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1 INTRODUCTION AND SUMMARY

- This report examines the current state of development of automated
software testing techniques. The report identifies and describes
techniques that are useful for detecting errors in software. It also
examines techniques for proving the correctness of programs, for
debugging (locating and correcting errors), and for producing documen-
tation asutomatically. The techniques are evaluated in the areas of
effectiveness, reliability, cost, and ease of use--criteria for each of
these categories were developed as a part of the study effort. Profiles
are presented for five major categories of test techniques-—each profile
describes in detail the capabilities of a techanique, the automated tools
that support it, the types of errors that it can detect, its degree of
dependence on user skill and judgment, 1its applicability to various
types of software, and its costs in terms of analysis time and computer
resources. Important features and shortcomings of the techniques are
discussed. The appendices to the report include: a set of guidelines
for testing software; a survey of available automated tools which
support the techniques; an annotated bibliography of testing; and a
description and results of an experiment with assertion testing.

1.1 EVALUATIONS OF THE TEST TECHNIQUES

Five general types of automated test techniques are treated in
this study. Each technique is described in detail in Chapter 2. The
five techniques are:

~

. Static mlyifc - a general term given to all procedures
which check the syntax and semantics of a program without
running the program. It includes such checks as data flow
analysis, type checking, and standards checking.

) Executable assertions - logical expressions in the language
of the program being tested. Asgsertions can check the
values that variables in the program may assume, the
relationship among variables, the flow of control, and the
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history of computation. Violations of assertions are
reported to the user of the program through an error
message.

° Structural testing - programs have natural groupings of
structural elements, such as statements, branches, and
paths. The purpose of structural testing is to increase the
percentage of "all of the structural elements in a program
that are executed in a series of tests. Tools are used to
determine whether a structural element is actually executed.

° Functional testing - & method for systematically developing
test cases for a program. Test cases are selected on the
basis of the functions that a program is supposed to perform
and by analyzing the inputs to and output of the program.

° ‘ Formal techniques - symbolic execution and formal verifi-
cation. Syambolic execution attempts to produce a mathe-
matical expression for a program’s output in terms of its
ioput variables. Pormal verification seeks a mathematically
rigorous proof that a program satisfies its specifications.

In addition to these five techniques, there are tools available
which provide assistance in debugging (locating and correcting errors)
and in determining how efficiently a program uses computer resources.
This report is mainly concerned with program testing, validation, and
verification; however, the debugging and performance measurement
capabilities of software tools are treated briefly in Chapters 2 and 6.

Chapter 3} presents measures developed for evaluating these
techuniques. The measures cover the general areas of effectiveness,
reliability, cost, and ease of use. The effectivencss criteris are:
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° The kinds of errors detected

The percentage of total program errors detected

A reliable testing technique is one that is effective in detecting
errors regardless of the conditions under which it is applied. In
particular, effectiveness should not depend heavily on the abilities of
the people applying the techniques.

A technique should also be applicable to as wide a range of
testing environments as possible--batch and interactive programs,
numerical and non-numerical applications, real-time and non-time-

critical systems, etc. Therefore, the three reliability criteria which
we have selected are:

® Ingsensitivity to human factors
] Reliability for various error types
.

Insensitivity to characteristics of the program being tested

The cost criteria are:

] Analysis time required
[ ] Computer resources
° Cost of tools

The ease of use criteria are:

° User skills required
] Degree of user involvement
° Analysis required for error detection and location

The literature on testing was searched extensively for data on
vhich to base our evaluations. Several experiments on the effectiveness
and costs of automated testing had previously been performed at GRC, and
these were analyzed. Persons who had recently completed projects which

used structural testing and formal verification were contacted and
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interviewed about their experiences.

An experiment using executable

assertions to test programs with real and artificially introduced errors

vas performed (Appendix D).

The evaluations are presented in Chapters 4 and 5.

compares the techniques in each category,

appropriate.

Table 1.1 shows these rankings.

profiles of each of the five techniques.

Chapter 4
using rank-orderings where

Chapter 5 contains

TABLE 1.1
RANKINGS OF THE FIVE TEST TECHNIQUES
(1 = best)
Range of
Error Insensitivity
Types to Human Overall Ease
Technique Detected Factors Cost of Use
Static analysis 4 1 1 1
Executable assertions 2 4 3 4
Structural testing 3 2 2 2
Functional testing 1 3 4 3
Formal verification - 5 5 5

Our conclusions from the evaluations can be summarized as follows:

. There 1is not enough data or experience with automated

testing to determine a most effective technique.

The widest

range of errors can be detected by functional testing; the

most limited range

by static analysis.

1-4
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techniques complement each other in important ways if they
are used together.

Static analysis is the most reliasble technique, since it is
highly automated and therefore least susceptible to human
error. Functional testing, executable assertions, and the
formal techniques all depend heavily on the skill of the
tester in order to produce effective results.

The formal techniques can be applied to the most narrow
range of program types. Symbolic execution is feasible only
for small segments of code. So far, formal verification has
been successfully applied only to small programs and in
proving the security properties of operating systems.

Static analysis 1is the least expensive technique. It

requires little work from the user, and in an efficient
implemention requires overhead comparable to a compiler.

Executable assertions and structural testing require similar
amounts of computer resources. However, executable asser-
tions also increase the amount of effort required to code a
program.

The costs of all of the dymamic teﬁt techniques (executable
assertions and structural and functional testing) are very
sensitive to the number of runs made of the program being
tested. It 18 difficult to estimate the nuwmber of runs
required to thoroughly test a program.

The formal techniques are very expensive because they
require a large amount of highly skilled work.

1-5
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Static snalysis is the easiest technique to use. It is the

most highly automated and requires the least skill on the
part of the user.

Executable assertions are rather difficult to use because it
takes special skill and knowledge to write effective
assertious.

Structural testing does unot reguire as =much skill as
functional testing or writing assertioms, but provides
little automated assistance in generating test data or
detecting errors.

Functional testing is not now highly automated, although
there are many tools available to assist in various tasks.
Test data generation is the biggest difficulty, since it
must be done manuslly and there are no criteria of test
thoroughness to guide the process.

Tables 1.2 through 1.5 summarize the available experience with
using the four static and dynamic test techniques. Although the formal
techniques have not been applied by software developers other than

researchers

in the field of formal verification, some successes have

recently been achieved with them. These are described in Sec. 5.5.2.

L mee e o e

1-6

S e e




¢ e e o a— -

e

o QWY v

4

Ca e W S AN PSRNV S pne- S S e

P gy

TABLE 1.2
PROFILE SUMMARY ~ STATIC ANALYSIS

EFFECTIVENESS

Iypes of Exrors Detected
Data handling errors
Interface errors

Data definition errors
Data base errors

Documentation errors

Percentage of Total Program Errors Detectable

(based on available data): 16X to 552

RELIABILITY

COST

Static analysis is highly automated, so error checking is applied
congistently. Because it is automated, human error is unlikely to
corrupt the testing process. But static testing has inherent

limitations; there are few types of errors that it can consis-
tently catch.

Static testing i1s usually most effective during the early stages
of program development. Static analysis can be used with equal
ease on large and small programs. The features and standards of
new programming languages make some static checks unnecessary.

Analysis Time - requires only the execution of a test tool and

exsmination of its output. Saves time since it replaces manual
functions.

Computer Resources - tool execution time is only two to four times
conpile time for an efficient tool. Storage costs vary according
to the tool and computer system used.

1-7
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TABLE 1.3
PROFILE SUMMARY - EXECUTABLE ASSERTIONS

EFFECTIVENESS

Types of Errors Detected

Computation errors
Logic errors

Data input .errors
Data handling errors
Interface errors

Data definition errors
Data base errors

Percentage of Total Program Errors Detectable

(based on available data); up to 80%.

RELIABILITY

COST

e —r g ——— .o ———

How reliable assertions are depends upon how well the person
writing them understands the way his program is supposed to
operate. Assertions have to be debugged just like the rest of s
progras.

The test data used has a great effect on the reliability of
executable assertion testing. Test data must cause sssertions to
be violated or errors will go undetected.

Not all error conditions cen be described in assertions, and
sometimes only weak conditions can be imposed through assertions.

Assertions are useful throughout the software life cycle and on
programs of all sizes.

Analysis Time - Increases the coding and debugging effort accord-
ing to the number of assertioms used. Assertions may comprise
anyvhere from 5% to 50% of the total code.

Computer Resources - Also varies with the number of assertions
used. Available data suggest the following estimates:

Increase in compilation time 5-125%
Incresse in execution time: 0-402%
Increass in size of object code: 6-15%

1-8

|
%
3
i
!




e PR YT WY WYY e

W A LS SO D WD . oo~ il RN

TABLE 1.4

PROPILE SUMMARY - STRUCTURAL TESTING

EFFECTIVENESS

Types of Errors Detected
Computation errors
Logic errors

Data handling errors
Data output errors

Percentage of Total Program Errors Detectable
(based on available data): 202 - 902

RELIABILITY

The test data used has a great deal of influence on the relia-

bility of structural testing. Input data that tests boundary
conditions or singularities and demonstrates the operation of
program functions should be used when doing structural testing.

Structural testing is guaranteed to find errors only when a
program path handles all input data incorrectly. Since this is
not the case for all errors, structural testing alome cannot
ensure that a program is operating correctly.

COST
Analysis Time - requires the user to generate test data and

analyze output for errors. Experience suggests one-half to two
days per error found.

Computer Resources - instrumentation tools generally require a 20%

- 100X increase in object program size, and a 2% - 50X increase in
execution time.

1-9

P S Y

3
3

\

s sliiia ki SN BN, NGO Bt - - < -




~—at

.- ——

PINIC P e

R

TABLE 1.5
PROFILE SUMMARY -~ FUNCTIONAL TESTING

EFFECTIVENESS

Types of Errors Detected

Computation errors
Logic errors

Data input errors
Data handling errors
Data output errors
Interface errors

Data definition errors
Data base errors
Operation errors
Documentation errors

Percentage of Total Program Errors Detectable
(based on available data): 50T - 902

RELIABILITY

Functional testing requires the user to exercise skill and
judgment in selecting test data and in determining the correctness
of program output. Methodology advances have shown how to do
effective functional testing, but not how to choose test data
efficiently.

There 18 no data on the reliability of functional testing for
different error types.

Functional testing works well under top-down program development,
since functional capabilities are available early in the 1life
cycle. Functional testing of large, complex programs can be
difficult and error-prone. The technique has been proven effec-
tive for mathematical software, but problems of testing non-
numeric programs have not been addressed.

Analysis Time ~ this is the most significant cost involved in
functional testing. Time is needed to generate test data and to
examine the output for errors. Total costs depend on the number
of test runs made.

Computer Resources - tools that support functional testing require

very little overhead and can provide a significant cost savings
over msnusl methods.
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1.2 FURTHER ANALYSIS OF THE TEST TECHNIQUES

Besides detecting aerrors in programs, automated testing techniques
can help the user to locate and correct errors. The techniques can also
be beneficial in providing documentation and in evaluating the overall

quality of a plece of softvare. These topics are discussed in Chapter
6.

Static analysis can provide & great desl of information about the
location of errors. It can 1isolate errors in module interfaces,
violations of coding standards, and instances of wixed-mode arithmetic
to a single statement. Static analysis labels the type of error
detected, which is useful information for correcting errors.

Assertion testing will locate errors to the code segment between
the last branch point (i.e., IF or other decision statement) and the
assertion violated, if a thorough set of assertions 1s used. Structural
testing can only locate an error to an entire path through a program.
Functional testing itself provides no error location informationm.

The test techniques should be used to retest a program after an

error has been corrected. A metric of the efficiency of a technique for
retesting is:

(number of retesting runs) x (amount of code exercised in one retesting run)

amount of code changed

For static analysis this ratic is one test of ome module per
module changed. Functional and assertion testing used by themselves
require all tests to be rerun when an error is found. Structural
testing gives an indication of what code is affected by a test rum, so
that not all tests must be rerun.

1-11
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Testing techniques can be used to provide program documentation
and support the evaluation of software quality. Static analysis
techniques supply much of the information for these and they could be
enhanced to provide more.

In Sec. 6.4 we give a summary of the reports produced by static
analysis and relate them to the program documentation reports required
by MIL-STD-483. Assertions can also be useful in providing in-line

program documentstion, although they do not replace other documentation
vhich is traditionsally required.

Testing techniques can also be used to support the determination
of overall softvare quality. Software quality has been defined by a set
of desirable characteristics (waintainability, testability, etc.) in two
studies, one by ml and the other by General llectric-z These charac-
teristics are related to measurable properties of the software (number
of comments, length of modules, etc.). The testing techniques can
support the measurement of these properties in three ways:

) By directly measuring the property as part of the testing
process.

. By providing information from which a measurement can be
derived. '

] By adding the property to the software during the process of
t"tm.

1). W. Beohm, et. al., Characteristics of Software Quality, TBRW Systems
Group Report Mo. THN-88-73-09, December 28, 1973.

2.1. A. McCall, P. K. Richards, and G. Walters, Factogrs ip Software

Quality, Metric Deta Collection god Velidation, General Electric Co.,
under contract to Rome Air Development Center, Report ¥o. RADC-TR~77-
369. Vol. II, November 1977.
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We found that the wmost properties were supported by static
analysis. In all, we estimated that 42X of the TEN properties were
supported by testing techniques and 32X of the GE properties were
supported. Details of our analysis are presented in Sec. 6.5.

1.3 PROSPECTS POR IMPROVEMENTS IN THE TEST TRCHNIQUES

We expect each test technique to be improved in the future. The
improvements will come as a result of advanced software engineering
techniques—specifically the use of new programming languages——and from
combining several techniques into integrated, comprehensive testing
tools. This subject is discussed in Chapter 7.

Table 1.6 summarizes our expectations for improvements in the
techniques. For each technique, the table lists current problems and
anticipated solutions.
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Technique

1. Static
Analysis

2. Executable
Assertions

3. Structural
Testing

4. TFunctional
Testing

5. Formal
Techaiques

L mte e mean —

TABLE 1.6
TEST TECHNIQUE:

Problems

Extraneous type
error warnings

Extraneous data
flow error
warnings

No guidelines
for placing
assertions

Difficulty in writing
asgsertions

No mechanism for
error detection
and reporting

Requires test

cases to be
constructed

manually

Requires testing
separate program
sections manually

Poorly supported
by automated
tools

Not widely
accepted

1-14
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PROBLEMS AND SOLUTIONS

Solutions

Improved programming
languages

Libraries of global data
flow information;
algorithms to detect
unexecutable paths

Heuristics for assertion
placement and countents

Language extensions for
assertions

Combine with executable
agsertions

Use sywmbolic execution
to generate test cases

Automated tools for
independently testing
program parts, keeping
track of test data, and
input regions tested

More powerful tools and
better user interfaces

More training in formal
methods for programmers
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2 AUTOMATED SQFTWARE TESTING TECHNIQUES

Automated software testing techniques have been classically
separated into static analysis techniques and dynamic testing tech-
niques. Tests that require analyzing only tixe program source code fall
under static analysis techniques. Tests that require ruanning the
progran fall under dynamic testing techniques. Newer techniques such as
symbolic execution and program proving, however, blur this distinction.

Static, dynamic, and formal techniques are complementary testing
methods. Each individual kind of analysis or specific run-time check
covers a different (but usually overlapping) set of possible program
errors. The kinds of common programming errors detected by these
techniques are listed in the following discussion whenever a clear
assessment can be wmade. The iechnique profiles in Chapter 5 provide

more complete information on their effectiveness for a wide variety of
errors.

2.1 SOURCE CODE STATIC AND STRUCTURAL ANALYSIS

Static analysis 1is a general term for all analysis and checking
which requires only the program source code as input. For example, all
the syntax checking done by a compiler would be included under static
analysis. Additional static checks frequently not performed by com-
pilers have been provided by automated test tools. These include tests
for uninitialized variables, type conflicts, module interface conflicts,
and incorrect parameter usage, to name just a fev-l

Structural analysis is a subcategory of static analysis that deals
with the flowchsrt-like structure of program source code. This kind of

analysis can identify unreachable code, infinite lcmlm,2 and recursive

chon J. Osterweil, sand Lloyd D. Fosdick, "DAVE -- A Validation Error

Detection and Documentation System for FORTRAN Programs,” Software:
Practice and Experience, Vol. 6, No. 4 (Oct-Dec. 1976).

zllero. the terms ypreachable code and infinite loop refer to structural
characteristics, and not the corresponding logical characteristics,
which are more difficult to detect.
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procedure caucol It can also provide helpful documentation oan the

procedure~calling structure of large programs.

For this study of software testing measures the various static
analysis techniques are grouped into five subcategories:

Program error detection
Program anomaly detection
Assertion checking

Test data generatiom
Program documentation

Error detection techniques include techniques that will identify program
conditions that cannot be interpreted correctly, i.e., "hard" errors.
Anomaly detection techniques include techniques which provide warnings

for program conditions that violate "good" usage and are likely to

produce errors. Static assertions aré a means to provide additional

error checking. Test data geceration and program documentation are two

wore ways static analysis supports software testing. Each of these
categories is developed in detail below.

2.1.1 Detectable Program Errors

A number of program errors can be detected by sutomated (static)

analysis of program source code. These errors are prugram conditions

which invariably lesd tv incorrect computations. The principal examples
of such errors are:

] Infinite loops - programs containing non-terainating
computations.

Module interface conflicts - mismatching actual and formal

parameter specifications, including type conflicts and
‘1“.1“'0

llichnrd N. Taylor and Leon J. Osterweil, "Anomaly Detection in Concur-

rent Software by Static Data Flow Analysis," IEEE Iransactions on
Software Engineering, Vol. SE-6, No. 3, pp. 265-278 (May 1980).
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) Recursive procedure calls - procedures which directly or
indirectly call theluelve--1

. Uninitialized variables - attempt to use data which has not
been defined.

e Deadlock - concurreant processes waiting for each other to
respond.

Infinite Loops

Although some programs are supposed to run indefinitely (e.g.,
operating systems and embedded control programs), most programs and all
individual modules should be free of non-terminating computations.
Structured programming techniques have largely reduced this problem by
restricting the use of the GOTO statement. In "unstructured" programs
infinite loops can be detected by analyzing a flowchart-like graph of
the program’s organization. Any point in the program which cannot be
reached by working backwards from the program’s end is part of an
infinite loop. This analysis is one of the structural analysis tech-
niques.

In structured programs, DO-WHILE and REPEAT-UNTIL types of loops
can be checked to see that variables in the loop exit conditions are
modified within the body of the loop. This check does not guarantee
loop termination but can identify certain errors that can lead to
infinite loops such as incorrect exit conditions and missing statements
in the loop body. Formal verification of loop termination is considered
beyond the scope of most static analysis tools. Several high-level
systems programming languages include LOOP or CYCLE statements for
explicit coding of non-terminating loops where they are required.

1PORTRAN and COBOL do not support recursion.

2-3

. - e e e —e e - e .- S S e LI T2

T A aah




— -

c——— -

iAo S TR

R ———s - rvr— Aoty e ~ eore g s o 2T

Module Interface Conflicts
There are three primary static checks which can be made between

procedure (and function) definitions and calling statements.

] Number of parameters
° Type correspondence between parameters
[ Aliasing of global data

Conflicts 1in the number and type of parameters between procedure
definitions and their calling statements are detected by maintaining a
central database for module interface information. The actual arguments
supplied in a calling statement can then be matched with the formal
parameters from the procedure definition. Several common programming
errors which can be detected by this kind of analysis include:

o Missing arguments in procedure (and function) call state-
ments

° Extraneous arguments in calls

° Arguments listed out of order

. Wrong variable passed as an argument

] Wrong procedure called

The first two of these errors are detected by simply checking for the
correct number of arguments. The second two can be detected when the
datatypes cf the actual and formal parameters do not match. The last
error can often be detected using both of these techniques when the
wrong procedure 1is called with parameters meant for the right one.
Additional information can be stored in the database so that modifica-
tions to a procedure definition can be traced back to all calling

statements to aid program maintenance.
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Aliasing in computer programs is a condition where a single
storage location can be referred to by more than one variable name.
This is considered a programming error because of the side-effect of all
aliased variables being modified by an assignment to any one of them.
Additional aberrations appear when various different parameter passing
methods are considered. The two primary sources of aliasing which can
be detected by static analysis are:

[ Global data passed as procedure arguments
° A single variable passed in two argument positions

Additional complexity results when array elements are potentially
aliased. 1In this case warning messages are usually sufficient to ge:t

the programmer to verify the absence of aliasing conditions.

Recursive Procedure Calls

Complex processing tasks can often be described most concisely as
recursive procedures or functions. However, several high-level pro-
gramming languages, including FORTRAN and COBOL, do not support recur-
sive procedure definitions. Recursive procedure calls can be identified
by loops appearing in the calling graph structure of a program. In
FORTRAN and COBOL programs, the calling graph structure must be loop-
free. JOVIAL programs can be checked to see that only procedures

declared with the "REC" attribute are used recursively.

Uninitialized Variables
References to program variables before wmeaningful values are

assigned to them are considered to be in error. Many computer systems
initialize all program variables automatically. However, programs which

rely on this system~dependent feature will not run properly on other
computer systems which do not perform (the same) initializatiom.
Uninitialized variables are detectable by data flow analysis which
determines the sequence of set and use operations omn all program

variables. Any set/use sequence which does not start with a set
operation indicates an uninitialized variable.

2-5
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Deadlock

Deadlock is a condition where concurreant processes become
"stalled" waiting for ome another to signal the continuation of a
computation. When no progress can be made because 311 processes have
reached a "wait" state, the system is said to be deadlocked. Two
approaches to handling the problem of deadlocks are available: pre-
vention, or avoidance. Deadlocks are prevented by ensuring that the
conditions necessary for their occurrence cannot exist.l Unfortunately,
deadlock prevention can often only be achieved at a significant cost in
resource utilization. Methods of guaranteeing analytically that a
system is deadlock-free have been developed for a few applications.
Taylor and Osterwe112 describe how static data flow analysis could be
used to prevent a few special forms of deadlock.

Detection or avoidance of deadlock means incorporating fault-
tolerance into a system. The way processes request and use resources is
monitored dynamically. Algorithms are applied which determine that a
deadlock has occurred or is about to occur. When a problem is found,
corrective action must be taken. The merits of a few approaches to
deadlock detection are discussed by Gligor and Shattuck.3

2.1.2 Detectable Program Anomalies
A somewhat larger class of abnormal or error-prone program

constructs, which may or may not really be errors, can be identified by
additional static analysis techniques. Because these program anomalies

1E. G. Coffman, M. J. Elphick and A. Shoshani, "System Deadlocks," Com—

uting Surveys, Vol. 3, No. 2 (June 1971), pp. 67-78.

ZR. N. Taylor and L. J. Osterweil, "Anomaly Detection in Concurrent
Software by Static Data Flow Analysis," IEEE Transactions on Software
Engineering, Vol. SE-6, No. 3 (May 1980), pp. 265-278.

3V. D. Gligor and S. H. Shattuck, "On Deadlock Detection in Distributed

Systems," IEEE Transactions on Software Engineering, Vol. SE-6, No. 5
(Sept. 1980), pp. 435-440.
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do not necessarily affect correct computations, they are usually flagged
with warning messages by sutomated tools. Program structures which are

congsidered to be anomalous include:

[ Violations of coding standards

° Mixed-mcde expressions

) Data flow anomalies

) Unreachable coded

° Unreferenced statement labels

Each of these categories is elaborated in more detail below.

Coding Standards
Modern software engineering techniques for program development

often restrict the use of certain constructs provided in high-level
programming languages. The principal examples of this are the restric-
tions often placed on the use of the GOTO statement. Structured control
statements provided in modern languages (or by pre-processors for older
languages) have reduced the need for GOTOs to a few special circum-
stances, such as recovering from processing errors. For most practical
purposes the GOTO can be relegated to the class of program anomalies and

reported by static analysis warnings.

Additional examples of modern thinking on programming techniques
wvhich impose restrictions on the “"free use" of facilities provided by
programming languages include:

) Requiring declaration of all program variables so that no
default chavacteristics are mistakenly inherited

° Limiting the size of program modules as a method of en-
couraging program modularity

2-7
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° Limiting the depth of structured statement nesting to reduce
module complexity

] Limiting the length of individual statements to reduce

expression complexity

These restrictions allow the detection of errors caused by misspelling
identifiers (since they will have been declared using a different
spelling) and tend to reduce mistakes due to source code complexity.
Psychological studies have shown, for example, that people have trouble

interpreting expressions with more than five 1levels of parenthesis
nesting.

Mixed Mode Expressions

Computational expressions requiring the implicit coanversion of
program data from one type to another are called mixed-mode expressions.
Modern software engineering philosophy says that such implicit con-
versions, like default asttributes, are error-prone and should be
avoided. In cases where datatype conversions are required, the explicit
couversion operations are usually very simple. Where code can be
rewritten to eliminate datatype conversions, it is often simplified.
Errors which can be caught in some cases by disallowing mixed-mode
expressions include:

® Using the wrong variable in an expression
o Loss of computational accuracy due to truncation

° Assigning a value to the wrong variable

Programming languages with "strong typing" rules, such as JOVIAL and
Ada, do not provide implicit type conversions as does FORTRAN. Hence,
more modern languages already enforce these rules.

lG. A. Miller, "The Magical Number Seven, Plus or Minus Two: Some

Limits of Our Capacity for Processing Information,” Psychol. Review
Vol. 63, pp. 81-97, 1956.
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Data Flow Anomslies

Data flow analysis was originally developed as a technique for
program optimization. Several wvays were found to improve program
efficiency by transformations based om the sequence of assignment and
references to variables. Software quality researchers observed that the
same conditions which led to optimization also indicated several kinds
of program errors. Hence, data flow techniques have been incorporated
into static analyais tools for program validation.

In the previous section on error detection (2.1.1), data flow and
set/use analysis led to the detection of uninitialized varisbles. There
are other patterns of assignment and references to variables which are
considered anomalous, although they are not always erroneous. If &
variable is set twice without any possible references to its first
value, then the first assignment can be eliminated--or there is some
error because of a missing reference. If the operation of the code is
correct, then the first assignment can (and should) be removed to

improve program efficiency and readability.

Another data flow anomaly is a variable which 1is set but never
used afterwards. The final assignment could be eliminated if it were
indeed not needed. This anomaly often occurs in program loops where a
variable is updated at the end of the loop for the next iteration. When
the loop terminates, the final value assigned may never be used. The
wvarning message produced by data flow analysis will encourage the
programmer to verify that the code is not in error. Sometimes, but not

always, loops can be restructured to eliminate the anomaly-

Programs which have been repeatedly modified often contain
declarations of variables and parameters that are no longer used. This
anomaly reflects incomplete modification and 1s always &8 source of
bewilderment when further modification 1is attempted. Often these
extraneous variables (and particularly the unused parameters) indicate

2-9
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program errors. Data flow analysis can easily identify such anomalies

because the list of set/use references will be empty for unused vari-
ables and paramsters.

The following list summarizes the kinds of errors that can be
detected by data flow analysis:

Extraneous assignment statements
Extraneous variables and parameters
Missing variable and parameter references
Statements out of sequence

Uninitiglized variables

Uninitialized variables and extraneous variables and parameters can

always be detected: The other errors must be confirmed manually when
anomalies are detected.

Unreachable Code

Program segments which cannot be reached from any other part of
the program are called unreachable or "dead" code. Such code can never
be executed and, hence, is not logically part of the program. This
anomaly 1is wuch more 1likely to occur in "unstructured” programs,
especially during modification. Programs with unreachable code may run
correctly; therefore, unreacliable code is not always considered a "hard"
error. The presence of such code indicates either poor editing or a
misconception on the programmer’s part. When program storage space is
at a premium, however, unreachable code should be classified as an error
even if the program is otherwise correct.

Structural analysis techniques detect unreachsble code by locating
disconnected flow~graph components. One solution to the unreachable
code problem is to automatically eliminate the offending program
segments. Certain optimization techniques can sometimes result ic
unreachable code, and hence, optimizing compilers ususlly provide dead
code elimination to minimize program storage requirements.

2-10
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Another class of unreachable code is "logically” dead code which
cannot be reached bacause the conditions for its execution can never
occur. For example, in

if n>0 or n<l10 then
Statement-A
else
Statement-B
endif

the condition (n>0 or n<l10) is always true so Statement-A will always be
selected and Statement-B is, therefore, logically unreachable. Techni-
ques for identifying logically dead code are usually classified as

formal techniques which are more powerful than those normally employed
in static analysis.

Unreferenced Statement Labels

An unreferenced statement label is similar to & dead code anomaly,
in that it 1is usually either caused by an oversight or is the result of
a modification to the program. Unreferenced labels may not cause a
program to run incorrectly, but they should be removed because they can
confuse a reader of the code. Many compilers, as well as static tools,
detect unreferenced statement labels.

Statement labels are a major source of errors in languages like
FORTRAN IV that have no structured comtrol constructs. In addition to
unreferenced labels, FORTRAN programmers have problems with putting a
label on the wrong statement, using the wrong label in a GOTO, or
forgetting a label altogether. A compiler will catch the latter
problem, since the label supplies information needed to generate the
object code. The other errors cannot always be caught by static
techniques. However, if a misused label causes another type of error to
occur, then some of the other static error and anomaly checks discussed
in this section may detect this condition. These include:

2-11
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Infinite loops
Uninitialized variables
Data flow anomalies
Unreachable code

2.1.3 Asgertion Checking

At least two kinds of program assertions can be checked by static
analysis techniques. They are parameter and variable usage assertions
and units assertions. Other assertions about the state of computations
and the correctness of results are discussed in sections on dynamic and
forsal testing (Secs. 2.2, nnd 2.3).

Input/Output Assertions

Parameter and variable usage assertions are statements about how

each parameter and variable is used within a program module. Parameters
may be used for

° Input only
Qutput ounly
o Modification (input and output)

Variables may be

Local
° Global

Local variables must be declared in the local scope of the module and
follow correct set/use rules. Global variables can be further classi-
fied by their input/output usage.

Input/output asgertions provide a specification of the planned
usage of parameters and global variables against which the actual usage
can be checked. In correct programs this information is redundant since
1t could be derived from the code. However, during program development

“and in maintenance tasks these assertions quickly identify specification

2-12
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violations. Also, there is no run-time overhead associated wi.. these
assertions because all the analysis is done statically.

Some examples of program errors which can be detected by input/
output assertion checking are:

) Inadvertent modification of input-only data

. Illegal use of the "old" value of output-only data

° Input-only or output-only use of data which 1is supposed to
be modified

Violations in the first two of these categories are usually considered
errors for reporting purposes. The third group contains many anomalies
which are not always errors. Such anomalies indicate either program
errors or incorrect assertiomns.

Units Assertions

In many engineering and physics problems it 1is standard practice
to check consistency of the physical units used in the calculations as a
check on the results. This technique can be used in programs as well by
specifying the units for variables through asssertions. Static checking
for units violations is an extended form of type checking. Addition of
real variables, for example, with different units such as feet and
meters, becomes a amixed-mode operation which can be reported as an

error. Units checking must also include knowledge of equivaleat units
such as VOLTS = AMPERES x OHMS to avoid extraneous warnings.

2.1.4 Test Data Generation

Generation of test data for dynamic testing is a good example of
how static analysis can support other testing techniques. Several
static analysis tools have been developed to aid in producing test data.
These tools analyze COBOL source programs for file format information
and can cresate test data files with randomly generated values. The
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created files serve two purposes: they can be used as sample data for
exercising the program and they can be checked manually to see if they
conform to program specifications and data entry forms. Both applica-
tions can provide valuable information.

Random data generation 1is usually not sufficient, however, for
thorough dynamic testing and program validation. Programs must be
tested on invalid as well as valid data to verify correct error pro-
cessing. Also, special combinations of input data must be used to
exercise a program thoroughly. Random test data 1s usually not effec-

tive in these cases but other techniques such as symbolic execution can
provide the needed testing support.

2.1.5 Program Documentation

A very important product of static mlyus, in pd,q.tion(to error
and varning messages, 1is program documentation. atﬁn reports
do not explicitly indicate program errors but it is o possible to
detect additional errors manually by studying thq?\ refirts. For
program maintenance and wodification, static mlyu:l.a‘ doc tation is
of tremendous value. Below is a list of some of the k of docu-

mentation which can be produced from information c?lcctcd by static
analysis tools.

RN

] Global cross-reference report indicating Q\put/output usage
for variables in all modules.

]

° Module invocations report indicating the calling wodules and

showing all calling statements. Y

] Module interconnection report showing the N program’s module
calling structure. '

] Special global data reports for varisbles,in COMMON blocks
and COMPOOLS.

[ Program statistics including total size, Mimber of modulas,

-
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module size distribution, statement type distribution, and
complexity measures.

® Summaries of analyses performed, program statistics, and

errors and warnings reported.

The interested reader will find a variety of example documentation
reports in the user’s manuals for tools such as !AVS,1 .IAVS,2 and (:Avs.3

2.2 DYNAMIC TESTING TECHNIQUES

Dynamic testing covers all program testing techniques which
involve ruanning compiled code and observing the output produced. These
techniques are divided into the following categories for our discussion:

o Program testing facilities - intended primarily for de-

tecting the presence of program errors

° Program debugging facilities -~ 1intended primarily for

locating errors once they are detected

[ Program performance measurement

In this section we discuss tools and techniques for both detecting
program errors (testing) and locating them for correction (debugging).
Many techniques classified under "testing" are equally helpful in
program debugging. Those listed under "debugging," however, are
designed to isolate error sources and are considered less useful for

verifying that large programs operate correctly.

1D.ll- Andrews and R.A. Melton, FORTRAN Automated Verification System
User’s Manual, General Research Corporation CR-1-754/1 (April 1980).
2

C. Gannon and N.B. Brooks, JOVIAL J73 Automated Verification System
Functional Description, General Research Corporation CR-1-947 (March

1980).

3!- Sharp, R. Melton, and G. Greenmburg, COBOL Automated Verification
System Functional Description, General Research Corporation CR-2-970
(November 1980).
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Most of the techniques discussed here are batch oriemted for use
in testing software destined for production applications. The only
interactive testing facilities found were "test harness" programs which
allowv a user to control test parameters. A number of interactive
debugging tools have been developed for popular high-level programming
languages. However, no testing tools (as opposed to debugging tools)
vere found for languages designed primarily for interactive use.

2.2.1 Program Testing Facilities
Techniques intended primarily for detecting the presence of

program errors can be further grouped into the following categories:

Executable assertions
Structural testing, supported by instrumentation tools
. Functional testing, supported by test harness techniques

Structural testing includes several methods of evaluating testing
thoroughness by different measures of test coverage. Test harness
techniques are used to exercise individual program wmodules and sub
systems vwith more rigorous tests than can usually be applied in system-
level tests. BEach of these categories is elaborated on below.
Execucable Assertions!

An assertion is s logical statement about the state of a compu-
tation within a program. Formal verification teéhniquea use assertions
to prove properties of programs. For dynamic testing, it is possible to
evaluate assertion statements during execution and check to see that the
specified conditions hold. Assertion violations are typically reported
on the standard output media where they are difficult to ignore. The
basis of testing with assertions is trying to force the program into

violating the conditions expressed in the assertion statements.

1J. P. Benson and S.H. Saidb, "A Software Quality Assurance Experiment,"”

Software Quality and Assurance Workshop, pp. 87-91, San Diego, Nov.
15-17, l§;§.
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Most common prograsming languages do not include assertions as a
statement type. (Ada does, but COBOL, FORTRAN, JOVIAL, PL/I, and Pascal
do not.) However, it is relatively easy to translate an assertion into
an "if" statement to test the asserted condition, using a preprocessor
or other translation technique. Many structured programming prepro-

cessors and several compilers provide assertion statement translatioms.

Assertion testing requires the insertion of meaningful assertion
statements in the program to be tested. This can be an onerous task if
the program is large and not well structured. If the assertions are
inserted during program development, however, several advantages are
gained: the task is distributed over time; the assertions often
reiterate program specifications and hence can be cross-checked wan-
ually; module and subsystem tests can include assertion testing; and a
very stylized form of internal program documentation, formed by the
assertions, is kept up-to-date for testing purposes.

Structural Testing
The purpose of structural testing i1s to ensure that the test

program has been explored thoroughly. Several measures of the thorough-

ness of structural testing can be used:

° Statement coverage

] Decision-to-decision path or branch coverage
Linear code sequence coverage

o Dynamic data flow analysis

The simplest measure of testing thoroughness is the percentage of
statements executed during a test run. This test coverage statistic can
be used as a testing criterion by setting a goal such as "95 percent
statement coverage" for a series of tests. Instrumentation tools
typically report the number and percentage of statements covered and
identify the statements that were missed. Current tools have not yet

incorporated automatic test case generation to wmaximize coverage
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metrics. While this may be a possibility for the future, selecting data

to exercise particular statements is a manual task at present.

Unfortunately, the statement coverage technique has some pitfalls
and several kinds of program errors may go undetected even with 100
percent coverage. Two obvious tests which can be easily missed are
testing both the "true” and the "false" branches of an "1f" statement
which has no "else" clause, and testing a "while" loop where the it-
eration condition {s initially "false" so that the loop body 1is not ex-
ecuted. The first test could indicate a missing "else" clause, and the
second, an incorrect loop termination conditiomn or improper loop

initialization.

Two techaniques have been developed to overcome some of these
problems using program units called "decision-to-decision paths”
(DD-paths) and "linear code sequence and jump" (LCSAJ';).1 Both of
these techniques provide improved testing based on coversge metrics.
DD-path instrumentation records the path taken at each branch point
(based on the program’s flow graph) and at procedure and function entry
and return points. LCSAJ’s are based on a program’s source text rather
than on its flow graph. Each contiguous sequence of executed source
statements forms an LCSAJ. Hence, an LCSAJ can be described by its
starting and ending line numbers, and the number of the line where
execution proceeds after the break.

Howden has shown that decision-to-~decision path or "branch"
coverage testing 18 more effective than statemeat covetage-z The
experiment conducted by Woodward et al. indicates that LCSAJ coverage 1is

usually lower than DD-path coverage for a given test. This means

lu. Woodward, D. Hedley, and M. Hennell, "Experience with Path Analysis
and Testing of Programs," IEEE Transactions on Software Engineering,
Vol. SE-6, No. 3 (May 1980), pp. 278-286.

zwillian Howden, "Theoretical and Empirical Studies of Program Testing,"

IEEE Transactions on Software Engineering, Vol. SE &4, No. 4 (July
1978), pp. 293-298.
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that a more rigorous test is usually required to attain a given level of
coverage using the LCSAJ measure. Although this 1is not always true for
incomplete tests, complete LCSAJ coverage subsumes complete DD-path

coverage.

Woodward also developed a generalized coverage measure based om
nultiple LCSAJ sequences. The first level in this hierarchy of testing
metrics is the basic coverage measure. The next level requires, in
addition, testing all possible pairs of successive LCSAJ’s. In general,
the Nth level in this scheme requires testing all possible sequences of
N or fewer consecutive LCSAJ‘s. The same strategy can be applied to
sequences of DD-paths to improve testing coverage. Pairwise DD-path
coverage effectively tests all possible compositions of operations
performed between decision points, and is, intuitively, a more complete

test than simple branch coverage.

There are two areas of difficulty in the current state of DD-path
and LCSAJ testing methodology. One 1is the distortion in the metrics
caused by infeasible sequences of program code. Coverage statistics are
currently based on all possible structural or textual sequences, a
measure which does not account for logically impossible combinations.
Hence a rating of 100 percent coverage may not be attainable even though
all feasible sequences of code are tested. Identification of infeasible
code sequences would make these measures more accurately reflect the
degree of testing achieved. Infeasible paths, however, are often not
amenable to completely automated detection because of program size.
Semi-automated techniques using symbolic execution, for example, may
prove to be the most effective way to determine if code sequences which

have not been exercised are indeed logically impossible.
The second difficulty is that of generating test data to maximize

coverage measures. Test coverage reports typically indicate the code

segments missed in a test run. However, determining the data values
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required to traverse a particular sequence of statements in a large
program can be a complex task. Branching conditions based on non-linear
transformations of the input data seem to cause the wost difficulty.
Symbolic execution and formal verification techniques could aild this
task in an integrated testing and verification facility.

The genmeral strategy for all structural techniques is to add
software "probes" to a program under test to record informatiom about
the program’s execution behavior. Instrumentation tools can insert
probes automatically. Running an instrumented program produces a trace
file containing information from each test probe encountered. After a
test run, the trace file is read by an analysis program to condense the
data and report test results. The differences between the various
inatrumentation tools stem from the kinds of information extracted by
the test probes and the analyses of the trace file data.

A method for detecting data flow anomalies dynamically is de-
scribed by Huang.1 Test probes record all set and use references to
program variables during execution. The trace file is then analyzed for
anomalous data references. This approéch can detect anomalous array

references which cannot be detected by static data flow analysis.

Functional Testing and Test Harness Techniques

Functional testing involves the creatfon of test data based on
program requirements specifications followed by the verification that
the output produced meets the requirenents-z This technique is often

used by software buyers in preparing acceptance tests for new software.

lJ. C. Huang, "Detection of Data Flow Anomaly Through Program Instrumen-

tation,” IEEE Transactions on Software Engineering, Vol. SE-5, No. 3
(May 1979), pp. 226-~235.

Zﬂillian Howden, "Functional Program Testing,”" IEEE Transactions on

Software Engineering, Vol. SE-6, No. 2, pp. 162-169 (March 1980).
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Clear, well written, and testable program requirements obviously
contribute significantly to the quality of testing that can be accom-
plished by this method. These tests, however, can be created early in
the software development cycle and can serve as additional detailed

specifications for program designers and implementers.

A softvare test harness is a program which provides an environment
for testing individual software modules as well as complete ptogra-s.l
Typically, it includes:

° Acting as a substitute "main program" for the software under
test

° Filling in for missing software components

° Controlling the execution of a tesat

. Monitoring a test’s progress

The facilities provided by a software test harness correspond to the
test and measurement equipment on an electronic technician’s workbench.
Some of the advanced features found in test harness tools include:

Automatic test control
Automatic test data geueration
Interactive test control

Test history accounting

Verification of computed results

Unfortunately, no single test harmess currently provides all of these

capabilities.

1Frederick J. Drasch, and Richard A. Bowen, "IDBUG: A Tool for Program

Development,” Proc. Software Quality Assyrance Workshop, San Diego,
November 15-17, 1978, pp. 106-110.
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Most test harnesses are designed as debugging tools for locating
known errors and provide low-level testing controls. The techniques,
however, could also be applied equally well to testing software at a
higher level and verifying its correct operation. For example, de-
bugging harnesses typically do not keep track of path coverage. Their
low-level control, however, is ideal for special values testing. The
combination of these facilities with a well engineered human interface
would make a very effective test tool.

2.2.2 Program Debugging FPacilities
The emphasis of the testing techniques discussed above 1s on

detecting the existence of program errors. Locating errors for cor-
rection is a different task with different requirements for automated
support. Jeveral of the testing techniques already described also
provide useful debugging information. All of the static analysis
techniques, for example, can provide excellent error-locating diag-
nostics, often indicating the exact source of an error. Using execu-
table assertions 1s one of the best ways to produce good error diag-
nostics during program execution. Most of the other dynamic techniques
produce no error diagnostics per se. Path coverage informationm,
however, can be very helpful 1in reducing the scope of a search for
program bugs.

Executable assertions provide excellent debugging information when
the asserted conditions are not too complex. Assertion violation
reports typically refer to the source code line number where the
assertion appears and are interspersed with the normal program output.
Hence, the programmer is able to determine both the location of the
violated condition and the context of the error. Keeping assertions
simple maximizes the amount of information reported. That is, the
statements

ASSERT (N>0)
ASSERT (N<=100)
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provide better diagnostic information than
ASSERT (N>0 and N<=100)

which states the same conditions.

If a relatively simple test case can be constructed to illustrate
a program error, then path coverage reports can help reduce the scope of
the search for the error. These reports indicate which paths have been
exercised by the test data that expose the error. The simplest such
test case, therefore, traverses the fewest number of extraneous (i.e.,
correct) paths and focuses the programmer’s attention on relevant parts
of the program source code.

Additional tools have been developed to help locate errors once
they have been detected. These include several kinds of trace facili-
ties and dump formatters. A tracing tool produces a continuous log of
the operations being monitored such as statements, procedure calls, or
assigoment to individual variables. Program errors typically appear as
incorrect sequences of operations in trace logs. Identifying missing,
extra, or out-of-order operations will usually lead a programmer to the
error. One drawback of this technique is that sequence anomalies may be
as difficult to find in very long trace logs as the errors themselves.
Some tracing tools allow the user to turn the trace log on and off
dynamically to reduce the amount of output geneuted.l

Modern program dump facilities provide useful information for
locating errors which cause abnormal program termination. The immediate
cause of an aborted program execution, the source code module name and
line number, and the sequence of procedure invocations at the time of
the fatsl operation are reported. In addition, the values of program

1!. E. Griswold, J. F. Poage, and 1. P. Polousky, The SNOBOL4 Program—
aing Language (2nd ed.), Prentice-Hall, 1971, Chapter 8.
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variables may be reported. The actual error(s) which precipitated the
abnormal termination can usually be determined from this 1information.
Octal or hexadecimal core dumps are not considered tools for debugging.
However, there are commercially available tools which attempt to

interpret raw core dumps and produce reasonable diagnostic repon:m.1

2.2.3 Program Performance Measurement
A classical method for measuring program performance using dynamic

testing techniques is to record the elapsed CPU time at the eutry to and
exit from every procedure invocation. This data is then condensed and
reported showing the total and average times spent in each program
module. Most computer operating systems provide procedures for obtain-

ing the necessary timing informatiom, although there is no standard
method.

For program segments with extreme timing requirements, execution
time can be determined statically by summing the execution times of the
individual machine instructions which will be executed. These analyses
typically assume that no delays or interrupts will interfere with the
normal sequence of operations. Of course, instruction-set timing

figures are unique to each make and model of computer, so these are not
very general-purpose tools.

2.3 SYMBOLIC EXECUTION AND FORMAL VERIFICATION

Two of the largest areas of current active research in software
testing techniques are symbolic execution and formal program veri-
fication. Symbolic execution is a method of interpreting programs by
deriving mathematical expressions for the values of variables rather
than actually computing their numerical values. The expressions
produced show a perspective of the progress of computations which is
very different from other means of testing such as tracing intermediate

lDaugro Directory of Software, Datapro Research Corporation, August
1980.
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values. The additional information obtained from symbolic execution has
been shown to iuprove detection of several kinds of program el:'t'ors.1

Formal verification 18 a wmore rigorous approach to software
testing which involves proving properties of computations performed by
programs. This technique provides probably the highest degree of
assurance of program correctness but 1s also the most difficult to
apply. Two prerequisites for formal verification of a program are
precise specifications of the inputs and required outputs for the
computation, and formal specifications of the semantics of the pro-
gramming language used. Program correctness is proven by showing that,
given the specified input conditions and the rules of the programming
language, execution of the program will terminate and produce the
desired output conditioms.

Automated tools which support these techniques are discussed in
the following sections. All of the tools which have been implemented
recognize either specially designed mini-~languages or restricted subsets
of full-fledged languages. They are typically vehicles for research in
program testing and verification, and are not commercially available

software products.

Symbolic Execution
Symbolic execution has been described by nngz a8 an intermediate

technique between dynamic testing and formal program verification.
Instead of executing a program with test imput data, the inputs are rep-
resented '"symbolically" and the output produced is in the form of

lwuuu E. Howden, "Symbolic Testing and the Dissect Symbolic Evalua-

tion System,” IEEE Transactions on Software Engineering, Vol. SE-3, No.
4 (July 1977), pp. 266-278.

zJa-es C. King, "Symbolic Execution and Program Testing," CACM, Vol. 19,
No. 7 (July 1976), pp. 385-394.
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mathematical expressions rather than computed results.

For example, a
loop to sum the elements of an array

SUM = 0.0
DO (I = 1,4)

SUM = SUM + A(I)
END DO

when symbolically executed would yield the expression
SUM = A(l) + A(2) + A(3) + A(4)
Such results are readily checked formally or informally for correctness.

The symbolic execution of an example program with errors, used by
Mowo:len,l produced

SIN(X) = X + X3/6.0 + X°/120.0

for the approximate value of the sine function. The errors are easily

spotted by comparing this result with the expected solution,
SIN(X) = X - x3/6.0 + x5/120.0 -~ x7/5040.o

The results of dynamic testing of this program would probably have

indicated some lack of accuracy in the result. The symbolic execution,

however, for this example, provides considerably more information about
the nature of the errors.

The two major components of a symbolic execution tool are a

program interpreter and an expression simplifier. The interpreter is

responsible for recognizing program statements and translating their

execution into algebraic expressions. This task is very similar to

lllovden. op. cit.
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compiling or interpreting a program and computing actual results rather
than symbolic results.

Expression simplification is the key to making symbolic execution
palatable to human users. The expressions produced by the interpreter
can become quite complicated in just a few steps of computation. For
example, the "raw" form of the expression for the correct sine function
above is

SIN(X) = ((X + X * (~X*X/(3.0 * 2.0)))
+ X * (-X#X/(3.0 * 2.0)) * (=X*X/(5.0 * 4.0)))
+ X & (-X*X/(3.0 * 2.0)) * (~X*X/(5.0 * 4.0))

* (=X*X/(7.0 * 6.0))

which 1is not easy to identify as a correct solution. Considerable

knowledge of algebraic transformations and simplifications must be built
into the interpreter to produce readable output.

Symbolic execution for program testing has been uniformly pre-
sented as an interactive technique. Users select symbolic values to be
displayed and control program interpretation at a very lovw level. This
approach has been successful for testing small example programs and
segments of larger programs. However, this degree of detail limits the
effectiveness of the technique in teating large scale programs.

Formal Verification

A formal verification of a program’s correctness is a proof of the

following theorem:

1f all of the initial conditions hold at the start
of execution, then, when the program terminates,
the final conditions will be satisfied.

Hence, both the initial and final conditions must be defined in
gufficient detail and precision so that mathematical proof techniques
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can be applied.l Also, the semantics of the programming language must
be defined with sufficient rigor to allow logical reasoning about each

step of the couputat:l.on.z

Tools which have been developed to support formal program veri-
fication can be grouped into three categories:

° Proof generators
e Proof verifiers
] Verification coandition generators

These are listed in decreasing order of computational complexity.

A proof generator will take a program along with its initial and
final assertions and derive the theorem by a sequence of logical
operations. Of course, if the program 18 not correct then the theoream
cannot be proved and this process will fail. Proof generators are
complex programs which can interpret the assertions and program state-
ments, apply complex rules of inference and various heuristic proof
strategies, and eventually determine if the input program satisfies the

assertions.

Proof verifiers solve the simpler (by comparison) problem of
checking a manually generated proof. Additional assertions must be
provided manually along with any lemmas which the proof verifier will
need to validate each step from assertion to assertion. The proof
verifier need only interpret sequential program statements and be able

llobert W. Floyd, "Assigning Mesnings to Programs,” Proc. Symp. in
Applied Mathematics, Vol. 19, American Math. Soc., Provincetown, R.I.
(1967), pp. 19-21.

2C.A.l. Boare and Niklsus Wirth, "An Axiomatic Definition of the

Programming Language PASCAL," Acta Informatica, Vol. 2 (1973), pp.
335-355.
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to apply simple rules of inference. An advantage of this approach 1is
that a program error can be 1isolated to a small segment of code for

which the initial and final assertions are fully specified.

Verification condition generators typically use symbolic execution
techniques and work "backward" from the final assertion to derive the
necessary pre-conditions for each statement in the program. If the
initial assertion implies the pre-conditions for the first statement
then the program is correct. Verification condition generators,
however, do not provide the facilities to determine whether this
implication holds. Although some systems do attempt to simplify the
expressions generated, the greatest difficulty with this approach is the
complexity of the automatically generated assertionms.
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3 SOFTWARE TESTING METRICS
It 1s important to examine testing in the context of the overall

software development process. A comprehensive evaluation of the
goftware testing techniques described in Chapter 2 should determine
their ability to enhance software quality, and weigh this against the
costs in time, manpower, and computer resources of using them.

Unfortunately, the current state of knowledge precludes a detailed
"cost-benefit” approach to evaluating test techniques. This report can
make oo comparisons of the "amount” of quality enhancement provided by
the various test techniques. Instead, we develop various effectiveness
and cost criteria and rate the individual techniques on these.

3.1 THE GOALS AND PROBLEMS OF DEVELOPING METRICS

In any science, measurements are tools which help in making
judgments about the behavior of a systeam. When software 1s being
tested, many kinds of judgments must be made. For instance:

° What is thg,nafﬁ:; of the errors in the software —- how many
_até there, what kinds, where are they?

° What methods can be used to find the errors effectively and
inexpensively?
° How can one be sure that the software works correctly at any

point in time?

It is very desirable to have measures which provide a quantitative
basis for making such judgments. However, many aspects of software
testing cannot be quantified. This section discusses how testing
measures can be useful to managers of software development projects. It

also considers the problems involved in making such measurements.

3-1
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3.1.1 Management Concerns in Testing Software

Advanced software testing techniques are being used by industry
and government, but practices vary widely. A survey of 60 software
development projects in the US aerospace :lm:lustr:y1 concluded that only
12X of the projects surveyed had formal standards on how to plan for
tests, and only 41% produced formal quality assurance plans.

Consideration of the full software life-cycle 1s critical to
proper management of software development in general and testing in
particular. Testing must be formally incorporated into the software
development plans from the beginning of a project, and procedures for
configuration management that institute control of change and inte-
gration must be in place early. The great danger in haphazard manage-
ment and lack of ., aning 1s that "by the end of the validation/veri-
fication phase (at installation time), corporate level managemeat cannot
do a great deal more to influence the quality of the product:."2 If
things are going wrong with a project, management must find out and take

corrective action as early as possible.

The overall quality of a software product 1is composed of many
factors. Testing should improve the quality of a software project in

each of the areas discussed below.

Correctness may be thought of as the lack of errors in a program.
Programs, particularly large ones, usually have errors, so sometimes it
is desirable to try to judge "how correct or incorrect™ a program is.

An estimate of the number of errors remaining in the program is one

1—; Thayer, A. Pyster, and R. Wood, Results of a Survey on Management
Techniques and ProceduteL used in Software Development Projects by the

U.S. Aerospace Industry, SM-ALC/MME TR 79-54, Volume II.

J. S. Cooper, "Corporate Level Software Management”, 1EEE Transactions
on Software Engineering, Vol. SE-4, No. 4 (July 1978), p. 324.

2
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"degree of correctness” metric. Another metric that has been used is an
estimate of the program's reliability. Here reliability has a meaning
similar to the use of the term in the hardware context-—-how often will
the program fail? These measures are considered in greater detail in
Sec. 3.2 .

Compliance with specifications - whether the program does every-

thing that it is supposed to do, in the way that it is supposed to. To
simplify matters, we discuss testing with the assumption that specifica-
tions are given and fixed. We also assume that a functional specifica-
tion is available which can be used to determine if the program s
operating correctly. Traditionally, testing detects errors only if the
errors are reflected in the program's output behavior. However, certain
test tools are useful for assuring compliance with other specifications
- for instance, instrumentation tools can help to increase the speed of

execution of a program.

Cost may not normally be thought of as a measure of software
quality, but the two are intimately connected in the government and
corporate environment. Testing is an important link between quality and
cost since it 1s a major determining factor of both. In Sec. 3.3 we

examine the effect of testing on total software development costs.

Other desirable characteristics - there are some standard software

quality characteristics which should be present in a finished software
product regardless of whether they are covered in the product's formal
specifications. Examples of such characteristics are code readability
and ease of use. Boehm, et al..1 have constructed a "Software Quality

13. W. Boehm, J. R. Brown, M. Lipow, “Quantitative Evaluation of

Software Quality”, Proceedings - 2nd International Conference on
Software Engineering, San Francisco, October 13-15, 1976, pp. 592-605.
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Characteristics Tree” (whose elements are commonly known as “-ilicy”
measures) which covers many of these jitems. Such qualities tend to be
very difficult to measure quantitatively. 1In Sec. 6.5 we look at how
the test techniques can contribute to assuring that these qualities are

present in software.

3.1.2 Making Measurements of Software
If we 1lmpose the same standards of rigor on software measurements

that are required of measurements in the physical sciences, the follow-
ing must exist for a software metric to be properly defined:

e A principle of operation known to hold for all applicable
software

° VA quantity with well-defined units to be measured

) An accurate means of performing the measurement

. A means of directly relating the quantity measured to a

software quality or test effectiveness characteristic

Unfortunately, software metrics typically fail to satisfy at least
one of the above criteria. Perhaps the most difficult of these criteria
is the first, since many important rules about the behavior of software
have not been firmly established. It may well be that the fileld of
software testing, since it deals with man-made objects and systems
rather than those developed by nature, must be content with the status
of “"inexact science”, which is sometimes accorded to the social scien-
ces. 1If this is the case, the scientific methods of measurement and
experimentation, while still quite valid activities in the discipline,
should be expected to lead only to heuristic approaches or “"rules-of-
thumb” for problem solving rather than to exact formulas.

For most software quality concepts, quantitative measures alone do

not provide a complete basis for evaluation. A good example of this 1is
the problem of determining the adequacy of the documentation of a plece
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of goftware. A metric cannot measure the relative importance of the
documentation reports produced against those not produced, or evaluate
how easy the produced documentation 1is to understand and use. The
process of evaluating software quality and test effectiveness must
proceed under the awareness that qualitative evaluations should accom—-

pany the use of metrics.

None of the above criticisms of software metrics should be
interpreted as denying the fact that good metrics can provide valuable
management and technical information. Five areas in which metrics can

make contributions to testing and software development are listed below.

) Metrics can guide the testing process by identifying what
needs to be tested and indicating what test techniques might

be most useful.

. Metrics provide a means of recording project status.
° Metrics can provide parameters for cost estimation.
) Metrics can provide aids to software waintenance, both as a

form of documentation of the development of the system and
as predictors of the location and severity of possible

problem areas.

° Metrics may be used in formulating requirements for systems
that are expected to fulfill some measurable criteria.
Examples of such requirements include minimum standards of

test coverage or operational reliability.

3.1.3 Practical Problems with Software Quality and Teating Metrics

Although software metrics have received a great deal of study,
there 1s still a need for experience and data on their use in "live”
development projects. Data has been gleaned from experiments with
small, well-understood programs and post-facto analyses of completed

projects, but there are some obstacles to the collection of data from
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ongoing projects. These include:
® Data collection requires extra record keeping during the
testing stage, which is already burdened with data and
details.
] Persons responsible for the quality of a project (from

programmers on up) may feel that the data will be used to
form unfair evaluations of their work.

o It is very difficult during "live” conditions to control
the elements of human ability and judgment that affect both
data collection and the outcome of the project itself.

Test techniques that require user intervention and judgment are
very difficult to rate in terms of effectiveness because human factors
need to be taken into consideration. This report does not address the
problem of measuring the skill with which a (human) tester applies test
techniques, although we do examine the effort and level of expertise
required to apply the techniques.

3.2 MEASURES OF TEST TECHNIQUE EFFECTIVENESS
The metrics that we consider in this section can help to make the
following judgments about the effectiveness of a test techmique:

. What kinds of errors will the technique detect?

e How many of the errors in a program can be detected by using
the technique?

o How completely has the technique been applied at any point
in the testing process? Is it possible to apply the
technique exhaustively, or is the number of tests that can
be made essentially infinite?

. When can testing stop?

3-6
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3.2.1 Types of Errors Detected

Enumerating error types requires the use of an error classifi-
cation system. We chose to use the one developed at TRHI, partly
because it had been used in previous GRC st\xdiesz’3 of test techniques.
The error categories in this scheme are listed in Table 3.1. We had
hoped to use the TBW error classification to develop a chart which
listed the error types detected by each of the test techniques.
However, we later decided that this approach would not be valid. The
main problem with this classification scheme is that it emphasizes
instances of errors, while testing 1is often concerned with only the
symptoms of errors.

Errors in computer programs are caused by faulty human actionms.
But it is often convenient to classify errors at the level of the
computer instead of putting them in human terms. To do this, we need to
make a distinction between amn error in a program's source code and the
effect that it has on program operation. The source code problem can be
termed the “instance” of the error, while the run-time problem is the
“gymptom” .

1'1‘. A. Thayer et. al., Software Reliability Study, Rome Air Development
Center RADC-TR-76-238, August 1976, pp. 3-18 to 3-20. This is the
“Project 5" error classification. This document 1is hereafter referred
to as "the TRW report”. The report has recently been published by
North-Holland, New York.

2

C. Gannon, R. N. Meeson, and N. B. Brooks, An Experimental Evaluation

of Software Testing, General Research Corporation CR-1-854, May 1979.

3.1 « P. Benson and D. M. Andrews, Adaptive Search Techniques Applied to

Software Testing, General Research Corporation CR~1-925, February 1980.
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TABLE 3.1
THE TRW "PROJECT 5" ERROR CLASSIFICATION SYSTEM
(Source: Thayer, et al,, pp. 3-18 to 3-20)

A_OOO COMPUTATION EBRRORS
A 100 Incorrect operand in equation
A_200 Incorrect use of paraathesis
A 300 Sign counvention error
A 400 Units or data couversion error
A_500 Computation produces an over/under flow
A_600 Incorrect/inaccurate equation used
A 700 Precision loss due to mixed mode
A“800 Missing computation
A 900 Rounding or truncation error
B_000 LOGIC ERRORS
B_l00 Incorrect operand in logical expression
B_200 Logic activities out of sequence
B_300 Wrong variable being checkad
B 400 Missing logic or condition tests
B_500 Too many/few statements in loop
B 600 Loop iterated incorrect number of times
(including endless loop)
B_700 Duplicate logic
C_0oo DATA INPUT ERRORS
C_100 Invalid input read from correct data file
C 200 Input read from incorrect data file
€300 Incorrect input format
C_400 Incorract format statement referenced
C_300 End of file eacountered prematurely
C_600 End of file missing
D_000 DATA HANDLING ERRORS
D_050 Deta file not rewound before reading
D_100 Data initialization not done
D 200 Dsta initialization done improperly
D_300 Variable used as a flag or index not set properly
D 400 Variable referred to by the wrong name
D _500 Bit manipulation done incorrectly
D 600 Incorrect variable type
D_700 Data packing/unpacking error
D_800 Sort error
D 900 Subscripting error
E_000 DATA OUTPUT ERRORS
E_100 Data written on wrong file
E_200 Data written according to the wrong format statement
E 300 Dats written in wrong format
::aoo Data written with wrong carraige coutrol
E_500 Incomplete or missing output
E 600 Output field size too small
E_700 Line count or page eject problem
E_800 Output garbled or aisleading
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INTERFACE ERRORS

Wrong subroutine called

Call to subroutine not made or made in wrong place
Subroutine arguments not consistent in type, units,
order, atc.

Subroutine called is oounexistent

Software/data base interface error

Software user interface error

Software/software interface error

DATA DEFINITION ERRORS

Data not properly defined/dimensioned

Data referenced out of bounds

Data being referenced at incorrect locatiom
Data pointers not incremented properly

DATA BASE ERRORS

Data not initialized in data base
Data initialized to incorrect value
Data units are incorrect

OPERATION ERRORS

Operating system error (vendor supplied)
Hardware error

Operator error

Test execution error

User misunderstanding/error
Configuration coantrol error

OTHER

Time limit exceeded

Core storage limit exceeded

Output line limit exceeded

Compilation error

Code or design inefficiency/mot necessary
User/programmer requested enhancement

Dssign nonresponsive to requirements

Code delivery or redelivery

Software not compatible with project standarde

DOCUMENTATION ERRORS

User manual

Interface specification
Design specification
Requirements specification
Test documentstion

PROBLEM REPORT REJECTION

No problem

Void/withdraw

Out of scope —— not part of approved design

Duplicates another problem report
Deferred
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The following example illustrates the distinction between the

cause, instance, and symptom of an error.

REAL FUNCTION AREA(R)
DATA P /3.14159/
AREA = PI * R¥*2
RETURN

END

Here the DATA statement has been typed incorrectly - "P” should be
"PI". This 1is the error at the human level, or the “cause” of the
problem. However, at the source code level, the program contains an
uninitialized variable, “PI", and one that 1s set and not used, "P".
This 1is the instance of the error. To a user of the routine, the
problem is that the area is computed incorrectly; this is the symptom of
the error.

For most of the TRW categories, it is very difficult to decide
whether to give a technique credit for being able to detect that type of
error. For example, a few error categories correspond exactly to
certain static error and anomaly checks (e.g. "D_100 Data initiali-
zation not done” with the static “uninitialized variable" error); but
other categories (e.g. "D 400 Variable referred to by the wrong name”)
describe errors that static analysis may or may not catch. Similarly,
only a few of the error categories describe aspects of program behavior
that are diagnosed during dynamic testing.

The misspelling error presented above might be classified in any
of the following ways under the TRW scheme:

] A_100 Incorrect operand in equation
. A_800 Missing computation ("PI=P" would correct the
problem)
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. D_100 Data initialization not done
° D 200 Data initialization done improperly

° D_400 Variable referred to by wrong name

There are no detailed, written descriptions of the TRW error
categories, so which of these five should actually be chosen depends
entirely upon the interpretation and preferences of the individual doing
the classifying.

Now consider how this same error looks to each of the test

techniques which we are evaluating:

° Static analysis will report two data flow violations:
"P is gset but not used”, and "PI is used but not set”.

. Dynamic testing must catch the fact that the value returned
by the function is wrong.

° Formal testing will find the error when it cannot be
egtablished that "PI"” has a value close to what is desired.

The only close correspondence between a TRW error category for
this errnr and a test technique detection method is the category "D_100"
and the “"PI used but not set” message from static analysis. None of the
error categories suggest the ways that the dynamic or formal techniques
would detect the error.

In Sec. 4.1 we present a chart which shows the major TRW error
categories that are addressed by each test technique. The chart 1is
based on experience with the test techniques in error seeding experi-
ments and real projects. The relationship between the techniques and
the error categories is empirical, not analytical. As we note in Sec.
4.2, only in a very few cases is there a high degree of certainty that a
test technique will detect a particular TRW error type.
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3.2.2 The Percentage of Program Errors Detected

A natural question to ask about a test technique 1is how many of

the errors in a program can be detectel by using the technique. This
can be expressed with a metric as the ratio:

Number of errors detected
Total number of errors in a program

Studies which have produced error detection ratio data for the
test techniques have been of four types:

° Case studies of on-going develooment projects

o Analysis of historical data from real projects

. Experiments using “artificial” programs and/or errors

) Theoretical analyses in which test techniques were not

actually applied

0Of these methods, the most sclientific are the case studiés;
unfortunately, only a few have been performed. Historical data is less
acceptable because often it does not link the detection of an error
explicitly to the use of a test technique. Experiments cannot duplicate
the process of developing a major piece of software. Not enough is
known to "analytically” determine error detection ratios for the test
techniques without actually applying them.

Studies which have provided values for the error detection ratio
metric are cited in the profiles of each test technique in Chapter 5.
The results were obtained under widely varying conditions, and represent
initial attempts at determining representative data for the metric. The
data currently available is not sufficient to make conclusive quanti-
tative comparisons between different test techniques on the basis of
this metric.
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3.2.3 Completeness-of-Testing Metrics

The general form of a completeness metric is the ratio:

___Number of tests performed
Total number of tests possible

The completeness metric for each of the test techniques 1is given
in Table 3.2. The metric takes a specific form for each test techaique.
For some of the techniques, 100% completeness is achievable, while for
others it is a practical impossibility. Lower and upper bounds on the
completeness ratio——representing minimum acceptable and maximum feasible
levels of testing for each technique--would be very useful to have.
Unfortunately, such bounds have not been determined for those techniques
for which 1002 completeness cannot e achieved.

The completeness metric for static analysis assumes that the tool
or technique used makes a fixed number of error and ancmaly checks
whenever it is used. When comparing the effectiveness of static testing
when different tools are used, one muyst consider the different types of
checking that are done. In general, errors found by static analysis
are violations of the semantics of the programming language. Therefore,

a metric for rating static analysis tools is:

Number of semantic error types checked
Total number of sgemantic errors

The problem with the completeness metric given for executable
assertion testing 1s that it is hard to estimate the number of asser-
tions that are required. 1In Sec. A.5.3 of Appendix A (Guidelines for
Testing Software) we present a list of locations where assertions should
appear in a program. The completeness metric for assertion testing
should be calibrated to the number of these locations that exist in a

program.

3-13
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Several different structural units can be used in the completeness
metric for structural testing. These include statements, branches,
combinations of branches, and paths. Complete branch coverage, which
subsumes statement coverage, is possible for almost all programs. It is
usually impossible to test all paths in a program, or even all possible

combinations of N or fewer branches if N is 3 or more.

Functional testing is the most "open-ended” of the test techniques
considered-——the number of possible tests 1is always very large, and so
the completeness metric is not very helpful. For example, testing all
input combinations for a program with six input variables, each of which
may take on three values, requires 729 test cases. The completeness
metric gives no information about the relative importance of the testss

that are run and not rum.

The limitations in applying formal techaniques are determined by
the ability of the test tool or the user to simplify complicated
symbolic expressions and to provide information necessary to proceed
with the formal reduction of the program. An 1incomplete symbolic
execution is one in which there 1is some output variable for which a

symbolic expression in terms of input variables and constants has not
been derived. An incomplete formal verification exercise is ome in
which the truth or falsehood of an assertion about program behavior has
not been estatlished.

3.2.4 How Long Should Testing Continue?

For the techniques of functional testing, executable assertions,
and path testing, 100% complete (exhaustive) testing may be a practical
impossibility. Under these circumstances, some other criterion for
ending the testing process must be used. We present three possible

criteria here:

° A “marginal benefit” metric, which indicates when the value
of additional tests becomes negligible.

3-15
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° Techniques for estimating errors--the number of errors
actually found can be compared to this number to indicate
whether testing has been thorough enough.

° Reliability models, which attempt to predict the distri-

bution of failures during the operation of the program.

The “"marginal benefit” of running an additional test case is the
number of errors found by running that test. Paige and Balkovich1
postulated the relationship shown in Fig. 3.1 between the number of
tests run and the number of errors found. The basis for their hypothe-
sis 1s that initial tests sift out a large set of errors that are more
easlly detected, and that a second peak in the curve occurs when test
cases are run that were not anticipated by the programmers. However,
their analysis is not linked specifically to the test techniques dis-
cugssed in this report.

One way of estimating the number of errors in a program is by
using the technique of error seeding. To estimate the number of errors
in a8 program, one can artificially introduce new errors (by changing

correct program statements) and then apply an error detection process.

1H. R. Paige and E. E. Balkovich, A Test Plan for a Structured Program,

General Research Corporation RM-1638/1, May 1972, p. 25.
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TESTING EFFORT (NUMBER OF TESTS)

{ Figure 3.1. Marginal Test Benefit as Hypothesized by Paige and Balkovich
A maximum-likelihood estimate of the number of errors in the program is
] then:1
X nx (r-k)
k
where r is the number of statements in the program,
n is the number of errors introduced,
h
k 1is the number of errors detected (real and seeded),
[] indicates the greatest integer function.
1
1

G. J. Schick and R. W. Wolverton, “An Analysis of Competing Software
Reliability Models,” IEEE Transactions on Software Engineering, Vol.
SE-4, No., 2 (March 1978), pp. 112~1l4,
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Another way to estimate the number of errors in a program 1is to
use a complexity metric. No firm analytical basis exists for the use of
a particular complexity measure, since no single aspect of program
structure can explain the behavior of the entire program. Nevertheless,
a considerable body of data supports the use of complexity measures as

error estimators.

Halstead1 developed a set of metrics which are based on counts of
the number and incidence of operators and operands in a program. He
proposes an “"effort” metri¢ E, which is to be proportional to the number
of errors in a program. Effort is estimated from the operator and

operand count by the formula:

(N1+ Nz) x log (n1+ n2)

=1

27> % (n,/N,)

where N, = total number of occurrences of operators
N, = total number of occurrences of operands
n, = number of distinct operators

n, = number of distinct operands

1M. H. Halstead, Elements of Software Science, Elsevier North-Holland,
1977.
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Lloyd and Lipow1 describe a model which estimates the mean time to
next failure of a program. The model assumes a Poisson distribution for
the number of errors detected during a time interval of the testing
process, with the mean of the distribution being proportional to the
number of errors in the program at the beginning of that interval. The

mean time to failure for the program is computed as:

1
8 - Wx (N-n)

where 6 = mean time to failure

W = the proportionality constant for the number of errors

detected (calibrated for the program)
N = estimated number of errors in the program

n = number of errors detected in the test interval

3.3 MEASURING TESTING COSTS

We look at two areas in our analysis of the costs of software
testing: the direct co~ts of applying the individual techniques, and
the cost savings achievable by using the techniques. The direct costs
of automated testing include the human skills and time, computer

resources, and tool procurement or development costs. Potential cost

1D. K. Lloyd and M. Lipow, Reliability: Management, Methods, and

Mathematics, Second Ed., 1977, pp. 514-521. Published by the authors,
who are with TRW Syastems and Energy Division, Redondo Beach, Cali-
fornia.
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savings are analyzed in terms of the early detection of errors and
increased testing efficiency that automated techniques can provide.

We cannot give estimates of how much, in dollars, it costs to use
the techniques. This 18 because dollar costs depend upon the tool being
used and the particulars of the test enviromment. However, we do
provide "cost worksheets"” as part of the characteristic profiles of each
technique in Chapter 5. These worksheets give the prospective test
technique user a way to form an estimate of testing costs, based on his
knowledge of the size of his testing problem and the per—unit costs of

human and computer resources.

3.3.1 User Skills and Time
The skills required to use a test technique indicate the profes-

sional 1level that the tester must have. For example, most static
testing tasks can be performed by someone with a rudimeuntary programming
background and no knowledge of the application area of the program being
tested. On the other hand, formal verification requires a high degree
of familiarity with proof techniques and a detailed knowledge of the
program being tested and its application area.

We have accumulated a few pieces of data on the amount of analysis
time used during applications of the test techniques. There is not
enough data to develop with confidence any "average analysis time”
values. We have included the available data in the characteristic
profiles in Chapter 5 to reflect some people's experiences with the test

techniques.

3.3.2 Computer Resources

The computer resource requirements of automated test techaniques
take two different forms. 1In the cases of static analysis and formal
testing, the source code of the program being tested is operated upon by
the test software. Thus, the overhead of these techniques is the cost

of running the test tool.
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On the other hand, dynamic testing requires repeated executions of
a version of the program being tested that may have been instrumented or
had assertions placed in it. The number of runs made in dynamic testing
depends on how thorough the user wants the testing to be and on how many

errors are in the prograa.
'

Some standard is needed to make comparisons of computer costs
across different computer systems and target languages. It seems
natural to compare the cost of static analysis to that required to
compile the same program. Similarly, the cost of saking a dynamic test
run can be compared to running an unaltered version of the same program.
The compilation and execution time benchmarks yield good approxisstiouns,

but not exact formulas, for the computer resources used in testing.

Size statistics on automated test tools lnclude the amouynt of
memory required to execute the tool, the num'er and size of temporary
and permanent data bases, and the tool’'s {-put asnd output character-
istics. Although this information is hiznly tool-dependent, there are
similarities in the operation of the tools isplementing each technique.
We present the size statistics of a few representative tools as part of

each characteristic profile.

3.3.3 Tool Procurement Costs

The cost of acquiring a test tool may be a small part of total
testing outlays if & user expects the tool to be employed in a large
number of test efforts. However, tool procurement may require a large
initial expense under certain conditions. Test tools have not been
built for all possible combinatious of test techniques, computer
systems, and target languages. If no tool exists for a computer and
language similar to what a user desires, he must assume that his tool

procurement costs will be nontrivial.
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3.3.4 Cost Savings Provided by Automated Techniques
Lipov1 presents a simple cost tradeoff model of the decision as to

whether to use a test tool. According to the model, the use of the tool
is vorthwhile if:

CA ¢ PxNx (C0 -C

)

where C, = cost of acquiring and applying the tool
P = additional proportion of errors discovered by the tool
N = number of errors detected by testing without the tool

c = average cost of detecting an error during the opera-

tions phase

| C. = cost of detecting an error during testing

Ig- Lipow, “Prediction of Software Failures”, Journal of Systems and
Software, Vol. 1, No. 1 (1979), pp. 74-75.
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4 COMPARISONS OF THE SOFTWARE TESTING TECHNIQUES
Good software testing techniques should be effective, reliable,

inexpensive, and easy to use. This report explores how good current
techniques really are. In this chapter we make some general comparisons
of the four test techniques used for error detection, along with formal
verification. The comparisons are based on the metrics discussed in the
last chapter and on some other criteria presented here. In Chapter 5 we

look at each technique in depth.

We have ranked the five test techniques from best to worst for
many of the criteria. We do not designate a most effective test
technique; effectiveness is a complicated and controversial subject.
Static analysis is rated the most reliable, least expensive, and easiest
to use of the techniques.

We must point out that static analysis is the most fully-developed
of the test techniques. A fairly large number of static analysis
packages have been in use since the mid-1970s. Meanwhile, methodologies

for structural, functional, and executable-assertion testing are still
being developed, and fully automated implementations of these methods
have not yet appeared. Formal techniques have survived a period in
which their legitimacy was under attack, and practitioners are just
beginning to develop formal tools for use outside the laboratory.

4.1  EFFECTIVENESS

We use two indicators of the effectiveness of a test technique:

° The range of error types that it can detect

. The percentage of all errors in a program that it actually
does detect

4~1
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In Table 4.1 we display our rank-ordering of the static and
dynamic test techniques, based on the range of error types that they can
detect. Formal verification is omitted because we are not sure how a
proof system would cope with all of the types of errors in the TRW
scheme. Our treatment of effectiveness in evaluating formal verifi-
cation is different from that used for the other techniques. The maijor
TRW error categories addressed by each test technique are listed in
Table 4.2.

TABLE 4.1
RANKING OF THE TECHNIQUES BASED ON RANGE OF ERROR TYPES DETECTED
(1 = best)

1. Functional testing

2. Executable assertions
3. Structural testing

4. Static analysis

We have used a great deal of judgment in evaluating the range of
errors detected, especially for the dynamic test techniques. Most
program errors can be detected by dynamic testing if a test case that
reveals the errors happens to be sgelected. We tried to determine
whether each type of error in the TRW scheme fits the "purpose” of the
test technique being evaluated. This is especially hard for functiona)
testing, since functional testing can be roughly described as findinp
input data that 1s likely to cause the program trouble. We rate
functional testing very highly on the range of errors that it can

detect--but we also feel that some experiments need to be done to verify
this.
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TABLE 4.2

MAJOR TRW ERROR CATEGORIES ADDRESSED BY TEST TECHNIQUES

TRW Ma jor Static Executable Structural Functional
Error Categories Analysis Assertions Testing  Testing
Computation Errors x x x
Logic Exrors x x x
Data Input Errors x x
Data Handling Errors x x x x
Data Output Errors x x
Interface Errors x x x
Data Definition Exrors x x x
Data Base Errors x x x
Operation Errors x
Documentation Errors x x

e e e e e e —
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In Sec. 3.2.2 we discussed the use of an error detection ratio
metric. This metric, our second indicator of test technique effec-
tiveness, is the ratio:

Number of errors detected
Total number of errors in a program

At present, no one knows enough to predict that a test technique
will detect a particular minimum, maximum, or average percentage of the
errovs in a program. While we believe that, generally, static analysis
will detect fewer errors than dynamic testing, there may well be cases
vhere this is not so. We do not rank~order the techniques on the basis
of perceantage of errors detected, because current knowledge is inguff-

icient to support such a conclusion.

4.2 RELIABILITY

We gauge the reliability of a technique by the variation in its
effectiveness over different testing applications. There are three main
causes of such variation: the human factors involved in testing, the
kinds of errors that the techniques detect, and the characteristics of
the programs being tested. We discuss these causes in Chapter 5 but we
also want to highlight them here.

Of the five techniques, static analysis is least susceptidble to
human error, is most cousistent in applying error checks, and varies
least in the way it works for different kinds of programs. We have
declared it to be the most reliable technique on this basis. However,
the reliability of all the techniques, including static analysis, it
less than ideal due to the following factors:

. All of the techniques are susceptible to human error and
abuse.
° There are very few error types (from the TRW classification

4~4
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scheme) that can be eliminated with certainty by any type of
testing or program proving.

] Data on the use of the test techniques shows a large
variation in the percentage of errors that are detected in

different programs.

4.2.1 Human Factors Involved in Testing

Three things are required of a person who is using any of the test

techniques:

° He wmust have some knowledge and control of the program

development process in order to plan and conduct tests.
] He must carry out the mechanics of using the tools.

) He must use skill and judgment to help in the error detec~-

tion process.

Any of these areas may be sources of problems which reduce the
effectiveness of the techniques. These problems can be reduced by
making test techniques flexible, easy to use, and highly automated, and
by developing standard methodologies to support them.

In Table 4.3 we rank the techniques according to their sensitivity
to human factors. Static analysis is much less sensitive to human
errors and limitations than the other techniques. Static testing is the
most automated technique and has the most developed methodology. Most
of the elements of skill and judgment have been removed from static
testing because the ‘error checking is easily understood and automati-
cally applied.
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TABLE 4.3
SENSITIVITY OF THE TECHNIQUES TO HUMAN FACTORS

(1 = Least sensitive)

1. Static analysis

2. Structural testing

3. Functional testing

4. Executable assertions
5. Formal verification

B e it s it TSI R

Testers have varying degrees of influence over project manapement,

and this can affect the reliability of the tests. For example, ga

programmer who needs to check out his own code may not have access to

other modules. This makes static global data flow analysis impossible;

it can also make functional testing difficult or meaningless. In

general, the following things need to be under control of the tester for

effective use of the test techniques:

Static analysis needs information about the behavior of
global variables. This may come from design documents,

module stub libraries, or code.

Dynamic testing requires that the tester be able to deter-
mine whether the code 1is operating properly. The test
enviromment needs to be as similar to the operating environ-
ment as possible -- realistic input data should he used, all
interfaces should be simulated, and other special conditions

(for example, timing considerations) need to be provided.

Formal verification involves proving the consistency of the
code and its specifications. Changes will need to be made

4~6
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in both code and specifications to allow a proof to be
completed. Formal verification needs to be planned in-

tengsively from the beginning of a project.

In Sec. 4.4 we discuss the degree of automation and the user skill
requirements of the test techniques. The more automated a technique is,
the less opportunity there is for human mistakes to corrupt the results
of a test. Automation also increases the thoroughness of testing and

ensures that proper methods are adhered to.

4.2.2 Kinds of Errors Detected
In the characteristic profiles we discuss the error types for

which the techniques are most and least effective. We also examine the
reliability of each technique for those error types that it detects most
effectively.

If a technique 1is completely reliable for an error type, then
testing with the technique can guarantee that no errors of that type are
present in a program. However, very few error detection methods can
find errors with 1002 certainty. This is true even of static analysis,
which is usnally thought of as highly reliable. For example, static
data flow analysis produces very weak results for subscripted variables
(see Sec. 5.1.3).

If given enough information, static testing can detect all

occurrences of the following error types:

Module interface errors
Coding standards violations
Mixed-mode arithmetic

Unreferenced statement labels

We know of no other error types that can be detected with complete
certainty by any type of testing. It would be nice to associate a
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probability measure with error detection. Such a metric would comple-~
ment the error detection ratio as a gauge of technique effectiveness.

However, not enough 18 currently known about error detection to do this.

4.2.3 Program Characteristics
In the characteristic profiles we look at how the test techniques

are affected by some characteristics of the program being tested. These

characteristics include:

L) The life cycle phase in which testing is being conducted
° Program size and complexity
° The type of program and its intended application (numerical

or nonnumerical, real-time or noncritical, etc.)

° The language and design methods used

In Table 4.4 we indicate the life cycle phases in which the use of
each test technique is appropriate. The fact that one technique must be
used later in the life cycle than another does not imply that it 1is
inferior. Testing 1s needed throughout the development period, and
different techniques should be called on at different times. But since

it 1s cheaper to correct errors earlier in the 1life cycle, testing

should begin as early as possible.

The other program characteristics cannot be treated as neatly as
life cycle phase. The assertion testing experimeant (Appendix D)
investigates the relationship between program complexity and testing. In
the technique profiles we comment on the usefulness of the techniques
for certain application areas. We also mention a few ways that advanced

programaing languages and design techniques have facilitated testing.
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TABLE 4.4
APPLICATION OF TEST TECHNIQUES IN THE LIFE CYCLE

Coding Test Operations
and and and
Checkout Integration Installation Support
Static Analysis X X
Executable Assertions X X
Structural Testing X X
Functional Testing X X X
Formal Verification X X

Researchers have only recently begun to look at the problems of
testing real-time and distributed systems. Such programs have special
error conditions besides those that are found in non-time-critical
programs running in a si.igle-processor environment. The five test
techniques described in this report do not address the problems of

synchronizing concurrent processes, allocating shared resources, and

many other important issues. However, some progress has been made in

applying the test techniques to other than conventional programs:

OOVRBALI L w4 52~ +




° Taylor and Osterveil1 describe how the techniques of static
data flow analysis can be extended to detect certailn errvor

and anomaly types in concurrent programs.

° Executable assertions can provide fault-tolerance for
programs susceptible to hardware and communication (as well
as processing) errors. Assertions can also provide security

during sharing of resources.

e Instrumentation tools, which give coverage data to support
structural :esting, can be used to measure the speed and
frequency of execution of program segments. This in-

formation can be used to improve the efficiency of time-

critical code.

. Formal verification has been used to establish the security
of the communicatious in a computer network (see Sec. 5.5).
Proof of other properties of distributed and time-critical

systems 1is an active research area.

4.3  CO3T

This report has two goals in evaluating the cost of test tech-
niques. First, we want to develop a fairly complete list of the
resources required to use a technique. Second, we present some data
from actual test experiences to give a general idea of the sign;fiéance

of the resources.

lR.N. Taylor and L. J. Osterweil, "Anomaly Detection in Concurrent
Software by Static Data Flow Analysis,"” IEEE Transactions on Software

Engineering, Vol. SE-6, No. 3 (May 1980).
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It is generally agreed that static analysis 1is the cheapest test
technique to use, with the dynamic techniques being significantly more
expensive, and the formal techniques much more expensive than the
dynamic techniques. In Figure 4.1 we show an order-of-magnitude
comparison of the costs of static, dynamic, and formal testing using

current technology-.

One reason for the cost differences 1s the nature of the tech-
niques: static testing requires only a single execution of a source code
analyzer; while dynamic testing requires repeated executions of the test
program and analysis of each set of test results; and formal techniques
involve difficult intellectual labor with limited wmechanical support.
However, static analysis 1is also the most fully-developed of the test
techniques. We predict that in the next ten years static testing will
remain the cheapest technique, but the cost gap between it and the other

techniques will close to some extent.

(ﬁ 1000 r E
g; 100 T 9
o 32
g 1o}
=
L- 4
R o
€ I
STATIC DYNAMIC FORMAL
ANALYSIS TESTING  VERIFICATION

Figure 4.1. Relative Costs of Static, Dynamic, and Formal Testing
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4.3.1 User Skills and Time

Although modern software testing tools are highly automated, some

techniques still require special skills and a significant degree of user
involvement for their application. The most completely automated
techniques are those of static analysis. Static error detection,
anomaly detection, static assertion checking, and code auditing require
little familiarity with the program under test or its application area.
Static analysis can be easily applied, for example, by an independent
testing team without thoroughly understanding the program or “he problem

it solves.

Structural testing requires strong programming skills to analyze
test results and devise new test data. A deeper understanding of the
application problem area also helps but is not essential. Path testing,
for example, 1identifies the program paths traversed by a set of test
input data. The tester must be able to determine how to adjust the

input data to exercise and test the remaining paths.

Functional testing, executable assertions, and formal program
verification require a much more complete understanding of the appli-
cation problem area and the program's requirements and specifications.
This 18 in addition to the programming skills described above. Func-
tional testing requires analysis of the domains of all input data and
identification of special values and special combinations of function-
ally related values. Identifying loop-invariant relationships for
executable assertion testing is equally difficult. Formal proof systems
are very complex and require extensive training to be used effectively.

4.3.2 Computer Resources

The automated techniques require a greater amount of computer
resources than the manual test techniques that have been traditiomally
used. The extra computer costs must be weighed against the benefits of
more thorough testing and the manpower savings that automated techniques

4-12
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can provide. The computer resource overhead required by a technique can
be tool-dependent and problem-dependent.

Static analysis requires the application of a code analyzer which
may also build a data base for use by other automated tools. One
application of the static analysis tool is necessary per code version
tested. The computer time and storage needed by static tools used to be
a serious impediment to their use on large programs. However, now there
are tools available whose resource requirements are linear functions of

program size.

Executable assertion testing, instrumentation, and test harnesses
all require that additional code be inserted into a program before it is
executed. The overhead required by assertions and test harnesses can
vary a great deal. The overhead required by instrumentation tools
depends on the level at which instrumentation is performed (statement,
branch, or module) and the size and complexity of the code. The data
cited in Secs. 5.2 suggest that assertions require from 0% to 50X
increase in program execution time and about a 10X to 15 increase in
storage. Instrumentation tools generally require a 2% to 50X increase

in execution time and a 20 to 100X increase in program size.

Functional testing may be conducted without automated assistance,
80 the minimum execution time and storage overhead for this technique is
zero. However, functional testing requires a large number of program
executions, so computer time costs and restrictions are important
factors in 1its use. The number of executions required to perform
functional testing depends on the degree of testing campleteness
desired, the nature of the errors in the program, and the difficulty of
detecting and correcting errors.

The amount of computer resources used by the formal techniques is
highly dependent upon the difficulty of obtaining the results desired.
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Some tools will continue indefiritely to seek a needed verification con~
dition or expression simplification, while others will stop and await
nevw information from the user. The tools which support the formal tech-
niques are typically written in LISP and use garbage collection algor-
ithms during execution — thus they can be very slow. The application of
formal techniques to a medium-sized or large program 1is likely to
require a significant amount of computer, as well as human, time and

resources.

4.3.3 Procurement Costs

The availability of automated testing tools for specific ptdgram—
ming languages and host computer systems is growing. As Table 4.5
shows, most currently available tocls are for ANSI FORTRAN. Static
analysis and instrumentation are the most commor techniques supported by
the tools surveyed. Table 4.5 reflects the predominance of tools
developed for CDC and IBM host computers as well as the predominance of
FORTRAN. New testing tools are being developed to fill in obvious gaps
in the current tool availability picture. However, the balance of tesat
tool availability is expected to remain high for FORTRAN and for the
ma jor computer manufacturers.

4.3.4 Cost Savings Provided by Automated Techniques

Several studies have indicated that the use of automated test
tools can result in substantial cost savings over traditional manual

testing methods.

[ Alberts1 reports that "the use of automated instruction and
path checkers ... catch between 67% and 1002 of the errors
(in a program) and between two to five months earlier than

they would otherwise have been detected.” He estimates the

1D. S. Alberts, "The Economics of Software Quality Assurance,” National

Computer Conference, New York, AFIPS Press, June 1976, p. 441.
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TABLE 4.5

TEST TOOL AVAILABILITY BY TEST TECHNIQUE
AND PROGRAMMING LANGUAGE

R e S

S Y

AT MO 3 — vtns b a™ > - -

ANSI Structured All

FORTRAN FORTRAN JOVIAL COBOL Others
1. Standards 3 0 1 0 0
2., Static Analysis 12 3 2 1 3

3. Test Data
Generation 2 1 0 0 2
4, Test Harness 4 0 0 3 2
5. Instrumentation 7 2 1 2 2
6. Debugging Aids 1 0 (0] 3 1
7. Dynamic Analysis 5 2 3 0 0
8. Symbolic Execution 5 1 1 0 4
9, Formal Verification 0 0 0 0 6
10. Mutation Analysis 1 0 0 0 0
TABLE 4.6

TEST TOOL AVAILABILITY BY HOST COMPUTER
MANUFACTURER AND PROGRAMMING LANGUAGE

Host Computer
Manufacturer

CcDC
Honeywell
IBM
Univac

All Others

FORTRAN COBOL JOVIAL All Others
13 0 3 1
4 1 1 0
14 3 1 4
7 1 0 0
8 1 1 4
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total cost savings by the use of automated tools in a
half-billion dollar software development project as $25
million, due to productivity increases averaging 10Z. (This
assumes that 50X of the project costs occur during the
development phase.)

° Deutsch1 hes claimed an overall saving in testing costs from
using structural testing. The money saved 1s due to a
higher error detection rate early in the development cycle
by using a tool, as shown in Fig. 4.1. He estimates a net

saving of over five times the cost of using the tool.

° The increase in test efficiency and effectiveness of a
specific automated tool is documented by Brown, et al.2 The
instrumentation tool PACE was used to analyze a large flight
trajectory program that had previously been tested without
automated aids. The earlier testing process had produced 33
test cases which exercised only 852 of the subprograms in
the package. PACE helped to identify a set of six test
cases which exercised 93X of the subprograms. Use of the
smaller set of test cases provided for increased coverage
while significantly reducing the time required to perform
the tests.

1

M. S. Deutsch, “Softwar= Project Verification and Validation”, Com-
puter, April 1981, pp. 54~70.

2J. R. Brown, A. J. DeSalvio, D. E. Heine, and J. G. Purdy, "Automated

Software Quality Assurance”, in Program Test Methods (W. C. Hetzel,
ed.), Prentice-Hall, 1973, pp. 201- .
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4.4 EASE OF USE

A summary of the difficulty of using the test techniques 1is pre~
sented in Table 4.7. The table rates the techniques in the categories
of user skills required, degree of user involvement, and analysis
required to detect and locate errors. The skills required to use the
test techniques were described in Sec. 4.3.1 above and in Chapter 5.

The way the techniques help to locate errors is discussed in Sec. 6.1.

Static analysis is the easiest technique to use and is rated low
in all three categories. The most time-consuming chore associated with
static testing is sorting out the extraneous warning messages that are
generated for data flow and mixed mode anomalies. Extraneous warnings
are a significant problem in static testing, but the analysis required
for other forms of testing is still much greater.

The dynamic test techniques are rated more difficult than static
analysis in all three categories. To perform dynamic testing, the user
has to manually prepare sets of input data and, in the case of assertion
testing, add statements to the source code of the test program. To
formulate effective assertions that check computations or to develop
sets of input data that test boundaries of program function domains, a
tester needs a high degree of understanding of a program’s requirements
and principles of operation. In the case of structural testing, the
path analysis and coverage information that tools provide can substitute

for such expertise.

Neither functional nor structural testing have any automatic
mechanism for indicating that an error has occurred during a test rum.
Assertion violations are called to the tester's attention by a printed
message, but the cause of the violation is not necessarily close to the

location of the violated assertion.
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TABLE 4.7
EASE OF USE RATINGS

DEGREE ANALYSIS FOR
USER OF USER ERROR DETECTION

TECHNIQUE SKILLS INVOLVEMENT AND LOCATION
STATIC ANALYSIS L L L
EXECUTABLE ASSERTIONS 4 M M
STRUCTURAL TESTING M M H
FUNCTIONAL TESTING H M H
FORMAL VERIFICATION vH H B

EXPLANATION OF RATING SYSTEM

User Skills

L <~ PFamiliarity with the program under test or its application area is
not required. Testing could be conducted by a party independent
of the programaing team with little documentation or training.

M = Proaramming skills and famiijarity with the structure of the test
.3 are required. Expertise in the program's spplication ares
aot required.

):4 - Specialized programming and testing skills are required. Familiarity
with the program's application ares is very helpful for effective

testing.

VHE - Uses specialized mathematical techniques that may be unfamiliar to
a programmer.

Degree of User Involvement

L - The testing proceas (test initiation and execution) is fully auto-
mated. No manual preparation of inputs or source code or guidance
of test execution is necessary.

M - Some manual preparation is required before a test can be performed.
The test itself is done sutomatically.

H -~ User must manually operate the test tool during performance of the
test.

Analysis for Error Detection and Locatiom

L = Most of the error types detected are indicated automaticslly. In
addition, the source or location of a large number of errors is
identified.

)] - Errors are detected automatically. User analysis is usually re-
quired to locate the cause of the error.

B =~ User analysis is required to both detect errors and locate them.

4-18
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Formal testing requires a great amount of user effort and analy-
sis. Operating an algebraic expression simplifier or developing formal
verification conditions are specialized skills not commonly possessed by
those who write and test applications programs. Formal techniques are
not designed to simplify the process of error detection. Their purpose
is to make it possible to determine rigorously that a program satisfies

its specifications.
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5 PROFILES OF THE TECHNIQUES

5.1  STATIC ANALYSIS

5.1.1 Summary of the Technique

Static analysis is a collection of analysis and testing wmethods
that do not require the execution of the subject program. Static
analysis can identify errors, enforce good coding practices, and provide
information that is useful for dynamic testing and program maintenance.
Static analysis is almost completely automated, so it is easy to use.
There are static tools available for most programming languages and

computer systems.

Capabilities
Static analysis includes any method of testing which involves only

the examination of program source code. Static analysis camn accomplish

several things:

° It can detect and locate certain types of program errors.
[ It can identify program anomalies-—characteristics that 1in
some cases produce errors.
] It can identify constructions that do not conform to a
standard syntax.
e It can determine whether variables are used in accordance
with the programmer's intentions.
] It can help to generate test data for dynamic tests.
L It can provide documentation reports. “

In Sec. 2.1.1 we presented five types of programming errors that

can be detected by static techniques. The errors are detected by
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analyzing the control structure and data flow of the source code. These
errors are:

° Structurally infinite loops--loops which provide no possi-

bility of termination because there are no exit points

. Module interface conflicts--mismatch of actual and formal
parameters

° Recursive procedure calls, either direct or indirect

° Uninitialized variables

) Structural deadlock in concurrent programs

Five types of programming anomalies can be detected by tools which
examine statement syntax, analyze control structure and data flow, and
tabulate program statistics. These activities are necessary for other
static analysis functions (error detection and documentation), so
anomaly detection does not require a major extension of the capabilities
of a tool. Anomaly detection increases the number of errors that static
testing can find; however, the user must determine which identified

anomalies are in fact errors. The five anomaly types are (see Sec.
2.1.2):

o “Questionable” coding practices, such as over-use of GOTOs
° Mixed-mode expressions
[ Data-flow anomalies: variables set and not used, extraneous

variables, consecutive assignments to a variable without

intervening use
° Structurally unreachable code

° Unreferenced statement labels

Static analysis detects instances, rather than symptoms, of most
errorg and anomalies. It also gives their location, which makes static
tools very useful for debugging as well as testing programs. We discuss

the debugging capabilities of static analysis in Chapter 6.
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Compilers enforce the syntax standards of a language by rejecting
code that has unacceptable constructs. However, compilers usnally
represent “dialects” of a language, which may include features that are
peculiar to one host machine or operating system. Special tools have
been developed to ensure that a program complies with a more rigorous
set of language standards, so that the program can be used in a wider
range of environments. A few examples of such “standards enforcement”

tools are found in the tools survey in the first interim report.

Two types of assertions can be checked by static techniques:
variable usage assertions and units assertions. Variable usage asser-
tions describe how a variable 1is intended to be used in a module:
strictly as input, strictly as output, or both as input and output. The
static tool can check to see if the actual use of the variable 1s the
same as what was Intended. Units assertions tie units (feet, volts,
dollars, etc.) to variables. 4 tool can check to see that expressions
that must agree in unit (e.g. both sides of assignment statements) do

agree after algebraic simplifications are made.

Two kinds of test data generation capabilities can be built iato a
static tool. One kind 1is mainly used in COBOL-based tools: the tool
identifies the names and types of input variables, and determines input
file format information from program input statements. Actual values
for the input variables are then selected randomly.

The other static test data generation method 1is an adaptation of
symbolic execution. Input values which will cause a given program _ath
to be executed can be obtained by examining the predicate coaditions
along the path. Automated methods of determining the predicate con-

ditions can produce satisfactory results in some cases, but not always.

We have identified six types of documentation reports that static

tools generate. Such reports are useful for building “off-line”




documentation (reference manuals, user guides) for programs. They also
provide invaluable aids to maintenance and modification, especially for

large programs. The six report types include:

° Variable cross-reference reports

) Module invocation reports

] Module interconnection matrices

. Global data reports

] Program statistics

° Sumnaries of all static analysis functions performed
Operation

Static analysis {s a very easy test technique to use. All of the
static functions described above, except for assertion checking, can be
performed on a program without any preparation or modification of the
source code whatgoever. 7The only inputs required by a typical static
tool are the test program's source code and a small set of instructiomns
controlling the operation of the tool. Testing is fully automated,
except for the analysis required to determine errors fror detected

anomalies.

Static analysis is also very flexible, since it can be used on
amounts of code ranging in size from one module to a very large program.
Parts of programs can be tested and a full analysis of global properties
still performed; this is done by using "stub module librariea",1 which

supply information about missing modules.

1The use of stud libraries in the SQLAB tool is described in S. 4. ~a

et al., Advanced Sofcrware gualit¥ Assurance Final Report, ‘enera. Re
search Corporation CR-3- , May o pp- 143-144.
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error categories include:

Automated Tool Support

There are a large number of static test tools available. These

tools cover a fairly wide range of languages and computer systems.

Table 5.1 summarizes the static tools that were surveyed in the first
interim report.

5.1.2 Effectiveness

Static testing can detect a surprisingly wide range of error
types. It is best at catching data handling and interface errors, worst

at finding computational, logic, and input/output errors. Data on the

percentage of program errors detected by static analysis ranges from 162
to 55Z.

Types of Errors Detected

The following error types from the TRW error classification system
have counterparts in the static error and anomaly checka listed above.

® A 400 Units or data conversion errors
. A 700 Precision loss due to mixed mode
o D_100 Data initialization not done

° D_600 Incorrect variable type

] F_300

Subroutine arguments not consisteat in type, units,
order, etc.

. F_400 Subroutine called is nonexistent

There are other TRW error categories that may be caught by static

testing in some cases. Many of these categories describe errors that

may be associated with data flow anomalies or structural control flow
probleas (infinite loops, dead code). However, these error types caanot
alvays be detected statically. For example, the "A 100 Incorrect
operand in equation” error can be caught by data flow analysis if the

operand used 1is uninitialized, but probably won't be ctherwise. These
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Loop iterated incorrect number of times (including

Variable used as a flag or index not set properly

Call to subroutine not made or made in wrong place

N e
° A_100 Incorrect operand in equation
. A 800 Missing computation
° B_100 Incorrect operand in logical expression
e B_200 Logic activities out of sequence
. B_300 Wrong variable being checked
. B 400 Missing logic or condition tests
] B_600
endless loop)
® D 200 Data initialization done improperly
. D_300
° D_400 Variable referred to by the wrong name
] F_100 Wrong subroutine called
. F_200
[ G_100 Data not properly defined or dimensioned
[ H 300 Data units are incorrect
] J_500

Code or design inefficient or not necessary

We found two studies which discuss the effectiveness of static
test techniques for different error types. The TRW report presents an
analysis of how many errors in the Project 3 study would have been
caught by four types of static test tooll.l The tools that they

considered are:

° Code standards auditor

] Units consistency analyzer (processes units assertions)

'Pages 4-168 through 4171 of the TRW Report. Project 3 used an error
classification scheme that was later changed slightly to form the
Project 5 scheme which we discussed in Sec. 3.2.1l.

5-7
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° Set/use checker (global data flow analysis)

. Compatibility checker (examines calling sequences for
errors)

TRW determined that these four types of tools could detect
significant percentages of errorsl in the following categories for one
software project:

Computational (15X)

Logic (9%)

Input/Output (17%)

Data handling (442%)

Routine/Routine interface (78%X)
Routine/System aof'ture interface (72%)
Data base interface (100%X)

Global variable/compool definition (62%)

The ability of the SQLAB tool to detect different types of errors
was also analyzed by GRC-z The error types considered are from am error
classification scheme developed by I.ogicon.3 The GRC report describdes
wvays that static testing (and other test techniques) might cope with
each error type. The findings are summarized in Table 5.2.

Error Detection Ratio Data
We found six sources of data on the perceatage of errors in a
program that were detected by static testing.

IED error categories listed are those for which at least one tool would
catch 92 or more of the total errors in the category. See Table 4-34
on p. 4-169 of the TRW Report. This study is an example of historical
data gathering so the actual percentages are somevhat speculative.

S. H. Saidb, et al., Advanced Software gu_auti Assurance Final Report,
General Research Corporation CR-3-770, May 1978, pp.ll1-122.

Je A. Dana and J. D. Blizssaxd, Verification and Validation for Terminal
Defense Program Software, The
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TABLE 5.2

STATIC ERROR DETECTION METHODS (SQLAB TOOL)

Error Type

Data/instruction access and
storing

Equation computation and
arithmetic '

Branch and jump

Incorrect constant value
and data formats

Specification violation due
to incorrect implementation

Incomplete or erroneous
specifications

Logic and sequencing

Detection Method

Data flow analysis, mode/type check-
ing, and units assertions can catch
vrong variable names. Data flow
analysis and documentation review
can catch missing COMMON statements.

Units assertions can catch soae
incorrect operators.

Misplaced statement label may result
in structurally infinite loop or
dead code.

Type checking identifies inconsis-
tent dats types. Data flow anslysis
detects undefined and multiply-
defined data.

Documentation review and module
interface conflict checking can
detect missing or extra modules and
incorrect use of routines.

Units assertions can catch dimen-
sion errors in equations.

Documentation and data flow ana-
lysis can sometimes catch out-~of-
sequence operations.
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° Rubey, et 11.1 studied several software projects. Of a total
of 378 errors found during the development and validation
phases of the projects, static analysis caught 167, or 44X.

‘l ® Gncz conducted an experiment using a FORTRAN missile
trajectory program with 57 modules and 5000 lines of code.
Forty-nine errors were seeded into the program and the SQLAB
tool's static test capabilities were used. Eight errors
(162) ware detected.

® As a preliminary to thst study, GRC looked at eight small
(less than 30 source lines) programs from Kernighan and
Phugcr.s These programs contain 26 “typical”™ programming
, errors. Static testing with SQLAB found 10 errors (38%),
. and testing with DAVE (data flow analysis only) found 8
' errors (30%).

:. ' ® TRN estimated that a code standards auditor would have
caught 26.3% of all errors in the Project 3 study-‘ They
also estimated that a set/use checker would catch 14.3% and
a compatibility checker 10.7% of the errors in Project 3.
They made no estimate of the combined effectiveness of these
| tools.

l'l. J. Rubay, J. A. Dana, P. W. Biche, "Quancitative Aspects of Software
Validation®, IEEE Transactions on Software Engineering, Vol. SE-1, No.
2 (June 1975), p. 153.

- 20. Gannon, R. N. Meeson, N. B. Brooks, An Experisental Evaluation of
‘ Softvare Testing, General Research Corporation CR-1-834, May 1979, p.

) 3!. W. Kernighsa and P. J. Plauger, The Elements of Programming Style,
Pirst Bdition, McGraw-Hill, 1974. The results of the GRC experiment
are cited on pp. 2-1 and 2-2 of Gannon, et al.

Pages 4~169 and 4-170 of the TRW Report contain this data.
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] llomnl studied the errors found in a release of the IMSL
Scientific Subroutine Package. He.determined that 27 of the

49 errors, or 55X, could have been caught by static analysis
techniques.

) ﬂowdenz also conducted a study of six programs written in
four different programming languages. He states that two of
the 28 errors present could be caught by checking routine
interfaces, and four could be caught through anomaly

analysis. This represents 21X of the total errors in the
prograns.

5.1.3 Reliability
Static analysis is highly asutomated, so error checking is applied

consistently. Because it {s autm'ted, human error is unlikely to
greatly corrupt the testing process. But static testing has inherent \
limitations; there are few errors from the TEW classification that it
can catch with a high degree of consigtency. It is usually most

Nl e, ot it e s

effective during the early stages of program development. Static
testing can be used with equal ease on large and small programs. The

features and standards of new programming languages make some static
checks unnecessary.

Human Pactors

Since static analysis is highly automated and easy to use, the
abilities of the tester are not as important to the reliability of the
technique as is the case for dynamic and formal testing. The mechanics
of using static tools are simple; tests can be conducted by someone

lli- E. Howden, Effectiveness of Program Validation Methods for Scien-

tific Programs, Natio s Do
« E. HBowden, "Theoretical and Empirical Studies of Program Testing”,

IEEE Transactions on Software Engineering, Vol. SEB-4, No. & (July
19’55, P' i%o
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unfamiliar with the code being tested. All error and anomaly checking
is performed by the computer, so the degree of thoroughness and atten-
tion to detail is much greater than vwhat could be achieved manually.

There are two areas in which human factors can influence the
success of static testing. First, as mentioned in Sec. 4.2.1, global
data flow analysis needs information about the behavior of variables in
all modules of a program. This information may be unavailable under
certain circumstances; for example, to a programmer who wants to check
out new code for a small part of a large project. However, the infor-
mation could be made available from sufficiently detailed design
documents .

Skill and judgment is involved in sorting out errors from the
wvarning messages produced by anomaly checking. Sometimes it is easy to
decidu whether a message indicates an error 1is present; but sorting
through a long list of such messages can be tedious, and there is the
danger that an important warning will be overlooked when a lot of
extranaous ones are discarded. Data-flow and mixed-mode anoualies can
be symptoms of subtle errors, and should get more than cursory attention
from the tester. '

Kinds of Errors

Because they are automated, static tools are very consistent in
applying error checking. As shown in Sec. 5.1.2 above, these checks can
result in the detection of a wide range of error types. In Sec. 4.2.2,
ve stated that static testing should catch all occurrences of module
calling sequence errors, coding standards violations, and mixed-mode
arithmetic. These correspond to the following error types from the TRW
classification scheme:

5-12

-

A

¢




- A

{ .

' ‘ 5.1.2.

F_300 Subroutine arguments not consistent in type, units,
order, etc.

J 900 Software not compatible with project standards (only
some of these will be caught)

A 700 Precision loss due to mixed mode

However, static analysis has some limitations which keep it from
detecting a high percentage of errors in all programs. These include:

Only a very weak form of data flow analysis can be performed
for arrays with variable subscripts. A static tool can
consider the entire array to be one variable; if it does
this, an assignment to any element "initializes" the array.
Similarly, {f any element of the array appears ia an

expression the array is considered “referenced”.

Static tools can ouly analyze structural aspects of a
prograu’'s control flow. For example, a static tool will
detect the dead code if an unlabeled statement follows an
unconditional GOTO; but it cannot detect the problem if it
is caused by the predicate of a branching statement (e.g. an
“BLSE” clause following "IF (M > 0 OR M < 10)" is logically,
but not structurally, dead code.)

W Much more research must be done before we can asgociate error
! types from a classification scheme like TRW's with detection prcbabili-
ties for static anslysis. However, the error seeding experiment
performed by Gannon, et al., at GRC indicates that static testing will
not always catch the types of errors listed at the begiloning of Sec.
Table 5.3 shows those error types that were seeded and the
. results for static testing with the SQLAB tool.
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TABLE 5.3
RESULTS OF STATIC TESTING FOR THE TRW ERROR TYPES
OFTEN DETECTED BY STATIC ANALYSIS
(Source: Gannon, et al., Table 5.2, p. 5-5)

Error Type No. Caught No. Missed
A 100 Incorrect operand in equation 0 2
A 400 Units or data conversion error 0 1
A 800 Missing computation 0 2
B_100 Incorrect operand in logical 0 1
expression
B_200 Logic activities out of sequence 0 1
B_300 Wrong variable being checked 0 3
B 400 Missing logic or condition tests 2 1
B_600 Loop iterated incorrect number of 0 1
times (including endless loop)
D_100 Data initialization not done 1 0
D 200 Data initialization done improperly 0 2
D_400 Variable referred to by wreag name 1 1
F_200 Call to subroutine not made or made 0 2
in wrong place
G_100 Deta not properly defined/dimensioned 1 1
H 300 Data units are incorrect 0 4

Program Characteristics

We believe that static testing is wost effective when used early
in the development of a progras. The evidence is conflicting on this
=—the IMSL data from Howden, where 531 of the errors were detected by
static methods, is for programs that had been in use for a substantial
period of time. But if static analysis is used immediately after code
is written, and after major revisions are made, it should screen out

5-14
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most data initialization errors and identify many of the grosser
programming mistakes that were made.

The data compiled by Rubey, et al., support this contention.
Their study compared static analysis with dynamic testing. They noted
that static analysis caught most of those errors that were detected
early (the first 40X of the validation phase), while dynamic testing
caught most of the errors found during the remainder of the validation
effort. They concluded that:

"..sthe execution and (static) analysis methods are
complementary; the analysis methods detect the
earlier--perhaps easier--errors, while the execution
methods continue to detect errors after the analysis

methods are unproductive. -1

It is no harder to test large programs with static analysis than
it is te test single modules or small programs-z The dotumentation
produced by static tools can be very useful in dynamic and formal
testing of large programs. Program statistics and complexity mneasures

can be computed from documentation reports tc help plan other forms of
testing.

Static analysis is useful for testing all types of programs: data
flow, variable type compatibility, and interface errors zre problems in
programs of every application. Static testing does not provide infor-
mation about timing characteristics, which are important to real-time
and interactive programs. The general problem of deadlock in concurrent

systems 1is not addreesed very effectively by the structural deadlock
detection capabilities of static tools.

loubey, et al., p. 153.

rly static test tools required excessive amounts of computer time and
storage to process large amounts of code. However, recently tools have
been built which can easily accomodate most large programs. See
subsection 3.1.4{ on the computer resources required by static analysis.
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Structured programming languages with strong data typing eliminate
the need for some of the static checks described here. In effect, the
compiler for these languages performs some of the functions of a static
test tool. The static checks that are built into advanced languages
such as PASCAL and ADA include:

° Module interface compatibility checking
° Coding standards enforcement
° Mixed-mode anomaly checking

In addition, most advanced languages permit recursive procedure
calls.

There is no reason why more static checking cannot be included inm
compilers. As programmers become familiar with static analysis and
recognize its value, they will want compilers that have static testing
capabilities.

5.1.4 Cost

Static analysis requires a minimal amount of time from the user.
The computer time and storage needed by static tools used to be a
serious impediment to their use on large programs. However, now there
are tools available whose resource requirements are linear functions of
program size. Managers can make good estimates of their total static
testing costs by looking at the computer costs for a few runs of the
tool on code of similar size.

Analysis Time
Static testing requires a very small investment of time on the

part of the user. There is little to learn about using a tool. The
only code change that needs to be made before a static test can be run
is to add assertions about variable usage and units, and this is
optional. To test a piece of code, the user just selects the options
and invokes the tool.
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Some time is requirecd to examine the output from a static test
run. Error messages must be associated with mistakes in the code, and
the user must decide whether each warning message from anomaly checking
indicates a real error. However, static testing actually saves time for
the tester, because it clearly identifies errors and helps to locate and

correct them (see Chapter 6).

We found only one bit of data on the amount of analysis time
required by static testing. In the GRC experiment with the missile
trajectory program (5000 source lines), two person—hours were required
to look over the output of the static tool and find the errors that it

indicated in the prograu.l

Computer Resources

In Table 5.4 we show the time required to run several static tools
on some different-sized programs. Notice that the time required per
line of source is nearly constant for FAVS, while it increases with the
size of the program for DAVE. The efficiency of FAVS was improved
dramatically over an earlier version, which required an exponentially

increasing amount of computer time to handle large progrma.z

The developers of DAVE state that the tool runs in time that is
"linearly proportional to the product of the number of edges in the flow
They
have not had the opportunity to streamline their tool's operation. To
do this, they must tailor the tool's data handling to the word length of

graph (of the test program) and the number of program var:l.ables."3

1C. Gannon, et al., op. cit., p. 1-11l. The testers were professionals

with 5-10 years of experience in the computer field, and were familiar
with the tool being used.

ZR. A. Melton, FAVS Enhancement Final Report, General Research Corpora-

tion CR-3~754/1, December 1980, p. 2-1.

3I.. J+ Osterweil and L. D. Fosdick, "DAVE - A Validation Error Detection
and Documentation System for Fortran Programs™, Softwace - Practice and
Experience, Vol. 6, No. 4 (October-December 1976), p. 473.
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a particular machine; the current version of DAVE 1is designed for
maximum portability.

Unfortunately, we don't have data on the time required to compile

the programs listed in Table 5.4. However, our experience with the FAVS
tool has been that:

° It takes three to four times ass much execution time to
perform FAVS static analysis on a FORTRAN program as it does
to run the same code through the FORTRAN compiler.

] For programs written in a structured FORTRAN dialect, it
takes only two to three times as long to do FAVS static
checking as it does to preprocess and compile the same code.

Smith!

states that DAVE required from 25 times the compilation

time (for 800 lines of code) to 130 times the compilation time (for 7200
lines) in tests on CDC machines.

Static tools require the following to' be stored as permanent
files:

° The tool itself

Any data from previous static runs that can be used to test
code that has been modified or added to a program

The second type of permanent file includes “stub module libraries”

(see Sec. 5.1.1) and other data necessary to reconstruct an old test
A tool may not be able to produce certain types of documentation

from such a file. The way the library file works varies widely from
tool to tool.

11(. A. Smith, Evaluation of Verification and Testing Tools for FORTRAN

Programs, NASA Technical Memorandua 80203, July 153% 3
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The temporary storage required to make a static test run includes
the following:

Enough core to permit the tool to execute

Symbol tables for all variables and other operands
Information about each executable statement

The test program's calling tree and control flow graph

The symbol tables built by static tools are very similar to those
used by compilers. The satatement information 1is used in producing
documentation, while the calling tree and flow graph are used in data
flow and interface analysis. The sizes of these files depend upon the
size and complexity of the program being analyzed and on the type of
checking that the tool can perform.

Table 5.5 gives some data on the storage required by three static
test tools in particular installatioms.

Static tools typically produce three kinds of output:

i : ° A listing of the source code of the test program
° Error and warning diagnostic messages
° Documentation reports (at the user's option)

Occasionally, a static test run will produce an excessive amount
of output. This 1is especially likely to happen when a large program is
i analyzed for the first time.

4

' ( Procurement Costs

| A version of the FACES tool sells for $1590. The static testing
i capability of RXVPSO™ costs $14,000 (only $6000 if you already have the
lf tool's controller). The documentstion option of RXVPS80™ costs an
% additional $4000.
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Cost Worksheet
Since so little analysis time is involved in static testing the

- major cost of using static analysis is the computer cost.

It is a good idea to benchmark a static tool on a few differemt-
sized programs when it is first obtained. This should be relatively
inexpensive, and will give project managers a good indication of how
much it will cost them to test their software.

A manager of a software project should plan to make several runs

r‘ A of the static tool on his code, since a new test has to be made each
time code is revised.
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5.2 EXECUTABLE ASSERTIONS

5.2.1 Summary of the Technique

Executable assertions are special statements inserted into the
gsource code of a program. They allow the programmer to specify con-

ditions that are required for correct operation of the program. If such

a condition does not hold during execution of the program, this fact is
reported via an error message. The programmer can also specify actions
to be taken when an assertion is violated.

Most compilers do not recognize and translate assertions--an
agsertion preprocessing tool must be used. The tool generates code, in
the same language as the rest of the program, which carries out the
condition checking and error handling logic for the assertion. Differ-
ent preprocessing tools recognize different forms of assertions. A pro-

gramper can augment a less powerful tool by writing code to do some of
the condition checking.

There are assertion preprocessors available for most programming
languages. However, most of the current tools lack some desirable
features. Some work is being done to develop wore advanced assertion
preprocessors and to incorporate a.aergicm into compilers.

Capabilities
Executable assertions are constructs added to a programming

language. They do two things: indicate by an output aessage that
something has gone wrong in a program, and permit the programmer to

specify action that should be taken when such an error occurs. The
general form of san executable assertion is:

ASSERT condition;
FAIL block;

Here "condition" {s an expression that can be evaluated logically
(as TRUE or FALSE) during execution of the program. The "fail block” {is

optional--it contains the error-handling code.
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Assertions must be translated into executable code. This is
usually done by a preprocessing tool, although some compilers will
accept and translate assertions. The kinds of conditions that can be
checked by assertions, and the syntax for declaring these conditioms,
vary from tool to tool. The typeas of assertions accepted by a tool are
often referred to as its "asserticn language”.

The general form of a translated assertion is:

IF (NOT condition) THEN
Print error message;
Execute fail block

END IF

Executable assertions can do the following things:

Indicate that a program is operating incorrectly

Help the programmer to locate errors

Indicate that a program is being used improperly

Provide fault-tolerance in a program

Express specifications and design intentions as in-line
documentation of the program

Form the basis for a formal verification of a program

Executable assertiouns can detect any error that can be expressed

ss a condition in the assertion language. Some important examples of
such errors are: :

C e —— e ——— A — ——— -

The result of a computation is outside of a range of
reasonable values, or is inconsistent with another result.

A variable does not behave as intended: it changes value

when it should not, or it does not change in the desired
vay.

5~24

D




o s iy

] Control flow is incorrect: the branch taken is incompatible
with program couditions, or a special case {s not handled

properly.

] A call to a routine results in an unacceptable condition on
return.

° The output of a routine is incorrect.

Assertion violations are reported with the location in the source
program where the vioclation occurred. This can help 1isolate the
location of the coding error that caused the violation. We discuss how
assertions are used in debugging in Sec. 6.1.

Assertions can also guard against an improper use of a program or
routine that is otherwise correct. This is done by imposing conditions
on the inputs to the code. Yau, et 11.1 describe how assertions can be

used to protect data structures from misuse or accidental destruction.

Andremz discusses how the “fail block™ feature can be used to

recover from error conditions or to provide "graceful degradation” in a
program's performance. We feel that fault tolerance is an important
feature of executable assertions, but this topic is beyond the scope of
this report.

1‘s. S. Yau, J. L. Ramey, R. A. Nicholl, "Assertion Techniques for

Dynamic Monitoring of Linear List Data Structures”, The Journal of

Systems and Software, Vol. 1 (1980), pp. 319-336.

D. M. Andrews, "Software Fault Tolerance Through Executable Asser-
tions,” Proceedings - Twelfth Annual Asilomar Conference on Circuits,
Systems, and Computers, November 1978, Pacific Grove, California.

2
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The presence of assertions in program code is a form of documenta-
tion. Assertions are useful when code is being modified, since they
remind the programmer of conditions which must hold for the program to
operate correctly. Sometimes specifications for a program can be stated
directly as assertions.

Formal techniques use assertions to prove the correctness of a
program (see Sec. 5.5). To successfully verify a program, a more
extensive set of assertions ia needed than what will typically be used
in a testing effort. Assertions written for testing can be used in a
verification effort, and the assertions generated during program proving
have all the properties of executable assertions discussed here.

Operation
The user must decide what assertion checks to make, encode them in

the assertion language, and insert them in the code. Assertions should
be developed and “programmed” at the same time as the code itself, for
several reasons:

® Writing the assertions increases the programmer's under-

.

standing of the purpose and design of the program.

° The assertions themselves will have mistakes which have to
be debugged.

o Assertions are useful throughout the life of the program.

° Adding a full set of assertions to a large already coded
program is a tedious job that no one will want to do.

Different assertion languages permit different conditions to be
asserted. However, a programmer can write code in the source language
to get around the shortcomings of his preprocessing tool. Some useful
constructs which have been included in assertion languages include:

3-26
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ASSERT (exp), where "exp”™ 1s any legal logical (boolean)
valued expression in the source language, including a
function

A form of the first-order predicate calculus which checks
multi-element data structures. These constructs look like:

ASSERT (ALL 1 IN range) condition
ASSERT (SOME i IN range) condition

vhere "i{" is a dummy index to the data structure, “range”
describes the limits on the index over which the assertion
is to hold, and “condition” is any legal condition in the
asgertion language involving the indexed elements of the
data structure.

Notation which refers to previous values of variables. In
this way, iterations can be checked to see that the progres-
sion of wvalues for the same variable 1is correct. The

asgertion language may provide shorthand such as:
OLD (var,num),

where "var" is the name of a variable, and "num” indicates
which previous value is desired (1 means the last, 2 the one
before that, etc.).

This may be accomplished in more primitive assertion
languages by adding special variables.

Notation which specifies flow of control. Chow1 has
suggested that assertions could check the order that
variables are defined and referenced on a path with con-
structs like:

e e e . A — o f————

Chow, “A Generalized Assertion Language,” Proceedings - 2nd

International Conference on Software Engineering, October 1976, San
Francisco, p. 395.
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PATH 1S (REF var; DEF var),
where "var” is the name of a variable.

This kind of checking can be done with simpler assertion
tools by using a set of flags or counter variables.

Automated Tool Support

Tools which process executable assertions exist for most common
high-order languages. Table 5.6 lists those covered in the tools survey
and gives the languages and computer systeams for which they operate.
None of these tools accept all of the types of comstructs described in
the last subsection. Taylorl describes a more elaborate preprocessor

which is being developed for HAL/S. ADA has an assertion construct
equivalent to the first type listed above.

5.2.2 Effectiveness

Assertions can be used to detect a wide variety of errors. They
are most effective against computation errors, and have been showm to
catch high percentages of data handling and logic errors, too. However,
it is more difficult to write assertions that catch these last two types
of errors.

ll. N. Taylor, "Assertions in Programuing Languages”, SIGPLAN Notices,
Vol. 15, No.l (January 1980), pp. 1U5-114.
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TABLE 5.6
EXECUTABLE ASSERTION PREPROCESSING TOOLS
Source: Sec. 2 of First Interim Report

Tool Lan es Computers
ACES FORTRAN cDC, IBM
JAVS JOVIAL J3 CDC 6400, HIS 6080/6180
J73AVS JOVIAL J73 ITEM AS/5, DEC20
PET FORTRAN CbC 6000/7000,
IBM 360/370 0S,
UNIVAC 1100
SQLAB FORTRAN, PASCAL, JOVIAL J3B CDC 6400/7600
TPL FORTRAN ?
V-IFTRAN™ FORTRAN 4ny system supporting

FORTRAN

Only a small amount of data is available on the percentage of
The studies done at GRC have
indicated that an extensive set of assertions can catch more than 70% of

program errors detected by assertions.

total errors.

Types of Errors Detected
Agsertions detect violations of conditions that must hold during

the execution of a program; hence, they deal almost exclusively with
symptoms of errors. There is only oune error category in the TRW scheme
which describes a condition which can almost always be tested for with
an asgsertion: "G_200 Data referenced out of bounds.” However, studies
of assertion testing have shown that many errors from the following

major categories can be caught:
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A 000 Computation Errors

B 000 Logic Errors

C_ 000 Data Input Errors

D 000 Data Handling Errors
F_000 Interface Errors
G_000 Data Definition Errors
H 000 Data Base Errors

The rest of the major error categories usually cannot be addressed
by executable assertions because they involve things that are external
to the program itself. For example, data output errors (E_000) cannot
be detected if the output devices and the routines that control them are
separate from the test program (as is usually the case).

Bengson and Saibl showed how assertions can be used to detect
computational, logic, and data handling errors. They seeded three

errors of each type into a test program and formulated assertions to
detect the errors. Their conclusions were:

] "Assertions are most valuable for catching computational
errors. These errors can be found by specifying variable

ranges and by stating approximate bounds on the results of
computations.”

] "Data handling errors can usually be detected by assertions
which specify ranges, units, scale factors,...” They felt
that static analysis is usually better at this, however.

1J . P. Bensun and S. H. Saib, "A Software Quality Assurance Experiment”,

Proceedings of the Software Quality and Assurance Workshop, San Diego,
November 1978, pp. 87-91.

zlbid., pages 88 and 90.
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) “Logic and sequencing errors are the most difficult to

detect using assertions.”

Two experiments have been conducted at GRC in which errors from
the TRW scheme have been seeded into test programs-l Since each
experiment used only a small number of errors, the sample sizes for each
error category are hardly statistically significant. However, the two
sets of results are cousistent with each other and show assertions to be
most effective for computational errors. Table 5.7 compares the results

of the two experiments for those major error categories which were
seeded in both tests.

TABLE 5.7

PERCENTAGES OF ERRORS DETECTED
IN SELECTED MAJOR ERROR CATEGORIES
DURING ASSERTION TESTING EXPERIMENTS

Percent of Errors Detected

Benson and

Major Error Category Andrews Test 2
A 000 Computation Errors 802 83%
B_000 Logic Errors 602 732
D_000 Data Handling Errors 782 802

1'rhe first experiment is described iu J. P. Benson and D. M. Andrews,

Adaptive Search Techniques Applied to Software Testing, General Re-
search Corporation CR-1-925, February 1980. The other one is the Test
2 results described in Appendix D.
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Error Detection Ratio Data
We can cite three results on the percentage of errors detected

during experiments with executable assertions. Unfortunately, there is

no data from live experience with assertion testing.

) The first set of assertions developed by Benson and Andrews
detected nine of 24 seeded errors, or 38%. By adding more

assertions, thney were able to detect eight more errors, for

a total of 71%.}

e The results of Test 1 of the assertion experiment described
in Appendix D were 21 out of 24 errors detected, or 87X. 1In

this experiment, the errors were known when the assertions

were developed.

® The set of assertions used in Test 1 was tested for a
different set of seeded errors in Test 2. This time 25 of

34 errors were caught, or 74X.

5.2.3 Reliability

How reliable assertions are depends upon the person writing them.
To write good assertions, a programmer must understand the way his
program is supposed to operate, be familiar with the assertion language,
and be thorough in his use of assertions. Asgertions have to be

debugged just like the rest of a program.

The test data used has a great effect on the reliability of
executable-assertion testing. Test data must cause assertiomns to be
violated or errors will go undetected. To be effective, assertion
testing should be combined with a systematic method of generating test

data, such as structural or functional testing.

IJ. P. Benson, D. M. Andrews, ibid., p. 1-9.
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Assertions are an imperfect method of error detection for two main
reagons: not all error conditions can be described in assertions, and

sometimes only weak conditions can be imposed.

Assertions are useful throughout the software life cycle and on
programs of all sizes. More research needs to be done on the use of

assertions in specific application areas.

Human Factors

Writing assertions 1s a creative activity. We have proposed some
guidelines on where assertions should be located and what kinds of
conditions they should check for (see Sec. 7.2 and Appendix D).
However, the final responsibility for developing an effective set of
assertions lies with the uger.

To write assertions, a programmer needs to understand how the
program is designed and coded. He also needs to develop some skill in
handling assertion constructs--this comes with a little experience. To

write good assertions, a programmer must then do the following:

° He must find out enough about the application area of the
program to develop tight bounds on the values of variables
and the results of computations.

° He wmust write assertions which can trap special error
conditions such as logic and data flow errors. This can be

difficult when using an assertion language of limited power.

] He must be thorough--all conditions that can be checked for
assertions must be identified.

Asgertions have to be debugged after they are put in a prograa.
Assertions are susceptable to many programming errors, including:
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° The asserted condition is misstated.
o The assertion is in the wrong place.

] A computation or value needed in the assertion is omitted.

The input data used to test a program affects the reliability of
executable-assertion testing. Agsertions won't be violated 1if they
aren't exercised. When they are exercised, they won't be violated under
all conditions. We do not discuss test data ‘generation methods in this
section, since executable assertions can be used regardless of the way
test data is chosen. But as an indication of how important test data is
to the effectiveness of assertions, we note that 431 of the undetected

errors in Benson and Andrews' experiment might have been detected if
wore tests had been mm.1

Kinds of Errors

The error conditions checked by assertions must be stated in the
assertion language. A fairly wide range of errors can be addressed by
assertions, but the constructs have their limitations. For example, no
assertion language permits statements like "X IS INITIALIZED"; at tun
time, the variable X has a value, whether by accident or design. In
general, assertion conditions must describe symptoms of errors which can
be expressed using information available within the executing program.

It 1s often necessary in an assertion to use a rather loose check
on the value of a variable or result of a computation. Such an asser-
tion will allow some errors to go undetected. For example, it may be
possible to check the results of a numerical algorithm only to within a
few orders of magnitude of the desired precision without using the same
algorithm to produce the check value. In such cases, assertions can
only act as a filter for some programming mistakes—the accuracy of the
results must be verified by other means.

l'rhu is based on an examination of Table 6.1, p. 6-2 of Benson and

Andrews.

5-34

S a el R s > I g

a
L]
M
i
:
3
i
¥




- —— A

P T

In Table 5.8 we show the error categories used in the two error
seeding experiments performed at GRC (Benson and Andrews and the Test 2
experiment from Appendix D. The numbers of errors detected and missed
are tallied for each category. More studies should be performed to make
statistically significant sample sizes available in each category.

Progras Characteristics

Assertions are useful throughout the lifecycle of a program. They
force the programmer to cousider the program's purpose and specifica-
tions as he codes. They help to detect and locate errors during testing

and verify corrections during retesting. The documentation supplied by
assertions is useful during maintenance.

Assertions can be used successfully with programs of any size. Of

course, larger programs require more assertions for effective testing.

The relationship between the size and complexity of a program and
the number of assertions that should be used to test it was explored in
the assertion testing experiment described in Appendix D. The widely
used Halstead and McCabe metrics were not found to be good indicators of
the number of assertions needed.

Research should be done on the use of assertions in programs of
various applications and in real~time and systems programs. There may
be new assertion constructs that would be useful in special situationms,
such as describing timing conditions in concurrent programs.

5.2.4 Cost

The costs of assertion testing depend on the number of assertions
placed in the code, the difficulty of writing and debugging them, and
the number of test runs made with the asserted program. There is little
data or experience that can be used to gauge the magnitude of these
costs. Writing and debugging assertions can be expected to add signi
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A_100
A_200
A_300
A_500
A_600
A_800
B_100
B_200
B_300
B_400
B_500
B_700
C_100
D_100
D_200
D_300

D_400
D_500
D_600
¥_100
F_200

F_700
G_100
G_300

H_100
_200
H_300

TABLE 5.8

RESULTS OF ERROR SEEDING EXPERIMENTS FOR
EXECUTABLE ASSERTION TESTING

Error

Incorrect operand in equation

Incorrect use of parenthesis

Sign coanvention error

Computation produces an over/under flow
Incorrect/inaccurate equation used
Missing computation

Incorrect operand in logical expression
Logic activities out of sequence

Wrong variable being checked

Missing logic or condition tests

Too many/few statements in loop
Duplicate logic

Invalid input read from correct data file

Data initialization not done
Data initialization done improperly

Variable used as a flag or index unot
set properly

Variable referred by the wrong name
Bit manipulation done incorrectly
Incorrect variable type

Wrong subroutine called

Call to subroutine not made or mede in
vrong place

Software/sof twaresinterface error
Data not properly ‘def1ined/dimensioned

Data being n#cnmd at incorrect
location /

Data mot uxﬁunm in data base
Data initisliszsed to correct valus
Data units sre imcorrect

-3
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No. Caught

No. Missed
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ficantly to costs at the beginning of a project, while the overhead of
making test rums should not be as great. More research on the use of
assertions in program development is badly needed.

Analysis Time
Developing an effective set of asgertions for a program requires a

considerable investment of time. The size of the job depends on the
number of assertions needed to check for possible error conditions and
the difficulty of formulating them. Presently there is no measure of
how “"well-asserted” a program is; it would be very nice to have such a

measure, to use in test planning and to guide formulation of assertions.

Unfortunately, we also have no data on the analysis time for
assertion testing of a program. In the absence of such information, we
postulate that the time required to write a given number of assertions
is on the order of the time to write the same number of lines of source
code. We have already commented on the similarity of the tagks of
vwriting a prograe and developing the assertions for it.

The other major task associated with executable assertion testing
is examining the assertion violations to determine the program errors
that caused them. However, this does not represent analysis time beyond
that required by conventional testing, because the same test runs would
have to be debugged without the information provided by the assertion
violations. Assertions save time (once they are debugged) because they
help to locate errors as well as to detect them.

Computer Resources

Like the analysis cost, the computer resources used in assertion
testing depend upon how thoroughly asaertions are used. The categories
of computer overhead are:

) The time required by the preprocessor and compiler to turn
the sssertion into executable code
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The extra execution time required by the assertion checks

The extra space required by the source and executable
versions of the program due to the assertions

The preprocessor and compiler overhead will be incurred each time

either the assertions or the code are changed. The execution time

overhead will be incurred once for each test run. Once a production

versi~- of the program is achieved, the assertions can be removed by

recompiling the program with the assertions disabled. In this way, the

execution time overhead is not incurred by the end-user of the program;

‘but he also does not have the protection that the assertion checking

could provide him.

We have some data on the overhead for some assertion testing

experiments. The experiments are described here, and the overhead data

is presented in Table 5.9.

TABLE 5.9
COMPUTER OVERHEAD OF ASSERTION TESTING

Percent Increase In

Compile Execution Storage
Source Time Tine Space
SQLAB code 5.5% 42 8%
Radar Simulation 56% 122 13.5%
Yau, et al. (4 programs) 55-125% 0-40% 6-12%
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] The SQLAB tool was used to preprocess assertions placed in
its own codc.l Assertions were added for about 40% of *he
decision statements, or roughly one asserti.n for every ten
executable statements. Few fail blocks were included.

] Benson and Saib used a 1000-line radar simulation to
demonstrate the use of assertions in providing fault-
tolerance. All decision statemeants had assertions and fail
blocks, for a ratio of one assertion to every five execu-
table utatmnts.z SQLAB wag the preprocessing tool.

] Yau, et al-3 tested four JOVIAL programs of roughly equal
load size (17000 words). They used the JAVS tool to pre-

process the assertions. They give no data on the density of
asgertions in their paper.

Occasionally, an assertion test will produce an excessive asmount
of output. This is most likely to happen when testing a program with a
loop in it——1if an assertion is violated every time through the loop,
this may mean a lot of violation messages. Some tools allow the user to
write his own error message routine; a limit on the number of violation
messages can be imposed in that case.

Procurement Costs

The V-IFTRAN™ tool, which preprocesses assertions and structured
control comstructs for FORTRAN, sells for $6370.

1!’ui.l:, et al., op. cit., p. 170.
2Andtevs, et al., op. cit., pp. 334-335.
3Yau, et al., op. cit., pp. 334-335.
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Cost Worksheet

The costs of executable assertion testing are summarized in the
formula:

Cost of writing and debugging assertions

+

Overhead per test run x Number of test runs

The best available estimate of the cost in analyst time to develop
the assertions is the cost to write an equivalent amount of code. For
the GRC experiments cited in Table 3.9, this represents ten to twenty

percent overhead in coding and debugging costs. Studies of real
development projects should be made to refine this estimate.

The compile time overhead tends to be higher than the execution
overhead for assertions; so testing is most efficient if the assertions
are debugged early and as many program errors as possible are detected

between code changes. The number of test runs depends on the test data
generation method used.
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5.3 STRUCTURAL TESTING

5.3.1 Summary of the Technique

Structural testing (also known as branch or path testing) de-
scribes a goal rather than a method of testing. The goal is to increase
the amount of code tested. It is impossible to test all the paths or
combinations of branches in a large program. It is possible to test all
branches. For effective testing, all branche. and as many paths as
possible should be tested.

Instrumentation tools are used to determine how much coverage is
achieved in a test rum. These tools can also provide timing data,
execution traces, and other information. However, the tester himself
must formulate input data and decide whether the program has run
correctly for each test. '

Many instrumentsation tools have been developed in the lzst ten
years. Tools are available for aost programming languages and com~

puters.

Capabilities
The purpose of structural testing is to ensure that a prograa is

thoroughly exercised. Several measures of thoroughness, or test
coverage, can be used to quantify this goal. The measures are based on
structural units of the source code of the program being tested-—hence
the term “structural” testing. The structural units we will counsider

are:

° Ststements, which in this coantext means executable state-
aents

° Branches, which correspond to the outcomes of each decision

statement in a progras
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® Combinations of branches (this is similar to the Linear Code
Sequence and Jump (LCSAJ) netric defined by Woodward, et
al.l); and

° Paths, which correspond to distinct ways of executing a
program from entry to exit.

For all but very simple programs, execution of all program paths
or of all possible combinations of branches is impossible. Coverage of
all branches, which implies execution of'all statements, is a reasonable
goal for large programs. However, there are many errors that will go
undetected 1if attention 1is not plid to the combinations of branches
which are executed. So in a sensz structural testing is open-ended: all
branches and as many different paths as possible should be executed.

Automated tools can Ee used to tell how much coverage has teen
achjeved in a test run. The program must first be run through a
preprocessor, which inserts code that collects the coverage information
during execution. This is usually called “"instrumenting”™ the code.
Structural testing is an iterative process; the user compares the amount
of coverage achieved to his goal, then tries to formulate new test data

to increase the coverage.

The code that collects coverage data can collect other information
as well. The nature of this information depends on the tool used and
the level at which the code is instrumented. 1If probes are inserted
after every statement in the program, then the entire history of the

~execution of a program can be recorded. Of course, instrumenting at the

statement level will fncur significant computer overhead. To determine

IH. Woodward, D. Hedley, and M. Hennell, “Experience with Path Analysis
and Testing of Programs,” IEEE Transactions on Software Engineering,
Vol. SE-6, No. 3 (May 1980), pp. 278-286.
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branch coverage, it 1s only necessary to insert probes at every decision

statement.

Structural testing, and using an instrumentation tool, can provide

the tester with the following information:

[ It can reveal untested parts of a program, so that new test

efforts can be concentrated there.

] Data on the frequency of execution of parts of a program,
and the time required to execute them, can be tabulated.

This information can be used to wmake the program more

efficient.

° The range of values assumed by a variable (high, low,
average, first, last) can be recorded and checked for
reasonableness.

) A trace of what has occurred at each statement in a section

of code can be printed. This can be useful when debugging.

] The data flow patterns of variables can be analyzed from the
execution trace fi.le.1 In this way errors and anomalies in
the use of subscripted variables can be detected.

Operation

An instrumentation tool requires the test program source code as
input. Usually another file in the source language is produced that has
the probes in it. The tool also needs information about the control
structure of the program—if the tool also performs a static analysis of

rJ. C. Huang, “Detection of Data Flow Anomaly Through Program Instru-

mentation”, IEEE Transactions on Software Engineering, Vol. SE-5, No. 3
(May 1979), pp. 226-235.
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the program it can use the tables produced there. Most tools allow the
user to control the level of instrumentation and to designate what parts

of the program are to be instrumented.

There is no automated mechanism for error detection in structural
testing. The user must recogunize eri.rs by looking at the output of the
program. We describe how other test techniques can be used to help
detect and locate errors during structural testing in Chapter 6 and in
Sec. 7.3.

When a user finds errors in his program during the course of

_testing and makes code changes to correct them, the new version of the
' program must be run through the instrumentation tool again.

Automated Tool Support

There are a lot of instrumentation tools available. They accommo-
date most major high-order languages and many computer systems. Table
3.10 1lists the tools surveyed in the first interim report. Most of the
tools do not have all of the capabilities described above—however, all

can at least provide coverage information.

There are automated tools associated with other test techniques
that can help generate test data for structural testing. Some static
tools provide "reaching set” information, which gives the branch condi-
tions along the paths to a statement. Symbolic execution extends this
approach by attempting to form an algebraic expression for the branch
conditions in terms of input variables. Unfortunately, these wmethods
have not proven very successful in practice; they do not often simplify

the job of generating test data for complicated programs.

5.3.2 Effectiveness

When test data is carefully chosen, structural testing can be very
effective. TRW determined that a combination of structural and func-
tional testing could detect a high percentage of many types of errors
from the Project 3 study.
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The available data on the percentage of program errors detected by
structural testing varies over a wide range. One branch testing study
determined that 212 of a sample of errors could be detected; another
study concluded that structural testing could catch 92X of the errors in
a different set of programs. Structural testing has beeun shown to be
effective for detecting errors early in the development life cycle.

Types of Errors Detected

The TRW error categories are not very useful for analyzing the
effectiveness of structural testing. However, the TEW report examined
the effectiveness of a combination of structural and functional testing
for the errors in the Project 3 study. Their results can be considered
a sort of upper bound on the effectiveness of structural testing——what
happens when coverage is driven up by input data that is most likely to
catch errors. The percentage of errors from each major category that
TRW estimated could be detected this way is shown in Table 5.11.

TABLE 5.11
ERROR TYPES DETECTED BY STRUCTURAL AND FUNCTIONAL TESTING
Source: Table 4-32 of the TRW Report

Exrror Category Percent Detected
Computational 87.42
Logic 79.62
I/0 98.5%
Data Handling 76.9%
Operating System/Support Software 1002
Routine/System Software Interface 27.3%
Tape Processing Interface 1002
User Interface 89.62
Data Base Interface 1002
Global Variable/Compool Definition 87.5%
Documentation 64.72
Requirements Compliance 75%
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Error Detection Ratio Data

We found five pieces of data on the percentage of errors detected

in various programs by structural testing:

l-lovden1 studied six programs written in different languages.
Of 28 total errors, he determined that branch coverage
testing would detect 6, or 21Z. Complete path coverage
could detect 18 errors, or 64X%.

Howden also studied the effectiveness of structural testing
for the errors in the IMSL progrnns-z He determined that
branch testing could detect 13 of the 42 errors considered,
or 31Z. Path testing detected an additional 3 errors, for a
total of 38%.

Hangold3 determined that structural testing could detect 206
of a set of 224 errors, or 92%X.

Gannon, et 81-4 used branch testing on the eight Kernighan
and Plauger programs that we discuss in Appendix D. They
found 18 of the 26 errors, or 69X.

TRW estimeted that structural and functional testing
combined could detect 72.9% of the errors in the Project 3
study.5

1

W. E. Howden, "An Evaluation of the Effectiveness of Symbolic Testing”,
Software-~Practice and Experience, Vol. 8 (1978), p. 387.

2W. E.

Howden, “Functional Program Testing”, IEEE Transactions on

Software Engineering, Vol. SE-6, No.2 (March 1980), p. 167. Howden

evidently considered a different get of errors here from the IMSL study
cited on p. 5-l1.

38. R.

Mangold, “Software Error Analysis and Software Policy Impli-

cations™, IEEE EASCON, 1974, pp. 123-127.

4 Gannon, et al., op. cit., p. 2-2.

STable 4-33, p. 4-162 of the TRW Report.
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Deutsch1 provides other evidence of the effectiveness of struc-
tural testing. After the traditional checkout of the separate units of
a large program (170,000 lines of code, 400 units or threads), the
RXVP80™ tool was used to get complete branch coverage of each unit.
Some 400 additional errors were discovered in this way. His paper gives
no information about the percentage of total program errors that this
conatituted.

5.3.3 Reliability
The test data used has a great deal of influence on the relia-

bility of structural testing. Input data that tests boundary conditions
or singularities and demonstrates the operation of prograam functicns
should be used when doing structural testing.

Structural testing is guaranteed to find errors ouly when a
prograa path handles all input data incorrectly. Since this is not the
case for all errors, structural testing alone cannot ensure that a
program is operating correctly.

Human Factors

A great deal of skill and judgment is required to formulate test
data for structural testing.” Because test data generation tools are
inadequate, the tester must rely on his knowledge of the prograam to find
vays to execute previously unexplored areas of code. It is also very
important that each set of test data be designed so that program errors
are revealed. Gannon, et al. emphasize that “(structural) testing
should alvays be coupled with atress or boundary coundition testing.'z

1H. S. Deutsch, "Software Project Verification and Validation™, Com
puter, April 1981, pp. 66-67.

G.mn' et ‘1-. op. Cito. p. 1-12.
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Instrumentation tools give good feedback on the amount of coverage
achieved by each test case. This documents the thoroughness of struc~
tural testing, and ensures that full statement or branch coverage is in
fact achieved. The user must judge the thoroughness of path or LCSAJ
testing of large programs because complete coven;ge is impossible.

Types of Errors Detected

Howdet;1 defined four types of programming errors and looked at how
reliable structural testing is for each of them. His approach is quite
theoretical-—he defines a “reliable test” and proves theorems about
reliability. He treats only the case of complete path coverage, since
this is the easiest to handle mathematically.

Even though they are not based on "practical”™ experience, Howden's
results provide a lot of insight into how structural testing operates.
The essence of most of his arguments is that every input that causes a
particular path to be executed must be handled incorrectly by a program
in order for it to be guaranteed that structural testing will catch the
error. We briefly summarize his findings for each error type:

[ Computation errors: structural testing will catch many of
these errors, but it is impossible in general to tell how

many.

) Domain errors: these occur when an error in a decision
statement causes some inputs to be handled by the wronmg part
of the program. Structural testing is guaranteed to catch
this error type only if the part of the program handling the
incorrect cases no longer handles any of the ones it is

1; E. Howden, "Reliability of the Path Analysis Testing Strategy"”, IERE

Transactions on Software Engineering, Vol. SE-2, No-3 (Sept. 1976), pp.
208-215.
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supposed to. For exsmple, using "GT" instead of “LE" in an
IF statement will be detected; but if “GE" was intended the
error may not be found.

° Subcase errors: these occur when a program fails to distin-
guish a subcase of the input data, instead handling it 1like
other data which 13 processed correctly. Structural testing
is not reliable for this type of error—there is no guaran-
tee that test data which belongs to the incorrectly handled
subcase will be chosen to execute the path.

° Combinations of errors: errors that structural testing can
detect singly may not be detected when other errors are
present. This can happen 1if errors "mask™ each other for
some inputs. Errors may change the nature of the paths in
the program and the inputs to each path--this can make the
reliability results for single errors invalid.

Program Characteristics

It is best to do structural testing after some initial coverage is
obtained by other testing methods. It 1is easier to achieve thorough

coverage for small amounts of‘code, 80 structural testing should be used .

at the module or unit testing level if possible. Structural testing of
large and complex programs is difficult, but these are the programs that
most need thorough test coverage.

Good design and coding techniques can do a lot to make structural
testing easier. Structured programming makes test data generation
easier, since the control flow is easier to read and understand.

Structural testing can be used with programs of any type of

application. The timing information provided by inatrumentation tools
is useful in improving the efficiency of time-critical routines.
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5.3.4 Cost

The most expensive part of structural testing is the analysis
needed to develop test data and examine output for errors. We need more
experience with structural testing before we can develop good estimates
of analysis time and cost. Available data suggest that using structural
testing to debug programs requires 0.5 to 2.0 person~days per error
found.

There is a good deal of data available on the computer overhead of
instrumentation tools. The amount of overhead depends on several
factors, including the level of instrumentation and the options sel-
ected. Generally, 1nstrunenta£i9n tools require:

[ A 20 - 100Z increase in program size

° A 2 - 50X increase in execution time

There are a lot of commercially available instrumentation tools,
most of which sell for less than $10,000.

It is hard to estimate the total costs of structural testing,
because no one knows how to estimate the analysis time or number of test
runs required. A user of structural testing on a large software project
claimed a significant cost saving over traditional testing methods.

Analysis Time
A significant amount of time is required to do structural testing.

In each test iteration, input data must be developed and the results of
the test run must be examined for errors. There is currently no way to
estimate the number of test runs needed to achieve a given level of
coverage in all programs. Zeil and Whitel have obtained some nice
results for programs with linear branch conditions, but most structural
testing to date has proceeded by trial and error.

1Gannou, et al., op. cit., Table 1.3, p. 1-ll.
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Gannon, et al., used branch testing to debug (detect and locate)
errors in a 5000~line trajectory analysis program. Errors were seeded
into the program one at a time, and the set of tests which provided the

branch coverage was run. An average of three person-hours of analysis
was required for each error fc.mnd.1

Deutsch reported that it required about two person-days per error
for the 400 errors found in his use of branch testing. This includes
the time to formulate the test cases and the debugging tine.z

Computer Resources

The categories of computer overhead for instrumentation tools are
similar to those for assertion tools; preprocessing and compile time,
execution time, and program storage. The way the overhead 1is incurred
is similar too—one preprocessing run is needed per version of the test
program, and execution overhead is incurred on each test run. One
difference between assertions and {nstrumentation is that instrumen-

tation tools nust spend some time processing the data collected at the
end of a test run.

The overhead of ingtrumenting a program depends on:

° The tool used
° The level at which the code is instrumented
° The options selected-—execution and variable value traces

take lots of storage and time

o The structure of the test program—more branches means more
probes

lcanm, et al., op. cit., Table 1.3, p. 1-11.

zDouuch, op. cit., p. 67.
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We have data on the overhead required by several instrumentation

tools:

JAVS instrumentation doubles the size of the source and
executable files, and increases execution time by 50%.
Instrumenting and compiling the source code requires .09 CP
hours per 1000 statements on an HIS 6180 culputer-1

J73AVS produces instrumented programs that are 1.5 to 2
times the original source file size. Execution time is
increased by 50%. Instrumentation requires 4 to 8 CP
seconds per 1000 statements on an ITEL AS/S.2

Two sets of data are available on NODAL. Used to test a
very large program on an IBM 360 (177 routines, 254K bytes
of core per overlay), the tool increased execution time by
7% and core storage by 30%. On a somewhat smaller program
on a UNIVAC 1108 (61 routines, 40K words per overlay), it
increased execution time by 22 and storage by 201.3

Tests of PET on a CDC Cyber 173 gave the following results:
execution time increased by 20 - 50X, storage required by
executable code increased by about 301.‘

The developers of ACES report a 20X increase in both
execution time and storage overhead for their tool.5

1

C. Gannon, N. B. Brooks, JAVS - Jovial Automated Verification System,

General Research Corporation CR-1-722/1, June 1978, pp. E-2 and E-3.
20. Gannon and R. F. Else, op. cit., pp. D~1 and D-2.

SVIevgrnph copies distributed by Mr. Richard Maitlen, TRW Applied
Software lLaboratory, Redondo Beach, CA.

‘l- A. SIi.th, op. Cit., P 6.

5c. V. Ramamoorthy and S. F. Ho, "Testing Large Software with Automated
Software Evaluation Systems”, in Current Trends in Programming Method-
ology, Volume II (R. T. Yeh, ed.), Prentice-Hall, 1977, p. 146.
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Most of the output produced by instrumentation tools takes the
form of concise reports. Information on coverage, timing, values of
variables, and data flow can be presented in a few pages. However,
execution traces can produce toms of output. They should be used with
care. To avoid unnecessary overhead during other phases of testing, an
uninstrumented version of the test program should be used once struc-
tural testing is finished.

Procurement Costs

Here are the costs of the commercially available instrumentation
tools from the tools survey in the first interim report:

° INSTRUMENTERS I & 1I—$5000 each, permanent license.

° OPTIMIZER III (also has special debugging features)-—-$9750
to $28,500 depending on options.

° RXVP80™~-$16,000 (only $8000 if you already have the static
option or controller).

° V-IFTRAN™ (also preprocesses assertions and structured

FORTRAN constructs)--$6370.

A survey of software tools performed by the National Bureau of

Standards in 1977 reported the typical price range of instrumentation
tools to be $2000 to $6000.%

Cost Worksheet

The total costs of structural testing are summarized by:

11. T. Hardy, B. Leong-Hong, and D. W. Fife, Computer Science & Technol-

ogy: Software Tools: A Building Block Approach, Nat'l Bureau of
. Standards Special Publication 500-14, August 1977, p. 8.
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Computer overhead per test run x Number of test runs

+

Cost of analysis involved in generating test data and
examining test output

The computer overhead for a test run can be estimated fairly
accurately from the type of information given in the "“Computer Re-
sources” subsection above. However, it is difficult to estimate the

number of test runs needed.

The major component of testing expenses is likely to be analyst
costs. More experience with structural testing is needed to develop a
way to estimate this.

Deutsch claims an overall saving in testing costs from wusing
structural testing-l The money saved is due to earlier detection of
errors in the development life cycle compared to traditional testing
methods. The estimated net saving 1is over five times the cost of
structural testing.

ibeutlch, op. cit., p. 67.

5~55




-

e o i e s e ———r ———— AT DAPOIOP e It 3y T i s

5.4 FUNCTIONAL TESTING

5.4.1 Summary of the Technique

Functional testing means generating test data based on knowledge
of the functions performed by the test program and of the nature of its
inputs. A large number of test cases can be generated this way for most
programs. Thus, functional testing 1is open—ended; there are no metrics
to indicate the thoroughness of testing or to tell when testing can
stop-

Functional testing is supported by two types of automated tools—-—
test harnesses and stress testing tools. Test harnesses make it
possible to test partially completed programs, and to test large
programs with complicated external interfaces. Test harnesses also have
special debugging features--these are described in Sec. 6.3.

Stress testing tools use mathematical optimization techniques to
automatically generate test data. The objective of stress testing is to
find test points where a program exhibits undesirable behavior.

Capabilities and Operation
Functional testing is really traditional teatingl-the objective

is to generate test data that will find errors in a program. Functional
testing is sometimes referred to as “biack box™ testing, because
detailed information about the program's internal structure need not be
used to formulate the test data. Instead, test data 1is chosen in the
following ways:

lnowden made the term "functional testing”™ prominent in his seminal

paper "Functional Program Testing” (op. cit.). Elsevhere (p. 2 of "A
Survey of Dynaaic Analysis Methods™, in Effectiveness of Program
Validation Methods for Scientific Programs) he has admitted that "The
traditional requirements-based program testing method is functional
testing.”
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. Data 1s chosen to explore whether the program correctly
performs the functions that it is intended to perform. The
runctions should be described in the requirements and

specifications for the program.

° The inputs to the program are ex.anined. Using knowledge of
the quantities they represent and how the program functions
ought to operate on them, the set of possible values for
each input variable can be partitioned into “subdomains”.
Test data sets are generasted by taking combinations of

samples from each subdomain.

® Some measure of the program's output behavior is defined.
Test data is sought which drives this wmeasure toward an
undesirable value. Techniques from mathematical optimi-

zation can be used to do this.

Sometimes in the literature these test data generation methods are
considered geparately. The input subdomain method is also referred to
as "special values testing”; the last method is sometimes called "stress

testing”.

Like structural te-ting, functional testing has no automatic
method of error detection; errors are found by manually examining the
test program's output. To an even greater degree than structural
testing, functional testing is open~ended~—the number of test cases that
can be generated by the methods listed above is almost always very
large, maybe even infinite. No analogues of coverage metrics exist to

gauge the thoroughness of functional testing.

Automated Tool Support

Two types of automated tools support functional testing:
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° Test harnesses (sometimes called test drivers)
] Stress testing tools

A test harness provides an environment for testing individual
software modules as well as complete programs. The tool can fill in for
missing program compounents, including a main program. Test harnesses
are most useful in an interactive enviromment—-there they can be used to
start, terminate, or interrupt execution at an arbitrary point in a
program. Most test harness tools have some debugging capabilities—
these are discussed in Sec. 6.3. Test harness tools are listed along
with other debugging tools in Table 6.5 (p. 6-13).

A stress testing tool such as GRC's Adaptive 'l‘estzur1 can automa-
tically generate test data. The tool tries to find input data that will
cause undesirable behavior in the test program. To do this, the user
must come vp with a numerical measure or program behavior-—this 1is
called an “"objective function”. Various techniques can be used to
maximize (or minimize) the value of the objective function; most of
these assume that the objective function has certain continuity pro-~

perties.

5.4.2 Effectiveness

Functional testing can be used to detect all types of errors. The
TRW analysis of combined functional and structural testing shows that a
high percentage of most error categories can be detected. Special
values testing alone detects a significant number of errors in many
categories.

1C. G. Davis, "Testing Large, Real-Time Software Systems”, Infotech

State of the Art Report - Software Testing, Infotech International,

Berkshire, England, Vol. 2, pp. 85-105.
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The three error detection ratio data points for functional testing
range from 50% to 90%. Functional testing can be used effectively at
the unit testing stage. Automated stress testing has been shown to be a
highly efficient way to detect errors.

Types of Errors. Detected

In Sec. 5.3.2 we described the TRW study of the effectiveness of a
combination of structural and functional testing for the Project 3
errors (the results are summarized in Table 5.11, page 5-46). Unfor-
tunately, TRW did not distinguish between the two techniques. We cite
the high percentage of errors detected in a wide range of error cate-

gories as evidence of the effectiveness of functional testing.

TRW did consider the use of special values testing alone on the
Project 3 errors. This type of testing was also included in the study
of the combination of structural and functional testing. Table 5.12

lists the error categories and percentages for special values testing.l

Error Detection Ratio Data

It is strange that relatively few studies of the effectiveness of
the "traditional” testing method have been done, but that 1is the case.
In addition to the result for combined structural and functiongl testing
from the TRW Project 3 study (72.9%Z of total errors detected), we have
only three other pieces of error detection ratio data to report for

functional testing.

] Howden determined that functional testing could detect 14 of
28 errors (50%) in the sample from six progtams.in different

2
languages.

1Special values testing is called DSET (for Data Singularity and Extreme
Test) testing in the TRW Report.

ZW. E. Howden, "An Evaluation of the Effectiveness of Symbolic Testing,”
op. cit., p. 389.

5-59

AN AN i Naer -

I SRR S e S R VRN, ISR NG ¥ e T




- e e ¢ —ep——- S WA gt e ~ e v —— o -

TABLE 5.12
ERROR TYPES DETECTED BY SPECIAL VALUES TESTING
Source: Table 4~32 of the TRW Report

Error Category Percent Detected
Computational 52.2%
Logic 57.32
1/0 35.22
Data Handling 84.2%
Routine/Routine Interface 20.02
User Interface 87.32
Global Variable/Compool Definition 81.3%
Documentation 23.52%
. Howden found that functional testing would catch 38 of 42

errors found in the IMSL programs, or 901-1 He noted that
functional testing was the “"best™ technique to use for only
31 of those errors.

[ The TRW Project 3 study determined that special values
testing could detect 51.1%Z of all errors.

Two other experiences with functional testing methods testify to

its effectiveness. TRW used functional and structural testing at the
unit testing level in Project 5, before the error data vas accunulated.3

1w. E. Howden, "Functional Program Testing,” op. cit.
Zrable 4-33, p. 4-162 of the TEW Report.
3Pp 4-176 and 4-175 of the TRW Report.
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They studied the error reports from integration testing to
determine which errors should have been detected earlier in the life
cycle than they actually were. They found that only 15.7% of these
errors should definitely have been detected in the unit testing stage.

Benson and Andrewsl performed an error seeding experiment in which
forms of special values testing and stress testing were each combined
with executable assertion testing. Only errors that could be detected
by assertion testing with a nominal set of input data were considered.
They compared the effectiveness and efficiency of the two types of
functional testing. The input domain tests detected all of the errors
considered; however, it required 683 test cases to do this. Stress
testing, using the Adaptive Tester, detected all but one of the errors,
and required only 57 tests; in fact, it detected all but two of the

errors in just 7 tests!

5.4.3 Reliability
Since functional testing does not have a well-developed method-

ology or an objective measure of test thoroughness, its success depends
heavily upon the skill of the person conducting the tests. Functional
testing often operates under a budget constraint, in which case effici-
ency in finding errors is of utmost importance.

Any error that prevents a program from operating correctly can be
found through functional testing. However, functional testing alone is
not useful for determining the efficiency of a program or for debugging.
Functional testing cannot guarantee the absence of errors or that the

code has been thoroughly tested.

1. p. Benson, D.M. Andrews, op. cit., pp. 1-11 to 1-12.
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Functional testing works best when top-down project development is
used. The greatest successes with functional testing have been for
small, numerically-oriented programs. Many problems of testing large or
non-numeric programs have not been addressed by current research.

Human Factors

Functional testing places a lot of analytical burdens on the
tester. He must detect errors manually. He must select test data that
will find errors effectively and efficiently. He must determine when
the payoff of countinued testing has become less than its cost.

The biggest accomplishment of recent research in functional
testing is that new sources of test data have been identified. There 1is
no cut-and-dried functional test methodology that can be followed; but
if a tester thinks in terms of program functions, input domains, special
values, and stress tests he should always be able to come up with a new

test case to run.

We believe that if a tester understands the concept of functional
testing, and understands the program being tested, he should be able to
do effective testing. Understanding is the crucial word here--large
prograns require several people to contribute to the functional testing
effort, since no one person can be familiar enough with the entire
program to formulate test data and determine correct operation by
himself.

Efficiency is a very important consideration in functional
testing. Because of the large number of possible test cases, the amount
of functional testing that is actually performed may well be determined
by the amount of resources available for teating rather than by an
objective measure of test thoroughness. In such a situation, there is a
premium on choosing test data so that errors are detected as soon as

possible. Advanced stress testing techniques, such as those used in the
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Adaptive Tester, have shown major improvements in efficiency over manual
methods. The success of such automated aids is still heavily dependent
on the skill and judgment of the human tester.

Kinds of Errors

It is probably true that any error in a program can be found by
functional testing. But it 1s also true that functional testing cannot
guarantee that all errors in a program have been found. Unfortunately,
beyond these two aphorisms little can be said about the reliability of
functional testing for different error types.

Functional testing alome is not useful for determining the
efficiency of a program. Dead code and extraneous uses of variables
cannot be detected without knowledge of the structure of the program.
The timing information provided by instrumentation tocls is vital to
improving the speed of execution of a program.

Even though functional testing is the most effective technique in
terns of the number and types of errors detected, there are several
reagons why it should not be the only test technique used. As we note
in Sec. 6.1, functional testing does not give adequate information for
locating and correcting errors. It is also important to use some

structural coverage information during testing-—-otherwise, there is the
danger that some gections of code will escape testing altogether.

Program Characteristics

Functional testing can begin at the unit testing stage of the life
cycle if the units perform well-defined functions. Por this resson,
functional testing works well with top-down development. A test harness
can be used to help build stubs for components that haven't been
developed when testing begins.
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Functional testing is difficult for programs that perform a large
number of functions and have a lot of inputs. In such programs there
are a large number of possible test cases. Programs in which the
functions are highly interrelated can pose enormous difficulties:
errors may mask each other, and the relationship between input and
output can be very unclear. Good design techniques, especially modul-
arization, can help overcome these problems.

FPunctional testing seems to work especlally well for mathematical
and numerically-oriented programs. The concepts of domain partitioms,
special values, and stress tests may uot apply so easily to text
processing, data base management, or other applications. Experiments
with the functional techniques in these areas should be performed.

5.4.4 Cost

No one seems to be studying how much functional testing does cost
or should cost. We found no data on either the amount of analysis time
or the computer costs for specific applications of functional test
methods. The relationship between the cost and effectiveness of
increasing smounts of functional testing should be explored.

The cost of functional testing is most sensitive to the number of
test runs made. This is true of both analyst and computer costs, since
the set-up costs are low. Test harnesses and stress testing tools have
very low overheads and can provide a net saving in computer and analysis
costs over manual testing.

Analysis Time
Analysis time is likely to be the most significant cost item when

doing functional testing. Most of the analysis time is spent examining
test output for errors, although keeping track of past test results
manually can become & buzrden. The amount of analysis time increases
nonlinearly with the number of test runs made, since past test runs have
to be considered wvhen performing a new test.
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Computer Resources

The computer resources needed to test a large program can be
significant even if there is no tool overhead involved. This is because
functional testing requires a large number of test runs for such
programs. Test tools can help save computer resources by wmaking it
possible to test parts of code separately, by automaticslly keeping
track of test results, and by helping to generate test data.

Test harness tools require a very small amount of overhead.
During a test run, the tool supplies a skeleton substitute for sissing

modules, 8o execution time 1s much less than that required by the
finished program.

Tools can digest test data and use it to guide the selection of
new tests at negligible expense. We have used the Adaptive Tester as a
test driver, stress testing tool, and data reduction package all at once
when testing programs. We have used sophisticated test data generation
algorithms and factor analysis on programs with up to 100 input vari-
ables. We have submitted jobs that made hundreds of runs of test
programs on a CDC 7600. For test programs that required on the order of
one second of CPU time per execution, we always found that the time
required by the tool was a small fraction of the total execution time of
the test rum.

Procurement Costs
The XPEDITER tool package, which includes test harness and several

other debugging capabilities, costs $25,000 to $35,000 depending on the
options selected (permanent license fee).

Cost Worksheet

Functional testing 18 an open-ended testing technique--a relia-
bility or cost criterion is needed to tell when to stop testing. The
amount of testing that can be done depends on the cost per test run.
There is a heavy premium on efficiency in choosing test data that
detects errors early in the testing process.
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5.5 FORMAL TECHNIQUES

5.5.1 Summary

The formal techniques are sywbolic execution and formal veri-
fication (program proving). Symbolic execution 1is the process of
forming mathematical expressions that relate the inputs and outputs of a
program. These expressions can be used to determine whether a program
correctly implements an algorithm; they can also be useful in static and
structural testing.

Formal verification means proving that a program complies with its
specifications. Formal verification dominates the development of any
software project in which it is used, since it affects the requirements,
design, and coding of the program. Formal verification must be planned
for from the beginning of a project——it cannot be added as an after-
thought .

Tools have been developed to support the formal techniques.
Sophisticated mathematical and artificial intelligence techniques are
used in these tools. Still, they must be guided closely by the user.

Existing tools are not suitable for use outside of a research labora-
tory.

Symbolic Execution

Symbolic execution attempts to derive mathematical expressions for
the outputs of a program in terms of the input variables. Conceptually,
this can be done by carrying out the actions specified by each execu-
table statement in a program while storing symbolic instead of actual
values for variables. For example, a loop to sum the elements of an
array

- - - - .- - e e . O
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SUM = 0.0
DO (I = 1,4)

SUM = SUM + A(I)
END DO

when syambolically executed would yield the expressinn:
SUM = A(l) + A(2) + A(3) + A(4) .

Symbolic execution has a number of applications in program
verification:

° Programs can be tested symbolically by comparing the
expressions derived for output variables with the desired
formulas.

o The conditions that cause a particular program path to be

executed can be determined symbolically. These path
conditions can then be used to generate actual test data
values for use in structural testing.

) The path conditions can also be used to determine which
paths are feasible—that is, which ones can actually be
executed. This information 1is useful to both static
analysis and structural testing.

° Symbolic execution is used in the course of doing formal
verification of programs.

Formal Verification

Formal verification means constructing a mathematically rigorous
proof that a program will behave according to its specifications. A
complete proof of a program examines both the code and specifications
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and shows that they are consistent. Walker, et a1.l describe one way to
achieve a complete formal verification of some program properties.

Their wethod consists of three separate steps:

L A top-level specification for the program is defined. This
is a concise statement about what the prograam is supposed to
do. An abstract-level specification that contains a general
description of the design of the program is then formulated.
The consistency of the abstract-level and top-level speci-
fications 1is proved.

® A low-level specification is developed which contains enough
information to enable the code to be verified. The consis-
tency of the low-level and abstract-level specifications is

proved.

° Finally, a code-level proof is performed. This is usually
done by the standard Floyd-Hoare nethods.2 The low-level
specification provides the input and output assertions that
are used to form the program's main verification conditions.

Formal verification 1is different from testing in that both the
specifications and the code are critically examined. Changes need to be
made in the specifications and design as well as the code in the course
of doing verification. Because of this, the entire program development
effort must be dedicated to the task of proving the program. Programs

that are not designed and written to be formally verified cannot be
proved.

13. J. Walker, R. A. Kemmerer, G. J. Popek, "Specification and Verifi-

cation of the UCLA Unix Security Kernel”, Communications of the ACM,
Vol. 23, No. 2 (Feb. 1980), pp. 118-131.

zA good explanation of Floyd-Hoare techniques is contained in S. L.

Hantler and J. C. King, "An Introduction to Proving the Correctness of
Programs,” Computing Surveys, Vol. 8, No. 3 (Sept. 1976), pp. 331-353.
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During the course of proving a program, errors in code or specifi-
cations may be detected. Program proofs are conducted in a series of
sub~proofs or lemmas; each lemma builds on the previous ones by examin-
ing a relatively small number of additional statements. When one of the
lemmas can't be proved, the reasons for the failure may provide infor-
mation about what changes can be made to correct the situation and allow

the proof to succeed.

Prof. Richard Kemmerer telatedl an example of a graduate student
who was helping with the verification of a communication system. The
student knew very little about how the system worked, but found a speci-
fication error in the course of trying to complete a proof.

Automated Tool Support

Four kinds of tools support the formal techniques:

® Symbolic execution tools

[ Verification condition generators
) Theorem provers
°

Proof verifiers

A symbolic execution tool has two major components: a program
interpreter and an expression simplifier. The interpreter translates
each successive action of a program into a wmathematical algebraic
expression. The simplifier then tries to reduce the output expressions
to as simple a form as possible. Symbolic execution iy usually done
interactively, so that the user can guide the tool in each of these
tasks.

Verification condition generators use symbolic executfon tech-

niques. They work backwards from the final assertion of a lemma and
derive the necessary preconditions for it to hold.

1Pcrsonal comaunication, June 1981.
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Once the verification conditions are formed, a theorem prover can
be invoked to try to establish the truth of the lemma. Theorem provers
are complex projrams which can interpret the assertions and program
statements and apply complex rules of inference and various heuristic

proof strategies.

Once a proof of a lemma has been constructed, it must be checked
for correctness. Theorem provers usually have a proof verifier bduilt
into them. Special verifier tcols exist to check manually generated
proofs.

Formal techniques and the tools that support them are still being
developed by researchers. Formal techniques are so complicated and
specialized that no tools have yet been developed that are suitable for
wide-spread use. Institutions that are conducting research on formal
techniques usue’ly develop their own “proof systems,” which typically
include special programming languages and design methods as well as the
tools mentioned here. Several such systems are described in the tools

survey in Appendix 3.

5.5.2 Effectiveness

Symbolic execution can be used to test a program in a manner
similar to structural and functional testing. A significant number of
errors in a program can be detected this way.

In the last two years, several successful applications of formal
verification to large, useful programs have been announced. These have
been proofs of the security of computer or communication systems. A
ma jor shortcoming of current formal verification methods is that there

is no known way to prove fault-tolerance.
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Symbolic Execution

Howden has studied the use of symbolic execution to enhance other
test techniquea.1 He considered the effect of using functional and
structural testing methods on symbolic as well as real data. Symbolic
structural testing means deriving algebraic expressions for those paths
that were selected during structural testing with actual values.
Symbolic functional testing means deriving algebraic expressicns for the

program functions.

Howden examined the errors from his sample of six programs in four
different languages. He found that symbolic testing alone could detect
17 of the 28 errors, or 61XZ. Symbolic testing improved the effective-
ness of both structural and functional testing.

Successful Formal Verification Efforts

In the past few years researchers in the field of formal verifi-
cation have felt challeanged to prove the usefulness of their methods in
the "real” world. Recently they have enjoyed quite a few successes for

programs of respectahle size and complexity.

Walker, et al. completed most of the verification of the security
of the UCLA Unix Kernel. The kernul forms part of a working operating
system for a PDP~11/45, although the system is unacceptably slow. (The
reasons for the poor performance are unrelated to the fact that it was
subjected to verification.) The project was intended to be strictly for
research and demonstration, so nocr all of the proofs were carried out.
The participants are convinced that the rest of the proof could be

coapleted, given sufficient resources.

The notes of the first two Verification Workshops contain descrip-

tions of two other successful recent verification efforts. These were:

I;: E. Howden, "An Evaluation of the Effectiveness of Symbolic Testing”,

op. cit., p. 389.
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° Verification of a security guard in a distributed system.
The system is working with the guard embedded in 1t.1 This
work was done at the Institute for Computing Science and

Computer Applications of the University of Texas.

° A year later, the same researchers reported that they had

verified an encrypted packet interface for the ARPANET.2

What Properties Can Be Verified?

Recent verification efforts have concentrated almost exclusively
on the security properties of computer and communication systems. The
methods of verifying such systems have become well known in the formal
verification community. However, there are other software application
areas in which performance is so critical that the expense of verifi-

cation would be justified if there were a reasonable chance of success.

Boebett3 challenged the gathering at the VERkshop to consider what
would be involved in verifying embedded coantrol software such as in an
alrcraft autopilot system. He notes that such systems are computa-
tionally simple, use simple data types, and maintain a small state
space. However, the verification requirements are severe and there is

the need to prove fault-tolerance.

HaynesA also discussed potential applications of formal verifi-
cation. He noted that two shortcomings of current verification methods
were an inability to analyze the accuracy of floating point computations

and the lack of a way to specify fault~tolerance requirements.

1 D. I. Good, M. K. Smith, "A Verified Distributed System”, mimeographed
notes of the Verification Workshop ("VERkshop”), SRI International,
Menlo Park, CA, April 1980.

2 M. K. Smith, et al., "A Verified Encrypted Packet Interface”, Software

Engineering Notes, Vol. 6, No.3 (July 1981), pp. l4-16.

W. E. Boebert, "Formal Verification of Embedded Software"”, first
VERkshop notes, p. 106.

G. A. Haynes, "Position Paper on Program Verification”, first VERkshop
notes, p. 9.

4
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5.5.3 Reliab’lity

The shortcoming of formal techniques is that they are so compli-
cated that user errors are inevitable. Currently tools do not remove
enough of the mechanical burden from the user. Both symbolic execution
and program proving require a lot of tedious work. The expressions
generated by formal tools are ofcen complicated and difficult to in-

terpret.

Howden drew the following conclusion from his experience with

symbolic testing:

"In general, it was found to be difficult to
apply symbolic evaluation to all but the
functional modules at the lowest level of
abstraction...symbolic evaluatiqy should be
limited to low level modules...”
It 1is not surprising that migtakes have been made in the use of
program “roving techniques. Gerhart and Yelowitz2 discuss four programs

that were claimed to be proved and were later found to contain errors.

A major problem with formal verification is that a set of formal
specifications must be written for a program. This set of specifi-
cations must be complete and rigorously formulated, since the proof will
be based upon 1it. Writing formal specifications 1s a difffcult and
tedious task--it is difficult to find people capable of and willing to
do this work.

lw. E. Howden, "An Evaluation of the Effectiveness of Symbolic Testing,”

op. cit., p. 395.
2

S. L. Gerhart and L. Yelowitz, "Observations of Fallibility in Appli-
cations of Modern Programming Methodologies,” IEEE Transactions on

Software Engineering, Vol. SE-2, No. 3 (Sept. 1976), pp- 202-205.
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Formal verification imposes some constraints on the form of the
software. Some researchers feel that a code-level proof 1is only valid
if the code 1is written in a language that is axiomatically defined.
This excludes more commonly-used languages such as FORTRAN and COBOL,
although other researchers have used formal techniques with these
languages. In all programming languages, there are serious problenms
with proving properties of programs that include real or character

variables or that have timing or synchronization logic.

5.5.4 Cost

The formal techniques are very expensive compared to static and
dynamic testing because they involve intensive amounts of highly skilled
labor. Because the formal techniques are still being developed, there
are no good ways of estimating the costs of a prospective application.
Project managers who are considering using ‘ormal techniques should

obtain the services of someone who 18 experienced in the field.

Symbolic Execution

Hovdenl gives gome estimates of the time and storage required by
symbolic execution tools. To symbolically execute a path through a
program, the storage required 1is proportional to the sum of the number
of branches in the path, the number of statements in the path, and the
number of variables in the path.

Formal Verification

Below we present some information on the amount of effort required
by a few program proving efforts. A major problem with this data is
that it is Aifficult to make generalizations across projects. Different
people approach formal verification in different ways. Complete veri-

fications are not always performed——some just do a code-level proof;

1

W. E. Howden, Symbolic Testing~-Design Techniques, Costs and Effective~
ness, NTIS PB-;6§, 517, U.S. Department of Commerce, Springfield,
Virginia.
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others do not rigorously apply the proof methodology to the entire
progran and specifications.

Another problem with determining "representative” costs of formal
verification is that there is no agreed-upon standard of the size of the
job. Measures such as the number of lines of code or the number of
modules do not give a good indication of the difficulty of proving a
program. Some of the data cited below give the number of verification
conditions used in a proof. Since different proof techniques yield
different numbers of verification conditions, this does not provide a

universal standard, either.

° Walker, et al.l required four to five person-years on the
UCLA Secure UNIX kernel.

° Smith, et al.2 report that they used only two person-months
in completing their verification of the Encrypted Packet
Interface. The proof required 185 verification conditions,
of which 144 were proved automatically by the algebraic
simplifier tool. The program contains about 2000 lines of
Gypsy code.

. A small queue manager program was verified using the SQLAB
tool at GRCa. Six verification conditions were generated--
two were proved automatically, the others interactively.
This work required 21 seconds of execution time on a CDC
7600.

1Bo J. Ualker, et Bl-, op. Cit-, P 128.

2y, K. Smith, et al., op. cit.

38- H. Saib, et aln, op. cito, P- 179.
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As an indication of how the ‘performance of verification
tools can be improved, consider the experience of SRI with
the RPE (Rugged Programaing Enviromment) proof systemsl. The
two versions were benchmarked uaing a binary search routine.
The earlier version (BRPE/1) required 210 seconds for
parsing, 5 seconds for verification condition generationm,
and 600 seconds for proof deduction on a DEC KA-10 computer.
The improved version (RPE/2) required 0.7 seconds for
parsing, one second for verification conditiom gemeration,
and 27.5 seconds for proof generation, although these
figures are for a slightly faster machine. The overall
improvement in speed is a factor of about 27 to 1.

1

Elspas,

R. E. Shostak, J. M. Spitzen, A Verification Systea for

JOCIT/J3 Programs (Rugged Programming Environment - RPE/2), Rome Air

Development Center Technical Report No. RADC-TR-//-229, p. 35.
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6 OTHER CAPABILITIES OF TEST TECHNIQUES AND TOOLS
We selected our breakdown of test technique categories to facili-

tate the analysis cf error detection. Some of these techniques also
provide information that is helpful in the tasks of error location and
correction. We describe this information in the first two subsections
below. In Sec. 6.3 we look at some automated tools that have been
developed specifically as aids for error location and correction. Many

of these tools also support one or more of the test techniques.

Of the static and dynamic test techniques, static analysis clearly
provides the greatest amount of debugging information about the errors
that it detects. Functional and structural testing provide the least.
In between these extremes lies executable assertion testing, whose
debugging capabilities have never been studied in detail. Although we
know of no empirical evidence about the debugging effectiveness of the
test techniques, we offer the ranking of the techniques for error

location and correction capability shown in Table 6.1.

o - e

TABLE 6.1
ERROR LOCATION AND CORRECTION CAPABILITY RANKINGS
(1 = best)

1. Static analysis

2. Executable assertions
3. Structural testing

4. Functional testing




We have not included formal verification in our treatment of.

debugging. However, program proving can produce error correction
information in the same way that it can detect errors. We described how
err:rs are detected during verification in Sec. 5.5.1.

The techniques described in this report can be useful in two other
areas of software development besides testiug: program documentation
and the analysis of program quality. In Sec. 6.4 we look at how some of
the documentation required by a military standard can be satisfied by
static analysis reports. In Sec. 6.5, we examine the ways that the test
techniques support two schemes for evaluating the overall quality of a
plece of software.

The test techniques supply less than half of the information
required by either the documentation standard or the quality evaluation
schemes. However, sgtatic analysis provides significant amounts of
information in both areas. Most of the information required for
documentation and program analysis can be obtained from source code.

Therefore, static analysis tools could be expended to provide this
information.

6.1 ERROR LOCATION

Both static analysis and executable assertion tools glve statement
nuribers in their diagnostic messages. However, assertion diagnostics
represent symptoms of errors, while static analysis can often identify
the source or instance of an error. The kinds of error and anomaly
checking that static tools can perform are discussed in the character-
istic profile in Sec. 5.1. Stati: analysis cannot always isolate errors
to single statements, but it usually does so for the following error and
anomaly types:

Module interface errors
) Coding standards violations
° Mixed-mode aritimetic

6-2
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Other static error and anomaly types by their nature span a range
of statements. However, a few of the statements in the range can be
singled out for closer scrutiny. For example, if a variable is reported
to be referenced at a statement before it has been defined, it may be
that an assignment or other defining statement needs to appear somewhere
on the path to the reference. But it 1is also possible that the state-
ment referencing the variable has been coded incorrectly, and another
variable should appear in place of the undefined one. Thus, static
analysis provides localization of errors to the statement, in the best
case—or to the path, in the worst case—for the following error and

anomaly types:

° Uninitialized variables
° Variables set but not used
° Unreferenced statement labels

A third class of errors and anomalies detected by static testing
reflect problems in program logic or control flow. Correcting these
types of problems may just require a change in one statement; or it may
be necessary to rewrite a fairly large amount of code. These errors and

anomalies include:

) Infinite loops

] Recursive procedure calls
. Deadlock

) Unreachable code

For static tools to detect these errors, they must be structural
—that is, the errors must be inherent in the control structure of the
program, and not depend upon relationships between variables. Usually
the changes required to correct such problems will be made to code that
is within or near the range of an error. This 1s because structural

logic errors are normally the symptoms of simple acts of negligence on

6-3
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the part of the programmer. These error types are much harder to locate
if they cannot be detected structurally.

6.1.1 Error Location Metric

The preceding analysis suggests a metric for the degree of
localization of errors that the static techniques provide. For each of

the three groups of static error and anomaly types listed, we can
examine the ratio:

Amount of code that must be searched to find the error
Amount of code which 18 incorrect

An error in the first group of static checks listed above 1is
usually located at the statement for which a diagnostic message is
issued. Thus the error location metric value for these error types will
usually be one.

An error from the second group may also be located at a statement
given in the diagnostic; or it may be the case that the code that
(logically) precedes the statement must be searched to find the error.
Thus the size of the numerator of the location metric for this group can
vary from as little as one statement to as much as an entire module, or
several modules for global variables. Since the code change required is

usually on the order of one statement, the location metric value will
vary considerably for these error types.

The last group of errors usually involves a code segment such as a
loop or branch.l The statements that cause the error often are control
points (e.g. "if”, "while”, "goto” statements) in the vicinity of the

lﬂe use the term "branch” to mean all statements between two logically

adjacent control points in a program.
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identified segment. So the location metric value for these errors
should typically be small.

Table 6.2 summarizes the error location metric as applied to the
static error and anomaly types. Structural descriptions of code
(statement, branch, path, module) are used instead of numbers since they

are more descriptive in this situation.

6.1.2 Error Location Capabilities of the Dynamic Techniques

As mentioned above, executable assertions also supply statement
numbers with their diagnostic messages. This feature can be used by a
skillful tester to provide a great deal of information about the
location of certain kinds of errors. For example, when assertions are
used to check the validity of steps in a complicated computation, a
report of an assertion violation often isolates the error to the last

step performed before the assertion.

However, since assertions can only impose conditions involving
values of program variables, they report symptoms of errors rather than
causes. There may be a lot of code separating the point where a bad
value is generated and the place where it is used in a computation that
is checked by an assertion. It may be that the value did not look bad
when it was generated, but caused a problem because it was used incor-
rectly. For example, assertions can be used to check for divisiomn by
zero. When a programmer finds that his program 1s guilty of producing a
zero as a denominator, he does not always change code that is close to

the statement that performs the divisiou.

6-5
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TABLE 6.2

LOCATION METRIC APPLIED TO STATIC ERROR AND ANOMALY TYPES

Error or Anomaly Type

Module calling sequence error

Coding standards violation

Mixed~mode arithmetic

Uninitialized variable

Variable set and not used

Unreferenced statement labels

Infinite loop

Recursive procedure call

Deadlock

Unreachable code

Location Metric Value

One or a few statements

One statement

One statement to several modules

One statement

One statement

to a few branches

One statement

6-6
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As was the case for error detection, the effectiveness of asser-
tions for locating errors depends to a great extent upon the skill and
knowledge of the person who writes the assertions. We feel that asser-
tions which provide effective error detection will also supply good
error location information. However, to best locate errors, individual
assertions should contain as few variables and relations as possible.

For example, the statements

ASSERT (M.GT.0)
ASSERT (N.LE.100)

provide better location information than the single assertion
ASSERT ((M.GT.0).AND.(N.LE.100)),

even though both sets will detect the same errors.

We believe that an effective set of assertions will isolate most
detected errors to the segment of code between the last branch point and
the position of the violated assertion. In terms of the error location

metric, this means assertions localize errors to the level:

Number of statements on a branch
One statement

We base this conjecture on a standard for using assertions that
requires all program inputs and each control point to be chccked for
validity of relevant variable values. This standard is part of the
assertion mechodology proposed in Sec. 7.2. If our conjecture holds,

then assertions are a fairly powerful error locating technique.

Structural testing can provide a much smaller amount of error
location information. No diagnostic messages are associated with this
technique; however, the coverage reports issued by instrumentation tools
indicate what sections of code were executed in a test run. Any code
that is in error is obviously part of the code that 1s executed. Each
test case represents one complete path through the program, which may be

a very large amount of code.

v
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Functional testing alone provides no error location information.
If this technique is being used to test a small amount of code—-for
instance, a single module during unit testing--then this may not be a
serious drawback to its use. Functional testing may sometimes be used
alone when debugging does not accompany testing--for example, during
acceptance testing, in which errors are noted on problem reports for
later consideration. But to test and debug medium-sized or large
programs, functional testing should be augmented either by another test
technique which provides error location information, or by specilalized

debugging tools as described in Sec. 6.3.

6.2 ERROR CORRECTION

Automated tools cannot correct errors in the sense of making
changes to code, but they can help a programmer make corrections. Since
the diagnostics issued by static analysis describe wrong or questionable
conditions in a program, they suggest actions which might remedy the
conditions. The test techniques can also be usad to help to verify that
a change made by the programmer has corrected an error and has not

introduced other errors.

Table 6.3 lists some of the corrective actions suggested by each
of the static error and anomaly checks. These actions will not always
solve the problem (indeed with an anomaly there may be no problem at
all) but they may provide a starting point in the search for a correc-
cion. Other corrections may be suggested by combinations of static
messages: for instance, a misspelled variable will usually produce both
“"uninitialized variable™ and "variable set but not used” messages, one

each for the correctly spelled and misspelled versions.

6-8
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TABIE 6.3

CORRECTIVE ACTIONS SUGGESTED BY STATIC ANALYSIS DIAGNOSTICS

Error or Anomaly Type

Infinite loop

Module calling sequence error

Recursive procedure call
Uninitialized variable

Deadlock

Coding standards violation
Mixed-mode arithmetic
Variable set and not used
Unreachable code

Unreferenced statement label

Possible Corrective Action

Add a statement checking for exit
condition

Change the variables in the "CALL"
statement

Convert code to nonrecursive form
Add an initializing statement

Provide for supervision of “wait”
state

Use equivalent standard construct
Declare variables of proper type
Remove the last assigmment

Remove the code segment

Remove the label

* A standard method of removing recursion is given in E. Horowitz and
S. Sahni, Fundamentals of Data Structures, Computer Science Press,

Inc., 1976, pp. 160-161.

An Error Correction Metric

When a programmer makes a change to his code to correct an error

he will normally rerun some tests to see that the change has corrected

the problem. If this retesting is to be effective, all the tests that

may be affected by the code change must be rerun. Although this will
not guarantee that the changed code is correct, it does update the

entire testing process to the point at which the last error was found.

6~9
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For a technique to be a good debugging aid, it must be easy and
inexpensive to do retesting. The effort required to retest a program
depends on the nature of the test technique and the code changes that

were made. This can be stated in the form of a metric as:

(Number of retesting runs) x (Amount of code in a retest run)
Amount of code changed

For most kinds of static testing, only those modules in which a
change appears must be rerun through the static test tcol. This is true
even for changes that affect global variables, because static tools can
supply the information about the behavior of other modules from a stored
data base.1 So the retesting metric value for static analysis is one

test of one module per module changed.

To effectively retest using dynamic test techniques, all the test

runs affected by the changed statement should be rerun. For structural
testing, there i{s information available about which previous test cases

executed the changed statement. Only these cases need be rerun. This
information is not available when functional or executable assertion

testing are used alone, so all previous test cases must be rerun.

If information were available about when in the program execution
sequence the changed statement appeared, and if the program could be
restarted at that point, then each dynamic test run would not have to be
repeated in its entirety. Test harness and interactive debugging tools
have some of these capabilities (see Sec. 6.3), but we know of no tool
which is entirely suitable for this purpose.

1
The data base library feature of the SQLAB tool is described in S. H.

Saib, et al., Advanced Software Quality Assurance Final Report, General
Research Corporation CR-3-770, May 1978, pp. 143-144.
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Table 6.4 summarizes the error correction metric for the static
and dynamic test techniques. For the dynamic techniques, the amount of
retesting depends upon the amount of testing performed previously. This

puts a premium on finding and correcting errnrs early.

TABLE 6.4
CORRECTION METRIC APPLIED TO THE STATIC AND DYNAMIC TECHNIQUES

Test Technique Correction Metric Value

Static analysis One test of oue module per
module changed

Structural testing All affected test cases
Executable assertions All test cases
Functional testing All test cases

6.3 DEBUGGING TOOLS

A considerable number of debugging tools and packages have
appeared in recent years. Many of the tools are availatle commercially
and are described in software product d.rectori:s such as Datapro.l

These tools usually provide some combination of five types of features:

) Formatted dumps
. Execution traces
° Tes. harness ccpabilities

1
Datapro Directory of Software, Datapro Research Corpors: ion, August
1980.
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° Interactive debugging

° Test languages and libraries

Formatted dumps augment the traditional method of debug;ing
programs by examining octal or hexadecimal dumps of memory areas at
program termination. A tool can attach variable names to values and
properly interpret numeric and characier data. It can also give the
immediate cause of an abort, the source code module name and 1lin-~
number, and the sequence of module invocations at the time of the

temination.

Execution traces provide a log of program operation during the
entire course of execution. Statements covered, modules called, and
changes in the values of specified variables are reported. Execution
treces can give information about nearly every facet of program opera-
tion, and thus are potentially a powerful test technique. However, they
tend to overwhelm the uger with output and thus do not reduce the

analytical burden of testing.

Test harnesses allow the tester to exercise parts of programs, by
providing stubs or other substitutes for missing modules. We consider
test harnesses to be the main automated support for functional testing.
They can also be used to isolate crucial or troublesome areas of code

for more thorough testing.

Interactive debugging gives the tester enhanced control over
program execution. He can specify places in the program where execution
is to stop so that conditions can be examined. The tool saves the
program state, 8o that testing can be restarted at that point. A tool
can also permit execution to be started at an arbitrary entry point by
querying the user for needed information.

6-12
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Test languages and libraries provide a way for a set of tests to
be automatically documented and reproducible. This can automate the
retesting process and insure a great degree of thoroughness. Tools can
also generate graphic displays of test results that ire useful for

management purposes.

These five debugging features can be combined with the test
techniques described in this report to form more powerful test tools. A
drawback to incorporating the debugging features into general-purpose
tools is that often their implementation is highly system-dependent.
Table 6.5 lists some tools with these debugging features that were
included in the tools survey in the first interim report. Many other
tools are available commercially, most of which are designed for widely

ugsed business computing systems.

TABLE 6.5
TEST TOOLS WITH DEBUGGING CAPABILITIES
(Source: Tools Survey, Appendix B)

Tool Capabilities

ATDG Test harness

CAVS Execution tracing, test library

OPTIMIZER III Dump formatting, interactive debugging

PRUFSTAND Dump formatting, execution tracing, test
harness, interactive debuggging

TESTMANAGER Dump formatting, test harness

TPL Test harness, test language and library

XPEDITER Formatted dumps, execution tracing, test

harness, interactive debugging, test
language and library

6-13
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6.4 DOCUMENTATION
A by-product of many static analysis reports produced by automated
testing tools is information which can be used to help document the
program being analyzed. A summary of the kinds of information produced

was given in the first interim report and is reproduced below.

° Global cross-reference report indicating input/output usage

for variables in all modules

. Module invocations report indicating the calling modules and

showing all calling statements

° Module interconnection report showing the program's module

calling structure

® Special global data reports for variables in COMMON blocks
and COMPOOLs

. Program statistics including total size, number of modules,

module size distribution, statement type distribution, and

complexity measures

) Summaries of analysis performed, program statistics, and

errors and warnings reported

As an example of a standard for adequate documentation of computer
programs, we will use MIL-STD-483, Appendix VI.1 The relevant sections
of this appendix are those describing the Computer Program Configuration
Item (CPCI) Part 11 specification. An outline of the required content
of this specification is shown in Table 6.6. Sections 3 and 4 are

relevant to documentation of computer programs.

1Configgration Management Practices for Systems, Equipment, Munitions

and Computer Programs, MIL-SID-483 (USAF) Notice 2, March 21, 1979.
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1.

3.

TABLE 6.6
MIL-STD-483 CPCI PART X1 SPECIFICATION

Scope

Applicable Documents
Requirements
3.1 CPC1 Structural Description
2 Functional Flow Diagrams and Charts
3 Interfaces
4 Program Interrupts
5 Timing and Sequencing Description
6 Special Control Features
7  Storage Allocation

3.7.1 ta Base Definition
1 1 File Description
1.2 Table Description
.1.3 Ttem Description
.1.4 Graphic Table Description
1.5 CPCI Constants

3.7.2 (Computer Program Component) Relatiouship

3.7.3 Data Base Location Requirements
8 Object Code Creation
9 Adaptation’'Data
10 Detail Design Description

3.10.X Identification of CPC No. X

3.10.X.1 CPC No. X Description
3.10.X.2 CPC No. X Charts

3.10.X.3 CPC No. X Interfaces
3.10.X.4 Data Organization
3.10.X.5 CPC No. X Limitatioms
3.10.X.6 CPC No. X Listings

3.11 Program Listings Comments

Quality Assurance
4.1 Test Plan/Procedure Cross Reference Index
4.2 Other Quality Assurance Provisions

Preparation for Delivery
5.1 Preservation and Packaging
5.2 Markings

Notes
Appendix(es)
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Table 6.7 shows for each static analysis report, the section of

the requirements for which it produces documentation.

Executable assertion testing is the other technique that is a
source of program documentation. Assertions provide in-line documen-
tation of a program, in a manner similar to comment statements.
Assertions are not a substitute for comments as explanatory material.

However, they do provide very helpful information.

TABLE 6.7
DOCUMENTATION PRODUCED BY STATIC ANALYSIS TECHNIQUES

Static Analysis Report Part I1 Specification Section(s)
3-7-2; 3‘10-x.3; 3-10-X-4

3.3; 3.10.%.3

Global cross-reference report
Module invocations report

Module interconnection report 3.1
Special global data report 3.10.Xx.3
Program statistics none
Sumparies of analysis performed 4.1; 4.2

6.5 CONTRIBUTION OF TEST TECHNIQUES TO SOFTWARE QUALITY EVALUATION

A high quality software product does more than just satisfy its
specifications. It ghould be efficient; it should be easy to under-
stand, use, and maintain; and it should be flexible enough to be used in
different enviromments. Two schemes which have been developed to
evaluate these program qualities are briefly described here. We then
examine how automated test techniques can be used to measure these
qualities.

6-16
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TRW Study

The first evaluation scheme was developed at mw.l A set of seven
desirable qualities for programs was identified. These desirable
qualities are evaluated in terms of twelve "primitive characteristics”
that are measured by examining the program. Each primitive charac-~
teristic 1s associated with a list of questions about the program--the

characteristic is measured by answering the questions.

Test techniques can support the evaluation of the primitive
characteristics in three different ways. Some of the questions are
normally answered during testing--we ha\ve; termed this “direct™ support.
For example, one of the “"completeness” q;xestions is: "Is the code free
of obvious errors?” This question can be answered by applying static
and dyvamic testing to the program. If a program "passes” a thorough
test sequence, then it will have all of those properties which are
directly supported by the test techniques used.

In other cases, test techniques can provide the information needed
to answer a question, but this information is not necessarily used as
part of the testing process. We have termed this “"indirect" support.
For example, one of the "structuredness” questions is: "Are the modules
limited in size?" Static analysis tools, or compilers that provide
program listings, can give the length of each module fin a program.
However, standards of program size may not automatically be used in
static testing,z so static testing does not guarantee that a program has

this structuredness property.

Group Report No. TRW~SS~73~09, December 28, 1973.

Many standards checkers call attention to a module that has an
excessive number of executable statements by printing an error
message. This would constitute direct support for this structured-
ness question. However, most general-purpose static tools do not
enforce module size standards: they typically only give size
statistics as part of documentation reports.

6-17
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A third way for test techniques to support quality characteristics
is by providing a required capability to & program. Consider the
completeness question: “Is input data checked for range errors?” If
executable assertions which check variable ranges have been added to the
code, then this question can be answered "yes". We call this “supple-
mentary” support for a characteristic.

Using our knowledge of test technique and tool capabilities, we
have rated the degree of support provided to each of the TRW primitive
characteristics. The results are presented in Table 6.8. Support for a
characteristic is rated high (H) if most of the questions for that
characteristic can be answered from information provided by the test
techniques. Support 1is rated medium (M) 1f there is conasiderable
support but there remains important information that camnot be supplied
by the techniques. A characteristic receives at least low (L) support
if test techniques can angwer any of 1its questions - otherwise it
receives a zero (0) for no support.

The way in which support is provided 1s 1listed as direct (D),
indirect (I), or supplementary (S). Since each primitive characteristic
may have several questions associated with it, more than one type of
support may be listed.

The most common supporting test technique is static analysis.
This reflects the fact that many of the TRW questions are based on
properties of the source code. The dynamic techniques of functional
testing, executable assertions, and instrumentation play an importaat
part in supporting four of the characteristics. Very few questions were
found which could be answered by more than one technique.

TRW considered two methods of collecting data about the quality
factors: an algorithm which scans source code without user input or

guidance, and a consistency checker which requires the user to supply a
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TABLE 6.8
TEST TECHNIQUE SUPPORT FOR TRW QUALITY FACTORS

-—

IR T Y

Quailty frection Degree of Method of Test Yechniques
Cheracteristic Autasetedie Support Suppor?
{TRW)
OEYICE- 4/6 I Static statemen? cross~reference
1NDEPENDENCE Stenderds checher- langusge, porta~
blllty
COMPLETENESS 12/18 $.0,! Static date flov meiysls
Standards checter=languege
Exscutadble sssertions
Functional testing
ACCURACY on o Functionsi testing
CONS I STENCY w2 ] Static mixed mode snalysis,
global date documentution
'8 - gung
OEVICE- 3/4 i Instrussntation ~ timing
erFciocy analysls
ACCESSIBILITY *3 - -
COMMWUNI CAT| VENESS L 74k s Test herness
Exacutable sssertions
lnstrumentation - ewecution
tracing
SThiX . UREDNESS mwm D, ! Stetic modute (nferfece analysis,
caliing tres documsntation
Standards checher-ianguage
SELF- s S, ! Static units assertions
DESCR |1 PTI YENESS Functions! testing
CONC | SENESS 1 0 Static urreschable code
detsction, stetemeat cross-
reference
EGIBILITY 9/10 0,1 Static stutemsnt cross-
reference
Stendards chechar-|anguage
MMENTABIL:TY N - -
s
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checklist. Such tools need not currently exist for a question to
receive a favorable rating on automatability—TRW only required that it
be cost-effective to build and use them. They determined that 722 of
all the questions, and also 721 of the important questions, could be
answered partially or completely by such tools. We judged that 422 of
all questions, and 47% of the important questions, were supported by

test techniques.

GE Studz

The GE software quality evaluation scheme1 has a structure similar
to the TRW scheme. A somewhat different set of quality characteristics,
called "software quality factors”, were selected. A set of software
metrics was developed to support the evaluation of the quality factors.
The major differences between the GE scheme and TRW's are that several
quality factors may share the same metrics, and the metrics may take

numerical values rather than just yes or no.

Our evaluation of the support that test techniques can provide for
the GE quality factors is presented in Table 6.9. As in the TRW study,
various static analysis reports provided the greatest amount of support.
The dynamic analysis techniques play a much smaller role in supporting
the GE quality factors than they did in the TRW scheme.

It is surprising that correctness is given a low degree of support
by the test techniques. The GE metrics for correctness are: tracea-
bility of modules to requirements, completeness, prncedure consistency,
and data consistency. It is difficult to und:rstand why no operational
standards were included under correctness.

IJ.A. McCall, P.K. Richards, and G. Walters, Fantors in Software

Quality, Metric Data Collection and Validation, Genecral Electric Co.
Report No. RADC-TR-77-369, Vol. II, November 1977.
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TABLE 6.9

TEST TECHNIQUE SUPPORT FOR GE QUALITY FACTORS

Quatity Fraction Degres of Nethod of Teet Teche!ques
Charscteristic Autcmetsbie  Suport Support
(Gt}
CORRECTHESS 10/13% L ] Static date flow enalysis,
moduie intertsce snaiysis
RELIABILITY 14/47 L] 1,8,0 Static dete flow snatysls,
statement cross-reference,
flow cherts
Exscutable assertions
EFFICIENCY 14/20 L +] Static date flow ensiysis,
ancmsly detection, unlts
assertions
USABILITY 0/23 [} -— -
INTEGRITY os3 ] - -
MAINTAINABILITY 8/48 M 1,0 Static dete fiow analysis,
statement cross-reference,
tlowcharts, cailing tres
Stendards checker-ianguage
FLEXIBILITY 20/29 L | Static stetement cross-
reference, calling free
Stonderds checher-ilanguage
TESTAB ILITY 2/44 L] 1,0 Static statement cross-
reference, calling tres,
data flow amatysis
Structurs! testing
Instrussntation=-timing anaiysis
ABUSAB ILITY 21730 L] 1,0 Static statemaat cross-
reference, cslling tres
Stendards checher-ianguage
PORTAS ILITY 16/23 L} 1,0 Static statement cross-
reference, caliing tree
Stendards checiwr-langunge
INTEROPERAS ILITY 16/2¢ L] 1,0 Static stutement cross-
reference, cslilng tree
$ e t
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GE judged that between 602 and 70X of the metrics were automatable
for eight of the quality factors. Overall, 402 of the metrics were
rated automatable. We found that 32X of all metrics were supported by
test techniques. None of the quality factors had more than 48% of their

metrics supported by test techniques.

The amount of test technique support for the TRW and GE software
quality categories is rather disappointing. However, the two studies
emphasized structural rather than operational properties of software. A
thorough test exercise of a program will tell more about how correct and
reliable a program is than the "medium” ratings indicate. Someone who
has spent a lot of time performing tests will have a good idea how easy
a program 1is to use, test, and modify. However, the low ratings for
other quality factors mean that testing will not guarantee that a
program has these desirable qualities.

Both the TRW and GE studies show a greater potentia’ for automated
data collection than what is currently provided by the test techniques.
These data collection capabilities could be incorporated into the
standard test tools to insure greater overall quality in tested

software.
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7 PROSPECTS FOR IMPROVEMENTS IN THE TEST TECHNIQUES
The ratings in the previous sections reflect the current state of

refinement of the test techniques. The ratings are based on the way the
tools are used 1ndividuaily in a typical software development environ-
ment. This section describes some ways that the techniques can be
improved. In some cases, these improvements are still being developed
and refined by researchers. But in other cases the methods are

available now.

Advanced software engineering methode can ameliorate some problems
associated with testing. For example, static testing of a program
written ‘n the language Ada will produce no extraneous mixed-mode
wal 1iugs (indeed wo wmixed-mode warnings at all)--Ada requires strict
type compatibility in all expressions and assignment statements.

Combining several test techniques can relieve some of the analy-
tiral burdens of testing. For example, using executable assertions
while performing structural or functional testing can provide a great
deal of assistance in error detection and location. The next report
will provide guidelines for combining the individual techniques into an
effective test strategy.

The improvements described below do not change the relative
rankings of the test techniques as presented in the previous sections.
We anticipate that all of the techniques will be improved in the future.
Many static analysis checks will be incorporated into the compilers that
implement advanced programming languages--this will make static testing
more automatic and universally used. Dynamic testing methods will be
better defined so that they will be commonly understood and applied by
practicing programmers. Successes with the use of formal techniques
will encourage researchers to develop ways of making them more practi-

cal.
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7.1 STATIC ANALYSIS

Extraneous warning messages are the biggest complaints of users of
statlc analysis. Two types of anomaly checking account for most of
these “red herrings”: mixed-mode arithmetic and data flow analyses.
The number of extraneous messages can be significant: = 5000-statement
FOWTRAN program tested by Gannon, et al.l using GRC's SQLAB tool
produced about 130 mixed-mode arithmetic warnings, none of which
indicated improper program operation. The same program was seeded with
37 errors and processed by the DAVE static analysis syatem;kit generated
580 data flow errar and warning diagnostic messagea.?

Anomaly deteétion will inevitably generaté false alarms, because
its purpose is to find progranming practices .that are capable of
producing errors but not cercaln to Ao so. In some situations prcgram-
mers find 1t convenient to viclate a principle enforced’ by anomaly
detection. For example, most FORTRAN compilers provide automatic
conversion from integer . to real and real to integer; ' so programmers do

not bother to reference the IFIX and FLOAT routines.

Most static analysis tools (including SQLAB and DAVE) give the
user the optlon of suppressing individual anomaly detection messages.
Of course, the danger in this is that actual errors can go undetected.
Probably the best solution to thekmixed—mode warning ‘problem is to use a
strongly-typed language or a compiler that. forbids iﬁpiicit type
_conversions. If a programmzr knows that he has to wfite ont every
convevsion for the compiler.to accept his code; he will be careful to do
so. Hopefully, as he codeg ‘the type conversions he will mentally check
that they are proper. The: pefmissive‘ FORTRAK .compiler . tempts the

1C. Gannon, R. N. Meeaon,*N;fne?Brooka, égkﬁ Eriﬁéntalazvaluation of
Software Testing, General Research Corporation CRﬁlrQ§§, May 1979, p.
5-8. - - T I P R .

2

This data is derived from the author's examination of an experiment

performed by Carolyn Gannon. Not all the messages were extranecus, but
this ie at least 16 messages per. error found.
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programmer to write implicit coaversions, turn off the static mixed mode
messages, and hope nothing goes wrong.

Data flowv anomalies present a different problem, since they are
! possible with any programming language or compiler. There are two major

causes of extraneous data flow messages: global entities and unexecu-
table paths.

Advanced static test tools such as DAVE perform a careful analysis
' of global data flow. However, they can be stymied by code which
references system or library routines that the tool has no information
about. The user can supply this information by providing “stubs” -
skeleton veraions of routines that contain no executable code but
| indicate parameter usage. The SQLAB tool facilitates the use of stubs
by helping the user to develop and save a library of stub lmclulu.1
Stube of tested modules can be built automatically and put on the
library; routines that reference these modules can then be analyzed for

global data flow without including large amounts of additional source
code.

The developers of DAVE estimate that 152 of all error and anomaly
messages produced by the tool are tied to unexecutable pnthc.z As
discussed in Sec. 5.3.3 , the general problem of determining whether a
path can be executed is unsolvable. However, researchers are looking
for algorithms that will detect certain unexecutable sequences that
frequently arise in pucc:lce.3 Such algorithms would also be useful for
test data generation in structural testing.

B P N L

R ls. m. Saib, et al., Advanced Software Ent* Assurance Finsl Report,

1 Lo General Research Corporation CR-3-770, May 1978, pp. 143-144.

! 1 ; 21.. J. Osterweil, “The Detection of Unexecutable Program Paths Through

Static Data Flow Analysis™, COMPSAC ‘77, Chicago, Nov. 1977, p. &ll.

/ 3s'm of this research is briefly summarized in H. N. Gabow, S. N.

’ Maheshwari, and L. J. Osterweil, “On Two Problems in the Generation of
Progran Test Paths,” IEEE Transactions on Software Enginsering, Vol.
S8-2, No. 3 (September 1576), P 227. The articie 5;‘ Osterweil cited

above rslates the unexecutable path problem, to static testing.

.
e i o

7-3




-G A

-—
NPT
o e

7.2 EXECUTABLE ASSERTIONS

The mechanics of assertion testing are very simple. Assertion
testing is harder than static testing because of the analytical work
required to develop a complete and effective set of assertions, and
because asgsertions may not pinpoint the locations of errors.l To make
his job easier, a tester needs information about how to formulate and
where to put assertions.

Therefore, assertion testing needs to be improved in two areas.
First, a methodology of assertion testing should be developed to provide
guidelines for putting assertions in programs. Second, test tools
should be able to indicate specific sections of code that need more
assertions. Changes and expansions of the capabilities of assertion
languages may accompany these improvements.

One method of forming assertions is to perform a formal verifi-
cation of a program using the Floyd -ethod.z Of course, formal veri-
fication is a very time-consuming process and may not part of the
planned test effort. However, methods of generating assettions can be
carried over from proving to testing. The application to \esting of
some formal assertion generation techniques is described by 1:0\4.3

AN

\
\

IIf assertion testing were used by itself, the user would also hnm\\go
formulate his own test input data. In reality, structural and func-
tional testing methods are available, and we deal with their problems
in the following subsections.

zl. L. London, "Perspectives on Program Verification”, in Curreant Trends

in Programming Methodology, Vol. II (R.T. Yeh, ed.), c. 1977, Prentice-
IIIl, PP 151-172.

3.1. W. Laski, "A Hierarchical Approach to Program Testing”, SICPLAN
Notices, Vol. 15, No. 1 (January 1980), pp. 77-8S.
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Other researchers have taken a less rigorous but more practical
approach to developing an assertion methodology. Three papers have
recently appeared which have defined specific goals of assertion testing
and outlined assertion constructs which support these goals.

From these papers a composite picture emerges of how assertions
can be used to test programs. Candidate locations and purposes of
assextion checks include:

The entry points of a module, to check values of incoming
parameters

Input statements, to ensure that wmeaningful values are
accessed

Following a call to another module, to be sure that values
returned are acceptable

At esach control point (branching statement, loop beginning
and teraination) to check that conditions are compstible
with the. path taken

After complex computations, to prevent propagation of an

) §
error

To impose conditions that are required to hold over entire
sections of code (e.g. a loop or module)

To check histories of computations, which involves comparing

the current value of a variable againset its previous
nl\nuz

r‘n‘n first five are duwe to D, M. Andrevs, 'M(&_qgu Tault Tolerance
Through Executabla Assertions”, Twelfth Annual Asilomar Conference on

cucuul Systems, and Computers, Rov. -8, 1978, Paciflic Crove,
0 .

2‘l'hou two are due to R. N. Taylor, "Assertions in Programming Lan-
gusges”, SIGPLAN Notices, Vol. 15, No. 1 (January 1980), pp. 105-114.
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° To provide safeguards on the integrity of dasta structures
(e.g., pointers, counts, value bounds)l

The adoption of such a specific list of purposes for assertions
could expedite testing in several ways. Static analysis can identify
many of the candidate locations noted above; static tools could produce
concise reports that contained the information needed to formulate the
simpler asgertions. Other aids could be made available for types of
assertions that require greater judgment, such as the last four in the
list. Possible sources of information for the more difficult assertion
types include complexity metrics, formal verification algorithms, and
requirements and design documents. '

Extensions to current assertion languages can make it easier to
express assertions. Some advanced assertion coanstructs have been
suggested by chtm.2 These include: '

° The ability to selectively activate or deactivate individusl
assertions without recompilation

° Global assertions, which must hold over entire modules

° The ability to specify the execution sequence or some of its
properties in an assertion predicate

] The ability to reference previous values of variables

l'l'he last is due to S. S. Yau, J. L. Ramey, R. A. Nicholl, “Assertion

Techniques for Dynsaic Monitoring of Linear List Data Structures”,
Journal of Systems and Software, Vol. 1, No. & (1980), pp. 319-336.

21'. §. Chow, "A Generalised Assertion Langusge”, Proceedings - 2nd
International Conference on Software Engineering, San Francisco,
October 1976, pp. 392-399.
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7.3  STRUCTURAL TESTING

The two major problems with structural testing are error detection
and test data generation. Struciural testing by itself provides mno
mechanism for error detection at all--the user must supply this through
gome other, usually manual, means. As for test data generation, the
various tools that support structural testing provide indications of how
the level of coverage might bes increased, but the user must ultimately
derive the test cases himself.

These shortcomings are mitigated by the fact that structural
testing is not conducted in a "vacuum"—that is, without the benefit of
other techniques and sources of information. We have eamphasized that
structural and functional testing should always be combined to ensure
the effectiveness of either technique. There are great benefits to be
gained from integrating several other test techniques with structural
testing.

An obvious way to provide automatic assistance in error detection
is to use executable assertions. Assertions are better than the
execution traces produced by instrumentation tools for two reasons.
First, assertions express relationships between variables rather than
Just reporting their values—in this way error conditions can be checked
sutamatically. Second, execution traces tend to produce large amounts
of output, which is wasteful of computer resources and anmoying to the
user.

Symbolic emecution techniques have been applied to the problem of
generating test dats to cause a particular section of code to be
executed. Tha problem of determining the necessary conditions for such
data 1s equivalent to finding the predicate conditions, in tems of
input variadles, for the eutry point to that section of code. Chrhl

R-A- Clarks, "Automatic Test Data Selection Techniques“, Infotech State

of the Art Hg!—so!mu Testing, Infotech International, Berkshire,
m » () X » ”. °
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describes a tool which uses symbolic execution to generate test data to
satisfy the statement, branch, and path coverage criteria.

Test data generation based on symbolic execution is not yat
available in a tool suitable for general use. A more limited but
practical aid for structural testing i{s a “"test assistance” report,
described by Deutachl for the RXVPS0™ test t:ool".2 The test assistance
report assoclates unexecuted branches with the decision statements that
control their execution. A listing of the statements affecting the
values of the varisbles foraing each predicate is aleo produced. The
user must decide how to change the program inputs to cause a change in
the value of the predicate.

7.4 FUNCTIONAL TESTING

When nmrd.n3 first introduced functional testing he was somewhat
vague about the mechanics of the technique. Recently he has described
how programs can be decomposed into functional parts from design
docmenu.l' o::tnu'-,.s’6 have been working on ways to identify special
values for tast cases. Unfortunately, no one has tried to develop am
automated tool to provide general support for functional testing.

l'H- S. Deutach, "Software Project Verification and Validation™, Com-
puter, April 1981, pp. 64-66.

80™ is & test tool built and marketed by the Software Workshop™,
General Research Corporation, Santa Barbara, California.

39- E. Howden, "Functional Program Testing", IEEE Transactions on
Software Engineering, Vol. SE-6, No. 2 (March 1 s Pp» 162-170.

‘H. E. Bowden, "Functionsl Testing and Design Abstractions”, Journmal of
Systems and Software, Vol. 1, No. 4 (1980), pp. 307-313.
sl.. J. White, E. I. Cohen, " A Domsin Strategy for Computer Program

Testing”, Infotech State of the Art Rsport - Software Testi Infotech
International, ma, Eﬁﬂ, Vol. 2, pp-. 325-363 Z“ﬁ;.
S%. A. Foster, "Error Sensitive Test Cases Avalysis (ESTCA)", IERE

Iransactions on Software Enginesring, Vol $EX-6, No. 3 (May 1980), pp.
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As in structural testing, error detection and test datas generation
cannot be completely automated in functional testing. F:rthermore, to
effectively conduct functional testing, a tester must have a good
understanding of the way a program 1is designed and the tasks that it is
to perform. Automated tools cannot provide substitutes for this
knowledge.

But an sutomated tool could support functional testing in various
ways. It could relieve the tester of clerical burdens. It could make
it easier to test sections of code separately. It could promote
thorough testing by tabulating tests that have already been run aund
identifying input regions that have not been explored.

These capabilities exist individually in several existing tools
that were developed for software testing. The “Adaptive 'Iester"l
developed by GRC provides automatic assistance in testing large software
systems. It has extensive data analysis and reduction algorithms to
handle large amounts of test output data. It generates several types of
graphic displays of data points in sny selected combination of input-
and output-space. These displays would pemait White and Cohen's domain

testing strategy to-be implemented by selecting test data with a cursor.

A conventional test lumuz can help to separately test function-
ally distinct cections of a program. The tester must determine the
separation, but then the tool permits him to wmonitor and control
execution. The tool can drive sections of code without the nsed for a
main program; it can identify externsl referemces that need "stubs”
provided for them; it can display the values of variables at interme-
diate points in the computations.

1c. G. Davis, "Testing Large, Resl-Time Software Systeme®, Iafotech

State of the Art ug'qrt - Software Testing, Isfotach Imtersatiomal,
re, » VO &, PP .

z?ot exsmpls, the TPL system described ia D.G. Paasl, “Automatic
mmn Test Drivers™, Computer, Vol. 11, No. & (April 1978), pp.
50.
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A test tool which combined the features needed for functional
testing would be very useful. It would also help the technique of
functional testing to mature.

7.5 FORMAL TECHNIQUES

Researchers in symbolic execution and formal verification are
beginning to respond to the challenge of producing automated tools
suitable for general use. But there are many obstacles to the accep-
tance of formal techniques by the general programaing community. We
feel that it will be a long time' before highly automated formal
verification "packages” will be in widespread use.

However, we expect a great deal of progress to continue to be made
in three areas concerning the application of formal techniques. First,
applications of formal methods to testing (as opposed to program
proving) will be refined. Second, tools will be built which make formal
verification much easier for the specialists themselves. Third, working
programmers will begin to understand and believe in formal verification.

Much has been written about applying algorithms derived for formal
techniques in static and dynamic testing. Earlier in this section we
discussed the use of symbolic execution in static data flow analysis and
in test case generation for branch and path testing. Some static
analysis tools (including AMPIC, DAVE, and SQLAB) mske use of algorithms
similar to symbolic execution to perform data flow analysis and reaching

ISmn Gerhart makes the following statement: "... optimistic projec-
tions for full mastery of the type of theorem proving we want today,
nsmely interactive guidance by user-supplied strategies through fully
mechanized subproofs, are ten years, with full capabilities for finding
proofs, although not necessarily finding interesting theorems, in
thirty years.” (emphasis hers). 8. L. Gerhart, Program Verification
in the 1980's: Problems, Perspectives, and Opportunities, University of
thern California/Information Sciences Institute, Report No. ISI/RR-
78-71, Auguet 1978.
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set generation and to detect infinite loops and dead code. We expect

the research in formal techniques to provide wmore ideas for improving
other test techniques.

Recent formal verification efforts have made researchers aware of

the avkwardness of current methods. Walker, et al. drew the following

conclusion while verifying the security of an operating system kernel:

“Improvements in the theorem prover's power and
user interface would of course be valuable.
Howvever, mechanisms are aleo needed to minimize
unmnecessary theorem prover invocations, which
result eithcr1 from redundant proofs or
reverification.”

Gerhartz suggests several ways to stresmline the proof process,
such as using more flexible approaches to proof organization, use of
multiple theorem provers in parallel, and maintaining libraries of

rroofs. uoticoni3 has been working on the reverification and incre-

mental verification problems. Ideas for improving verification tools

will continue to grow out of eZforts to prove programs.

Probably the most important problem that formal verification
researchers must solve 1is how to couvince skeptics in the software
community of the value of their work. The recent successes in veri-
fying the security properties of several operating systems have raised

the morale of the researchers themselves. Bo\nvot, they are awvare

13. J. Walker, R. A. Kemmerer, G. J. Popek, "Specification and Verifi-
cation of the UCLA Unix Security Kernel”, Communications of the ACM,

23‘1"\‘“ (optcito). Pe 7,11.

3]4. Moriconi, “Toward Incremental and Language-Independent Program

Verification Systems”, Verification Hotkshof ‘V!thoﬂ Proceedings,
SRI International, Menlo Park, ornia, Apr =23, .
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that many in the outside world believe formal verification to be
tedious, arcane, and generally not worth the trouble.

Proponents of formal verification hope that several developments
will help them overcome the skeptics. When a system that has been
subjected to verification is put into everyday use, the argument that
formal techniques cannot be applied to real programs will disappear.
It 1is even more important that formal verification become
“de-mystified”. Verifiers need to learm how to communicate their
proofs to an audience of programmers. They also need to teach pro-
grammers how to do formal ver:lfication-l

1‘l'hcu comments are summarized from Gerhart (op.cit.). Undergraduates

at many universities are now lesrning formal verification methods; soame
are also using symbolic execution systems and theorem provers.
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8 AREAS FOR FURTHER RESEARCH AND INVESTIGATION

We have identified six topics concerning testing in which further
research 1is needed. Four of these topics fall into the category of
studies or experiments that should be performed to fill in gaps in the
available knowledge and data about testing. The other two topics

concern new types of test tools that should be investigated and built.

8.1 STUDIES AND EXPERIMENTS

The topics for future studies and experiments are:

o The costs of using the test techniques described in thus
report
° A methodnlogy for assertion testing

® A methodology for functional testing

° An error classification system useful for evaluating test
techniques

There is an unfortunate scarcity of data on the costs of using the
test techniques described in this report. There is almost no data on
the amount of analysis time required by each technique. Efforts should
be made to monitor the time and costs involved in using the test
techniques during several software development projects. This data will
make it possible to campare costs between the techniques, and between
automated techniques and manual testing.

Executable assertions have too long remained a testing concept
rather than a method of testing. Assertions are not widely used by
softwvare developers, not because they are not understood or are looked
upon unfavorably, but because they have not been incorporated into a
standard programming a«nd testing methodology. Programmers want to know

8~1
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what types of assertions are most useful and how to go about writing
them before they will be more willing to use them.

The technique of functional testing also uneeds quite a bit of
refinement to become a standard methodology. All software developers
currently use some of the concepts of functional testing (although they
may not use that term), but they are applied in an ad hoc rather than
systematic manner. Software developers need to be made aware of the
automated aids which are available for performing data reduction and
stress testing. Techniques for decomposing programs into their
functional components need to be developed.

In Sec. 3.1 we discussed the inadequacies of the TBW error classi-
fication system for evaluating the effectiveness of testing. An error
classification system which clearly distinguishes between instances and
symptoms of errors should be developed. The symptomatic categories

should reflect the ways that the various test techniques actually detect
errors.

8.2 NEW TEST TECHNIQUES AND TOOLS

Two ideas for new test tools are the following:
o An integrated functional testing tool

° An advanced assertion preprocessing aid

In Sec. 5.4.1 we identified several existing types of test tools
which support various activities of functional testing. A most useful
tool would have a combination of these capabilities which could be used
together. Such a tool should provide test harness and test driver capa-
bilities, so that partially completed systems could be tested regardless
of whether top-down or bottom-up development was used. The tool should
have a test library facility so that tests could easily be repeated and
stored. Advanced mathematical techniques for data reduction and stress
testing should also be available for making and analyzing large numbers
of tests.

8-2
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In Sec. 5.2.1 we noted that available assertion preprocessors do
not lncorporate all desirable assertion constructs. Furthermore, there
are many combinations of computer system and programming language for
which assertion preprocessors are not available. The possibility of
using recent advances in translator writing tools to build assertion
preprocessors should be investigated. Such a tool might automatically
generate an assertion preprocessor from syntactic and semantic descrip-

tions of the assertion constructs and the target language.
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A.1  INTRODUCTION

This appendix describes guidelines for testing software systems.
It is not a complete handbook for testing software but attempts to give
some guidance in the use of techuniques, tools, and approaches.

Testing
software is a very labor-intensive and creative act.

The person testing
the software requires insight to decide how to test it and how to

interpret the testing results. He also must decide how much testing

must be done in order to conclude that the software i1is running
correctly. '

These guidelines are presented as a set of hints in organizing the
testing process. They have been developed by studying the current ways
in which software is being tested, by doing research into new -eth&h of
testing, and by drawving on our experience in testing large software

They are by no means the complete and the finali word on how to
test a software systea.

systems.

More research and experimentation needs to be
The techniques described in these guidelines wust be applied in

projects to discover their limitations aud to improve the ways in which
they are applied.

done.

This set of guidelines for testing software aims to help the
tester achieve the following: ‘

° Understand vhat attributes of the software to test.

Know which analysis tools and testing techniques to use.

. Understand the benefits of applying the analysis tools and
testing techniques.

° Learn a testing methodology which provides an incremental
approach to testing with the tools and techniques.

]

Knov when to begin testing and when to stop testing.

A-l
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] Measure how thoroughly the software has been tested when the

tools and techniques have been applied.
° Establish a level of confidence in the software.

A.2 TESTING SOFTWARE SYSTEMS

Testing a software system is different from testing an individual
prograa. In The Mythical lhn-uonthl, Brooks defines the difference
betwveen a program and a “"programming systems product”. A program is
complete in itself. It can be tested by itself and it does not interact
with other programs or devices. It is run by the person who wrote it om

the computer on which it was written. A program can become complicated

in two ways: it can become a programming product, or it can become part
of a programming systea.

A programming product is a program which has been generalized. It
may perform one task or implement an algorithm, but its range of inmputs
and the situations in which it can be used have expanded. It can be run
on computers other than the one on which it was developed. It requires
good documentation so that it can be used by people who did not write
the program. Finally, it needs to be thoroughly tested, since the users
of the program may not have the knowledge or resources to correct any
errors that they find in the program.

It. P. Brooks, Jr., The Mythical Man-Month: Essays on Software Engineer-
ing, Addison-Wesley, Reading, Mass., 1975.
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A program can also become part of a programming system. It now
must interact with other programs to perform a task. In order to
interact correctly and achieve the task, the program must adhere to
rigidly defined interfaces. It algo must adhere to constraints on the
way in which it will operate including running time, memory require-
ments, the input and output devices it uses, and the way in which it
accesses and uses global information. The program must now be tested in

concert with the other programs; this increases the time and cost of
testing.

A programming systems product is a program with both sets of
characteristics. It is intended to run in several different environ-
ments together with other programs. It may interact with other systems
or be part of a larger system (an embedded programming system). Brooks
estimates that this type of program costs nine times as much to develop

as a simple program. Consequently, it also may cost nine times as much
or more to test.

Problems in Testing Programming Systems
Programming systems are difficult to develop and test because:

L) The interactions between the individual parts become
complex.

[ The size and number of programs involved increase dramatic-
ally.

° The smount of effort that must be expended to manage and

understand a large system increases also.

One of the most difficult problems in building and testing a
softvare system 1s managing the volume of information. Tools and
techniques which are adequate for testing a small set of programs
quickly become inadequate for testing a large set of programs. Tools
and techniques have to be designed primarily to handle large smounts of
programs and data. The data taken in testing a system must also be
managed, and this may require another tool.

A=3
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Independent Testing

When systems are built, testing which in the case of the indivi-
dual programs was dome by the developer, now becomes a task best
performed by someone else. Since the system is a product which will be
used by & number of different users, it is best tested by someone who
understands how it should ‘be used but who did not develop it. Because
the program is now a system, it needs to be tested by someone who has an
understanding of the overall architecture of the system and how the
parts are to interact and communicate. The individual developers of the
programs in the system msy not have this knowledge. Once again, it is
better to have an independent but knowledgeable tester.

Standards

One of the ways to handle complexity is standardizatiom. 1f
systems can be constructed out of similar, well understood parts, then
the system can be better understood as a whole. If every program in the
system has a similar format, uses the same set of control structures,
and adheres to the ssme interface standards, then any program in the
system can be more essily understood. Each program complies with a
standard set of assumptions.

Testing techniques and tools can aslso take advantage of the common
structure and assumptions. Tools can use the assmmptions to become more
efficient. They can also test the programs to see if they follow the
standards. And if new tools need to be developed for a special appli-
cation, then they can take advantage of the similar structure and
assmptions and be quick and easy to implement.

A-4
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Documentation and Organization

There have been a number of standards adopted for testing computer
aoftvare-l Usually these standards set down requirements for documents,
formats for documents, and sachedules and topics for formal reviews
during the goftware development process. Although documents and reviews
are important in the development and testing of software, they are not
the main subject of this apppendix. Documents and reviews support and
give structure to the development and testing tasks but they do not

define how rhey should be done and what tools and techniques should be
applied.

A.3 WHAT TESTING ENTAILS ;
The first question that a tester asks is "How am I going to test :

all these programs?” Implicit in this question are two other questions: !
(1) What do I have to test for? (2) What can I use to help me test for

it? Testing requirements answer the question of what to test for and \
tools and techniques answer the question of what to use for testing.

e ——

A.3.1 Testing Requirements

When a tester first starts thinking about what to test, he thinks
about testing what the program does. That 1is, he first tests its
functions. Later, he may also consider special cases such as boundary
conditions and individual values which are somehow important. If the
program is part of a system, he slso may test its performance. That is:
hov much memory it uses, how long it runs, or how many data values it
can handle in a certain amount of time. However, there are other

1!. A. Straker, C. E. Penner, J. Penland, and T. BE. Albert, A Method-
olo for the Validation of Real-Time Software Used in l(uclur Phnt

Safety Aggliutiou, Science
» APT .
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important features of the scftware vhich also must be tested. These
features can be grouped under the title of “testing requirements” and
include the following:

Rl o PP

| ) Functional requirements
' ° Performance requirements
° Currently accepted programming practices

! ] Semantic rules of the programming language being used

r ' ° Constraints placed on the programs by specifications, other
| programs, the hardware, and the operating enviromment

° Assumptions made by the designers and programmers in
’ ‘ {aplementing the system
!
|

Testing requirements can also include all the hardware, softwares,
people, and other things involved in performing a test. Military stand-
ltdll describe documents for defining and running tests but we will mot
| ’ be concerned with those in this report. In this context, testing
. requirements will mean all those things that a tester should consider in
} ' designing a set of tests for a software system.

Lo

Currently Accepted Programming Practices

The most well-known currently accepted programming practice is
structured programming. Structured programming restricts the types of
control structures that are allowed in the programming language. It
also may be combined with a design methodology such as top-down design

. are gy - e

r"tuu.n. of Computer Programs”, AFR 800-14, Volume II, Chapter 5.

. —
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or levels of abstraction which serve as guidelines for the software
design and development process. Current accepted practices may include
other things such as requirements for comments in certain places in the
code, a standard program organization, and certain formatting conven—
tions. They all have ome thing in common. They make the program more
easy to read, maintain, and understand. They are rules of thumb, not
absolute, provable laws, but they are accepted by the software industry

as a whole. They are important in the testing process if a quality
plece of software is to result.

Programming Language Semantic Rules
Each statement in a programming language has a meaning sattached to

it. Its meaning is most explicitly expressed as the set of machine
language statements it translates into. Its wmeaning may also be

expressed by how it alters or keeps constant the state of the machine it
is running on. Programming language semantics have also been expressed
fomllyl. Sequences of programming language statements may also have
meanings attached to them in addition to those attached to the indi-
vidual statements. In PASCAL, for exsmple, a particuler ordering of
the statements in a prograa is prescribed. Certsin statements, such as

the IF statement, may require a matching statement, such as an ENDIF
statement, to define the end of a sequence.

Not all of these semantic constraints on the programming language
are explicitly defined in the programming langusge, and not all are
checked by the compiler that processes tha language. For exsmple, some
FORTRAN compilers do not check the data types of parameters to subpro-
grams. PFailing to adhere to these constraints can cause software to
operate incorrectly. Many of the checks for these coustraints have been

e - . — —————————— T ——————

ll. J. C' “rm.

The Denotational Description of Prograsming Languages,
An Introduction, Springer-Verlag, o
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embodied in static analysis tools. This is the most common way in which
software is checked for violation of thege constraints.

Constraints

A program must also adhere to the constraints placed upon it by
the enviroment in which it rums in and the underlying theory from which
it was developed. For example, a real-time control program must take
into account the time constants of the devices and sensors with which 1t
interacts. Programs which compute orbits of satellites aust couform to
the underlying theory of orbital mechanics. These constraints and
underlying theories are a source of many software errors. Therefore
they are also a good source for test cases. The constraints are an

especially good source for many of the assertions used in assertion
testing and in formal verification.

Programser's Assumptions
There are also many asssumptions made by programmers in designing

and implementing programs which are not part of the formal design pro-
cess. These are a frequent source of errors. They include assumptions
about the range of values of variables, special quirks of the compiler
or operating systea being used, and data base values which are get
before the program is run. All these assumptions need to be made
explicit and tested for their effect on the system as a whole.

A.3.2 A T..ti_‘_l. ll.thodolo.z
A good testing methodology must include all of the following in
order to test software well:

A sat of programming standards

A test plan

A set of testing techniques

A standard of performance for the software

A8
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Prograaming Standards
A set of programming standards must be defined if testing is to be

successful. These standards should include:

Test Plan

The currently accepted progrsmming practices to be followed
on the project

A format for the text of each program

Requirements for specific kinde of comments in specific
places in the program

Constraints on the use of the programming language, opera-
ting system, and command language of the computer

A plan for testing the software must be developed. This plan
should include:

An ordersd sequence to testing so that groups of modules are
tested together before the whole system is tested

A set of data values and scenarios to be used in the
testing

Methods for comparing the output resulting from the testing
to the expected output

The test plan should also include ways in which the functional and

performance requirements of the software will be tested and how the
other standards, constraints, and assumptions will be verified.

A-9
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Testing Techniques

The testing methodology must also specify a set of testing
techniques which will be used to accomplish the test plan and when they
will be used. It should specify which techniques should be used during
each phase of development and in each phase of the testing. It also

aust specify which techniques will be used to evaluate how completely
the software has been tested.

Standards of Performance

The testing methodology must also specify what method will be used
to decide when to stop testing. It must describe how to determine when
the software has attained a specified value of reliability or function-
ality wvhich indicates that it can be accepted. This requires keeping
track of the testing history and the devslopment process. This in turn
requires keeping a data base, possibly a tool for maintaining the data
base, and a tool for measuring the reliabilty value.

A.4 APPLYING TESTING TOOLS
The test techniques to be considered here, and the tools that

implement them, were discussed in detail in the body of this report.
The five techniques vhich we consider are:

Static analysis
Executable assertions
Structural lesting
Punctional testing

Forsal techniques——syabolic execution, formal verification

A.4.1 Relating Tools to Software Development Phase
Testing is mnot confined to one phsse of a project; rather it
begine as soon as programmers begin to sift the mistakes out of their

A~10
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code and continues as long as the final product is in use. Table A.l
presents the phases of the softwvare development life-cycle and notes the
test-related activities for each phase. The phases and activities may
overlap in time.

Testing should begin as early as possible in the software life-
cycle. Boehm's ltutly1 relating life-cycle phase to repair costs
reported that it is about 15 times more expensive to fix an error in the
maintenance phase than it 1s during coding. However, errors will
probably aiways appear thoughout the life-cycle, so the evaluation of
test techniques cannot be focused on one particular phase.

Different test techniques lend themselves more readily to differ-

ent life-cycle phases. For example, static analysis techniques can be

applied very early in the coding process, while most dynamic testing
techniques must wait until a compiled version of at least one complete
module is available. Table A.2 shows a smatrix of test techniques along
with the life-cycle phases in which their application may be appropri-
ate.

It should be emphasized that using a technique later in the
life-cycle does not imply lower cost-effectiveness. Different tech-
niques catch differeant kinds of errors, and the effects of differeant
errors on program operation are rarely the same. The conclusion to be

drawn from Boehm's “increasing cost of error correction” data is that

there is a penalty to be paid for delaying the testing process.

13. W. Boehma, “Software Engineering,” IEEE Transactions on Computers,

Vol. C-25, No. 12 (December 1976), pp. 1Z7Z85-1Z31.
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TABLE A.2
APPLICATION OF TEST TECHNIQUES IN THE LIFE CYCLE

Life Cycle Phases
(see Table A.l for descriptions)

g g *
] S - v
g - e} o0
w - RV ) 0 O
2 R et - a
o0 9 QM - o 3
g3 o 3 v
-3 9 W W ] - -]
-] G = &c
Techniques © O S =
A, Static Analysis
1. Program error detection 4 4 /
2. Anomaly detection v v %
3. Asgertion checking Y % %
4, Test data generation v/
5. Automated documentation v v
B. Dynamic Testing
1. Testing aids
a. Executable assertions v ' v
b. Functional testing v Y v
c. Instrumeantation Y
d. Structural testing v
e. Test harness v
2. Debugging aide v v
3. Performance evaluation 4 /
c. Formal techniques
1. Symbolic execution v
2, Formal verification Y

*
This column denotes error diagnostic testing only. Modificatioms to
operating programs must undergo testing as for the previous phases.

A-13
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’ . Guidelines for testing software systems are summarized in Table
A.3. They show the steps to be considered in test planning, and the

correspondence between test requirements and techniques.

TABLE A.3
SOFTWARE TESTING GUIDELINES

STEP 1. Estimate the number of errors in the software, using either
i of the following techniques:

P a. Error seeding.
% b. Halstead effort metric.

-

STEP 2. Use the techniques to evaluate the software on the following
testing requirements.
ﬂ Technique Requirement
Code review Current accepted programming practices
Static analysis Programming language semantic rules

Structural testing Implemented structure (will 1include
some functions)

Assertion testing Some functions, requirements and
constraints

Functional testing Implemented functions
Symbolic execution All implemented functions

Formal verification All goftware requirements and all

agsumptions

i‘ STEP 3. Apply the techniqués in the order indicated in Table A.4.
| STEP 4. Measure the reliability of the program using a reliability
1 metric.
(i 1 STEP 5. Stop when the number of errors found reaches the number of

- errors estimated, and when the reliability of the program is
‘ satisfactory.

A-14
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A.4.2 Making an Error Estimate

The first step in the testing process is to estimate how many
errors can be expected to be found in the software. This is done to
. give an estimate of how long testing should continue. This approach has
not been used before; but we recommend it because it can give a quanti-
. tative answer to the question of when to stop testing.

An error estimate can be made in several different ways. Two
discussed in Sec. 3.2.4 of this report are the error seeding technique
and the Halstead effort metric. Error seeding can be used in conjunc-
\ tion with a formula presented in Schick and Holvertonl to give an
! ; estimate of the total number of errors in the program at any point in

I the testing process. The Halstead effort lett:lcz has been shown by
A‘ Fitzsimmons and Love3 to correlate with the number of errors preseat in
a program at the start of the testing cycle.

l The error estimate should not be regarded as exact, but rather as
a "ballpark figure” which is useful for planning purposes. If possible,
i the estimate should be refined to reflect the characteristics of the
; softwvare development enviromment: the skills of the people working om

the project, the nature of the application area, the computer and
; language being used, etc. We feel that people will become able to make
r ‘ ) fairly accurate error estimates as they gain experience with them.

i
i
|
4
;

16. J. Schick and R. W. Wolverton, "An Analysis of Competing Software

Relisbility Models,” IEEE Transactions on Software Engineering, Vol.
SE—4, No. 2, (March 1978), pp.112-114.

H zn. H. Halstead, Elements of Software Science, Elsevier North-Holland,

2
T e R

] 1977.
i ' 1 g 3A. Fitzsimmons and T. Love, "A Review and Evaluation of Software
b Science”, ACM Computing Surveys, Vol. 10, No. 1 (March 1978), pp. 3-18.
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However, the error estimate should not be the only guideline used
in gauging the magnitude of a test effort or in applying the test
techniques. The most important criterion for testing is the performance
of the product under test, not the number of errors found.

.

A.4.3 Test Technique Selection

Chapter 5 of this report contains characteristic profiles of the
tools and techniques. It indicates which errors each technique will
identify, how effective and reliable each technique is in locating
errors, and estimates the cost of using each technique. Each technique
is useful in testing software on one or several of the testing require-
ments. The tester should select a number of techniques based on the

e et et e e
e e

cost he expects to encounter during testing, the number of errors

% | estimated to be in the software, the reliability that must be achieved,
' \ { and the availability of the tools.

i

]

X The testing techniques and the testing requirements that they

, address were shown in Table A.3. In general, techniques should be

‘ gselected in the order in which they appear in that table. That is,
structural testing should not be done unless code reviews and static
analysis are done. This is because techniques occurring earlier in the
table are usually less costly to apply and are more autcmated.

[ All techniques are more effective and easier to use if some re-
‘ strictions are placed on the code during its design and development.
Standards are important. You must decide how you are going to test the
software BEFORE it is designed and built. Most tools and techniques
make assumptions about the structure of the system being tested. They

also are less costly to use if some constraints are placed on the soft- ;
q . wvare. In addition, if new tools must be built, they can be developed !

easier and more quickly if they can make some assumptions about the code
that they have to process.

o — oo

5
4,
;’
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The most besic testing technique is code review. This can be done
either by hand or automatically. Code review checks the constraints and
standards that were set down for the software development. Standards
for structured programming, program layout and style, comments, and
programming language restrictions are checked by this technique. If
only one technique is used besides testing the basic functions of the
software, this is the one that should be used. It is the ouly way to
verify that the software adheres to the standards set down for it.

Static analysis cen be used to verify that the code adheres to the

constraints of the programming language. Here such things as inter-
faces, mixed-mode arithmetic, and data flow can be checked.

Structural testing is the next technique to be included. This can
usually be accomplished at the same time that the basic function of the
software is being tested. Instrumentation can be placed in the code and
the amount of code exercised by the basic tests can be measured. New

tests can then be derived which exercise greater amounts of the soft-
wvare.

If assertions have been placed in the code during the development,
they can be used during the basic fuunctional testing to verify that the
softvare follows the assuaptions and counstraints placed upon it. If
needed, more assertions can be added to the code to check new conditions

that are imposed as the goftware is being developed and to check for and
recover from error conditions.

Given that the other techuiques have been used, full functional
testing can be attempted in order to verify the complete function imple-
aented by the software. This means testing for special input values,
stress testing, and testing the domains associated with each input
variable. The other techniques ~- structural testing and assertion

A-17
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testing —— can be used to give information by which to evaluate the
results of functional testing.

1f the reliability requirements of the software are high, then
symbolic execution can be used either to generate test cases for the
software or to summarize its functiom. Symbolic execution is wmore
effective if assertions have alresady been placed in the code. The
decision to use symbolic execution must be made when the software is
designed. This decision can help reduce the complexity of the code and
make the logical expressions developed by symbolic execution easier to
generate and interpret.

Finally, after all other testing methods have been used and if the
software has been designed with verification in mind, then program proof
can be attempted. The goal of the proof may be to show that certain
sections of the software are correct, that they temminate or that they
implement a secure piece of software. In any case, this is the most
difficult and expensive technique. It should only be used when the
requirements for correctness or security are high and only then 1if the
software has been designed with proof in mind.

A.4.4 Qrder of Applying the Techniques

The testing techniques should be applied in the order showm in
Table A.4. If structural testing and assertion testing have been
decided upon, then the assertions and the ability to trigger instru-
mentation should be added during development of the code. Likewiss, the

programming standards and conventions should be followed throughout the
development process.

Notice that formal verification must be preceded by the other test
techniques. This 1is because code cannot be verified unlass it is
correct. Coding errors can be corrected during the process of counduc-
ting code-level proofs, but this is an 1inefficient way to operate.

A-18
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TABLE A.4
ORDER OF APPLYING TESTING TECHNIQUES

1. Insert executable assertions during coding of the progras.

2. Perform code review and standards checking, using automated
tools if available.

3. Perform static analysis.

4. Perform programmer-defined tests, unit tests, or integration
tests and record structural coverage and assertion
violations.

5. Use structural tests to get complete coverage of program
branches.

6. Perform full functional testing.

7. (Optionally) Perform symbolic execution to generate test
cases or make functions explicit.

8. (Optionally) Attempt formal verification.

Formal verification of the design of the software may or may not rely on
the code level proof.l'; but the code should be written and tested before
the design-level proofs are conducted. This is because problems en-
countered during coding and testing may require changes in the design.

ll. J. Walker, R. A. Kemmerer, and G. J. Popek, "Specification and
Verification of the UCLA Unix Security Kernel”, Communications of the
ACM, Vol. 23, No. 2 (Feb. 1980), pp. 118-131.
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A.4.5 Levels of Confidence in Testing

Since testing 1is dome to improve the quality of a piece of
software, it is natural to look for a way to measure the "amount™ of
quality improvement that results from following a particular test plan.
Unfortunately, there are no general measures of software quality that
are suitable for use in "measuring the benefit™ of testing.

However, there is a natural progression of software quality
“levels” that is followed when software is tested. Each level describes
the state of development of the software, and reflects the coufidence
one can have that the software will perform properly. The levels
represent goals to be achieved during the testing and verification of
goftware. As such, these levels fall within the general framework of
software development goals or milestones, such as “"code compiles

successfully” or “installation successfully completed on the target
machine”.

The ten levels as we identify them sre as follows:

1. The code complies with the set of programming standards
mandated for it.

2. The interfaces between all program units are compatible.

3. The software performs satisfactorily for an initial set of
test cases defined by the programmers (checkout tests).

4. All sections of code have been exercised by at least one
test case. The output for these cases is correct.

5. The software accepts arbitrary inputs "gracefully”--that is,

no input conditions can cause undesirable behavior such as
an abnormal program termination.

A=20
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6. The software produces correct output for a set of special-
values functional tests (see Sec. 5.4.1).

7. The software produces correct output for a set of functional

stress tests (see Sec. 5.4.1).

8. The intermediate states of computation are correct for the
tests described in (3), (4), (6), and (7).

9. The coded software faithfully implements the design.

10. The software always produces acceptable output that 1s in
accordance with its specifications.

If the test plans described in these guidelines are followed, then
these quality levels will be achieved. Traditional testing--manual code
ingpection and executing programser-defined tests——can only achieve the
first three levels. The static and dynamic test techniques described in
this report cover the first eight levels, while formal verification
addresses the last two. Table A.5 shows how the automated techniques
described in this report can be used to achieve each of the software
quality levels.

The ten levels are in roughly chronological order in terms of when
they will be achieved in a test effort. Since differant software pro-
jects have different standards of performance, the sequence of levels
can be used as a criterion for test planning and for when to stop test-
ing. For example, & program that is to be used only with a particular
set of inputs needs only to achieve levels one through four. However,
if a program amust perform a complex sequence of computations for
arbitrary sets of inputs, then testing must proceed at least through
level eight.
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TABLE A.5
TEST TECHNIQUES REQUIRED TO ACHIEVE EACH
SOFTWARE QUALITY LEVEL

Quality Levels

1 2345617839 10

Code Reading x

Static analysis x x
Programmer—defined tests x

Structural testing x
Functional testing X X X

Assertion testing

Formal verification X X
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A.5 GUIDELINES FOR SOFTWARE STANDARDS

Software standards can be divided into two types: (1) those for
organizing the software development and (2) those for generating the
software. The standards summarized below were used during the
development of a large data collection systenl and are representative of

those which can be applied during large programming projects.

A.5.1 Standards for Organizing Software Development

Software development standards are applied to achieve the
following goals:

° To give members of the development team access to common
information and tools needed in the development process.

° To give the software manager information about the status of
the project.

[ To make development decisions and validation history

available for use in subsequent documentation.

In order to achieve these goals, and to support and monitor the
software development effort, a project should include a Software

Librarian, a Software Control Notebook, Software Design Specificationms,
and Software Development Folders.

The Software Librarian maintaing information on the status of the

project. He must keep the Software Control Notebook and maintain a
Problem Report Log. The Librarian serves as a cosamunication point
between programmers to minimize interface problems during system

lPro‘rauin‘ Standards Documents (for the High Energy Laser Data

Acquisition and Processing System), Physical Science Laboratory, New
Mexico State University, BAADO7-79-C-0192.
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integration testing. He also supplies information for preparing

progress reports.

A Software Control Notebook should be maintained for each module.

It should include the following sections:

Module name, description, and functiom

Local storage and data structures

File and record format

Messages to operators and users

Context of the module in the software system

Cross reference of global data accessed by the module

Croes reference of input and output statements in the module

The Software Design Specification should include the following

information:

1. Software Subsystem Specifications

»
<3
g
e
e
[

Identification of modules in the subsystem
Calling/called relationship between modules
Revision history

References to other documentation

Design Specifications

Identification of the module

Purpose and function of module

Algorithn and strategy of the module

Input and output parameter descriptions
Peripheral device input and output variables
Performance requirements of the module
Assumed system state

Revision history

References to other docuaents
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A Software Development Folder should be created for each module
when the module is assigned to a programmer. 1Its purpose is to ensure
the orderly development and modification of the module. The Software
Development Folder is the primary management tool used by the Software

Librarian to monitor progress during software development. It provides a
guide and record of specific programming activities and is used to
generate program documentation. The information in the PFolder can be
used by the Librarian to verify that each module complies with the Design
Specifications. The Folder should also document all test results.

A.5.2 Standards for Generating the Software

Standards are imposed on the form of software in an effort to
ensure the following:

® Software should be easy to read and understand.
|
’ ° Software should be self-descriptive and self-checking.
|
° Software should be easily modified, and all modifications
l should be traceable.

The following are some examples of software standards:

° The programming language or languages to be used in the
development should be specified.

° The software should be designed in a modular fashion. Each
module should implement a well-defined function and provide
an explicit and clean interface to other modules. Standards

for module design have been developed by several sourcesl'z-

IE. Yourdon and L. Constantine, Structured Design: Fundamentals of a
- Descipline of Computer Program and Systems Design, Prentice-Hall, 1979.

2

G. J. Myers, Reliable Software Through Compoaite Design, Petrocelli/-
Charter, New York, 1975.
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e The modules should follow a particular style. Each module
should begin with comments which describe the purpose or
function of the module, list the input and output files
used, and define calling parameters and key local variables.
They should explain any restrictions on the wuse of the
module, and how abnormal return conditions should be
handled. Naming conventions should be established for all

symbols in the program.

° Desk checking and code reviews should be performed.

. Static testing should be perfomed using a static analysis
tool.

. Modules should be unit tested with instrumentation to

collect test case coverage statistics.

A.6 GUIDELINES FOR USING THE TEST TECHNIQUES

The sections below contain information to guide the user in
applying each of the test techniques. The recommendations given are
general in nature—they should be modified to accommodate the specific
needs and problems of each individual software development effcrt. There
may be practical reasons why a test tecHnique cannot be applied.
However, in the absence of such obstacles, these guidelines describe how

to get the most out of a testing effort and how to test efficiently.

A.6.]1 Guidelines for Static Analysis

Static test tools typically have several error detection and
program documentation capabilities. Each of these capabilities can
usually be invoked separately at the optioa of the user. Thus, static
analysis is a very fle ible technique which can serve several purposes.
Static testing should be used in the following ways:
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As a programming aid, by providing the programmer with
crogs-references of variables and other symbols and by
indicating errors that are often due to oversight (e.z.
uninitialized variables);

During unit testing, code should be checked for compliance
with standards by a static tool. All error and anomaly
checking options should be invoked at this stage. In this
way, as many errors as possible are removed before more
expensive dynamic unit testing or integration testing are
performed.

During integration, static interface checking should be
used. This will ensure that the integrated units are
compatible in their use of global storage and in the type
and number of calling parameters associated with each

module.

When a software product is ready for installation or
delivery, static documentation capabilities can be used to
provide information for program specifications, reference

manuals, and other forms of documentation.

During the maintenance phase of the program 1life cycle,
static analysis should be wused to help to verify the
correctness of any modifications to the program. Interface
checking should be used whenever a fairly large amount of
code is to be added to an existing program.

g ot O BRE

Since most static analysis options are very inexpensive and can be
performed quickly, programmers and testers should be given the freedom
to use them whenever they desire. If programmers are permitted to
experiment with a static tool, they will quickly learn to feel comfor-
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table with it. Static error checking and documentation production more
than pays for itself, since it saves programmers and testers a lot of
work that would otherwise have to be done manually.

A.6.2 Guidelines for Assertions
Assertions should be written and included in each module as part

of the development process. They should be evaluated during all phases
of testing. Assertions should be placed in the following locations in

each mcdule, for the reasons noted:

® 2t the entry and exit noints of a module, to check

values of incom.ng and outcoing narameters,

. At input statements, to ensure that meaningful values are
accessed.
° Following a call to another module, to be sure that the

values returned are acceptable.

) At each coantrol point (branching statement, loop beginning
and termination) to check that conditions are coampatible
with the path taken.

] After complex computations, to prevent propagation of
an error.
° To impose conditions that are required to hold over entire

sections of code (eg. a loop or module).

. To check histories of computations, which involves comparirg
the current value of a variable against its previous values.

e To provide safeguards on the integrity of data structures

(eg. pointers, counts, value bounds).
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A great deal of judgment must be used in determining what asser-
tions to write and how to write them. Thorough testing of a program
with assertions alone takes an awful lot of them. During test planning,
it should be decided to what degree assertions will be relied upon
during testing and whether they will be used to give the finished
program fault-tolerance. If a major assertion testing effort is chosen,
the specifications and design of the program should be used to develop a
complete set of conditions that can be imposed on the code through
assertions.

Alternatively, a project manager may decide on a less intensive
application of assertions. In this case, the most important conditions
required by the design and specifications should be formulated as
assertions as the program is coded. Since it 1is easiest to catch
computation errors with assertions, the greatest emphasis when using
them to a limited extent should be to check the progress and results of
calculations.

Regardless of whether assertions are included in the original
plans for testing, programmers should be permitted to use them as
debugging aids. Debugging with assertions incurs the additiomal
overhead of preprocessing and compiling the code with its assertious, so
some restraints on this method of debugging may be necessary. However,
asgertions can be more effective and efficient than other techniques,
such as execution traces, at detecting and locating errors.

A.6.3 Guidelines for Structural Testing

In Sec. 5.3.1 of this report we 1list four units of program

structure for which coverage may be measured during testing:

° Executable statements
° Branches, which correspond to the outcomes of each decision
statemeat
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° Combinations of branches

° Full paths (from entry to exit) of a program

One question that a tester who is considering the use of struc-
tural testing will have is which level of coverage should be used. Our
answer is that the most important thing to do is to achieve full branch
coverage. The reason for this is that it is possible to achieve full
branch coverage, and doing so gives the tester the assurance that he has
exercised all of the code during testing.

The statement coverage measure should not be used for several
reasons: full branch coverage subsumes full statement coverage and is
not too much harder to achieve; and testing for branch coverage can
provide important information and detect errors that are ignored if only
statement coverage is attained.

The combinations of branches and the full paths covered during
testing vhould be identified, but full coverage at these levels is
ususlly iupossible. Furthermore, there are other aspects of structural
testing that are more important than the sheer numbers of paths or
combinations of branches that are covered. During structural testing,
the tester should determine whether the flow of control that actually
occurs during execution of the program is the shme as what was intended
during the design phase. The path coverage and execution trace infor-
mation provided by an instrumentation tool must be used to do this.

Selecting good test data is critical to the success of structural
testing. Test cases that are likely to reveal errors should be chosen--
candidates for this 1include singular and extreme values of 1imput
variables, and coﬁ‘bimtiom of inputs that represent special conditions
that the program must handle. “Meaningless” test cases or test data
that is "pulled out of the air” should not be run just to try to drive
coverage up—this is inefficient and not likely to result in errors
being detected.

A-30




« A - - e e e e ARO e e M e

Structural testing should begin after an initial level of branch
coverage is' established during checkout of the code. Structural testing
can be combined with other dynamic testing techniques (in particular,
assertions and functional testing) by simply measuring the coverage
achieved wvhile applying these techniques. However, a set of tests which
achieves full branch coverage should be identified as early as possible;
this set of test cases should be used to help formulate other tests and

for regression testing (retesting after error correction).

For large software systems, it is much easier to obtain complete
branch coverage by testing each unit separately. In this way, a
significant number of errors can be detected during unit testing that
would otherwise not be caught until integration testing was perfomedl.
It may not be feasible or desirable to attempt full branch coverage when
testing a large system as a whole. However, the experience gained from
structural testing at the unit level should be used to form test cases \

and evaluate test results during system-level testing.

A.6.4 Guidelines for Functional Testing

If formal verification is not performed, the greatest amount of
testing effort and resources should be concentrated on functional
testing. This 1is because functional testing amounts to trying to
demonstrate that the program works as it is intended for as many cases :
_ as possible. Functional testing is open-ended since all possible cases
can't be tested. The goal of functional testing is to find and apply a i
| set of test cases that will result in a very reliable piece of software :
being produced.

1ll. S. Deutsch, "Software Project Verification and Validation” Computer
April 1981, pp. 54-70. ' ’
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In Sec. 5.4.1 we discussed the three ways that test data is chosen
during functional testing: by examining the functions that the program
is to perform, the inputs to the program, and its ocutput behavior. The
most important of these, and the first that should be used, is the
program functions. In teating the program, its functions should be
disaggregated to the smallest level possible. Each identified function
should be tested both individually and in combination with others that
affect 1it.

As an illustration, consider a software package which implements
dynamic storage allocation and list manipulation through FORTRAN-call~
able library routines. The package must perform a fairly large number
of specific functions, such as: obtaining a block of storage from the
operating system, referencing blocks by using pointers, ordering iteas
on lists, etc. Regardless of the method used to design and build the
package (top-down, bottom-up, etc.), the code which implements each
function should first be tested in as high a degree of isolation as
possible. That is, the list-manipulation code should first be tested
with data structures artificially created for it; later the storage
allocation functions can be used to build the list items.

There are several practices which should be followed to ensure the
success of this phase of functional testing. First, it is important to
alvays use relatively small modules that perform one well-defined
function. If this is done, the code does not have to be "torn apart” to
be tested. Second, functional testing should be included in the unit
testing phase rather than put off until system-level testing. Third, a
test harness or driver should be used to help isolate and test parts of
programs.

The second ares of emphasis in functional testing is the inputs to
the program. If the program is being written for a limited purpose, and
the values of the inputs that will be used whenever the program is run

A-32

R - T e e e e s e e e et

A

N T e S e W ———— T o ot




[ 3

T i T . ]

are known, then extensive input testing of the program is not necessary.
However, if the program is intended for more general use, then the
following thinga should be tested for:

] The tester should make certain that the program handles all
possible input values—even.those out of range—gracefully.
The program should not count on the user to always provide

reasonable values in the proper format.

® The tester should identify “special values” of the input
variables which must be handled correctly by the program.
Examples of special values include zero for a variable that
appears as a denominktor, null character strings, numbers
with very large and \vety small wmagnitudes, etc. These
special-value inputs sghould be tested alone and in com-
bination.

The third area of concern in functional testing is the output
behavior of the program. "Stress testing™ is the process of searching
for ways to produce undesirable behavior in a program. It is usually
applied at the system test level, to programs that must react to a wide
range of external conditions or that implement approximation schemes or
heuristics. Exsmples of such software include numerical algorithms for
approximating complex mathematical functions; garbage collection, 1list
sorting, and other data handling algorithms; and process control
systems. Stress testing can be expensive, since typically a large
number of test cases must be run., However, it should be used if there
is no way to analytically (manuslly) determine a relationship betweaen
program input and output, or wvhen all possible outputs cannot be
identified.

A.6.5 Guidelines for Using Formal Techniques
We feel thst the formal techniques—symbolic execution and formal

verification--are not veady to be put into use in typical software
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development projects. The techniques are still evolving and the tools
that support them are not suitable for use by anyone other than re-
searchers. In its current state, symbolic execution by itself has very
limited usefulness as a verification technique, although it shows some
promise in supporting other techniques (see Chapter 7).

Our first recommendation to a project manager who is interested in
using formal verification on his software would be to consult a resear-
cher in the field about the feasibility of the idea. If the researcher
believes that formal verification can be useful in that application,

then the project manager might consider hiring him to lead the formal
verification effort.

Formal verification must be planned for at the inception of a
project, since it affects the requirements and design as well as the
code. It is useless to try to apply formal verification to a project
that 1is well along in development—it cannot be added as a "fix" for
sections of code that are causing problems. Formal verification can be
applied to part of a program only if it is possible to assume that the
rest of the program does not affect the properties that are being
proved. For example, to verify the security of a data base management
systea, formal verification must be applied to the routines that read
and write the data and to all routines that have "trusted access™ to the
read and write routines. It is useless to apply formal verification to
individual modules in isolation, because then the input assumptions of
the module are not examined critically during the proof process.

A.6.6 Knowing When to Stop Testing

There are three reasons to stop a testing effort:

All resources (time or money) have been used up.
All tests have been completed.

[ The program's performance is satisfactory.
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At first glance, being out of resources seems like the worst
reason to stop testing. Indeed, it is very undesirable to be unable to
complete major portions of a test plan because there is no money or time
left for the project. However, the other two reasons given to stop
testing usually cannot be used alone. For all but the simplest program-
ming projects, it is impossible to test exhaustively. Unless the
details of every use that will be made of the program are known, it is
also impossible to know whether the program will always perform satis-

factorily. Tnerefore, all three of the reasons to stop testing must be
used together. '

These guidelines have described how a test plan should be formed
as part of the planning for a programming project. The test plan will
consist of tasks which correspond to applying each of the test tech-
niques. These tasks can be separated into those that are fixed in
scope, and those that are variable or “"open-~ended”. Our recommendations
about when to stop testing can be summarized as: finish all of the
fixed-size tasks in the test plamn; and perform the open-ended ones to

the extent permitted by resource constraints, while making sure that a
satisfactory product is produced.

The fixed testing tasks include the following:

Programming standards checking
Static error and anomaly checking
Achieving complete branch coverage

Checkout of each program function

Each of the fixed-scope tasks has a definite criterion for com-
pleteness. Furthermore, if the technique corresponding to each task can
be used at all on a program, it can be used to completion. These
testing tasks are all inexpensive, and in fact will result in a saving
of money and time over traditional testing wmethods. They should be

applied .to all programming projects regardless of the reliability
requirements of the finished product.
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The open-ended testing tasks are:
® Assertion testing

) Full functional testing, including special values testing
and stress testing

For programming projects with critical applications, assertions
should be used in each of the ways listed in Sec. A.6.2. The tester
must strike a balance between developing a very complete set of asser-~
tions and the amount of time it takes to write and debug them. Since
there are error types that assertions cannot detect, assertion testing
should not be allowed to consume all of the resources allocated to the
open~ended tasks in the testing effort.

If the formal techniques are not used, functional testing 1is the
last technique to be applied (see Table A.4). A well-planned and
managed testing effort should leave a significant amount of resources
for functional testing after all of the other testing tasks have been
carried out. If this is done, the best policy is to stop testing when
all of the remaining resources allocated to testing have been used up.

This should allow unanticipated uses of the program to be explored and a
high quality product to be produced.

However, if functional testing is stopped because of resource
constraints, an effort should be made to determine that the performance
of the program will be satisfactory to the end users. One way that this

can be done is to compare the error estimate made at the beginning of
the test effort (see Sec. A.4.2) with the actual number of errors found

during testing. If the number found is much less than the aumber
predicted, the decision to stop testing is suspect.
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If formal verification is applied to a software project, the
proofs must be carried out to completion in order to conclude that the
program has the properties that were subjected to proof. Incomplete
applications of formal verification may improve the quality of a
program; but we cannot recommend that formal verification be ugsed on a
program unless the intent is to complete the effort.
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APPENDIX B
TEST TOOLS SURVEY

The following pages contain fact sheets on automated software
testing tools. These tools have been developed in industry, at univer-
sities, and by government organizations either as working test tools or
as prototypes based on theories of testing. Each fact sheet presents
the following information about a tool:

) Name and originating organization

° Language(s) processed, tool source language, and host

computer systems

° A brief description of the tool's purpose and method of
operation

o Capabilities and types of analysis performed

) Availability and year of original development

[ A key reference for additional information

The capabilities of each tool are given in terms of the testing
techniques described in Sec. 2 of this report.

Tools listed as "not commercially available” often may be made
available to users either directly by the tool's developers or through

contracting govermment agencies—-no attempt was made to deteramine this
information.

The year of origin listed for each tool is intended to give an
indication of the length of time that the tool, with most of its current
capabilities, has been implemented. Many of the tools are undergoing
some development and revision.
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The reference given is not necessarily the source of information
used in vriting the fact sheet. An attempt was made to find a reference
in the open literature for each tool that fully described the capa-
bilities of the tool. Most of the tools have user's manuals or other
forms of documentation; these were cited as references only where no

satisfactory open literature sources were found.

This survey 1is intended to provide examples of the currently
available automated testing tools. It is by no means exhaustive, since
a very large number of software tools packages have been developed over
the last twenty years. The following sources also contain descriptions

of automated test tools:

. Datapro Directory of Software, August 1980, C. 1980 Datapro

Research Corporation, Delran, New Jersey 08075.

A directory of commercially available products, cross-
referenced by vendor, tool name, and category. Updated

monthly.

] AIAA Software Tool Survey, July 1980. Amzrican Institute

for Aeronautics and Astronautics Computer Systems Committee,
1290 Avenue of the Americas, New York, NY 10019.

A compilation of survey forms returned by AJAA members or
filled out by Grumman Aerospace Corporation from Datapro and
Auerbdbach. This survey is to be discontinued after July
1980.

] Auerbach Software Reports, Auerbach Publishers Inc., 6560
North Park Dr., Pennsauken, New Jersey 08109.

Updated monthly.

The fact sheets contained in this sﬁrvey were compiled solely by
General Research Corporation, and were not reviewed by any other tool

developers.
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We would like to thank Mr. Richard Maitlen of TRW Systems Group
for providing information on the TRW test tools.

Index of Test Tools

This index is organized into ten categories of tool capabilities.
Within each category the tools are listed in alphabetical order and are
followed in parentheses by the languages that they process. Many of the
tools appear in several categories. Some of the less-common language

dialects are explained in notes at the end of this index.

1. Standards Enforcement

The following tools check programs for compliance with the

standard indicated in parentheses.
ANSI FORTRAN Checker and Error Detector (ANSI FORTRAN)
AUDTT (ANSI FORTRAN)
PFORT (PFORT)

TEST COVERAGE ANALYZER/CODE AUDITOR (JOVIAL J73/1)

2. General Static Analysis
The following tools perform one or more of the static analysis

checks described in Sec. 2 other than Standards Enforcement.
ACES (FORTRAN)
AMPIC (FORTRAN)
ATDG (FORTRAN)
AUDIT (FORTRAN)
CAVS (COBOL)
DAVE (FORTQAN)

FACES (FORTRAN)




FAVS (FORTRAN)

JOVIAL J73AVS (JOVIAL J73)
PDS (EL1)

PFORT (FORTRAN)

RXVP8O™ ( FORTRAN)

SADAT (FORTRAN)

L SMOTL (SMOD [1])

" SQLAB (FORTRAN, PASCAL, JOVIAL J3B-2)
. SURVAYOR (FORTRAN) \
}
| ! 3. Test Data Generation
i The following tools perform test input data generation for
programs in the language indicated. 1

ADAPTIVE TESTER (FORTRAN)
' ATTEST ( FORTRAN)

SELECT (LISP)

SETAR (none [2])

! SMOTL (SMOD (1])

4. Test Harness
The following tools provide assistance in the interactive testing

of software. Possible features include automatic test driver genera-

L tion, evaluation of test input and output data, and assistance with the

L provision of stub routines. ‘

! ADAPTIVE TESTER (FORTRAN) i

‘ ATDG (FORTRAN)
AUT (MIL/S)

CAVS (COBOL) i
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PRUFSTAND (SPL [3])
TESTMANAGER (COBOL)
TPL (FORTRAN)

XPEDITER (COBOL, FORTRAN)

Instrumentation

These tools insert probes into the test program source or object

code in order to determine execution frequency counts and/or perform

timing analysis. All of the tools listed under category 7 ("General

Dynamic Analysis”) perform instrumentation in addition to other capa-

bilities and are not listed here.

6.

CAVS (COBOL)

FAVS (FORTRAN)

FORTRAN ANALYZER (FORTRAN)
INSTRUMENTERS I & II (FORTRAN)
ISMS (ALGOL 60)

NODAL (FORTRAN)

OPTIMIZER III (COBOL)
PACE (FORTRAN)

PRUFSTAND (SPL [3])
RXVP80™ (FORTRAN)

SADAT (FORTRAN)

TEST COVERAGE ANALYZER/CODE AUDITOR (JOVIAL J73/I)

Debugging Aids
These tools provide features which assiet in manual debugging of

programs. Such features include interactive debugging capability and
formatted dumps.




OPTIMIZER III (COBOL)
PRUFSTAND (SPL [3])
TESTMANAGER (COBOL)

XPEDITER (COBOL, FORTRAN)

i 7. General Dynamic Analysis
These tools provide a combination of the dynamic testing tech-

niques. All provide instrumentation for execution frequency counts.
ACES (FORTRAN)
JAVS (JOVIAL J3)
JOVIAL J73 AVS (JOVIAL J73)
PET (FORTRAN)
SQLAB ( FORTRAN, PASCAL, JOVIAL J3B-2)
l TAP (FORTRAN)
. TPL (FORTRAN)

| V-IFTRAN™ (IFTRAN [4])

8. Symbolic Execution

' These tools attempt to produce algebraic expressions for the test

program's output variables.

AMPIC ( FORTRAN)
ATTEST (FORTRAN)
DISSECT (FORTRAN)
EFFIGY (PL/1)

, PDS (EL1)

SADAT (FORTRAN)
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SELECT (LISP)

SQLAB (FORTRAN, PASCAL, JOVIAL J3B-2)

9. Formal Verification

These tools help to prove mathematically that a program meets its
stated specifications.

EFFIGY (PL/I)

PDS (EL1)

PROGRAM VERIFIER (PASCAL)
SELECT (LISP)

SID (GYPSY)

VISTA

10. Mutation Analysis

This technique involves the execution of slightly altered versions
of a test program in order to detect errors.

- "\

MUTATION ANALYSIS (FORTRAN)

Notes

1 - SMOD is a COBOL-like language developed in the U.S.S.R.
2 - SETAR has not been implemented for a specific language.
3 - SPL is a PL/1-based language.

4 - TIFTRAN is a structured FORTRAN superset. )
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ACES (Automated Code Evaluation System)

Developed by the University of California, Perkeley, for the
United States Army Safeguard System Evaluation Agency.

Operates on the special purpose language CENTRAN (similar to
FORTRAN). Written in FORTRAN for CDC and IPM machines. Operates in
batch mode with user options for tracing variables during the dynamic
analysis phase. A program data base which can be used for further
analysis is produced during the static analysis phase.

Static Analysis Capabilities:
Detects uninitialized variables.

Coding standards ~ flags "dangerous” CENTRAN constructs such as
the assigned "GOTO".

Flags data flow anomalies.

Identifies unreachable code.

Program documentation -~ symbol name cross-reference, enumeration
of loops.

Reaching set generation.

Dynamic Analysis Capabilities:
Assertions - range checks on variables

Instrumentation based testing - provides path coverage and
frequency data.

Not commercially available

Year of origin - 1973




ACES (Automated Code Evaluation System) continued

Reference: C.V. Ramamoorthy, R. E. Meeker and J. Turner, "Design and
Construction of an Automated Software Evaluation System,” Record - 1973
IEEE Symposium on Computer Software Reliability, New York, pp. 28-37
(April 1973).
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ADAPTIVE TESTER

Developed by General Research Corporation, Santa Parbara, Cali-
fornia, under contract to the United States Army Pallistic Missile
Defense Advanced Technology Center.

A general purpose test harness and performance evaluation package,
originally developed to test Eallistic Missile Defense simulations. The
tool is written in FORTRAN and can be used to test programs written in
any language that produces object code compatible with an overlayed
FORTRAN program. The Adaptive Tester can operate in either batch or
interactive mode, and consists of four functional parts: (1) a test bed
and enviromnment simulator; (2) a performance analysis/data reduction
algorithm which operates on the output from a test run; (3) an adaptive
algorithm which selects the next set of test data; and (4) a graphical
interactive aids package. The nature of the adaptive algorithm for test
data selection may be apecified by the wuser; the choices include
gradient techniques, user-supplied heuristics, and random number
generation. The Adaptive Tester currently resides on CDC 6400/7600 and
DEC VAX 11/780.

Dynamic Analysis Capabilities:

Test harness - provides for large numbers of test repetitions
(limited only by test program execution time duration), simulation
of test program operating environment, interactive supervision of

the testing process.

Test data generation - can be performed automatically through
gradient, heuristic, or random techniques, or may be supervised
interactively by user.

The Adaptive Tester is the property of the U.S. Army. Contact point for

use: Mr. Ray Stone, General Research Corporation, P.0. Pox 6770, Santa
Barbara, CA 93111.

B-10
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ADAPTIVE TESTER (continued)

Year of origin - 1976

~

Reference: D. W. Cooper, "Adaptive Testing,” Proceedings - Second

International Conference on Software Engineering, San Francisco, (IEEF
Catalog No. 76CH1125-4C), pp. 102-105 (October 1976).
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AMPIC
Developed by Logicon, Inc., Lexington, Massachusetts.

Operates on FORTRAN code or LITTON aggsembly. The tool is written
in SNOBOL for use on IBM 370. AMPIC builds a representation of a
program in terms of certain canonical control structures.

Static Analysis Capabilities:
Module interface parameter type checking.
Flags mixed-mode expressions.
Detects structurally unreachable code.
Documentation -~ automatic flowcharting, structuring of assembly
code.
Symbolic Execution Capabilities:
Program interpretation - determines path conditions.

Algebraic path simplifications for conditions and variables.
Detects infeasible paths.

Interactive symbolic execution features - user may specify scope
and level of detail to be reported.

Not commercially available

Year of origin - 1975

Reference: M.A. 1Ikezawa, An Introduction to AMPIC, Logicon, Inc.,
Report No. CSS-75002, (1975).

B-12

e - . L e - [— e L T e

et v———




o

PR P Y P

e R e e v e s sy e - ~ -
. . i
-~ I e - P-4 -

ANSI FPORTRAN Checker and Error Detector

Developed by Softool Corporation, Goleta, California.

A tool for analyzing FORTRAN programs to detemmine compliance with
the ANSI X3.9-1966 standard for FORTRAN. Ambiguities concerning
possible standard violations are handled by "Warning” messages.
Versions are availlable "off-the-shelf” for IEM 360/370 and Data General

systems; Softool offers quotations for other systems upon request.

Static Analysis Capabilities:

Coding standards enforcement - checks for compliance with ANSI
X3.9-1966 FORTRAN standard. A “"general portability” option 1s
also available to check programs for transferrability to other
FORTRAN enviromments.

The permanent license cost for the ANSI FORTRAN checker is $8,000;
additional license fee for the portability option is $4,000. Lease
plans are available for $360-$480 per month for the Standards checker
alone, and an additional $180-240 per month for the Portability Option.

Year of origin - 1977

Reference: Production descriptions are available by calling or writing
to:

Softool Corporation

340 South Kellogg Ave.
Goleta, California 93017
(805) 964-0560

B-13
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ATDG (Automated Test Data Generator)

Developed by TRW Defense and Space Systems Group, under contract
to NASA/Johnson Space Center.

A system for interactive testing of FORTRAN programs. The system
has three main components: Static Error Analysis (SEA); Unit Test
Driver Generator (UTDG); and Path Generation (PATHGEN). The SEA
component acts independently; a stand-alone version of SEA is also
available. PATHGEN assists the user in generating test input data, and
UTDG directs the development of a test driver; once these files are
complete, the user can begin test exercigses. ATDG supports testing of
only one module at a time; however, there is an "external conditions”
option which keeps the status of global variables and parameters at
entry and exit points of all modules. ATDG is written in FORTRAN and
currently resides on a UNIVAC 1110 at Johnson Space Center.

Static Analysis Capabilities:

Program error detection - structurally and logically iunfinite
loops; variables not initialized within a module.

Anomaly detection -~ local variables set and not used; structurally

and logically unreachable code; 1ocal variables declared but never
referenced.

Program documentation - cross-reference listing of variables and
branch predicates.
Dynamic Analysis Capabilities:

Testing facilities -~ assists user in construction of a test
driver.

Test data generation ~ assists user by indicating path followed
for each set of test data.

B-14
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ATDG (Automated Test Data Generator (continued)

Not commercially available.

Year of origin - 1974

Reference: R.H. Hoffman, and G. L. Houser, User Information for the

Interactive Automated Test Data Generator (ATDG) System, Revision >1,

NASA/Johnson Space Center, JSC Internal Note No. 75-FM-88, (January
1977).
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ATTEST

Developed at the University of Colorado under an NSF grant and

subsequently at the University of Massachusetts with support from the
U.S. Air Force.

Operates on ANSI FORTRAN code. Requires a source code prepro-
cessor to produce a program variable token list--one version uses DAVE
for this purpose. ATTEST operates in batch mode, except that an
interactive path selection feature 1is available. Test paths can be
automatically generated 1in accordance with testing crirteria specified
by the user. Once a path has been selected, a symbolic execution
algorithm 1s used to simplify the path predicate conditions, thus
producing a set of inequalities. An inequality solving algorithm is
then applied to determine input data which will cause the path to be
executed .

Symbolic Execution Capabilities:
Test data generation for each selected path.

Program interpretation - path identification, representations of

output variables.
Algebraic simplification of path conditionms.

Detects unreachable code, as indicated by inconsistent path
predicate conditions.

Identifies array subscript violations.
Not commercially available
Year of origin - 1975
Reference: L.A. Clarke, "Automatic Test Data Selection Techniques,”

Infotech State of the Art Report - Software Testing, Infotech Inter-
natiooal, Berkshire, England, Vol. 2, pp. 43-63, (1979).
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AUDIT

Developed at the Naval Ship Research and Development Center,
Bethesda, Maryland.

A standards-enforcement package for testing FORTRAN programs.
Compliance with ANSI standards is checked by using a flow-graph analysis
of the program under test. The effect of different machine word lengths
on program output is evaluated as a means of guaranteeing portability.
The original version of AUDIT resides on a CDC 6400.

Static Analysis Capabilities:

Program error detection -~ detects: structural infinite loops and
unreachable code; module interface type and number conflicts;

uninitialized variables; recursive calls.

Anomaly detection - enforces ANSI FORTRAN standards (beyond those
checked by compiler); flags mixed-mode assigmments and express-
ions; determines “undefinitions” of variables, including EQUI-

VALENCE pairs.

Dynamic Analysis Capabilities:

Machine word length sensitivity is teasted by applying a truncation

function to all binary arithmetic operators.
Not commercially available.
Year of origin - 1974
Reference: L.M. Culpepper, "A System for Reliable Engineering Soft-

ware,” 1EEE Transactions on Software Engineering, Vol. SE-1, No. 2, pp-
174-178 (June 1975)
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AUT (Automated Unit Test)

Developed by IBM.

A test harness system that -operates on the object code generated
for a program module or modules. A test procedure language MIL-~S
(Module Interface Language - Specific) is used to control testing and
direct the simulation of the test module's operating enviroment. AUT
was one of the first test driver systems available, but has disad-
vantages in that MIL-S test procedures tend to be lengthy and derailed,
and no provision is made for modelling input/output devices or files.
AUT operates on IM 360/370 under DOS or TSO.

Dynamic Testing Capabilities:

Test harness - the procedure language makes possible the recording

of tests for use in regression testing. User must supply all test

case input data and output specifications for verification.
Available from IBM for rental, $100 per month - 12 month miiimum.

Year of origin - 1975

Reference: Automated Unit Test (AUT) Program Description/Operation
Manual, IBM Installed User Program Number 5796-PEC, (August 1975).
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CAVS (COBOL Automated Verification System)

Under development by General Research Corporation, Santa Parbara,
California, under contract to the United States Air Force (Rome Air
Development Center).

A general purpose development and testing tool for ANSI COROL 196R
and 1974 code. CAVS can be operated in batch mode or interactively.
Written in a subset of ANSI-COBOL 1974 for use on Univac, Honeywell, and
DEC VAX systems.

Static Analysis Capabilities:

Error detection - analyzes code for module interface inconsis-

tencies and uninitialized variables.

Anomaly detection - flags data flow anomalies, unreachable code,

improper input/output sequencing.

Documentation - reformatted source listings; cross-references of:
calling sequences, file and copy text interactions, identifier

set/use, record position set/use, program units.

Dynamic Analysis Capabilities:

Instrumentation based testing - execution frequency data at the

program—unit, paragraph, or branch level. The number of input/
Output operations can also be obtained.

Execution tracing - records the order of execution at instrunented
level.

Test history - assists 1in test case formation, multiple and
cumulative test case analysie.

Timing analysis - execution time at the program unit or paragraph
level.

B~-19
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CAVS (COBOL Automated Verification System) continued

Not commercially available.

CAVS is currently under development; a working version is scheduled to
be installed at RADC in late 1981.

Reference: COBOL Automated Verification System Final Report: Study
Phase, General Research Corporation, Report No. CR-3-970, (October
1980).
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DAVE

Developed at the University of Colorado under an NSF grant.

Operates on syntactically correct ANSI FORTRAN code; wvritten in
FORTRAN. DAVE operates in batch mode--the only user control options are
to provide for the handling of non-ANSI constructs. DAVE parses the
source code and then performs a depth-first trace of all variables,
local and global, in the user program. Data flow across module bound-
aries via parameter lists and COMMON blocks is included in the analysis.

Static Analysis Capabilities:
Module interface conflicts - type checking, alias detection.
Flags uninitialized variables.

Detects data flow anomalies, including those that occur across

module boundaries.

Identifies input and output variables for each module.

In public domain; tape copy available for $100. In use at 35 locations.

Year of origin - 1975

Reference: L.J. Osterweil, and L. D. Fosdick, "DAVE - A Validation
Error Detection and Documentation System for Fortran Programs,”
Software - Practice and Experience, Vol. 6., No. &4, pp. 473-4R86,
(October 1976).
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DISSECT

Implemented at the University of California, San Diego. Prior
developmental work done at McDonnell Douglas under grant from the
National Bureau of Standards.

Performs symbolic evaluation of ANSI FORTRAN programs. Written in
LISP. Operates in batch mode. User command options dictate initial
values (actual or symbolic) for program variables, specify path to be
followed, and indicate what program variables or predicates are to have
their values printed at any point in the program.

Symbolic Execution Capabilities:

Algebraic expression simplification of program variables and

predicates.

Assertions may be inserted to impose conditions on actual or

symbolic values of variables.
Not commercially available.

Version described here completed in 1976 - a predecessor was completed
in 1974.

Reference: W.E. Howden, “Symbolic Testing and the DISSECT Symbolic
Evaluation System,” IREE Transactions on Software Engineering, Vol.
SE~3, No. &4, pp. 266-278, (July 1977).
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EFFIGY

Developed at IBM Thomas J. Watson Research Center, Yorktown
Heights, NY.

Performs symbolic execution of programs written in a gsubset of the
PL/1 language. EFFIGY itself 1is written in PL/l and operates inter-
actively on an IBM/370 under VM/370, using the CMS filing system and
context editor. Test programs are restricted to integer-valued vari-
ables; variable array indexes are not permitted. TUser options include
tracing variables or statements during execution, inserting “break~
points™ to stop execution at a particular point, and saving the execu~
tion state for use during a later test exercise.

Symbolic Execution Capabilities:

Algebraic expression simplification of program variables and
predicates.

Proof verification - accomplished by translating verification
conditions into path predicates and making consistency checks.

Not commercially available.
Work on EFFIGY was begun in 1973.

Reference: J.C. King, "Symbolic Execution and Program Testing,”
Communications of the ACM, Vol. 19, No. 7, pp. 385~394, (July 1976).
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FACES (FORTRAN Automatic Code Evaluation System)

Developed at the University of California, Perkeley. Research
partially supported by the Office of Naval Research.

General purpose static analysis package for ANSI FORTRAN programs.
FACES is written in ANSI FORTRAN and operates in batch mode. The tool
congists of a source code pre-processor (FFE) which builds a data base,
and an analyzer (AIR) which performs correctness checks and provides

documentation in response to user requests. Commercial version avail-
able for IBM 360.

Static Analysis Capabilities:

Detects structurally infinite loops, invalid nesting.

Flags module interface conflicts - type incompatabilities and
alissing.

Flags uninitialized variables - local variables within a wmodule
only.

Enforces certain coding standards if selected by the user.

Produces documentation - cross reference listings by statement,

variable, calling sequence, or common block; program graph.

Available for $1590 from COSMIC, University of Georgia, Suite 112 Parrow
Hall, Athens, GA 30602.

Year of origin - 1974

Reference: C.V. Ramamoorthy, and S. F. Ho, "Testing Large Software With
Automated Software Evaluation Systems,” Proceedings - International
Conference on Reliable Software, los Angeles, pp. 382-394, (April 1975).
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FAVS (FORTRAN Automated Verification System)

Developed by General Research Corporation, Santa BParbara, Cali-

fornia, under contract to the United States Air Force (Rome Air Develop-
ment Center/ISIE).

A general-purpose static and dynamic analysis tool for programs
vritten in FORTRAN or the structured extension DMATRAN. FAVS will also
translate FORTRAN programs into DMATRAN. Operates in batch mode with
user options controlling documentation. FAVS is written in DMATRAN and
has been installed on CDC 6400, DEC VAX 11/780, HIS 6180, and UNIVAC
1100/80 and 1108.

Static Analysis Capabilities:

Program error detection - single and multiple-module scans for:

structurally infinite loops, parameter type and length mismatches,
uninitialized variables.

Anomaly detection - flags occurrances of: mixed-mode aritimetic,
variables set and not used, structurally unreachable code.

Documentation - symbol cross-referemce, common block references,

calling sequence listings and matrix

Reaching set generation.

Dynamic Analysis Capabilities:

Instrumentation based testing - branch execution frequency data.

FAVS is owned by the U.S. Air Force. Contact point is Frank LaMonica,
RADC/COEE, Griffiss AFB, Rome, New York 13441.

Year of origin - translator was delivered in 1975. Complete capability
was delivered in 1978. Resource-efficient version with FORTRAN 77
syatsx anslyszer was delivered in 1980.
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FAVS (FORTBAN Automated Verification System) continued

Reference: D.M. Andrews, and R. A. Melton, Fortran Automated Veri-
fication System User's Manual, General Pesearch Corporation, Report No.
CR-1-754/1, (April 1980).
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FORTRAN ANALYZER

Developed at the Institute for Computer Sciences and Technology of

the National Bureau of Standards. The work was partially funded by the
National Science Foundation.

Performs statement coverage frequency analysis on ANSI FORTRAN
programs. Tool consists of a preprocessor (written in FORTRAN) which

inserts calls to a tallying routine at beginning points of brauches in
user's code.

Dynamic Analysis Capabilities:

Instrumentation based testing - prints frequency of execution of

each branch for a single execution of user program.

Not commercially available.

Developed in 1974

Reference: G. Lyon, and R. B. Stillman, "Simple Transforms for Instru-

" menting FORTRAN Decks,”™ Software — Practice and Experience, Vol. 5, No.

4, pp. 347-358, (October 1975).

—
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INSTRUMENTERS I & II

Developed by Softool Corporation, Goleta, California.

The two INSTRUMENTER tools give execution time and frequency data
for FORTRAN programs. INSTRUMENTER 1 operates at the module level,
while INSTRUMENTER II operates at the statement level. [Poth tools are
code preprocessors which insert probes into the source code of the
program being tested. Versions are currently available off-the-ghelf
for IBM 360/370, Data General, and SEL systems; Softool offers quota-

tions for other systems upon request.

Dynamic Analysis Capabilities:

Instrumentation-based testing ~ executi.. time and frequency data
at the module and statement levels- Data maintained for single or
multiple program executions.

The permanent license cost for each of the INSTRUMENTER packages
i8 $5,000; lesse plans are available for $225-$300 per month. One year
of maintenance is included in the purchase price.

Year of Origin - 1978

Reference: Product descriptions are available by calling or writing to:

Softool Corporation

340 South Kellogg Ave.
Goleta, California 93017
(805) 964-0560
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ISMS (Interactive Semantic Modeling Systea)

Developed at Texas A&M University under a grant from the National
Science Foundation.

A system which performs syntactic analysis and execution tracing.
The tool has the capability of automatically generating its preprocessor
from a target language syntax description written in the language
PARSEL. This description is then translated into a preprocessor vhose
source code 1s either PASCAL or PL/l. A version of ISMS which tests
ALGOL 60 programs has been developed, and a FORTRAN version was in
progress as of 1975.

Static Analysis Capabilities:

Program documenta“-fon - statement type counts, cross-reference

listings .

Dynamic Analysis Capabilities:

Instrumentation based testing - timing and execution frequency

data.

Execution tracing - control and data flow tracing with graphic
displaye; computation tracebacks for selected variables.

Will also provide an estimate of the number of significant figures

after each computation.
Not commercially available.
Year of origin - 1975
Reference: R.E. Fairley, “An Experimental Program Testing Facility,”

IEEE Transactions on Software Engineering, Vol. SE-1, No. &, pp. 350-357
(December 1975).
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JAVS (Jovial Automated Verification System)

Developed by General Research Corporation, Santa Barbara, Cali-
fornia, under contract to the United States Air Force (Rome Air Develop-
ment Center/ISIE).

A general purpose program development and testing package for
JOVIAL J3 programs. Operates in batch mode; user controls the tool
through a macro command language and directives in the form of special
comments placed with the source code. JAVS is written in JOVIAL J3 and
FORTRAN, and is currently operational on CDC 6400 and HIS 6080/6180
equipment.

Static Analysis Capabilities:

Program documentation - formatted source listings, calling

sequence listings and matrix, cross-references report.

Reaching set generation.

Dynamic Analysis Capabilities:

Executable assertions -~ user supplies these to check predicate
computations, to maintain bounds on variables, or to trap any
special condition in the code.

Instrumentation based testing - branch and module execution
frequency data, data on other events according to user designa-

tion.

Execution tracing - at instrumented level.
Timing Analysis - execution time by module.

JAVS is owmed by the U. S. Air Force. Contact point is Frank
LaMonica, RADC/COEE, Griffiss AFB, Rome, New York 13441.

Year of origin -~ 1975

B-30




e ——————— — —— o .

o

JAVS (Jovial Automated Verification System) continued

Reference: C. Gannon, "JAVS: A JOVIAL Automated Verification System,"”
Proc. COMPSAC 78 Computer Software and Applications Conference, Chicage,
(IEEE Catalog No. 78CH1338-3C), pp. 539-544, (November 1978).
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JOVIAL J73 Automated Verification System (J73AVS)

Under development by General Research Corporation, Santa Barbara,
California, under contract to the United States Air Force (Rome Air
Development Center).

A general purpose development, testing, and documentation tool for
the J73 dialect of JOVIAL (adopted as Air Force standard in Spring
1980). The tool can be operated in either interactive or batch mode.
It is written in JOVIAL J73 for operation on 1TEL AS/5-3 ind DEC 20/TOPS
20, and is being developed on a CDC Cyber.

Statlc Analysis Capabilities:

Error detection - checks for structurally infinite loops, module

interface inconsistences, uninitialized variables.

Anomaly detection - flags data flow anomalies; structurally
unreachable code; "dangerous” constructs such as ABORT, jumps into

CASE or IF constructs, etc.

Documentation - reformatted source listing; symbol cross-reference
with set/use; compool description; declarations and references of

other JOVIAL J3 constructs; calling sequences.

Reaching set generation ~ also will display all paths between two

points in program.

Dynaxic Analysis Capabilities:
Executable assertions.

Instrumentation based testing - execution frequency counts at the

program unit, path, branch, or statement level.

Execution tracing - execution sequence information at the program

unit, branch, or statement level.

Timing analysis - execution time intervals; between anv two

selected points.
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JOVIAL J73 Automated Verification System (continued)

J73AVS is owned by the U.S. Air Force. Contact point 18 Prank LaMonica,
RADC/COEE, Griffiss AFB, Rome, New York 13441.

Year of origin - 1980

Reference: C. Gannon, "A Debugging, Testing, and Documentation Tool for
JOVILL J73," Proc. COMPSAC 80 Computer Software and Applications

Conference, Chicago, (October 1980).
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MUTATION ANALYSIS

Developed at Yale University under grants from the Office of Naval
Research, the Army Research Office, and the National Science Foundation.

A system for detecting errors in ANSI FORTRAN programs by “auto-
matically producing programs that are slightly altered versions (muta-
tions) of the program being tested. The rationale for considering
mutations is the principle that "experienced programmers write programs
which are correct or are almost correct.” Mutations are produced by
making changes such as the following: changing a congtant, replacing a
constant by a variable, changing or removing operators, deleting
statements, setting predicate values to “.TRUE.” or ".FALSE.".

The strategy used in testing a program consists of four steps:
(1) a set of mutations is constructed; (2) a set of test data 1is
selected and the original program run; (3) each mutant is executed with
the test data, and discarded if its output is different from that of the
test program; and (4) the remaining mutants are examined for indications

of errors in the test program.

Mutation analysis is a dynamic technique, but it can detect errors
that static techniques address, such as uninitialized variables,
aliasing, data flow anomalies, and unreachable code. Mutation analysis
is a sort of "dual” of some test data generation techniques, in that
similar error types are detected but the user changes the test data and

the tool changes the program.

The Mutation Analysis system operates interactively. Versions
exist on a PDP-10 and a CDC 7600. The system is being adapted to handle
COBOL and C.

Year of origin - 1977
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Mutation Analysis (continued)

Reference: T.A. Budd, R. J. Lipton, F. G. Sayward, and R. A. DeMillo,
“The Design of a Prototype Mutation System for Program Testing,” AFIPS
Conference Proceedings ~ 1978 National Computer Conference, Anaheim,

California, pp. 623-627, (June 5-8, 1978).
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NODAL (Node Determination and Analysis Program)

Developed by TRW Systems Group, Redondo Beach, California.

Provides statement coverage analysis for FORTRAN programs.
Written in machine-independent FORTRAN; versions used on IBM, CDC, GE,
and UNIVAC equipment. Operates in batch mode as a preprocessor which
passes instrumented code to the compiler. User can save a history file

so that coverage statistics can be collected for multiple executions.

Dynamic Analysia Capabilities:

Instrumentation based testing - prints frequency of execution of
each branch of a program; includes multiple executions via history
file. Pranch execution sequence can optionally be printed with

normmal program output.
Company proprietary.
Approximate year of origim - 1970

Reference: NODAL is not described in the open literature. TRW has a

NODAL User's Manual as documentation support for the tool. Inquiries
about NODAL may be directed to:

Mr. Richard L. Maitlen

Applied Software Laboratory

Systems Engineering and Integration Division
One Space Park

Redondo Beach, California 90278
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OPTIMIZER III
Developed by Capex Corporation, Phoenix, Arizoma.

A system of development and debugging aids for COROL programs
running on 0S, 0S/VS, and DOS/VS systems. The package consists of three
parts: OPTIMIZER, which reduces execution time and storage requirements
of the object code; DETECTOR, which provides formatted dumps and permits

interactive debugging; and ANALYZER, which computes execution timing and
frequency data.

Dynamic Analysis Capabilities:

Instrumentation-based testing -~ executlon coverage, frequency, and
CPU time data at the statement, paragraph, and module level. Data
maintained for single or multiple program executions.

Program debugging -~ tracebacks of calling sequence and logic in
the vicinity of an AKEND; formatted dumps of Working-Storage,
Program Registers, Data Division, Memory Map; snap-dumps produced
at any point requested; resumption of execution after APENDs due
to Data Exceptions or division by zero.

Program Performance Optimization - execution analysis and timing
profiles.

Perpetual license fees from $9,750 to $28,500 depending upon
options selected. Leases available for $390 to §$1140 per month,
depending upon options and duration.

Year of Origin - 1978

Reference: Information regarding Capex produces is available from:

Capex Corporation

P.0. Box 13529
Phoenix, Arizona 85002
(602) 264~7241
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PACE (Product Assurance Confidence Evaluator)

Developed by TRW Systems Group, Redondo Beach, California. Some

upgrades to and applications of PACE were performed under contract to
NASA/MSC.

A collection of automated tools which assist in the planning,
production, execution, and evaluation of software projects. The tool
documented in the open literature is a statement execution coverage
analysis package called FLOW (later TDEM). It {is written in FORTRAN for
CDC 6400, IBM 360, and UNIVAC 1108. Operates in batch mode on FORTRAN
programs; consists of a preprocessor for instrumenting code and two
post-processor modules for coverage analysis and tracing.

Dynamic Analysis Capabilities:

Instrumentation based testing - provides statement and module
execution frequency counts for aingle or multiple program exe-
cutions. For branches not executed, provides listing of state-

ments affecting variables in predicate leading to that branch.

Not commercially available.

Development of PACE began approximately 1971; facilities continue to be
added to and upgraded.

Reference: J.R. Brown, A. J. DeSalvio, D. E. Heine, J. G. Purdy,
"Automated Software Quality Assurance,” Program Test Methods W. C.
Hetzel, ed., Prentice-Hall, pp. 181-203, (1973).
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PDS (Program Development System)

Developed at Harvard University with support from the Naval
Electronic Systems Command.

A package of tools that support interactive program definition,
maintenance, and testing. The system operates on programs written in
the language ELl. The test tools in PDS include an Integrity Checker
which performs some static error checks and a Symbolic'EValuator which
can be used for formal verification. PDS also includes facilities for

defining, editing, and refining program modules and for incremental
verification and retesting of programs.

Static Analysis Capabilities:

Error detection - module interface type conflicts; uninitialized
variables (including uninitialized inputs to a module).

Anomaly detection - indicates variables that are set but not used.

Formal Verification Capabilities:

Symbolic Execution - performed using a one-pass analysis, absorb-
ing predicates into conditional expressions. Loops are analyzed
by a tool component which tries to find a closed-form expression
for the loop variables. (This technique is applied to recursive
module calls as well.) The tool develops templates describing the
calling parameters, outputs, an;:l “"operating enviromment” of each
procedure; the template is referenced when evaluating any proce-

dure call statement.

Verification condition generation ~ derives these for segments

rather than paths, using either user-supplied or incrementally-
derived assertions.

Proof generation
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PDS (Program Development System) continued

Not commercially available.
l Year of origin - 1979

Reference: T.E. Cheatham, J. A. Townley, and G. H. Holloway, “A System

for Program Refinement,” Proceedings - 4th International Conference on

Software Engineering, Munich, pp. 53-62, (September 1979).
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PET (Program Evaluator and Tester)

Developed by McDonnell Douglas Astronautics Company, Huntington
Beach, California.

Operates in batch mode on FORTRAN programs; written in standard
FORTRAN. Currently implemented on CDC 6000/7000 series, IR 360/370 OS,
and UNIVAC 1100. The tool consists of a preprocessor which provides
statement Instrumentation and documentation and a postprocessor which
gives coverage and execution tracing data. PET has an extensive

executable assertion capability.

Dynamic Analysis Capabilities:

Executable assertions - global assertions to check variable
ranges, legal or 1illegal values, array subscript bounds, calling
parameter side effects; local {position-specific) assertions
formed from any logical expression along with special functions to
check array orderin.s.

Instrumentation based testing - statement, branch, and module
execution coverage data; minimum, maximum, first, last values at

assigmment statements; results of branch predicate evaluations.

Execution tracing - statement sequences in which assertions are
violated.

Timing analysis - time spent in each module during execution.

Company proprietary - available for sale for $25,000 from McDonnell-
Douglas.

First version originated in 1972; assertions were added in 1975.

References: L.G. Stucki, "New Directions in Automated Tools for
Improving Software Quality,” Current Trends in Programming Methodology,

Volume II: Program Validation, R. T. Yeh, ed., Prentice-Hall, pp. 80-11l1
(1977).
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PFORT (Portable FORTRAN) Verifier

Developed at Bell Laboratories, Murray Rill, New Jersey.

A subset of American National Standard FORTRAN called PFORT has
been formally defined by Bell Labs. Programs adhering to the PFORT
standard are readily transportable across FORTRAN compilers used by
systems throughout the world. The PFORT Verifier is itself written in
PFORT and can be used to check compliance of any FORTRAN program with
the standard. Programs that comply with PFORT are not necessarily error
free, but will produce identical results regardless of the machine on
vhich they are executed. The PFORT Verifier is operational in batch
mode on Roneywell 6000, CDC 7600, IBM 360, and UNIVAC 1108 mainframes.

Static Analysis Capabilities:

Flags module interface conflicts - parameter type conflicts,
aliasing, common block definition irregularities across modules,

correct usage of basic external and intrisic functions.

Coding standards enforcement - enforces all ANSI syntax rules, for
instance: no mixed-mode arithmetic, recursive procedure calls, or

uninitialized variables used in computations.

Program documentatior - symbol and variable cross-reference
tables, calling sequunces, parameter lists, common block ref-
erences, global common definitions.

In public domain; used at Bell Labs and Jet Propulsion Laboratory.

Year of origin ~ 1973

Reference: B.G. Ryder, “The PFORT Verifier," Software - Practice and

Experience, Vol. 4, lo. 4, pp. 359-377, (October 1974).

B-42

Ao e s




-

© e P e i 4 - G

i e it vemp— & e Tagpe = ST e g T

PROGRAM VERIFIER.

Developed at the University of Southern California Information
Sciences Institute, with support from the Department of Defense Advanced
Research Projects Agency, and at the University of Texas, with support

from the National Science Foundation.

The package is an interactive system for proving PASCAL programs.
The system consists of five parts: text editor, parser, verification
condition generator, algebraic simplifier, and theorem prover. The
system is written in the LISP-based language REDUCE and operates on a
PDP-10.

Formal Verification Capabilities:

Algebraic expression simplification - uses manipulation properties
of REDUCE to simplify predicates, assertions, and verification

conditions.

Verification condition generation - produces and simplifies
conditions based on user-supplied assertions and code. Verifi-
cation conditions are produced separately for each module. The
tool assumes that the input and output assertions for other

modules hold during this process.

Proof Generation - the tool attempts, under close user interaction
and supervision, to establish the validity (or invalidity) of the
generated verification conditions. A short time limit is set for
the tool to work on its own—if it fails to arrive at a conclusion

it prompts the user for more information.

Not commercially available.

Year of origin - 1974
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PROGRAM VERIFIER (continued)

Reference: D. I. Good, R. L. london, W. W. Fledsoe, "An Interactive
Program Verification System,” IEEE Transactions on Software Engineering,
Vol. SE-1, No. 1, pp. 59-67, (March 1975).
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PRUFSTAND

Developed by Software Research Associates, San Francisco, for the

Siemers Corporation, Munich, Germany.

A test harness system with facilities for dynamic analysis and
interactive debugging. The system was originally designed Eo test
modules written in Assembler and SPL (a PL/1 derivative used for coding
systems software). PRUFSTAND operates interactively on the PS2000
timesharing system (similar to IBM 0S/VS2 with TSO).

Dynamic Analysis Capabilities:

Executable assertions - compares actual test results with user-

specified output values.

Instrumentation based testing - execution coverage and frequency

data at the branch level.

Test harness - prompts user for outputs from undefined routines as
needed during execution; maintaine test case input data and stub
interface files: Test driver is compatible with parallel proces-

sing.

Program debugging facilities - execution tracing and formatted
dumps available at user request; interactive debugging using

cperating system capabilities.

Year of origin ~ 1978. Has been ueed to test components of a large
real-time data communications and management system for the %German

railways.

Reference: H. M. Sneed, and K. Kirchhof, "PRUFSTAND - A Tecr-.-

Systems Software Components,” Infotech State of the Ar:

Software Testing, Infotech International, Berkshire, Fngl@a-
pp. 245-270 (1979).
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RXVP8O™

Developed by The Software Workshop™, General Research Corporation,
Santa Barbara, California.

A general purpose development and testing tool for programs
written in FORTRAN or the structured extension V-IFTRAN™. Operates in
batch mode, and is compatible with and complementary to V-IFTRAN™.

RXVPS0O™ is written in V-IPTRAN™ and is installable on any computer with

2t least a 32-bit word length, 50,000 words of storage, and an ANSI
X3.9.1966 FORTRAN-compatible compiler. -

Static Analysis Capabilities:

Error detection - sgtructurally infinite loops; module interface

parameter type and length inconsistencies; uninitialized vari-
ables.

Anomaly detection - mixed-mode arithmetic and assigmments; data
flow (set, not used); structurally unreachable code.

Documentation - formatted source 1listings; calling sequences;

cross-references of common blocks and variable names; input/output
statement lists.

Reaching set generation.

Dynamic Analysis Capabilities:

Instrumentation based testing - execution coverage and frequency
data at the branch level, for single or multiple test runs.

Available from General Research Corporation for $26,000 (including
installation, documentation, training session, warranty).

Released commercially in 1980; has been in internal use since 1972.

Reference: RXVPS8O™ User's Manual, General Research Corporation, Report
No. RM-2333, (1980).
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SADAT

Developed at the Kernforschungszentrum Karlsruhe GabH, Institut
fur Datenverarbeitung in der Technik, West Germany.

A general-purpose static and dynamic analysis and symbolic
execution tool for FORTRAN. Processes single modules only. Written in
PL/1, resides on IEM 370/168. SADAT operates in batch mode.

Static Analysis Capabilities:
Identifies uninitialized variables.
Flags variables that are set and not used.

Detects structurally unreachable code.

Program documentation - provides statement listing by type; symbol
usage list; program graph by statement and branch.

Test data generation based upon paths determined from the program
graph.
Dynamic Analysis Capabilities:

Instrumentation based testing - produces statement coverage and
frequency data.

Symbolic Execution Capabilities:

Algebraic simplification of path predicates, into expressions
involving input variables, constants and operators.

The system is available from the developers.

Year of origin -~ 1978

Reference: U. Voges, L. Gmeiner, A. Amschler von Mayrhauser, "SADAT -
An Automated Testing Tool,” IEEE Transactions on Software Engineering,
Vol. SE-6, No. 3, pp. 286-290, (May 1980).
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SELECT

Developed by the Computer Science: Group, Stanford Research
Institute, Menlo Park, Californmia. Support provided by an NSF grant.

A symbolic execution package which emphasizes path analysis and
test data generation. The tool is written in and operates upon programs
vritten in a subset of LISP. SELECT operates in batch mode on a DEC-10.
It performs a symbolic execution of the program and simultaneously forms
the path conditions for all feasible paths. Test data is then generated
for each path by using an inequality solving algorithm. SELECT handles
subscripted variables by adding paths; it handles subroutine calls by
substituting the code into the calling program. User-supplied asser-

tions can be added to the code to simplify the logic or impose per-
formance requirements.

Symbolic Execution Capabilities:

Program interpretation - produces simplified expressions for path
conditions. Detects infeasible paths.

Algebraic expression simplification - for path conditions and
program variables.

Test data generation - uses a conjugate gradient algoritha to
solve the system of inequalities formed by a path condition. User

may affect solution by adding assertions or changing algoritim
parameters.

Formal Verification Capabilities:

Proof generation -~ user supplies verification condition in the
fora of an output assertion "program” for a path. SELECT deter-
mines consistency of output “program” predicates with results of
symbolic execution of test program.

B-48

LAIEA RATSINPENE A

————_
T




e

e A

AR e s o

- -

s e e e o — T —— .

SELECT (continued)

Not commercially available.

Year of ovigin - 1974

Reference: R. S. Bbyer, B. Elspas, K. N. levitt, "SELECT - A Formal
System for Testing and Debugging Programs by Symbolic Executicm,”
Proceedings -~ Internationsl Conference on Reliable Software, Los
Angeles, pp. 234-245, (April 1975).
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SETAR

Developed by Logicon, Inc., San Pedro, California.

A test data generation algorithm based on paat test cases rather
than path selection. The method consists of a two-step iteration: (1)
the program is executed with one set of input data, the path taken 1is
identified and its predicate condition determined by symbolic execution;
(2) the next test case is chosen go that at least one constraint of all
previous path conditions is violated. In step (1) the symbolic exe-
cution can proceed with test case values substituted for variables as

necessary, since the purpose is to produce any condition that can be 1

violated.

SETAR is currently under development for use on higher level
languages. No specific implementation or target language or computer
system is specified in the available references.

Dynamic Analysis Capabilities:

Test data generation - feedback from path coverage by the method
explained above. User control options include specifying con-
straints to be violated or imposing constraints to restrict the
test domain.

Not commercially available.
SETAR has not been implemented in a stand-alone software package.
Reference: S. Kundu, "SETAR - A New Approach to Test Case Generatiom,”

Infotech State of the Art Report - Software Testing, Infotech Interna-
tional, Mrkshire, England, Vol. 2, pp. 161-186, (1979).
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SID (System for Incrementally Designing and Verifying Programs)

Developed at the University of Texas with support from the
National Science Poundation, and at the University of Southern Cali-
fornia Information Sciences Institute under funding from DARPA.

An incremental software design, development, and formal verifi-
cation package. Operates on the language GCYPSY; the tool is writtenm in
LISP and REDUCE and implemented onm a PDP-10. SID has extensive inter-
active capabilities for design and programming support as 1;211 as for

testi . Fommal verification algorithms may be applied to iancomplete:

programs, modules, or sections of code. Program and specification
changes are evaluated without "reproving” unaffected parts of code.

Formal Verification Capebilities:

Verification condition generation - executable code and user-
provided specifications and assertion conditions are used to form
the path conditions. Conditions are sutomatically simplified
algebraically.

Proof generation - operates interactively in attempting to prove
verification conditions. A data base of proof documentation is
maintained to assist in forming proofs after modifications are
made.

Not commercially available.

Year of origin - 1977

Reference: M. 8. Moriconi, A Systea for Incrementally Designing and

Verifying Programs, University of Southern California Information
Sciences Institute, Report No. ISI/BMR-77-65, (January 1978).
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SMOTL
Developed at the Latvian State University, Riga, USSR.

A test data generation system for the COML-like language SMOD.
The tool attempts to find a set of test data that will provide coverage
of all branches in the test program. SMOTL first forms a graphical
representation of the test program, performing a few static analysis
checks in the process, and then begins building a covering set of paths.
The STRAT.GY module selects a candidate branch and the ’'NALYZER module
uses symbolic execution techniques to determine the branch's feasibility
for the path. Once a covering set of paths has been constructed, it is
minimized by combining paths with duplicate branches; then symbolic
execution is used again on the resulting paths to determine the test
data. SMOTL has been implemented on a Soviet MINSK-32 (160 bytes core,
CPU speed about 50,000 op/sec.); SMOTL operates in batch mode.

Static Anslysis Capabilities:
Error detection -~ uninitialized variables.
Anomsly detection -~ unreachable code.

Test data generation.

Year of origin - 1974. SMOTL has been applied to 39 previously written
programs, with satisfactory results for those with less than 300
statements.

Reference: J. PBlcevskis, J. Bbrzovs, U. Straujums, and A. Zarins,
“SMOTL - A System to Construct Semples for Data Processing Program
Debugging,” Infotech State of the Art Report: Software Testing, Infotech
Internstional, Merkshire, England, Vol. 2, pp. 13-27, (1979).
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SQLAB (Software Quality Laboratory)

Developed by General Research Corporation, Santa mMrbara Cali-
fornia, under contract with the United States Army.

A verification tool for the following commonly used target
languages: FORTRAN and its structured extension IFTRAN; PASCAL and 1its
extension Verifiable PASCAL; and JOVIAL J3B-2. SQLAB perfotms some

static checks, and then can be used interactively to perform a symbolic

execution. Formal verification of a program may thus be accomplished by

the user incorporating assertions into the source code. SQLAB 1is
written in IFTRAN and resides on CDC 6400/7600.

Static Analysis Capabilities:

Error detection - structurally infinite loops; module interface
type, node and number conflicts; uninitialized variables.

Anomaly detection - structurally unreachable code, mixed-mode
expressions, unused variables.

Assertion checking - input/output usage declarations, physical
units errors.

Dynamic Analysis Capabilities:

Executable assertions ~ prints violations of user-supplied
assertions, performs recovery operations in FAIL blocks.

Symbolic EBxecution Capabilities:

Verification condition generation - uses standard syabolic
evaluation and simplification techniques.

Proof generation - consistency with output assertions examined.

Not commercially available.
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SQLAF (Software Quality Laboratory) continued

Year of origin ~ 1977

Reference: S. B. Saib, J. P, Ienson, and R. A. Melton, “A Methodology
for Program Verification,” 1977 Summer Computer Simulation Conference,
Chicago, pp. 713-720, (July 1977).

'
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SURVAYOR
Developed by TRW Systems Group, Redondo Rach, California.

Provides static data flow anomaly checks for FORTRAN programs.
Operates in batch mode; written in transportable FORTRAN. Performs path
analysis for each program module, then determines data flow anomalies

!
i
i
‘ along each path.
' Static Analysis Capabilities:
\
|

Flags uninitialized local variables, including those uninitialized
on a particular path.

Data flow anomalies - local and global variables set and not used

i
or sget twice without intervening use; flags unneeded common
‘ blocks, equivalences, parametersa.

\

{

Documentation (within program module) - path identification,
variable cross-reference.

. Company proprietary.
Approximate year of origin - 1973

Reference: SURVAYOR is not described in the open literature.
about SURVAYOR may be directed to:

Inquiries

i

Soaiyy

s

. or

- Mr. Richard L. Maitlen
‘ Applied Software Laboratory

[P

TR P SR - Y

Systems Engineering and Integration Division
One Space Park
o, F Redondo Reach, California 90278
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TAP (Test Coverage and Parameter Evaluation Program)

Developed by General Research Corporation, Santa Prbara, Cali-
fornia.

|

‘ An instrumentation and execution tracing tool for programs written
}

‘ in either FORTRAN or the structured extension IFTRAN. TAP is written in
, IFTRAN and 1is operational on IMM 360/370. The tool operates in batch
|
!
|

mode in the form of a source code preprocessor and a post-execution data
collector.

Dynamic Analysis Capabilities:

Instrumentation based testing - coverage analysis at the branch or
statement level.

|

. Execution tracing - initial, final, minimum, maximum values for \
variables on left side of assigmment statements; final value of

loop control variable, minimum, maximum, initial, final for loop

control parameters; branch counts, final branch taken for IF
statements.

: Not commercially available.

Year of origin - 1977

Reference: C. Gannon, Testing Coverage and Parameter Evaluation

Program: Computer Software System Document, General Research Corpor-
ation, November 1978.
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TEST COVERAGE ANALYZER/CODE AUDITOR

4+

Developed by Mbeing Aerospace Company, Software Quality Engineer-
ing, Seattle, Washington.

Provides facility for statement coverage frequency analysis and
coding standards enforcement for programs written in JOVIAL J73. The
tool i{s built into the JOVIAL J73/1 compiler (the modified versiom of
the JOVIAL J73 compiler obtained from the Air Force in 1978). The code
instrumentation takes the form of additional machine-language instruc-

tions inserted into the compiled code which provide the execution
counts.

Static Analysis Capabilities:

Coding standards enforcement - the Code Auditor flags comstructs
that violate specialized standards imposed on the IUS or GSRS
projects at Being. A listing of these standards is printed as
part of the compiler output below the source code listing.

Dynamic Analysi- Capabilities:

Instrumentation based testing - coverage frequency data can be
provided at any of three levels: procedure entry points, branch
points, or branch points and loop traversals. The frequency data

is maintained for one execution of the program only.
In the public domain.

Developed in 1979.

Reference: R. L. Glass, Jovial J73 Software Quality Assurance Tools,
Volume I, "Introduction and User Manual,” Meing Aerospace Company,
Document No. D180-24975-1, (February 2, 1979).
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TESTMANAGER

Developed by MSP (Management Systems and Programming) Inc.,
Lexington, Massachusetts.

A test harness and debugging system for modularized programs.
Written in ANS COBOL for IBM, ICL~S/4; handles several languages.
Operates in batch mode.

Dynamic Analysis Capabilities:

Test harness - provides four degrees of complexity of response for
enviromment interface simulation, from simple recording of a call
to conditional selection of sets of returns based on previous

results. Provides for multiple tests per coaputer rwum, file
creation and display.

Debugging facility - formatted dumps: gives failure type, contents
of parameter areas passed by TESTMANAGER, register/accumulator
contents. Output controlled by user options.

Available under perpetual 1license for $9,000-§13,000 (depending on
version, includes maintenance, documentation, training), or 1-5 year
rental .

First installed in 1970; currently over 200 users.
Reference: D. Thomas, "Program Testing - BHelping Programmers to Relp

Themselves,” Infotech State of the Art Report - Software Testing,
Infotech International, Ferkshire, England, Vol. 2, pp. 271-281, (1979).
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Developed by General Electric Company, Schenectady, New York.

A test harness system for FORTRAN programs. TPL stands for Test
Procedure Language; the language provides a means for controlling the
testing process and recording tests for future reference and use.

Variable initializations, executable assertions, " and execution di-

rections (test start and stop points) are specified in TPL, which has a
FORTRAN-like syntax. Stubs for called modules not present in the test

code must be provided by the usger.

Dynam{c Analysis Capabilities:

Executable assertions -~ can apply locally, over a range of

.statements, or at test termination. The assertions take the form
of FORTRAN logical expressions.

Instrumentation based testing - statement and branch coverage

data, expressed as a percentage of statements and branches present
in the code being tested, is automatically output.

Test harness - maintains data for multiple test runs, evaluates

test success or failure on the basis of assertions provided by the
user.

Not commercially available.
Year of origin ~ 1976

Reference: D. J. Panzl, "Automatic Software Test Drivers,” Computer,

Vol- 11, No. 4. Ppo 46-” (Aptil 1978)'
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V-IFTRAN"

Developed by The Software Workshop™, General Research Corporation,
Santa [Iarbara, California.

This tool provides the testing capabilities of executable asser-
tions and code instrumentation within the context of a structured
FORTRAN precompiler. V-IFTRAN™ is written i{n V-IFTRAN™ and can be
installed on any computer having a FORTRAN capability.

Dynamic Analysis Capabilities:

Executable assertions ~ inserted into the code at any point by the
user. Violations are brought to the user's attention through use
. of DEHIG output options. Error recovery can be provided through
the use of FAIL block code.

Instrumentation based testing - execution coverage and frequency
data at the branch level.

Available from General Research Corporation on 7- or 9-track tape for
$6370.

Sold commercially since 1979; has been used internally since 1977.

Reference: V-IFTRAN™ User's Manual, General Research Corporation,
Report No. RM-2281 (1979).
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VISTA
Developed at the Xerox Research Center, Palo Alto, Califormia.

A formal verification system that can automaticslly generate
assertions needed to form verification conditions. The techniques used
include weak 1nterpret;tim, predicate propagation, assertion generali-
zation, trial assertions, and examination of failed proofs. The
starting point of a verification exercise using VISTA is the test
program along with user-supplied input and output assertions. Rach
assertiou generation technique is implemented in a separate module and
operates automatically; however, user intervention may be required to

detemmine “he next technique to be applied. VISTA uses the theorem
prover developed for the PIVOT program verifier.

Formal Verification Capabilities:

Verification condition generation - VISTA works backwards from the

output assertion, trying to establish verifiable necessary
conditions as assertions for the previous branch.

Proof generation and verification - as trial assertions are
generated, they are checked for validity.

VISTA was still under development as of 1975.

Reference: S. M. German, and F. Wegbreit, "A Synthesizer of Inductive

Assertions,” IEEE Transactions on Software Engineering, Vol. SE-1, No.
1, pp. 68-75, (March 1975).
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XPEDITER

Developed by Application Development Systems, Inc., San Jose,
California.

An interactive testing package for COFOL progrsms or modules.
Interface of the tool with the test program is performed by the Compile
Processor, which operates on the compiler output without disturbing
either the source or generated object code. Formatted dumps, traces,
and selected memory snap-shots are provided by the Dynamic Memory
Formatter. Control of the testing proceas 1s effected through use of a
simple Structural Test Language. XPEDITER supports testing in batch,
TSO (online), and IMS enviromments.

Dynamic Analysis Capabilities:

Test harness - assists with variable initialization and provision
of module stubs. Execution may be begun at any point {n the
program, and may be traced, interrupted, and redirected at user
discretion. Multiple test exercises can be performed automat-
ically.

Program debugging facilities - execution traces; formatted dumps;
interception of AMKENDs; interactive debugging.

Permanent license price: $25,000 for besic system, plus $2,500 for
TSO or SPF optious and $5,000 for IMS option. Lease arrangements
availadle on request. Maintenance and enhancement charge 1is 121 of
permanent license price annually.

Year of origin - 1980

Reference: Information is available from:

Application Development Systems, Inc.
1530 Meridian Ave.

San Jose, California 95125

(408) 264-2272
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APPENDIX C
ANNOTATED BIBLIOGRAPHY

There are several resources in which most important papers on

———

—

testing can be found. They are repeatedly referenced in this biblio-
graphy and, in the case of journsls and annual conferences, should be
checked in the future for state-of-the-art reports on testing:
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Communications of the ACM

Computer (including a special issue on program testing -- Vol. 11,
No. 4, April 1978 which coutains several tutorisl arcticles, and a
special issue on software quality assurance — Vol. 12, No. 8,
August 1979 wich containa several research papers).

IEEE Symposium on Computer Software Reliability, New York City,
April 30 - May 2, 1973.

IEEE Transactions on Software Engiuneering

International Conference on Reliable Software, Los Angeles, April
21-23, 1975.

International Conferences on Software Engineering

Software: Practice and Experience

Software Quality and Assurance Workshop, San Diego, November
15-17, 1978.

In addition, there are several collected bibliographies on testing which
were independently prepared:
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qudy. Trotter 1., Belkis Leong-Hong, and Dennis W. Fife, Software

Tools: A Building Block Approach, WNational Buresu of Standards,
NBS special publication 500~14 (August 1977).

T T R A

S K Miller, Edward F. (editor), Infotech State of the Art Report:
“ ) Software Testing, Infotech International, Maidenhead, Berkshire,
: England, Vol. 1. pp. 275-305 (1979).

Miller, Edward F. (editor), Tutorial: Automated Tools for Software
Engineering, IEEE Catalog No. EHO 150-153, New York (1979).

Riddle, William E., Software Development Enviromments: A Biblio~

graphy, Department of Computer Science, University of Colorado,
Boulder, Colorado, Report No. CU-CS-184-80 (June 1980). i

! The first two are especially important because they are annotated. ;\
, The last bibliography, which is not annotated, lists more than just :
i testing literature, but contains many newer references not listed in the

i first two bibliographies.

} 1 Rating Scheme

' The pepers collected in this bibliography have been rated for

their contribution to the state~of-the-art of softwsre testing. Each

entry is assigned a "star rating” based on the following scale: >

#%%% Superior papers making outstanding contributions to the
field,

P T

#4% Excellent papers making substantial contributions, _
Ldd Good papers making significant coantributions, and ?

* Fair papers msking contributions of more limited cOpe.

the papers.

{

i

'»

¢

l

|
; : \ ‘ The ratings are bssed on the suthors' sudjective evaluations of :
| |
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C.1 CLASSIC PAPERS (Before 1978)

#%* Alberts, David, S., "The Economics of Software Quality Assurance,”
Proc. of the National Computer Conference, Amer. Federation of Infor-

mation Processing Societies, New York City, June 7-10, 1976, pp. 433-
442.

In this paper Alberts tackles several issues related to the costs
of large-scale software systems: cost distributions versus life-cycle
Jhase, the costs of various kinds of errors, the cost reductions
provided by different program development and testing methods. He
emphagizes that, under current software development preactices, errors
are detected later then they should be. This results in very high
testing and maintenance costs. The greatest culprits are design errors-
-he states that in most projects "a dollar more spent in design would
have saved five dollars spent on testing and maintensnce.” He also
cites evidence that automated testing techniques can provide s signifi-
cant cost savings over traditional testing methods.

#a%* Ployd, Robart W., “Assigning Meanings to Programs,” Proc. of

Symposium in Applied Mathematics, American Mathematical Society, New
York City, April 5-7, 1966.

The fundamental concepts and notations for what has become known
as "Floyd-Hoare” programming language semantics were introduced in this
paper. Even though the notation is somewhat avkward by curreat stan-
dards, its importance cannot be overstated. Nearly all research in
program verification is based on this semantic model.

A*** Gorhart, Sussn L. and Lawrence Yelowitz, "Obgervations of Falli-
bility in Applications of Modern Programming Methodologies,” IEEE Trans.
on SE, Vol. 2, No. 3, pp. 195-207 (September 1976).
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Absolutely must reading for all software engineers, this paper
beautifully explains that no formal method exercised by fallible humans
will ever guarantee program correctness. Certainly formal methods will
increase confidence in correctness, but not even a formal rigorous proof
should be completely convincing. To support their claim they cite many
cases where authcers have presented programs which have been proven
correct and had those proofs reviewed by others--yet those programs were
incorrect!

Even in mathematics, wvhere the foundations for comstructing proofs
are much stronger, embarrassing errors in proofs occur. They cite one
classic case where a theorem was independently proven in three quite

different ways by three mathematicians, all leading to reviewed publi-
cations. The theorem was incorrect.

The authors offer some guidance as to how to look for errors in

specifications, design, and code, but recognize that these are only
guidelines and that there asre no guaranteed methods for detecting flaws.

The fact that formal methods do not guarantee correctness should
not discourage their use. The authors point out that formalism provides
training in rigorous thinking "which is essential for good programming,”
and provides “an effective language for organizing and expressing
knowledge about programs.” However, testing must remain a major means
to ensure program reliability.

##k% Coodenough, John B. and Susan L. Gerhart, "Toward a Theory of Test

Data Selection,” IEEKE Trans on SE, Vol. 1, No. 2, pp. 156=173 (June
1975).

This is probadly the most important peper in the testing liter-
ature. It has done more than any other work to establish s sathematical
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framework for the systematic study of software testing. Admittedly the .

results given are not that profound; indeed, there are really no “"deep

truths” in the testing field. This does not diminish the significance
of their contribution, however.

This paper presents fundamental definitions of "reliability" and
“"validity” for tesing criteria, and explores the difficulties with
attempting to develop criteria with these properties. The authors
develop a decision table approach to representing a program and its test
data pinpointing the importance of testing each predicate, and where
possible, each combination of predicates in a program. They further
point out the inadequacies of just structural testing. A program's
tests must be generated fram the specifications as well as from the
program structure if they are to be reliable. They produce guidelines
on how to generate test data from specifications.

***%* Hoare, C.A.R., "An Axiomatic Basis for Computer Prograsming,"”
Communications of the ACM, Vol. 12, No. 10, pp. 576-583 (October 1969).

Following up on the ideas introduced earlier by Floyd (1966),
Hoare develops rules of inference for simple language coustructs.

*##*%* Hoare, C.A.R. and Niklaus Wirth, "An Axiomatic Definition of the

Programming Language PASCAL,” Acta Informatica, Vol. 2, pp. 335-355
(1973).

This paper is a landwark because of its ambitious attempt at
axiomatizing a large portion of an actual programming language. Despite
a few errors and the fact that not all of Pascal was analyzed, it has
become the foundation on which later axiomatizations of Pascal and other
languages are based. By showing how well the semantics of a well-~
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designed programming language can be clearly explained, this papeer

provided a major push towards developing languages with simple but
powerful features.

%42 Howden, William E., "Reliability of the Path Analysis Testing

Strategy,” IEEE Trans. on SE, Vol. 2, No. 3, pp. 208-215 (September
1976).

This 1is probably the second most important paper ever writtean in
the testing field, second only to Goodenough and Gerhart (1975). There
are very few theorems in testing theory because there 1is so little
theory. Many of the most important theorems are presented here. Howden
defines a "reliable” test strategy and proves that there are no nom-
trivial strategies which will be reliasble for all programs. He also
prov~s that for each program there is a finite test set which reveals
whether the program is correct. He then develops specific definitions

for the path analysis testing strategy and proves fundamental theoreas
about 1it.

To explore the reliability of path testing for detecting errors,
Howden examines several small programs with many errors. He concludes
that path testing will detect many errors but will not, in general,
detect all errors. For the sample programs examined, 65X of the errors
were detected by path testing. He presents theorems which show the
conditions under which path testing is reliable for thres different
error categories. These conditions are fairly strong, so that in
general it cannot be assumed they hold. However, even if these con-
ditions are not satisfied, many errors may still be detected.

#44% Howden, Willism K., “Symbolic Testing and the Dissect Symbolic

Evaluation System,” IEEE Trans. on 8E.,, Vol. 3, Mo. 4, pp. 266-278 (July
1977).

c-6

B —— e A - i (gt A s e

o — i, W

st -



- AT e

I ., T WS LR SR o minndicil

This classic paper overviews the basic principles of syabolic
execution through a discussion of the Dissect system designed and
implemented by the author. Dissect symbolically executes ANSI FORTRAN
programs. After explaining the features of Dissect, showing how it can
detect errors in a simple program, Howden continues with a discussion of
the reliability of symbolic execution in general.

Provided the user knows the form of the answer to expect, Howden
suggests that symbolic execution will be quite reliable in detecting
“path-function” errors; i.e., errors resulting from the wrong compu-
tation on the correct path. This 1s because the resulting function
constructed to represent the calculation will "look obviously incor-
rect.” “Path-domain” errors, in which the wrong path is taken, are
harder to detect. The function which results may well look reasonable.
It is just the wrong funcion for this particular symbolic data; e.g.,
vhen a loop iterates one too few times 80 that a numerical computation
is miseing a term, but is approximately correct.

Howden recommends that symbolic execution complement rather than
replace dynsmic analysis. When combined with static analysis tools and
tools to analyze software design and specifications for errors, Howden
expects the number of errors to be reduced dramatically.

The article is very well-written, with well-chosen examples to
illustrate the potential ajvantages of symbolic execution. The one
major flav in the paper #i that because it is necessarily so short, the
teader cannot completely grasp how to use Dissect.

#** Huang, J. C., "An Approach to Program Testing,” Computing Surveys,
Vol. 7, No. 3, pp. 113-128 (September 1975).
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This psper overviews how to approach path testing of programs.
Its main contribution is the clear "for the masses” style in which it is
written. Because it is a survey paper, it does not break new ground;
but it does provide an excelleant introduction to the problems of path
analysis and test data generation.

*k%% King, James C., A Program Verifier, Ph.D. Dissertation, Dept. of

Computer Science, Carnegie-Mellon University, Pittsburgh, 1969.

King was the first to apply Floyd-Boare semantics to automatic
program verificatiomn. In this dissertation he describes a system,
operational on an IBM 360, which can automatically verify many simple
programs which umanipulate integers. His major contribution was in
tsking an elegant theoretic 1dea (that of language semantics) and
showing how proofs of program correctness could be automatically
realized. Of course, as an early prototype system, it was quite
limited. Today's program verifiers are much more sophisticated.
However, it is a sad reflection on the difficulty of program veri.i-
cation that despite their added sophistication, current systems still
cannot automatically verify programs much more complex than those
described by King.

*hh% King James C., "Symbolic Execution and Program Testing,” Communi-
cations of the ACM, Vol. 19, No. 7, pp. 385-394 (July 1976).

This is one of the first places in the journal literature where
symbolic execution was described. Most earlier papers were either
technical reports or conference pepers. EFFIGY is described, a system
constructed by King to perform symbolic execution on programs written in
s simple PL/1 style. Detailed examples illustrating the style of
executing software symbolically are given including the user inter-
vention requived to direct the symbolic execution.
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kA% Ogterweil, Leon J. and Lloyd D. Fosdick, "DAVE —~ A Validation
Error Detection and Documentation System for FORTRAN Programs,” Soft-

ware: Practice and Experience, Vol. 6, No. 4, pp. 473-486 (October-
December 1976).

One of the most frustrating problems when working with most
commercial FORTRAN compilers is their poor diagnostic capabilities. For
exanple, most compilers do not perform even modest data flow analysis to
check for variables which are referenced without having previously been
assigned a value. Several types of data flow anomaly such as this are
detected and reported by DAVE, which analyzes ANSI FORTRAN programs.
This was one of the first reported systems to perform such analysis.
DAVE itself is quite portable because nearly all of it has been written
in ANSI FORTRAN. 1Its utility is enhanced by its ability to handle large
programs with many modules. Intermodule data flow analysis detects
anomalies across modules. Much of the article details the algorithms

employed for this analysis.

**k% Ramamoorthy, C. V. and Siu-Bun F. Ho, "Testing Large Software with
Automated Software Evaluation Systems,” IEEE Trans. on SE, Vol. 1, No.
1, pp. 46-58 (March 1975).

This paper presents an excellent overview of automated software
evaluation systems. The importance of tools to lowering lifecycle costs
is developed. This is followed by the classification of tools into
several categories depending on the nature of the analysis and the point
in the lifecycle when the tool 1is applied. The specific aid which tools
can offer, such as checking for loop termination couditions are pre-
sented. Many example tools are cite¢ in the bibliography. Some are
briefly evaluated in the body of the paper as well.
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%% Ramamoorthy, C.V., Siu-Bun F. Ho, and W. T. Chen, "On The Automated
Generation of Program Test Data,” IEEE Trans on SE, Vol. 2, No. 4, pp.
293-300 (December 1976).

Manual generation of test data 1s tedious and error-prone.
Automated methods are required to reduce the time required to prepare
data sets and to help ensure that the data sets have desired properties
such as guaranteeing a particular set of paths are taken. In this
article the authors discuss automated methods of applying symbolic
execution to generate test data. Symbolic execution results in a series
of constraints on the input data imposed by the predicates controlling
flow of control and perhaps by additional constraints imposed by the
user. Provided the constraints on linear or special non-linear forms,
known techniques can be used to agutomatically generate the data.
Howerar, there are no algorithmic techniques for arbitrarily complex

code.

The authors propose a new method which involves careful selection
of values when possible and randas selection from a restricted domain
when analysis cannot be done. Since random selection can lead to the
selection of input values wich will not simultaneously satisfy all
constraints, the method includes a backtracking compoment to undo the
selection of input values until a complete set of input satisfying all
constraints is created. Of course, since the input domains are effect-
ively infinite for most problems, this approach may not succeed. The
authors do not offer any substantiating evidence that the system will
work in acceptable time for complex numerical problems and further
evaluation is needed before it will be clear whether this system {is
viable. The algorithm has been implemented in FORTRAN in a system
called CASEGEN and is operational on a CDC 6400.
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#*#%% Rubey, R. J., J. A. Dana, and P. W. Biche, "Quantitative Aspects of
Software Validation,” IEEE Transactions on Software Engineering, Vol.
SE-1, No. 2 (June 1975), pp. 150-155.

This paper is the first attempt that we are aware of at making a
quantitative evaluation of testing techniques. The authors have
complled error data from several software development projects (the
sources are kept anonymous), broken down by error type, severity,
frequency of occurrence, method of detection, and time of detection.
They observe that static analysis and dynamic testing are complementary
error detection methods, and that both should be used in an effective
software validation effort.

*%%%  Thayer, Thomas A., Myron Lipon, and Eldred C. Nelson, Software
Reliability, North-Holland,. Amsterdam, 1978.

This is a commercial publication of a final technical report for a
study performed by the TRW Defense and Space Systems Group for Rome Air
Development Center during 1973-1976. The study analyzes writtean error
reports from five software development projects (sources kept anony-
mous). Three major topics in the field of software reliability are
treated extensively: error classification, causes and prevention of

errors, and mathematical modelling of software reliability.

The error classification system appears to be the least satis-
factory product of this work. The final system used has 79 error types
split among twelve major categories. The error types are not defined
other than by a terse one-line description such as "Incorrect operand in
equation.” Thus there is much room for ambiguity in interpreting the
categories and assigning errors to them. The system mixes source code
error definitions and run-time symptoms of errora; it also does not
distinguish between design and coding errors. Howevar, in the five

years since this report has appeared, no better error classification
system has been developed.
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Chapter 4 presents an extensive analysis of the error data from
the five projects. There are regressions of errors versus module size
and complexity, time of error detection, and time of introductiom of the
errors. The effects of programmer abilities and assigmaents and
computer usage on error detection rates are considered. The effective-
ness of various design, standards enforcement, and testing tools and
techniques are evaluated. Although a large amount of data is considered
and an overvhelming number of data reductions are pegformed, the authors
of the study remain unconvinced that they have uncovered error trends
that will apply in any general software development setting.

Chapter 5 and 6 are devoted to the mathematical modeling of
software reliability. Chapter 5 is a brief summary of several such
models; Chapter 6 attempts to apply one model (developed by Nelson) to
one of the software projects. These chapters are much more
“theoretical” in orientation than the rest of the study—a background
and interest in the probabilistic modeling of software is needed to read
them in detail. The value of mathematical software reliability theory
is not made clear to the more casual reader. The "guidelines to
minimize error introduction”™ which are presented as the conclusions of
this andalysis seem to be borrowed from structural testing: try not to
write unexecutable paths; test all branches in the program, using well-

chosen (functional) data; retest all branches affected by a code
correction; etc.

This volume is recommended not only for what it offers to the
field of software engineering but also as an excellent example of what
technical writing should attempt to be. For the most part, the text of
this report is delightfully clear and concise. It gives one hope that
software engineering may yet be spared from degenerating into a worass
of reports documented in pure jargon. Its conclusions and recommen-
dations for improving the reliability of software are somewhat tenta-
tive, but that is an accurate reflection of the current state of the

discipline. The study provides an excellent foundation for further
research.
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C.2  RECENT PAPERS (from 1978 to 1980)

ek Andrews, D. M., "Software Fault Tolerance Through Executable
Assertions,” Twelfth Annual Asilomar Conference on Circuits, Systems,

and Computers, Pacific Grove, CA, November 6-8, 1978.

This paper presentes a brief tutorial in how to use executable
assertions both to test programs and to provide run-type error recovery.
It gives recommendations on where to put assertions to detect processing
errors, and describes the kinds of “reasonableness” checks that can be
made with them. Coded examples of the use of recovery blocks are
presented. A few statistics are presented which show the overhead of
using assertions to be acceptable in most applications.

bk Bauer, Jonathan A. and Alan B. Finger, "Test Plan Generation Using
Formal Grammars,” Proc. 4th International Conference on Software

Engineering, pp. 425-432, Munich, September 17-19, 1979.

To the extent that a program can be modeled as a finite-state
transducer, the large body of theory which has been developed over the
last 25 years on transducers can be applied. The authors claim that for
certain applications, such as control systems, a finite-state transducer
model is appropriate. They have constructed theA Automated Test System
(ATS) which takes a formal description of the system, maps it into an
augnented finite~state transducer, produces a sequence of test cases
from that transducer under varying completeness criteria, and runs the
tests. This method tends to produce a large number of test cases;
however, the ATS can quickly execute each test. The idea 1is inter-
esting, and 1is similar to thet described by Chow (1978), but the
practical impsct of their work remsins to be seen.
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***  Benson, J.P, and S. H. Saib, "A Software Quality Assurance
Experiment,” Proc. Software Quality and Assurance Workshop, pp. 87-91,
chn Diego, November 15-17, 1978.

Assertions have been used to augment the weak error-checking
capability of many FORTRAN compilers and linking loaders. The utility
of executable assertions to detect errors is studied. Errors were
seeded into a program of about 1000 lines. Executable assertions were
then added to the program. The executable asgertions, when violated,
cause an error message to be printed. Typically such assertions specify
range information such as stating that variable X has a value in the
range 0..10, or asgertions may state relationships between variables
such as stating that the value of variable X is greater than the value
of variable Y.

The experiment showed that assertions are quite useful in de-
tecting many common errors. They appear to be most valuable in de-
tecting computational errors, such as using the wrong operator, and
veaker in detecting logic and data hsndling errors. The authors propose
further development of new forms of executable assertions to better
handle the latter two error categories.

baded Bristow, G., C. Drey, B. Edwards, and W. Riddle, "Anomaly Detec-
tion in Concurrent Programs,” Proc. 4th International Conference on
Softwvare Engineering, pp. 265~273, Munich, September 17-19, 1979.

The paper contains a description of algorithms to detect anomalies
such as a variable being referenced without ever having beeu assigned a
value. This is a generalization of similar detection capabilities for
sequential code. It is essentially a shorter, less developed version of
what was later published by Taylor and Osterweil (1980).
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#%%  Budd, Timothy A., Richard J. Lipton, Frederick G. Sayward, and
Richard A DeMillo, "The Design of a Prototype Mutation System for
Program Testing,” Tutorial: Automated Tools for Software Engineering,
PP- 226-230, IEEE Catalog No. EHO 150-153, New York, 1979.

The structure and capabilities of a pilot system to perform
testing by mutation is described. The system comprises about 10,000
lines of FORTRAN code, and can be used to test FORTRAN programs.
Program mutation itself assumes that a program is nearly correct; i.e.,
differa from the correct version by only a “simple” error such as having
a .LT. predicate instead of .LE.. It cannot address radically incorrect
problems such as accidentally omitting a whole capability. If a progras
is incorrect, but a slight "mutation” of it is correct, then the authors
argue that a system which automatically mutates programs will be able to
detect errors. Thelr system accepts as input the original program, a
user-written description of which classes of mutations to make, and test
data on which the original program is known to yield the correct answer.
The system will mutate the program according to the description given
and run each wmutation against the test data. Failure to produce
identical answers on the test data "kills” off a mutation. On the other
hand, if a wmutation yields identical answers, it may be the correct
version, and is saved for subsequent analysis, or further testing with
new test data.

The authors have found it relatively easy to test subroutines
longer than 100 statements, and argue for mutation as a viable test
method. This effort is still in its early stages, and the guthors
recognize much research remains. A major problem is that some mutations
may yleld programs which are computationally equivalemt to the original.
Another is in producing large test data sets, although this problem has
been addressed elsevhere with some guccess. The wmost significant
problem facing mutation testing, however, is the astronomical number of
potential wmutations. In order for this method to become viable,
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sophisticated methods of reducing the number of mutations of a given
program must be found.

**%*Cheatham, Thomas E. Jr., Glenn H. Holloway, and Judy A. Townley,
“Symbolic Evaluation and the Analysis of Programs,” IEEE Trans on SE,
Vol. 5, No. &4, pp. 402-417 (July 1979).

The capabilities and design of a system for performing symbolic
evaluation of programs written in the ELl language are described. The
system was operational on some language features of EL1l at the time the
article wvas written. Sywbolic evaluation is a static analysis of a
program for the purpose of generating descriptors useful to other tools
such as program verifiers and code optimizers. It 4is actually a
collection of analysis techniques for the purpose of producing either
closed form formulas or recurrence relations which describe the behavior

of each program variable. In this sense it is a generalized symbolic
executor.

The work is notable for its ambitiousness: EL1 is a complex
language, whereas most earlier work on symbolic execution has been
restricted to rather simple language features; loops are analyzed
automatically, so that for each variable affected by a loop, the systea
attempts to construct a closed form formula which describes the input/-
output relationship of the loop with respect to that variable; user-
defined procedures are snalyzed, including any side-effects, an aspect
of procedure analysis which is ignored by most symbolic execution
systems. The system operates by building a program data-base which
captures many logical and structural relationships and then analysing
this data-base. The besic algorithms employed by the systea are
described in the article.
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*% Chow, Tswn 8., "Testing Software Design Modeled by Finite-state

Machines,” IEEE Trans on SE, Vol. 4, No. 3, pp. 178-187 (May 1978).

There are no test strategies which are both reliasble and valid for
all programs. This fact has led researchers to seek test strategies
which are both reliable and valid for a certain class of programs and
errors. Chow has developed a strategy for detecting flow of control
errors in programs which satisfy certain simplifying assumptions. This
method, which he calls “automats theoretic” testing, is both reliable
and valid for the special cases for which it was designed. Chow claims
that one of the most important advantages of his method is that designs
rather than programs can be tested with it. An executable version of
the program is not needed--just a design.

First the tester must construct the finite-state machine which
characterizes the system's behavior. Chow offers ano guidance as to how

to do this. He readily adaits, however, that only a limited number of
applications can be so modeled.

There are three steps in his wmethod: (1) estimate the maximum
number of states in the correct design; (2) generate test sequences
based on the design; and (3) verify the responses to the test sequences
from step 2. The maximum nuaber of states is required so that the
tester can be “certain” he has test sequences long enough to force the
testing of all possible cycles in the transition diagram. It is not
clear how reasonable this assumption is, but it is certainly required in
order to guarantee reliability for the method. The test sequences
required will force the constructed gutomaton to go through each
transition at least once and also enable indistinct pairs of states to
be recognized. The verification step requires a manual walk-through of

the design (or automated if executable code is used) and a manual
examination of the results for correctness.
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There sre obvious limitations with this method as the number of
states incresses. The author cites his persounsl experience at Bell Labhs
using this method on three different projects. He was quite  leased

with the experience, noting that several errors were detected with this
technique.

#%% DeMillo, Richard A., R. J. Lipton, and A. J. Perlis, "Social
Processes and Proofs of Theorems and Programs,” Communications of the

ACM, Vol. 22, No. 5 (May 1979), pp. 271-280.

This article openly condemns the study of formal verification as a
fruitless pursuit. As would be expected, it prompted a lot of response
in the form of letters to the editor and notes in CACM and other
software journals. It also provided a challenge to the formal verifi-
cation community-—it 1s no accident that announcements of successful
proofs of significant programs began to appear within a year.

The article argues that proving (verifying) programs lacks an
essential element that its counterpart in mathematics~—proving theorems-
-has: the "social process” of peer review of one's results. Proofs of
programs are inherently dull, tedious, and uninteresting, so they won't
be checked msnually. PFurthermore, no one will want to perform thea
sanually as s matter of course; and fully automated verification is a
long way off and mot likely to be helpful in correcting errors. The
authors state their conclusions in no uncertain terms: “"Even the
verifiers themselves sometimes seem to realize the unverifiable nature
of most real software;” and "The discontinuous nature of programming
sounds the death knell for verification.”

Many of the criticisms stated in this article touch on significant

problem areas with formal verification, but the general thesis misses
the mark. Formal verification is different from mathematics: the
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former is a quality assurance activity performed by engineers, while the
latter is a body of knowledge which is valuable only insofar as it can
be proved to be logically consistent and correct. Formal verification
of programs can be valuable even if the process is flawed or incamplete-
~-1f program proving is found to improve the quality of software in a way
that no other software development activity can, then it should be used.

#*k* Deutsch, Michael S., "Software Project Verification and Valida-
tion,” Computer, Vol. 14, No. 4 (April 1981), pp. 54-70.

This paper describes the design, development, and testing of a
large software development project. The software development and
testing proceeded in top~down fashion, with emphasis on identifying each
structural element of the program with a specific function. Software
developuent and testing were performed concurrently, as functional
capabilities were realized. Automated tools were used to provide
documentation, aid in test data generation, instrument the source code
to measure test coverage, and analyze and report test results.

Complete branch coverage was required for each module tested. The
article includes a very clear explanation of how an instrumeantation and
test case assistance tool can be used in structural testing. The
reports provided by the tools are shown, and each step in the testing
process is enumerated and described. Evidence 1is presented that
structural testing used in this manner can save a significant amount of
effort (more than 3 person-years) over traditional testing methods.

#%%  Drasch, PFrederick J. and Richard A. Bowven, "IDBUG: A Tool for
Program Development,” Proc. Software Quality and Assurance Workshop, pp-
106-110, San Diego, November 15-17, 1978.
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IDBUG is a tool which automatically counstructs a test harness,
thereby relieving much of the tedium of dynamic testing. It is imple-
mented in FORTRAN on an HP 2IMX-E mini-computer and can generate test
modules and monitor their execution. The user specifies the interface
between his program and the IDBUG system in a special language. IDBUG
is interactive, permitting a programmer to examine data and output, or
modify input data as desired.

The authors report that the use of IDBUG on two projects was quite
pleasant. They spent much less time on debugging with greater user
gatisfaction. They felt that the ability to step through different
modules during execution gave them an insight into the execution

characteristics of the programs they had not previously encountered.

The system as described seems quite useful, and is certainly an
improvement over awkward manual methods of comstructing testing en-
viromments. Its biggest flaw is that the command language is scaewhat
avkward to use, and could be improved. Such an improvement would be
relatively easy compared to the overall development of IDBUG, and would
simplify learning and using the tool effectively.

bkl Duran, Joe W. and John J. Wiorkowski, “Towards Models for Prob-
abilistic Program Correctness,” Proc. Software Quality and Assurance
Workshop, pp. 39-44, San Diego, November 15-17, 1978.

Since testing cannot, in general, guarantee program correctness,
the authors explore the notion of “probability of correctness”. Because
certain testing wmethods are more reliable than others, and certain
combinations of tests are likely to discover large classes of errors, a
probability of correctness can be ascribed to a program depending on the
testing it has undergone. The authors study several differemt testing
strategies with respect to random test data and data from special
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distributions to derive quantitative wmeasures of confidence 1in the
correctness of a program.

One sample strategy for producing a confidence 1level involved
terting a program as a black box on random sample of inputs. This
allows them to make statements such as “"we have X % confidence that
program P has a probability of at least Y of running correctly on an
arbitrary input;" The more test cases run, the higher will be X and Y.
For example, with 1000 test inputs, X = 952 and Y = 0.997.

Such attempts to quantify the degree of correctness of programs is
laudable. Such measures as the authors propose appear useful; however,
the double probability inm their measure makes the significance of the
metric much less clear. The other models they propose are much harder
to assess since they give so few details. Further work by thea is
needed to determine how useful these metrics will be in practice, and
how easily they can be computed.

bkl Fitzsimmons, Ann and Tom Love, "A Review and Evaluation of

Software Science,” Computing Surveys, Vol. 10, No. 1 (March 1978), pp.
3-180

This paper is long on review and short on evaluation. It 1is
excellent as a summary of the Halstead metrics—it carefully defines
each of them, shows how they are computed, and presents interpretations
of their meaning. However, the authors seem willing to take at face
value the most incredible claims of Halstead and his auoc_iatel. and the
only qualification they issue 1is that “the data collected to date are
not sufficient to verify the hypotheses of software science.”

All of the Halstead metrics are based on the operator and operand

counts of a program. These values are combined through variovs formulas

c-21




o e e ae e s s - —— e — - el

loosely based on results in information theory. (There are some
ambiguities in the way operators and operands can be classified-—the
authors do not mention these, however.) The various metrics are
supposed to indicate, among other things: the complexity of a program,
the level of a language (quantifying the HOL-assembler dichotomy), the
effort required to develop a program, the number of errors in a program,

and the time required to understand a program.

The authors cite some impressive statistics in support of these
properties of the metrics--indeed some are too impressive. The corre-
lation coefficlents between predicted and observed program errors are
glven as .98 and .99 in two experiments in which Halstead himself was
involved. These numbers are so high that in the absence of any a priori
reason to believe in such a correlation, it seems they must be statis-
tical flukes. The authors are willing to make some very sweeping
judgments on the basis of these experiments; for instance, from com-
paring the effort metric values they conclude that “software projects
using PL/I will proceed much faster toward completion than if they used
low-level languages. There will be fewer bugs.” There are assembler
and FORTRAN programmers who wouldn't agree with that at all.

The Halstead metrics are not “"magic numbers” that can be used to
measure every conceivable aspect of software engineering. Their
proponents would do better to stick to trying to approximate more
objective quantities such as software costs, errors, and development
time, rather than getting involved in emotionally charged issues such as

whether one language is superior to another.

faded Foster, Kenneth A., "Error Sensitive Test Cases Analysis (ESTCA),”
IEEE Trans. on SE, Vol. 6, No. 3, pp. 258-264 (May 1980).

c-22

Cment -

e ———— At o
-

- ——— -




——

-‘\‘tﬁ.

it id)

T e A ——— sy o 2 ke "

e T A R T —

Foster describes a technique he developed for selecting test cases
which are likely to find errors. The goal is to find path errors by
generalizing oun techniques used for testing gates in hardware design.
The technique is summarized by three rules for selection. In a simpli-
fied form they are: (1) 1if predicate P depends on (at least) two
variables X and Y, then assign values to X and Y in different test cases
so that X<Y, X=Y, and X>Y. (2) if X should be less than Y (or greater),
then make X differ from Y by the smallest decrement (increment); (3)
assign values to each input so its value changes across tests, and so
its value differs from that of other variables. The paper elaborates on
ad hoc methods to generate such data and argues for the offectiveness of
ESTCA based on an analysis of several examples. Foster admits that
ESTCA has no theoretical basis, iustead it 1is founded on “pragmatic
engineering” considerations. 1In fact, it closely resembles well-knrown

methods for selecting test data.

*k Fujii, Marilyn S., "A Comparison of Software Assurance Methods,"
Proc. Software Quality and Assurance Workshop, pp. 27-32, San Diego,
November 15-17, 1978.

Three software quality assurance methods are compared: quality
assurance, acceptance testing, and independent verification and vali-
dation. The first ensures sound methods are applied to the overall
development process, the second that the customer will find the proddct
acceptable on delivery, and the third helps ensure the product is

correct.

*A%*  Gannon, Carolyn, "Error Detection Using Path Testing and Static
Analysis,” Computer, Vol. 12, No. 8, pp. 26-31 (August 79).

An experiment conducted by Gereral Research Corporation to test

the effectiveness of path testing versus static analysis for error
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detection is described. A 5000~1line FORTRAN program was seeded, one
error at a time, with 49 errors using the TRW error classification
scheme to categorize them. A programmer, working independently from the
seeder, was asked to detect and correct all 49 versions of the program
using path testing or inmspection, —hichever seemed more appropriate. To
provide a basis for comparison, all 49 errors were also seeded together
into the program and run through a static analyzer to determine which
errors could have been detected through static analysis alone. The
results indicate that neither path testing nor static analysis alone 1is
adequate to uncover all errors. Path testing alone detected about 252Z
of the errors, mostly logic, computational, and data-base errors.
Coupled with inspection, this percentage increased dramatically to 45%,
but is still well below an acceptable level. Static analysis, which is
most effective in finding data handling, interface, and data definition
errors, detected only 162 of the errors. However, one of the errors was
not detected by the other methods. Gannon concludes that path testing,
static analysis, and inspection should all be part of a comprehensive
test plan. She also notes that even these three methods combined are
inadequate to detect many errors and that more sophisticated methods are

needed.

*k%  Geiger, Werner, Lothar Gmeiner, Heinz Trauboth, and Udo Voges,
"Program Testing Techniques for Nuclear Reactor Protection Systems,”

Computer, Vol. 12, No. 8, pp. 10-18 (August 1979).

A combination of methods were used to develop and test a nuclear
reactor protection system. These methods included static and dynamic
testing using SADAT. In addition, multiple versions of the system were
independently developed—-a technique which proved exceedingly valuable
in detecting errors since the independent teams made different types of
errors. The software was tested first at the module level, then after

integration at the system level. The authors feel the method proved
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quite effective in uncovering problems in the specifications and in
detecting errors in the implewentation.

***  Howden, William E., "An Evaluation of the Effectiveness of
Symbolic Testing,” Software: Practice and Experience, Vol. 8, No. 4, pp.
381-391 (July-~-August 1978).

Symbolic testing is compared to static and dynamic analysis to
determine its reliability in revealing different types of errors. Six
independently writtean programs which contain 28 known errors are the
basis for the analysis. The dynamic tests included branch testing, and
the static included module interface checking.

The analysis shows that symbolic testing is, by and large, wmore
reliable than any of the other individual methods, such as branch
testing. However, when all other methods are combined, symbolic testing
is only slightly better. Hence, symbolic execution could be used alone
to discover most errors which other standard techniques do, or could be
used in conjunction with other methods to ensure greater error de~

tection.

Howden points out that the analysis he conducted was based on just
six programs, and that it is not valid to assume that these relation~
ships hold in general. However, even if they are approximately correct,
the utility of symbolic execution is supported.

***  Howden, William E., "Algebraic Program Testing," Acta Informatica,
Vol. 10, No. 1, pp. 53-66 (1978).
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Most testing methods have little mathematical foundation. They
are applied because of empirical evidence that they are 1likely to
uncover certain clasges of errors. In this paper Howden presents a test
method which has a rigorous mathematical foundation. 1t is reliable for
all errors for a certain class of programs. This class is relatively
small but important--programs wich manipulate arrays in a specified way,
such as sorting an array of elements. The major result of the paper 1is
that a program which satisfies these restrictive conditions is correct
if it 1s correct on a particular set of data. Howden gives a construc-
tive method for producing that data.

The restrictions on the computation within a program to which
algebraic testing is applicable are severe emough so that this testing
method cannot be widely applied without further research. It 1s not
clear how much further it can be generalized. However, it is a signi-
ficant contribution to the testing literature because it attempts to
support testing strategies with a mathematical analysis of programs
rather than ad hoc experience.

hk Howden, William E., “DISSECT-—A Symbolic Evaluation and Program
Testing System,” IEEE Trans on SE, Vol. &4, No. 1, pp. 70-73 (January
1978).

This short article adds very little to a longer and much more
detailed paper which appeared earlier (Howden, 1977). It explains the
purpose and effectiveness of DISSECT, the author's system for symbolic
execution. The longer article is a much better examination of DISSECT.

fadal Howden, William E., "Theoretical and Empirical Studies of Program
Testing,” IEEE Trans on SE, Vol. 4, No. &, pp. 293-298 (July 1978).
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Two approaches to program testing are described-—theoretical and
empirical. Theoretical testing relies on a rigorous =mathematical
foundation which guarantees that if a program and test data have certain
characteristics, then the test will uncover a specific class of errors.
On the other hand, empirical tests such as path testing rely upon the
fact that experience shows that certain types of tests frequently
uncover certain classes of errors. In the latter case, there is mo
guarantee that the method is reliable.

Although theoretical testing is obviously preferred, the known
theory of testing 18 currently so limited that very little actual
testing can be accomplished using guaranteed reliable methods. Howden

feels that the empirical approach will be the more fruitful for the near
future and encourages further research in f{t.

The paper itself mostly reviews the state of the art very briefly,
offering few new insights. 1t 1is primarily a position paper by Howden
on where he feels research in testing should proceed. Because of his

stature in this field, the paper has merit and has probably influenced
other workers.

4%k FJowden, William, “Functional Program Testing," IEEE Trans on SE,
Vol. 6, No. 2, pp. 162~-169 (March 1980).

"Functional” testing is defined and compared in effectiveness to
“gtructural” testing. Functional testing in its basic form treats a
program as a "black-box"; i.e., without examining the program structure
and code. Test data is selec.:ed from an analysis of the requirements.
In its more developed form, functional testing applies the same “black-
box” treatment to the design as well, testing each functional component
of the design as a black-box. Functional testing has umany of the
characteristics of “"stress” and "boundary” testing; e.g., extreme values
in the domain of each input variabdle should be used as test data.
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This short paper is not overly technical and can be read by
someone without an extensive background in testing. Howden offers a
general philosophy for testing, as well as spei:ifying exact methods in
many cases.

He concludes that functional testing 1is more reliable than
structural testing, in that is is likely to find more errors. This is
based on a study of a commercial statistical package, IMSL, in which he
analyzed all known errors. However, functional and structural testing
are complementary, not competing methods, because each will detect
errors which the other will not.

** Huang, J. C., “Detection of Data Flow Anomaly Through Program
Instrumentation,” IEEE Trans on SE, Vol. 5, Nr. 3, pp. 226~236 (May
1979).

A new method of detecting flow anomalies is described and compared
to the traditional approach. A flow anomaly occurs when a variable is
referenced vhen its value is undefined, assigned two values without an
intervening reference, or assigned a value and then become undefined
without an intervening reference. The first case 1is always an error,
the latter two indicate a possible logical error. Classically, flow
anomalies are detected statically. Huang proposes instrumenting code to
detect them dynamically. This new approach can handle array references,
which the static approach cannot. Instrumented programs which umndergo
structural testing including complete DD-path testing will, as a
by-product, detect all data flow anomslies except those dealing with

arrays. Arrays require additional testing to cover the entire subscript
range.
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ok Ploedereder, Erhard, “Pragmatic Techniques for Prograa Analysis
and Verification,”™ Proc. 4th International Conference on Software

Engineering, pp. 63-72, Munich, September 17-19, 1979.

The Program Development System (PDS) 1is described. It is a
collection of tools used to support program development in the ECL
language. The majority of the paper is spend on the central tool--a
symbolic evaluator. The system is basically that described in another
paper hy Cheatham et al. (1979).

bkl Polak, Wolfgang, "An Exercise in Automatic Program Verification,”

IEEE Trans on SE, Vol. 5, No. 5, pp. 453-458, (September 1979).

Program verification has been criticized for only being able to
handle "toy" programe. The author tries to argue that the state of the
art has advanced from “toy" to “small but nontrivial” programs. He
supports this claim by showing how a permutation program written by
Knuth can be proven correct using the Stanford Pascal verifierl. The
verifier works from an augmented version of the program in which key
assertions are provided by the user.

The paper is not very convincing because the program studied is
still a “"toy". The original Algol 60 program is just 13 lines. It is
slightly longer in the Pascal form which Polak converts it into since he
has added lengthy invariant assertions, more comments, and other
boilerplate. Furthermore, he has done all of the really hard work by

Staunford Verification Group, Stanford Pascal Verifier, user Manual,

Stanford Univ., Dept. of Computer Science, Report No. STAN—C5-79-731
March 1979.
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providing the assertions. A more counvincing argument for the viability
of program verification would have been for the agsertions themselves to
be automatically generated. A final problem with the permutation
program is that it has such a classic set of mathematical properties

underlying it. Most programs actually written do not.

**% Reifer, Donald J. and Stephen Trattner, "A Glossary of Software
Tools and Techniques,” Computer Vol. 10, No. 7, pp. 52-60 (July 1977).

One of the most difficult problems in any field as young and
dynamic as computer science is the lack of a standard terminology. The
authors provide clear concise definitions for 70 common tool and

technique categories such as "compiler” or "test-result processor.”

fadad Scowen, R. S., "A New Technique for Improving the Quality of
Computer Programs,” Proc. 4th International Conference on Software
Engineering, pp. 73-78, Munich, September 17-19, 1979.

If a variable's value 1s overwritten without ever having been
referenced, then presumably there is .a logical error in the code.
Scowen proposes implementing a hardware check for this condition. The
basic flaw with his proposal is that it is not always an error to aasign
a value without ever referencing {it. For example, a value may be
computed assuming normal operating conditions, but an exception wmay
cause that computed value to be overwritten. Static analysis could warn
the programmer during initial coding that he has a potential error.
Scowen's technique, however, could check array references for which
subscript bounds cannot be computed statically.

bl Sukert, Alen N. and Aarit L. Goel, "Brror Modeling Applications in
Software Quality Assurance,” Software Quality and Assurance Workshop,
pp. 33-38, San Diego, November 15-17, 1978.
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Different approaches to modeling the prediction of errors are
described, 1including a discussion of the parameters and probability
distributions eaployed. A large project involving 115,000 lines of
Jovial code is the basis for the analysis of error prediction models.
Detailed error data was available for this project which was tested and
became operational in 1973.

All of the models described appear to be somewhat weak, giving
answers far different from the actual number of errors found. Uninteun-
tionally, the authors seem to point out how poor current models of error
prediction really are. They present a plan for using error prediction
wodels as part of an acceptance test. The expected number of errors
which will occur over some period of time is computed using an error
prediction model. Testing then proceeds over a benchmark period. If
the number of errors actually discovered does not exceed the predicted
number, the software should be accepted.

**%  Taylor, Richard N. and Leon J. Osterweil, "Anomaly Detection in
Concurrent Software by Static Data Flow Analysis,™ IEEE Trans on SE,
Vol. 6, No. 3, pp. 265-278 (May 1980).

A data flow anomaly occurs when a variable is referenced without
having been previously assigned a value or is assigned a value which is
never referenced. The detection of anomalies in sequential code has
been studied by many people and several tools exist which detect such
anomalies in a variety of languages such as FORTRAN and Pascal. Taylor
and Osterveil have extended those results to concurrent code where
additional problems in detecting anomalies arise because of the indeter-
minate order of execution of some statements. They have further
isolated several anomalies of a different nature peculiar to concurreant
code such as a task never being scheduled, or being scheduled concurreat
with itself. The bulk of the paper is taken up describing the algor-
ithms to detect these anomalies. The algorithms are based on a nev data
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structure called s “process sugmented flowgraph™ which 1s a graphical
representation of a system of communicating concurrent processes.
Algorithms found in many optimizing compilers such as those to detect

"live” and “dead” variables in code blocks are adopted for this ana-
lysis.

#k Voges, Udo, Lothar Gmeiner, and Anneliese Amschler von Mayrhauser,

"SADAT — An Automated Testing Tool,” IEEE Trans on SE, Vol. 6, No. 3,
pp. 286-290 (May 1980).

SADAT is a tool for testing single modules of FORTRAN programs.
It is written in PL/1 and runs on an IBM 370/168. SADAT supports static
and dynamic analysis plus symbolic execution. Among its capabilities,
it can statically detect code anomalies, symbolically execute a parti-
cular path in a program, and instrument code to report on character-
istics of a particular run such as the DD-paths which were executed.

*%%%  Yalker, Bruce J., R. A. Kemmerer, and G. J. Popek, “"Specification
and Verification of The UCLA Unix Security Kernel,” Communications of
the ACM, Vol. 23, No. 2 (February 1980), pp. 118-131.

This is one of the first efforts to prove the security of an
operating system. Such work represents a change of emphasis in formal
verification from attempts to prove the “"general” correctness of
traditional applications programs. The paper describes the formal
specification and verification process in terms that are understandable
to a reader who has no previous exposure to the techniques of program
proving. It is also an honest account of the difficulties of conductiag

a proof. Thus, it is highly recommended reading for anyone interested
in formal verification.

Much of the work of proving a program is involved in developing a
set of formal specifications. These formal specifications amust do two

c~32

P - e e em i am e = et —— B

- P e

A — A A e A AR . N B A e




- —

FaLi e g e N

4

* TR A
. am . . i d— e J— P

things: they must embody the properties that the developers want the
software to have; and they mugt provide a logical basis for the proofs.
Three levels of specifications were developed in proving the UCLA Unix
security: the top level is a concise statement of what the security
criteria 1s, while the lower levelq [specify how the software is to
implement this criteria. In effect, the software source code provides a
fourth 1level of specification which 1s imposed on the supporting
computer system; however, the proofs stop at the source code level and

assume the correctness of the compiler, hardware, etc.

The authors have been encouraged by the success of this effort,
but have no 1illusions about the current practical value of formal
verification. They state that "The effort required (in developing the
specifications) 1s sobering. The task 1is still too difficult and
expensive for general use.” Likewise, the process of conducting the
proofs was made difficult by various factors. Only twenty percent of
the code-level proofs were actually completed; yet the total verifi-
cation effort consumed over four person-years! Part of the reason for
this is that the tools and techniques used were comstantly undergoing
changes. The authors feel that this project at least demounstrated the
feasibility of using formal proof methods on operational software.

*%* Yeyuker, Elaine J. and Thomas J. Ostrand, “"Theories of Program
Testing and the Application of Revealing Subdoinins," IEEE Trans on SE,
Vol. 6. No. 3, PP 236-246 (Hly 1980)0

This important work refines the fundamental effort of Goodenough
and Gerhart (1975). Practical problems in conmstructing criteria that
are both "valid” and "reliable” are exasmined; e.g., a criterion which is
reliable and valid on program F may be invalid or wunreliable on a
slightly modified version of F; i.e., criteria may not be robust.
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There are several interesting results. Every criterion for
selecting test data is either valid or reliable; i.e., the two notions
are not independent! A criterion is “uniformly valid” ("uniformly
reliable”) if it is valid (reliable) on all programs. If a criterion is
both uniformly valid and uniformly reliable then it selects the test
consisting of the entire input domain. Hence, no single nontrivial
criterion is suitable for selecting test data for all programs.

Since programs are not arbitrarily bad, but are usually almost
correct, testing criteria should be able to take advantage of the types
of errors typically made. This leads to the uotion of a "revealing test
criterion.” A criterion C is revealing if any one test selected by C
exposes a program error then all such tests will. The key to the
success of this work lies in the ability to partition the iaput domain
into revealing subdomains for likely types of errors.

#%% yYhite, Lee J. and Edward I. Cohen, "A Domain Strategy for Computer
Program Testing,” IEEE Trans on SE, Vol. 6, No. 3, (May 1980).

The predicates governing the flow of control partition the inmput
domain according to the path taken through a program. A "domain error”
occurs when an input leads a program down the wrong path due to an error
in the control flow of the program. White and Cohen describe a method
for sutomatically generating test data which will reliabily detect
domain errors under specified conditions.

The testing method described has only been studied on simple
language features; e.g., arrays and procedures are not allowed. Hence,
it currently has limited practical value. However, it is not clear that
these features pose insurwountable problems to the method; they simply
have not been studied. The method is tractable if all predicates in the
program are linear. Although this is theoretically quite limiting, the
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authors present evidence that most non-scientific programs have only
linear predicates. If the predicates are linear, the domain is broken
into areas bordered by intersecting lines. The method selects test data
for each subdomain near its borders, where domain errors are most likely

to occur.

k Woodward, Martin R., David Hedley, and Michael A. Hennell,
"Experience with Path Analysis and Testing of Programs,” IEEE Trans on
Metric, SE, Vol. 6, No. 3, pp. 278-286 (May 1980).

Woodward et al. propose a new metric for measuring how effectively
a program has been tested. The Test Effectiveness Ratio, or TER, 1is
based on the notion of a “Linear Code Sequence and Jump” (LCSAJ)
developed earlier by them. The LCSAJ is based on the program text
rather than a flow graph and consists of a sequence of statements
executed sequentislly and terminated by a statement which causes a

non-sequential jump.

The TER is actually a hierarchy of ratios which measure succes-
sively more thorough testing. TER1 is the statement coverage ratio,
TER2 is the branch coverage ratio, and TER3 is the LCSAJ coverage ratio.
TER3 is the inductive base of the hierarchy. Higher levels are attained
by testing sequences of LCSAJs; i.e., TERn 1is the coverage ratio of
LCSAJ sequences of length n-2.

After the authors define the hierarchy, they spead the remainder
of the paper addressing the fact that long sequences of LCSAJs typically
are infeasible and must be “pruned” in order to obtain reasonably high
TER values. Hence, their definition of TERn should probably be modified
so that only feasible sequences are considered in forming the ratio.
Further work must be done to demonstrate the viability of this metric of
testing thoroughness.
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*** Yoodward, M.R., M. A. Hennell, and D. Hedley, "A Measure of Control
Flow Complexity in Program Text,"” IEEE Trans on SE, Vol. 5, No. 1, pp.
45-50, (January 1979).

A static measure of program complexity is proposed and contrasted
with McCabe's "cyclomatic number.” Unlike McCabe's metric, the number
of "knots" in a program is computed directly from a program 1listing
rather than a directed graph constructed from that listing. The listing
is augmented by an arrow for each jump which occurs in the program. The
arrov connects the source and target lines of the jump. Those places
where the arrows intersect are called “"knots.” Program complexity is
said to vary directly with the number of knots.

The advantage of this metric over McCabe's is that it is dependent
on the ordering ¢: statements within a program and thereforc relates
more closely to program readability. There are typically many ways to
structure programs which will have the same cyclomatic number, but very
different knot numbers. Consequently, the readability of the program,
as reflected in statement order, is accounted for in their metric.

This paper argues convincingly that their metric is superior to
McCabe's. It is easy to compute and is more intimately tied to the
physical layout of the program.
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APPENDIX D

AN ASSERTION TESTING EXPERIMENT

Although executable assertions have been discussed in the testing
literature for a number of years, no one has attempted to determine what
level of resources should be committed to their use in a testing effort.
Testing with executable assertions 1s an open-ended task-—it has been
left up to the tester to decide what assertions should be used.

This assertion testing experiment sought information which would
be helpful to a tester in making this decision. Specifically, we wished

to determine:

. Where in a program should assertions be placed?

° How thoroughly can a program be tested using assertions
alone?

. What software metrics might provide good indicators of the

number of assertions needed for thorovgh testing of a

program?

A set of eight Fortran programs1 with known errore were chosen for
testing. These programs were also used in a previous software testing
ptoject,2 providing a baseline for comparison. The programs are listed
at the end of this appendix. They are small, allowing us to thoroughly
examine them in the allotted time. The experimental design was:

. Develop a complete set of assertions for the test programs.

° Run the programs and determine the errors detected (Test 1).

1B. W. Kernighan and P. J. Plauger, The Elements of Programning Style,

McGraw-Hill, 1974.
C. Gannon, R. N. Meeson, and N. B. Brooks, An Experimental Evaluation

2

of Software Testing, General Research Corporation CR-1-854, May 1979.
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. Remove the original errors from the programs and add new

errors into the corrected versions.

. Using the same set of assertions, test the corrected

versions and determine the errors detected (Test 2).

e Examine the relationship between the number of assertions

and various measures of program complexity.

D.1 DEVELOPING THE ASSERTIONS
Developing assertions and adding them to existing code ("asser-

ting"” the code) was the most time-consuming part of the experiment. Our
decisions on where to place assertions were based on both the criteria

for candidate locations givem in Sec. 7.2 and experience gained during
testing.

D.l.1 Easy Assertions

Some program locations were straightforward to assert:

) Control points
® Input statements
° Condition checks on variables with fixed values

An assertion was always placed on a labeled statement at a branch
point to assure that the program followed an intended path. If a
statement following a branch point was not labeled, an assertion was not
necessary since there can be no other way for that statement to be

executed.

Some control point assertions seemed unnecessary for these test
programs since the programs were small, and all alternative paths could
be checked manually. In larger programs, however, this may not be
possible. Therefore control point assertions on all labeled statements

seem desirable.
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Input statements were, for the most part, easy to assert. When we
were not familiar with the application area of a program or with
meaningful values for input data, we consulted someone more knowledge-
able in that field or obtained information from the program's documen-

tation.

As in the case of input statements, checking input and output
parameters with assertions is a simple method of describing the assump—

tions required by a particular module.

By screening input data, ome can augment a routine's capabilities;
limiting its input and consequently its output. For example, one routine
produces real results from real input, but integer results from integer
input. A second routine operates on integer data only. By screening
input to the first routine, the two routines can be meaningfully
combined.

Sometimes it is necessary for a variable to remain constant over
an entire section of code. This can be done by introducing a temporary

variable to save the value and checking its value using an assertion.

Additional checks that were easily made by assertions were
division by zero and overflow in exponentiation. A divisor is simply
asserted to be non-zero. Exponentiating to an even power must produce a
positive result, while exponentiating to an odd power must produce a

result of the same sign as the operand. An assertion violation indi-

cates an overflow.

D.1.2 Hard Assertions

Areas that required more difficult assertions were:

) Computation history checks
Complex computations
o Condition checks on changing variables
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Checking the history of computations by comparing previous results
to curreant results required a thorough knowledge of the program's
function. Auxilliary variables are needed to save old values. Formu~
lating assertions of this type was more difficult and time-consuming
since it required understanding a program's intent and then deciding
where in the code to save and compare values. It is evident that if one
is not totally familiar with material being programmed, it 1is easy to
make incorrect assertions. We spent a great deal of time debugging our
own assertions. We also found that placing assertions after complex
computations was very difficult in programs dealing with unfamiliar
subjects. In many cases, assertions were developed by more than one

person.

Although making assertion checks for variables that are required
to remain constant is fairly simple, determining upper and lower bounds
of variables that fluctuate requires understanding a program's intent.
A person formulating this type of assertion must be as familiar with the
code as the programmer himself.

Other areas that were hard to assert include wmaking equality
comparisons with floating point numbers and imposing "reasonableness”
conditions on program outputs. Testing for equality between floating
point numbers is a poor programming practice, but nevertheless it 1is
used. In these cases, one has to decide what tolerance can be allowed in
the comparison and assert that anything else violates correctness of the
program. In test program "Floatpt”, the squares of any two sides of a
triangle are compared to the square of the third side. It was necessary
to estimate the tolerance for the numbers representing a right triangle.
Thorough knowledge of the use and purpose of a program is essential for

this decision since certain applications require different accuracies.

By supplementing programs with assertions that require "reason-

able” outputs one can increase error detection. Such assertions can

D-4
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reveal that a program doesn't properly handle certain cases. For
example with certain data, the test program "Balance” takes an extra
iteration around a loop, recomputes balance and interest and informs a
user that "There will be a last payment of 0.00". This erroneous
computation was detected by asserting a logical result of greater than
half a cent for money balances. This type of assertion cannot be
formulated from any specified rule or technique, but rather is a result
of insight into a program's purpose.

In summary, two points should be emphasized: (1) we used standards
to dictate where assertions should go, and (2) we needed a good under-

standing of the programs to develop effective assertions.

It was very beneficial to develop general standards for imple-
menting assertions and to adhere to these standards even when the
assertions seemed trivial. After developing a technique, we went back
over asserted test programs and found many places in the code where we
did not include aasertions because we considered the code to be per-
fectly sensible and in no need of checks. Assertions seemed te dupli-
cate code. Assertions would be of little value if correctness of a
program could be assured so easily. We found that maeny errors cannot be
observed so simply and adhering to a specific approach is necessary even

if the assertions seem superfluous.

One has to understand a program to be able to comstruct useful
assertions. It is inevitable that some assertions will turn out to be
incorrect, just as any code initially has bugs in it. These aistakes can
be reduced greatly by awareness of a program's function and logic.

A summary of assertion data is given in Fig. D.l. For testing
purpoges, complex assertions were those which required temporary
variables and advanced assertion array constructs. All others were
considered simple assertions. The complete programs with simple and
complex assertions are listed at the end of this appendix.
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Figure D.1. Assertion Data

D.2 TEST 1 RESULTS

The results of Test 1 are presented in Table D.1. The table also
includes the results of the experiment performed by Gannon, et al.
(op. cit.) for static and path testing of the same programs. The mixed
mode and input type mode errors included in that experiment could not be

used in Test 1 because these errors were trapped by the operating systea
of the machine that we used.

We credited assertions for detecting only errors which directly
violated an assertion. One assertion violation can lesd to finding
multiple errors, but thegse cases were not considered. (Assertion

violations don't pinpoint errors sc we had to use judgement in deciding
which errors were caught.)
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TABLE D.1
TEST 1 RESULTS

SDEFO!I  CURRENT NUALPE  BALANCE  BDERCH
s S

e
Sh -3

Computational logic
(2 occurrences)

Incoeyect Loop
Exit

~

Mixed Mode

Inpat Typs Mode

Fallure t©
Reinitialise in Loop

Extra Pass
Mwough Loop

Names
{4 oocurrences)

Axrvay Bounds

Logical Infinite
-4 4

Convergence
Logic Exror

Unuped Array

Buality
Camparison

Ispropsr Program
Termination

Pox each eryor:

5 - found by static malyeis!
P - found by pati testing®

A - foud in Test 1 Of assartion experimant
+ = doss not apply toO asserticn experiment
* - ot fourd by any teeting

i C. Gsnon, R N. Messon, N. B. Boooks,
Tasesrch Corporation CR~1-854, May 1979, p.
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Exrrors were present prior to the formulation of assertions in Test
1. Since the errors were known, their location was an important place
to include assertions and was useful in developing our standards. The
success in detecting errors in Test 1 was partially due to this ad-

vantage. Twenty-one out of 24 errors were detected.

Simple and complex assertions did not vary in the errors found
except for program “Sinefcn™ where one more error was uncovered by

complex assertions.

There were many places where more than one assertion was violated
by the same error. This leads us to believe that adding many asser-
tions, especially complex assertions, is more time-consuming but
uncovers no new errors. However, since assertions do not pinpoint the
exact locations of errors, the more assertions violated, the more clues

one has in locating errors.

D.3  SEEDING ERRORS INTO THE CORRECTED PROGRAMS

After Test 1 was completed the 24 errors were corrected.. In
making the corrections, the statement sequences in the original programs
were preserved as closely as possible. Only a few changes had to be
made in the sets of assertions used to test the original programs after
the corrections were made. The corrected programs were run with the
same input data used in Test 1 to make sure that the output was correct

and that oo assertion violations occurred.

Errors were then seeded into the programs. The method of error
seeding is described in detail in Gannon, et al.1 Briefly, the pro-

cedure was:

° A static analysis tool was used to tabulate the distribution
of statement types in the programs.

1? Gannon, et al., op.cit., pp. 4-1 through 4-24.
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. The TRW error categories were examined to determine which

ones were appropriate for seeded errors in these programs.

° The frequency of occurrence of errors from each major TRW
category was adjusted for the fact that not all major
categories were used. Table D.2 gives the percentages of

errors in each major category that were seeded.

° A computer program was used to randomly generate a list of

candidate sites for the errors.

° For each major TRW error category, the list of candidate

sites was manually examined. The following objectives were
used to guide the selection of the actual errors.

- No program was to have a disproportionately large or
small number of errors.

- There was to be no more than one error in any state-
ment.

- An error could not prevent a program from compiling.
The error could result in an abnormal temmination if

the program produced a reasonable amount of output
first.

D.4 TEST 2 RESULTS

The results of Test 2 are presented in Table D.3. The same
programs and assertions sampled in Test 1 were used in Test 2. Asser-
tions were put into corrected versions of the programs and later new
errors were seeded. This eliminated any advantages due to relations
between errors and assertions as present in Test 1. As expected, error
detection in Test 2 was not as successful in Test 1. Twenty-five out of
the 34 seeded errors were detected.
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TABLE D.2
ERRORS FROM MAJOR TRW ERROR CATEGORIES SEEDED IN TEST 2
Percentage
in TRW Pro-~ No. Used Percentage
Error Catego ject 5 Study in Test 2 Used in Test 2
A 000 Computational 12.7% 6 17.6%
B_000 Logic 24.5% 11 32.42
C_000 Data Input 3.92 2 5.9%
D_000 Data Handling 11.0% 5 14.72
G_000 Data Definition 8.92 4 11.82
H_000 Data Base 12.5% 6 17.62
Totals ‘.;;:;; .;Z -I(-)SE \

Data derived from Table 4.2, page 4-16 of the TRW report.

Figure D.2 1is a summary of Test 1 and Test 2 assertion data.
Complex assertions had more bearing on error detection in Test 2—they
detected five errors that simple assertions did nmot. It can be aeen
fraa this that complex assertion violations not only aid in locating
errors which have already violated simple assertions but also uncover
new errors that may otherwise be overlooked.
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Figure D.2. Summary of Test 1 and Test 2 Results

bD.5 ASSERTIONS AND COMPLEXITY MEASURES

The test programs' complexities were evaluated using Halstead,
McCabe, and Magel metrics. Halstead neasuresl are based on program
length and volume. These measures are derived from the number of
distinct operators and operands and their frequency of use in the
program. McCabe neaauresz are based on program control flow. The
properties of programs used for computing McCabe metrics are the number

of control points and branches. Magel ntt1c33 are based on program

IA. Fitzsimmons and T. Love, "A Review and Evaluation of Software

Science,” ACM Computing Surveys, Vol. 10, No. 1, March 1978, 3-18.

ZT. J. McCabe, "A Complexity Measure,” IEEE Transactions on Software
Engineering, Vol. SE~2, No. 4, 308-320.

31(. Magel, "Regular Expressions in a Program Complexity Metric,” SIGPLAN
NOTICES, Vol. 16, No. 7, July 1981, 61-65.
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control flow

“regular expressions” which show all possible execution

sequences of a program. Magel's metric is computed from the total

number of operands, operators, and parentheses in the minimally paren-

thesized regular expression.

Figure D.3 lists the values of the metrics and other information

pertaining to complexity measures. The two test programs that did not

conform to our expected relation between complexity and number of

assertions were Integr8 and Floatpt.
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Figure D.3. Complexity Measures
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Program "Integr8" rated lowest in McCabe metric, low in Halstead
metric, but contained quite a few assertions. This is because this
program does not have any input variables. This situation is uncoumon.
Since the program works on only one set of data, more assertions could
be written to provide tight bounds on the acceptable values of vari-

ables.

Program “Floatpt” rated high in Halstead metric, intermediate in
McCabe metric, and had few assertions. There are several reasons for
this discrepancy. “"Floatpt"” does not have a loop, thereby eliminating
the need for assertions that check conditions over loop iterations.
“Floatpt” 1is the omly program which includes error-handling provisions
for improper input, so there were no input check ossertions. Although
its algorithm can be stated in one tnglish sentence (the Pythagorean
Theorem), expressing this in a standard programming language is diffi-
cult and requires three distinct cases. This increases the number of

operands and operators resulting in the high Halstead rating.

In summary, it appears that the number and complexity of ssser-
tions required. for an effective test are based on a different combina-
tion of program properties than either the Halstead or McCabe metrics.
From the test cases analyzed, it can be seen that complexity measures
useful for estimating the number of assertions required by a program
should be based on the following:

° The number of loops

° The number of control points

. The number of complex conputationsl

° The number of the input data values expected

1\Je counted complex computations by looking at the number of arithmetic
or logical expresaions that had two operators. Very complicated ex-
pressions could have several complex computations embedded in them; for
example, we counted. 5 "camplex computations™ iz the statement

Al = E/SQRT(R**2+(6.28324F*L-1.0/(6.2832%F*C))**2)
since it has 11 arithmetic operators.
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These properties and their relation to each program are shown in Fig.
D.4. Loop conditions seem to require the most complex assertions.
Control points require the largest number of assertions. Computation
and input checks require an assertion for each variable or operation

involved.
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Figure D.4. Program Properties Significant to Assertion Development

TN

D-15




. e e B R S e U

D.6  CONCLUSION
A unique set of assertiouns is necessary for each program, which

requires a great deal of time and effort. There are other testing
methods that can operate generally on any program without changes or
additions. Simpler methods of software testing, such as static an-
alysis, can recognize many errors but the tested programs may still
contain flaws. Ultimately, assertion testing is more demanding but
detects more subtle errors. 1Its usefulness in testing may depend on

strictness of requirements and how crucial certain software is to a

system.

Few studies have been done on the effectiveness of assertion
testing and there is a need for further experimentation. Tests should

be performed on more extensive programs in various programming lan-

guages.
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LISTINGS OF THE PROGRAMS USED IN THE ASSERTION TESTING EXPERIMENT

PROGRAM AREATRY

C.ASSERT=ON
C
c FIRST ATTEMPT FOR APPROXIMATING AREA UNDER A CURVE
c
c SOURCE = KERNIGHAN AND PLAUGER
C THE ELEMENTS OF PROGRAMMING STYLE
c PAGE 120.
C

1 AREA = 0.0

READ (5,10)T

ASSERT (T .GT. 0.)

10 FORMAT (F10.4)
H = 0.1
HINC = H
ASSERT (H .LT. T)
X = 0.0
TEMP = 0.

2 XN = =X
ASSERT (T .GT. X)
TEMP = TEMP + B
ASSERT (TEMP .LE. T)
ASSERT (TEMP * H .LE. T)
ASSERT (XN .LE. 0.)
AREA = AREA + (6.0 * (2.0%*XN) + 6.0 * (2.0%*(XN-H))) * 0.1 / 2.0
ASSERT (AREA .GT. 0.)
ASSERT (AREA .LE. X*6.0 * (2.%**0.))
ASSERT (H .EQ. HINC)
X=X+H
ASSERT (X .GT. 0.)
ASSERT (X .LE. T)
IF (X - T) 2,8,9

8 WRITE (6,33) AREA
ASSERT (X .EQ. T)
ASSERT (AREA .GT. 0.)
ASSERT (AREA .LE. 6.0 * T)

33 FORMAT (7H AREA =,F8.5)
GOTO 1

9 CONTINUE
ASSERT (X .GT. T)
CALL EXIT
END
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PROGRAM BALANCE
+ASSERT=ON

COMPUTES A TABLE OF MONTHLY BALANCES AND INTEREST CHARGES FOR
A GIVEN PRINCIPAL AMOUNT, INTEREST RATE, AND MONTHLY PAYMENT.

SOURCE = KERNIGHAN .AND PLAUGER
THE ELEMENTS OF PROGRAMMING STYLE
PAGE 107.

CONVERTED TO FORTRAN 7/11/18 REG MEESON

OO0O000O0O0OO00O0O0

REAL A,R,M,B,C,P

(2]

10 READ (5,101) A,R,M
ASSERT (A .GE. 0. .AND. B .GE. 0. .AND. M .GE. 0.)
ASSERT (M .LE. A + A*R/1200.)
101 FORMAT (3F10.4)
WRITE (6,102) A,R,M
102 FORMAT (14H THE AMOUNT 1S,F10.2,
$ 23R THE INTEREST RATE IS,F6.2,
$ 25H THE MONTHLY PAYMENT IS,F8.2)
IF (M .LE. A*R/1200.) GOTO 30
! WRITE (6,103)
. 103 FORMAT (lH~,
: $* MONTH BALANCE  CHARGE PAID ON PRINCIPAL' /)
TEMPI = O.
TEMPRIN = 0.
TEMPINT = O.
RATE = R
B=A
TEMPBAL = B
DO 18 I = 1,60
C = B*R/1200.
ASSERT (R .EQ. RATE)
TEMPI = TEMPL + C
ASSERT (I .EQ. 1 .OR. C .LE. TEMPINT)
TEMPINT = C
ASSERT (C. LE. M)
IF (B+C .LT. M) GOTO 20
ASSERT (B+C .GT. M+.005)
PaM-~C
ASSERT (P .GE. 0.)
ASSERT (P .LE. M)
ASSERT (P .LE. B)
ASSERT (P .GE. TEMPRIN)
B=B ~P
ASSERT (B .LE. A)
ASSERT (B .LE. TEMPBAL)
TEMPBAL = B
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18
181
20

201

30
301

TEMPRIN = P
ISAVE = I

WRITE (6,181) I,B,C,P

FORMAT (I13,3F13.2)

BPLUSC = B + C

ASSERT (BPLUSC .GT. 0.005)

ASSERT (C .EQ. B*B/1200.)

WRITE (6,201) BPLUSC

FORMAT ('OTHERE WILL BE A LAST PAYMENT OF  ',F8.2)
ASSERT (M*ISAVE + BPLUSC .GT. A+TEMPI-.005)

GOTO 10 -

WRITE (6,301)

ASSERT (M .LT. A*R/1200.)

FOBMAT ('OUNACCEPTABLE MONTHLY PAYMENT')

GOTO 10

END
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PROGRAM BINSRCH

C.ASSERT=ON

c

c BINARY SEARCH PROCEDURE TO FIND AN ELEMENT *A* IN A TABLE *X+*

c THE ELEMENTS IN #X* MUST ALREADY BE SORTED INTJ INCREASING ORDER
C

c SOURCE = KEENIGHAN AND PLAUGER

c THE ELEMENTS OF PROGRAMMING STYLE

C PAGE 110.

C

50

51
52
41
11
53

5

54

DIMENSION X(200),Y(200)

READ (5,50,END=999) N

ASSERT (N .LE. 200)

ASSERT (N .GE. 1)

FORMAT (15)

READ (5,51) (X(K),Y¥(K),K = L,N)
Assm (-ALL- K .IN- (Z.N) (Y(K) oGT. Y("‘l)))
FORMAT (2F10.5)

READ (5,52) A

FORMAT (F10.5)

IF (X(1) - A)4l1,41,11

IF (A - X(N))5,5,11

CONTINUE

ASSERT (A .LT. X(1) .OR. A .GT. X(N))
PRINT 53,A

FORMAT(1H ,F10.5,

1 26H IS NOT IN RANGE OF TABLE.)

GOTO 1

LW = 1

ASSERT (X(1) .LE. A)
ASSERT (A .LE. X(N))
IHIGH = N

IF (IHIGH - LOW - 1)7,12,7
CONTINUE

ASSERT (XLOW .LE. A)
ASSERT (A .LE. XHIGH)
ASSERT ( IHIGH .EQ. LOW+1)
PRINT 54 ,XLOW,YLOW,A,XRIGH,YRIGH
FORMAT (1B SF10.5)

GOTO 1

CUNTINUE

ASSERT (LOW .LT. IHIGH~])
MID = (LOW + IHIGH)/2
ASSERT (LOW .NE. MID .OR. MID ,NE. IHIGH)
1IF (A - X(MID))9,9,10
IHIGH = MID .

ASSERT (IHIGH .GE., LOW)
ASSERT (IHIGH .LT. N)
ASSERT (A .LE. X(MID))
GOTO 6
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10 LOW = MID
ASSERT (LOW .LE. IHIGH)
ASSERT (LOW .GT. 1)
ASSERT (A .GT. X(MID))
GOTO 6

999 STOP
END
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PROGRAM CURRENT

C.ASSERT=ON
C
c CURRENT COMPUTING PROGRAM
C
C SOURCE = KERNIGHAN AND PLAUGER
c THE ELEMENTS OF PROGRAMMING STYLE
c PAGE 103.
REAL L
c
C INPUT VALUES FOR RESISTANCE, FREQUENCY AND INDUCTANCE

READ (5,20) R,F,L
ASSERT (R .@I o. .m. F .@. 0. .m. L '@D 0.)
20 FORMAT (3F10.4)
c PRINT VALUES OF RESISTANCE, FREQUENCY AND INDUCTANCE
WRITE (6,30) R,F,L
30 FORMAT (3HIR=,Fl4.4,4H F=,Fl4.4,4H L=,Fl4.4)
c INPUT STARTING AND TERMINATING VALUES OF CAPACITANCE, AND
c INCKEMENT
READ (5,40) sC,TC,Cl
ASSERT (SC .GT. O.)
ASSERT (TC .GE. SC)
ASSERT (CI .GT. 0.)
ASSERT (C1 .LE. TIC - $C)
40 POBMAT (3F10.6)
c SET CAPACITANCE TO STARTING VALUE
C=SC
TEMPRES = R
TMPFREQ = F
TMPIND E= L
c SET VOLTAGE TO STARTING VALUE
Vs=1.0
c PRINT VALUE OF VOLTAGE
50 WRITE (6,60) V
ASSERT (V .GE. 1.0)
ASSERT (C .GE. SC)
ASSERT (V .LE. 3.0)
TEMPI=0
60 FORMAT (3HOV=,F5.0)
c COMPUTE CURRENT Al
ASSEKT (F .NE. 0.)
ASSERT (C .NE. O.)
ASSERT (R*%2 4+ (6.2832%P*L - 1.0/(6.2832%F*C)) .NE. 0.)
70 AL » E / SQRT(R**2 + (6.2832%F%L - 1.0/(6.28324F*C))*%2)
ASSERT (Al .LE. 3./ABS(R))
ASSERT (AL LE. 3./ABS(6.2832%FAL - 1./(6.2832%F*C)))
ASSERT (Al .GE. l./(ABS(R) + ABS(6.2832%F*L - 1./(6.2832*F*C))))
ASSERT (TEMPRES .EQ. R ,AND.TMPFREQ .EQ. F .AND. TEMPIND .EQ. L)
ASSERT (ABS(SCHTEMPI*CI~C) .LE. 1.E-4)
TEMP1 = TEMPI+1
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ASSERT (C .LE. TC)
C PRINT VALUES OF CAPACITANCE AND CURRENT
WRITE (6,80) C,AI
80 FORMAT (3BOC=,F7.5,4H 1I=,F7.5)
C INCREASE VALUE OF CAPACITANCE
C=C+¢(l
IF (C .LE. TC) GOTO 70
C INCREASE VALUE OF VOLTAGE
V=V <+ 1.0
ASSERT (C .EQ. SC)
C STOP IF VOLTAGE IS GREATER THAN 3.0
IF (V .LE. 3.0) GOTO 50

STOP
END
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PROGRAM FLOATPT

C.ASSERT=0ON

c .

C TESTS FOR EXACT EQUALITY BETWEEN COMPUTED FLOATING POINT NUMBERS
C

c SOURCE = KERNIGHAN AND PLAUGER

c ' THE ELEMENTS OF PROGRAMMING STYLE

c PAGE 117.

c

c RIGHT TRIANGLES

LOGICAL RIGHT,DATA
DO 1 K= 1,100
ASSERT (X .LE. 100)
READ (5,10) A,B,C
c CHFCK FOR NEGATIVE OR ZERO DATA
DATA = A .GT. 0. .AND. B .GT. 0. .AND, C .GT. 0.
IF (.NOT. DATA) GOTO 2
c CHECK FOR RIGHT TRIANGLE CONDITION
A = A%*Q
B = Ba%2
C = Can2
ASSERT (A .GT. O.
ASSERT (B .GT. O.
ASSERT (C .GT. O.

e Nt

RIGHT = A .EQ. B+ C .OR. B .EQ. A+ C .OR. C EQ. A+ B
ASSERT (RIGHT .OR. (ABS((B+C)~-A) .GE. (A+B+C)*.001))
ASSERT (RIGHT .OR. (ABS((A+C)-B) .GE. (A+B+C)*.001))
ASSERT (RIGHT .OR. (ABS((A+B)-C) .GE. (A+B+C)*.001))

1 WRITE (6,11) K,RIGHT

CALL EXIT
c ERROR MESSAGE

2  WRITE (6,12)
“sur (A .u' 0. .on. B .m. 0. .on. c .m. 0.)
STOP

10 FORMAT (3F10.4)

11 FORMAT (16,L12)

12 FORMAT (11H DATA ERROR)
END

ot

D-24

PP imn L e e e i s e e e g o AT . S tEP . AT e r e o e

—

- e

h . -

i




-

X2

Ca m e e e Cex dma e e et - L o ot o

PROGRAM INTEGRS

C .ASSERT=ON
C
(9 INTEGRATES A POLYNOMIAL BY TRAPEZOIDAL APPROXIMATION
c
C SOURCE = KERNIGHAN AND PLAUGER
C THE ELEMENTS OF PROGRAMMING STYLE
C PAGE 116.
C
ABREA = (.
X=1.
DELTIX = 0.1

ASSERT (10.-X .GE. DELTX)
9 Y-x**2+2o*x+3-

ASSERT (Y .GE. 6.)

ASSERT (Y .LE. 123.)

i ASSERT (X .LT. 10)

ASSERT (X .RQ. 1. .OR. Y .EQ. YPLUS)
X = X + DELTX
ASSERT (X +GE. 1.)
ASSERT (X .LE. 10)
YPLUS = X#%2 + 2. * X + 3.
ASSERT (YPLUS .GE. 6.)
ASSERT (YPLUS .LE. 123.)
TMPAREA = AREA
AREA = ARFA + (YPLUS + Y) / 2. * DELIX
ASSERT (AREA .GT. TMPAREA)
ASSERT (AREA .GT. 6. * (X~1.))
ASSERT (AREA .LT. YPLUS * (X~-1.))
ASSERT (DELTX .EQ. 0.1)
IF (X - 10.)9,15,15
\ 15 WRITE (6,7)AREA
! ASSERT (AREA .GT. 54.)
ASSERT (AREA .LT. 9. * 123.)
ASSERT (X .GE. 10.)
7 FORMAT (E20.8)
STOP
END

D=-25

PR




o~

S e

PROGRAM NUMALPH

A Al v a3 N it n -

C.ASSERT=(ON

C

c A PROGRAM WITH A SUBTLE INITIALIZATION ERROR

c

c SOURCE = KERNIGHAN AND PLAUGER

c THE ELEMENTS OF PROGRAMMING STYLE

c PAGE 80 OF FIRST EDITION

c AUGMENTED TO PRODUCE SOME OUTPUT 7/11/78 REG MEESON
c

101
102

30

103

§

DIMENSION NUM(80),NALPHA(80)
DATA NBLANK /1H /
READ (5,101,END=99) NALPHA,NUM
ASSERT ((.ALL. I .IN. (1,80)
(NALPHA(I) .GE. 1RO .OR. NALPHA(I) .EQ. 1H )))
ASSERT ((.ALL. I .IN. (1,80)
(NALPHA(I) .LE. 1H9 .OR. NALPHA(I) .EQ. lH )))
FORMAT (80Al1,T1,80I1)
WRITE (6,102) NALPHA,NUM
FOBMAT (11H INPUT DATA / 1HO,80Al1 / 1B ,80Il)
N=o0O
DO 30 I = 1,80
IF (NALPHA(I) .EQ. NBLANK) GOTO 30
NsN+1
TEMPSUM = NSUM
ASSERT (N .LE. I)
NSUM = NSUM + NUM(I)
ASSERT (NSUM .GE. TEMPSUM)
ASSERT (NSUM .LE. N * 9)
ASSERT (NSUM .GE. O)
CONTINUE
WRITE (6,103) N,NSUM
ASSERT (NSUM .LE. N * 9)
ASSERT (NSUM .GE. 0)
ASSERT (N .LE. 80)
FORMAT (30HOTHE NUMBER OF DIGITS FOUND IS, 13 /
29H AND THE SUM OF THE DIGITS IS, 14 )
GOTO 1

99 STOP

END
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PROGRAM SINEFCN

C.ASSERT=ON

aaoonon

10

100
110
120
130

DOUBLE

o000 00

20
30

DRIVER PROGRAM TO TEST THE DOUBLE PRECISION SINE FUNCTION

REG MEESON 7/11/78

DOUBLE PRECISION SINE,DSIN,DBLE,REF,VAL,E
REAL X

WRITE (6,100)

READ (5,110) X,E
WRITE (6,120) X,E

IF (E .EQ. 0) STOP
REF = DSIN(DBLE(X))
VAL = SINE(X,E)

WRITE (6,130) REF,VAL
GOoTO 10

FORMAT (26H SINE FUNCTION TEST DRIVER //)
FORMAT (F10.4,D10.2)

FORMAT (3H Xe,F10.4,7H Ee,D20.12)
FORMAT (1H ,45X,4HREF=,D20.12,9H VAL=,D20.12)
END

PRECISION FUNCTION SINE(X,E)

SOURCE = KERNIGHAN AND PLAUGER
THE ELEMENTS OF PROGRAMMING STYLE
PAGE 101.

THIS DECLARATION COMPUTES SINE(X) TO ACCURACY E
DOUBLE PRECISION E,TERM,SUM

REAL X

ASSERT (ABS(X) .LE. 3.14159)

ASSERT (E .GT. 0)

TERM = X

DELT = SUM

DO 20 1 = 3,100,2

TERM = TERM#*X#*2/(I*(I-1))

ASSERT (1 .EQ. 3 .OR. ABS(TERM) .LT. TMPTERM)
TMPTERM = ABS(TERM)

IF (TERM .LT. E) GOTO 30

TEMPSUM = SUM

SUM = SUM + (=i1%*(1/2)) * TERM

TEMPDEL = DELT

DELT = SUM - TEMPSUM

ASSERT (TEMPDEL * DELT .LT. 0.)

CONTINUE

SINE = SUM

ASSERT (TERM .LT. E)
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Assm (Sm 0680 -10 .AND. SINE .LE. 10)
ASSERT (ABS(SINE) .LT. ABS(X) .OR. X .EQ. 0.)

RETURN
END
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