DY SPECIAL VALUES TESTING

Source: Table 4-32 of the TRW Report

Error Category Percent Detected

Computational 52.2%
Logic 57.*3%

I/0 35.2%
Data Handling 84.*2Z

Routine/Routine Interface 20.0%

User Interface 87.3Z
AGlobal Variable/Compool Definition 81.3%

Documentation 23.5%

* Howden found that functional testing would catch 38 of 42

errors found in the IMSL programs, or 901.1 He noted that

functional testing was the "best" technique to use for only

31 of those errors.

0 The TRW Project 3 study determined that special values

testing could detect 51.11 of aUl errors.2

Two other experiences with functional testing methods testify to

its effeactiveness. TRW used functional and structural testing at the
unit testing level in Project 5, before the error data was accumulated. 3

I1
2 Table 4-33, p. 4-162 of the TRW Report.

3Pp 4-174 and 4-175 of the TRW Report.J

5-60

They studied the error reports from integration testing to

determine which errors should have been detected earlier In the life

cycle than they actually were. They found th~at only 15.7% of these

errors should definitely have been detected in the unit testing stage.

Benson and Andrews 1performed an error seeding experiment in which

forms of special values testing and stress testing were each combined

with executable assertion testing. Only errors that could be detected

by assertion testing with a nominal set of input data were considered.

They compared the effectiveness and efficiency of the two types of

functional testing. The input domain tests detected all of the errors

considered; however, it required 683 test cases to do this. Stress

testing, using the Adaptive Tester, detected all but one of the errors,

and required only 57 tests; in fact, it detected all but two of the

errors in just 7 tests!

5.4.3 Reliability
Since functional testing does not have a well-developed method-

ology or an objective measure of test thoroughness, its success depends

heavily upon the skill of the person conducting the tests. Functional

testing often operates under a budget constraint, in which case effici-

ency in finding errors is of utmost importance.

Any error that prevents a program from operating correctly can be

found through functional testing. However, functional testing alone is

not useful for determining the efficiency of a program or for debugging.

Functional testing cannot guarantee the absence of errors or that the

code has been thoroughly tested.

I1
1J. P. Benson, Dd4. Andrews, op. cit., pp. 1-11 to 1-12.

5-6'

Functional testing works best when top-down project developmient Is

used. The greatest successes with functional testing have been for

small, numerically-oriented programs. Many problems of testing large or

non-numeric programs have not been addressed by current research.

Human Factors

Functional testing places a lot of analytical burdens on the

tester. He must detect errors manually. He must select test data that

will find errors effectively and efficiently. He must determine when

the payoff of continued testing has become less than its cost.

* The biggest accomplishment of recent research in functional

testing is that new sources of test data have been identified. There is

no cut-and-dried functional test methodology that can be followed; but

if a tester thinks in terms of program functions, input domains, special

values, and stress tests he should always be able to come up with a new

test case to run.

We believe that if a tester understands the concept of functional

testing, and understands the program being tested, he should be able to

do effective testing. Understanding is the crucial word here--large

programs require several people to contribute to the functional testing

effort, since no one person can be familiar enough with the entire

program to formulate test data and determine correct operation by

himself.

Efficiency is a very important consideration in functional

testing. Because of the large number of possible test cases, the amount

of functional testing that is actually performed may well be determined

by the amount of resources available for testing rather than by an

objective measure of test thoroughness. In such a situation, there is a

premium on choosing test data so that errors are detected as soon as

possible. Advanced stress testing techniques, such as those used in the

5-62

Adaptive Tester, have shown major improvements in efficiency over manual

methods. The success of such automated aids is still heavily dependent

on the skill and judgment of the human tester.

Kinds of Errors
It is probably true that any error in a program can be found by

functional testing. But it Is also true that functional testing cannot

guarantee that all errors in a program have been found. Unfortunately,

beyond these two aphorisms little can be said about the reliability of
functional testing for different error types.

Functional testing alone is not useful for determining the

efficiency of a program. Dead code and extraneous uses of variables
cannot be detected without knowledge of the structure of the program.
The timing information provided by instrumentation tools is vital to
improving the speed of execution of a program.

Even though functional testing is the most effective technique in

terms of the number and types of errors detected, there are several
reasons why it should not be the only test technique used. As we note
in Sec. 6.1, functional testing does not give adequate information for

locating and correcting errors. It is also important to use some

structural coverage information during testing-otherwise, there Is the
daniger that some sections of code will escape testing altogether.

Program Characteristics

Functional testing can begin at the unit testing stage of the life
cycle if the units perform well-defined functions. For this reason,
functional testing works well with top-down development. A test harness

can be used to help build stubs f or components that haven't been

developed when testing beg ins.

5-63

Functional testing is difficult for programs that perform a large

number of functions and have a lot of inputs. In such programs there

are a large number of possible test cases. Programs in which the

functions are highly interrelated can pose enormous difficulties:

errors may mask each other, and the relationship between input and

output can be very unclear. Good design techniques, especially modul-

arization, can help overcome these problems.

Functional testing seems to work especially well for mathematical

and numerically-oriented programs. The concepts of domain partitions,

special values, and stress tests may not apply so easily to text

processing, data base manageent, or other applications. Experiments

with the functional techniques in these areas should be performed.

5.4.4 Cost

No one seems to be studying how much functional testing does cost

or should cost. We found no data on either the amount of analysis time

or the computer costs for specific applications of functional test

methods. The relationship between the cost and effectiveness of

increasin4 mounts of functional testing should be explored.

The cost of functional testing is most sensitive to the number of

test runs mdo. This is true of both analyst and computer costs, since

the set-up costs are low. Test harnesses and stress testing tools have

very low overheads and can provide a net saving in computer and analysis

costs over manual testing.

Analysis Tim

Analysis time is likely to be the most significant cost item when

doing functional testing. Most of the analysis time is spent examining

test output for errors, although keeping track of past test results

manually can become a burden. The amount of analysis time increases

nonlinearly with the amber of test runs made, since past test runs have

to be considered when performing a now test.

"4f______________

Computer Resources 1
The computer resources needed to test a large program can be

signficat even if there is no tool overhead involved. Thi is because

funtioal estng eqire a arg nuberoftest rusfor such

programs. Test tools can help save computer resources by making it

possible to test parts of code separately, by automatically keeping
track of teat results, and by helping to generate test data.

Test harness tools require a very small mount of overhead.

During a teat run, the tool supplies a skeleton substitute for missing

modules, so execution time is much loe than that required by the

finished program.

Tools can digest teat data and use it to guide the selection of

new tests at negligible expense. We have used the Adaptive Tester as a2
test driver, stress testing tool, and data reduction package all at once
when testing programs. We have used sophisticated test data generation

algorithms and factor analysis on programs with up to 100 input vari-

ables. We have submitted jobs that made hundreds of runs of test

programs on a CDC 7600. For test programs that required on the order of
one second of CPU time per execution, we always found that the time

required by the tool was a small fraction of the total execution time of

the test run.

Procurement Costs

The XInDITER tool package, which includes test harness and several

other debugging capabilities, costs $25,000 to $35,000 depending on the

options selected (permanent license fee).

Cost Worksheet

Functional testing is an open-ended testing technique--a relia-

bility or coat criterion is needed to tell when to stop testing. The

amount of testing that can be done depends on the cost per teat run.

There is a heavy premium on efficiency in choosing test data that

detects errors early in the testing process.

5-65

5.5 FORMAL TECURIQUES

5.5.1 Suary

The formal techniques are symbolic execution and formal veri-

fication (program proving). Symbolic execution is the process of

forming mathematical expressions that relate the inputs and outputs of a

program. These expressions can be used to determine whether a program

correctly implements an algorithm;4 they can also be useful in static and

structural testing.

Formal verification means proving that a program complies with its

specifications. Formal verification dominates the development of any

software project in which it is used, since it affects the requirements,

design, and coding of the program. Formal verification must be planned

for from the beginning of a project-It cannot be added as an after-

Sophisticated mathematical and artificial intelligence techniques are

used in these tools. Still, they must be guided closely by the user.

Existing tools are not suitable for use outside of a research labora-

tory.

Symbolic Execution

Symbolic execution attempts to derive mathematical expressions for

the outputs of a program in terms of the input variables. Conceptually,

this can be done by carrying out the actions specified by each execu-

table statement in a program while storing symbolic Instead of actual

values for variables. For example, a loop to sum the elements of an

array

5-66

DO (-

SM SUM + A(I)

when symbolically executed would yield the expression:

SUM - A(l) + A(2) + A(3) + A(4)

Symbolic execution has a number of applications in program

verification:

* Programs can be tested symbolically by comparing the
expressions derived for output variables vith the desired

formulas.

0 The conditions that cause a particular program path to be

executed can be determined symbolically. These path

conditions can then be used to generate actual test data

values for use in structural testing.

* The path conditions can also be used to determine which

path. are feasible-that is, which ones can actually be

executed. This information is useful to both static

analysis and structural testing.

* Symbolic execution is used in the course of doing formal

verification of programs.

Formal Verification

Formal verification means constructing a mathematically rigorous

proof that a program will behave according to its specifications. A

complete proof of a program examines both the code and specifications

. . .. -- 5- . .

and shows that they are consistent. Walker, et al. 1 describe one way to

achieve a complete formal verification of some program properties.

Their method consists of three separate steps:

0 A top-level specification for the program is defined. This

is a concise statement about what the program is supposed to

do. An abstract-level specification that contains a general

description of the design of the program is then formulated.

The consistency of the abstract-level and top-level speci-

fications is proved.

* A low-level specification is developed which contains enough

information to enable the code to be verified. The consis-

tency of the low-l.evel and abstrac~t-level specifications is

proved.

* Finally, a code-level proof is performed. This is usually

done by the standard Floyd-Hoare methods. 2 The low-level

specification provides the input and output assertions that

are used to form the program's main verification conditions.

Formal verification is different from testing in that both the

specifications and the code are critically examined. Changes need to be

made in the specifications and design as well as the code in the course

of doing verification. Because of this, the entire program development

effort mist be dedicated to the task of proving the program. Programs

that are not designed and written to be formally verified cannot be

proved.

1___________________________________
5I. J. Walker, R. A. Kaemerer, G. J. Popek, "Specification and Verifi-
cation of the UCLA Unix Security Kernel", Comunications of the ACM,
Vol. 23, No. 2 (Feb. 1980), pp. 118-131.

Agood explanation of Floyd-Hoare techniques is contained in S. L.
Hantler and J. C. King, "An Introduction to Proving the Correctness of
Programs," Computing Surveys, Vol. 5, No. 3 (Sept. 1976), pp. 331-353.

5-68

During the course of proving a program, errors in code or specifi-

cations may be detected. Program proofs are conducted in a series of

sub-proofs or lemmas; each lema builds on the previous ones by exazin-

ing a relatively small number of additional statements. When one of the

lemmas can't be proved, the reasons for the failure may provide infor-

mation about what changes can be made to correct the situation and allow

the proof to succeed.

IProf. Richard Kemerer related1 an example of a graduate student

who was helping with the verification of a comunication system. The

student knew very little about how the system worked, but found a speci-

fication error in the course of trying to complete a proof.

Automated Tool Support (
Four kinds of tools support the formal techniques:

0 Symbolic execution tools

0 Verification condition generators

* Theorem provers

* Proof verifiers

A symbolic execution tool has two major components: a program

interpreter and an expression simplifier. The interpreter translates

each successive action of a program into a mathematical algebraic

expression. The simplifier then tries to reduce the output expressions

to as simple a form as possible. Symbolic execution LA usually done

interactively, so that the user can guide the tool in each of these

tasks.

Verification condition generators use symbolic execution tech-

niques. They work backwards from the final assertion of a lemsa and

derive the necessary preconditions for it to hold.

1Personal communication, June 1981.

5-69

Once the verification conditions are formed, a theorem prover can

be invoked to try to establish the truth of the lern. Theorem provers

are complex proirams which can interpret the assertiona and program

statements and apply complex rules of inference and various heuristic
proof strategies.

Once a proof of a lemma has been constructed, it must be checked

for correctness. Theorem provers usually have a proof verifier built

into them. Special verifier tools exist to check manually generated

proofs.

Formal techniques and the tools that support them are still being

developed by researchers.* Formal techniques are so complicated and

specialized that no tools have yet been developed that are suitable for

wide-spread use. Institutions that are conducting research on formal

techniques usually develop their own "proof systems," which typically

include special programing languages and design methods as well as the

tools mentioned here. Several such systems are described in the tools

survey in Appendix B.

5.5.2 Effectiveness

Symbolic execution can be used to teat a program in a manner

similar to structural and functional testing. A significant number of

errors in a program can be detected this way.

In the last two years, several successful applications of formal

verification to large, useful programs have been announced. These have

been proofs of the security of computer or comunication systems. A

major shortcoming of current formal verification methods is that there

is no known way to prove f ault- tolerance.

5-70

Symbolic Execution

Bowden has studied the use of symbolic execution to enhance other

test techniques. He considered the effect of using functional and

structural testing methods on symbolic as veil as real data. Symbolic

structural testing means deriving algebraic expressions for those paths

that were selected during structural testing with actual values.

Symbolic functional testing means deriving algebraic expressions for the

program functions.

Bowden examined the errors from his sample of six programs in four
different languages. He found that symbolic testing alone could detect

217 of the 28 errors, or 61%. Symbolic testing improved the effective-
ness of both structural and functional testing

Successful Formal Verification Efforts

In the past few years researchers in the field of formal verifi-

cation have felt challenged to prove the usefulness of their methods in

the "real" world. Recently they have enjoyed quite a few successes for

programs of respectable size and complexity.

Walker, et al. completed most of the verification of the security

of the UCLA Unix Kernel. The kernul forms part of a working operating

system for a PDP-1l/45, although the system is unacceptably slow. (The

reasons for the poor performance are unrelated to the fact that It was

subjected to verification.) The project was intended to be strictly for

research and demonstration, so not all of the proofs were carried out.

The participants are convinced that the rest of the proof could be

completed, given sufficient resources.

The notes of the first two Verification Workshops contain descrip-

tions of two other successful recent verification efforts. These were:

1 W. E. Bowden, "An Evaluation of the Effectiveness of Symbolic Testing",
op. cit., p. 389.

5-71

0 Verification of a security guard in a distributed system.
1

The system is working with the guard embedded in it. This
work was done at the Institute for Computing Science and

Computer Applications of the University of Texas.

* A year later, the same researchers reported that they had

verified an encrypted packet interface for the ARPANET. 2

What Properties Can Be Verified?

Recent verification efforts have concentrated almost exclusively

on the security properties of computer and communication systems. The

methods of verifying such systems have become well known in the formal

verification community. However, there are other software application

areas in which performance is so critical that the expense of verifi- {
cation would be justified if there were a reasonable chance of success.

Boebert 3challenged the gathering at the VERkshop to consider what

would be involved in verifying embedded control software such as in an

aircraft autopilot system. He notes that such systems are computa-

tionally simple, use simple data types, and maintain a small state
space. However, the verification requirements are severe and there is

the need to prove fault-tolerance.

Hans4alodsusdptnilapiain offra vef-

cation. He noted that two shortcomings of current verification methods

were an inability to analyze the accuracy of floating point computations

and the lack of a way to specify fault-tolerance requirements.

1D. 1. Good, M. K. Smith, "A Verified Distributed System", mimeographed

notes of the Verification Workshop ("VERkshop"), SRI International,
Menlo Park, CA, April 1980.

2. K.~ Smith, et al., "A Verified Encrypted Packet Interface", Software

Engineering Notes, Vol. 6, No.3 (July 1981), pp. 14-16.

Wd. E. Boebert, "Formal Verification of Embedded Software", first
VERkshop notes, p. 106.

4G. A. Haynes, "Position Paper on Program Verification", first VERkshop
notes, p. 9.

5-72

5.5.3 Reliab''lity

The shortcoming of formal techniques is that they are so compli-

cated that user errors are inevitable. Currently tools do not remove

enough of the mechanical burden from the user. Both symbolic execution

and program proving require a lot of tedious work. The expressions

generated by formal tools are often complicated and difficult to in-

terpret.

Howden drew the following conclusion from his experience with

symbolic testing:

"In general, it was found to be difficult to
apply symbolic evaluation to all but the
functional modules at the lowest level of
abstraction... symbolic evaluatian should be
limited to low level modules..."

It is not surprising that mistakes have been made in the use of

program iroving techniques. Gerhart and Yelowitz2 discuss four programs

that were claimed to be proved and were later found to contain errors.

A major problem with formal verification is that a set of formal

specifications must be written for a program. This set of specifi-

cations must be complete and rigorously formulated, since the proof will

be based upon it. Writing formal specifications is a difficult and

tedious task--it is difficult to find people capable of and willing to

do this work.

1W. E. Howden, "An Evaluation of the Effectiveness of Symbolic Testing,"
op. cit., p. 395.
2S. L. Gerhart and L. Yelowitz, "Observations of Fallibility in Appli-
cations of Modern Programming Methodologies," IEEE Transactions on
Software Engineering, Vol. SE-2, No. 3 (Sept. 1976), pp. 202-205.

5-73

i

Formal verification imposes some constraints on the form of the

software. Some researchers feel that a code-level proof is only valid

if the code is written in a language that is axiomatically defined.

This excludes more commonly-used languages such as FORTRAN and COBOL,

although other researchers have used formal techniques with these

languages. In all programing languages, there are serious problems

with proving properties of programs that include real or character

variables or that have timing or synchronization logic.

5.5.4 Cost

The formal techniques are very expensive compared to static and

dynamic testing because they involve intensive amounts of highly skilled
labor. Because the formal techniques are still being developed, there

are no good ways of estimating the costs of a prospective application.

Project managers who are considering using lormal techniques should

obtain the services of someone who is experienced in the field.

Syabolic Execution

Howden I gives some estimates of the time and storage required by

symbolic execution tools. To symbolically execute a path through a

program, the storage required is proportional to the sum of the number

of branches in the path, the number of statements in the path, and the

number of variables in the path.

Formal Verification

Below we present some information on the amount of effort required

by a few program proving efforts. A major problem with this data is

that it is difficult to make generalizations across projects. Different

people approach formal verification in different ways. Complete veri-

fications are not always performed-some just do a code-level proof;

1W. E. Howden, Symbolic Testing--Design Techniques, Costs and Effective-

ness, NTIS PB-268, 517, U.S. Department of Commerce, Springfield,
Virginia.

5-74

others do not rigorously apply the proof methodology to the entire

program and specifications.

Another problem with determining "representative" costs of formal

verification is that there is no agreed-upon standard of the size of the

job. Measures such as the number of lines of code or the number of

modules do not give a good indication of the difficulty of proving a

program. Some of the data cited below give the number of verification

conditions used in a proof. Since different proof techniques yield

different numbers of verification conditions, this does not provide a
universal standard, either.

0 Walker, et al. 1required four to five person-years on the

UCL& Secure UNIX kernel.

* Smith, et al. 2report that they used only two person-months

in completing their verification of the Encrypted Packet

Interface. The proof required 185 verification conditions,
of which 144 were proved automatically by the algebraic

simplif ier tool. The program contains about 2000 lines of

Gypsy code.

* A small queue manager program was verified using the SQI.AB

two were proved automatically, the others interactively.

This work required 21 seconds of execution time on a CDC

7600.

1 B. J. Walker, et al., op. cit., p. 128.
2M4. K. Smith, et al., op. cit.

3 .H. Saib, et al., op. cit., p. 179.

5-75 I~

0 As an indication of how the 'performance of verification

tools can be improved, consider the experience of SRI with

the RPE (Rugged Programming Environment) proof systems . The

two versions were benchmarked using a binary search routine.

The earlier version (RPE/1) required 210 seconds for

parsing, 5 seconds for verification condition generation,

and 600 seconds for proof deduction on a DEC KA-10 computer.

The improved version (RPE/2) required 0.7 seconds for

parsing, one second for verification condition generation,

and 27.5 seconds for proof generation, although these

figures are for a slightly faster machine. The overall

improvement in speed is a factor of about 27 to 1.

lB. Elspas, R. E. Shostak, J. H. Spitzen, A Verification System for

JOCIT/J3 Programs (Rugged Programing Environment - RPE/2), Rome Air
Development Center Technical Report No. RADC-TR-77-229, p. 35.

5

S5-76 1.

...__I

6 OTHER CAPABILITIES 0O' TEST TECHNIQUES AND TOOLS

We selected our breakdown of test technique categories to facili-

tate the analysis cf error detection. Some of these techniques also

provide information that is helpful in the tasks of error locatio. and

correction. We describe this information in the first two subsections

below. In Sec. 6.3 we look at some automated tools that have been

itdeveloped specifically as aids for error location and correction. Many

of these tools also support one or more of the test techniques.

Of the static and dynamic test techniques, static analysis clearly

provides the greatest amount of debugging information about the errors

that it detects. Functional and structural testing provide the least.

In between these extremes lies executable assertion testing, whose

debugging capabilities have never been studied in detail. Although we

know of no empirical evidence about the debugging effectiveness of theI

test techniques, we offer the ranking of the techniques for error

location and correction capability shown in Table 6.1.

TABLE 6.1
ERROR LOCATION AND CORRECTION CAPABILITY RANKINGS

(I1- best)

1. Static analysis

2. Executable assertions

3. Structural testing

4. Functional testing

6-1

We have not included formal verification in our treatment of

debugging. However, program proving can produce error correction
information in the same way that it can detect errors. We described how
err'irs are detected during verification in Sec. 5.5.1.

The techniques described in this report can be useful in two other

areas of software development besides testiug: program documentation
and the analysis of program quality. In Sec. 6.4 we look at how some of
the documentation required by a military standard can be satisfied by
static analysis reports. In Sec. 6.5, we examine the ways that the teatI, techniques support two schemes for evaluating the overall quality of a
piece of software.

The test techniques supply less than half of the information
required by either the documentation standard or the quality evaluation
schemes. However, static analysis provides sign~ificant amounts of
information in both areas. Most of the information required for
documentation and program analysis can be obtained from source code.
Therefore, static analysis tools could be expended to provide this
information.

6.1 ERROR LOCATION
Both static analysis and executable assertion tools give statement

numibers in their diagnostic messages. However, assertion diagnostics
represent symptoms of errors, wehile static analysis can often identify
the source or instance of an error. The kinds of error and anomaly
checking that static tools can perform are discussed in the character-
istic profile in Sec. 5.1. Static analysis cannot always isolate errors
to single statements, but it usually does so for the following error and
anomaly types:

0 Module interface errors

* Coding standards violations

* Mixed-mode arithmetic

6-2 .

Other static error and anomaly types by their nature span a range

of statements. However, a few of the statements in the range can be

singled out for closer scrutiny. For example, if a variable is reported

to be referenced at a statement before it has been defined, it may be
that an assignment or other defining statement needs to appear somewhere

on the path to the reference. But it is also possible that the state-

ment referencing the variable has been coded incorrectly, and another
variable should appear in place of the undefined one. Thus, static

analysis provides localization of errors to the statement, in the best

case-or to the path, in the worst case-for the following error and

anomaly types:

0 Variables set but not used

0 Unreferenced statement labels

A third class of errors and anomalies detected by static testing
reflect problems in program logic or control flow. Correcting these

tye fproblems may just require a change in one statement; or it may
be ecssryto rwieafairly large amount of code. These errors and

0 Infinite loops

Recursive procedure calls

* Deadlock

0 Unreachable code

For static tools to detect these errors, they must be structural
I -that is, the errors must be inherent in the control structure of the

program, and not depend upon relationships between variables. Usually
thechagesreqire tocorrect such problems will be made to code that

is ithn r nar herange of an error. This is because structural

logi erorsare ormllythe symptoms of simple acts of negligence on

6-3

the part of the programmer. These error types are much harder to locate

if they cannot be detected structurally.

6.1.1 Error Location Metric

The preceding analysis suggests a metric for the degree of

localization of errors that the static techniques provide. For each of

the three groups of static error and anomaly types listed, we can

examine the ratio:

mount of code that must be searched to find the error
mount of code which is incorrect

An error in the first group of static checks listed above is

usually located at the statement for which a diagnostic message is

issued. Thus the error location metric value for these error types will

givenl ie n te.dansi;o tmyb h aeta h oeta

An error from the second group may also be located at a statement

(logically) precedes the statement must be searched to find the error.

Thus the size of the numerator of the location metric for this group can

vary from "~ little as one statement to as much as an entire module, or

several modules for global variables. Since the code change required is

usually on the order of one statement, the location metric value will

vary considerably for these error types.

The last group of errors usually involves a code segment such as a

loop or branch. IThe statements that cause the error often are control

points (e.g. "if", "while", "goto" statements) in the vicinity of the

We use the term "branch" to mean all statements between two logically
adjacent control points in a program.

6-~4H

identified segment. So the location metric value for these errors

should typically be small.

Table 6.2 suinarizes the error location metric as applied to the

static error and anomaly types. Structural descriptions of code

(statement, branch, path, module) are used instead of numbers since they

are more descriptive in this situation.

6.1.2 Error Location Capabilities of the Dynamic Techniques

As mentioned above, executable assertions also supply statement

numbers with their diagnostic messages. This feature can be used by a
0 skillful tester to provide a great deal of information about the

location of certain kinds of errors. For example, when assertions are

used to check the validity of steps in a complicated computation, a

report of an assertion violation often isolates the error to the last

step performed before the assertion.

However, since assertions can only impose conditions involving

values of program variables, they report symptoms of errors rather than

causes. There may be a lot of code separating the point where a bad

value is generated and the place where it is used in a computation that

is checked by an assertion. It may be that the value did not look bad

when it was generated, but caused a problem because it was used incor-

rectly. For example, assertions can be used to check for division by

zero. When a programer finds that his program is guilty of producing a

zero as a denominator, he does not always change code that is close to

the statement that performs the division.

6-5

TABLE 6.2

LOCATION METRIC APPLIED TO STATIC ERROR AND ANOMALY TYPES

Error or Anomaly Type Location Metric Value

Module calling sequence error _

i One or a few statements

Coding standards violation One statement

Mixed-mode arithmetic

Uninitialized variable

One statement to several modules

Variable set and not used One statement

Unreferenced statement labels

Infinite loop

Recursive procedure call One statement to a few branches

Dealc One statement to a few branches

J DeadlockI

Unreachable code

6-

6-6 ,

I !

I

As was the case for error detection, the effectiveness of asser-

tions for locating errors depends to a great extent upon the skill and

knowledge of the person who writes the assertions. We feel that asser-

tions which provide effective error detection will also supply good

error location information. However, to best locate errors, individual

assertions should contain as few variables and relations as possible. j
For example, the statements

ASSERT (M.GT.O)

ASSERT (N.LE.100)

provide better location information than the single assertion

ASSERT ((M.GT.O).AND.(N.LE.IOO)),

even though both sets will detect the same errors.

We believe that an effective set of assertions will isolate most

detected errors to the segment of code between the last branch point and

the position of the violated assertion. In terms of the error location

metric, this means assertions localize errors to the level:

Number of statements on a branch

One statement

We base this conjecture on a standard for using assertions that

requires all program inputs and each control point to be checked for

validity of relevant variable values. This standard is part of the

assertion mechodology proposed in Sec. 7.2. If our conjecture holds,

then assertions are a fairly powerful error locating technique.

Structural testing can provide a much smaller amount of error

location information. No diagnostic messages are associated with this

technique; however, the coverage reports issued by instrumentation tools

indicate what sections of code were executed in a test run. Any code

that is in error is obviously part of the code that is executed. Each

test case represents one complete path through the program, which may be

a very large amount of code.

6-7

!I

Functional testing alone provides no error location information.

If this technique is being used to test a small amount of code-for

instance, a single module during unit testing-then this may not be a

serious drawback to its use. Functional testing may sometimes be used

alone when debugging does not accompany testing-for example, during

acceptance testing, in which errors are noted on problem reports for

later consideration. But to test and debug medium-sized or large

programs, functional testing should be augmented either by another test

technique which provides error location information, or by specialized

debugging tools as described in Sec. 6.3.

6.2 ERROR CORRECTION

Automated tools cannot correct errors in the sense of making

changes to code, but they can help a programmzer make correctiona. Since
the diagnostics issued by static analysis describe wrong or questionable
conditions in a program, they suggest actions which might remedy the

conditions. The test techniques can also be used to help to verify that

a change made by the prograer has corrected an error and has not

introduced other errors.

Table 6.3 lists some of the corrective actions suggested by each

of the static error and anomaly checks. These actions will not always

solve the problem (indeed with an anomaly there may be no problem at

all) but they may provide a starting point in the search for a correc-

tion. Other corrections may be suggested by combinations of static

messages: for instance, a misspelled variable will usually produce both
"uninitialized variable" and "variable set but not used" messages, one

each for the correctly spelled and misspelled versions.

6-8

TABIE 6.3

CORRECTIVE ACTIONS SUGGESTED BY STATIC ANALYSIS DIAGNOSTICS

Error or Anomaly Type Possible Corrective Action

Infinite loop Add a statement checking for exit

condition

Module calling sequence error Change the variables in the "CALL"
statement

Recursive procedure call Convert code to nonrecursive form

Uninitialized variable Add an initializing statement

Deadlock Provide for supervision of "wait")

Coding standards violation Use equivalent standard construct

Mixed-mode arithmetic Declare variables of proper type

Variable set and not used Remove the last assignment

Unreachable code Remove the code segment

Unreferenced statement label Remove the label

*A standard method of removing recursion is given in E. Horowitz and
S. Sahni, Fundamentals of Data Structures, Computer Science Press,
Inc., 1976, pp. 160-161.

An Error Correction Metric

When a programmer makes a change to his code to correct an error

he will normally rerun some tests to see that the change has corrected

the problem. If this retesting is to be effective, all the tests that

may be affected by the code change must be rerun. Although this will

not guarantee that the changed code Is correct, it does update the

entire testing process tn' the point at which the last error was found.I

6-9j

For a technique to be a good debugging aid, it must be easy and

inexpensive to do retesting. The effort required to retest a program

depends on the nature of the test technique and the code changes that

were made. This can be stated in the form of a metric as:

(Number of retesting runs) x (Amount of code in a retest run)
Amount of code changed

For most kinds of static testing, only those modules in which a

change appears must be rerun through the static test tool. This is true

even for changes that affect global variables, because static tools can

supply the infformation about the behavior of other modules from a stored

data base. 1 So the retesting metric value for static analysis is one

test of one module per module changed.

To effectively retest using dynamic test techniques, all the test
runs affected by the changed statement should be rerun. For structural

testing, there is information available about which previous test cases

executed the changed statement. Only these cases need be rerun. This

information is not available when functional or executable assertion

testing are used alone, so all previous test cases must be rerun.j

If information were available about when in tae program executionj

sequence the changed statement appeared, and if the program could be

restarted at that point, then each dynamic test run would not have to be

repeated in its entirety. Test harness and interactive debugging tools

have some of these capabilities (see Sec. 6.3), but we know of no tool

which is entirely suitable for this purpose.

1The data base library feature of the SQLAB tool is described in S. H.
Saib, et al., Advanced Software Quality Assurance Final Report, General
Research Corporation CR-3-77O, May 1978, pp. 143-144.

6-10

Table 6.4 summarizes the error correction metric for the static

and dynamic test techniques. For the dynamic techniques, the amount of

retesting depends upon the amount of testing performed previously. This

puts a premium on finding and correcting errors early.

TABLE 6.4

CORRECTION METRIC APPLIED TO THE STATIC AND DYNAMIC TECHNIQUES

Test Technique Correction Metric Value

Static analysis One test of oae module per
module changed

Structural testing All affected test cases

Executable assertions All test cases

Functional testing All test cases

6.3 DEBUGGING TOOLS

A considerable number of debugging tools an- packalee have

appeared in recent years. Many of the tools are available commercially

and are described in software product d~rectorl-s such as Datapro.

These tools usually provide some combination of five types of features:

* Formatted dumps

0 Execution traces

* Ter. harness capabilities

I
1Datapro Directory of Softvare, Datapro Resep~rch Corpors ion, August
1980.

6-11

*Interactive debugging

*Test languages and libraries

Formatted dumps augment the traditional method of debugging

pro grams by examining octal or hexadecimal dumps of memory areas at

program termination. A tool can attach variable names to values and

properly interpret numeric and characLer data. It can also give the

immediate cause of an abort, the source code module name and lin-

number, and the sequence of module invocations at the time of the

termination.

Execution traces provide a log of program operation during the

entire course of execution. Statements covered, modules called, and

changes in the values of specified variables are reported. Execution

trzces can give information about nearly every facet of program operA-

tend to overwhelm the user with output and thus do not reduce the

analytical burden of testing.

Test harnesses allow the tester to exercise parts of programs, by

providing stubs or other substit4tes for missing modules. We consider

test harnesses to be the main automated 3upport for functional testing.

They can also be used to isolate crucial or troublesomie areas of code

for more thorough testing.

Interactive debugging gives the tester enhanced control over

program execution. He can specify places in the program where execution

is to stop so that conditions can be examined. The tool saves the

program state, so that testing can be restarted at that point. A tool

can also permit execution to be started at an arbitrary entry point by

querying the user for needed information.

6-12J

Test languages and libraries provide a way for a set of tests to

be automatically documented and reproducible. This can automate the

retesting process and insure a great degree of thoroughness. Tools can

also generate graphic displays of test results that are useful for

management purposes.

These five debugging features can be combined with the test

techniques described in this report to form more powerful test tools. A

drawback to incorporating the debugging features into general-purpose

tools Is that often their implementation is highly system-dependent.

Table 6.5 lists some tools with these debugging features that were

included in the tools survey in the first interim report. Many other

tools are available commercially, most of which are designed for widely

used business computing systems.

TABLE 6.5

TEST TOOLS WITH DEBUGGING CAPABILITIES

(Source: Tools Survey, Appendix B)

Tool Capabilities

ATDG Test harness

CAVS Execution tracing, test library

OPTIMIZER III Dump formatting, interactive debugging

PRUFSTAND Dump formatting, execution tracing, test
harness, interactive debuggging

TESTMANAGER Dump formatting, test harness

TPL Test harness, test language and library

XPEDITER Formatted dumps, execution tracing, test
harness, interactive debugging, test
language and library

I 6-13

1*

6.4 DOCUMENTATION

A by-product of many static analysis reports produced by automated

testing tools is information which can be used to help document the

program being analyzed. A summary of the kinds of information produced

was given in the first interim report and is reproduced below.

* Global cross-reference report indicating input/output usage

for variables in all modules

0 Module invocations report indicating the calling modules and

showing all calling statements

0 Module interconnection report shoving the program's module

calling structure

0 Special global data reports for variables in COMMION blocks

and COMPOOLs

0 Program statistics including total size, number of modules,

module size distribution, statement type distribution, and

complexity meagures

* Summaries of analysis performed, program statistics, and

errors and warnings reported

As an example of a standard for adequate documentation of computer

programs, we will use MIL-STD-483, Appendix VI. The relevant sections

of this appendix are those describing the Computer Program Configuration

Item (CPCI) Part II specification. An outline of the required content

of this specification is shown in Table 6.6. Sections 3 and 4 are

relevant to documentation of computer programs.

~Configuration Management Practices for Systems, Equipment, Munitions

and Computer Programs, MIL-STD-483 (USAF) Notice 2, March 21, 1979.

6-14

TABLE 6.6

MIL-STD-483 CPCI PART II SPECIFICATION

1. Scope

2. Applicable Documents
3. Requirements

3.1 CPCI Structural Description
3.2 Functional Flow Diagrams and Charts
3.3 Interfaces
3.4 Program Interrupts

3.5 Timing and Sequencing Description
3.6 Special Control Features
3.7 Storage Allocation

3.7.1 Data Base Definition
3.7.1.1 File Description
3.7.1.2 Table Description
3.7.1.3 Item Description
3.7.1.4 Graphic Table Description
3.7.1.5 CPCI Constants

3.7.2 CPC (Computer Program Component) Relationship
3.7.3 Data Base Location Requirements

3.8 Object Code Creation
3.9 Adaptation' Data
3.10 Detail Design Description

3.10.X Identification of CPC No. X
3.10.X.1 CPC No. X Description
3.10.X.2 CPC No. X Charts
3.10.X.3 CPC No. X Interfaces
3.10.X.4 Data Organization
3.10.X.5 CPC No. X Limitations
3.10.X.6 CPC No. X Listings

3.11 Program Listings Comments

4. Quality Assurance
4.1 Test Plan/Procedure Cross Reference Index
4.2 Other Quality Assurance Provisions

5. Preparation for Delivery
5.1 Preservation and Packaging
5.2 Markings

6. Notes

10. Appendix(es)

6-15,1t'

Table 6.7 shove for each static analysis report, the section of

the requirements for vhich it produces documentation.

Executable assertion testing is the other technique that is a

source of program documentation. Assertions rrovide in-line documen-

tation of a program, in a manner similar to comment statements.
Assertions are not a substitute for comments as explanatory material.
However, they do provide very helpful information.

TABLE 6.7

DOCUMENTATION PRODUCED BY STATIC ANALYSIS TECHNIQUES

Static Analysis Report Part II Specification Section(s)2

Global cross-reference report 3.7.2; 3.10.X.3; 3.10.X.4
Module invocations report 3.3; 3.10.X.3

Module interconnection report 3.1

Special global data report 3.10.X.3

Program statistics none

Smaries of analysis performed 4.1; 4.2

6.5 CONTRIBUTION OF TEST TECHNIQUES To SOFTWARE QUALITY EVALUATION
A high quality software product does more than just satisfy its

specifications. It should be efficient; it should be easy to under-
stand, use, and maintain; and it should be flexible enough to be used in

dif ferent environments. Two schemes which have been developed to

d~Ievaluate these program qualities are briefly described here. We then
examine how automated test techniques can be used to measure these

qualities.

6-16

TRW Study

The first evaluation scheme was developed at TRW. A set of seven

desirable qualities for programs was identified. These desirable

qualities are evaluated in terms of twelve "primitive characteristics"

that are measured by examining the program. Each primitive charac-

teristic is associated with a list of questions about the program--the

characteristic is measured by answering the questions.

Test techniques can support the evaluation of the primitive

characteristics in three different wkys. Some of the questions are

normally answered during testing--we have termed this "direct" support.

For example, one of the "completeness" questions is: "Is the code free

of obvious errors?" This question can be answered by applying static

and dynamic testing to the program. If a program "passes" a thorough

test sequence, then it will have all of those properties which are

directly supported by the test techniques used.

In other cases, test techniques can provide the information needed

to answer a question, but this information is not necessarily used as

part of the testing process. We have termed this "indirect" support.

For example, one of the "structuredness" questions is: "Are the modules

limited in size?" Static analysis tools, or compilers that provide

program listings, can give the length of each module in a program.

However, standards of program size may not automatically be used in

static testing, so static testing does not guarantee that a program has

this structuredness property.

1 B. W. Boehm, at al., Characteristics of Software Quality, TRW Systems

Group Report No. TRW-SS-73-09, December 28, 1973.
2Many standards checkers call attention to a module that has an

excessive number of executable statements by printing an error
message. This would constitute direct support for this structured-
ness question. However, most general-purpose static tools do not
enforce module size standards: they typically only give size
statistics as part of documentation reports.

6-17

A third way for test techniques to support quality characteristics

is by providing a required capability to a program. Consider the

completeness question: "Is input data checked for range errors?" if

executable assertions which check variable ranges have been added to the

code, then this question can be answered "yes". We call this "supple-

mentary" support for a characteristic.

Using our knowledge of test technique and tool capabilities, we

have rated the degree of support provided to each of the TRW primitive

characteristics. The results are presented in Table 6.8. Support for a

characteristic is rated high (B) if most of the questions f or that

characteristic can be answered from information provided by the test

techniques. Support is rated medium (M) if there is considerable

support but there remains important information that cannot be supplied

by the techniques. A characteristic receives at least low (L) support

if tebt techniques can answer any of its questions - otherwise it

receives a zero (0) for no support.

The way in which support is provided is listed as direct (D),

indirect (I), or supplementary (S). Since each primitive characteristic

may have several questions associated with it, more than one type of

support may be listed.

The most coinon supporting test technique is static analysis.

This reflects the fact that many of the TRW questions are based on

properties of the source code. The dynamic techniques of functional

testing, executable assertions, and instrumentation play an important

part in supporting four of the characteristics. Very few questions were

found which could be answered by more than one technique.

TRW considered two methods of collecting data about the quality

factors: an algorithm which scans source code without user input or

guidance, and a consistency checker which requires the user to supply a

6-18

TABLE 6.8
TEST TECHIQUE SUPPORT FOR TRW QUALITY FACTORS

Q-A I ily Fraction Degree of MatdOf Test Technique$
Ciseracterl c Autanomtoi Support Support

OMWLET!EWSS 12/13 M s.0,1 Static det flow analysis

Standards -wi5-lnug
Exacutabie assartlons
Functimnal twsins

46 CCMY 0/1 M D Functional testing

026iS1,cy 7/12 M 0&"ttic alied and" analysis,

global dat docummotaicam
standards checker - languange

DEVICE- 3/4 M I inatr matties - timing
EFT IC IOECY analysis

ACCSSIILITY

GOOMICATIV9ESS 9/11 N4 S Test barne*s
Executable sartians
Instrumentation - esutiain

tracing

M~IX.IPEDSS 7/9 N4 D,I Static aduis istarfacesmaalysis,
ceiling tree documntation

Standards discher-ilenlag

SELF- 3/11 1. S.1 Static unitsaessertioos
WoE IPTitISS" runctiessi testing

CCNI SEESS 7/4 a Static ueachable caee
detect ion * stsasom cross-
refearence

L1418OLITY 9/10 N0.1 Static statement ces

Standards chacker- isaguage

AUBSfAGI LI TV i/i 0-

6-19I i

checklist. Such tools need not currently exist for a question to

receive a favorable rating on automatability-TRW only required that it

be cost-effective to build and use them. They determined that 72% of

all the questions, and also 72% of the important questions, could be

answered partially or completely by such tools. We judged that 42% of

all questions, and 47% of the important questions, were supported by

test techniques.

GE Study

The GE software quality evaluation scheme has a structure similar
to the TRW scheme. A somewhat different set of quality characteristics,
called "software quality factors", were selected. A set of software

metrics was developed to support the evaluation of the quality factors.

The major differences between the GE scheme and TRW's are that several

quality factors may share the same metrics, and the metrics may take

numerical values rather than just yes or no.

Our evaluation of the support that test techniques can provide for

the GE quality factors is presented in Table 6.9. As in the TRW study,

various static analysis reports provided the greatest amount of support.

The dynamic analysis techniques play a much smaller role in supporting

the GE quality factors than they did in the TRW scheme.

It is surprising that correctness is given a low degree of support

by the test techniques. The GE metrics for correctness are: tracea-

bility of modules to requirements, completeness, prncedure consistency,

and data consistency. It is difficult to understand why no operational

standards were included under correctness.

1 J.A. McCall, P.K. Richards, and G. Walters, Fae.tora in Software
Quality, Metric Data Collection and Validation, Gene al Electric Co.
Report No. RADC-TR-77-369, Vol. II, November 1977.

6-20

II

TABLE 6.9
TEST TECHNIQUE SUPPORT FOR GE QUALITY FACTORS

Qwll Ity Fractllon Doages at ftl¢mdof Test Tecti lqam
Ckerecter aIcf Autommita1 e Sullt' Suppor't

10:1111111:1 1 0 Stal dal flow aalysls.
mdule If I@rfece aelysls

KLIABILITY 14/47 N I.S.0 Static deft flow lwelyls.
slultinin" €aom-r ef,

flow charts
£Encutable eaertlions

uv'ICIENCY 14/20 L 0 Sttic date flow uualysli,
inowely doection. uitsY

aertloes

IaLI~T 0/23 a

INTEGRITY 0/ 0 -

W.INTAINAIILITY 25/44 1 1,0 Static deft flw aIalysis.
statment cresw-fefervc.
flowieartsl, Collig free

Stmards checker-lAgumge

FLEXIBILITY 20/ L I Sttlc 2 1t"at cross-
rol-- call in true

S aned clmwher-lo ngunge

TESTABILITY 21/44 I ',D Static sm T. e

Wrfa. calling ree.

do". flaw analysis
Sftructurl twetIng

Imntrmmtloe-timng nalylis

EIJ IILITY 21/30 N 1.0 Static t "t Gross-
referewom callIng tfre

standards clucelr- language

IMTIITY 16/23 14 1,0 Static sfttamw rs

reforamce, ce I IIngfr

Standrds duculor- lagunge

I AIVWG ILITY 1460" N 1.0 Static stateelt Cross-

refW ww . calling free
Standards ecear- lguge

62

3
I

II

GE judged that between 60% and 70% of the metrics were automatable

for eight of the quality factors. Overall, 40% of the metrics were

rated automatable. We found that 322 of all metrics were supported by

test techniques. None of the quality factors had more than 48% of their

metrics supported by test techniques.

The amount of test technique support for the TRW and GE software

quality categories is rather disappointing. However, the two studies

emphasized structural rather than operational properties of software. A

thorough test exercise of a program will tell more about how correct and

reliable a program Is than the "medium" ratings indicate. Someone who

has spent a lot of time performing tests will have a good idea how easy

program is to use, test, and modify. However, the low ratings for
other quality factors mean that testing will not guarantee that a

Both the TRW and GE studies show a greater potentia. for automated

data collection than what is currently provided by the test techniques.

These data collection capabilities could be incorporated into the

standard test tools to insure greater overall quality in tested

software.

6-22

7 PROSPECTS FOR IMPROVEMENTS IN THE TEST TECHNIQUES

The ratings in the previous sections reflect the current state of

refinement of the test techniques. The ratings are based on the way the

tools are used individuaily in a typical software development environ-

ment. This section describes some ways that the techniques can be

improved. In some cases, these improvements are still being developed

and refined by researchers. But in other cases the methods are

available now.

Advanced software engineering methods can ameliorate some problems

associated with testing. For example, static testing of a program

written 'n the language Ada will produce no extraneous mixed-mode

wai iiugs (indeed no mixed-mode warnings at all)-Ada requires strict

type compatibility in all expressions and assignment statements. I

Combining several test techniques can relieve some of the analy-

tital burdens of testing. For example, using executable assertions

while performing structural or functional testing can provide a great

deal of assistance in error detection and location. The next report

will provide guidelines for combining the individual techniques into an

effective test strategy.

The improvements described below do not change the relative

rankings of the test techniques as presented in the previous sections.

We anticipate that all of the techniques will be improved in the future.

Many static analysis checks will be incorporated into the compilers that

implement advanced programming languages--this will make static testing

more automatic ane universally used. Dynamic testing methods will be

better defined so that they will be commonly understood and applied by

practicing programers. Successes with the use of formal techniques

will encourage researchers to develop ways of making them more practi-

cal.

7-1 j

·- •

7.1 STATIC ANALYSIS

Extraneous warning messages are the biggest cORplaints of uaera of

8 u. tic analysis. Two types of anonaly checking account for most of

these ''red herrings": mixed-mode arithmetic and data flow analyses.

The number of extraneous mess·~rges can be gignificant:· ··-;![" 500D-statelllent

FO~TRAN program tested by Gannon, et e1. 1 using GRC's SQLAB tool

produced about 130 mixed-mode arith1uetic warnings, none of which

indicated improper program operation. The same program was seeded with

37 errors awl proceGsed by the DAVE static analysis system; it gen~rated
2 580 data flow error and warning diagnostic meuages.

Anomaly detection will inevitably generate false alarms, because

its purpose is to find progracming practices that are capable of

produc.ing e:rror3 but not certain to rio so. In sone situations prcgral'll­

mers find it convenient to violate a principle enforced by anomaly

detection. For example, most FORTRAN compilers provide automatic

conversion from integer. to real and real to integer; so programmers do

not bother to referen~e the IFIX and FLOAT routines.

Most static analysis tools (including SQLAB and DAVE) give the

user the option of suppressing individual anonaly detection messages.

Of course, the danger in this is that act'ual errors can go undetected.

Prnbab1 y the best solution to the mixed-node wg.rning problem is to use a

strongly-typed language or a compiler that. forbids implicit type

conversions. If a ,;n:..,gramm!r knows that he has to write ont every

conve·,:s ion for the CO!Apiler. to accept hls code 1 he will be careful to do

so. Hope tally, as he codel:l 'the type conver.sions he will mentally check

that they arP. ptope~. The permissive FORTRAN compiler tempts the

c. Gannon, R. N. Meeson, N• B• ·.Brooks, An Experimental :!valuation of
Software Testing, General Re.11~arch Corporitlon CR-l:-1:(54, May 1979, P•
5-8. ' I

2This data is derived from the autbor 's examination of an experiment
performed by Carolyn Gannon. Not all the messages were e~tranr~uA, but
this is at least 16 messages per error found.

7-2

progrmer to write Implicit conversions, turn off the static mixed node

messages, and hope nothing goes wrong .

Data flow anomalies present a different problem, since they are

possible with any programing language or coapiler. There are two major
causes of extraneous data flow messages: global entities and unexecu-

table paths.

Advanced static test tools such as DAVS perform a careful analysis

of global data flow. However, they can be stymied by code which

references system or library routines that the tool has no Information

about. The user can supply this information by providing "stubs" -

skeleton versions of routines that contain no executable code but

indicate parameter usage. The SQLAB tool facilitates the use of stubs

by helping the user to develop and save a library of stub modules.
Stubs of tested modules can be built automatically and put on the
library; routines that reference these modules can then be analyzed for

global data flow without including large amounts of additional source

code.

The developers of DAVE estimate that 15Z of all error and anomaly
2

messages produced by the tool are tied to unexecutable Paths. As

discussed in Sec. 5.3.3 , the general problem of determining whether a

path can be executed is unsolvable. However, researchers are looking

for algorithms that will detect certain unexecutable sequences that
£ 3

frequently arise In practice. Such algorithms would also be useful for

test data generation in structural testing.

iI

IS. H. Saib, at al., Advanced Software Quality Assurance Final Report,

General Research Corporation CR-3-770, May 1978, pp. 143-144.2L. J. Osterwail, "The Detection of Unexecutable Program Paths Through

Static Data Flow Analysis", COMSAC '77, Chicago, Nov. 1977, p. 411.
3-./ Sme of this research is briefly sumarized in H. N. Gabow, S. N.
Kaheshvari, and L. J. Osterwell, "On Two Problems in the Generation of
Program Test Paths," IE= Transactions on Software %Lngrerina, Vol.
8-2, No. 3 (September 1976), p. 227. The article by Osterveil cited
above relates the unexecutable path problem, to static testing.

7-3

7.2 EXECUTABLE ASSERTIONS

The mechanics of assertion testing are very simple. Assertion

testing is harder than static testing because of the analytical work

required to develop a complete and effective set of assertions, and
1

because assertions may not pinpoint the locations of errors. To make

his job easier, a tester needs information about how to formulate and

where to put assertions.

Therefore, assertion testing needs to be Improved in two areas.

First, a methodology of assertion testing should be developed to provide

guidelines for putting assertions in programs. Second, test tools

should be able to indicate specific sections of code that need more

assertions. Changes and expansions of the capabilities of assertion

languages may accompany these improvements.

One method of forming assertions is to perform a formal verifi-

cation of a program using the Floyd method. 2 Of course, formal veri-

fication is a very time-consuming process and may not bp part of the

planned test effort. However, methods of generating asseLon can be
carried over from proving to testing. The application to pesting of

sme formal assertion generation techniques Is described by LasI. 3

1 1f assertion testing were used by itself, the user would also heft- o

formulate his own test input data. In reality, structural and func-
tional testing methods are available, and we deal with their problems
n the following subsections.

2R L. London, Perspectives on Program Verification", in Current Trends
In Prog~raming Nothodololgy, Vol. II (iR.T. Yoh, ed.), c. 0977, Pre.'ntice-
Hall, pp. 151-172.

3 j. W. Laski, "A Hierarchical Approach to Program Testing", SIGPLAN
j Notices, Vol. 15, No. I (January 1960), pp. 77-5.

7-4

i I

Other researchers have taken a less rigorous but more practical

4 approach to developing an assertion methodology. Three papers have

recently appeared which have defined specific goals of assertion testing

and outlined assertion constructs which support these goals.

From these papers a composite picture merges of how assertions

can be used to test programs Candidate locations and purposes of~~assrtiou checks Include:

0 The entry points of a module, to check values of incoming

• per-rioters

0 Input statements, to ensure that mningful valus are

accessed

0 Following a call to another module, to be sure that values J
returned are acceptable

0 At each control point (branching statement, loop beginning
eand terintion) to check that conditions are copatible

with the path taken

0 After complex computations, to prevent propagation of an

error

e To Impose conditions that are required to hold over entire

sections of code (e.g. a loop or module)

0 To check histories of computations, which Involves comparing

the current value of a variable against Its previous

values 2

lIh first five are due to D, M. Andrews, "SofLare Fault Tolerance
Through Executable Assertions", Twelfth Annual Asilomar Conference on
Circuits, Systems. and Computers, Nov. S-U1, 197, Pacific Grove,
California.

2The" two are due to 1. M. Taylor, "Assertions In Programing LAn-

Sueges", .I10l Notices, Vol. 15, No. I (January 190), pp. 105-114.

7-5-}

-U1,£ " - .. - I l U i I l II ~ , '

rIn

To provide safeguards on the integrity of data structures

* (e.g., pointers, counts, value bounds)

The adoption of such a specific list of purposes for assertions

could expedite testing in several ways. Static analysis can identify

many of the candidate locations noted above; static tools could produce

concise reports that contained the information needed to formulate the

simpler assertions. Other aids could be made available for types of

assertions that require greater Judgment, such as the last four in the

list. Possible sources of information for the sore difficult assertion

types Include complexity metrics, formal verification algorithms, and

requirements and design documents.

Extensions to current assertion languages can make it easier to

szpress assertions • Se advanced assertion constructs have been

suggested by Chow.2 These include:

0 The ability to selectively activate or deactivate individual

assertions without recompilation

e Global assertions, which mst hold over entire modules

0 The ability to specify the execution sequence or same of its
properties in an assertion predicate

0 The ability to reference previous values of variables

*The last is due to S. S. Yau, J. L. Ramey, I. A. Nicholl, "Assertion

Techniques for Dynamic Monitoring of Linear List Data Structures",
Journal of Systems and Software, Vol. 1, No. 4 (1980), pp. 319-336.
T. S. Chow, " Generalized Assertion Language", Froeed s - 2nd

International Conference on Software Rnzineering, San ran o
October 1976, pp. 392-399. -

7-6

dI

I :1
t

7.3 STRUCTURAL TESTING

The two major problems with structural testing are error detection

and test data generation. Strucural testing by itself provides no

mechanism for error detection at all-the user must supply this through

some other, usually manual, means. As for test data generation, the

various tools that support structural testing provide indications of how

the level of coverage might be increased, bist the user must ultimately

derive the test cases himself.

These shortcomings are mitigated by the fact that structural

testing is not conducted in a "vacaum"-that is, without the benefit of

other techniques and sources of information. We have emphasized that

structural and functional testing should always be combined to ensure

the effectiveness of either technique. There are great benefits to he

gained from integrating several other test techniques with structural

testing.

An obvious way to provide automatic assistance In error detection
is to use executable assertions. Assertions are better than the

execution traces produced by instrumentation tools for two reasons.

First, assertions express relationships between variables rather than

Just reporting their values-in this way error conditions can be checked

automatically. Second, execution traces tend to produce large amounts

of output, *ich is wasteful of computer resources and annoying to the

user.

Symbolic execution techniques have been applied to the problem of

generating test data to cause a particular section of code to be

executed. The problem of determining the necessary conditions for such

data Is equivalent to finding the predicate conditions, in trms of

input variables, for the entry point to that section of code. ClarkeI

qL.A. Clarke, "Atematic Test Data Selectlon Techniques", Infotech State
of the Art 1MM--8oftwere Testin, Infotech Internationl, Berkshire,

an , ToZ pp. 43-63 (1979).

I. ,

describes a tool which uses symbolic execution to generate test data to

satisfy the statement, branch, and path zoverage criteria.

Test data generation based on symbolic execution is not yet

available in a tool suitable for general use. A more limited but

practical aid for structural testing is a "test assistance" report,

described by Deutsch t for the RZVPS0 test tool-2 The test assistance

report associates unexecuted branches with the decision statements that

control their execution. A listing of the statements affecting the

values of the variables forming each predicate is also produced. The

user must decide how to change the program Inputs to cause a change in

the value of the predicate.

7.4 FUNCTIONAL 79STING

When Bowden 3 first Introduced functional testing he was somewhatvagu about the mechanics of the technique. Recently he has described

how programs can be decomposed Into functional parts from design

documents. Others, 5 ' 6 have been working on ways to Identify special
values for test cases. Unfortunately, no one has tried to develop an

automated tool to provide general support for functional testing.

M. ;. Deutsch, "Software Project Verification and Validation", Co-
puter, April 1981, pp. 64-66.

2XP80" is a test tool built and marketed by the Software Workshop",
General Research Corporation, Santa Barbara, California.

3W. 1. Howden, "Functional Program Testing", IEEE Transactions on
Software Ensineering, Vol. U-6, No. 20Ht 1WC0), pp. 162-170.

W. I. Bowden, "Functional Testing and Design AbstraCtions", Journal of
SYstems and Software, Vol. 1, No. 4 (1960), pp. 307-313.

5L. J. White, I. I. Cohen, " A Domain Strategy for Computer Progrem
Testing", Infotech State of the Art Report - Software Testing, Infotech
Interautional, lerkehir, Enlalnd, Vol. 2, pp. 325-363 (1979)o

6K. A. Foster, "Error Sensitive Test Cases Analysis (ESTCL)", I ..
on-c. Vol 86, No. 3 (May 19), pp.

4 I _

--- t

As In structural testing, error detection and test data generation

cannot be completely automated in functional testing. F1rthermore, to

effectively conduct functional testing, a tester must have a good

understanding of the way a program is designed and the tasks that it Is

to perform. Automated tools cannot provide substitutes for this

knowledge.

But an automated tool could support functional testing in various

ways. It could relieve the tester of clerical burdens. It could sake

It easier to test sections of code separately. It could promote

thorough testing by tabulating tests that have already been run and

identifying input regions that have not been explored.

These capabilities exist individually in several existing tools

that were developed for software testing. The "Adaptive Tester"

developed by GUC provides automatic assiotance in testing large software

* systems. It has extensive data analysis and reduction algorithms to

handle large amounts of test output date. It generates several types of

graphic displays of data points In any selected combination of input-

and output-space. These displays would permit White and Cohen's domain

testing strategy to be i plemented by selecting test data with a cursor.

K2
A conventional test harness2 ca help to separately test function-

ally distinct sections of a program. TSe tester mot determine the
separation, but then the tool permits hin to oltor and control
execution. The tool can drive sections of code without the ned for a

main program; It can Identify external references that need "stubs"

provided for them; it can display the values of vaibles at intrme-

diate points in the computations.

1C. C. Davis, "Testing Lar, Bee-Time lie atyre wntoems" Ietch
State of the Art Retort - Software Testm, 1sfoeoeeh maetra" UT- .
Berkshire, ElPLaNd, Vol. 2, pp. 52-105.

2t example, the TL system desrilbed In D.G. Pae , Autsmatic
Software Test Drivers", C ter, Vol. 11, ft. 4 (April 1975), pp.
47-50.

7-9 -

.I
S~Ii

A test tool which combined the features needed for functional

testing would be very useful. It would also help the technique of

functional testing to mature.

7.5 FORMAL TECHNIQUES

Researchers in symbolic execution and formal verification are

beginning to respond to the challenge of producing automated tools

suitable for general use. But there are many obstacles to the accep-

tance of formal techniques by the general programing comunity. We

feel that it will be a long time 1 before highly automated formal

verification "packages" will be in widespread use.

However, we expect a great deal of progress to continue to be made

n three areas concerning the application of formal techniques. First,

applications of formal methods to testing (as opposed to program

proving) will be refined. Second, tools will be built which make formal

verification much easier for the specialists themselves. Third, working

programers will begin to understand and believe n formal verification.

Much has been written about applying algorithms derived for formal

techniques in static and dynamic testing. Earlier in this section we

discussed the use of symbolic execution in static data flow analysis and

in test case generation for branch and path testing. Some static

analysis tools (including AMPIC, DAVE, and SQLAB) make use of algorithms

jt~ similar to symbolic execution to perfom data flow analysis and reaching

Susan Gerhart makes the following statement: "... optimistic projec-
tios for full mastery of the type of theorem proving we want today,
namely interactive guidance by user-supplied strategies through fully
mechanized subproofs, are ten years, with full capabilities for finding
proofs, although not necessarily finding Interesting theorems, in
ii years." (emphasis hers). S. L. Gerhart, Program Vrlfication
Iin th l960's: Problems, Perspectives . and Opportunities. University of
Soutbera California/Inforation Sciences Institute, Report No. ISI/RU-
78-71, August 1978.

set generation and to detect infinite loops and dead code. We expect

the research in formal techniques to provide more ideas for Improving

other test techniques.

Recent formal verification efforts have made researchers aware of

the awkwardness of current methods. Walker, et l . drew the following

conclusion while verifying the security of an operating system kernel:

"Improvements in the theorem prover's power and
user interface would of course be valuable.
However, aechanisms are also needed to minimize
unnecessary theorem prover Invocations, which
result either from redundant proofs or
reverification."

Gerhart 2 suggests several ways to streamline the proof process,

such as using more flexible approaches to proof organization, use of

multiple theorem provers in parallel, and maintaining libraries of

rroofs. Moriconi 3 has been working on the reverification and Incre-

mental verification problems. Ideas for Improving verification tools

will continue to grow out of efforts to prove programs.

Probably the most Important problem that formal verification

researchers must solve Is how to convince skeptics n the softwareiicommunity of the value of their work. The recent successes in veri-
fying the security properties of several operating systems have raised

the morale of the researchers themselves. However, they are aware

1B. J. Walker, R. A. Koomerer, G. J. Popek, "Specification and Verifl-
cation of the UCIA Unix Security Kernel', Comounications of the ACM,
Vol. 23, go. 2 (February 1980) p. 127.

2Gerhart (op.cit.), p. 7,11.

3M. Moriconi, "Toward Incremental and Language-Independent Program

Verification Systems", Verification Workshop (VEKbol Proceedings.
SRI International, Menlo Park, California, April 21-23, 190.

that many in the outside world believe formal verification to be

tedious,' arcane, and generally not worth the trouble.

Proponents of formal verification hope that several developments

will help then overcome the skeptics. When a system that has been

subjected to verification is put into everyday use, the argument that

formal techniques cannot be applied to real progras will disappear.

It is even more important that formal verification become

"de-mystified'. Verifiers need to learn how to communicate their

proofs to an audience of programers. They also need to teach pro-

gramers how to do formal verification.1

t1'1'

1These coments are sumarized from Gerhart (op.cit.). Undergraduates
at many universities are nm learning formal verification methods; some
are also using symbolic emecution systems and theorem provers.

/7-12

8 AREAS FOR FURTHER RESEARCH AND INVESTIGATION

We have identified six topics concerning testing in which further

research is needed. Four of these topics fall into the category of

studies or experiments that should be performed to fill in Saps in the

available knowledge and data about testing. The other two topics

concern new types of test tools that should be investigated and built.

8.1 STUDIES AND EXPERIMENTS

The topics for future studies and experiments are:

* The costs of using the test techniques described in th.,.s

report

e A methodlogy for assertion testing

* A methodology for functional testing

* An error classification system useful for evaluating test

techniques

There is, an unfortunate scarcity of data on the costs of using the

test techniques described In this report.* There is almost no data on

the amount of analysis time required by each technique. Efforts should

be made to monitor the time and coats involved In using the test

techniques during several software development projects. This data will

make it possible to compare costs between the techniques, and between

automated techniques and manual testing.

Executable assertions have too long remained a testing concept

rather than a method of testing. Assertions are not widely used by

software developers, not because they are not understood or are looked

upon unfavorably, but because they have not been incorporated into a

standard programing &nd testing methodology. Programers want to know

what types of assertions are most useful and how to go about writing

them before they will be more willing to use them.

The technique of functional testing also needs quite a bit of

refinement to become a standard methodology. All software developers

currently use some of the concepts of functional testing (although they

may not use that term), but they are applied in an ad h')c rather than

systematic manner. Software developers need to be made aware of the

automated aids which are available for performing data reduction and

stress testing. Techniques for decomposing programs into their

functional components need to be developed.

In Sec. 3.1 we discussed the inadequacies of the TRW error classi-

fication system for evaluating the effectiveness of testing. An error

classification system which clearly distinguishes between instances and
symptoms of errors should be developed. The symptomatic categories

errors.

8.*2 NEW TEST TECHNIQUES AND TOOLS

Two ideas for new test tools are the following:

* An integrated functional testing tool

0 An advanced assertion preprocessing aid

In Sec. 5.4.1 we identified several existing types of test tools

which support various activities of functional testing. A most useful

tool would have a combination of these capabilities which could be used

together. Such a tool should provide test harness and test driver capa-

bilities, so that partially completed sysI~ems could be tested regardless

of whether top-down or bottom-up development was used. The tool should
have a test library facility so that tests could easily be repeated and

stored. Advanced mathematical techniques for data reduction and stress

testing should also be available forsmaking and analyzing large numbers

of tests.

8-2

In Sec. 5.2.1 we noted that available assertion preprocessors do

not incorporate all desirable assertion constructs. Furthermore, there

are many combinations of computer system and prograing language for

which assertion preprocessors are not available. The possibility of

using recent advances in translator writing tools to build assertion

preprocessors should be investigated. Such a tool dight automatically

generate an assertion preprocessor from syntactic and semantic descrip-

tions of the assertion constructs and the target language.

t8-3

11

N

I

I "i
K _ _ _ _ _

APPENDIX A

GUIDELINES FOR TESTING SOFTWAR.E

CONTENTS

A.1I INTRODUCTION A-1
A.-2 TESTING SOFTWARE SYSTEMS A-2

A.3 WHT TESTING ENTAILS A-5

A-3.1 Testing Requirements A-5

A.3.2 A Testing Methodology A-8

A.4. APPLYING TESTING TOOLS A-10

A-4.1 Relating Tools to Software Development Phase A-1O

A.4.2 Making an Error Estimate A-15

A.4.3 Test Technique Selection A-16
A.4.4 Order of Applying the Techniques A-18

A-4.5 Levels of Confidence in Testing A-20

A. 5 GUIDELINES FOR SOFTWARE STANDARDS A-23

A. 5.*1 Standards for Organizing Software Development A-23

A.5.2 Standards for Generating the Software A-25

A.6 GUIDELINES FOR USING THE TEST TECHNIQUES A-26

A.6.1 Guidelines for Static Analysis A-26

A-6.2 Guidelines for Assertions A-28

A.6.3 Guidelines for Structural Testing A-29

A.6.4 Guidelines for Functional Testing A-31
A.6.5 Guidelines for Using Formal Techniques A-33

A.6.6 Knowing When to Stop Testing A-34

A. 1 INTRODUCTION

This appendix describes guidelines for testing software systems.

It is not a complete handbook for testing software but attempts to give

some guidance in the use of techniques, tools, and approaches. Testing

software is a very labor-intensive and creative act. The person testing

the software requires insight to decide how to test it and bow to

interpret the testing results. He also must decide how such testing

must be done in order to conc'.ude that the software is running

correctly.

These guidelines are presented as a set of hints In organizing the

testing process. They have been developed by studying the currentways

in which software Is being tested, by doing research into new methods of

testing, and by drawing on our experience in testing large software

systems. They are by no means the complete and the final word on how to

test a software system. Nore research and experimentation needs to be

done. The techniques described in these guidelines must be applied in

projects to discover their limitations and to Improve the ways in which

they are applied.

This set of guidelines for testing software alms to help the

tester achieve the following:

0 Understand what attributes of the software to test.

0 Know which analysis tools and testing techniques to use.

e Understand the benefits of applying the analysis tools and

testing techniques.

* Learn a testing methodology which provides an incrmental

approach to testing with the tools and techniques.

0 Know when to begin testing and when to stop testing.

A-i

I ,. ~ m . _ L , , , , , _ J U . .. °

4N

* Measure hov thoroughly the software has been tested when the

Itools and techniques have been applied.

* Establish a level of confidence in the softvare.

A.2 TESTING SOFTWAi SYSTEMS

Testing a software system is different from testing an individual

program. In The Mthical Man-Month , Brooks defines the difference

between a program and a "programing systems product". A program is

complete in itself. It can be tested by itself and it does not interact

with other programs or devices. It is run by the person who wrote it on

the computer on which it was written. A program can become complicated

in two ways: it can become a programing product, or It can become part

of a programing system.

A programing product is a progra which has been generalixed. It

may perform one task or Implement an algorithm, but its range of inputs

and the situations in which it can be used have expanded. It can be run

on computers other than the one on which it was developed. It requires

god documentation so that it can be used by people who did not write

the program. Finally, it needs to be thoroughly tested, since the users

of the program may not have the knowledge or resources to correct any

errors that they find in the program.

1. P. Brooks, Jr., The Mythical Man-Month: REaygs on Software Engineer-
in, Addion-Wesley, leading, Mass., 1975.

A-2

A program can also become part of a programming system. It now

must interact with other programs to perform a task. In order to
interact correctly and achieve the task, the program must adhere to

rigidly defined interfaces. It also must adhere to constraints on the
way in which it will operate including running time, memory require-

ments, the input and output devices it uses, and the way in which it
accesses and uses global information. The program must now be tested in

concert with the other programs; this Increases the time and cost of
testing.

A programming systems product is a program with both sets of

characteristics. It is intended to run in several different environ-

ments together with other programs. It may interact with other systems

or be part of a larger system (an embedded programning system). Brooks
estimates that this type of program costs nine times as much to develop

as a simple program. Consequently, it also may cost nine times as much
or more to test.

Problems in Testing Programming System.

Programming systems are difficult to develop and test because:

* The interactions between the individual parts become
* I complex.

0 The size and umber of programs Involved Increase dramatic-

ally. -

* The amount of effort that must be expended to manage and

understand a large system Increases also.

One of the most difficult problems in building and testinst a

software system is managing the volume of Information. Toole and
techniques which are adequate for testing a mnall set of programs
quickly become inadequate for testing a large set of programs * Tools
and techniques have to be designed primarily to handle largte amounts of
programs and data. The data taken in testing a syestm must also be
managed, and this may require another tool.

K A-3

.~-..

Independent Testing

When system. are built, testing which in the case of the indivi-

dual programs was done by the developer, now becomes a task best

performd by somone also. Since the system is a product which will be

used by a number of different users, it is beat teted by someone who

understands how it should be used but who did not develop it. Because

the program is now a system, It needs to be tested by someone who has an

understanding of the overall architecture of the system and how the

parts are to interact and communicate. The Individual developers of the

programs in the system say not have this knowledge. Once again, it is

better to have an independent but knowledgeable tester.

Standards

One of the wys to handle complexity is standardization. If

systems can be constructed out of similar, wefl understood parts, then

the system can be better understood as a whole. If every program in the

system has a similar forest, uses the som set of control structures,

ad adheres to the same interface standards, then any program n the

system can be more "sily understood. Each program complies with a

standard set of assumptions.

Testing techniques and tools can also take advantasde of the coemon

structure and assumptions. Tools can use the assumption to become more

efficient. They can also test the programs to see If they follow the

standards. And if new tools need to be developed for a special appli-

cation, then they can take advantage of the similar structure and

assumptions and be quick and easy to implement.

1A-4

4

II

Documentation and Organization
' iThere have been a number of standards adopted for testing computer

software. 1 Usually these standards set down requirements for documents,

formats for documents, and schedules and topics for formal reviews

during the software development process. Althouagh documents and reviews

are important in the development and testing of software, they are not

the main subject of this apppendix. Documents and reviews support and
give structure to the development and testing tasks but they do not

define how they should be done and what tools and techniques should be

applied.

A.3 WHAT TESTING ENTAILS

The first question that a tester asks is "How as I going to test

all these programs?" Implicit in this question are two other questions:

(1) What do I have to test for? (2) What can I use to help m test for

it? Testig requirements answer the question of what to test for and

tools and techniques answer the question of what to use for testing.

A.3.1 Testing Requirements

When a tester first starts thinking about what to test, he thinks

about testing what the progran does. That is, he first tests its

functions. Later, he may also consider special cases such as boundary
conditions and individual values which are somehow important. If the

program Is part of a system, he also may test its performance. That is:
how much memory It uses, how lovg it runs, or how many data values It

can handle in a certain mount of time. Biowever, there are other j

s 1E. A. Straker, C. R. Fenner, J. Penland, and T. I. Albert, A Method-
I ology for the Validation of Real-Time Software Used in Nuclear Plantj Safer AzlIcatIMon, Science Applications, Inc. Report Vo. kI-78517-i LJ, April 1973.

A-5

ii- * * - . -- - - - - .-L~. - .

Important features of the *of tware which also suet be tested.* These
features can be grouped under the title of "testing requirements - and
include the following:

0 Functional. requir eme nts

0 Performance requirements

e Currently accepted progr ameing practice.

0 Semantic rules of the programing language being used

0 Constraints placed on the programs by specifications, other

F, progress, the hardware, and the operating environment

0 Assumptions made by the designers and programmers in
implementing the system

be Testing requirements can also include all the hardware, software,

poland other things involved In performing a test. Military stand-
ards describe documents for defining and running tests but we will not

beconcerned with those In this report. In this context, testing
requirements will mean all thos. things that a tester should consider In
designing a set of tests for a software' system.

Currently Accepted Programinag Practices

The most well-knwn currently accepted programing practice is
structured programing * Structured programming restricts the types of
control structures that are allowed In the programixg language. It
also my be combined with a design methodology such as top-down design

I Teting of Computer Progras",s AYR 800-14, Volume 11, Chapter S.

A-6

or levels of abstraction which serve as guidelines for the software

design and development process. Current accepted practices may include

other things such as requirements for coments in certain places in the

code, a standard program organization, and certain formatting conven-

tions. They all have one thing in comon. They make the program more

easy to read, maintain, and understand. They are rules of thumb, not

absolute, provable laws, but they are accepted by the software Industry

as a whole. They are important In the testing process if a quality

piece of software is to result.

Programing Language Semantic Rules

Each statement in a programming language has a meaning attached to

it. Its meaning is most explicitly expressed as the set of machine

language statements it translates into. Its meaning may also be

expressed by how it alters or keeps constant the state of the machine it

Is running on. Programming language semantics have also been expressed

formally . Sequences of programing language statements may also have

meanings attached to them in addition to those attached to the ndl-

vidual statements. In PASCAL, for ezemple, a particular ordering of

the statements in a program is prescribed. Certain statements, such as

the IF statement, may require a matching statement, such as an ENDIF

statement, to define the end of a sequence.

Not all of the" semantic constraints on the programming language

are explicitly defined in the programming language, and not all are
checked by the compiler that processs the language. For example, some

FORTRAN compilers do not check the data types of parameters to subpro-

grans. Faillng to adhere to these constraints can cause software to

operate incorrectly. Many of the checks for these constraints have been

IN. J. C. Gordon, The Denotatiomal Descreption of Programing Languages.
An Introduction, Springer-Verlag, 1979.

A-7

- a -- - I I-

II

embodied in static analysis tools. This is the most comon way in which
software is checked for violation of these constraints.

Constraints

A program must also adhere to the constraints placed upon it by

the enviroment in which it runs in and the underlying theory from which

it me developed. For example, a real-time control program must take
into account the time constants of the devices and sensors with which it

interacts. Programs which compute orbits of satellites must conform to

the underlying theory of orbital mechanics. These constraints and
underlying theories are a source of many software errors. Therefore

they are also a good source for test cases. The constraints are an
especially good source for many of the assertions used in assertion

testing and in formal verification.

Programer's Assumptions

There are also many assumptions made by programers in designing
and lisplementing programs which are not part of the formal design pro-

cess . These are a frequent source of errors. They include assumptions

about the range of values of variables, special quirks of the compiler

or operating system being used, and data bess values which are set
before the program is rum. All these assumptions need to be made
explicit and tested for their effect on the system as a whole.

A.3.2 A Testing Methodology

A Sood testing methodology must include all of the following in

order to test software well:

0 A set of progrmming standards

0 A test plan

0 A set of testng techlques

0 A standard of perfoniance for the software

A-S

- a - -.

Programming Standards

A set of programming standards must be defined if testing in to be

successful. These standards should include:

* The currently accepted programing practices to be followed

on the project

* A format for the text of each program

0 Requirements for specific kinds of coments in specific

places In the program

0 Constraints on the use of the programing langua, opera-

ting sys tem, and comand language of the computer)

Test Plan(

* A plan for testing the sof tware must be developed. This plan
* should Include:

0 An ordered sequence to testing so that groups of modules are

tested together before tbs whole system Is tested

0 A set of data values and scenarios to be used in the

testing

e Methods for comparing the output resulting from the testing

to the expected output

The test plan should also include ays in which the functional and

performance requirements of the software winl be tested and how the

other standards, constraints, and assumptions will he verified.

.1 A-9

Testing Techniqmes

The testing methodology mst also Specify a set of testing

techniques which will be used to accomplsh the test plan and when they

will be used. It should specify which techniques should be used during

each phase of development and in each phase of the testing. It also

must specify which techniques wll be used to evaluate how completely

the software has been tested.

Standards of Performance

The testing methodology must also specify what method will be used

to decide when to stop testing. It must describe ow to determine when

the software has attained a specified value of reliability or function-

ality which Indicates that it can be accepted. This requires keeping

track of the testing history and the devslopent process. This In turn

requires keeping a data bes, possibly a tool for maLntaining the data

base, and a tool for messuring the reliabilty value.

A.4 APPLYTI TESTUIQ TOOLS

The test techniques to be considered here, and the tools that

Implement them, were discussed in detail in the body of this report.

The five techniques which we consider are:

0 Static analysis

0 Ixecutable saertions

0 Structural Lasting

0 Functional testing

0 Formal techniques-symbolic aecution, formal verification

A. .1 Relating Tools to Software DevefLopment Phase

Testing is not coa ined to ane phase of a project; rather It

begins as soon as programers begin to sift the mistakes out of their

A-10

code and continues as long as the final product is in use. Table A.1

presents the phases of the softvare development life-cycle and notes the

test-related activities for each phase. The phases and activities may

overlap in tine.

Testing should begin as early as possible in the software life-

cycle. Boehm's study relating life-cycle phase to repair costs

reported that it is about 15 times sore expensive to fix an error in the

maintenance phase than it is during coding. However, errors will

probably always appear thoughout the life-cycle, so the evaluation of

test techniques cannot be focused on one particular phase.

Different test techniques lend themselves sore readily to differ-

ent life-cycle phases. For example, static analysis techniques can be

applied very early in the coding process, while most dynamic testing

techniques must wait until a campiled version of at least one complete

module is available. Table A.2 shows a matrix of test techniques along

with the life-cycle phases In which their application may be appropri-

ate.

It should be ephasized that using a technique later In the

life-cycle does not imply lower cost-effectiveness. Different tech-

niques catch different kinds of errors, and the effects of different

errors on program operation are rarely the same. The conclusion to be

draw from Boehm's "increasing cost of error correction" data is that

there is a penalty to be paid for delaying the testing process.

B3. W. Boehm, "Software Engineering," TIrm Transactions on Computers,
Vol. C-25, No. 12 (Decenhar 1976), pp. 0Z26-1241.

A-11 &-ll x

4 --.--.---- -. -.- -.-- - --- .. ----- -. - - -- .-.--- - .----

-40

0U,

14j 144 S'4
-4 (A4

It 0.45 U
UM *14

4-
4A4 U 6

0 .- 1O-

"44 4J A

41 MUM. U1
MAj

44; go &A..4 ~ .

64 4mw No
66 O -U ABJ. 84 '0~ 44

D O 00 " 40 a

U0. U3

I-4 a

Alk "N a

i~41

30 ~ ~ 6 a6 0 U4

*I A . 1J A

t 4 M

I MI AN

A-12

TABLE A.2
APPLICATION OF TEST TECHNIQUES IN THE LIFE CYCLE

Life Cycle Phases
(see Table A.1 for descriptions)

14 *ec0

00 4J

"o0 c 041 0 c00.

Techniques E_____ 1-

A. Static Analysis A
1. Program error detection v v

2. Anomaly detection i V
1 f

3. Assertion checking

4. Test data generation

5. Automated documentation

B. Dynamic Testing

1. Testing aids
a. Executable assertions / V V
b. Functional testing

C. Instrumentation V

d. Structural testing V

e. Test harness

2. Debugging aide V /

3. Performance evaluation V V

C. Formal techniques

1. Symbolic execution V
2. Formal verification V

*

This columa denotes error diagnostic testing only. Modifications to
operating program must tmdergo testing as for the previous phases.

A-13 I -

Guidelines for testing software systems are summarized In Table

A.3. They show the steps to be considered in test planning, and the
correspondence between test requirements and techniques.

TABLE A.3

SOFTWARE TESTING GUIDELINES

STEP 1. Estimate the number of errors in the software, using either
of the following techniques:
a. Error seeding.
b. Halstead effort metric.

STEP 2. Use the techniques to evaluate the software on the following
testing requirements.

Technique Requirement

Code review Current accepted programming practices

Static analysis Programming language semantic rules

Structural testing Implemented structure (will include
some functions)

Assertion testing Some functions, requirements and
constraints

Functional testing Implemented functions

Symbolic execution All implemented functions

Formal verification All software requirements and all
assumptions

STEP 3. Apply the techniques in the order indicated in Table A.4.

STEP 4. Measure the reliability of the program using a reliability
metric.

STEP 5. Stop when the number of errors found reaches the number of
errors estimated, and when the reliability of the program is
satisfactory.

X
A-l14

A.4.2 Making an Error Estimate

The first step in the testing process io to estimate how many
errors can be expected to be found In the software.* This is done to

give an estimate of how long testing should continue.* This approach has

not been used before; but we recoumend it because it can give a quanti-

tative answer to the question of when to stop testing.

An error estimate can be made in several different ways. TWO

discussed in Sec. 3.2.4 of this report are the error seeding technique

and he alsead ffot mtric Eror eedig cn b use inconunc
tio wih aforulapresented in Schick and Wolverton Ito give an

etetetinghepross. number of errors in the program at any point in

the estng rocss. The Halstead effort metric 2 has been shown by

prtsiogra ad th e atof correlate with the number of errors present in

a prgra atthe tar ofthe testing cycle.

Theerrr etimteshould not be regarded as exact, but rather as

a "allarkfigre"which is useful for planning purposes. If possible,
theestmat shuldberefined to reflect the characteristics of the

softaredevlopentenvironment: the skills of the people working on

teproject, the nature of the application area, the computer and

langagebeig usd, tc.We feel that people will become able to make

fairly accurate error estimates as they gain experience with them.

'G. J. Schick and R. W. Wolverton, "An Analysis of Competing Software
Reliability Models," IEEE Transactions on Software Engineering, Vol.
81-4, No. 2, (March 1978), pp.112-114.

2 H. Halstead, Elements of Software Science, Elsevier North-Holland,

1977.
3A. Fitzsimons and T. Love, "A Review and Evaluation of Software
Science", ACM Computing Surveys, Vol. 10, go. 1 (March 1976), pp. 3-18.

A-15

However, the error estimate should not be the only guideline used

in gauging the magnitude of a test effort or in applying the test

techniques. The most important criterion for testing is the performance

of the product under test, not the number of errors found.

* I A.4.3 Test Technique Selection

Chapter 5 of this report contains characteristic profiles of the

tools and techniques. It indicates which errors each technique will

identify, how effective and reliable each technique is in locating

errors, and estimates the cost of using each technique. Each technique

is useful in testing software on one or several of the testing require-

ments. The tenter should select a number of techniques based on the

cost he expects to encounter during testing, the number of errors

estimated to be in the software, the reliability that must be achieved,

and the availability of the tools.

The testing techniques and the testing requirements that they

address were shown In Table A-.* In general, techniques should be

I selected in the order in which they appear in that table.* That is,

structural teqting should not be done unless code reviews and static

* analysis are done.* This is because techniques occurring earlier in the

table are usually less costly to apply and are more automated.

All techniques are more effective and easier to use if some re-

strictions are placed on the code during its design and development.

Standards are important. You must decide how you are going to test the

software REFOIX it is designed and built.* Most tools and techniques

make assumptions about the structure of the system being tested. They

also are ls" costly to use if some constraints are placed on the sof t-

wars. In addition, if new tools must be built, they can be developed'1 ~ easier and more quickly if they can make some assumptions about the code
V that they have to process.

A-16

The most basic testing technique is code review. This can be done

either by hand or automatically. Code review checks the constraints and

standards that were set down for the software development. Standards

for structured programing, program layout and style, cooments, and
programing language restrictions are checked by this technique. if
only one technique is used besides testing the basic functions of the

sof tware, this is the one that should be used. It is the only way to
verify that the software adheres to the standards set down for it.

Static analysis can be used to verify that the code adheres to the

constraints of the programing language. Here such things as inter-

faces, mixed-mode arithmetic, and data flow can be checked.

Structural testing is- the next technique to be included. This can
usually be accomplished at the same tine that the basic function of the

software is being tested. Instrumentation can be placed in the cods and

the amount of code exercised by the basic tests can be measured. New
tests can then be derived which exercise greater amounts of the soft-

ware.

* If assertions have been placed in the code during the development,
they can be used during the basic functional testing to verify that the4

*software follows the assumptions and constraints placed upon it. if

* needed, nore assertions can be added to the code to check new conditions

* that are Imposed as the software is being developed and to check for and

* recover from error conditions.*

Given that the other techniques have been ue, full functional

testing can be attempted In order to verify the complete function imple-

mented by the software.* This means testing for special input values,

variable.* The other techniques -structural testing and assertion

A-17

testing -can be used to $lye information by which to evaluate the
results of functional testing.

If the reliability requirements of the software are high, then

symbolic execution can be used either to generate test cases for the

software or to summarize Its function. Symbolic execution is sore

effective If assertions have already been placed in the code. The
decision to use symbolic execution must be made when the software is

designed. This decision can help reduce the complexity of the code and
make the logical expressions developed by symbolic execution easier to

generate and Interpret.

Finally, after all other testing methods have been used and if the

software has been designed with verification in mind, then program proof

can be attempted. The goal of the proof may be to show that certain

sections of the software are correct, that they terminate or that they

implement a secure piece of software.* In any case, this is the most

difficult and einpensive technique. It should only be used when the
requirements for correctness or security are high and only then if the
software has been designed with proof in mind.

6 A-4.4 Order of Applying the Techniques
The testing techniques should be applied in the order shown in

Table A. 4. If structural tes ting and assertion testing have been
decided upon, then the assertions and the ability to trigger instru-

mentation should be added during development of the code. Likewise, the

programing standards and conventions should be followed throughout the

development process.

Notice that formal verification must be preceded by the other test

techniques. This is because cods cannot be verified unless it Is
correct. Coding errors can be corrected during the process of conduc-

ting code-level proofs, but this Is an Inefficient way to operate.

A4 - ..-

TABLK A.4

ORDER OF APPLYING TESTING TCHIQUES

1. Insert executable assertions during coding of the program.

2. Perform code review and standards checking, using automated
tools if available.

3. Perform static analysis.

4. Perform prograner-defined tests, unit tests, or integration
tests and record structural coverage and assertion
violations.

5. Use structural tests to get complete coverage of program
branches.

6. Perform full functional testing.

7. (Optionally) Perform symbolic execution to generate test
cases or make functions explicit.

8. (Optionally) Attempt formal verification.

i
Formal verification of the design of the software may or may not rely on

the code level proofs ; but the code should be written and tested before

the design-level proofs are conducted. This is because problems en-

countered during coding and testing may require changes in the design.

lB. J. Walker, R. A. Kemerer, and G. J. Popek, "Specification and
Verification of the UCLA Unix Security Kernel", Communications of the

ACM, Vol. 23, No. 2 (Feb. 1980), pp. 118-131.

A-19
------------ S- - -------- --$~-

A.4o5 Levels of Confidence In Testing

Since testing is done to improve the quality of a piece of

software, it is natural to look for a way to measure the "amount" of

quality improvement that results from following a particular test plan.

Unfortunately, there are no general measures of software quality that

are suitable for use in "measuring the benefit" of testing.

However, there is a natural progression of software quality

"levels" that is followed when software is tested. Each level describes

the state of development of the software, and reflects the confidence

one can have that the software will perform properly. The levels

represent goals to be achieved during the testing and verification of

software. As such, these levels fall within the general framework of

software development goals or milestones, such as "code compiles

successfully" or "installation successfully completed on the target

machine".

The ten levels as we identify them are as follows:

1. The code complies with the set of progreaming standards

mandated for it.

2. The interfaces between all program units are compatible.

3. The software performs satisfactorily for an initial set of

test cases defined by the programers (checkout tests).

4. All sections of code have been exercised by at least one

test case. The output for these cases is correct.

j 5. The software accepts arbitrary inputs "gracefully"-that is,

no input conditions can cause undesirable behavior such as

an abnormal program termination.

A-20

ii -- --- - -- - - - - -- - * - - - * - - - - - _

6. The software produces correct output for a set of special-

values functional tests (see Sec. 5.4.1).

7. The software produces correct output for a set of functional

stress tests (see Sec. 5.4.1).

8. The Intermediate states of computation are correct for the

tests described in (3), (4), (6), and (7).

9. The coded software faithfully implements the design.

10. The sof tware always produces acceptable output that is in

accordance with its specifications.

If the test plans described in these guidelines are followed, then

these quality levels will be achieved. Traditional testing--manual code

inspection and executing programmer-defined tests-can only achieve the

first three levels. The static and dynamic test techniques described in

this report cover the first eight levels, while formal verification

addresses the last two. Table A.5 shows how the automated techniques

described in this report can be used to achieve each of the software

quality levels.

The ten levels are in roughly chronological order in terms of when

they will be achieved in a test ef fort. Since different software pro-

jects have different standards of performance, the sequence of levels

can be used as a criterion for test planning and for when to stop test-

ing. For example, a program that is to be used only with a particular

set of Inputs needs only to achieve levels one through four. However,

if a program must perform a complex sequence of computations for

arbitrary sets of inputs, then testing must proceed at least through

level eight.

A-211

TABLE A.5

TEST TECHNIQUES REQUIRED TO ACHIEVE EACH

SOFT ARE QUALITY LEVEL

Quality Levels

1 2 3 4 5 6 7 8 9 10

Code Reading x

Static analysis x x

Programer-defined tests x

Structural testing x

Functional testing x • x

Assertion testing

Forsal verification x x

* I A-22)

I --- f £

A. 5 GUIDELINES FOR SOFTWARE STANDARDS

Software standards can be divided into two types: (1) those for

organizing the software development and (2) those for generating the

software. The standards summarized below were used during the

development of a large data collection system 1and are representative of
those which can be applied during large programing projects.

A-5.1 Standards for Organizing Software Development

Software development standards are applied to achieve the

following goals:

* To give members of the development team access to common

information and tools needed in the development process.

* To give the software manager information about the status of

the project.

e To make development decisions and validation history

available for use In subsequent documentation.

In order to achieve these goals, and to support and monitor the

software development effort, a project should include a Software

Librarian, a Software Control Notebook, Software Design Specifications,
and Software Development Folders.

The Software Librarian maintains information on the status of the

project. He must keep the Software Control Notebook and maintain a

Problem Report Log. The Librarian serves as a comunicat ion point

between programrs to minimize interface problems during system

1Programing Standard. Documents (for the High Energy Laser Data
Acquisition and Processing System), Physical Science Laboratory, New
Kexico State University, BAAD7-79-C-OI92.

A-23

progress reports.

A Software Control Notebook should be maintained for each module.

It should Include the following sections:

0 Module name, description, and function

6 Local storage and data structures

* File and record format

* Messages to operators and usersI Context of the module in the software system
0 Cross reference of global data accessed by the module

* Cross reference of input and output statements in the module

The Software Design Specification should include the following

Information:

I. Software Subsystem Specifications

* Identification of modules in the subsystem

0 Calling/called relationship between modules

6 Revision history

* References to other documentation

2. Module Design Specifications

* Identification of the module

0 Purpose and function of module

* Algoritht. and strategy of the module

* Input and output parameter descriptions

* Peripheral device input and output variables

* Performance requirements of the module
* Assumed system state

* Revision history

0 References to other documents

A-24

A Software Development Folder should be created for each module

when the module is assigned to a programer. Its purpose is to ensure

the orderly development and modification of the module. The Software
Development Folder is the primary management tool used by the Software

Librarian to monitor progress during software development. It provides a
guide and record of specific programing activities and is used to

generate program documentation. The information in the Folder can be
used by the Librarian to verify that each module complies with the Design

Specifications. The Folder should also document all test results.

A.5.2 Standards for Generating the Software

Standards are imposed on the form of software in an effort to

ensure the following:

* Software should be easy to read and understand.

* Software should be self-descriptive and self-checking.

Software should be easily modified, and all modifications

should be traceable.

The following are some examples of software standards:

a The programing language or languages to be used in the

development should be specified.

The software should be designed in a modular fashion. Each

module should implement a well-defined function and provide

an explicit and clean interface to other modules. Standards1,2
for module design have been developed by several sources1 •

E. Yourdon and L. Constantine, Structured Design: Fundamentals of a
Descpline of Computer Program and Systems Design, Prentice-Hall, 1979.

2G. J. Myers, Reliable Software Through Composite Design, Petrocelli/-

Charter, New York, 1975.

A2A-25 t

. .- -.- . *-.. - -.. -.- .-.-.-- -

0 The modules should follow a particular style. Each module

should begin with comments which describe the purpose or

function of the module, list the input and output files

I ! used, and define calling parameters and key local variables.

They should explain any restrictions on the use of the

module, and how abnormal return conditions should be

handled. Naming conventions should be established for all

symbols in the program.

* Desk checking and code re- iews should be performed.

Static testing should be perfomed using a static analysis

tool.

0 Modules should be unit tested with instrumentation to

collect test case coverage statistics.

A.6 GUIDELINES FOR USING THE TEST TECHNIQUES

The sections below contain information to guide the user in

applying each of the test techniques. The recommendations given are
general in nature-they should be modified to accommodate the specific

needs and problems of each individual software development effort. There

may be pracLical reasons why a test technique cannot be applied.

However, in the absence of such obstacles, these guidelines describe how

to get the most out of a testing effort and how to test efficiently.

A.6.1 Guidelines for Static Analysis

Static test tools typically have several error detection and

program documentation capabilities. Each of these capabilities can

usually be invoked separately at the option of the user. Thus, static

analysis is a very fle- ible technique which can serve several purposes.

Static testing should be used in the following ways:

A-26

_ _ _ - .- -. . . .--

* As a programming aid, by providing the programmer with

cross-references of variables and other symbols and by
indicating errors that are often due to oversight (e.g.

uninitialized variables);

* During unit testing, code should be checked for compliance

with standards by a static tool. AUl error and anomaly

chcigoptions should beinvoked at thsstage. Inthis

way, as many errors as possible are removed before more

expensive dynamic unit testing or integration testing are

performed.

* During integration, static interface checking should be

used. This will ensure that the integrated units are

compatible in their use of global storage and in the type
and number of calling parameters associated with each

module.

0 When a software product is ready for installation or

delivery, static documentation capabilities can be used to

provide information for program specifications, reference

manuals, and other forms of documentation.

* During the maintenance phase of the program life cycle,

static analysis should be used to help to verify the

correctness of any modifications to the program. Interface

checking should be used whenever a fairly large amount of

code is to be added to an existing program.

Since most static analysis options are very inexpensive and can be

performed quickly, programmers and testers should be given the freedom

to use them whenever they desire. If programners are permitted to

experiment with a static tool, they will quickly learn to feel comfor-

A-27 I

table with it. Static error checking and documentation production more

than pays for itself, since it saves programers and testers a lot of
work that would otherwise have to be done manually.

A.6.2 Guidelines for Assertions

Assertions should be written and included in each module as part

of the development process. They should be evaluated during all phases

of testing. Assertions should be placed in the following locations in

each mciule, for the reasons noted:I At the entry and exit points of a module, to check

b values of incom.,n7 and outcoing parameters.

* At input statements, to ensure that meaningful values are

accessed.

0 Following a call to another module, to be sure that the

values returned are acceptable.

* At each control point (branching statement, loop beginning

and termination) to check that conditions are compatible

with the path taken.

* After complex computations, to prevent propagation of

an error.

e To impose conditions that are required to hold over entire

sections of code (eg. a loop or module).

0 To check histories of computations, which involves comparirg

the current value of a variable against its previous values.

e To provide safeguards on the Integrity of data structures

(eg. pointers, counts, value bounds).

A-28

. '

A great deal of judgment sust be used in determining what asser-

tions to write and how to write them. Thorough testing of a program

with assertions alone takes an awful lot of them. During teat planning,

it should be decided to what degree assertions will be relied upon

during testing and whether they will be used to give the finished

program f ault- tolerance. If a major assertion testing effort is chosen,

the specifications and design of the program should be used to develop a

complete set of conditions that can be Imposed on the code through

assertions.

Alternatively, a project manager may decide on a less intensive

application of assertions. In this case, the most important conditions

required by the design and specifications should be formulated as

assertions as the program is coded. Since it is easiest to catch

* i them to a limited extent should be to check the progress and results of

calculations.

Regardless of whether assertions ere included in the original

plans for testing, prograemers should be permitted to use them as

debugging aids. Debugging with assertions incurs the additional

overhead of preprocessing and compiling the code with its assertions, so

some restraints on this method of debugging may be necessary. However,

assertions can be sore effective and efficient than other techniques,

such as execution traces, at detecting and locating errors.

A.6.3 Guidelines for Structural Testing

In Sec. 5.3.1 of this report we list four units of program

structure for which coverage may be measured during testing:

e Executable statements

B ranches, which correspond to the outcomes of each decision

statement

A-29

* Combinations of branches

* Full paths (from entry to exit) of a program

One question that a tester who is considering the use of struc-

tural testing will have is which level of coverage should be used. Our

answer is that the most important thing to do is to achieve full branch

coverage. The reason for this is that it is possible to achieve full

branch coverage, and doing so gives the tester the assurance that he has

exercised all of the code during testing.

The statement coverage measure should not be used for several

reasons: full branch coverage subsumes full statement coverage and is

not too much harder to achieve; and testing for branch coverage can

provide Important information and detect errors that are ignored if only

statement coverage is attained.

Tht %:ombinations of branches and the full paths covered during

testing chould be identified, but fufl coverage at these levels is

usually lapossible. Furthermore,, there are other aspects of structural

testing that are more Important than the sheer numbers of paths or

combinations of branches that are covered. During structural testing,

the tester should determine whether the flow of control that actually

occurs during execution of the program is the shine as what was intended

during the design phase. The path coverage and execution trace Infor-

mation provided by an instrumentation tool must be used to do this.

Selecting good test data is critical to the success of structural

testing. Test cases that are likely to reveal errors should be chosen--

candidates for this Include singular and extreme values of Input

variables, and co~binations of inputs that represent special conditions
that the program must handle. "Meaningless" test cases or test data

* that is "pulled out of the air" should not be run just to try to drive

coverage up-this is inefficient and not likely to result in errors
being detected.

A-30

Structural testing should begin after an initial level of branch

coverage is established during checkout of the code. Structural testing
can be combined with other dynamic testing techniques (in particular,

assertions and functional testing) by simply measuring the coverage

achieved while applying these techniques. However, a set of tests which

achieves full branch coverage should be identified as early as possible;

this set of test cases should be used to help formulate other tests and

for regression testing (retesting after error correction).

For large software systems, it is much easier to obtain complete

branch coverage by testing each unit separately. In this way, a

significant number of errors can be detected during unit testing that

would otherwise not be caught until integration testing was performed.

It may not be feasible or desirable to attempt full branch coverage when

testing a large system as a whole. However, the experience gained from

structural testing at the unit level should be used to form test cases

and evaluate test results during systemp-level testing.

A.6.4 Guidelines for Functional Testing

If formal verification is not performed, the greatest amount of

testing effort and resources should be concentrated on functional

testing. This is because functional testing amounts to trying to

demonstrate that the program works as it is intended for as many cases

as possible. Functional testing is open-ended since all possible cases

can't be tested. The goal of functional testing is to find and apply a

set of test cases that wili result In a very reliable piece of software

being produced.

1M. S. Deutsch, "Software Project Verification and Validation", Computer,
April 1981, pp. 54-70.

A-31

In See. 5.4.1 we discussed the three ways that test data is chosen

during functional testing: by examining the functions that the program

is to perform, the inputs to the program, and its output behavior. The
most Important of these, and the first that should be used, is the

program functiona. In testing the program, its functions should be

disaggregated to the smallest level possible. Each identified function

should be tested both individually and in combination with others that

affect it.

As am illustration, consider a software package which implements

dynamic storage allocation and list manipulation through FORTRAN-call-

able library routines.* The package must perform a fairly large number

of specific functions, such as: obtaining a block of storage f rom the

operating system, referencing bLocks by using pointers, ordering items

on lists, etc. Regardless of the method used to design and build the
package (top-down, bottom-up, etc.), the code which Implements each

function should first be tested in as high a degree of isolation as
possible. That is, the list-manipulation code should first be tested

with data structures artificially created for it; later the storage

allocation functions can be used to build the list items.

There are several practices which should be followed to ensure the

success of this phase of functional testing. First, it is Important to

always use relatively small modules that perform one well-defined

function. If this Is done, the code does not have to be "torn apart" to
be tested. Second, functional testing should be included in the unit

testing phase rather than put off until system-level testing. Third, a
test harness or driver should be used to help isolate and test parts of

programs.

The second area of emphasis in functional testing Is the Inputs to

the program. If the program Is being written for a limited purpose, and

the values of the inputs that will be used whenever the program is run

I A-32

are ktnown, then extensive input testing of the program is not necessary.

Bowever, if the progra is intended f or more general use, then the

following things should be tested for:

* The tester should make certain that the program handles all

possible input values-even,. those out of range- gracefully.

The program should not count on the user to always provide

reasonable values in the proper format.

* The tester should identify "special values" of the input

variables which must be handled correctly by the program.

Examples of special values include zero for a variable that

appears as a denominator, null character strings, numbers

with very large and 'very small magnitudes, etc. These

special-value inputs should be tested alone and in com-7

The third area of concern in functional testing is the output

behavior of the -program. "Stress testing" is the process of searching

for ways to produce undesirable behavior in a program. It In usually

applied at the syse m test level, to progress that must react to a wide

range of external conditions or that Implement approximation schemes or

heuristics. Examples of such software include numerical algorithms for
approximating complex mathematical functions; garbage collection, list

sorting, and other data handling algorithms; and process control

systems. Stress testing can be expensive, since typically a large

number of test cases must be run. However, it should be used if there

is no way to analytically (manually) determine a relationship between

program input and output, or when all possible outputs cannot be

identified.

A.6.5 Guidelines for Using Formal Techniques
We feel that the formal techniques-symbolic execution and formal

verification-are naot ready to be put into use in typical software

A-33

development projects. The techniques are still evolving and the tools

that support them are not suitable for use by anyone other than re-

searchers. In its current state, symbolic execution by itself has very

limited usefulness as a verification technique, although it shows some

promise in supporting other techniques (see Chapter 7).

Our first recommendation to a project manager who is interested in
using formal verification on his software would be to consult a resear-

cher in the field about the feasibility of the idea. If the researcher

believes that formal verification can be useful in that application,

then the project manager might consider hiring him to lead the formal

verification effort.

Formal verification must be planned for at the inception of a

project, since it affects the requirements and design as well as the

code. It is useless to try to apply formal verification to a project

that is well along in development-it cannot be added as a "fie for
sections of code that are causing problems. Formal verification can be

applied to part of a program only if it is possible to asse that the

rest of the program does not effect the properties that are being

proved. For example, to verify the security of a data base management

system, formal verification must be applied to the routines that read

and write the data and to all routines that have "trusted access" to the

read and write routines. It Is useless to apply formal verification to

individual modules In isolation, because then the input assumptions of
the module are not examined critically during the proof process.

A.6.6 Knowing When to Stop Testing

There are three reasons to stop a testing effort:

* All resources (time or money) have been used up.

* All tests have been completed.

0 The program 'a performance is satisfactory.

A-34

At first glance, being out of resources semn@ like the worst

reason to atop testing. Indeed, it is very undesirable to be unable to

complete major portions of a test plan because there is no money or time
left for the project. However, the other two reasons given to stop

testing usually cannot be used alone. For all but the simplest program-

ming projects, it is impossible to test exhaustively. Unless the

details of every use that will be made of the program are known, it is

also Impossible to know whether the program will always perform satis-

factorily. Therefore, all three of the reasons to stop testing must be

used together.

These guidelines have described how a test plan should be formed

as part of the planning for a programning project. The test plan will2
consist of tasks which correspond to applying each of the test tech-
niques. These tasks can be separated into those that are fixed in

scope, and those that are variable or "open-ended". our recommendations

about when to stop testing can be suinarized as: finish aUl of the
fixed-size tasks in the test plan; and perform the open-ended ones toI the extent permitted by resource constraints, while making sure that a

satisfactory product is produced.

The fixed testing tasks include the following:

e Programing standards checking

* Static error and anomaly checking

0 Achieving complete branch coverage

0 Checkout of each program function

Each of the fixed-scope tasks has a definite criterion for con-

pleteness. Furthermore, if the technique corresponding to each task can

be used at all on a program, it can be used to completion. These
testing tasks are all inexpensive, and in fact will result in a saving

of money and time over traditional testing methods. They should be

applied -to all programing projects regardless of the reliability

requirements of the finished product.

A-35

The open-ended testing tasks are:

* Assertion testing

* Full functional testing, including special values testing

and stress testing

For programming projects with critical applications, assertions

should be used in each of the ways listed ina Sec. A.6.2. The tester

must strike a balance between developing a very complete set of asser-

tions and the amount of time it takes to write and debug them. Since

there are error types that assertions cannot detect, assertion testing

should not be allowed to consume all of the resources allocated to the

open-ended tasks in the testing effort.

If the formal techniques are not used, functional testing is the

last technique to be applied (see Table A.4). A well-planned and

managed testing effort should leave a significant amount of resources

for functional testing after all of the other testing tasks have been

carried out. If this is done, the best policy is to stop testing when

all of the remaining resources allocated to testing have been used up.

This should allow unanticipated uses of the program to be explored and a

high quality product to be produced.

However, if functional testing is stopped because of resource

constraints, an effort should be made to determine that the performance

of the program will be satisfactory to the end users. One way that this

can be done is to compare the error estimate made at the beginning of

the test effort (see Sec. A.4.2) with the actual number of errors found

during testing. If the number found is much less than the number

predicted, the decision to stop testing Is suspect.

A-36

If formal verification is applied to a software project, the

proofs must be carried out to ccmpletion in order to conclude that the

program has the properties that were subjected to proof. Incomplete

applications of formal verification may improve the quality of a

program; but we cannot recommend that formal verification be used on a

progrm unless the intent is to complete the effort.

A2

I?

Ii

I

~A-37

-~~~~FLL- b*vd nkm--.- A-ff~ .

APPENDIX B

TEST TOOLS SURVEY

The following pages contain fact sheets on automated software

testing tools. These tools have been developed in industry, at univer-

sities, and by government organizations either as working test tools or

as prototypes based on theories of testing. Each fact sheet presents

the following information about a tool:

Name and originating organization

* Language(s) processed, tool source language, and host

computer systems

0 A brief description of the tool's purpose and method of

operation

0 Capabilities and types of analysis performed

* Availability and year of original development

*A key reference for additional information

The capabilities of each tool are given in terms of the testing
techniques described in Sec. 2 of this report.

Tools listed as " not coinercially available" often nay be made

available to users either directly by the tool's developers or through

contracting govermuent agencies-no attempt was made to determine this

information.

The year of origin listed for each tool Is intended to give an

indication of the length of time that the tool, with most of its current
capabilities, has been implemented. Many of the tools are undergoing

soe development and revision.

B-17

The reference given is not necessarily the source of information

used in writing the fact sheet. An attempt was made to find a reference

in the open literature for each tool that fully described the capa-

bilities of the tool. Most of the tools have user's manuals or other
forms of docuzmentation; these were cited as references only where no

satisfactory open literature sources were found.

This survey is intended to provide examples of the currently

available automated testing tools. It Is by no means exhaustive, since

a very large nuber of software tools package. have been developed over

the last twenty years. The following sources also contain descriptions

of automated test tools:

* Datapro Directory of Software, August 1980, C. 1980 Datapro

Research Corporation, Delran, New Jersey 08075.

A directory of commercially available products, cross-

referenced by vendor, tool name, and category. Updated

monthly.

0 AIMA Software Tool Survey, July 1980. A".tarican Institute

for Aeronautics and Astronautics Computer Systems Committee,

1290 Avenue of the Americas, New York, NY 10019.

A compilation of survey forms returned by AIMA members or

filled out by Grumman Aerospace Corporation from Detapro and

Auerbach. This survey is to be discontinued after July

1980.

* Auerbach Software Reports, Auerbach Publishers Inc., 6560

North Park Dr., Pennsauken, New Jersey 08109.

Updated monthly.

The fact sheets contained in this s urey were compiled solely by

General Research Corporation, and were not reviewed by any other tool

developers.

B- 2

We would like to thank Mr. Richard Maitlen of TRW Systems Group

for providing information on the TRW test tools.

Index of Test Tools

This index is organized into ten categories of tool capabilities.

Within each category the tools are listed in alphabetical order and are

followed in parentheses by the languages that they process. Many of the

tools appear in several categories. Some of the less-common language

dialects are explained in notes at the end of this index.

1. Standards Enforcement

The following tools check programs for compliance with the

standard indicated in parentheses.

ANSI FORTRAN Checker and Error Detector (ANSI FORTRAN)

AUDTT (ANSI FORTRAN)

PFORT (PFORT)

TEST COVERAGE ANALYZER/CODE AUDITOR (JOVIAL J73/I)

2. General Static Analysis

The following tools perform one or more of the static analysis

checks described in Sec. 2 other than Standards Enforcement.

ACES (FORTRAN)

AMPIC (FORTRAN)

ATDG (FORTRAN)

AUDIT (FORTRAN)

CAVS (COBOL)

DAVE (FORIAAN)

FACES (FORTRAN)

B-3

1 1
II

I

FAVS (FORTRAN)

JOVIAL J73AVS (JOVIAL J73)

PDS (ELI)

PFORT (FORTRAN)

RXVP80m (FORTRAN)

SADAT (FORTRAN)

SMOTL (SMOD (1])

SQLAB (FORTRAN, PASCAL, JOVIAL J3B-2)

SURVAYOR (FORTRAN)

3. Test Data Generation

The following tools perform test input data generation for

programs in the language indicated.

ADAPTIVE TESTER (FORTRAN)

ATTEST (FORTRAN)

SELECT (LISP)

SETAR (none [2])

SMOTL (SMOD (1])

4. Test Harness

The following tools provide assistance in the interactive testing

of software. Possible features include automatic test driver genera-

tion, evaluation of test input and output data, and assistance with the
provision of stub routines.

ADAPTIVE TESTER (FORTRAN)

ATDG (FORTRAN)

AUT (MIL/S)

CAVS (CORL)

B-4

I4 ___-.. .

PRUFSTAND (SPL [3])

TESTMANAGER (COBOL)

TPL (FORTRAN)

XPEDITER (COBOL, FORTRAN)

5. Instrumentation

These tools insert probes into the test program source or object

code in order to determine execution frequency counts and/or perform

timing analysis. All of the tools listed under category 7 ("General

Dynamic Analysis") perform instrumentation in addition to other capa-

bilities and are not listed here.

CAVS (COBOL)

FAVS (FORTRAN)

FORTRAN ANALYZER (FORTRAN)

INSTRUMENTERS I & II (FORTRAN)

ISMS (ALGOL 60)

NODAL (FORTRAN)

OPTIMIZER III (COBOL)

PACE (FORTRAN)

PRUFSTAND (SPL [3])

RXVP80 (FORTRAN)

SADAT (FORTRAN)

TEST COVERAGE ANALYZER/CODE AUDITOR (JOVIAL J73/I)

6. Debugging Aids

These tools provide features which assist in manual debugging of

programs. Such features include interactive debugging capability and

formatted dumps.

~B-5

OPTIMIZER III (COBOL)

PRUFSTAND (SPL [3])

TESTMANAGER (COBOL)

XPEDITER (COBOL, FORTRAN)

7. General Dnamic Analysis

These tools provide a combination of the dynamic testing tech-

niques. All provide instrumentation for execution frequency counts.

ACES (FORTRAN)

JAYS (JOVIAL J3)

JOVIAL J73 AVS (JOVIAL J73)

PET (FORTRAN)

SQLAB (FORTRAN, PASCAL, JOVIAL J3B-2)

TAP (FORTRAN)

TPL (FORTRAN)

V-IFTRAN (IFTRAN (4])

8. Symbolic Execution

These tools attempt to produce algebraic expressions for the test

program's output variables.

AMPIC (FORTRAN)

ATTEST (FORTRAN)

DISSECT (FORTRAN)

EFFIGY (PL/1)

PDS (EUL)

SADAT (FORTRAN)

B-6

F h,

4 .--- - -. . . . -- .- - ---- .-- -

SELECT (LISP)

SQLAB (FORTRAN, PASCAL, JOVIAL J3B-2)

9. Formal Verification

These tools help to prove mathematically that a program meets its

stated specifications.

EFFIGY (PL/I)

PDS (ELI)

PROGRAM VERIFIER (PASCAL)

SELECT (LISP)

SID (GYPSY)

VISTA

10. Mutation Analysis

This technique involves the execution of slightly altered versions

of a test program in order to detect errors.

MUTATION ANALYSIS (FORTRAN)

Notes

1 - SMOD is a COBOL-like language developed in the U.S.S.R.

2 - SETAR has not been implemented for a specific language.

3 - SPL is a PL/1-based language.

4 IFTRAN is a structured FORTRAN superset.

IB-7

B-

ACES (Automated Code Evaluation System)

Developed by the University of California, erkeley, for the

United States Army Safeguard System Evaluation Agency.

Operates on the special purpose language CENTRAN (similar to

FORTRAN). Written in FORTRAN for CDC and IFM machines. Operates in

batch mode with user options for tracing variables during the dynamic

analysis phase. A program data base which can be used for further

analysis is produced during the static analysis phase.

Static Analysis Capabilities:

Detects uninitialized variables.

Coding standards - flags "dangerous" CENTRAN constructs such as

the assigned "GOTO".

Flags data flow anomalies.

Identifies unreachable code.

Program documentation - symbol name cross-reference, enumeration

of loops.

Reaching set generation.

Dynamic Analysis Capabilities:

Assertions - range checks on variables

Instrumentation based testing - provides path coverage and

frequency data.

Not comercially available

Year of origin - 1973

3-8

ACES (Automated Code Evaluation System) continued

Reference: C.V. Ramamoorthy, R. E. Meeker and J. Turner, "Design and

Construction of an Automated Software Evaluation System," Record- 1973
IEEE Symposium on Computer Software Reliability, New York, pp. 28-37

(April 1973).

I

~ \

-1'
B-

ADAPTIVE TESTER

Developed by General Research Corporation, Santa Barbara, Cali-

fornia, under contract to the United States Army Ballistic Missile

Defense Advanced Technology Center.

A general purpose test harness and performance evaluation package,

originally developed to test Ballistic Missile Defense simulations. The

tool is written in FORTRAN and can be used to test programs written in

any language that produces object code compatible with an overlayed

FOR~TRAN program. The Adaptive Tester can operate in either batch or

interactive mode, and consists of four functional parts: (1) a test bed

and environment simulator; (2) a performance analysis/data reduction

algorithm which operates on the output from a test run; (3) an adaptive

algorithm which selects the next set of test data; and (4) a graphical

interactive aids package. The nature of the adaptive algorithm for test
data selection may be specified by the user; the choices Include

gradient techniques, user-supplied heuristics, and random number

generation. The Adaptive Tester currently resides on CDC 6400/7600 and

DEC VAX 11/780.

Dynamic Analysis Capabilities:

Test harness - provides for large numbers of test repetitions

(limited only by test program execution time duration), simulation

of test program operating environment, interactive supervision of

the testing process.

Test data generation - can be performed automatically through

gradient, heuristic, or random techniques, or may be supervised

interactively by user.

The Adaptive Tester is the property of the U.S. Army. Contact point for

use: Wf. Ray Stone, General Research Corporation, P.O. Pbx 6770, Santa

11rbara, CA 93111.

B-10t

AIPTIVE TESTER (continued)

Year of origin - 1976

Reference: D. W. Cooper, "Adaptive Testing," Proceedings - Second

International Conference on Software Engineering, San Francisco, (IEEF

Catalog No. 76CH1125-4C), pp. 102-105 (October 1976).

I/

4

Ii

3-Il F

V
_ __

. a...........

I.

AMPIC

Developed by Logicon, Inc., Lexington, Massachusetts.

Operates on FORTRAN code or LITTON assembly. The tool is written

in SNODOL for use on IN(370. AMPIC builds a representation of a

program in terms of certain canonical control structures.

Static Analysis Capabilities:

Module interface parameter type checking.

Flags mixed-mode expressions.

Detects structurally unreachable code.

Docuentation - automatic floweharting, structuring of assembly
code.

Symbolic Execution Capabilities:

Program interpretation - determines path conditions.

Algebraic path simplifications for conditions and variables.

Detects infeasible paths.

Interactive symbolic execution features - user may specify scope

and level of detail to be reported.

Not commercially available

Year of origin- 1975

Reference: M.A. Ikezava, An Introduction to AMPIC, Logicon, Inc.,

Report No. CSS-75002, (1975).

B-12

6II'= ij

it

ANSI FORTRAN Checker and Error Detector

Developed by Softool Corporation, Goleta, California.

A tool for analyzing FORTRAN programs to determine compliance with

the ANSI X3.9-1966 standard for FORTRAN. Ambiguities concerning

possible standard violations are handled by "Warning" messages.

Versions are available "off-the-shelf" for IB 360/370 and Data General

systems; Softool offers quotations for other systems upon request.

Static Analysis Capabilities:

Coding standards enforcement - checks for compliance with ANSI

X3.9-1966 FORTRAN standard. A "general portability" option is

also available to check programs for transferrability to other

FORTRAN environments.

The permanent license cost for the ANSI FORTRAN checker is $8,000;

additional license fee for the portability option is $4,000. Lease

plans are available for $360-$480 per month for the Standards checker

alone, and an additional $180-240 per month for the Portability Option.

Year of origin - 1977

Reference: Production descriptions are available by calling or writing

to:

Softool Corporation
340 South Kellogg Ave.
Goleta, California 93017
(805) 964-0560

fB-13

ATDG (Automated Test Data Generator)j

Developed by TRW Defense and Space Systems Group, under contract

to NASA/Johnson Space Center.

A system for interactive testing of FORTRAN programs. The system

ithas three main components: Static Error Analysis (SEA); Unit Test
Driver Generator (UTDG); and Path Generation (PATHGEN). The SEA

component acts independently; a stand-alone version of SEA is also
available. PATHGEN assists the user in generating test input data, and
UTDG directs the development of a test driver; once these files are

4 complete, the user can begin test exercises. ATDC supports testing of

only one module at a time; however, there is an "external conditions"
option which keeps the status of global variables and parameters at

entry and exit points of all modules. ATDG is written in FORTRAN and

currently resides on a UNIVAC 1110 at Johnson Space Center.

Static Analysis Capabilities:

Program error detection - structurally and logically infinite

loops; variables not Initialized within a module.

Anomaly detection - local variables set and not used; structurally

and logically unreachable code; iocal variables declared but never

referenced.

Program documentation - cross-reference listing of variables and

branch predicates.

Dynamic Analysis Capabilities:

Testing facilities - assists user in construction of a test

driver.

Test data generation - assists user by indicating path followed

for each set of test data.

B-14 I~

ATDG (Automated Test Data Generator (continued)

Not commercially available.

Year of origin - 1974

Reference: R.H. Noffman, and G. L. Nouser, User Information for the

Interactive Automated Test Data Generator (ATDG) Systm, Revision 1,

NASA/Johnson Space Center, JSC Internal Note No. 75-FM-88, (January

1977) •

B-15

-- - -- -. - - - - --

ATTEST

Developed at the University of Colorado under an NSF grant and

subsequently at the University of Massachusetts with support from the

U.S. Air Force.

Operates on ANSI FORTRAN code. Requires a source code prepro-

cessor to produce a program variable token list-one version uses DAVE

for this purpose. ATTEST operates in batch mode, except that an

interactive path selection feature is available. Test paths can be
automatically generated in accordance with testing crirteria specified

by the user. Once a path has been selected, a symbolic execution
algorithm is used to simplify the path predicate conditions, thus
producing a set of inequalities. An inequality solving algorithm is

then applied to determine input data which will cause the path to be

executed.

Symbolic Execution Capabilities:

Test data generation for each selected path.

Program interpretation - path identification, representations of

output variables.

Algebraic simplification of path conditions.

Detects unreachable code, as indicated by inconsistent path

predicate conditions.

Identifies array subscript violations.

Not commercially available

Year of origin - 1975

Reference: L.A. Clarke, "Automatic Test Data Selection Techniques,"

Infotech State of the Art Report - Software Testing, Infotech Inter-
national, hbrkshire, England, Vol. 2, pp. 43-63, (1979).

B-16

I
I

AUDIT

Developed at the Naval Ship Research and Development Center,
) Bethesda, Maryland.

A standards-enforcement package for testing FORTRAN programs.

Compliance with ANSI standards is checked by using a flow-graph analysis

of the program under test. The effect of different machine word lengths

on program output is evaluated as a means of guaranteeing portability.

The original version of AUDIT resides on a CDC 6400.

Static Analysis Capabilities:

Program error detection - detects: structural infinite loops and

unreachable code; module interface type and number conflicts;

uninitialized variables; recursive calls.

Anomaly detection - enforces ANSI FORTRAN standards (beyond those

checked by compiler); flags mixed-mode assignments and express-

ions; determines "undefinitions" of variables, including EQUI-

VALENCE pairs.

Dynmic Analysis Capabilities:

Machine word length sensitivity is tested by applying a truncation

function to all binary arithmetic operators.

Not commercially available.

Year of origin - 1974

Reference: L.N. Culpepper, "A System for Reliable Engineering Soft-

ware," IEEE Transactions on Software Engineering, Vol. SE-I, No. 2, pp.

174-178 (June 1975)

B-17

AUT (Automated Unit Test)

Developed by IEM.

A test harness system that operates on the object code generated

for a program module or modules. A test procedure language MIL-S

(Module Interface Language - Specific) is used to control testing and

direct the simulation of the test module's operating environment. AUT

was one of the first test driver systems available, but has disad-

vantages in that MIL-S test procedures tend to be lengthy and detailed,

and no provision is made for modelling input/output devices or files.

AUT operates on IfM 360/370 under DOS or TSO.

Dynamic Testing Capabilities:

Test harness - the procedure language makes possible the recording

of tests for use In regression testing. User must supply all test
case input data and output specifications for verification.

Available from IN4 for rental, $100 per month - 12 month mii,imum.

Year of origin - 1975

Reference: Automated Unit Test (AUT) Program Description/Operation

Manual, I3 Installed User Program Number 5796-PEC, (August 1975).

B1

I

B- 18

CAVS (COBOL Automated Verification System)

Under development by General Research Corporation, Santa Parbara,

California, under contract to the United States Air Force (Rome Air
Development Center).

A general purpose development and testing tool for ANSI COBOL 196R

and 1974 code. CAVS can be operated in batch mode or interactively.
Written in a subset of ANSI-COBOL 1974 for use on Univac, Ibneywell, and

DEC VAX systems.

Static Analysis Capabilities:

Error detection - analyzes code for module interface inconsis-

tencies and uninitialized variables.

Anomaly detection - flags data flow anomalies, unreachable code,

improper input/output sequencing.

Documentation - reformatted source listings; cross-references of:

calling sequences, file and copy text interactions, identifier

set/use, record position set/use, program units.

Dynamic Analysis Capabilities:

Instrumentation based testing - execution frequency data at the

program-unit, paragraph, or branch level. The number of input/
output operations can also be obtained.

Execution tracing - records the order of execution at instrumented

level.

Test history - assists in test case formation, multiple and

cumulative test case analysis.

Timing analysis - execution time at the program unit or paragraph

level.

B1

I

CAVS (COBOL Automated Verification System) continued

Not commercially available.

CAVS is currently under development; a working version is scheduled to

be installed at RADC in late 1981.

Reference: COBOL Automated Verification System Final Report: Study

Phase, General Research Corporation, Report No. CR-3-970, (October

1980).

I

B-20

DAVE

Developed at the University of Colorado wnder an NSF grant.

Operates on syntactically correct ANSI FORTRAN code; written in

FORTRAN. DAVE operates In batch mode--the only user control options are

to provide for the handling of non-ANSI constructs. DAVE parses the

source code and then performs a depth-first trace of all variables,

local and global, in the user program. Data flow across module bound-

aries via parameter lists and COMM(ON blocks is included in the analysis.

Static Analysis Capabilities:

Module interface conflicts - type checking, alias detection.

Flags uninitialized variables.

Detects data flow anomalies, including those that occur across

module boundaries.

Identifies input and output variables for each module.

In public domain; tape copy available for $100. In use at 35 locations.

Year of origin - 1975

Reference: L.J. Osterveil, and L. D. Fosdick, "DAVE - A Validation

Error Detection and Documentation System for Fortran Programs,

Software - Practice and Experience, Vol. 6., No. 4, pp. 473-'496,

(October 1976).

B-21 j1

DISSECT

Implemented at the University of California, San Diego. Prior

developmental work done at McDonnell Douglas under grant from the

National]Ureau of Standards.

Performs symbolic evaluation of ANSI FORTRAN programs. Written in

LISP. Operates In batch mode. User comand options dictate initial

values (actual or symbolic) for program variables, specify path to be

followed, and indicate what program variables or predicates are to have

their values printed at any point in the program.

Symbolic Execution Capabilities:

Algebraic expression simplification of program variables and

predicates.

Assertions may be inserted to impose conditions on actual or

symbolic values of variables.

Not commercially available.

Version described here completed in 1976 - a predecessor was completed

in 1974.

Reference: W.E. Noden, "Symbolic Testing and the DISSECT Symbolic

Evaluation System," IEEE Transactions on Software Engineering, Vol.

SE-3, No. 4, pp. 266-278, (July 1977).

B2

EFFIGY

Developed at 134 Thomas J. Watson Research Center, Yorktown
Heights, NY.

Performs symbolic execution of programs written in a subset of the
FL/A language. EFFIGY itself is written in FL/i and operates inter-
actively on an 134/370 under VM/370, using the CMS filing system and
context editor. Test programs are restricted to integer-valued vari-
ables; variable array indexes are not permitted. User options include
tracing variables or statements during execution, inserting "break-
points" to stop execution at a particular point, and saving the execu-
tion state for use during a later test exercise.

Symbolic Execution Capabilities:

Algebraic expressionx simplification of program variables and
predicates.

Proof verification - accomplished by translating verification

conditions into path predicates and making consistency checks.

* Not commercially available.

Work on EFFIGY was begun in 1973.

Reference: J.C. King, "Symbolic Execution and Program Testing,"
Communications of the ACM, Vol. 19, No. 7, pp. 385-394, (July 1976).

t B- 23

FACES (FORTRAN Automatic Code Evaluation System)

Developed at the University of California, Berkeley. Research

partially supported by the Office of Naval Research.

General purpose static analysis package for ANSI FORTRAN programs.

FACES is written in ANSI FORTRAN and operates in batch mode. The tool
consists of a source code pre-processor (FFE) which builds a data base,

and an analyzer (AIR) which performs correctness checks and provides
documentation in response to user requests. Commercial version avail-

able for IEK 360.

Static Analysis Capabilities:

Detects structurally infinite loops, invalid nesting.

Flags module interface conflicts - type incompatabilities and

aliasing.

Flags uninitialized variables - local variables within a module

only.

Enforces certain coding standards if selected by the user.

Produces documentation - cross reference listings by statement,
variable, calling sequence, or common block; program graph.

Available for $1590 from COSMIC, University of Georgia, Suite 112 Parrow

Hall, Athens, GA 30602.

Year of origin - 1974

Reference: C.V. Ramaoorthy, and S. F. Ho, "Testing Large Software With

Automated Software Evaluation Systems," Proceedings - International
Conference on Reliable Software, Los Angeles, pp. 382-394, (April 1975).

B-24

FAVS (FORTRAN Automated Verification System)

Developed by General Research Corporation, Santa Brbara, Cali-

fornia, under contract to the United States Air Force (Rome Air Develop-

ment Center/ISlE).

A general-purpose static and dynamic analysis tool for programs

written in FORTRAN or the structured extension DHATRAN. FAVS will also

translate FORTRAN programs into DNATRAN. Operates in batch mode with

user options controlling documentation. FAVS is written in DMATRAN and

has been installed on CDC 6400, DEC VAX 11/780, HIS 6180, and UNIVAC

1100/80 and 1108.

Static Analysis Capabilities:

Program error detection - single and multiple-module scans for:

structurally infinite loops, parameter type and length mimatches,

uninitialized variables.

Anomaly detection - flags occurrances of: mixed-mode arithmetic,

variables set and not used, structurally unreachable code.

Docunentation - symbol cross-reference, common block references,

calling sequence listings and matrix

Reaching set generation.

Dynamic Analysis Capabilities:

Instrumentation based testing - branch execution frequency data.

FAVS is owned by the U.S. Air Force. Contact point is Frank LaMonica,

RADC/COEE, Griffiss AFi, Pome, New York 13441.

Year of origin - translator was delivered n 1975. Complete capability

was delivered in 1978. Resource-efficient version with FORTRAN 77

syntax analyzer was delivered in 1980.

B-25

-~~~~~~~~~o . I- -. -'X----- -- - - . -- - -

FAVS (FORTRAN Automated Verification System) continued

I Reference: D.M. Andreuw, and R. A. Melton, Fortran Automated Veri-
fication System User's Manual, General Research Corporation, Report No.

CR-1-754/1, (April 1980).

4LI

I.

KB-26 ~-

FORTRAN ANALYZER

Developed at the Institute for Computer Sciences and Technology of

the National Bureau of Standards.* The work was partially funded by the
National Science Foundation.

Performs statement coverage frequency analysis on ANSI FORTRAN

programs.* Tool consists of a preprocessor (written in FORTRAN) which
Inserts calls to a tallying routine at beginning points of branches In

user's code.

Dynamic Analysis Capabilities:

Instrumentation based testing - prints frequency of execution of

each branch for a single execution of user program.

Not comercially available.

Developed in 1974

Reference: G. Lyon, and R. L Stillman, "Simple Transforms for Instru-

menting FORTRAN Decks," Software -Practice and Experience, Vol. 5, No.
4, pp. 347-358, (October 1975).

* B-2 7

INSTRUMNTERS I & II

Developed by Softool Corporation, Goleta, California.

The two INSTRUMENTER tools give execution time and frequency data

for FORTRAN programs. INSTRUMENTER I operates at the module level,

while INSTRUMENTER II operates at the statement level. Both tools are

code preprocessors which insert probes into the source code of the

program being tested. Versions are currently available off-the-shelf

for I3 360/370, Data General, and SEL systems; Softool offers quota-

tions for other systems upon request.

Dynamic Analysis Capabilities:

Instrumentation-based testing - execute- time and frequency data

at the module and statement levels- Data maintained for single or

multiple program executions.

The permanent license cost for each of the INSTRUNENTER packages

is $5,000; lease plans are available for $225-$300 per month. One year

of maintenance i included in the purchase price.

Year of Origin - 1978

Reference: Product descriptions are available by calling or writing to:

Softool Corporation
340 South Kellogg Ave.
Goleta, California 93017
(805) 964-0560

B

B-28 I
l _ _

ISms (Interactive Semantic Modeling System)

Developed at Texas A&M University under a grant from the National

Science Foundation.

A system which performs syntactic analysis and execution tracing.

The tool has the capability of automatically generating its preprocessor

from a target language syntax description written in the language

PARSEL. This description is then translated into a preprocessor whose

source code is either PASCAL or PL/i. A version of ISMS which tests

ALGOL 60 programs has been developed, and a FORTRAN version was in

progress as of 1975.

Static Analysis Capabilities:

Program documenta-ion - statement type counts, cross-reference

listings.

Dynamic Analysis Capabilities:

Instrumentation based testing - timing and execution frequency

data.

Execution tracing - control and data flow tracing with graphic

displays; computation tracebacks for selected variables.

Will also provide an estimate of the number of significant figures

after each computation.

Not commercially available.

Year of origin - 1975

Reference: R.E. Fairley, "An Experimental Program Testing Facility,"

I= Transactions on Software Engineering, Vol. SE-1, No. 4, pp. 350-357

(December 1975).

%-29I

JAVS (Jovial Automated Verification System)

Developed by General Research Corporation, Santa Barbara, Cali-

fornia, under contract to the United States Air Force (Rome Air Develop-

ment Center/ISlE).

A general purpose program development and testing package for

JOVIAL J3 programs. Operates in batch mode; user controls the tool
through a macro command language and directives in the form of special

coents placed with the source code. JAVS is written in JOVIAL J3 and

FORTRAN, and is currently operational on CDC 6400 and PIS 6080/6180equipment.

Static Analysis Capabilities:

Program documentation - formatted source listings, calling

sequence listings and matrix, cross-reference report.

Reaching set generation.

Dynamic Analysis Capabilities:

Executable assertions - user supplies these to check predicate

computations, to maintain bounds on variables, or to trap any
special condition in the code.

Instrumentation based testing - branch and module execution

frequency data, data on other events according to user designa-

tion.

Execution tracing - at instrumented level.

Timing Analysis - execution time by module.

JAVS is owned by the U. S. Air Force. Contact point is Frank

La1onica, RADC/COEE, Griffiss AF, Rome, New York 13441.

Year of origin - 1975

B-30

I '

JAVS (Jovial Automated Verification System) continued

Reference: C. Gannon, "JAVS: A JOVIAL Automated Verification System,"

I Proc. CONPSAC 78 Computer Software and Applications Conference, Chicago,

(IEEE Catalog No. 78CH1338-3C), pp. 539-544, (November 1978).

I

I

JOVIAL J73 Automated Verification System (J73AVS)

Under development by General Research Corporation, Santa Brbara,

California, under contract to the United States Air Force (Rome Air

Development Center).

A general purpose development, testing, and documentation tool for

the J73 dialect of JOVIAL (adopted as Air Force standard in Spring

1980). The tool can be operated in either interactive or batch mode.

It is written in JOVIAL J73 for operation on ITEL AS/5-3 ind DEC 20/TOPS

20, and is being developed on a CDC Cyber.

Static Analysis Capabilities:

Error detection - checks for structurally infinite loops, module

interface inconsistences, uninitialized variables.

Anomaly detection - flags data flow anomalies; structurally

unreachable code; "dangerous" constructs such as ABORT, jumps into

CASE or IF constructs, etc.

Documentation - reformatted sni-,rce listing; symbol cross-reference

with set/use; compool description; declarations and references of

other JOVIAL J3 constructs; calling sequences.

Reaching set generation - also will display all paths between two

points in program.

Dynamic Analysis Capabilities:

Executable assertions.

Instrumentation based testing - execution frequency counts at the

program unit, path, branch, or statement level.

Execution tracing - execution sequence information at the program

unit, branch, or statement level.

Timing analysis - execution time intervalj between any two

selected points.

B-32 f

JOVIAL J73 Automated Verification System (continued)

J73AVS is owned by the U.S. Air Force. Contact point is Frank LaMonica,

RADC/COEE, Griffiss AFE, Rome, New York 13441.

Year of origin - 1980

Reference: C. Gannon, "A Debugging, Testing, and Documentation Tool for

JOVIAL J73," Proc. COMPSAC 80 Computer Software and Applications
Conference, Chicago, (October 1980).

iB

{I
II

I.

SB-33

MUJTATION ANALYSIS

Developed at Yale University under grants from the Office of Naval

Research, the Army Research Office, and the National Science Foundation.

A system for detecting errors in ANSI FORTRAN programs by 'auto-

matizally producing programs that are slightly altered versions (muta-
tions) of the program being tested. The rationale for considering

mutations is the principle that "experienced programmers write programs
' (which are correct or are almost correct." Mutations are produced by

making changes such as the following: changing a cons tant, replacing a
constant by a variable, changing or removing operators, deleting

statements, setting predicate values to ".TRUE." or %.FALSE.".2

The strategy used in testing a program consists of four steps:

(1) a set of mutations is constructed; (2) a set of test data is
selected and the original program run; (3) each mutant is executed with

the test data, and discarded if its output is different from that of the
test program; and (4) the remaining mutants are examined for indications

of errors in the test program.

Mutation analysis is a dynamic technique, but it can detect errors

that static techniques address, such as uninitialized variables,
aliasing, data flow anomalies, and unreachable code. Mutation analysis

is a sort of "dual" of some test data generation techniques, in that
siia ro types are detected but the user changes the test data and

the oolchagestheprogram.

The Mutation Analysis system operates interactively. Versions

exist on a PDP-10 and a CDC 7600. The system is being adapted to handle

COBOL and C.

Year of origin - 1977

B- 34

Mutation Analysis (continued)

Reference: T.A. Badd, R. J. Lipton, F. G. Sayward, and R. A. DeMillo,

"The Design of a Prototype Mutation System for Program Testing," AFIPS
Conference Proceedings - 1978 National Computer Conference, Anaheim,

California, pp. 623-627, (June 5-8, 1978).

B3

\

I

NODAL (Node Determination and Analysis Program)

Developed by TRW Systems Group, Redondo Beach, California.

Provides statement coverage analysis for FORTRAN programs.
Written in machine- independent FORTRAN; versions used on IBM, CDC, GE,

and UNIVAC equipment. Operates in batch mode as a preprocessor which
Passes instrumented code to the compiler. User can save a history file

so that coverage statistics can be collected for multiple executions.

Dynamic Analysis Capabilities:

Instrumentation based testing - prints frequency of execution of

each branch of a program; includes multiple executions via history

file. Branch execution sequence can optionally be printed with

normal program output.

Company proprietary.

Approximaate year of origin - 1970

Reference: NODAL is not described in the open literature. TRW has a

NODAL User's Manual as documentation support for the tool. Inquiries
about NODAL may be directed to:

Mr. Richard L. Maitlen
Applied Software Laboratory
Systems Engineering and Integration Division
One Space Park
Redondo Beach, California 90278

B-36

OPTIMIZER III

Developed by Capex Corporation, Phoenix, Arizona.

A system of development and debugging aids for COBOL programs

running on OS, OS/VS, and DOS/VS systems. The package consists of three
parts: OPTIMIZER, which reduces execution time and storage requirements

of the object code; DETECTOR, which provides formatted dumps and permits
interactive debugging; and ANALYZER, which computes execution timing and

frequency data.

Dynamic Analysis Capabilities-

Instrumentation-based testing - execution coverage, frequency, and

CPU time data at the statement, paragraph, and module level. Data2

maintained for single or multiple program executions.

Program debugging - tracebacks of calling sequence and logic in
the vicinity of an AFEND; formatted dumps of Working-Storage,

Program Registers, Data Division, Memory Map; snap-dumps produced
at any point requested; resumption of execution after AIENDs due

to Data Exceptions or division by zero.

Program Performance Optimization - execution analysis and timing

prof iles .

Perpetual license fees from $9,750 to $28,500 depending upon

options selected. Leases available for $390 to $1140 per month,
depending upon options and duration.

Year of Origin - 1978

Reference: Information regarding Capex produces is available from:

Capex Corporation
P.O. Box 13529
Phoenix, Arizona 85002
(602) 264-7241

B- 37

PACE (Product Assurance Confidence Evaluator)

Developed by TRW Systems Group, Redondo Beach, California. Some

upgrades to and applications of PACE were performed under contract to

NASA/MSC.

A collection of automated tools which assist in the planning,

production, execution, and evaluation of software projects. The tool
documented in the open literature is a statement execution coverage

analysis package called FLOW (later TDEM). It is written in FORTRAN for

CDC 6400, IBM 360, and UNIVAC 1108. Operates in batch mode on FORTRAN

programs; consists of a preprocessor for instrumenting code and two

post-processor modules for coverage analysis and tracing.

Dynamic Analysis Capabilities:

Instrumentation based testing - provides statement and module

execution frequency counts for single or multiple program exe-

cutions. For branches not executed, provides listing of state-

ments affecting variables in predicate leading to that branch.

Not comercially available.

Development of PACE began approximately 1971; facilities continue to be

added to and upgraded.

Reference: J.R. Brown, A. J. DeSalvio, D. E. Heine, J. G. Purdy,

"Automated Software Quality Assurance," Program Test Methods W. C.

Hetzel, ed., Prentice-Hall, pp. 181-203, (1973).

B3

L B- 38

4 _ -~ - - ~L-~~

PDS (Program Development System)

Developed at Harvard University with support from the Naval

Electronic Systems Comnand.

A package of tools that support Interactive program definition,

maintenance, and testing. The system operates on programs written in
the language ELl. The test tools in PDS include an Integrity Checker

which performs some static error checks and a Symbolic Evaluator which
can be used for formal verification. PDS also includes facilities for

defining, editing, and refining program modules and fo~r incremental

verification and retesting of programs.

Static Analysis Capabilities:

Error detection - module interface type conflicts; uninitialized

variables (including uninitialized inputs to a module).

Anomaly detection - indicates variables that are set but not used.

Formal Verification Capabilities:

Symbolic Execution - performed using a one-pass analysis, absorb-

ing predicates into conditional expressions. Loops are analyzed
by a tool component which tries to find a closed-form expression

for the loop variables. (This technique is applied to recursive
module calls as well.) The Lool develops templates describing the .

calling parameters, outputs, and "operating environment" of each
procedure; the template is referenced when evaluating any proce-

dure call statement.

Verification condition generation - derives these for segments
rather than paths, using either user-supplied or incrementally-
derived assertions.

Proof generation

B- 39

PDS (Program Development System) continued

Not commercially available.

Year of origin - 1979

Reference: T.E. Cheatham, J. A. Tounley, and G. H. Holloway, "A System

for Program Refinement," Proceedings - 4th International Conference on

Software Engineering, Munich, pp. 53-62, (September 1979).

B4

I

B-4o0

I

PET (Program Evaluator and Tester)

Developed by McDonnell Douglas Astronautics Company, Huntington
Beach, California.

Operates in batch mode on FORTRAN programs; written in standard
* FORTRAN. Currently implemented on CDC 6000/7000 series, iN4 360/370 OS,

and UNIVAC 1100. The tool consists of a preprocessor which provides

statement instrumentation and docuamentation and a postprocessor which
gives coverage and execution tracing data. PET has an extensive

executable assertion capability.

Dynamic Analysis Capabilities:

Executable assertions - global assertions to check variable
ranges, legal or illegal values, array subscript bounds, calling

parameter side effects; local (position-specific) assertions

formed from any logical expression along with special functions to

check array orderings.

Instrumentation based testing - statement, branch, and module

execution coverage data; minimum, maximum, first, last values at
assignment statements; results of branch predicate evaluations.

Execution tracing - statement sequences in which assertions are
violated.

Timing analysis -time spent in each module during execution.

Company proprietary -available for sale for $25,000 from Mc~Donnell-

Douglas.

First version originated in 1972; assertions were added in 1Q75.

References: L.G. Stucki, "New Directions in Automated Tools for
Improving Software Quality," Current Trends in Progranming Methodology,

Volume II: Program Validation, R. T. Yoh, ed., Prentice-Hall, pp. 80-111
(1977).j

B-411

PFORT (Portable FORTRAN) Verifier

Developed at Bell Laboratories, Murray Hill, New Jersey.

A subset of American National Standard FORTRAN called PPORT has

been formally defined by Bell Labs. Programs adhering to the PFORT

standard are readily transportable across FORTRAN compilers used by
systems throughout the world. The PFORT Verifier is itself written in

! j PFORT and can be used to check compliance of any FORTRAN program with

the standard. Programs that comply with PFORT are not necessarily error

free, but will produce identical results regardless of the machine on

which they are executed. The PFORT Verifier is operational in batch

mode on Honeywell 6000, CDC 7600, IEl 360, and UNIVAC 1108 mainframes.

Static Analysis Capabilities:

Flags module interface conflicts - parameter type conflicts,

aliasing, common block definition irregularities across modules,

correct usage of basic external and intrisic functions.

Coding standards enforcement - enforces all ANSI syntax rules, for

instance: no mixed-mode arithmetic, recursive procedure calls, or

uninitialized variables used in computations.

Program documentatior - symbol and variable cross-reference

tables, calling sequotnces, parameter lists, common block ref-

erences, global common definitions.

In public domain; used at Bell Labs and Jet Propulsion Laboratory.

4 Year of origin - 1973

Reference: B.G. Ryder, "The PFORT Verifier," Software - Practice and

Experience, Vol. 4, 1o. 4, pp. 359-377, (October 1974).

B-42

PROGRAM VERIFIER-

Developed at the University of Southern California information

Sciences Institute, with support from the Department of Defense Advanced

Research Projects Agency, and at the University of Texas, with support

from the National Science Foundation.

The package is an interactive system for proving PASCAL programs.

The system consists of five parts: text editor, parser, verification

condition generator, algebraic simplifier, and theorem prover. The

system is written in the LISP-based language REDUCE and operates on a

PDP-1O.

Formal Verification Capabilities:,

Algebraic expression simplification - uses manipulation properties

of REDUCE to simplify predicates, assertions, and verification

conditions.

Verification condition generation - produces and simplifies

conditions based on user-supplied assertions and code. Verifi-

cation conditions are produced separately for each module. The

tool assumes that the input and output assertions for other

modules hold during this process.

Proof Generation - the tool attempts, under close user interaction

and supervision, to establish the validity (or invalidity) of the

generated verification conditions. A short time limit is set for

the tool to work on its own-if it fails to arrive at a conclusion

it prompts the user for more information.

Not commercially available.

Year of origin -1974

B-43

PROGRAM VERIFEI (continued)

Reference: D. I. Good, R. L. London, W. W. Eledsoe, "An Interactive

Program Verification System," IEEE Transactions on Software Engineering,

Vol. SE-1, No. 1, pp. 59-67, (March 1975).

I

aJ

B- 44

tp

PRUF STAND

Developed by Software Research Associates, San Francisco, for the

Siemers Corporation, Munich, Germany.

A test harness system with facilities for dynamic analysis and

interactive debugging. The system was originally designed to test

modules written in Assembler and SPL (a PL/l derivative used for coding

systems software). PRUFSTAND operates interactively on the PS2000

timesharing system (similar to 134 OS/VS2 with TSO).

Dynamic Analysis Capabilities:

Executable assertions - compares actual test results with user-

specified output values.

Instrumentation based testing - execution coverage and frequency

data at the branch lpvel.

Test harness - prompts user for outputs from undefined routines as

needed during execution; maintains test case input data and stub

interface files: Test driver is compatible with parallel proces-

sing.

Program debugging facilities - execution tracing and formatted

dumps available at user request; interactive debugging using

operating system capabilities.

Year of origin - 1978. Has been used to test components of a large

real-time data communications and management system for the erman

railways.

Reference: H. M. Sneed, and K. Kirchhof, "PRUFSTAND - A ''.

Systems Software Components," Infotech State of the Ar'

Software Testing, Infotech International, Berkshire, Fi i-

pp. 245-270 (1979).

I

Developed by The Software Workshopm, General Research Corporation,

Santa Barbara, California.

A general purpose development and testing tool for programs

written in FORTRAN or the structured extension V-IFTRAN-. Operates in

batch node, and is compatible with and complementary to V-IFTRAr".

RXVP80" is written in V-IFTRANr and is installable on any computer with
at least a 32-bit word length, 50,000 words of storage, and an ANSI

X3.9.1966 FORTRAN-compatible compiler.

Static Analysis Capabilities:

Error detection - structurally infinite loops; module interface

parameter type and length inconsistencies; uninitialized vari-

ables.

Anomaly detection - mixed-node arithmetic and assignments; data

flow (set, not used); structurally unreachable code.

Docunentation - formatted source listings; calling sequences;

cross-references of common blocks and variable names; input/output

statement lists.

Reaching set generation.

Dynamic Analysis Capabilities:

Instrumentation based testing - execution coverage and frequency

data at the branch level, for single or multiple test runs.

Available from General Research Corporation for $26,000 (including

installation, documentation, training session, warranty).

Released comercially in 190; has been in internal use since 1972.

Reference: RXVPOO User's Manual, General Research Corporation, eport

No. MH-2333, (1980).

B-46

- - ----- ~L

SADAT

Developed at the Kernforschungszentrum Karlsruhe GmbB, Institut

fur Datenverarbeitung in der Technik, West Germany.

A general-purpose static and dynamic analysis and symbolic

execution tool for FORTRAN. Processes single modules only. Written in

PL/l, resides on IMA 370/168. SADAT operates in batch mode.

Static Analysis Capabilities:

Identifies uninitialized variables.

Flags variables that are set and not used. 4

Detects structurally unreachable code.

Program documentation - provides statement listing by type; symbol
usage list; program graph by statement and branch.

Test data generation based upon paths determined from the program

graph.

Dynamic Analysis Capabilities:

Instrumentation based testing - produces statement coverage and

frequency data.

Symbolic Execution Capabilities:

Algebraic simplification of path predicates, into expressions

involving input variables, constants and operators.

The system is available from the developers.

Year of origin - 1978

Reference: U. Voges, L. Gmeiner, A. Amschler von Mkyrhauser, "SADAT -

An Automated Testing Tool," IMU Transactions on Software Engineering,
Vol. Sl-6, No. 3, pp. 286-290, ()by 1980).

B-47

SELECT

Developed by the Computer Science- Group, Stanford Research

Institute, Menlo Park, California. Support provided by an NSF grant.

A symbolic execution package which emphasizes path analysis and
test data generation. The tool is written in and operates upon progress
witten in a subset of LISP. SELECT operates In batch mode on a DEC-10.

It per forms a symbolic execution of the program and simultaneously forms
the path conditions for all feasible paths. Teat data Is then generated

for each path by using an inequality solving algorithm. SEL.ECT handles
subscripted variables by adding paths; it handles subroutine calls by

substituting the code into the calling program. User-supplied asser-
tions can be added to the code to simplify the logic or Impose per-

formance requirements.

Symbolic Execution Capabilities:

Program interpretation - produces simplified expressions for path

conditions. Detects Infeasible paths.
Algebraic expression simplification - for path conditions and

program variables.

Test data generation - uses a conjugate gradient algorithm to

solve the system of Inequalities formed by a path condition.* User
may affect solution by adding assertions or changing algorithm

parameters.

Formal Verification Capabilities:

Proof generation - user supplies verification condition In the

form of an output assertion " program" for a path. SELECT deter-
ams consistency of output "program" predicates with results of

symbolic execution of test program.

B-48

SELECT (continued)

* Not commercially available.

Year of origin - 1974

Reference: R. S. 1byer, &. Elpase, K. N. Levitt, "SELECT -A Formal

System for Testing and Debugglng Programs by Symbolic Executlon,"

Proceedings - International Conference on Reliable Software, Los

Angeles, pp. 234-245, (April 1975).

B -

i i

4,

|4

3-4

F

SETAR

Developed by Logicon, Inc., San Pedro, California.

A test data generation algorithm based on past test cases rather

than path selection. The method consists of a two-step iteration: (1)

the program is executed with one set of input data, the path taken is

identified and its predicate condition detezmined by symbolic execution;

(2) the next test case is chosen so that at least one constraint of all

previous path conditions is violated. In step (1) the symbolic exe-

cution can proceed with test case values substituted for variables as

necessary, since the purpose is to produce any condition that can be n

violated.

languages. No specific Implementation or target language or conputer 7
system is specified in the available references.

Dynamic Analysis Capabilities:

Test data generation - feedback frn path coverage by the method

explained above. User control options include specifying con-

straints to be violated or Imposing constraints to restrict the

test domain.

Not comercially available.

SITAR has not been Implemented in a stand-alone software package.

Reference: S. Kdu, "SIAR - A Now Approach to Test Case Generation,"

Infotech State of the Art Report - Software Testing, Infotech Interna-

tIonal, herkshire, England, Vol. 2, pp. 161-186, (1979).

B-50

11
, .

SID (System for Incrementally Deoigning and Verifying Programs)

Developed at the University of Texas with support from the

National Science Foundation, and at the University of Southern Cali-

fornia Information Sciences Institute-under funding from DARPA.

An incremental software design, development, and formal verifi-

cation package. Operates on the language GYPSY; the tool Is written in

LISP and REDUCE and implemented on a PIP-10. SID has extensive inter-

active capabilities for design and progrming support as veil as for

testi .Formal verification algorithms may be applied to Incomplete'
programs, modules, or sections of code. Program and specification

changes are evaluated without "reproving" unaffected parts of code.

Formal Verification Capabilities:

Verification condition generation - executable code and user-

provided specifications and assertion conditions are used to form

the path conditions. Conditions are automatically simplified

algebraically.

Proof generation - operates interactively in attempting to prove

verification conditions. A data base of proof documentation is

maintained to assist in forming proofs after modifications are
made.

Not cmmercially available.

Year of origin - 1977

Reference: N. S. lbriconi, A System for Incrementally Designing and

Verifying Prorms, University of Southern California Information

Sciences Institute, Import 1b. ISI/-77-65, (January 1978).

1-51

. . . . ---.. . -' _ " _ " - _. ' _ Y ' _ _ _ " " -.. . ' " t r !

Developed at the Latvian State University, Riga, USSR.

A test data generation system for the COWL-like language SHOD.

The tool attempts to find a set of test data that will provide coverage
of all branches in the test program. SiOYL first forms a graphical

representation of the test program, perfotuing a few static analysis

checks in the process, and then begins building a covering set of paths.

The STRAI GY module selects a candidate branch and the 'IALTZER module

uses symbolic execution techniques to determine the branch's feasibility

for the path. Once a covering set of paths has been constructed, it is
minimized by combining paths with duplicate branches, then symbolic

execution is used again on the resulting paths to determine the test

data. SKHOL has been implemented on a Soviet MINSK-32 (160 bytes core,

CPU speed about 50,000 op/sc.); S3OTL operates in batch node.

Static Analysis Capabilities:

Error detection - uninitialized variables.

Anomaly detection - unreachable code.

Test data generation.

Year of origin - 1974. SMOL has been applied to 39 previously written

programs, with satisfactory results for those with less than 300

statements.

Reference: J. Ucevskis, J. brzovs, U. Straujums, and A. Zarin$,

1".TL - A System to Construct Samples for Data Processing Program

Dsblgin," Infotech State of the Art Report: Software Testig, Infotech

International, hBrkshire, gngland, Vol. 2, pp. 13-27, (1979).

2-52

dI

SQAB (Softvare Quality Laboratory)

Developed by General Research Corporation, Santa hrbara Cali-

fornia, under contract with the United States Army.

A verification tool for the following commonly used target

languages: FORTRAN and its structured extension IFTRAhN; PASCAL and its

extension Verifiable PASCAL; and JOVIAL J3-2. SQLAB perfotms some

static checks, and then can be used interactively to perform a symbolic

execution. Formal verification of a program may thus be accomplished by

the user incorporating assertions into the source code. SQLA is

ritten in IFTRAN and resides on CDC 6400/7600.

Static Analysis Capabilities:

Error detection - structura2ly infinite loops; module interface

type, node and number conflicts; uninitialized variables.

Anomaly detection - structurally unreachable code, mixed-mode

expressions, unused variables.

Assertion checking - Input/output usage declarations, physical

units errors.

Dynamic Analysis Capabilities:

Executable assertions - prints violations of user-supplied

assertions, performs recovery operations in FAIL blocks.

Symbolic Execution Capabilities:

Verification condition generation - uses standard symbolic

evaluation and simplification techniques.

Proof generation - consistency with output assertions examined.

Not coamercially available.

B-53

* SQLAP (Software Quality Laboratory) continued

Year of origin - 1977

Reference: S. B. Saib, J. P. bnson, and R. A. Melton, "A Methodology

for Program Verification," 1977 Sumer Computer Simulation Conference,

Cicago, pp. 713-720, (July 1977).

SURVAYOR

Developed by TRW Systems Group, Redondo Beach, California.

Provides static data flow anomaly checks for FORTRAN programs.

Operates in batch mode; written in transportable FORTRAN. Performs path

analysis for each program module, then determines data flow anomalies

along each path.

Static Analysis Capabilities:

Flags uninitialized local variables, including those uninitialized

on a particular path.

Data flow anomalies - local and global variables set and not used

or set twice without intervening use; flags unneeded common

blocks, equivalences, parameters.

Documentation (within program module) - path identification,

variable cross-reference.

Company proprietary.

Approximate year of origin 1973

Reference: SURVAIMR. is not described in the open literature. Inquiries

about SURVAYOR may be directed to:

11r. Richard L. Maitlen
Applied Software Laboratory
Systems Engineering and Integration Division
One Space Park
Redondo bach, California 90278

B-55

TAP (Teat Coverage and Parameter Evaluation Program)

Developed by General Research Corporation, Santa harbara, Cali-

fornia.

A instrumentation and execution tracing tool for programs written

in either FORTRAN or the structured extension IFTRAN. TAP is written in

IYTRAN and is operational on IM 360/370. The tool operates in batch

mode in the form of a source code preprocessor and a post-execution data

JI collector.

Dynamic Analysis Capabilities:

Instrumentation based testing - coverage analysis at the branch or

statement level.

Execution tracing - initial, final, minimum, maximum values for

variables on left side of assignment statements; final value of

loop control variable, minimum, maximum, initial, final for loop

control parameters; branch coun~ts, final branch taken for IF

statements.

Not commercially available.

Year of origin - 1977

Reference: C. Gannon, Testing Coverage and Parameter Evaluation

Progr: Computer Software System Document, General Research Corpor-

ation, November 1978.

B-56 [

TEST COVERAGE AN&LYZER(ICODE AUDITOR

Developed by]b~eing Aerospace Company, Software Quality Engineer-

ing, Seattle, Washington.

Provides facility for statement coverage frequency analysis and

coding standards enforcement for programs written in JOVIAL J73. The

tool is built into the JOVIAL J73/1 compiler (the modified version of

the JOVIAL J73 compiler obtained from the Air Force in 197R). The code

instrumentation takes the form of additional machine- language instruc-

tions inserted into the compiled code which provide the execution

counts.

Static Analysis Capabilities:

Coding standards enforcement - the Code Auditor flags constructs

that violate specialized standards Imposed on the IllS or GSRS

projects at]being. A listing of these standards is printed as

part of the compiler output below the source code listing.

Dynamic Analysi-' Capabilities:

Instrumentation based testing - coverage frequency data can be

provided at any of three levels: procedure entry points, branch

points, or branch points and loop traversals. The frequency data

is maintained for one execution of the program only.

In the public domain.

Developed in 1979.

Reference: R. L. Glass, Jovial J73 Software Quality Assurance Tools,

Volume 1, "Introduction and User Manual," lbeing Aerospace Company,

Docuinent No. D180-24975-1, (February 2, 1979).

B-57

TESTMANAGER

Developed by MSP (Management Systems and Programming) Inc.,

Lexington, Massachusetts.

A test harness and debugging system for modularized programs.

Written in ANS CODL for 11M, ICL-S/4; handles several languages.
Operates in batch mode.

Dynamic Analysis Capabilities:

Test harness - provides four degrees of complexity of response for

environment interface simulation, from simple recording of a call
to conditional selection of sets of returns based on previous

results. Provides for multiple tests per computer run, file

creation and display.

Debugging facility - formatted dumps: gives failure type, contents

of parameter areas passed by TESThAAGER, register/accumulator
i contents. Output controlled by user options.

Available under perpetual license for $9,000-$13,000 (depending on
version, includes maintenance, documentation, training), or 1-5 year

rental.

First installed in 1970; currently over 200 users.

Reference: D. Thomas, "Program Testing - Belping Programmers to hlp
Themselves," Infotech State of the Art Report - Software Testing,

Infotech International, Terkshire, England, Vol. 2, pp. 271-281, (1979).

I

IB-58 '"

TPL

Developed by General Electric Company, Schenectady, Nemw York.

A test harness system for FORMRN progress. TPL stands for Test

Procedure Language; the language provides 'a means for controlling the

testing process and recording tests for future reference and use.

Variable initializations, executable assertions,' and execution di-

rections (test start and stop points) are specified in TPL, wehich has a

FORTRA.N-like syntax. Stubs for called modules not present in the test

code must be provided by the user.

Dynamic Analysis Capabilities:

Executable assertions - can apply locally, over a range of

-statements, or at test termination. The assertions take the form
Of FORTRAN logical expressions.

Instrumentation based testing - statement and branch coverage

in the code being tested, is automatically output.

Test harness - maintains data for multiple test runs, evaluates

test success or failure on the basis of assertions provided by the

user.

Not commercially available.

Year of origin - 1976

Reference: D. J. Panri * "Automatic Software Test Drivers," Computer,

Vol. 11, No. 4, pp. 44-50 (April 1978).

B-59

V-IY'IAmq

Developed by The Software Workshop", General Research Corporation,

Santa farbara, California.

This tool provides the testing capabilities of executable asser-

tions and code instrumentation within the context of a structured
FCTRAN precompiler. V-IFTRAN" is written in V-IFTRAN" and can be

installed on any computer having a FOTRAN capability.

Dynamic Analysis Capabilities:

Executable assertions - inserted into the code at any point by the

user. Violations are brought to the user's attention through use

of MOG output options. Error recovery can be provided through

the use of FAIL block code.

Instrumentation based testing - execution coverage and frequency

data at the branch level.

Available from General Research Corporation on 7- or 9-track tape for

$6370.

Sold comercially since 1979; has been used internally since 1977.

N

Reference: V-IFTRANr User's Manual, General Research Corporation,

Report No. RM-2281 (1979).

B-60

VISTA

Developed at the Xerox Research Center, Palo Alto, California.

A formal verification system that can automatically generate
assertions needed to form verification conditions. The techniques used

include weak interpretation, predicate propagation, assertion generali-

zation, trial assertions, and examination of failed proofs. The

starting point of a verification exercise using VISTA Is the test
program along with user-supplied input and output assertions. Each

assertiou generation technique is Implemented in a separate module and

operates automatically; however, user intervention may be required to

determine 4 he next technique to be applied. VISTA uses the theorem

prover developed for the PIVOT program verifier.

Formal Verification Capabilities:

Verification condition generation - VISTA works backwards from the

output assertion, trying to establish verifiable necessary

conditions as assertions for the previous branch.

Proof generation and verification - as trial assertions are

generated, they are checked for validity.

VISTA was still under development as of 1975.

* Reference: S. M. German, and F. Wegbreit, "A Synthesizer of Inductive

Assertions," IEEE Transactions on Software Engineering, Vol. SE-i, RD'.

1, pp. 68-75, (Nkrch 1975).

B-61

XPEDITER

Developed by Application Development Systems, Inc., San Jose,
Cali fornia.

An interactive testing package for COPOL programs or modules.

Interface of the tool with the test program is performed by the Compile
Processor, which operates on the compiler output without disturbing

either the source or generated object code. Formatted dumps, traces,
and selected memory snap-shots are provided by the Dynamic Memory

Formatter. Control of the testing process is effected through use of a
simple Structural Test Language. XPRDITER supports testing in batch,

TSO (online), and INS envirorments.

Dynamic Analysis Capabilities:

Test harness - assists with variable initialization and provision

of module stubs. Execution may be begun at any point in the
program, and may be traced, interrupted, and redirected at user

discretion.)kltiple test exercises can be performed automat-
ically.

Program debugging facilities - execution traces; formatted dumpe;

interception of AMNDs; interactive debugging.

Permanent license price: $25,000 for basic system, plus $2,500 for

TSO or SPF options and $5,000 for INS option. Lease arrangements
available on request. Mintenance and enhancement charge is 122 of

permanent license price annually.

Year of origin - 1960

Reference: Information is available from:
Application Development Systems, Inc.

1530 Meridian Ave.
San Jose, California 95125
(406) 264-2272

...- 6 2

'I
I

APP&NDIX C

ANNOTTED BIBLIOGRAPHY

There are several resources in which aet important papers on

testing can be found. They are repeatedly referenced In this biblio-

graphy and, in the case of journals and annual conferences, should be
checked in the future for state-of-the-art reports on testing:

Coamunications of the ACM

Computer (including a special issue on program testing - Vol. 11,

no. 4, April 1978 which contains several tutorial articles, and a

special issue on software quality assurance - Vol. 12, No. 8,

August 1979 wich contains several research papers).

IEEE Syaposium on Computer Software Reliability, New York City,

April 30 - May 2, 1973.

IM Transactions on Software EnSinering

International Conference on Reliable Software, Los Angeles, April

*21-23, 1975.
!N

International Conferences on Software Ingineering

Software: Practice and Experience

Software Quality and Assurance Workshop, San Diego, November

15-17, 1978.

In addition, there are several collected bibliographies on testing which

were independently prepared:

C-I

- - - -- -- - - - - - - !.

tardy, Trotter I., elkis Leong-Gong, and Dennis W. Fife, Software

Tools: A Building Block Approach, National Bureau of Standards,

BS special publication 500-14 (August 1977).

Killer, Edward F. (editor), Infotech State of the Art Report:

Software Testing, Infotech International, Maidenhead, Berkshire,

England, Vol. 1. pp. 275-305 (1979).

Killer, Edward F. (editor), Tutorial: Automated Tools for Software

Engineering, IEZE Catalog No. EB 150-153, Ne York (1979).

Riddle, William Z., Software Development Environments: A Biblo-

graphy, Department of Computer Science, University of Colorado,

Boulder, Colorado, Report No. CU-CS-184-80 (June 1980).

The first two are especially Important because they are annotated.

The last bibliography, which is not annotated, lists more than Just

testing literature, but contains many never references not listed In the

first two bibliographies.

Rating Scheme

The papers collected In this bibliography have been rated for

their contribution to the state-of-the-art of software testing. Each

entry is assigned a "star rating" based on the following scale:

• , Superior papers making outstanding contributions to the

field,

* ** Excellent papers asking substantial contributions,

Good papers making significant contributions, ad
* Fair papers asking contributions of more limited scope.

The ratings are based on the authors' subjective evaluations of

the papers.

C-2

C.1 CLASSIC PAPERS (Before 1978)

a*t Alberta, David, S., "The Economics of Software Quality Assurance,"

Proc. of the National Colputer Conference Amer. Federation of Infor-

nation Processing Societies, New York City, June 7-10, 1976, pp. 433-

442.

In this paper Alberta tackles several issues related to the costs

of large-scale software systems: cost distributions versus life-cycle

,has*, the costs of various kinds of errors, the cost reductions

provided by different program development and testing methods. He
emphasize* that, under current software development preactices, errors

are detected later than they should be. This results In very high

testing and maintenance costs. The greatest culprits are design errors-

-he states that in ost projects "a dollar more spent In design wouldj have saved five dollars spent on testing and maintenance." He also

cites evidence that automated testing techniques can provide a signifi-

cant cost savings over traditional testing methods.

* Floyd, Robert v., "Assigning Meanings to Programs," Proc-. of

Smosium In App/led Mathematics American Mathematical Society, New

York City, April 5-7, 1966.

The fundamental concepts and notations for what has become known

as "Floyd-goare" programing language semantics were introduced In this

paper. Even though the notation is somewhat awkward by current stan-

dards, its Importance cannot be overstated. Nearly all research in

program verification Is bosed on this samantic model.

* Gerhart, Susan L. and Lawrence Yeloits, "Observations of Falli-

bility In Applications of Modern Programing Methodologies," 13 Trans.

on SZ Vol. 2, No. 3, pp. 195-207 (September 1976).

C-3
____ _i__ _

- a - w m m~mo . . . ,•- .. H - , . . "..- • "-~-- mb -- ,

'I

I i Alutely mn...t reading for all *of tware enginers, this paper

beautifully explains that no formal method exercised by fallible humans
• ! will ever guarantee progr~am correctness. Certainly formal methods will

icrease confidee in correctnes, but not even a formal rigorous proof

should be completely convincing. To support their claia they cite many

cases where authors have presented programs which have been proven

correct and had those proofs reviewed by others-yet those programs were

incorrect!

lvan in mathebmatics, where the foundations for constructing proofs

are such stronger, embarrassing errors In proofs occur. They cite one

classic case where a theorem was independently proven in three quite

different ways by three mathematicians, al leading to reviewed publi-

cations. The theorem wse incorrect.

The authors offer seas guidance as to how to look for errors In
specifications, design, and code, but recognize that these are only

guidelines and that there are no guaranteed methods for detecting flaws.

The fact that formal methods do not guarantee correctness should

not discourage their use. The authors point out that formalism provides

training In rigorous thinking "which is essential for good prograiming,"

and provides "an effective language for organizing and expressing

knowledge about programs." However, testing must remain a major means

to ensure program reliability.

e,,, Goodenough, John B. and Susan L. Gerhart, "Toward a Theory of Test

Data Selection," 11 Trans on SI, Vol. l, No. 2, pp. 156-173 (June

1975).

This is probebly the most important paper in the testing liter-

] ature. It has done more than amy other work to establish a meathematical

!
C-'

I
1 !- ----- . --

framework for the systematic study of software testing. Admittedly the

results given are not that profound; indeed, there are really no "deep

truths" in the testing field. This does not diminish the significance

of their contribution, however.

This paper presents fundamental definitions of "reliability" and

"validity" for tesing criteria, and explores the difficulties with

attempting to develop criteria with these properties. The authors

develop a decision table approach to representing a program and its test

data pinpointing the importance of testing each predicate, and where

possible, each combination of predicates in a program. They further

point out the inadequacies of just structural testing. A program's

tests suet be generated from the specifications as well as from the

program structure if they are to be reliable. They produce guidelines

on how to generate test data from specifications.

*** Hoare, C.A.R., "An Axiomatic Basis for Computer Programing,"

Communications of the ACM, Vol. 12, No. 10, pp. 576-583 (October 1969).

Following up on the ideas introduced earlier by Floyd (1966).

Hoare develops rules of inference for simple language constructs.

* *e Hoare, C.A.R. and Niklaus Wirth, "An Axiomatic Definition of the

Programing Language PASCAL," Act& Informatica, Vol. 2, pp. 335-355

(1973).

This paper is a landmark because of its ambitious attempt at

aximatizing a large portion of an actual programing language. Despite

a few errors and the fact that not all of Pascal was analyzed, it has

becme the foundation on which later aximatisations of Pascal and other

languages are based. By sbming how well the semantics of a wll-

C-5

designed prograing language can be clearly explained, this papeer

provided a major push towards developing languages with simple but

powerful features.

Howden, William E., "Reliability of the Path Analysis Testing

Strategy," I= Trans. on SE, Vol. 2, No. 3, pp. 208-215 (September

1976).

This is probably the second most important paper ever written in

the testing field, second only to Goodenough and Gerhart (1975). There

are very few theorems in testing theory because there is so little

theory. Many of the most important theorems are presented here. Bowden

defines a "reliable" test strategy and proves that there are no non-

trivial strategies which -wil be reliable for all programs. He also

provxs that for each program there is a finite test set which reveals

whether the program is correct. He then develops specific definitions
(for the path analysis testing strategy and prove* fundaental theores

about it.

To explore the reliability of path testing for detecting errors,

Howden examines several smali programs with many errors. He concludes

that path testing will detect many errors but will not, in general,

detect all errors. For the ample programs exmined, 652 of the errors

were detected by path testing. Be presents theorems hich show the

conditions under which path testing is reliable for three different

error categories. These conditions are fairly strong, so that in

general it cannot be assumed they hold. However, even if these con-

ditions are not satisfied, many errors may still be detected.

Evtowden, William I., rSyboic Testing and the Dissect Symbolic

Evaluation System," IMK Trans. on 51., Vol. 3, No. 4, pp. 266-278 (July1977).

C-6

- - -- - .--- , --- -a -- -|. =..e a -- m -

This classic paper overview the basic principles of symbolic

execution through a discussion of the Dissect system designed and

implemented by the author.* Dissect symbolically executes ANSI FORTRAN

programs. After explaining the features of Dissect, shoving how it can

detect errors in a simple program, Bowden continues with a discussion of

the reliability of symbolic execution in general.

Provided the user knows the form of the answer to expect, Hayden

suggests that symbolic execution will be quite reliable in detecting

"path-function" errors; i.e., errors resulting from the wrong compu-

tation an the correct path. This is because the resulting function

constructed to represent the calculation will "look obviously incor-

rect *" "Path-domain" errors, In which the wrong path is taken, are
harder to detect.* The function which results may well look reasonable.

It is Just the wrong funcion for. this particular symbolic data; e.g.,
when a loop iterates one too few times so that a numerical computation

is missing a term, but is approximately correct.

Howden recomends that symbolic execution complement rather than

replace dynamic analysis. When combined with static analysis tools and

tools to analyze software design and specifications for errors, Bowden

expects the number of errors to be reduced dramatically.

The article is very well-written, with well-chosen examples to

illust rate the potential advantages of symbolic execution.* The one

major flaw in the paper 1z, that because It Is necessarily so short, the

reader cannot completely grasp how to use Dissect.

SHuang, J. C., "An Approach to Program Testing," Computing Survey*,

Vol. 7, No. 3, pp. 113-128 (September 1975).

C-7

This paper overviews how to approach path testing of programs.

Its main contribution is the clear "for the masses" style in which it Is

written. Because it is a survey paper, it does not break new ground;

but it does provide an excellent introduction to the problems of path

analysis and test data generation.

***King, James C., A Program Verifier, Ph.D. Dissertation, Dept. of

Camputer Science, Carnegie-Mellon University, Pittsburgh, 1969.

King was the first to apply Floyd-Hoare semantics to automatic

program verification. In this dissertation he describes a system,

operational on an IBM1 360, which can automatically verify many simple

programs which manipulate Integers. His major contribution was in

taking an elegant theoretic idea (that of language semantics) and

showing how proofs of program correctness could be automatically

realized. of course, as an early prototype system, it was quite

limited. Today's program verifiers are much more sophisticated.

However, it is a sad reflection on the difficulty of program verl..i-

cation that despite their added sophistication, current systems still

cannot automatically verify programs much more complex than those

described by King.

SKing, James C., "Symbolic Execution and Program Testing," Communi-

cations of the ACM, Vol. 19, No. 7, pp. 385-394 (July 1976).

This is one of the first places in the journal literature where

symbolic execution was described. Most earlier papers were either

technical reports or conference papers. EFFIGY is described, a system

constructed by King to perform symbolic execution on programs written in

a simple fL/i style. Detailed examples illustrating the style of

executing software symbolically are given including the user inter-

vention requited to direct the symbolic execution.

c-8

I

**** Osterveil, Leon J. and Lloyd D. Fosdick, "DAVE - A Validation

Error Detection and Documentation System for FORTRAN Programs," Soft-

ware: Practice and Experience, Vol. 6, No. 4, pp. 473-486 (October-

December 1976).

One of the most frustrating problems when working with most

commercial FORTRAN compilers is their poor diagnostic capabilities. For

example, most compilers do not perform even modest data flow analysis to

check for variables which are referenced without having previously been

assigned a value. Several types of data flow anomaly such as this are

detected and reported by DAVE, which analyzes ANSI FORTRAN programs.

This was one of the first reported systems to perform such analysis.

DAVE itself is quite portable because nearly all of it has been written

in ANSI FORTRAN. Its utility is enhanced by its ability to handle large

programs with many modules. Intermodule data flow analysis detects

anomalies across modules. Much of the article details the algorithms

employed for this analysis.

**** Ramamoorthy, C. V. and Siu-Bun F. Ho, "Testing Large Software with

Automated Software Evaluation Systems," IEEE Trans. on SE, Vol. 1, No.

1, pp. 46-58 (March 1975).

This paper presents an excellent overview of automated software

evaluation systems. The importance of tools to lowering lifecycle costs

is developed. This is followed by the classification of tools into

several categories depending on the nature of the analysis and the point

in the lifecycle when the tool is applied. The specific aid which tools

can offer, such as checking for loop termination conditions are pre-

sented. Many example tools are cite, in the bibliography. Some are

briefly evaluated in the body of the paper as well.

C-9

***Ramamoorthy, C.V., Siu-Bun F. Ho, arnd W. T. Chen, "On The Automated
Generation of Program Test Data," IEEE Trans on SE, Vol. 2, No. 4, pp.

293-300 (December 1976).

Manual generation of test data is tedious and error-prone.

Automated methods are required to reduce the time required to prepare
data sets and to help ensure that the data sets have desired properties

such as guaranteeing a particular set of paths are taken. In this
article the authors discuss automated methods of applying symbolic

execution to generate test data. Symbolic execution results in a series

of constraints on the input data Imposed by the predicates controlling

2 flow of control and perhaps by additional constraints Imposed by the

user. Provided the constraints on linear or special non-linear forms,

known techniques can be used to automatically generate the data.

Howe-,ror, there are no algorithmic techniques for arbitrarily complex

code.

The authors propose a new method which involves careful selection

of values when possible and random selection from a restricted domain

when analysis cannot be done. Since random selection can lead to the

selection of input values vich wili not simultaneously satisfy all

co~nstraints,, the method includes a backtracking component to undo the

selection of input values until a complete set of input satisfying all

constraints is created. Of course, since the input domains are effect-

ively infinite for most problems, this approach may not succeed. The

authors do not offer any substantiating evidence that the system will

work in acceptable time for complex numerical problems and further

evaluation is needed before it will be clear whether this system is

viable. The algorithm has been implemented in FORTRAN in a system

called CASEGEN and is operational on a CDC 6400.

c-10

Rubey, R. J., J. A. Dana, and P. W. Biche, "Quantitative Aspects of

Software Validation," IEEE Transactions on Software Engineering, Vol.

SI-1, No. 2 (June 1975), pp. 150-155.

This paper is the first attempt that we are aware of at making a

quantitative evaluation of testing techniques. The authors have

compiled error data from several software development projects (the

sources are kept anonymous), broken down by error type, severity,

frequency of occurrence, method of detection, and time of detection.

They observe that static analysis and dynamic testing are complementary

error detection methods, and that both should be used in an effective

software validation effort.

' * Thayer, Thomas A., Myron Lpon, and Eldred C. Nelson, Software

Reliability, North-Holland, Amsterdam, 1978.

This is a commercial publication of a final technical report for a

study performed by the TRW Defense and Space Systems Group for Rome Air

Development Center during 1973-1976. The study analyzes written error

reports from five software development projects (sources kept anony-

mous). Three major topics in the field of software reliability are

treated extensively: error classification, causes and prevention of

errors, and mathematical modelling of software reliability.

The error classification system appears to be the least satis-

factory product of this work. The final system used has 79 error types

split among twelve major categories. The error types are not defined

other than by a terse one-line description such as "Incorrect operand in

equation." Thus there is much room for ambiguity in interpreting the

categories and assigning errors to them. The system mixes source code

error definitions and run-tiae sympteas of errors; it also does not

distinguish between design and coding errors. However, in the five

years since this report has appeared, no better error classification

system has been developed.

C-11

I'

Chapter 4 presents an extensive analysis of the error data from

the five projects. There are regressions of errors versus module size

and complexity, tine of error detection, and time of introduction of the

errors. The effects of prograer abilities and assignments and

computer usage on error detection rates are considered. The effective-

nae of various design, standards enforcement, and testing tools and

techniques are evaluated. Although a large amount of data is considered

and an overwhelming number of data reductions are peqformed, the authors

of the study remain unconvinced that they have uncovered error trends

that will apply in any general software development setting.

Chapter 5 and 6 are devoted to the mathematical modeling of

sof tware reliability. Chapter 5 is a brief summary of several such

models; Chapter 6 attempts to apply one model (developed by Nelson) to

one of the software projects. These chapters are much more

"theoretical" in orientation than the rest of the study-a background

and interest in the probabilistic modeling of software is needed to read

them in detail. The value of mathematical software reliability theory

is not made clear to the more casual reader.* The "guidelines to

minimize error introduction" which are presented as the conclusions of

this analysis seem to he borrowed from structural testing: try not to

write unexecutable paths; test all branches in the program, using well-

chosen (functional) data; retest all branches affected by a code

correction; etc.

1' This volume is recommended not only for what it offers to the

field of software engineering but also as an excellent example of what

technical writing should attempt to be. For the most part, the text of

this report is delightfully clear and concise. It gives oe hope that

software engineering may yet be spared from degenerating into a morass
*of reports documented in pure jargon. Its conclusions and recommen-

*dations for improving the reliability of software are somewhat tenta-

tive, but that is an accurate reflection of the current state of the

discipline. The study provides an excellent foundation for further

research.

C-12

C.2 RECEN PAPERS (from 1978 to 1980)

*** Andrews, D. M., "Software Fault Tolerance Through Executable

Assertions," Twelfth Annual Asilomar Conference on Circuits, Systems,

and Computers, Pacific Grove, CA, November 6-8, 1978.

This paper presentes a brief tutorial in how to use executable

assertions both to test programs and to provide run-type error recovery.

It gives recomendations on where to put assertions to detect processing

errors, and describes the kinds of "reasonableness" checks that can be

made with them. Coded examples of the use of recovery blocks are

presented. A few statistics are presented which show the overhead of

using assertions to be acceptable in most applications.

** Bauer, Jonathan A. and Alan B. Finger, "Test Plan Generation Using

Formal Grammars," Proc. 4th International Conference on Software
Ensineertn, pp 2-3,HncSpteber 17-19, 1979.

To the extent that a program can be modeled as a finite-state

transducer, the large body of theory which has been developed over the

last 25 years on transducers can be applied. The authors claim that for

7.certain applications, such as control systems, a finite-state transducer
model is appropriate. They have constructed the Automated Test System

(ATS) which takes a formal description of the system, saps it into an

augmented fiaite-state transducer, produces a sequence of test cases

* from that transducer under varying completeness criteria, and runs the

tests. This method tends to produce a large number of test cases;

however, the ATS can quickly execute each test. The idea is inter-

esting, and is similar to that described by Chow (1978), but the

*practical Impact of their work remains to be seen.

C

*1013-

U - . .

B enson, J.P, and S. H. Saib, "A Software quality Assurance

Experiment," Proc. Software Quality and Assurance Workshop, pp. 87-91,

San Diego, November 15-17, 1978.

Assertions have been used to augment the weak error-checking

capability of many FORTRAN compilers and linking loaders. The utility

of executable assertions to detect errors is studied. Errors were

seeded into a program of about 1000 lines. Executable assertions were

then added to the program. The executable assertions, when violated,

cause an error message to be printed. Typically such assertions specify
range information such as stating that variable X has a value in the

range 0..10, or assertions may state relationships between variables

such as stating that the value of variable X is greater than the value

of variable Y.

The experiment showed that assertions are quite useful in de-

tecting many como errors. They appear to be most valuable in de-

tecting computational errors, such as using the wrong operator, and

weaker n detecting logic and data handling errors. The authors propose

further development of new forms of executable assertions to better

handle the latter two error categories.

** Bristow, C., C. Drey, B. Edwards, and W. Riddle, "Anomaly Detec-

tion in Concurrent Programs," Proc. 4th International Conference on

Software Engineering, pp. 265-273, Nunich, September 17-19, 1979.

The paper contains a description of algorithms to detect anomalies

such as a variable being referenced without ever having been assigned a

I value. This is a generalization of similar detection capabilities for

sequential code. It is essentially a shorter, less developed version of

what was later published by Taylor and Osterweil (1980).

C-14 4

* ~ .--- -.-- ---- *.-- ---. ---- -.-- ---- ---- -*,--.- '

B udd, Timothy A., Richard J. Lipton, Frederick G. Sayward, and

Richard A De~illo, "The Design of a Prototype Muatation System for
Program Testing," Tutorial: Automated Tools for Software Engineering,

pp. 226-230, IEEE Catalog No. EHO 150-153, Nov York, 1979.

The structure and capabilities of a pilot system to perform

testing by mutation is described. The system comprises about 10,000

lines of FORTRAN code, and can be used to test FORTRAN programs.

Program mutation itself assumes that a program is nearly correct; i.e.,

differs from the correct version by only a "simple" error such as having
a .LT. predicate instead of UL.. It cannot address radically incorrect

problems such as accidentally omitting a whole capability. If a program

is incorrect, but a slight "mutation" of it is correct, then the authors

argue that a system which automatically mutates programs will be able to
detect errors. Their system accepts as input the original program, a

user-written description of which classes of mutations to sake, and test

data on which the original program Is known to yield the correct answer.

The system will mutate the program according to the description gIven

and run each mutation against the test data. Failure to produce
identical answers on the test data "kills" off a mutation. On the other

hand, If a mutation yields identical answers, it may be the correctI
version, and is saved for subsequent analysis, or further testing with

new test data.

The authors have found It relatively easy to test subroutines
longer than 100 statements, and argue for mutation as a viable test

method. This ef fort is still In Its early stages, avid the authors

recognize much research remains. A major problem is that some mutations

may yield programs which are computationally equivalent to the original.
Another is in producing large test data sets, although this problem has

been addressed elsewhere with some success.* The most significant
problem facing mutation testing, however, is the astronomical number of

potential mutations. In order for this method to become viable,

C-15

sophisticated methods of reducing the umber of mutations of a given

progrm must be found.

***Cheathm, Thomas E. Jr., Glenn H. Holloway, and Judy A. Townley,

"Symbolic Evaluation and the Analysis of Programs," IES Trans on SE,

Vol. 5, No. 4, pp. 402-417 (July 1979).

The capabilities and design of a system for performing symbolic

evaluation of programs written in the ELI language are described. The

system was operational on some language features of ELI at the time the

article was written. Symbolic evaluation is a static analysis of a

program for the purpose of generating descriptors useful to other tools

such as progras verifiers and code optimizers. It is actually a

collection of analysis techniques for the purpose of producing either

closed form formulas or recurrence relations which describe the behavior

of each progroa variable. In this sense it is a generalized symbolic

executor.

The work is notable for its mbitiousness: ELI is a complex

language, whereas most earlier work on symbolic execution has been

restricted to rather simple language features; loops are analyzed

automatically, so that for each variable affected by a loop, the system

attempts to construct a closed form formula which describes the input/-

output relationship of the loop with respect to that variable; user-

defined procedures are analysed, including any side-effects, an aspect

of procedure analysis which Is Ignored by most symbolic execution

systems. The system operates by building a program data-bae which

captures many logical and structural relationships and then analyzing

this data-base. The basic algorithms employed by the system are

described in the article.

C-16

I-- - - - - - - - - . . - -- - ---.. - -- - - --

*~Chow, Toum S., "Testing Software Design Modeled by Finite-state
Machines," I=l Trans on SI, Vol. 4, No. 3, pp. 178-187 (May 1978).

There are no test strategies which are both reliable and valid for
all programs. This fact has led researchers to seek teat strategies

which are both reliable and valid for a certain class of programs and
errors. Chow has developed a strategy for detecting flow of control
errors in programs which satisfy certain simplifying assumptions. This

method, which he calls "automata theoretic" testing, Is both reliable
and valid for the special cases for which It was designed. Chow claims

that one of the most important advantages of his method is that designs
rather than programs can be tested with it. An executable version of

the program is not needed-just a design.

First the tester must construct the finite-state machine which
characterizes the system's behavior. Chow offers no guidance as to how

to do this. He readily admits, however, that only a limited number of

applications can be so modeled.

There are three steps in his method: (1) estimate the maximum

number of states in the correct design; (2) generate test sequences)
based on the design; and (3) verify the responses to the test sequences

f rom step 2. The maximum number of states is required so that the
tester can be "certain" he has test sequences long enough to force the

testing of aUl possible cycles in the transition diagram. It is not
clear how reasonable this assumption is, but it is certainly required In

order to guarantee reliability for the method. The test sequencesI

required will force the constructed automaton to go through each

transition at least once and also enable Indistinct pairs of states to
be recognized. The verification step requires a manual walk-through of I
the design (or automated if executable code is used) and a manual
examination of the results for correctness.

C-17

There are obvious limitations with this method as the number of

states Increases. The author cites his personal experience at Bell Labs

using this method on three different projects. He was quite leased

with the experience, noting that several errors were detected with this

technique.

A*L Dekillo, Richard A., R. J. Lipton, and A. J. Peris, "Social

Processes and Proofs of Theorems and Programs," Comunications of the

AC4, Vol. 22, No. 5 (May 1979), pp. 271-280.

This article openly condemns the study of formal verification as a

fruitless pursuit. As would be expected, it prompted a lot of response

in the form of letters to the editor and notes in CAM and other

software journals. It also provided a challenge to the formal verifi-

cation comunity-it is no accident that announcements of successful

proofs of significant programs began to appear within a year.

The article argues that proving (verifying) programs lacks an

essential element that its counterpart In mathematics-proving theorems-

-has: the "social process" of peer review of one's results. Proofs of

programs are inherently dull, tedious, and uninteresting, so they won't

be checked manually. Furthermore, no one will want to perform them

manually as a matter of course; and fully automated verification is a

long way off and not likely to be helpful in correcting errors. The

authors state their conclusions In no uncertain terms: "Even the

verifiers themselves sometimes seem to realize the unverifiable nature

of most real software;" and "The discontinuous nature of programing

sounds the death knell for verification."

Many of the criticisms stated in this article touch on significant

problem areas with formal verification, but the general thesis misses

the mark. Formal verification is different from mathematics: the

C-18

- ---- - - - -- - - - - . . -

former is a quality assurance activity performed by engineers, while the

latter is a body of knowledge which is valuable only insofaor as it can

be proved to be logically consistent and correct. Formal verification

of programs can be valuable even if the process is flawed or incomplete-

-if program proving is found to improve the quality of software in a way

that no other software development activity can, then it should be used.

ea~ Deutsch, Michael S., "Software Project Verification and Valida-

tion," Computer, Vol. 14, No. 4 (April 1981), pp. 54-70.

This paper describes the design, development, and testing of a

flarge software development project. The software development and

testing proceeded in top-down fashion, with emphasis on identifying each

structural element of the program with a specific function. Software

development and testing were performed concurrently, as functional

capabilities were realized. Automated tools were used to provide

documentation, aid in test data generation, instrument the source code

* to measure test coverage, and analyze and report test results.

Complete branch coverage was required for each module tested. The

article includes a very clear explanation of how an instrumentation and

test case assistance tool can be used in structural testing. The

reports provided by the tools are shown, and each step in the testing

process is enumerated and described.* Evidence is presented that

structural testing used in this manner caa save a significant amount of
effort (more than 3 person-years) over traditional testing methods.

**Dreech, Frederick J. and Richard A. Bowen, "IDSUG: A Tool f or

Program Development," Proc. Software Quality and Assurance Workshop, pp.1' '106-110, San Diego, November 15-17, 1978.

LI * C-1I

IDBUG is a tool which automatically constructs a test harness,

thereby relieving much of the tedium of dynamic testing. It is imple-

mented in FORTRAN on an HP 21MX-E mini-coaputer and can generate test

modules and monitor their execution. The user specifies the interface

between his program and the IDBUG system in a special language. IDSUG

is interactive, permitting a programmer to examine data and output, or

modify input data as desired.

The authors report that the use of IDBUG on two projects was quite

pleasant. They spent much less time on debugging with greater user

satisfaction. They felt that the ability to step through different

modules during execution gave them an insight into the execution

characteristics of the programs they had not previously encountered.

The system as described seems quite useful, and Is certainly an

improvement over awkward manual methods of constructing testing en-

virotuents. Its biggest flaw is that the command language is somewhat

awkward to use, and could be improved. Such an improvement would be

relatively easy compared to the overall development of IDBUG, and would

simplify learning and using the tool effectively.

** Duran, Joe W. and John J. Wiorkowski, "Towards Models for Prob-
abilistic Program Correctness," Proc. Software Quality and Assurance

Workshop, pp. 39-44, San Diego, November 15-17, 1978.

Since testing cannot, in general, guarantee program correctness,

the authors explore the notion of "probability of correctness". Because

certain testing methods are more reliable than others, and certain

combinations of tests are likely to discover large classes of errors, a

probability of correctness can be ascribed to a program depending on the

testing it has undergone. The authors study several different testing

strategies with respect to random test data and data from special

C-20 [1

i, _ _ _

distributions to derive quantitative measures of confidence in the

correctness of a program.

One sample strategy for producing a confidence level involved

tetting a program as a black box on random ample of inputs. This

allow them to make statements such as "we have X % conf idence that

program P has a probability of at least Y of running correctly on an
arbitrary input." The more test cases run, the higher will be X and Y.

For example, with 1000 test inputs, X - 951 and Y - 0. 997.

Such attempts to quantify the degree of correctness of programs is

laudable. Such measures as the authors propose appear useful; however,
the double probability in their measure makes the significance of the

metric much less clear. The other models they propose are much harder

to assess since they give so few details. Further work by then is

needed to determine how useful these metrics will be in practice, and
how easily they can be computed.

** Fitzsimmons, Ann and Tom Love, "A Review and Evaluation of

Software Science," Computing Surveys, Vol. 10, No. 1 (March 1978), pp.
3-18.

This paper is long on review and short on evaluation. It is

excellent as a sumary of the Halstead metrics-it carefully defines
each of them, show how they are computed, and presents interpretations

of their meaning. However, the authors seem willing to take at f ace
value the most incredible claims of Halstead and his associates, and theI, only qualification they issue is that "the data collected to date are
not sufficient to verify the hypotheses of software science."

All of the Halstead metrics are based on the operator and operand

counts of a program. These values are combined through various formulas

j -.. C-21j

loosely based on results in information theory. (There are some

ambiguities in the way operators and operands can be classif ied-the

author. do not mention these, however.) The various metrics are

supposed to indicate, among other things: the complexity of a program,

the level of a language (quantifying the HOL-assembler dichotomy), the
effort required to develop a program, the number of errors in a program,

and the time required to understand a program.

The authors cite some impressive statistics in support of these

properties of the metrics--indeed some are too impressive. The corre-

lation coefficients between predicted and observed program errors are

t given as .98 and .99 in two experiments in which Halstead himself was

involved. These numbers are so high that in the absence of any a priori

reason to believe in such a correlation, it seems they must be statis-

tical flukes. The authors are willing to make some very sweeping

judgments on the basis of these experiments; for instance, from comn-

paring the effort metric values they conclude that "software projects

using PL/I will proceed much faster toward completion than if they used

low-level languages. There will be fewer bugs." There are assembler

and FORTRAN programeers who wouldn't agree with that at all.

The Halstead metrics are not "magic numbers" that can be used to

mesasure every conceivable aspect of software engineering. Their

proponents would do better to stick to trying to approximate more

objective quantities such as software costs, errors, and development

time, rather than getting involved in emotionally charged issues such as

whether one language is superior to another.

** Foster, Kenneth A., "Error Sensitive Test Cases Analysis (ESTCA),"

C-22

Foster describes a technique he developed for selecting test cases

which aire likely to f ind errors. The goal is to f ind path errors by
generalizing on techniques used for testing gates in hardware design.
The technique is summarized by three rules f or selection. In a simpli-

fied form they are: (1) if predicate P depends on (at least) two

variables X and Y, then assign values to X and Y in dif ferent test cases

so that X(Y, X-Y, and X>Y. (2) if X should be less than Y (or greater),

then make X differ from Y by the smallest decrement (increment); (3)

assign values to each input so its value changes across tests, and so

its value differs from that of other variables. The paper elaborates on

ad hoc methods to generate such data and argues for the effectiveness of

ESTCA based on an analysis of several examples. Foster admits that

ESTCA has no theoretical basis, instead it is founded on "pragmatic

engineering" considerations. In fact, it closely resembles well-known

methods for selecting test data.

** Fujii, Marilyn S., "A Comparison of Software Assurance Methods,"

Proc. Software Quality and Assurance Workshop, pp. 27-32, San Diego,

November 15-17, 1978.

Three software quality assurance methods are compared: quality

assurance, acceptance testing, and independent verification and vali-

dation. The first ensures sound methods are applied to the overall

development process, thie second that the customer will find the proddct

acceptable on delivery, and the third helps ensure the product is

correct.

SGannon, Carolyn, "Error Detection Using Path Testing and Static

Analysis," Computer, Vol. 12, No. 8, pp. 26-31 (August 79).

An experiment conducted by General Research Corporation to test

the effectiveness of path testing versus static analysis for error

C-23II j

detection is described. A 5000-line FORTRAN program was seeded, one

error at a time, with 49 errors using the TRW error classification

scheme to categorize them. A prograer, working independently f rom the

seeder, was asked to detect and correct all 49 versions of the program

using path testing or inspection, --hichever seemed more appropriate. To

provide a basis for comparison, all 49 errors were also seeded together

into the program and run through a static analyzer to determine which
errors could have been detected through static analysis alone. The

results indicate that neither path testing nor static analysis alone is
adequate to uncover all errors. Path testing alone detected about 25%

of the errors, mostly logic, computational, and data-base errors.

Coupled with inspection, this percentage increased dramatically to 45%,

but is still well below an acceptable level. Static analysis, which is2
most effective in finding data handling, interface, and data definition
errors, detected only 16% of the errors. However, one of the errors was

not detected by the other methods. Gannon concludes that path testing,

static analysis, and inspection should all be part of a comprehensive

test plan. She also notes that even these three methods combined are

inadequate to detect many errors and that more sophisticated methods are

needed.

SGeiger, Werner, Lothar Gmeiner, Heinz Trauboth, and Udo Voges,

"Program Testing Techniques for Nuclear Reactor Protection Systems,"

Computer, Vol. 12, No. 8, pp. 10-18 (August 1979).

A combination of methods were used to develop and test a nuclear

reactor protection system. These methods included static and dynamic

testing using SADAT. In addition, multiple versions of the system were

independently developed-a technique which proved exceedingly valuable

in detecting errors since the independent teams made different types of

errors. The software was tested first at the module level, then after

integration at the system level. The authors feel the method pro~ved

C-24

quite effective in uncovering problems in the specifications and in

detecting errors in the implementation.

*** ~owden, William E., "An Evaluation of the Effectiveness of

Symbolic Testing," Software: Practice and Experience, Vol. 8, No. 4, pp.

381-391 (July-August 1978).

Symbolic testing is compared to static and dynamic analysis to

determine its reliability in revealing different types of errors. Six

independently written programs which contain 28 known errors are the

basis for the analysis. The dynamic tests included branch testing, and

the static included module interface checking.

The analysis shows that symbolic testing is, by and large, more
reliable than any of the other individual methods, such as branch

testing. However, when all other methods are combined, symbolic testing

is only slightly better. Hence, symbolic execution could be used alone

to discover most errors which other standard techniques do, or could be

used in conjunction with other methods to ensure greater error de-

tection.

Howden points out that the analysis he conducted was based on just

six programs, and that it is not valid to assume that these relation-

ships hold in general. However, even if they are approximately correct,

the utility of symbolic execution is supported.

*** Hoyden, William E., "Algebraic Program Testing," Acts Informatica,

Vol. 10, No. 1, pp. 53-66 (1978).

IC-25

Most testing methods have little mathematical foundation. They

are applied because of empirical evidence that they are likely to

uncover certain classes of errors. In this paper Howden presents a test

method which has a rigorous mathematical foundation. It is reliable for

all errors for a certain class of programs. This class is relatively

small but important-programs wich manipulate arrays in a specified way,

such as sorting an -array of elements. The major result of the paper is

that a program which satisfies these restrictive conditions is correct

if it is correct on a particular set of data. Bowden gives a construc-

tive method f or producing that data.

The restrictions on the computation within a program to which

algebraic testing is applicable are severe enough so that this testing

method cannot be widely applied without further research. It is not

clear how much further it can be generalized. However, it is a signi-

ficant contribution to the testing literature because it attempts to

support testing strategies with a mathematical analysis of programs

rather than ad hoc experience.

** Howden, William E., "DISSECT-A Symbolic Evaluation and Program

Testing System," IEEE Trans on SE, Vol. 4, No. 1, pp. 70-73 (January

1978).

This short article adds very little to a longer and much more

detailed paper which appeared earlier (Bowden, 1977). It explains the

purpose and effectiveness of DISSECT, the author's system for symbolic

execution. The longer article is a much better examination of DISSECT.

**Howden, William E., "Theoretical and Empirical Studies of Program

Testing," IEEE Trans on SE, Vol. 4, No. 4, pp. 293-298 (July 1978).

C-26

Two approaches to program testing are described-theoretical and

empirical. Theoretical testing relies on a rigorous mathematical
foundation which guarantees that if a program and test data have certain
characteristics, then the teat will uncover a specific class of errors.

on the other hand, empirical tests such as path testing rely upon the

fact that experience shows that certain types of tests frequently

uncover certain classes of errors. In the latter case, there is o

guarantee that the method is reliable.

Although theoretical testing is obviously preferred, the known

theory of testing is currently so limited that very little actual

testing can be accomplished using guaranteed reliable methods. Bowden

feels that the espirical approach will be the more fruitful for the near
future and encourages further research in it.

The paper itself mostly reviews the state of the art very briefly,

off ering few new insights. It is primarily a position paper by Bowden

on where he feels research in testing should proceed. Because of his

stature in this field, the paper has merit and has probably influenced

other workers.

***Howden, William, "Functional Program Testing," MEE Trans on SE,
Vol. 6, No. 2, pp. 162-169 (Mlarch 1980).

"Functional" testing is defined and compared in effectiveness to

"structural" testing. Functional testing in its basic form treats aj
program as a "black-box"; i.e., without examining the program structure

and code. Test data is selected from an analysis of the requirements.

In its more developed form, functional testing applies the same "black-

box" treatment to the design as well, testing each functional component

of the design as a black-box. Functional testing has many of the

characteristics of "stress" and "boundary" testing; e.g., extreme values

in the domain of each input variable should be used as test data.

C-27

This short paper is not overly technical and can be read by

someone without an extensive background in tes ting. Howden offers a

general philosophy for testing, as weil as specifying exact methods in

many cases.

Hie concludes that functional testing is more reliable than

structural testing, in that is is likely to find more errors. This is

based on a study of a comercial statistical package, IH4SL, in which he

analyzed all known errors. However, functional and structural testing

are complementary, not competing methods, because each will detect
errors which the other will not.

H uanig, J. C., "Detection of Data Flow Anomaly Through Program

Instrumentation," I=E Trans on SE, Vol. 5, Nr. 3, pp. 226-236 (May

1979).

A new method of detecting flow anomalies is described and compared

to the traditional approach. A flow anomay occurs when a variable is

referenced when its value is undefined, assigned two values without an

Intervening reference, or assigned a value and then become undefined

without an Intervening reference. The first case Is always an error,

the latter two Indicate a possible logical error. Classically, f low

anomalies are detected statically. Huang proposes instrumenting code to

detect then dynamically. This new approach can handle array references,

which the static approach cannot. Instrumented programs which undergo

structural testing including complete DD-path testing will, as a

by-product, detect all data flow anomalies except those dealing with

arrays. Arrays require additional testing to cover the entire subscript

range.

C-28

** Ploedereder, Erhard, "Pragmatic Techniques for Program Analysis

and Verification," Proc. 4th International Conference on Software

Engineering, pp. 63-72, Munich, September 17-19, 1979.

The Program Development System (PDS) is described. It is a

collection of tools used to support program development in the ECL

language. The majority of the paper is spend on the central tool--a

symbolic evaluator. The system is basically that described in another

paper hy Cheatham et al. (1979).

** Polak, Wolfgang, "An Exercise in Automatic Program Verification,"

IEEE Trans on SE, Vol. 5, No. 5, pp. 453-458, (September 1979).

Program verification has been criticized for only being able to

handle "toy" programs. The author tries to argue that the state of the

art has advanced from "toy" to "small but nontrivial" programs. le

supports this claim by showing how a permutation program written by

Knuth can be proven correct using the Stanford Pascal verifier 1 . The

verifier works from an augmented version of the program in which key

assertions are provided by the user.

The paper is not very convincing because the program studied is

still a "toy". The original Algol 60 program is just 13 lines. It is

slightly longer in the Pascal form which Polak converts it into since he

has added lengthy invariant assertions, more comments, and other

boilerplate. Furthermore, he has done all of the really hard work by

t4
Stanford Verification Group, Stanford Pascal Verifier, user Manual,
Stanford Univ., Dept. of Computer Science, Report No. STAN-C5-79-731,
March 1979.

C-29
;p,4.-

providing the assertions. A more convincing argument for the viability

of program verification would have been for the assertions themselves to

be automatically generated. A final problem with the permutation

program is that it has such a classic set of mathematical properties

underlying it. Host programs actually written do not.

*** Reifer, Donald J. and Stephen Trattner, "A Glossary of Software

Tools and Techniques," Computer Vol. 10, No. 7, pp. 52-60 (July 1977).

One of the most difficult problems in any field as young and

dynamic as computer science is the lack of a standard terminology. The

authors provide clear concise definitions for 70 common tool and

technique categories such as "compiler" or "test-result processor."

** Scowen, R. S., "A New Technique for Improving the Quality of

Computer Programs," Proc. 4th International Conference on Software

Engineering, pp. 73-78, Munich, September 17-19, 1979.

If a variable's value is overwritten without ever having been

referenced, then presumably there is a logical error in the code.

Scowen proposes implementing a hardware check for this condition. The

basic flaw with his proposal is that It is not always an error to assign

a value without ever referencing it. For example, a value may be

computed assuming normal operating conditions, but an exception may

cause that computed value to be overwritten. Static analysis could warn

the programer during initial coding that he has a potential error.

Scowen's technique, however, could check array references for which

subscript bounds cannot be computed statically.

* Sukert, Alan N. and Arit L. Cool, "Error Modeling Applications in

.I Software Quality Assurance," Software Quality and Assurance Workshop,

pp. 33-38, San Diego, November 15-17, 1978.

C-30o

Different approaches to modeling the prediction of errors are

described, including a discussion of the parameters and probability

distributions employed. A large project involving 115,000 lines of

Jovial code is the basis for the analysis of error prediction models.

Detailed error data was available for this project which was tested and

became operational in 1973.

All of the models described appear to be somewhat weak, giving

answers far different from the actual number of errors found. Uninten-

tionally, the authors seem to point out how poor current models of error

prediction really are. They present a plan for using error prediction

models as part of an acceptance test. The expected number of errors
which will occur over some period of tine is computed using an error2
prediction model. Testing then proceeds over a benchmark period. If
the number of errors actually discovered does not exceed the predicted

number, the software should be accepted.

** Taylor, Richard N. and Leon J. Osterweil, "Anomaly Detection in

Concurrent Software by Static Data Flow Analysis," IEEE Trans on SE,

Vol. 6, No. 3, pp. 265-278 (may 1980).

A data flow anomaly occurs when a variable is referenced without

having been previously assigned a value or is assigned a value which is

never ref erenced. The detection of anomalies in sequential code has

been studied by many people and several tools exist which detect such

anomalies in a variety of languages such as FORTRAN and Pascal. Taylor

and Osterweil have extended those results to concurrent dode where

additional problems In detecting anomalies arise because of the Indeter-

inate order of execution of some statements. They have further
isolated several anomalies of a different nature peculiar to concurrent

code such as a task never being scheduled, or being scheduled concurrent
with itself.* The bulk of the paper is taken up describing the algor-

* ithes to detect these anomalies. The algorithms are based on a new data

C-31

structure called a "process aumented flovgraph" which is a graphical

representation of a system of communicating concurrent processes.

Algorithms found in many optimizing compilers such as those to detect

"live" and "dead" variables in code blocks are adopted for this ana-

lysis .

• * Voges, Udo, Lothar Gmeiner, and Anneliese Aaschler von ayrhauser,

"SADAT - An Automated Testing Tool," IZEE Trans on SE, Vol. 6, No. 3,

pp. 286-290 (May 1980).

SADAT is a tool for testing single modules of FORTRAN programs.

It is written in PL/I and runs on an IE 370/168. SADAT supports static

and dynamic analysis plus symbolic execution. Among its capabilities,

it can statically detect code anomalies, symbolically execute a parti-

cular path in a program, and instrument code to report on character-

istics of a particular run such as the DO-paths which vere executed.

SWalker, Bruce J., R. A. Kemerer, and G. J. Popek, "Specification

and Verification of The UCLA Unix Security Kernel," Comunications of

the ACH, Vol. 23, No. 2 (February 1980), pp. 118-131.

This is one of the first efforts to prove the security of an

operating system. Such work represents a change of emphasis in formal

verification from attempts to prove the "general" correctness of

traditional applications programs. The paper describes the formal

specification and verification process in terms that are understandable

to a reader who has no previous exposure to the techniques of program

proving. It is also an honest account of the difficulties of conducting

a proof. Thus, it is highly reco ended reading for anyone interested

in formal verification.

Much of the work of proving a program is involved in developing a

set of formal specifications. These formal specifications must do two

C-32 .

4.

things: they must embody the properties that the developers want the

software to have; and they must provide a logical basis for the proofsa.

Three levels of specifications were developed in proving the UCLA Unix

security: the top level is a concise statement of what the security

criteria is, while the lover levels /specify how the software is to

implement this criteria. In effect, the software source code provides a

fourth level of specification which is imposed on the supporting

computer system; however, the proofs stop at the source code level and

assume the correctness of the compiler, hardware, etc.

The authors have been encouraged by the success of this effort,

but have no illusions about the current practical value of formal

verification. They state that "The effort required (in developing the

specifications) is sobering. The task is still too difficult and

expensive for general use." Likewise, the process of conducting the

proofs was made difficult by various factors. Only twenty percent of

the code-level proofs were actually completed; yet the total verifi-

cation effort consumed over four person-years I Part of the reason f or

this is that the tools and techniques used were constantly undergoing

changes. The authors f eel that this project at least demonstrated the

feasibility of using formal proof methods on operational software.

** Weyuker, Elaine J. and Tha" J. Ostrand, "Theories of Program

Testing and the Application of Revealing Subdomains," IEEE Trans on SE,

Vol. 6, No. 3, pp. 236-246 (May 1980).

This important work refines the fundamental effort of Goodenough

and Gerhart (1975). Practical problems in constructing criteria that

are both "valid" and "reliable" are examined; e.g., a criterion which is
reliable and valid on program F may be invalid or unreliable on a

slightly modified version of F; i.e., criteria may not be robust.

C-33

There are several interesting results. Every criterion for

selecting test data is either valid or reliable; i.e., the two notions

are not independent I A criterion is "uniformly valid" ("uniformly

reliable") if it is valid (reliable) on all programs. If a criterion is I
both uniformly valid and uniformly reliable then it selects the test

consisting of the entire input domain. Hence, no single nontrivial

criterion is suitable for selecting test data for all programs.

Since programs are not arbitrarily bad, but are usually almost

correct, testing criteria should be able to take advantage of the types

of errors typically made. This leads to the uotion of a "revealing test

criterion." A criterion C is revealing if any one test selected by C

exposes a program error then all such tests will. The key to the

success of this work lies in the ability to partition the input domain

into revealing subdomains for likely types of errors.

** White, Lee J. and Edward I. Cohen, "A Domain Strategy for Computer

Program Testing," IEEE Trans on SE, Vol. 6, No. 3, (May 1980).

The predicates governing the flow of control partition the input

domain according to the path taken through a program. A "domain error"

occurs when an input leads a program down the wrong path due to an error

in the control flow of the program. White and Cohen describe a method

for automatically generating test data which will reliabily detect

domain drrora under specified conditions.

The testing method described has only been studied on simple

language features; e.g., arrays and procedures are not allowed. Hence,

It currently has limited practical value. However, it is not clear that

these features pose insurmountable probloass to the method; they simply

have not been studied. The method is tractable If all predicates In the

program are linear. Although this is theoretically quite limiting, the

i C-34

authors present evidence that most non-scientific programs have only

linear predicates. If the predicates are linear, the domain is broken

into areas bordered by intersecting lines. The method selects test data

for each subdomain near its borders, where domain errors are most likely

to occur.

• * Woodward, Martin R., David Hedley, and Michael A. Hennell,

"Experience with Path Analysis and Testing of Programs," IEEE Trans on

Metric, SE, Vol. 6, No. 3, pp. 278-286 (May 1980).

Woodward et al. propose a new metric for measuring how effectively

a program has been tested. The Test Effectiveness Ratio, or TER, is

based on the notion of a "Linear Code Sequence and Jump" (LCSAJ)

developed earlier by them. The LCSAJ is based on the program text

rather than a flow graph and consists of a sequence of statements

executed sequentially and terminated by a statement which causes a

non-sequential jump.

The TER is actually a hierarchy of ratios which measure succes-

sively more thorough testing. TERI is the statement coverage ratio,

TER2 is the branch coverage ratio, and TER3 is the LCSAJ coverage ratio.

TER3 is the inductive base of the hierarchy. Higher levels are attained

by testing sequences of LCSAJs; i.e., TERn is the coverage ratio of

LCSAJ sequences of length n-2.

After the authors define the hierarchy, they spend the remainder

of the paper addressing the fact that long sequences of LCSAJs typically

are infeasible and must be "pruned" in order to obtain reasonably high

TER values. Hence, their definition of TERn should probably be modified

so that only feasible sequences are considered in forming the ratio.

Further work must be done to demonstrate the viability of this metric of

testing thoroughness.

' C-35

Il

**Woodward, M.R., M. A. Hennell, and D. liedley, "A Measure of Control

Flow Complexity in Program Text," IEEE Trans on SE, Vol. 5, No. 1, pp.

45-50, (January 1979).

A static measure of program complexity is proposed and contrasted

with McCabe's "cyclomatic number." Unlike McCabe's metric, the number

of "knots" in a program is computed directly from a program listing

rather than a directed graph constructed from that listing. The listing

is augmented by an arrow freach jump which occurs in the program. The

arrow connects the source and target lines of the jump. Those places

where the arrow intersect are called "knots." Program complexity is

said to vary directly with the number of knots.)

The advantage of this metric over McCabe's is that it is dependent

on the ordering uw. statements within a progra and therefore relates

more closely to program readability. There are typically many ways to

structure programs which will have the same cyclomatic number, but very

different knot numbers. Consequently, the readability of the program,

as reflected in statement order, is accounted for in their metric.

This paper argues convincingly that their metric is superior to

McCabe's. It is easy to compute and is more intimately tied to the

physical layout of the program.

C-36 I

APPENDIX D

AN ASSERTION TESTING EXPERIMENT

Although executable assertions have been discussed in the testing

literature for a number of years, no one has attempted to determine what

level of resources should be committed to their use in a testing effort.

Testing with executable assertions is an open-ended task-it has been

left up to the tester to decide what assertions should be used.

This assertion testing experiment sought information which would

be helpful to a tester in making this decision. Specifically, we wished

to determine:

0 Where in a program should assertions be placed?

* How thoroughly can a program be tested using assertions
alone?

* What software metrics might provide good indicators of the
number of assertions needed for thorovgh testing of a

program?

I
A set of eight Fortran programs with known errorE were chosen for

testing. These programs were also used in a previous software testing
2

project, providing a baseline for comparison. The programs are listed

at the end of this appendix. They are small, allowing us to thoroughly

examine them in the allotted time. The experimental design was:

0 Develop a complete set of assertions for the test programs.

* Run the programs and determine the errors detected (Test 1).

1B. W. Kernighan and P. J. Plauger, The Elements of Programming Style,
McGraw-Hill, 1974.
2C. Gannon, R. N. Meeson, and N. B. Brooks, An Experimental Evaluation
of Software Testing, General Research Corporation CR-1-854, May 1979.

D-1

I

0 Remove the original errors from the programs and add new

errors into the corrected versions.

* Using the same set of assertions, test the corrected

versions and determine the errors detected (Test 2).

0 Examine the relationship between the number of assertions

and various measures of program complexity.

D-l DEVELOPING THE ASSERTIONS

Developing assertions and adding them to existing code ("asser-

ting" the code) was the most time-consuming part of the experiment. Our
decisions on where to place assertions were based on both the criteria

for candidate locations given in Sec. 7.2 and experience gained during)

D-.1~ Easy Assertions

Some program locations were straightforward to assert:

* Control points

0 Input statements

a Condition checks on variables with fixed values

An assertion was always placed on a labeled statement at a branch

point to assure that the program followed an intended path. If a

statement following a branch point was not labeled, an assertion was not

necessary since there can be no other way for that statement to be

executed.

Some control point assertions seemed unnecessary for these test

programs since the programs were small, and all alternative paths couldj

be checked manually. In larger programs, however, this may not be
possible. Therefore control point assertions on all labeled statements

seem desirable.

D-2

Input statements were, for the most part, easy to assert. When ws

were not familiar with the application area of a program or with

meaningful values for input data, we consulted someone more knowledge-

able in that field or obtained information from the program's documen-

tation.

As in the case of input statements, checking input and output

parameters with assertions is a simple method of describing the assump-
tions required by a particular module.

By screening input data, one can augment a routine's capabilities;

limiting its input and consequently its output. For example, one routine

produces real results from real input, but integer results from integer

Input. A second routine operates on integer data only. By screening

input to the first routine, the two routines can be meaningfully

combined.

Sometimes it is necessary for a variable to remain constant over

an entire section of code. This can be done by introducing a temporary
variable to save the value and checking its value using an assertion.

Additional checks that were easily made by assertions were

division by zero and overflow in exponentiation. A divisor is simply

asserted to be non-zero. Exponentiating to an even power must produce a
positive result, while exponentiating to an odd power must produce a

result of the same sign as the operand. An assertion violation indi-

cates an overflow.

D.1.2 Hard Assertions

Areas that required more difficult assertions were:

* Computation history checks

* Complex computations

* Condition checks on changing variables

D-3

Checking the history of computations by comparing previous results

to current results required a thorough knowledge of the program's

function. Auxilliary variables are needed to save old values. Formu--

lating assertions of this type was more difficult and time-consuming

since it required understanding a program's intent and then deciding
where in the code to save and compare values. It is evident that if one

is not totally familiar with material being programmed, it is easy to
make incorrect assertions. We spent a great deal of time debugging our

own assertions. We also found that placing assertions after complex

computations was very difficult in programs dealing with unfamiliar

subjects. In many cases, assertions were developed by more than one
person.

Although making assertion checks for variables that are required

to remain constant is fairly simple, determining upper and lower bounds (
of variables that fluctuate requires understanding a program's intent.I' A person formulating this type of assertion must be as familiar with the
code as the programer himself.

Other areas that were hard to assert include making equality

comparisons with floating point numbers and imposing "reasonableness"

conditions on program outputs. Testing for equality between floating

point numbers is a poor programming practice, but nevertheless it is

used. In these cases, one has to decide what tolerance can be allowed in

the comparison and assert that anything else violates correctness of the

program. In test program "Floatpt", the squares of any two sides of a

triangle are compared to the square of the third side. It was necebeary

to estimate the tolerance for the numbers representing a right triangle.

Thorough knowledge of the use and purpose of a program is essential for
this decision since certain applications require different accuracies.

By supplementing programs with assertions that require "reason-

able" outputs one can increase error detection. Such assertions can

D-4

reveal that a program doesn't properly handle certain cases. For

example with certain data, the test program "Balance" takes an extra

iteration around a loop, recomputes balance and interest and informs a

user that "There will be a last payment of 0.00". This erroneous

computation was detected by asserting a logical result of greater than

half a cent for money balances. This type of assertion cannot be

formulated from any specified rule or technique, but rather is a result

of insight into a program's purpose.

In sumary, two points should be emphasized: (1) we used standards

to dictate where assertions should go, and (2) we needed a good under-

standing of the programs to develop effective assertions.

it was very beneficial to develop general standards for imple-

menting assertions and to adhere to these standards even when the

assertions seemed trivial. After developing a technique, we went back

over asserted test programs and found many places in the code where we

did not include aasertions because we considered the code to be per-

fectly sensible and in no need of checks. Assertions seemed to dupli-

cate code. Assertions would be of little value if correctness of a

program could be assured so easily. We found that many errors cannot be

observed so simply and adhering to a specific approach is necessary even

if the assertions seem superfluous.

One has to understand a program to be able to construct useful

assertions. It is inevitable that mom assertions will turn out to be

incorrect, just as any code initially has bugs in it. These miptakes can

be reduced greatly by awareness of a program's function and logic.

A suemary of assertion data is given in Fig. D.l. For testing

purposes, complex assertions were those which required temporary

variables and advanced assertion array constructs. All others were

considered simple assertions. The complete programs with simple and

complex assertions are listed at the end of this appendix.

D-5

U _

IlI

j SNOICI CUAM~ NUMALPW MNS .c ft"TS O Afft "

A£001 TEMPORA R VA AMI

AO01TIONAL STATIEPSOM

Figure D.I. Assertion Data

D.2 TEST 1 RESULTS

The results of Test 1 are presented in Table D.1. The table also

includes the results of the experiment performed by Gannon, et al.

(op. cit.) for static and path testing of the same programs. The mixed

mode and input type mode errors included in that experiment could not be

used in Test I becadse these errors were trapped by the operating system

of the machine that we used.

We credited assertions for detecting only errors which directly

violated an assertion. One assertion violation can lead to finding

multiple errors, but these cases were not considered. (Assertion

violations don't pinpoint errors so we had to use judgement in deciding

which errors were caught.)

D-6.

TABLE D.1

TEST 1 RESULTS

-m mmi SIN" a wd am" n nom"

unitialio" ak ah a
VI~iable

bumuct A

wt,

ftilum toa

mainitialive in Inp

39r lwA aR A

(4 omzuin)

WrgAdod h

omwer- - -

1ogim1Iiic

tmitdv SA

FCC p au amm

8 Wg- -tw by -tti - -s

* - towd by' pati taumalSs

A - fm pin Ts f mzin vron

dom int 1~ to aeotim amarmt

C. Q L. M. Nm . a. kews A anW* i mationi at se-too "stu. omi
kInd CpaVtia C-14SMo MW17, .23

D-

Errors were present prior to the formulation of assertions in Test

1. Since the errors were known, their location was an important place

to include assertions and was useful in developing our standards. The

success in detecting errors in Test 1 was partially due to this ad-

vantage. Twenty-one out of 24 errors were detected.

Simple and complex assertions did not vary in the errors found

except for program "Sinefcn" where one more error was uncovered by

complex assertions.

There were many places where more than one assertion was violated

by the same error. This leads us to believe that adding many asser-

tions, especially complex assertions, is more time-consuming but

uncovers no new errors. However, since assertions do not pinpoint the

exact locations of errors, the more assertions violated, the more clues

one has in locating errors.

D.3 SEEDING ERRORS INTO THE CORRECTED PROGRAMS

After Test 1 was completed the 24 errors were corrected. In

making the corrections, the statement sequences in the original programs

were preserved as closely as possible. Only a few changes had to be

made in the sets of assertions used to test the original programs after

the corrections were made. The corrected programs were run with the

same input data used in Test 1 to make sure that the output was correct

and that no assertion violations occurred.

Errors were then seeded into the programs. The method of error

seeding is described in detail in Gannon, et al. Briefly, the pro-

cedure was:

. A static analysis tool was used to tabulate the distribution

of statement types in the programs.

1C. Gannon, et al., op.cit., pp. 4-1 through 4-24.

D-

0 The TRW error categories were examined to determine which

ones were appropriate f or seeded errors in these programs.

* The frequency of occurrence of errors from each major TRW

category was adjusted f or the fact that not all major

categories were used. Table D.2 gives the percentages of

errors in each major category that were seeded.

0 A computer program was used to randomly generate a list of

candidate sites for the errors.

* For each major TRW error category, the list of candidate

sites was manually examined. The following objectives were

* used to guide the selection of the actual errors.

- No program was to have a disproportionately large or
small number of errors.

- There was to be no more than one error in any state-
ment.

- An error could not prevent a program from compiling.
The error could result in an abnormal termination if
the program produced a reasonable amount of output
first.

DA4 TEST 2 RESULTS

The results of Test 2 are presented in Table D.3. The same

programs and assertions sampled in Test 1 were used in Test 2. Asser-

tions were put into corrected versions of the programs and later new

errors were seeded. This eliminated any advantages due to relations

between errors and assertions as present in Test 1. As expected, error

detection in Test 2 was not as successful in Test 1. Twenty-five out of

the 34 seeded errors were detected.

8,-9

TABLE D.2
ERRORS FROM MAJOR TRW ERROR CATEGORIES SEEDED IN TEST 2

Percentage
in TRW Pro- * No. Used Percentage

Error Category ject 5 Study ini Test 2 Used in Test 2

A 000 Computational 12.7% 6 17.6Z

B 000 Logic 24.51 11 32.4%

C_000 Data Input 3.9% 2 5.91

D 000 Data Handling 11.0% 5 14.71

G_000 Data Definition 8.91 4 11.81

H 000 Data Base 12.5Z 6 17.61

Totals 72.91 34 100.0%

Data derived from Table 4.2, page 4-16 of the TV report.

Figure D.2 is a summary of Test I and Test 2 assertion data.

Complex assertions had more bearing on error detection in Test 2-they

detected five errors that simple assertions did not. It can be seen

fram this that complex assertion violations not only aid in locating

errors which have already violated simple assertions but also uncover

new errors that may otherwise be overlooked.

1

D-IO I

TABLE D.3

TEST 2 RESULTS

- . . .

*mam un M

A U10009gtc

in~ OvainA W.

- ML

a no ma variale m

a3 Logi -tiAm*0

3 40 vaial Me.

D460 ONOWNtiPAMI

law

I m as" In .

a~- noa tW mL

a m son 0

-D-1

aim U 11W aI S S SO 1 11 m aMU Ui ai

nu.. i

TALMOMM

-rf m -~o

Figure D.2. Summary of Test I and Test 2 Results

D.5 ASSERTIONS AND COMPLEXITY MEASURES

The test programs' complexities were evaluated using Halstead,
1

McCabe, and Magel metrics. Halstead measures are based on program

length and volume. These measures are derived from the number of

distinct operators and operands and their frequency of use in the

program. McCabe measures 2 are based on program control flow. The

properties of programs used for computing McCabe metrics are the number

of control points and branches. Magel metrics are based on program

1A. Fitzsimons and T. Love, "A Review and Evaluation of Software
Science," ACM Computing Surveys, Vol. 10, No. 1, March 1978, 3-18.

2T. J. McCabe, "A Complexity Measure," IEEE Transactions on Software

Engineering, Vol. SE-2, No. 4, 308-320.
3 K. Magel, "Regular Expressions in a Program Complexity Metric," SIGPLAN

NOTICES, Vol. 16, No. 7, July 1981, 61-65.

D-12

11*__
h • •

control flow "regular expressions" which show all possible execution

sequences of a program. Magel's metric is computed from the total

number of operands, operators, and parentheses in the minimally paren-

thesized regular expression.

Figure D.3 lists the values of the metrics and other information

pertaining to complexity measures. The two test programs that did not

conform to our expected relation between complexity and number of

assertions were Integr8 and Floatpt.

43 a

ii i
25 -

......... %%

• *.". ."".., " t

..-...• -•" ..

. STATIEMN 0T OO MINT

- MABEL MUNTC
....................... HAL5IEAO MET=I
..... MO CAN MITW

Figure D.3. Complexity Measures

D1

D-13 I

J l i l I dl I

Program "Integr8" rated lowest in McCabe metric, low in Halstead

metric, but contained quite a few assertions. This is because this

program does not have any input variables. This situation is uncomon.

Since the program works on only one set of data, more assertions could

be written to provide tight bounds on the acceptable values of vari-

ables.

Program "Floatpt" rated high in Halstead metric, intermediate in

McCabe metric, and had few assertions. There are several reasons for

this discrepancy. "Floatpt" does not have a loop, thereby eliminating

the need for assertions that check conditions over loop iterations.

"Floatpt" is the only program which includes error-handling provisions

for improper input, so there were no input check .ssertions. Although

its algorithm can be stated in one iEnglish sentence (the Pythagorean

Theorem), expressing this in a standard programming language is diffi-

cult and requires three distinct cases. This increases the number of
operands and operators resulting in the high Halstead rating.\

In summary, it appears that the number and complexity of asser-

tions required for an effective test are based on a different combina-

tion of program properties than either the Halstead or McCabe metrics.

From the test cases analyzed, it can be seen that complexity measures

useful for estimating the number of assertions required by a program

should be based on the following:

0 The number of loops

* The number of control points

* The number of complex computations
1

a The number of the input data values expected

1We counted complex computations by looking at the number of arithmetic
or logical expressions that had two operators. Very complicated ex-
pressions could have several complex computations embedded in them; for
example, we counted. 5 "complex computations" in the statement

AI - E/SQRT(R**2+(6.2832*F*L-I.O/(6.2832*F*C))**2)

since it has U arithmetic operators.

D-14

These properties and their relation to each program are shown in Fig.

D.4. Loop conditions seem to require the most complex assertions.

Control points require the largest number of assertions. Computation

and input checks require an assertion for each variable or operation
involved.•

FLOATPT M 1211 II

NUMALPN

SINEPCN

AREATRY

INTEGRS E M 7 78

BALANCE

BRNSRCH

CURRENT

t p I I I I I I 1 I1 I I I I

O 2 4 6 6 10 12 14 16

LOOPS

CONTROL POINTS

CALCULATIONS (rWO OPERATORS)
INPUT VARIABLES

Figure D.4. Program Properties Significant to Assertion Development

D-15 I
I!

I?

D.6 CONCLUSION

A unique set of assertions is necessary for each program, which

requires a great deal of time and effort. There are other testing

methods that can operate generally on any program without changes or

additions. Simpler methods of software testing, such as static an-

alysis, can recognize many errors but the tested programs may still

contain f laws. Ultimately, assertion testing is more demanding but

detects more subtle errors. Its usefulness in testing may depend on

strictness of requirements and how crucial certain software is to a

system.

Few studies have been done on the effectiveness of assertion

testing and there is a need for further experimentation. Tests should

be performed on more extensive programs in various programming Ian-

guages.

D-16

LISTINGS OF THE PROGRAMS USED IN THE ASSERTION TESTING E XPRIMEN

PROGRAM AREATRY
C .ASSERTON
C
C FIRST ATTEMPT FOR APPROXIMATING AREA UNDER A CURVE
C
C SOURCE - KRNIGHAN AND PLAUGER
C THE ELM9T OF PROGRAMMING STYLE
C PAGE 120.
C

1 AREA - 0.0
READ (5,10)T
ASSERT (T .GT. 0.)

10 FORMAT (F Io.)
H - 0.1
HINC , H
ASSERT (H .LT. T)
X - 0.0
TEMP - 0.

2]iNi- -1
ASSERT (T .GT. X)
TEM - TRMP + H
ASSERT (TEMP .LE. T)
ASSERT (TEMP * H .LE. T)
ASSERT (XN .LE. 0.)
AREA - AREA + (6.0 * (2.0**XN) + 6.0 * (2.0**(XN-lH))) * 0.1I 2.0

ASSERT (AREA .GT. 0.)
ASSERT (AREA .LE. X*6.0 * (2.**0.))
ASSERT (H .EQ. HIC)
X- X+H
ASSERT (X .GT. 0.)
ASSERT (X .LE. T)
II (X - T) 2,8,9

8 WRITE (6,33) AREA
ASSERT (X .EQ. T)
ASSERT (AREA .GT. 0.)
ASSERT (AREA .LE. 6.0 * T)

33 FORMAT (7H AREA -,F8.5)
GOTOI

9 CONTINUE
ASSERT (X .GT. T)
CAlL EXIT
END

D-17

PROGRAM BALANCE
C.ASSERT-ON
C
C COMPUTES A TABLE OF MONTHLY BALANCES AND INTEREST CHARGES FOR
C A GIVEN PRINCIPAL AMOUNT, INTEREST RATE, AND MONTHLY PAYMENT.
C
C SOURCE - RERNIGHAN .AND PILAUGER
C THE ELElENTS OF PROGRAMMING STYLE
C PAGE 107.
C
C CONVERTED TO FORTRAN 7/11/78 REG MEESON
C

REAL A,R,MB,C,P
C

10 READ (5,101) A,R,0

ASSERT %A .GE. 0. ANID. R GE. 0..ANqD. M .GE. 0.)
ASSERT (M LIE. A + A'R/1200.)

101 FORMAT (3Fl0.4)
WRITE (6,102) A,R,I

102 FORMAT (14H TILE AMOUNT IS,F10.2,
$ 231 TE INTEREST RATE IS,F6.2,
$ 251 THE MOWTHLY PAYMENT IS,F8.2)
IF (M .LE. A*111200.) GOTO 30
WRITE (6,103)

103 FORMAT (IH-,
$' MONTH BALANCE CHARGE PAID ON PRINCIPAL' I)
TEMPI - 0.
TEMPRIN - 0.
TEKPINT - 0.
RATE - R
B -A
TE14PBAL - B
DO 18 I - 1,60
C - B*R/1200.
ASSERT (R .EQ. RATE)
TEMPI - TEMPI + C
ASSERT (I .EQ. I .OR. C .LE. TEMPINT)
TEMPINT - C
ASSERT (C. LE. M)
IF (B+C .LT. M) GOTO 20
ASSERT (B+C .GT. M+.005)
P -M-C
ASSERT (P .GE. 0.)
ASSERT (P .LE. M)
ASSERT (P .IE. B)
ASSERT (P .GE. TEMPRIN)
B- B -P

ASSERT (B .LE. A)
ASSERT (B .LE. TEhPIAL)
TEMPBAL - B

ID-18

TEtPRIN - P
ISAVE -I

18 WRITE (6,181) I,B,C,P
181 FORM.T (113,3F13.2)
20 BPLUSC - B + C

ASSERT (BPLUSC .GT. 0.005)
ASSERT (C .EQ. 1*/1200.)

WRITE (6,201) BPLUSC
201 FORAT ('OTHREU WILL BE A LAST PATMN OF ',F8.2)

ASSERT (M*ISAVE + BPLUSC .GT. A+TEIPI-.005)
GOTO 10

30 WRITE (6,301)
ASSERT (M .LT. A*R/1200.)

301 FORMAT ('OUNACCIPTABLZ MONTHLY PAYINT')
GOTO 10

1D-19

PROGRAM BINSRCH
C .ASSERT ON
C

C BINARY SEARCH PROCEDURE TO FIND AN ELEMENT *A* IN A TABLE *X*
C THE ELEMENTS IN *X* MUST ALREADY BE SORTED INT3 INCREASING ORDER
C
C SOURCE - KERNIGHAi AND pLAUGGER

C THE ELEMENTS OF PROGRAMING STYLE
C PAGE II0.
C

DIMENSION X(200) ,Y(200)
I READ (5,50,END999) N
ASSERT (N .LE. 200)
ASSERT (N .GE. 1)

50 FORMAT (I5)
READ (5,51) (X(K),Y(K),K - 1,N)
ASSERT (.ALL. K .IN. (2,N) (Y(K) .CT. Y(K-I)))

51 FORMAT (2110.5)
EA (5,52) A

52 FORMAT (FIO.5)
IF (X(I) - A)41,41,11

41 IF (A - X(N))5,5,11
11 CONTINUE

ASSERT (A .LT. X(1) .OR. A .GT. X(N))
PRINlT 53,A

53 FORM.AT(lH P¥10-5,
1 26H IS NOT IN RANGE OF TABLE-)

GOTO 1
5 LOW- I
ASSERT (X(1) .LE. A)

ASSERT (A .L. X(N))
hIuGi! - N

6 IF (IHIGH - LOW - 1)7,12,7
12 CONTINUE

ASSERT (XLOW .LE. A)
ASSERT (A .L. XHIGH)
ASSERT (EIGH ,EQ. LOW+I)
PRINT 54,XLOW,YLOW,AXIIGH,YBIGH

54 FORMAT (O 510.5)
GOTOI

7 CONTINUE
ASSERT (LOW .LT. 1i1Gi-I)
MID - (LOW + IHIGa)/2

ASSERT (LOW .E. MID .O. MID .NE. lIGH)
IF (A - X(MID))9,9,10

9 1IG -MID

ASSERT (IIG .GE. LOW)
ASSERT (IIGH .LT. N)
ASSERT (A .LZ. X(MID))
GOTO 6

D-20

_ __ _

-4

10 LOW "MITD
ASSERT (LOW ,LEl. IRIG)

ASSERT (A .GT. I(MID))
GOTO 6

999 STOP
END

D-21

I

I -~- - .-

PROGRAM CURRENT

C.ASSERT-ON cu
C
C CURRENT COMPUTING PROGRAM
C
C SOURCE - KERNIGiAN AND PlAUGER
C THE ELEMENTS OF PROGRAMIIG STYLE
c REAL L PAGE 103.

C
C INPUT VALUES FOR RESISTANCE, FREQUENCY AND IbDUCTAKE

READ (5,20) R,F,L
ASSERT (R .GE. 0. .AND. F GE. 0. .AND. L .GE. 0.)

20 FORMAT (3FI0.4)
C PRINT VALUES OF RESISTANCE, FREQUENCY AND INDUCTANCE

WRITE (6,30) R,F,L
30 PORMAT (3RIR-,F14.4,4R F-,FI4.4,4H L-,F14.4)

C INPUT STARTING AND TERMINATING VALUES OF CAPACITANCE, AND
C INCMEMENT

READ (5,40) SC,TC,CI
ASSERT (SC .GT. 0.)
ASSERT (TC .GE. SC)
ASSERT (CI .GT. 0.)
ASSERT (CI .LE. TC - SC)

40 FORMAT (3F10.6)
C SET CAPACITANCE TO STARTING VALUE

C-SC
TENPRES - R
TMPFREQ - F
TMPIND i- L

C SET VOLTAGE TO STARTING VALUE
V - 1.0

C PRINT VALUE OF VOLTAGE
50 WRITE (6,60) V

ASSERT (V .GE. 1.0)
ASSERT (C .GE. Sc)
ASSERT (V .LE. 3.0)
TEKPI-O

60 FORMAT (3ROV-,F5.0)
C COMPUTE CURRENT Al

ASSERT (F .NE. 0.)
,ASERT (C .0o.)

1ASSERT (R**2 + (6.2832*F*L -1.0/(6.2832"F*C)) -HR. 0.)
Pi70 kI - E / SQET(R**2 + (6.2832*F*L - 1.0/(6.2832"F*C))**2)

ASSERT (A'I .uE. 3./ABS(R))
ASSERLT (AT..LE,. 3./ABS(6.2832*F*L - 1./(6.2832"£*C)))
ASSERT (A, .GZ. I./(ABS(R) + ARS(6.2832*F*L - 1./(6.2832"F*C))))

i ASSERT (TFJIPRES EQ. R ,ABD.TMPFREQ .EQ. F .AND. TUINJD .EQ. L)
ASSERT (ABS(SC+TEDPI*CI..C) .LK. 1.1-4)P TEMPI - TEMPI+1

D-22__ _ I :

ASSERT (C .L1. TO)
C PRIT VALUES OF CAPACITAINCE AND CURRENT

WRITE (6,80) C,AI
80 FORMAT (3OC-,F7.5,4R I-,17.5)

C INCREASE VALUE 01 CAPACITANCE
C - C + CI
IF (C .LE. TC) ,oTo 70

C INCREASE VALUE Of VOLTAGE
V - V + 1.0
ASSERT (C .EQ. SC)

C STOP IF VOLTAG IS CREATER THAR 3.0
IF (V .Lt. 3.0) 0o10 50
STOP
END

D

I
I
I

t4

1'

I-- .--- - - - - .-- - -

PROGRAM FLOATPT
C.ASSERT-ON
C
C TESTS FOR EXACT EQUALITY BETWEEN COPUTED FLOATING POINT NUMBERS
C
C SOURCE - KERNIGHIA AND PLAUGER
C THE ELEMENTS OF PROGRAMIG STYLE
C PAGE 117.
C
C RIGHT TRIANGLES

LOGICAL RIGHT, DATA
DO 1 K - 1,100

ASSERT (K .LE. 100)
REA (5,10) A,B,C

C CHZK FOR NEGATIVE O ZERO DATA
DATA - A .GT. 0. .AND. B ,GT. 0. .AND. C .GT. 0.
IF (.NOT. DATA) GOTO 2

C CHECK FOR RIGHT TRIANGLE CONDITION
A - A**2
B m B**2
C w C**2

ASSERT (A .GT. 0.)
ASSERT (B .GT. 0.)
ASSERT (C .GT. 0.)
RIGHT - A .EQ. B + C .O1 B .EQ. A + C .OR. C .EQ. A + B
ASSERT (RIGHT .OR. (ABS((D4C)-A) .GE. (A+D+C)*.001))
ASSERT (RIGHT .OR. (ABS((A+C)-B) .GE. (A+B+C)*.O01))
ASSERT (RIGHT .OR. (ABS((A+B)-C) .GE. (A+5+C)*.001))

1 WRITE (6.11) K,RIGHT
CALL EXIT

C ERROR MESSAGE
2 WRITE (6,12)

ASSERT (A .LE. 0. .01. B .LE. 0. .OR. C .LE. 0.)
STOP

10 FORMAT (3F10.4)
11 FORMAT (16,L12)
12 FORMAT (111 DATA ERROR)

END

D-24 -

D"..24

i i - -.-- -- •

PROGRAMS INTEGR8
C .ASSERT-ON

C IZNTEGRATES A POLYNOMIAL BY TRAPEZOIDAL APPROXI.ATION
C
C SOURCE - lCERIIGHAN AND PLAUGER
C THE ELEMENTS OF PROGRAIMING STILE

C PAGE 116.
C

AREA - 0.
X -.
DELTX - 0.1
ASSERT (10.-X .GE. DELT?)

9 Y - X**2 + 2. * X + 3.
ASSERT (Y .GE. 6.)
ASSERT (Y .LE. 123.)
ASSERT (X -LT. 10)
ASSERT (X .IQ. 1. .01. Y .EQ- YPLUS)
X - X + DILTX
ASSERT (Z .M1. I.)
ASSERT (X .LE. 10)
YPLUS - X**2 + 2. * x + 3.
ASSERT (YPLUS .0E. 6.).
ASSERT (YPLUS .Ll. 123.)
ThPAREA - AREA
AREA a AREA + (YPLUS + Y) / 2. * DELTX
ASSERT (AREA .GT. mPAREA)
ASSERT (AREA .GT. 6. * (I-1.))
ASSERT (AREA .LT. YPLUS * (X-1.))
ASSERT (DELTZ .EQ. 0.1)
IF (X - 10.)9,15,15

15 WiRITE (6,7).EA
ASSERT (AREA .GT. 54.)
ASSERT (AREA .LT. 9. * 123.)
ASSERT (X .GZ. 10.)

7 FORAT (E20.8)
STOP
END

I

1D-25

- - . - -

PROGRAM4 NUMALP
c .ASSEEE-ON

C
C A PRORA WITHl A SUBTLEJ INITIALIZATIONi ERR.OR

C SOURCE - ICRNIGHAN AND PLAJGER
C THE ELEMENTS OF PROGRAIMIG STYLE
C PAGE 80 OF FIRST EDITION
C AUGHENTSD TO PRODUCE SOME OUTPUT 7/11/78 lEG MEISON
C

DIMENSION NU(80) ,NALPHA(80)
1DATA NBLANK /IR /

I READ (5,101,ENDm99) NALPHA,NUK
ASSERT ((.ALL. I .IN. (1,80)

* (NALPHA(I) .(Z. IO .OR. NALPHA(I) .JQ. 11)))
ASSERT ((.ALL. I .IN. (1,80)

* (NALPHA(I) . . 9 OR. NALPHA(I) EQ. I)
101 FORMAT (80A1,TI,80II)

WRITE (6,102) NALPBA,NUK
102 FORMAT (11H INPUT DATA / 180,80AI IR ,8011)

DO 30 1 - 1,80
IF (NALPHA(I) .EQ. NILAK) GOTO 30
N - N + 1
TEIPSUM - NSUM
ASSERT (N .LE. I)
NSUM - NSU14 + NUM(I)
ASSERT (NSUM .GB. TZJPSUM)
ASSERT (NSOM .LE. N * 9)
ASSERT (NSU .GE. 0)

30 CONTINUE

WRITE (6,1U3) N,NSUM
ASSERT (NSUM .LE. N * 9)
ASSERT (NSUM .K. 0)
ASSERT (N .LE. 80)

103 FORMAT (30O10THE NUMBER OF DIGITS FOUND IS, 13 /
$ 29H AND THE SUM OF THE DIGITS IS, 14)
GOTO I

99 STOP
END

ID I
D--26Li.

PROGRAM SINEFCN
C.ASSERTON
C
C DRIVER PROGRAM TO TEST THE DOUBLE PRECISION SINE FUNCTION
C REG NMESON 7/11/78
C

DOUBLE PRECISION SINE,DSIN,DBLE,REF,VAL,E
REAL X

WRITE (6,100)

10 READ (5,110) X,E
WRITE (6,120) X,E
IF (E .EQ. 0) STOP
REF - DSIN(DBLE(X))
VAL - SINE(XE)
WRITE (6,130) REF,VAL
GOTO 10

C
100 FORMAT (26H SINE FUNCTION TEST DRIVER //)
110 FORMAT (FlO.4,DIO.2)
120 FORMAT (3 X-,FIO.4,7H E-,D20.12)
130 FORMAT (11 ,45X,4HREF-,D20.12,9H VALm,D20.12)

C
END

DOUBLE PRECISION FUNCTION SINE(X,E)
C
C SOURCE - KERNIGAN AND PLAUGER
C THE ELEMENTS OF PROGRAMING STYLE
C PAGE 101.
C
C ThIS DECLARATION COMPUTES SINE() TO ACCURACY E

DOUBLE PRECISION E,TERM,SUM
REAL I
ASSERT (ABS(X) .LE. 3.14159)

ASSERT (E GT.o 0)
TERM - X
DELT 0 SUM
DO 20 1 - 3,100,2
TERM - TEiM*X**2(I*(I-I))
ASSERT (I .EQ. 3 .0. ABS(TERM) .LT. ThPTERM)
IhPTERM - ABS(TERM)
IF (TERM .LT. E) GOTO 30
TEMPSUM - SUM
SUM - SUM + (-1**(I/2)) * TERM

• TEMPD9L - DELT
DELT " SUM - TEKPSUM

ASSERT (TEMPDEL * DELT .LT. 0.)
20 CONTINUE

30 SINE a SUM
ASSERT (TERM .LT. E)

D-27
t

ASSERT (SIM .GZ. -. .ND. SINE .L-. I.)

ASSERT (ABS(SINE) oLT. ABS(X) .OR. X .EQ. 0.)

RETURN
END

11D1

IItj

I I
; 4

V IW

-

'as V1 '

