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School of Engineering and Applied Science
Institute for Management Science and Engineering

Program in Logistics

OPTIMAL VALUE BOUNDS FOR POSYNOMIAL
GEOMETRIC PROGRAMS

by

Jerzy Kyparisis

1. INTRODUCTION

The idea of bounds on the optimal value of a geometric program-
ming problem has been present since the inception of geometric program-
ming (Duffin, Peterson, and Zener [5]) and has proved to be fruitful in
applications of GP. These bounds are the immediate consequences of the
duality .ucory of GP. Recently, this idea has been extended to paramet-
ric bounds on the optimal value function f* . Woolsey (in [2]) derives
a lower bound on f£%* using the known fact that the dual objective func-
tion at a fixed dual-feasible point ﬁnderestimates f* for all values
of coefficients (parameters) (see, e.g., Dembo [4]). He also shows how
to apply this result in a practical problem. Fiacco [7] has proposed a
general approach for calculating upper and lower bounds on f* (partic-
ularly simple whenever f* 1is convex or concave), which utilizes sensi-

tivity information as well as Wolfe's duality theory. This paper is
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based on similar ideas, except that GP duality theory is used instead of
Wolfe's duality, and the special structure of GP primal and dual problems
is exploited. Several classes of perturbed GP problems are shown to
possess convex or concave f* or at least '"tight" overestimating and
underestimating problems with convex f* . The calculatiuvn of bounds is
illustrated for different classes of perturbations and on a simple
example problem. In this paper we are mainly concerned with posynomial

GP problems. Possible extensions to general signomial GP problems using,

for example, the idea of condensed programs (see, e.g., [1]) remain to be

developed. Also, the topic of bounds on the primal and dual optimal so-
lution points is not discussed here (see, e.g., [2,4]). Bounds on f*
based on a general idea in [7] were calculated for a convex equivalent
of a CP model of a stream water pollution abatement system by Ghaemi [11]
and by Fiacco and Kyparisis [9,10]. Bounds on f* were also obtained by
Flacco and Ghaemi [8], using results coinciding with some results of
Section 4, for a cnnvex equivalent of a GP model of a power system energy
model.
2, GENERAL PRIMAL AND DUAL BOUNDS ON THE OPTIMAL
VALUE FUNCTION OF A GP PROBLEM

A posynomial primal geometric programming problem is a nonlinear

programming problem of the form

min go(t,c)
teE®

subject to gk(t,c) <1, k=l,...,p, PO(c)

t, >0, j=1,...,m

3

where
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m a
I t.ij ’ k.'o’l,""p >

g (C,C) - Z C
k 1€, 14y 3

k

3 = {‘“k’ mtl, ..., nt, k=0,1,...,p,

m, =1, m

0 = n0+1, m, = n1+1, oy mp = np_1+l, n =n,

1 P
c = (cl,...,cn) .

The exponents aij are arbitrary real numbers and the coefficients ¢y

are positive. The functions g, are posynomials.

X
By using the transformation tj = @ i we derive the following
equivalent program
minm fo(x,c)
XEE P(c)

subject to fk(x.c) 21, k=1,...,p

where

m
a,.x
fk(x,c) = 2 cye I=1 1373 , k=0,1,...,p

isJk

and the sets Jk are the same as in Po(c). Program P(c) is called a
transformed primal program and it is well known ([5]) that it is a con-
vex programming problem (for any fixed c).

A dual geometric programming problem corresponding to Po(c) (and

P(c)) has the form
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8,
n o fe |7i p A (8)
max v(8,c) = I T i Ak(é)
SeE? i=,1 (1 k=1
subject to A (8) = ] &, , k=l,...,p , D(c)
1€J
k
I s, =1,
1€J, i
)
a,. 6. =0, j=1,...,m ,
jop 34
61 >0, i=l,...,n ,

where the sets Jk are defined in Po(c). Under the assumption

n

ds, € E"3 ) a8, =0, j=1,...,m, &

>0, i=l,...,n , (a)
i=1 ij 01

0i

Zangwiil [13] showed that a program equivalent to D(c), with log v(§,c)
substituted for v{(&,c) , can be obtailned using Wolfe's duality theory.
In this paper we are concerned with bounds on the optimal value
function f*(c) of P(c). Denote by v*(c) the optimal value function
of D(c). From the duality theory of geometric programming [5] it follows
that for any fixed

cg » if X dis any feasible point of P(co) and § is

any feasible point of D(co), then
- . . -
£(Kscq) 2 £*(cy) 2 v¥(cy) 2 v(S,cp) (1)
It is also known [5) that if the feasible set of P(co) is nonempty and

condition (A) is satisfied, then there exists a global solution X, of

P(co) and
fo(xo,co) = f*(co) = v*(co) . (2)

Dembo [4] notes that since the feasible set of D(c) is the same for all

SN e M
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~

¢ , any dual-feasible point & gives us the lower bound on f*(c) and
v*(c) based on (1);

£x(c) > vk(c) 2 v(é,c) , Ve . (3)
Woolsey (in Beightler and Phillips [2]) utilizes (3) to obtain a "tight”
lower bound on f*(c) as follows. Suppose that 50 is the optimal
solution of D(co) (it is necessarily a global solution, since as shown
in {5] 1log v(8,c) is concave in & on the dual feasible set for any
fixed c¢ ). Suppose also that (A) is satisfied so that (2) holds. Then
from (3) and (2) we obtain

n ¢y 601 n 9 0i }

f*(c) > v(Go,c) = V(Go,co) 121 L;;J = f*(co) 121 &;;J , ¥c . (&) ;
The above bounds as well as the optimal value functions f*(¢c) and v*(c) ;

are in general neither convex nor concave. In the next sections we will

identify classes of problems for which either £f*(c) and v*(c) or the
bounds on f*(c) can be shown to be convex or concave. This is impor-

tant since it simplifies the computation of the bounds on £f*(c) (both

upper and lower) and considerably enhances their applicability. These

results will be illustrated using the following example problem [5,

p. 88]:
min_ g.(t,c) = ¢ el e el b cre, + ettt i
regd o't 151 %20 %3 28153 7 6351500
-2 =2  o~1
subject to gl(t,c) cutp ty * cg t, ty <1 EPO(c)
ti >0, 1=1,2,3 -

(eg >0, 1=1,2,...,5) .
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The transformed problem is of the form
-%y =X ,=x, X)t%3 S B A
min_ f_.(x,c) = ¢, e +c, e +c, e
0 1 2 3
XEE
—2x1-2x2 %xz—x3
subject to fl(x,c) =c, e + cg e 1. EP(c)

The dual problem corresponding to EP(c) is

e S , 8, ey ) e, 8, e 85 (8,45)
max_ v(8,c) = |+| [|= = - = (6, + 6.)
naxs 5 15 5] 5] 3 4% %

2 3 4 5
subject to 51 + 62 + 63 =1,
- 61 + 62 + 63 - 264 =0, ED(«
—%61 + 63 - 264 + %65 =0,
- 61 + 62 + 63 - 65 =0,

8, 20, i=1,2,...,5 .

-1 %
1 €2 4
of ED(c) is &*(c) = (1 ~ 2r(c), r(c), r(c), 2r(c) - %, 4r(c) - DT ,

-5 -5 -1 -2
1% 3 % S5
value function of EP(c) is f*(c) = v*(c) = v(8*(c),c) . For co =

(40, 20, 20, 1/3, 4/3) , r(co) = 2/5 , the optimal dual solution is

1
One can check that if ¢ c; c cg > 2/27 , then the optimal solution

where r(c) = [2 + (4/27)c J-l € (%,%) and the optimal

5*(C0) = (1/5, 2/5, 2/5, 3/10, 3/5) , and one can calculate the optimal
primal solution x*(co) = (0, 0, log2), and f*(co) = v*(co) =

v(G*(co),co) = 100.0., The lower bound (4) is thus easily applicable.

P R S
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3. GP PROBLEMS WITH CONVEX OPTIMAL VALUE FUNCTION

Suppose that coefficients ¢, are functions of the parameter

i

vector € = (€ er) € Ef of the form ci(e) = llhi(e) , i=l,...,n ,

1Pt

where hi(s) are positive concave functions of € on a convex set Eo

(if hi(e) =h 0* then ci(a) = 1/h10 remains unperturbed). A particu~

i
larly simple class is obtained when hi(e) =€ >0, i=1,...,n . The
primal program P(c(€)) can be written as

min Eo(x,e)

m ~
xEE P (<)
subject to Ek(x,e) 1, =1,...,p
where
. ™ e .x
£, = ] ?T%Ei'e =1 k=0,1,...,p .
ieJ i
k
If we denote by E*(E) the optimal value function of P(€), then the
following result holds.
Proposition 1. f*(¢) 1is convex on Ey -
Proof. First note that fk(x,s) can be written as
N m
fk(x,e) = Z exp |~-log hi(e) + Z aijxj , k=0,1,...,p . (9
iaJk i=1

Now, introducing new variables 81s»-+,8, , We can write ?(e) in an

equivalent form as




minm n Z et
(x,s)EE XE = i€J

0
sy i
subject to z e < 1 . k=1,...,p Pl(c) 1
ieJ 1‘
k :
j
o i
g aijxj -8 < log hi(e) . i=1,...,n . y
Jj=1
Programs ﬁ(e) and §1(€) have the same optimal value function fx(¢)

Since hi(e) is concave and positive for € € Eo , log hi(e) is con-.

cave for € € EO and thus ﬁl(s) is a jointly convex program in (x,s,t)

.

with the convex optimal function E*(C) for € € EO [12]. Q.E.D.

Proposition 1 enables us to compute the upper and lower bounds on
f*(g) using the following approach proposed by Fiacco [7]. Assume that

we know the solutions x €gs El € Eo .

0

Assume also that the conditions of the sensitivity theorem (Fiacco [6])

of ﬁ(eo) and x, of ?(sl),

1

are satisfied at ¢ = and € = €, . Then the gradients of f*(g)

€0 1

at these points exist, providing us with the lower bounds on £*(c) ,

€ € [eg,e;] of the form L (o) = E*(e,) + Vef*(ei)(e(a) - g;) , i=0,1,
where ¢(a) = (1 - a)eo + ag; , o € {0,1] . The upper bound on f*(e(a))

is given by U(a) = (1 - a)f*(eo) + af*(el) . A better upper bound can

be obtained, noting that Ek(x,e) are jointly convex in (x,e) for

€ € E0 . This implies that x(a) = (1 - a)x0 + ax, is feasible for

P(e(@), a € [0,1] , so that E*(e(a)) < F (x(a),e(@) < U@ , ¥ a € (0,1] ,
the last inequality following from convexity of Eo(x(a),s(a)) . It is

also possible to derive sharper lower bounds on f*(e) wusing the dual

geometric programming problem D(c(e)). We consider this problem now,
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The dual program D(c(€)) has the form

n —61 P Xk(d)
max v(8,e) = I (hi(E)Gi) I Ak(é)
Y i=1 k=1
subject to lk(G) = z 61 , k=~1,...,P »
ied
k
) 61 =1 s D(e)
iEJO
)
a,,6, =0 , j=1,...,m ,
1=1 1371
61 >0 , i=1,...,n

Denote by V*(e) the optimal value function of D(€). Under as-
sumption (A), V*(g) = f*(e) (provided that fx(€) < 4+©) and this,
together with Proposition 1, implies that v*(e) is convex on E, . We
will prove it directly, together with convexity of a dual lower bound

v(8,e) , using the following result.

Proposition 2. (1) If R 1is an arbitrary set in ET , F(x,e) 1is

concave in € on a convex set S <.Er for any fixed x € R, then
Fi(e) = inf F(x,€) 1is concave on S .
x€R
(ii) If R and S are as in (i), F(x,€) is convex

in € on S for any fixed x € R , then Fg(e) = sup F(x,€) is convex

xER
on S .
Proof. (i) Let sl,ez €S, Ae [0,1] . Then
Ff(xel + (1 - A)ez) = inf F(x, Ael + (1 - A)ez)
xeR
> inf AF(x,el) + (1 - A)F(x,ez)
x€R
> X inf F(x,el) + (1 - )A) inf F(x,ez)

xeR xeR

A FI(el) + @1 - X)Ff(ez) .

-9«
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|
(ii) Fﬁ(e) = sup F(x,€) = -inf(-F(x,€)) . Since -=F(x,€)
x€R XER :
satisfies assumptions of (1), -F;(E) is concave on S by (i), so
Fg(e) is convex on S . Q.E.D. ?

Remark. Proposition 2 appears to be a variation of a well known result

of convex analysis: if all ¢ € ¢ are convex, ¢ 1is an arbitrary set,

~ A
then ¢(x) = sup $(x) 1is also convex (on a convex set).

Ped

Proposition 3. (i) v(6,€) is convex in € on EO for any fixed

dual-feasible § .

(1i) v*(e) 1is convex on Eq -

Proof. (i) v(8,€) can be written as i

rzl ] P A (8)
v(8,e) = exp | - 8. log(h, (€)8.) T A (6 . (6)
[ =1 1 S IR

(We define x log x =0 for x =0 .) Since hi(e) is concave and

positive on E —61 log(hi(E)Go) is convex on EO for any dual-

0 ’

feasible & and thus v(8,e) is convex in € on Eq for any such & .

(ii) Denote the dual feasible set by L Then v*(g) = sup v($,€)
6eRD

Q.E.D.

is convex on E. by (i) and Proposition 2(ii).

0
Suppose now that condition (A) is satisfied so that E*(E) = vk(g)
Let 60 and 61 be the solutions of 5(80) and 5(81), respectively. If
the assumptions of the sensitivity theorem hold for either problem ﬁ(e)
or D(€) at e =€, and € = €, » then the gradients of both f*(e¢) and

0

vk(e) exist at € = ¢

0’81 and we have

Vef*(ei) = V %(e) = V V(5,6 , i=0,1 . €

- 10 -
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Since also E*(Ei) - ;*(81) = ;(51.51) , 1=0,1 , convexity of \7(51,6) . ‘
i=0,1 implies that for 1i=0,1 , a € [0,1] ,

L) = (8.,6) + VI, e)(E@ - ) < V(6,e@) , ®)

proving that ;(éi,e(a)) , 1=0,1 , are uniformly better lower bounds on
E*(E(G)) than Li(a) . In fact, to derive the above bounds we only need

the directional derivatives of E*(e) = yv*(g) 1in directions El - EO

and Eo - El . If the feasible set of 5(6) is compact and unique global

solutions 60 of 5(80) and 61 of 5(61) exist, then from Danskin's

theorem [3] we obtain the directional derivatives of E*(s) at € = eo,el
in the direction =z as

D Ex(e,) = D, ¥*(e,) = V(8,6 )z , i=0,1 . (9)

Consider now a more general class of perturbations of the form

“ Big A “Bie
ci(e) = | I hil (e) = 1 hiz (g)
2=1 2=1

where hil(e) are positive concave functions of € on a convex set

EO CE" , £1 are positive integers, and Bi2 >0 for Q=l,.“,li .

i=1,...,n . (The previous case is obtained by setting Qi =1, Bil =1,

i=1,...,n .) All results obtained in this section extend immediately to
2
i ,

this class (note that 1log ci(e) —Zl=l Bil log hil(e) is convex on

E0 ). This allows us in particular to obtain bounds on convex E*(e)

-8
r ig _
for perturbations of the type ci(e) = n£=l 82 s Bil 20, &=1,...,r,

i=1,...,n .,
Dembo [4] considers a slightly more general problem than P(c) of
the form

min fo(x,c)
XE
P(c,r)

subject to fk(x,c) <r k=1,...,p

k?’ q

- 11 -
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where r k=1,...,p are positive numbers and functions fk .

K’
k=0,1,...,p are defined in P(c). If we define ci(e,r) = ci(a)/rk .
ie Jk , k=1,...,p , where ci(e) has the general form given above,
then it is easy to show that all results of this section extend to this
problem, too. This is also clear from the formulation of P(c,r) and its
corresponding dual D(c,r) in terms of (c,r) ,

n ()% P A (® A (8)
max v(S,c,r) = M |+ il D(ec,r)
S k=1

SeRy i=1 |°i Tk

where RD is the feasible set of D(c) and Ak(é) are defined in D(c).

As an illustration of the preceding results, consider our example
problem, EP(c), with the following perturbations: c(a) = (col/(l+a),
02° 03 S04° c05/(1+a)) , @ € [{0,1] . The optimal value function
E*(u) of EP(c(a}) 1is convex on ([0,1] by Proposition 1. Since ¢(0) =

cp » FX(0) = F*(0) = 100.0 , 8 = 8%(c(0)) = (1/5, 2/5, 2/5, 3/10, 3/5)

and x, = x*(c(0)) = (0, 0, log2) , where v*(a) denotes the optimal

0
value function of ED(c(a)). Since r(c(a)) = 2/(5+a) , for a =1,

©)

(1/3, 1/3, 1/3, 1/6, 1/3) . cCalculations give us x, = x*{(c(1)) =

1
(0, 0, 0) and f*(l) = v*(1) = v(&,c,) = 60.0 . Define ¥(8,a) =

v(S,c{(a)) . From inequality (4) we obtain convex dual lower bounds

84,6
Er(@) 2 9(6p0) = E(0) (_..1_._} 017705 _ __100.0

1+a (1 + a).s
and
. 8, . +68 2/3
fx(a) 320(61,a) = f*(l)(ffg‘a] 11715 _ 2 6g}g , ae [0,1]
(1 + a)

The linear lower bounds on f*(a) are computed using the formulas for

- 12 -

= ¢(1) = (20, 20, 20, 1/3, 2/3) , r(c(1)) = 1/3 , and 61 = §*(c(1)) =




3(61,0) , i=0,1 , as

Ly(a) = EX(0) + V ¥(8;,00a = 100.0 - 80.0a
and
L@ = fx(1) + V,9(6,,1)(a-1) = 60.0 - 20.0(a-1) = 80.0 - 20.0a .

The linear upper bound is computed as

U(a) = (1-a)f*(0) + af*(1) = (1-0)100.0 + a60.0 = 100.0 - 40.0x .

A sharper convex upper bound is given by

Eo(@) = £o(x(@),e@)

where x(a) = (l-a)xo + ax, , a € [0,1] and calculations show that

1
~ 1~ -
fo(a) = 40,0(1/2) oL/(l"'ﬁf-) + 40.0°21 @ | All the above bounds are de-

picted in Figure 1.

o .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
Figure 1.--Bounds on the convex E*(a).

- 13 -




Consider now another class of perturbations which yields a convex

optimal value function f*(c) . Assume that only the coefficients of the

objective function fo(x,E) , € = (cl,...,cno) , are perturbed and define
i .

ci(e) = COiY(e) » By 2 1, i=1,...,14 , where y(e) is a positive con-

vex function of € on a convex set Eo C E' . Note that all the coeffi-

cients in fo(x,E) are perturbed now.

Proposition 4.

(i) For any fixed primal-feasible x , fo(x,E(e)) is convex in ¢ ¢ E

(ii) For any fixed dual-feasible 6§ and fixed ¢ = (¢ seeesC ),
n0+1 n

¥(e) = v(§,c(e),8) 1s convex in ¢ ¢ Eo .
(iii) The optimal value function of D(c(eg)) , V*(g) , is convex in

€ € Eo and if condition (A) also holds, the optimal value function of

P(c(e)) , T*(e) , is convex in € ¢ E

0"
Proof.
(i) Follows immediately from the convexity of y(e)B for any B >1
and the form of fo(x,E)
(ii) Since
61
n i S
0 |egyY(e) n ;1’1 P A (8)
Ve = 1 ; I 5 I (8 ,
i=1 i i=n0+1 i =1
we can write
n
~ “0 8151 121 3151
v(e) = A T y(g) = Ay(€) , (10)
=1
where
"o
A= 1

0"




N n
= 1 , so that zi=l 3151 > i=1 “i
8

» B>1.

n
(4]
i=1 6i

and the result follows from the convexity of Y(¢)

Since & 1is dual-feasible, )

(iii) The first assertion of this part follows immediately from part
(i1), Proposition 2(ii), and the fact that the dual feasible set RD is
fixed. The last assertion is a consequence of the equality fx(g) = V*(c)

under condition (A). Q.E.D.

This result enables us to calculate bounds on f*(e) in a
similar way as in the first part of this section. Using Danskin's
theorem, one can find the directional derivatives of f*(e) using the
gradients of v(e) and obtain linear lower bounds on E*(e) . The
linear upper bounds U(e) can also be obtained as before. Sharper
convex bounds V(e) are available, too. However, since fo(x,E) is in
general not jointly convex in (x,c) , the upper bound fo(x(a),a(s(a)) ,
x{a) = (1-a)xO +ax; ea) = (l-a)eo +toag) , @€ [0,1] will not neces-
sarily be convex and better than the linear upper bound. The convex
upper bounds fo(xi,E(e(u))) , i=0,1 , will be better than U(e(a)) only
for a close to 0 (i=0), or 1 (i=1) in general.

This approach can be extended to include perturbations in the coef-
ficients ¢, of the constraint functions, also of the form ci(e) =

i
81

cOiY(s) , but with Bi 20, 1i=n+l,...,n (note that 61 21 for

0

i-l,...,no). It can be easily shown that Proposition 4 remains true in

this case. However, since the primal feasible set Ro now depends on

€ , at least one of the solutions x, of P(E(eo)) or x, of P(E(el))

1
will no longer be feasible in general for all values of ¢ € [eogell s
reducing the avallability of upper bounds fo(xi,E(e)) , i=0,1 . Also,

in general x(a) will not be feasible, so that fo(x(a),E(s(a))) cannot

- 15 -
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be used as an upper bound on E*(a) . The linear bounds on E*(L) and
the dual lower bounds will nevertheless remain valid.
Even more generally, Proposition 4 will be valid whenever
g=1 Bldi(c(e)) > 1 for the considered perturbations. We utilize this
fact in the following example where it can be shown that Z:Sl Biéi(c(a)) =1,

a e [0,1] .
We now consider the example EP(c), with perturbations c(a) =

A - a/2), ¢ (- @/, ey (1 - a/2), pg) » @€ [0,1) . The

(cgy 02’ 03

optimal value function E*(e) of EP(c{n)) is convex on [0,1] by Proposition
4(iii) (we set y(a) =1 ~ /2, Bl =1, BZ = 0, 83 = 2, 84 =1, 85 = Q)

Since c(0) = c,, £*(0) = Vv*(0) = 100.0, 8y = 0*(e(0)) = (1/5, 2/5, 2/5, 3/10,

0!
3/5) , and Xy = x*(c(0)) = (0, 0, log2) . Since r(c(a)) = (2~-a)/(5-2a) ,

for a=1, ¢, = e(l) = (20, 20, 5, 1/6, 4/3) , r(c(l)) = 1/3 , and

61 = 8*%(c(1)) = (1/3, 1/3, 1/3, 1/6, 1/3) . We calculate X = x*(c(l)) =

42,43 ,

We

(log(1.05), logh, log(.67)) and f*(1) = ¥*(1) = v(§ ,c;)

Inequality (4) yields the following convex dual lower bounds for

a € [0,1] .,
) N 8,426 +6 1.3
Ex(a) 2 9(8,,0) = f*(O)(l - %} 01703 704 1oo.o[1 - %}
and
N . §..+26, 46
o) 2 96,0 = B2 - 1 P M 243 - 078

The linear lower bounds on f*(0) are calculated with the help of

~V(51,Q) N i"O,l , 8s
= f% + Vv = -
Lo(a) f (O) ; (‘SO,O)Q 100.0 65.0a

and

16 ~
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L (@) = FA(1) + V(8,1 (@ - 1) # 42.43 - 22.05(a-1)

64.48 - 22,.05qa .
The linear upper bound is

Ua) = (1-a)£*(0) + af*(1) = (1-a)100.0 + 042.43

100.0 - 57.570 .
Since ci(a) are nonincreaging in « , the primal feasible set is

increasing in o . Thus the optimal solution point x_. of P(c(0)) is

0
primal-feasible for all o € [0,1] . Since the constraint fl(x,c) is
binding at the optimal solution point x of P(c(1)) for c = c; s X
is not primal-feasible for any value of o € {0,1) . Therefore, we can
only use the convex upper bound
- a al2
fo(xo,c(a)) = 20.0(1 - 2] + 40.0 + 40.0[1 - 2]

= 10.00.2 - 50.0a + 100.0 .

We depict the above bounds in Figure 2 (f*(a) 1is not depicted, since the

bounds U(a) and G(di,a) , 1=0,1 are very tight).

4. GP PROBLEMS WITH CONCAVE OPTIMAL VALUE FUNCTION

Consider again the problem P(c) and assume that we perturb the
coefficients ey in the objective function fo(x,c) only. Denote the
vector (cl,...,cno) by c » the optimal value function of P(c), by

f*(c) and the fixed feasible set of P(c) by Ry -

Proposition 5. fx(c) 1s concave.

Proof. Follows immediately from Proposition 2(1i) since fo(x,E) is

linear in ¢ for any fixed x . Q.E.D.

- 17 -




This result enables us to derive the upper and lower bounds on

f*(c) , given the solutions X, of P(EO) and x, of P(El) and the

1
gradients of f*(c) at c = EO and ¢ = El , in the same manner as it

was done in Section 3. However, the upper bound fo(x(a),E(a)) .

x(a) = (1 - w)xy + ax, , c(@) = (1 - a)EO + ac a e [0,1] , will be

1 1’

neither concave nor convex in general and will not necessarily

Figure 2.--Bounds on the convex f*(a).
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underestimate Ui(“) . As mentioned before, directional derivatives of
f*(c) at c = Eo,El are sufficient for our purposes. Thus, if R0 is
compact and X, and x, are the unique global solutions of P(Eo) and
P(El) , respectively, then by Danskin's theorem {3] we obtain that

sz*(ci) = VEfO(xi’ci)z = fo(xi,z) . i=0,1 (11)

which means that the upper bounds on f*(c(a)) are of the form Ui(a) =
fo(xi,E(a)) , 1=0,1 , a € [0,1] . If the condition (A) holds, then the

optimal value function of D(¢) , v*(c) , is equal to f*(c) and is thus
concave by Proposition 5. Now we prove concavity of the lower bound

v(8,6,8) in ¢ for any & and & = (cn +1,...,cn) fixed. p

0 b

Proposition 6. For any fixed dual-feasible & and fixed ¢ , v(8,c,?é) P

is concave in c .
- - n S
Proof. Denote vo(c) = v(§,c,2) = A(S,8) Hi=l c,” , where -

n Gi n -61 P Ak(G)
A(S,8) = )i ey I 61 I Ak(G) >0
i=n0+1 i=] k=1
is fixed. Calculations give us VEVO(C) = [éllcl, cees Gnolcnolvo(c)
and
5. /c 5. /c? 0
171 1’71
2 - - - .
VEVO(C) = vo(c) = vo(c) : [Gl/cl, vy Gno/cnol -
8 lc 0 § 1c?
% Mo Ty Mo
(12)
T 2 =~ R} -
We want to show that y VEvo(c)y S0,¥yecE " . Since vo(c) >0, it
it enough to show that

- 19 -
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Gl/c1 Gl/cl 0
T .
y : [dl/cl, * 6“ /cn ]y y y
0 0o 9
8 /e 0 6n /cn
L 0o 0 0 o0
n 2 n 2
0 4;y; 0 8,y n
= ) 5 -7 5~ < 0, ¥yceE (13)
i=1 i i=1 ¢}
i
But this follows immediately from the Cauchy-Schwarz inequality [5]:
E 2 E 2 E 2 n
a b < a b . ¥ a,b € E (14)
1 KK Tl K ke K
if t n-= =82, b, = 6% (y,/c,) , k=1 d recall
if we ss n=ng,a =6 ,b =48 (y/c), k<l,...,n and reca
0 - -
that [, _. 6 = Tees S =1 - Q.E.D.

0

If 60 uniquely solves D(Eo), 61 uniquely solves D(El) and if
the dual feasible set RD is compact, then under the assumption (A),
f*(c) = v*(c) , and thus by Danskin's theorem for any z ,

D, f*(c,) = D,v*(c,) = Vov(8,;,c,,d)z , i=0,1 (15)
This shows that the lower bounds V(Gi,E(a),é) , 1=0,1 , are at least
initially better than the linear lower bound L(a) = (1 - a)f*(EO) +
af*(El) but in general they do not have to be uniformly better for all
a € (0,11 .

There are two ways to extend the results of this section. One way
is to assume that ci(e) = hi(e) R i=1,...,n0 , Where hi(e) are concave
positive functions of the parameter vector € = (el,...,er) . The case
treated before is obtained when we set hi(e) =€, , i=1,...,n0 . One

1

can show that Propositions 5 and 6 continue to be true for this more

- 20 -~
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general case. Upper and lower linear bounds can be obtained as before,

given the solutions and directional derivatives of the optimal value

function f*(e) at € = €.,6, . The objective function

0°€1
n m
0 a,.x
F,ne) = ) h(e) ed7t
i=]

gives us now a sharper upper bound than the linear one, since from con-
cavity of Eo(x,e) in € for any fixed x , fixedness ¢f R , and

equality sz*(ei) = veEo(xi,ei)z , 1=0,1 , it follows that
B (e(@) £ Folx,,e(@) S U@, 1=0,1 (16)

where e(a) = (1 - a)s0 +o0e, , 0 € [0,1] and

1

U, (@) = E*(ei) + Vefo(xi,ei)(e(a) - €, i=0,1 .

The dual lower bound, concave by the extension of Proposition 6, applies
as before. Another generalization is obtained by noting that Proposition
5 is valid even 1if some coefficients ¢y
inequalities defining the feasible set changed. In other words, the op-

are negative and directions of

timal value function f£f*(c) is concave also in case of the general sig-
nomial geometric program. In this case we can still utilize linear bounds
on f*(c) based on sensitivity information [7], although the dual bounds

may no longer be valid. 1In order to illustrate the above bounds, we use

the same example EP(c) as before.
Define the perturbations as follows: c(o) = (c01(1 -al2),

coz(l - 3a/4), c , & € [0,1] . Since c(a) 1is linear in a ,

03> S04* o5’
this is the basic case and the results of this section apply, so that the

optimal value function f*(a) of EP(c(a)) is concave on [0,1] by

- 21 -
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i

Proposition 4. Since <c¢(0) = g » E*(O) 100.0 , 60 = (1/5, 2/5, 2/5,

xg = (0, 0, log2) , as determined before. Since
rc@) = 2+ (- /3@, fora=1, ¢ = c() = (20, 5, 20,

3/10, 3/5) , and

1/3, 4/3) , r(c(1l)) = 2/5 , and 51 = §x(c(l)) = 60 . Calculations give
x) = x*(c(1)) = (logh, -log4, 0) and £*(1) = V(1) = v(8;,c;) = 50.0 .
Define v(8,a) = v(8,c(a)) as before. Inequality (4) provides concave

dual lower bounds for a € {[0,1] ,

8 8 .2 Y.
¥ =~ = 02 30
fx(a) > v((50,01) = £%(0) {1 - %J Ol[l - 34—“] = 100.0[1 - %] [1 - T}
and

8 8

< 1-3 011‘34—0 02=1ooo[1-9]'2[1-}—°—‘]'4

fx(a) > V(6 ,0) = £*(1) -5 ” . 2 A
(note that G(GO,G) = V(Gl,a) since 60 = 61). The linear lower bound

is given by
L(a) = (1-0)E*(0) + af*(1) = (1-2)100.0 + a50.0 = 50.0 - 50.0c .
The linear upper bounds are given by

100.0 - 40.0a

Ug (@) fo(xo,z(a))
and

120.0 ~ 70.0a .

U,y = fo(xl,E(a))

We can also calculate the upper bound,

a 3a]21+a 1-a

fo(x(a),E(a)) = 20.0[1 - —J + 20.0[1 - % + 20.0°2

2
We depict the calculated bounds in Figure 3. (The upper bound

fo(x(a),E(a)) is not depicted since it is almost equal to E*(a) $)

- 22 -
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Figure 3.--Bounds on the concave E*(a).
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5. GP PROBLEMS HAVING JOINTLY CONVEX OVERESTIMATING
AND UNDERESTIMATING PROBLEMS
Consider now frequently used linear perturbations of the coeffi-

cients ¢

1 in both the objective function as well as in the constraint

functions of the program P(c). This "natural" class of perturbations is
not covered by any case considered so far. The optimal value function
f*(c) 1is in general neither convex nor concave in this case. However,
it is possible to define "tight'" overestimating and underestimating prob-
lems with convex optimal value functions to which in turn bounding tech-
niques of Section 3 can be successfully applied. Specifically, consider

20,

perturbations of the form ci(a) = cOi(l - dia) , where di

i=1,...,n and o e [0,a,] for some O < a, < min (1/d.) (we define
0 0 . i
1<i<n

l/di = 4o jif di =0 ). Obviously, if dj = 0 for some j , then the

coefficient Cj will not be perturbed. Using linear bounds on the con-
vex function 1/(1 - dia) on the interval [O,aO] , one can easily de-

rive the following inequalities:

1+ di(a—ZaO) i 1+ di(a-ao)

<t < (17)
=] dia 1 diao

max {1 + d. o
i 2
(l—diao)

and (substitute 4« for (l-diao)z/(l + di(a-Zao)) when

a < az max (di) )

=0 1<i<n
ch, (1=da ) c c..(Q-d.a )2
S0 000 ) = e (a0 < mi o1~ _0i_ 10 (18)
1+d, (o-a) =i o4 U =M ITI g Q) T+ d, (a-2a)
1 0 i i 0
Define the following geometric programming problems:
min  £9 (x,a)  s.t. f£O (x,0) <1 k=1,...,p PU, (a)
o1’ Tt TR1IYTYY = et 1

xcED

- 24 -
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where for a € [O,GO]
u €01 Z?-l 3133
£ (x,0) = § ————e 1, k=0,1,...,p (19)
k1 1+d,0
1] 1
k
min £ (x,0)  s.t. £O (x,@) < 1 k=1 p PU, (a)
m 02 ? . . kz ’ = ] L IR ] 2
x€E
where we define
v °01(1'd1°0)2 Z?=1 211%5
£ (x,2) = - e , k=0,1,...,p (20)
k2 teJ, 1+ d (o-Zay)
R ~ U -
tor & € (ao,aol , and sz(x,a) = 4 _ k=0,1,...,p for o € [0,a ],
&0 = max{0, 2a0 - min (l/di)} ,
15in
ain fg(x,a) s.t. ft(x,a) <1, =1,...,p PL(a)

xEED

where for a € [O,QO]

cOi(l-diao) Z?=l aijx.

L - 011 7%%’ j ~
£ = [ 3 T laay © , k=0,1,...,p (21)

iEJk

From {18) it follows that for o € [o,aO] , X € ou .

f o) £ E Ge@) g minfe) 0, fLe0m) k0,1, 22)

This inequality assert= that both PUl(a) and PUZ(a) are the overestimat-
ing problems for P(c(a)) and that PL(a) is the underestimating problem
for P(c{(a)), where a ¢ [0,a0] .

Denote by ffu(a) . fg“(a) , and f*L(a) the optimal value func-
tions of the programs PUl(a), PUz(a), and PL(a), respectively. (Note

that fgu(a) = 40 for o ¢ [0,&0] .) From inequality (22) we obtain for

- 25 -

PRETY T m T L 7o N S




T-464
a € [0,a0]
£+l () < fx(c() < min%f*lku(a), f;”(a)} (23)
Since fL(x 0) = £ (x,c(0)) = fU (x,0) and fL(x a.) = £ (x,cla,)) =
k' k' k1" k770 k77 0
5 fgz(x,ao) for k=0,1,...,p and x € E® , we also have that
£x°(0) = £4(c(0)) = £4°(0) (24)
; and
£* (@) = £x(c(a,)) = €4 (o ) (25)
0 0 2 0

which proves that the bounds on f*(c(a)) are "tight" at a = 0 and

The appealing feature of problems PUl(a), PUZ(a), and PL(a) is
that they are jointly convex in (x,q) (PUZ(u) is jointly convex in the
extended sense) and therefore possess convex optimal value functions
f{u(a) . f;U(a) , and f*L(a) , respectively. This is immediately seen
from the fact that the coefficients in all the above problems' functions
are of the form l/hi(a) , where hi(a) are linear positive functions of

& , and Proposition 1 of Section 3. Since f*L(a) underestimates

f*(c(a)) , convex dual lower bounds as well as linear lower bounds on
f*L(a) can be calculated using results of Section 3 and then used as
lower bounds on f*(c(a)) . Similarly, convex or linear upper bounds on
fo(a) and fgu(a) can be computed also, using results of that section
(in the case of fgu(a) for a such that fgu(a) < 4» ), providing us
with upper bounds on £f*(c{(a)) by virtue of inequality (23).

The approach described here can be extended to the case where the

ci's are concave and, e.g., decreasing functions of a parameter a . We

- 26 -~ |
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will not discuss this idea in detail here, since the derivation of bounds

in this case is similar to one described above.

Consider once more our example problem EP(c), with perturbations

c(a) = (c01(1 - (5/8)a), 020 03’ COA(I - a/4), COS(l - a/2)) . Since

d1 = 5/8 , d2 =0, d3 =0, d4 = 1/4 , d5 =1/2 , m%n (1/di) = 8/5 ,
1;;;5
and we choose ao = ] , Since
A
-1
. 1-2a
r(c(a)) = |2 + = . for a =1

-gb-

= c¢(1) = (15, 20, 20, 1/4, 2/3) , r(c(1)) = 1/3 , and 61

"
1]

§*(c(1))

€1

(1/3, 1/3, 1/3, 1/6, 1/3) . From calculations we obtain x; x*(c (1))

]
0e

(log(.86), 0, 0) and f*(1) = v*(1) = v(8,,¢,) = 51.96 . The overesti-

mating problems are of the form .

c ~x, ~%x,.-x X, +x X, +x,+x
min3 fgl(xaa) - 0; e 1 273 + COZ e 173 + c03 e 17273
xeE 1 + § o
c -2x.=-2x c . ~x
subject to fgl(x,a) - 04 e 12 + 05 e 273 <1 EPU, (o)
1+ 2 1+2 = 1
4 2
for a e {0,1] ai'
2 c ~x.,=kx,-x X, +x X +X.,+%
min3 fgz(x,a) =-——§ﬁ§—gl——— e 17273, oy © 173 +cpy @ 172773
xeE 1+ ] (a~2)
9 1
= c -2%x,-2x -~ bx.-x
subject to fgz(x,a) - -——lgr—9ﬁ~—— e 1 2 + "':¥flxi"' e 273 <1
1+7 (a-2) 1+3 (a-2) )
EPUZ(G)

for a e (2/5, 1] (for a e (0, 2/5] we define fEZ(x,a) = +o for

- 27 -
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k=0,1 , all x € 23 ). The underestimating problem is defined for
o e (0,11 as
3 ¢ ~x, ~dx ., ~x x_+x X +x,+x
L 8§ 01 1 273 173 17273
min fo(x,u) i —— + oo © + o3 ©
xeE3 1+3 (a-1)
3 1
= ¢ ~2x_ -2x =c bx.-x
subject to f?(x,a) = 41 04 e 2 + — 21 05 e z2 3 <1
1+ = (a~1) 1+ % (a-1)
4 2
EPL ()

The above three problems have convex optimal value functions

fiu(a) . fiu(a) , and f*L(a) , respectively, for a € {0,1] .

[}

Recalling from Section 2 that for a =0 (40, 20, 20, 1/3,

bl CO

4/3) , 60 = 6*(c0) = (1/5, 2/5, 2/5, 3/10, 3/5) , x, = x*(co) = (0, O,

0
log2) , and E*(O) = v*(0) = 100.0 , application of inequality (4) gives

us convex lower bounds on E*(a) , & € [0,1) , as follows:

8 3 8
Fac0) 3/8 01 3/4 04 1/2 05
1 +-% (a-1) 1+ % (a-1) 1 +-% (a~1)

100.0

.2 .3
[1 +.% a] [1 +-% a} a+ a)'6

8 § §
- 1 11 1 14 1 15
B 5 1 1
1l + 8 (a-1) 1+ % (a~1) 1 + 2 (a=~1)

95.24

1/3 1/6
[1 + %-GJ [1 +'% a} 1+ a)1/3

fx(a) > V(8,0

£x(@) 2 ¥(5;,a)

The linear lower bounds on E*(u) can be easily computed using the

formulas

- 28 -




T-464

Ly(a) = fx(0) + vac(ao,O)a = 100.0 - 86.67a
and

Ll(a) = E*(l) + VaV(Gl,l)(a-l) = 51,96 - 21.65(a-1) = 73.61 - 21.65a

In order to obtain an upper bound we solve the dual of the problem

U-
1

r(1) = 52/149 , and 6? - 6*U(c1) = (45/149, 52/149, 52/149, 59/298,

EPUl(a) for a =1 , obtaining ¢ (320/13, 20, 20, 4/15, 8/9) ,

59/149) . From this we calculate f{u(l) = v(Gl,cl) £ 68.34 and

xU
1

the linear upper bound on E*(a) for o € [0,1] can be obtained from

- x*U(cl) = (1og(.9), 0, log(1.325)) . Since f{U(O) = F*(0) = 100.0 ,

the formula
U@ = (1-0£47(0) + afIU(l) i (1-0)100.0 + 068.34
= 100.0 - 31.660

A better convex upper bound can be obtained in the form fgl(xu(a),a) ,
xU(a) = (l-a)xo + axg , @ € [0,1] . The above bounds are depicted in

Figure 4.
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Figure 4.--Bounds on f*(a).
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