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PSEUDOSPECTRAL SOLUTION OF ONE DIMENSIONAL AND TWO DIMENSIONAL
INVISCID FLOWS WITH SHOCK WAVES

I. INTRODUCTION

Pseudospectral techniques have been used to solve tl’xe one dimensional
propagating shock wave problem. Taylor et al (Reference 1) and Gottlieb et
al (Reference 2) have done so using the Euler equations of motion. Taylor
utilized the FCT (Flux Corrected Transport) algorithm of Boris and Book
(Reference 3) to damp out unwanted numerical oscillations. This procedure
yielded broadening of the shock wave. They treated a Mach 1.4 shock wave
propagating into a free stream at rest. 'Xime flos behind the shodk wave was
subsonic. Gottlieb et al treated the shock tube problem for shock wave Mach
nunbers of 2.1 and 29.3. The free stream was subsonic with the flaov behind
the shock wave being supersonic for both mach number cases. They performed
a detailed analysis of the effects of different filtering techniques on

reducing unwanted numerical oscillations. They considered the Shuman filter

given by:
n n n n n
U, =U, + 8 U, |+ 6 - U 1
37T Oy B Ol Uy 0] H
T" 1s the filtered conservative variable at the jth spatial location and the

3

nth time step. For a two dimensional problem one would need to filter in

each direction separately. The Gj#/zcoefficients are given by
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and B is a constant greater than zero and less than one. Beta was chosen to
be 0.0l. The above was used in one of two versions,

constant ejt Y coefficients and variable ej__b 1/2coefficients. The former 1is
qualitatively equivalent to a first order artificial viscosity scheme. Both
were applied to the physical variables directly. They also utilized a low
pass spectral filter, which they developed, to damp out the oscillations

which arose from the highest frequency spectral components. The form of

their spectral filter is:

k-k _.
- abofk'] (3) q
e max o

where k is the spectral wavenmber, k is the maximim wavemmber

max

corresponding to the total number of collocation points and ko-'% N where N

is the total number of collocation points used to represent the flow. The

spectral filter was applied first, follared by the Shuman filter. They
deterwined rules for applying the low pass spectral filter. They found that
applying 1t over the highest sixth of the frequency values gave good
results. The Shuman filtering employed was one sided. That is, the shock
position was determined first and then the filter was appli.ed over the
region behind the shock wave and separately to the region in front of the
shodk wave. Using this approach they were able to obtain a sharp shodk with
the correct propagation velocity. Both approaches, however, have some

drawbacdks. The former did not yield a sharp discontinmuity while the latter




P e - o mapareTs m—— U .

required an examl nation of the spectral coefficients at each time step to
determine the shock wave location in order to avoid applying the physical
space filter across the shodk front. When more general classes of inviscid
flows are treated (ones with complex, multiple shock geometries) the
smearing in the first approach may prove unacceptables The one-sided
smoothing of the latter will become cumbersome to employ.

A brief outline of pseudospectral techniques will be given in
Section 2. The third section of this report will present results for the

one dimensional propagating shod wave problem using a different cal

\.

space sgsmoothing function than either of thse ve while retaining the

lowpass spectral filtering t q\iey of Reference 2. 4n artificial
viscosity scheme is used uniformly throughout the entire flow field,
including across the shock front, to resolve the shok wave as a sharp
discontinuity and at the same time maintain the correct shock propagation
velocity.

To further demonstrate the utility of this approach to the solution of
flows by pseudospectral methods, solutions to two-dimensional inviscid
supersonic wedge flows will also be presented in Section 4 of this report.
To the present author’s knowledge, this i3 the first time pseudospectral

solution techniques have been used t¢ successfully treat two-~dimensional

inviscid flows.

2. PSEUDOSPECTRAL METHODS
A brief description of pseudospectral techniques will be presented here

for completeness. For those readers interested in a detailed exposition on

pseudospectral techniques, Reference 4 is strongly recommended.




Pseudospectral techniques involve the use of series of functions to
solve differential equations. For all work reported herein, Chebyshev
polynomials are useds Chebyshev polynomials are represented by Tn(x) and

are given by:

T,(x) = cos [n cos-l(x)]

=cos [n 0] (4a)
where 8= cos™! (x)

The Chebyshev polynomials have the follawing property:

T’1r1+1 (x) - T'n-l (x)

2T (x) = — ~= (4b)
Chebyshev polynomials may be used to represent a function F(x) in the
follaving manner
N
F(x) = T AT (x) (5)
n=o0
A function F (x,t) may be represented as:
N
F (x,t) -n.Zo A (t) T (x) (6)

where the time dependence is totally contained in the series coefficients

An(l:), and the x dependence in the Chebyshev functions Tp(x).
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Let us now consider the application of such techniques for the solution

of the one-dimensional unsteady Euler equation in conservation law form:

—::-f+ —;—; =0 (7a)
where
] 22 "
e (e+p)u
and
e = TﬁT)- + ip u 2 (7¢c)

The pseudospectral solution, using Chebyshev collocation, of this equation
involves using Chebyshev series to obtain the spatial derivative and finite
difference algorithms to obtain the time derivative., (A flawchart of the
solution procedure is shown in Figure 1). Collocation involves the
specification of the initial flov variables and the computation of the time
dependent solution for the flow variables at distinct pre-~determined spatial
positions or points. These positions are the collocation pointss. The
spatial derivative is obtained as follows. At t, the values of l-f(x) at the
collocation points x4 are specified.
The collocation points are given by

x4= cos %‘ﬂ-) 0<j <N (8)
where N is the total number of Chebyshev polynomials one chooses to use to
repregent the function f(x) « As can easily be seen, the x4 points are not
evenly spaced, but are clustered about x = £ 1,
We represent f(x) by

N

£(e,x) " I AT (9




The left hand side of this equation is known while the An’s are at this
point unknown., The first step is therefore to solve for the An's for each
B(x) vector element. This could be done by a simple matrix inversion.
However, it is much faster to vse FFT's (fast Fourier transforms). We
therefore use the FFT’s to invert (9) to obtain the values of the A ‘s. We

may then represent the spatial derivative E/ X as a Chebyshev series given

by:
N
E (1)
_ﬁ = I An Tn(x) (10)
n=o

Because of properties of Chelyshev polynomials (equation 4b) we may relate
the spectral coefficients of the spatial derivative, Ar(11) sto the known

spectral coefficients of 1'-3', namely A,, by the following recurrence relation.

N

An( D. %.- T pA (11)
n  p=n+l 4
ptu=odd

Since the An’s are known at the current time step t (not necessarily zero)

from Equation 9, the A(l)'

. 8 are obtained from the recurrence relation,

Equation 11, The summation in Equation 10 is performed using the FFT.
Therefore it remains only to calculate the temporal derivative -:?Tin 7).
For the results presented herein the Adams-Bashforth algorithm was used to
advance the solution to t°+ & . (The modified Euler predictor corrector
scheme was also investigated. However, it did not yield better results and

took more computer time to implement.) This process is then cyclically

repeated to march the solution in time (physical or computational). The




Adams -Bashforth algorithm is given by:

t-&

vt o+ m%)t-%m &) (12)

t+& A 3
LT 2

where superscripts denote the value of time at which each term is evaluated.

3. ONE DIMENSIONAL PROPAGATING SHO(X WAVE RESULTS
Two types of artificial viscosity schemes were tried; a second order
scheme given by
Dn,i = -u(un,i+1 N 2Un,1 + Un,i-l) ‘ (13

.and a fourth order scheme given by

D 4 (U U ] (14)

n,i = {Un,i+2 * Un,i--2 - n,i+1 M n,1-1

+6 Un’i}

where Dn,i is the magnitude of the dissipation for the ath

conservative flow
variable at the 1”’ spatial point. 1In both cases, u is the magnitude of the
artificial viscosity.

Three types of shock tube flavs were considered: (a) supersoanic
inflow/outflow, (b) subsonic inflow/outflow and (c) supersonic
inflov/subsonic outflaw. They represent the entire range of shoc tube
problems and will be discussed below. The time step size used throughout
was one half the maximum based on stability considerations (effectively a

Courant number of 0.5). The resulting time step size values are

(a) .502x10™%, (b) .99&10™% and (c) .574x107%,




The counditions for the supersonic inflow/outflos case were a free
stream Mach number of 1.5 and a shock Mach number of 3.5 (with respect to
ground fixed coordinates). One hundred twenty eight Chelbyshev polynomial
terms were used to represent the flow. All results u:iilized the low pass
spectral filter., In all cases the initial shock position (t-to-O)
was at x = -1,0 (i.e. at the left hand side computational boundary).

The second order artificial viscosity scheme was used first for the
above problem. Typical results are shown in Figure 2 where the static
pressure discribution (nomrdimensionalized by the free stream va » pl) is
shown. P, represents the post shock static pressure. The anal: ~ shock
wave position at t=.1505 is shown for comparison. Clearly the s £ wave is
unacceptably smeared. For this reason the second order smoothii .eme was
abandoned.

Results for this case with the fourth order smoothing are shawn in
Figures 3 and 4. The figures show the calculated shock solution at times of
0.05 and 0.15 respectively. The analytic shok position at the respective
times is shown for comparison. As can be seen, the computed shock position
is in excellent agreement with the analytic solution. Further, the correct
pre and post shock pressures are maintained. One can see the effect of grid
resolution by comparing Figures 3 and 4. As previously mentioned in Section
2 points are clustered about x = + 1 with the coarsest grid spacing
ocaurring at x=0. The shock wave is in a region of high point resolution in
Figure 3 and nearly at the most coarse grid resolution in Figure 4. The
apparent skewness of the calaulated shock front in Figure 4 is not due to

overly large dissipation. It is instead due to the coarse grid spacing.




o~

A2 il Dser . e s <« -5 DR <5 -

The shock cannot of course be resolved to within a single grid spacing, All
flow properties were held fixed at both the supersonic inflow and outflow
boundaries. At the supersonic outflos boundary it was necessary to apply
the second order artificial viscosity locally in order to remove
oscillations emanating from this boundary. Without this localized second
order smoothing, the solution went catastrophically unstable at the outflow
boundary.

The second shock tube problem considered involved supersonic inflaw and
subsonic outflow (see Figures 5 and 6). The free stream Mach number was
0.845 with the shock Mach number 2.949 with respect to the ground. Again
the shock is maintained as a sharp discontinuity propagating at the correct
velocity. A4s before, the supersonic inflor boundary conditions are all flow
variables held fixed. However, at the subsonic outflow boundary one
physical flos variable was specified with the remaining ones computed from
the characteristic values of the flow (as in Reference 2).

The last shock tube problem considered had both subsonic infles and
subsonic outflow. The free stream mach number was 0.5 while the shock wave
Mach number was 1.8 with respect to the ground. Results for the pressure
distribution at two different times are shown In Figures 7 and 8. As in
previous cases, the shock position and shape are in excellent agreement with
the analytical values. The boundary conditions used were to hold all flow
variables fixed at the subsonic 1nflow boundary and (as in the previous
case) to hold one flow variable fixed at the subsonic outflow boundary while

computing the remaining ones from the characteristics.




4. TWO DIMENSIONAL SUPERSONIC WEDGE FLOW RESULTS

Two cases were considered, a ten degree half angle wedge at free stream
Mach numbers of 1.5 and 3.0. The computational grid was dimensioned
33 x 33, The resulting grid lines are plotted in Figure 9. Figure 10 shows
the allignment of the computational boundary in physical space. Now, since

X, €xX <x

(15)

o <y <ymx

we must transform to (£ n ) space to obtain |£|< 1, Inle1 ,which 18 required

of the collocation points. This transformation is given by:

2x—(x1+x2)
S )
(16)
29Y rax
n = —————
ymx

No attempt was made to use the optimim time step size, given by Reference 5.

(&) sl an
N ‘u+cl
max
In fact, for all calculations presented herein, an effective Courant number
of 0.5 was used. (Tat is, the numerator of (17) was replaced by 4.0.) For

purposes of comparison, the wedge surface pressure and density distributions

as well as computer generated contour plots of the shock wave position and

10




shape are used. Fourth order dissipation was used throughout in both the

% and y directions. Second order dissipation was used in the neighborhood
of x = x, (in the x-direction only) to eliminate oscillations emanating from
the supersonic outflow boundary, Tre flow internal to the computational

boundaries was initialized to free stream values. Along region BCDE of the

-

computational boundary the flow was held fixed at free stream values. Along
region AB and FE it was held fixed at wedge flow properties. Finally at the
wedge surface, region AF, surface tangency was imposed after each time step.

Results for the Mach 1.5 case are shovn in Figures 11 through l4. The
time step size was .125x10'2. Figures 11 and 12 show contour plots of the
pressure and density fields respectively. The analytic shock position is
also shown as a solid line for comparison. The shock position and
orientation are predicted exactly by the pseudospectral solution. The wide
band or thickness of the computed shock is due to the very coarse grid
resolution used in the 2D runs, namely 33x33., In terms of grid ifntervals
the shock shown in Figures 11 and 12 lies over only two to three grid
intervals. Increasing the grid resolution will reduice the thickness of the
contoured shock wave.

The increase in shock thickness which appears in Figures !l and 12 in
the neighborhood of the right hand side computational boundary is due to the
localized second order artificial viscosity scheme used in that region
(supersonic outflow). With a 33 point resolution along the x-axis only
several points are needed to physically extend well into the interior of the
computational area. With a more realistic grid resolution, say 128 points,

the maximum extent would be rediced to only x = 0.99 and no effect would be

11
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present in the shock plotss Surface pressure and density distributions are
shown in Figures 13 and l4. In both cases, agreement between the computed
result and the analytic result (represented by the dotted line) is
excellent. The minor overshoots and undershoots that appear in both plots
represent differences of less that 1.5% from the analytic values.

Similar plots are shown in Figures 15 through 18 for the Mach 3.0
cases The time step size is .785¢1073, Agreement is excellent both in the shock

shape and location and in the surface pressure and density distributions.

5. CONCLUSIONS

(1) Pseudospectral solution techniques can treat inviscid 1-D and 2-D
flows with shock waves quite accurately when a low pass spectral filter is
used in conjunction with a fourth order artificlal viscosity scheme (applied
to the physical variables). All shocks are maintained as discontinuities
with only minor pre and post cursor oscillations,

(2) For the 2D flow problem considered here (as well as the 1D
supersonic outflaw problem), a localized second order artificial viscosity
scheme must be applied in the neighborhood of the supersonic outflow
boundary to damp out oscillations that arise at the boundary and keep the
solution stable. Without it, the solution always goes catastrophically

uanstable at this boundary.

12




Flowfield specified @ time t

Calculate An's by inverse
FFT

:

Calculate A (1)'3 from A 's
n n

using recurrence relation

R

Apply spectral filter to An

1),

:

Calculate gpatial derivatives

using direct FFT on the An(n's

|

Advance flowfield solution to
time t + At using finite
difference representation of
temporal derivative

l

No

t=t¢t+ At

)

Finished?

[ v

STOP

Fig. 1 — Pseudospectral calculation flowchart
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MSHOCK = 3.5, M1 = 1.5, 2nd order dissipation scheme.
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MSHOCK = 3.5, M1 = 1.5, 4th order dissipation scheme.
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MSHOCK = 2.94957, M1 = 0.84515, 4th order dissipation scheme.
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