SYNTHESIS OF (SILYLAMINO)PHOSPHINES BY THE WILBURN METHOD (U)
AUG 82 R H NEILSON, P WISIAN-NEILSON
N00014-79-C-0632
NL
TR-82-02
Synthesis of (Silylamino)phosphines By The Wilburn Method
by
Robert H. Neilson and Patty Wisian-Neilson
Prepared for Publication in Inorganic Chemistry

Texas Christian University
Dept. of Chemistry
Fort Worth, TX 76129

August 1, 1982

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.
Synthesis of (Silylamino)phosphines by the Wilburn Method

R.H. Neilson and P. Wisian-Neilson

Texas Christian University
Fort Worth, TX 76129

Office of Naval Research

August 1, 1982

6

Approved for public release: distribution unlimited

Prepared for publication in Inorganic Chemistry

Phosphine
(Silylamino)phosphine

Experimental details for the large scale (1-2 mol) synthesis of (silylamino)phosphines by the Wilburn method are described. In a "one-pot" procedure, treatment of PCl₃ with one equivalent of LiN(SiMe₃)₂ in Et₂O at -78°C followed by two equivalents of RMgX at 0°C affords 67-75% yields of (Me₃Si)₂NPR₂.
20. ABSTRACT

(R = Me, Et, CH₂SiMe₃). Similarly, (Me₃Si)₂NP(Ph)R (R = Me, Et) are obtained in 59–81% yields starting from PhPCl₂. Physical and ³¹P NMR data for these compounds are reported along with references to earlier papers describing their derivative chemistry.
SYNTHESIS OF (SILYLAMINO)PHOSPHINES BY
THE WILBURN METHOD

Robert H. Neilson and Patty Wisian-Neilson

(Dedicated to the memory of Dr. James C. Wilburn, 1953 - 1981)

Received

The importance of (silylamino)phosphines, e.g. (Me$_3$Si)$_2$NPMe$_2$, as reagents for the synthesis of organo-substituted phosphazene polymers1 and other novel organophosphorus compounds2,3 is now well established. Interest in these and related Si-N-P compounds as ligands in organometallic complexes4 is also developing and many other synthetic applications are likely to follow.

Most (silylamino)phosphines are prepared from commercially available reagents by a simple "one pot" synthesis first utilized by Wilburn.5,6 In earlier papers4a,6 we have described the preparation of a few specific compounds on relatively small scales (50-100 mmol). Because of the synthetic value of these reagents, however, we report here the complete details for the convenient, large-scale (ca. 1-2 mol) synthesis of (silylamino)phosphines via the Wilburn procedure.

Experimental Section

Materials and General Procedures. All reactions and other manipulations were carried out under an atmosphere of dry nitrogen. Ethyl ether was distilled from calcium hydride prior to use. The
following reagents were obtained from commercial sources: PCl₃, PhPCl₂, (Me₃Si)₂NH, n-BuLi, MeMgBr, and EtMgBr. The silylmethyl Grignard Me₃SiCH₂MgCl was prepared as needed according to the published procedure.⁷

Preparation of [Bis(trimethylsilyl)amino]dimethylphosphine (I). A 5-L, 3-necked flask equipped with a paddle stirrer, a N₂-flow, and a 500-mL addition funnel was charged with (Me₃Si)₂NH (1.0 mol, 209 mL) and Et₂O (ca. 1.0 L). One bottle of n-BuLi (ca. 1.0 mol, 2.0 M in hexane) was transferred to the addition funnel under nitrogen pressure by means of a flexible, double-ended syringe needle⁸ and was added dropwise to the stirred silylamine solution at 0°C. The addition funnel was then washed with ca. 30 mL of ether and charged with PCl₃ (1.0 mol, 87.2 mL). After stirring the LiN(SiMe₃)₂ mixture at room temperature for ca. 90 min, it was cooled to -78°C and the PCl₃ was added dropwise. Upon completion of the addition, the -78°C bath was removed. During the warm-up period the orange colored solution gradually turned white as LiCl precipitated. After ca. one hour the mixture was cooled to 0°C and the addition funnel was again rinsed with Et₂O. Two bottles of MeMgBr (ca. 2.0 mol, 3.0 M in Et₂O) were transferred via the double-ended needle to the addition funnel and added dropwise to the stirred reaction mixture at 0°C over ca. 2 hours. The mixture was stirred for 3 hours and then allowed to stand overnight at room temperature. Under a stream of N₂, the supernatant solution was decanted into a large 1-necked flask. The solids were washed with two 500-mL portions of Et₂O and the washings were added to the first decantate. Most of the solvent was removed under reduced pressure and ca. 500 mL of hexane was added to facilitate precipitation of the remaining Grignard salts.
Filtration under N$_2$ followed by solvent removal left a viscous orange colored residue. Distillation through a short or semi-short path distilling head gave (Me$_3$Si)$_2$NPMe$_2$ as a colorless liquid (166 g, 75% yield, bp 55-60°C/4mm) of high purity based on 1H and 31P NMR spectra.

Preparation of Other (Silylamino)phosphines. The same procedure using either commercial EtMgBr or freshly prepared Me$_3$SiCH$_2$MgCl affords the corresponding dialkylphosphines (Me$_3$Si)$_2$NPR$_2$, 1: R=Et and 2: R= CH$_2$SiMe$_3$. Alternatively, if PhPCl$_2$ is used in place of PCl$_3$ and one equivalent of an alkyl Grignard is added in the last step, then the alkyl(phenyl)phosphines (Me$_3$Si)$_2$NP(Ph)R, 4: R= Me and 5: R= Et, are obtained.

Results and Discussion

Treatment of a suspension of lithium bis(trimethylsilyl)amide in ether at -78°C with phosphorus trichloride followed by the addition of two equivalents of an alkyl Grignard reagent at 0°C affords the [bis(trimethylsilyl)amino]dialkylphosphines 1-3 (eq 1). Similarly, the use of dichlorophenylphosphine and one equivalent of Grignard reagent permits the convenient preparation of the corresponding alkyl(phenyl)phosphines 4, 5 (eq 2). With the exception of

![Chemical Diagram](attachment:image.png)
some 31P chemical shifts (Table I), the characterization of these compounds has generally been reported in other papers 4a,6 describing their reactivity.

These reactions are easily carried out on large scales (ca. 1-2 mol) using unpurified commercial reagents. The products are obtained in relatively high yields (Table I) and good purity after a single vacuum distillation. Generally, the (silylamino)phosphines are colorless, foul-smelling liquids which are sensitive to oxidation and hydrolysis on exposure to the air. Nevertheless, their thermal stability is satisfactory and they can be stored indefinitely in tightly sealed containers.

This simple, "one-pot" synthesis is actually more general than is indicated here. For example, several different silylamines have been used 5,6 and in favorable cases it is possible to obtain monoaalkylated products, e.g. $(\text{Me}_3\text{Si})_2\text{NP(Cl)}\text{CH}_2\text{SiMe}_3$. In more recent studies 11 involving very sterically congested systems, however, we find that reduced (P-H) or coupled (P-P) products are often obtained. Details of this work will be reported in subsequent papers.

Acknowledgment. This research is supported by the U.S. Army Research Office, the Office of Naval Research, and The Robert A. Welch Foundation.
References and Notes

9. Yields up to 86% have been obtained by more careful and repeated washing of the solids.

10. 1H NMR data: 2. δ 0.34 (Me$_3$Si, $J_{PH} = 0.6$ Hz), δ 1.14 (CH$_3$, $J_{HH} = 16.0$ Hz, $J_{PH} = 7.5$ Hz), δ 1.4-2.0 (CH$_2$, multiplet). 5. δ 0.25 (Me$_3$Si, $J_{PH} = 0.6$ Hz), δ 1.33 (CH$_3$, $J_{PH} = 18.0$ Hz, $J_{HH} = 7.2$ Hz), δ 1.9-2.2 (CH$_2$, multiplet), δ 7.1-7.4 (Ph, multiplet).

11. manuscripts in preparation.
Table I. Physical and 31P NMR Data for Some (silylamino)phosphines, $(\text{Me}_3\text{Si})_2\text{NP}RR'$

<table>
<thead>
<tr>
<th>Compd</th>
<th>R</th>
<th>R'</th>
<th>bp(°C)</th>
<th>Yield (%)</th>
<th>$\delta(^{31}\text{P})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>Me</td>
<td>55-60</td>
<td>75</td>
<td>31.7</td>
</tr>
<tr>
<td>2</td>
<td>Et</td>
<td>Et</td>
<td>68-69</td>
<td>71</td>
<td>57.2</td>
</tr>
<tr>
<td>3</td>
<td>CH$_2$SiMe$_3$</td>
<td>CH$_2$SiMe$_3$</td>
<td>80-85</td>
<td>67</td>
<td>42.9</td>
</tr>
<tr>
<td>4</td>
<td>Me</td>
<td>Ph</td>
<td>90-95</td>
<td>81</td>
<td>37.6</td>
</tr>
<tr>
<td>5</td>
<td>Et</td>
<td>Ph</td>
<td>85-90</td>
<td>59</td>
<td>50.9</td>
</tr>
</tbody>
</table>

aChemical shifts downfield from external H$_3$PO$_4$, measured in CDCl$_3$ solution.

Abstract

Experimental details for the large scale (1-2 mol) synthesis of (silylamino)phosphines by the Wilburn method are described. In a "one-pot" procedure, treatment of PCl$_3$ with one equivalent of LiN(SiMe$_3$)$_2$ in Et$_2$O at -78°C followed by two equivalents of RMgX at 0°C affords 67-75% yields of $(\text{Me}_3\text{Si})_2\text{NP}R$ (R = Me, Et, CH$_2$SiMe$_3$). Similarly, $(\text{Me}_3\text{Si})_2\text{NP}(Ph)R$ (R = Me, Et) are obtained in 59-81% yields starting from PhPCl$_2$. Physical and 31P NMR data for these compounds are reported along with references to earlier papers describing their derivative chemistry.