DA - AS = B A

k

S Syntax-Directed Editing: |
Towards Integrated P rogrammmq;Environmehtq

Raul Medina-Mora
)
Department of Computer Sclence
‘Carnegie-Meilon University

Pittsburgh, Pa. 18213

. Merch 1982

DEPARTMENT

of
COMPUTER SCIENCE

W‘w ww “mm M‘

i

S
S
gs
Ly
=

Syntax-Directed Editing:
Towards Integrated Programming Environments

Raul Medina-Mora

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pa. 15213

March 1982

Submitted to Carnegie-Mellon University
in partial tulfillment of the requirements
for the degree of Doctor of Philosophy

Copyright © 1982 Raul Medina-Mora

This work was sponsored in part by the Software Engineering Division of
CENTACS/CORADCOM, in part by the Defense Advanced Research Projects Agency (DOD),
- ARPA Order No. 3597, moiitored by the Air Force Avionics Laboratory Under Contract
. F33615-81-K-1539, and i part by the National University of Mexico.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official poiicies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the US Government.

il

Para Katty y Katina, con todo mi amor

g

i

Acknowledgements

It is a great pleasure to acknowledge the untiring support of my advisor, Nico Habermann,
Throughout these years, he always gave me the necessary confidence to keep going. His
contribution to the organization and completeness of this thesis is invaluable. | would also
like to thank the other members of my thesis committee - John Nestor, Eugene Ball and Tim
Teitelbaum - for their helpful comments and criticism that in many ways improved the quality:
of this document. Special thanks go to David Notkin for carefully reading .he various drafts of
the thesis and suggesting many improvements. He and Peter Feiler spent many hours
discussing and improving a good number of the ideas presented In this thesis. ‘They and
other members of the GANDALF project at CMU - Robert Ellison, Gail Kaiser, David Garlan,
Phil Wadler and Steve Popovich - provided invaluable help in the design and Implementation
of various parts of the ALOE systom. | would also like to thank James Gosling who wrote a
very good display package for his Unix!™ Emacs system that was used for the ALOE system.

There are no words to describe the encouragement and support offered by Katty, my wife,
that helped me enormously in getting through the arduous task of writing this dissertation,
She and Katina, my daughter, made the whole experlence of these years a very worthwhile

one.

T
r
Accesslion Top

pr1s GRAST
pT1c TAB

Un:,\nnonvmrf ‘
ot if] cpl]

y_.,..///
Distribution/r o
-,A;lailabiliw Code::»

\Avail and/oT
Spocial

e Lt e R

i

s N

TABLE OF CONTENTS

Tabie of Contents

1. Introduction -

1.1. Software Development

1.2. Goals of Thesis

1.3. Major Design Issues

1.4. Previous and Related Work
1.5. Structure of Thesis

2. Userinterface

2.1. Goals of the User Interface
2.2. Syntax-Directed Editing
2.3. Area Cursor
2.4. Command Language
2.4.1. Constructing or Language Commands
2.4.1.1. Synonyms
2.4.1.2. Lexical Units
2.4.1.3. Screen Update
2.4.1.4, Cursor Movement
2.4.2. Editing Commands
2.4.2.1, Cursor Movement
2.4.2.2. Tree Manipulation Commands
2.4.3. Extended Commands
2.5. Multiple Unparsing Schemes
2.5.1. Difterent Abstraction Levels
2.5.2. Pretty Printing and Syntax Variation
2.5.3. Language Translation
2.6. Screen Organization
2.7. Modes of Operation and User Profiling

3. The ALOE Generator

3.1. Introduction
3.2. The Grammatical' Description -
3.2.1. The Name of the Language
3.2.2. Abstract Syntax Cescription
3.2.2.1. Terminal Operators
3.2.2.2. Non-Terminal Operators
3.2.2.3. Classes
3.2.3. The Root Operator
3.2.4. Precedence
3.2.5. Unparsing Schemes

5588525288 S ROBBENERRRNN

memmmm TN S 8 T AT PV T YT e

A R

3.2.6. Action Routines

3.2.7. Synonyms

3.2.8. Fi'e Nodes

3.2.9. Cemparison with Other Grammatical Descriptions
3.3. The ALOE Kernel
3.4. Extensibllity
3.5. The Generation Process

4. Action Routines

4.1. Introduction
4.2, Uses of Action Routines
4.3. Calling Instances
4.3.1. Creation of Nodes
4.3.2. Visiting Nodes
4.3.3. Unsuccessful Cursor Movements
4.3.4, Tree Transformation Operations
4.4, Return Values from Action Routines
4.5, Error Reporting
4.6, The ALOE Implementation Environment
4.6.1. Error Reporting Interface
4.6.2. Access Control
4.6.3. Tree Traversal
4.6.4. Window Manipulation
4.6.5. Status Manipulation
4.7. Extended Commands
4.8. Attribute Grammars

5. Buiiding a Large integrated Environment:
The GANDALF Environment :

5.1. Introduction
5.2. ALOE Support for Large Integrated Environments
5.2.1. Extended Commands
5.2.2. Access Control
5.2.3. Actlon Routines
- 5.2.4. Environment Specific Routines
5.2.5. Display Management
5.2.6. File Nodes
5.2.7. Parser Interface
5.2.8. Multiple Concrete Representations
5.3. Summary

6. Evaluation and Technicai Issues

6.1. Introduction
6.2. User Interface
6.2.1. Command Language Syntax
6.2.2, Editing Expressions
6.2.3. Lists and Optional Operators °
6.3. Device Issues
6.3.1. General Characteristics
6.3.2. Windows

TABLE OF CONTENTS

49
80
51
51
53
53
54

§7

BERBR

1

91
]|
]|

B8B8ES

T

Il

il

TABLE OF CONTENTS

6.3.3. Wrapping Long Lines
6.3.4. Enhancements
6.4. Language Features
6.4.1. Macros
6.4.2. Comments
6.4.3. Extensibie Languages
6.4.4. ALOE for Other Structures
6.5. Language Issues
6.5.1. Editing language vs. Edited Language
6.5.2. The Grammaticai Description
6.5.3. Unparsing Schemes
6.6. Generic Systems
6.7. Comparison With Text Editing Environments
6.8. Comparison With Other Syntax-Directed Editors
6.8.1. The Cornell Program Synthesizer
i 6.8.2. The MENTOR System
6.8.3. The Emiiy System
6.8.4. The PDE System
6.8.5. The Intarlisp System
6.9. Design and Implementation Strategy
6.9.1. Frequent Operations
6.9.2. Infrequent Operations
6.10. Conclusions
6.10.1. Successful Aspects
! 6.10.2. Missing Features
6.10.3. Further Research

Appendix A. Editing Commands

A.1. Cursor Movement
A.2. Help Information
A.3. Tree Manipuiation
A.4. Input/Output

A.5. Exit ALOE

A.6. Display Manlipulation
A.7. Other Commands

Appendix B. Unparsing Scheme Commands
Appendix C. ALOE impiementation Environment Routines

C.1. Tree Manipulation Routines
C.2. List Manipulation Routines
C.3. Access Control Routines

C.4. Error Reporting Routines

C.5. Filenode Routines

C.6. Status Manipulation Routines
L.7. Window Manipulation Routines
C.8. Misceilaneous Routines

=2 =

100
101

101

103
103
104
105
108
108
108
107
109
110
111

112
113
118
116
117
118
118
118
119
119
120
120

123

123
126
126
128
129
129
130

131

i35
135
136
137
138
138
139
140
141

LIST OF FIGURES v

T

List of Figures

Figure 2-1: Construction of an IF statement

13
Figure 2-2: A Sample Editor Session 17
Figure 2-3: A Sample Editor Session (continuation) 18
Figure 2-4: Nesting an assignment statementinto a if-then statement 25

Figure 2-5: Transforming an IF statement into a WHILE statement
Figure 2-6: Two different unparsings of a GC procedure specification
Figure 2-7: A small program unparsed with GC and PASCAL syntax
Figure 2-8: Screen Organlzation in an ALOE

Figure 2-9: Building a Function Composition In Alfa

Figure 3-1: Grammatical Description of a Simple Language

Figure 3-2: A typical BNF description for expressions

Figure 3-3: The ALOE Generation Process

Figure 4-1: Action routine call on ENTRY

Figure 4-2: Action routine call on EXIT

Figure 4-3: Animplementor's view of the ALOE system

Figure 5-1: Efrect of a cursor-in command on a file node

Figure 5-2: Context Windows in a GANDALF Environment

Figure 5-3: Procedure Context Window in a GANDALF Environment
Figure 6-1: The Rubber-Pull Tree Transformation

Figure 6-2: Nesting an addition into a multiplication

Figure 6-3: Single character cursor in the Synthesizer

I

AT

Uy

>E8B88IRIRILRVABRBEBNY

=

o i
e

"

o Attt

ol e

s

A M

Chapter 1

Introduction

1.1. Software Development

‘One of the major goals of software englneering Is to enhance programming quality and
productivity, In particular, for producing large software systems. Programming language
design and methodology have contributed towards this goal by developing and supporting
concepts such as modularization and data abstraction and encapsulation. The MESA
[Mitchell 78] and ADa [DoD 80] programming languages are examples of the evolution of
these concépts. With these concepts, programming languages can support the static aspects
of program construction by letting the programmer, among other things, describe the modular
interfaces of his system, localize the decisions of representation, etc. Programming
languagss lack support for the dynamic aspects of the development and maintenance of large
software systems: system developers must deal with different versions and compaositions of
the different pieces of a system, as well as with the interaction of several programmers In the
development of a system.

Programming environments may provide the necessary means to address the problems
associated with the dynarmic aspects of development and maintenance of large softwere
systems. Programming environments have traditionally been considered to address only the
problems of the development of single programs by single users [Donzeau-Gouge
80, Teitelbaum 81a, Ritchie 74]. Envircnments that in addition, address the dynamic aspects
of the development and maintenance of large software systems are often referred to as
software development environments [Habermann 82, Deutsch 80]. These environments
provide facilities :.r. system version control and project management which must be
expressed through some language [Kaiser 82]. Environments can be built in which the
facilities for dynamic system development and maintenance can be provided through the

o

T T T e

e

2 _ INTRODUCTION

Interaction between user and system. Since users will always be editing some language to
accomplish their task, it being writing a program or buliding a system, we will use the term
programming environments to refer to all these environments.

Integrated programming environments provide a single environment through which the
programmer can accomplish hls task instead of having to corstruct and maintain his system
using a set of Independent and unreiated tools. The dynamic aspects of program
development will be aqdressed through the active particlpation of the programming
environment in the development of such systems. The tools of an integrated programming
environment understar_nd each othar's functions and objectives and can collaborate towards a
common goal. The integrated environment has knowledge about the objects that it
manipulates and their current state. It is therefore able to respond to Incorrect or undesirable
user actlons. A common internal repres:ntation provides the means of communication

among the tools.

Language-oriented programming environments are knowledgeable of the language and
thus can help ana co’ »-1te with the programmer In his task. In the process of creating,
modifying and executing nrograms and systems, the programmer Is able to concentrate on
his algorithms and on the structure of his systems, instead of on thelr speclfic teitual

representation.

In recent years, there have been some important developments in computer technology
that make possible the development of these new systems. Better displays and terminals
make possible the development of sophisticated display-oriented systems. With the
. evelopment of more powerful computers, more computing cycles are avallable for Interactive
systems to perform computations between interactlons with users and durlng users’ think-

time at the terminal.

One possible way of exploiting the features of these new technology developments Is by
enhancing the current methodology for software development. This methodology typically
consist of a set of unrelated tcols: text editor, compiler, loader, debugger, etc. Each one of
these tools performs part of the programming task. This approach has lead to the
development of very sophisticated display-oriented text editors such as EMaCS [Stallman 81])
and Unix'™ Emacs [Gosling 81a]. Within the programming task, these text editors are stlll
editing text files and their interactlon with users is In terms of characters, words, lines, etc. A

INTRODUCTION 3

very liinited amount of knowiedge can be incorporated to provide certain expansions of
program constructs and to provide formatting of programs automatically. However, there is
no knowiedge of the syntax and semantics of the language to insure the correctness and
consistency of programs nor to provide im:nediate feedba~k on errors.

UNix EMACS goes further than just text _edlting by providing access to other tools through
its inteiface. For example, the user can invoke a compiler to process his program, UNIX
EMACS processes the error messages produced by the complier and positions the user in the
line of the file where errars occurred. However useful this features may be, they do nct give
UNix EMACS the functionality of an Integrated environment in that the tools of the environment
do not have a common knowledge of each other and thus do not coilaborate towards a
common goal.

A different approach is to combine a different methodology with the new technology. This
different methodology is that of language-oriented editors, an Idea demonstrated fcr the first
time in the Emily System [Hansen 71]. Language-oriented editors interact with the users In
terms of the language constructs and, In addition, can guarantee the syntactic correctness of
programs and systems. Language here is meant in a wide sense, it Is not limited to
programming languages but to any language or structure that can be expressad with a
context free grammar. if semantic knowledge can be Incorporated, these editors can ensure
semantlc correctness and consistency or at least provide immediate feedback on errors. This
implies that these editors actively participate with the programmer in the development of his
programs and systems. The language in a large integrated environment can include, in
addition to the programming language, descriptions of system structure such as the structure
of its components, versions of subsystems, documentation, etc. Other tools of the
environment also have knowledge of this language and it is therefore possible to integrate
them with the editor to form an integrated environment.

Syntax-directed editors are language-oriented editors in which the programs and systems
are created and modified according to the syntactic structure of the Ianguage. Instead of
characters and lines. Some of the impartant characteristics of syntax-directed ~ditecs that
will be considered in this thesis are the following:

e A constructive approach to program and system building. The programmer
concentrates on constructing his programs and systems as structures rather than

as collections of pieces of text. Programs and systems are built through
constructive commands. Each command corresponds to a ccnstruct of the

4 INTRODUCTION

lancuage. The burden of generating the concrete syntax (i.e. syntactic sugar) is
taken over vy the editor and is automatically generated.

e Manlpulation of programs and systems In terms of thelr structure. The focus of

attention for all activities of the programmer is always a construct of the
I language. The programmer operates on his program or system In terms of their
l structure and not through thair textual representation.

o Abstract syntax trees. Programs are represented internally as syntax trees that
are bullt by the editor from constructive commands issued by the programmer.
These trees are abstract syntax trees, whose nodes represent the language
constructs. The elemants of the concrete representation of languages, such 23
keywords, punctuation marks, separators, terminators, efc, are not xept in the
tree.

o Syntax tables. If an edltor Is wrltten for a particular language, ihe syntax
information is part of the implementation of the editor. In syntax-directed ed!tors
generated from language descriptions the syntactlc knowledge of the languages
obtained from these descripticns Is kept by every ed!tor in a collection of syntax
tables. The edltors use these tables to ensure the syntactic correctness of the
programs belng built.

¢ Unparsing. The concrete representation of structures displayed In the screen is
obtalned by unparsing the Internal abstract syntax tree representation Into a
visual iorm. Assoclated with every construct of the languages, a set of rules,
called unparsing schemes, specify the visual representation of the construct.

o Uniform Interface for the environment. The user interface of a syntax-directed
editor provides the means for communication between user and environment.
The user communicates with all the tools of the environment through the user
interface of the editor. As the eavironment is knowledgeable of the development
task, some of the tools are automatically applied at the appropriate times.

. 1.2. Goals of Thesis

The purpose of this dissertation is to investigate the design and Implementation of syntax-
directed editors, the ability to generate and extend them, the appearance they give to the
user, the properties of languages for which such editors are generated, the capabilities and
the limitations of the available hardware and display devices. More specifically, this

i

dissertation addresses the technical Issues Involved In:

¢ The design of syntax-directed editors to provide a uniform user Interface for
integrated environments.

o The automatic generation of syntax-directed editors from language descriptions,
which was first attempted in Emily [Hansen 71] but has not been an Important
goal in other systems.

W‘\mmwmmmwmmm il
(f
)
I
[
|

T —— TR o

M

INTRODUCTION ' 5

» The extension of syntax-directed editors to understand language semantics (/.e.
perform cortext sensitive processing), through a flexible procedurai approach
instead of through scme formal specification [Demers 81].

e The extension of syntax-directed editors to support the development of large
integrated environments that support the dynamic aspects of the development
and rmaintenance of large software systems. In other systems [Donzeau-Gouge
80 Teitelbaum &1a' the approach focuses on the environment for a single
urograminer working on a single program.

In urder to address and unz ‘stanc these technical issues, a generator of extensible syntax-
directec =2ditors has been dasigned and Implemented. Throughout this dissertation we will
refer to any such editor as an A_OE (A Language Oriented Editor).

1.3. Major Design Issues

In the design of syntax-directed editors, some of the most important technical issues that

arise are:

e User interface. The user interface of syntax-directed editors is extremely
important. The usability of the editor depends, In a signiticant manner, on its user
interface. The user interface of a syntax-directed editor is very different from that
of a tex\ editor. Most users like the flexibility provided by good text editors to edit
their programs. For the user to accept this new methodology, the user Interface
of a syntax-directed editor must be friendly and simple.

e Display-oriented functionality, hardware resources ac lImitations. Proper
exploitation of new display technolngies can have a _ <at impact on the
functionality of an interactive systemi. On the other hand, therz is a wide variety of
equipment available, and design decisions must be made based on the actual
hardware resources and limitations.

e Separation of abstract syntax and concrete representations. One of the most
important characteristics of the design of the grammatical d2scription used to
specify the languages, s the separation of the abstract syntax of the language
from its concrete representation. This separation makes it possible to produce
multiple concrete representations for every construct of the language. A large
part of what is understood as the syntax of a language is not part of the abstract
symax but of its concrete representation {(punctuation marks, keywords,
separators, eic.).

o Common internal representation. The ahstract syntax trees built by the syntax.
directed editor are the common langua¢ * representation used by all the tools of
the environment. This common intern - represeriation provides the means of
communication among the tools of an ir..egrated environment.

6 . INTRODUCTION

e Action Routines for context sensitive processing. In order to support an
integrated programming environment it is necessary to provide the means for
context sensitive processing such as checking programming language
semantics. ‘

e Language or Environment specific behavior. For a successful programming
environment, certain functions must be tuned to the specific environment.
Symbol table manipulation Is an example of one such function. Different
languages and environments need different functionality for their symbol table
manipulation. It should be possible to pravide this needed functionzlity.

e Generic Syoiems. It is different to build a syntax-directed editor for a particular
language than to build a generator of such editors. Some design decisions are
influenced by this difference. In particular, design decisions must be made to
provide solutions with general mechanisms rather than providing a specific
solution that solves a problem for one language but not for another.

; 1.4. Previous and Related Work

The Ideas of syntax-directed editing and integrated programming environments are not
é new, they have already appeared in several systems. Some of the most importan* efforts

include:

o The Interlisp System [Teitei.nan 78] is a very sophisticated programming system
for LISP. The simple syntax and semantics of _ISP lend themselves very well to
more structured manipulation of programs, its interpretive nature lends itself
better to the edit/interpret approach. Interlisp incorporates powerful facilities like
structured editing, sophisticated debugging techniques, automatic error
correction, the programmer’s assistant and others. In this thesis we will address
the issues involved in the development of environments for a variety of languages
with more complex syntax and semantics.

o The Emily System [Hansen 71] was one of the earliest efforts with syntax-directed
editing. It is a menu-drlven system in which the user constructs a program by
s=la2cting BNF productions [Backus 59]. The BNF productions include the
concrete representation of the language constructs. Emily is not an integrated
system: in order to compile a program, text is produced and has to be compiled
separately. Performance in Emily was not very good, there was a noticeable
delay in the update of the screen after every interaction. For the generation of
ALOES, a grammatical description that emphasizes the language constructs
themselves and not some productions of certain grammar, is proposed. The
grammatical description also makes a clear separation between abstract syntax
and concrete representation. We want to address the support of integrated
systems through the sharing of a common program representation and a uniform
user interface. Current developments in computer technology make it possible to
enhance the performance of interactive systems.

INTRODUCTION 7

o MenToR [Donzeau-Gouge 80] is a structured editor for PASCAL. The user writes
his program as text and MENTOR parses It to create the syntax trees. The user
then manipulates his programs structurally. Editing commands and context
sensitive routines are written in MENTOL, a tree manipulation language that is the
command language of MENTOR. The context sensitive routines are invoked
explicitly by the user. MENTOR is not an integrated system either: a program must
be unparsed into a text file before being compiled separately. MENTOR is not a
display-oriented system, it uses a one-dimensional scroller interface. ALOE
follows a structural approach for entering, as well as for editing structuras.
Context sensitive routines are written is C[Kernighan 78] using an
implementation environment that includes all the primitives for tree manipulation.
The context sensitive routines are automatically invoked at the approprlate times.
ALOE supports integrated environments and has a display-oriented intertace.

e The Cornell Program Synthesizer [Teitelbaum 81a] is written for a particular
language, PL/CS, a small subset of PL/I. The Synthesizer builds code trees that
can be interpreted and unparsed. The Synthesizer achieves a high degree of
interaction between program construction and execution, in an environment for a
single programmer building a single program. The Synthesizer is a hybrid system
that manipulates programs structurally at the statement level and textually at the
expression level. In this thesis, we address the Issues of generating syntax-
directed editors for a variety of languages, with structured editing at all levels of
the language. We also address the development of environments that support the
¢ namic aspects of system development and maintenance for large software’
systems with interactions of several programmers.

Some of the important distinguishing characteristics of an ALOE, as discussed In this
dissertation, include: '

e An ALOE is an editor generated from a grammatical description instead of belng
hand crafted for a particular language.

e The grammatical descriptlon separates the abstract syntax structure and the
concrete representation of the language constructs, which permits the
specification of multiple concrete representations for every language construct.

e Structured or constructive editing is performed at all levels of the language, there
is no parsing performed.

¢ ALOES have the ability to perform context sensitive processing implicitly through
action routines associated with every construct of the language.

e Environment specific functionality can be added through the redefinition of
certain environment dependent functions.

o The functionality of ALOEs is intended for the development of large integrated
environments, the internal representation is available as the common
representation for other tools of the environment, and it provides the means of

8 ' INTRODUCTION

communication between these tools. The user communicates with other toois of
the environment through the uniform user interface of ALOE. The integrated
envirunment approach has a significant impact on the overail performance of the
system because dupiication of effort is avoided and the information about the
programs is preserved and does not have to be recomputed.

e We tend to emphasize the generation of ALoEs for programming languages and
systems because they are their motivating application, but ALOES can be
generated for ali structures and languages that can be expressed using th9
grammatical description. An important example is the ALOE generator itself whick
is an ALOE in which the user edits ianguage descriptions and that produces the
language tabies through the use of several unparsing schemes. Other
possibilities include a maii system [Notkin 82a] and an ALOE for SCRiBE [Reid 80]
a documant production system. For this reason, syntax-directed editing can aiso
be referred to as structured editing.

1.5. Structure of Thesis

The organization of this dissertation is based on the motivation and discussion of the major
design issues, and on the evaluation of the corresponding design decisions. So, for example,
the issue of separation of abstract syntax and concret: representation is discussed in terms
of its impact on the user’s view of the syst.em; how it affects the generation of ALOES; its
impact on the implementation of action routines; and its role in the development of iarge
integrated environments. In the process of discussing this issue from these different points of
view, some of the arguments and motivation may be repeated. The other major design issues,

listed in section 1.3, are similarly discussed.

Consequently, in chapter 2, the characteristics of the user interface and the design
decisions involved are discussed. In chapter 3, we address the issues involved in the
generation of syntax-directed editors. in chapter 4, the facilities to provide context sensitive
processing and manipulation of the environment are discussed. In chapter 5, we discuss the
issues that arise in the development of large integrated environments. in chapter 6, the
design decisions are evaluated and a comparison is made with UNix EMACS [Gosling 81a] and

with the syntax-directed editors and environments mentioned in the previous section.

. Throughout the thesis, the emphasis is placed on the motivation of the design decisions,
the discussion of alternatives and their evaluation. Detailed description and explanation of
these aspects is not included in the main body of the thesis. Some of the necessary
descriptions are inciuded in the foilowing appendices: appendix A gives a list of the editing

T T

INTRODUCTION 9

commands common to all ALoES. Appendix B describes the commands available for use in
the unparsing schemes. Appendix C lists the specification of the routines of the ALOE
implementation environment, which is discussed In chapter 4.

A complete detailed description of the ALOE system is provided in the ALOE Users’ and
Implementors' Guide [Medina-Mora 81a]. The guide is structured as follows: chapter i gives
a short introduction. Chapter 2 is the ALOE Users’ Manual. Chapter 3 describes the ALOE
Generator and the grammatical description rules. Chapter 4 describes the implementation of
the internal representation. Chapter 5 explains the interface to action routines. Chapter 6
defines the interface to extended commands. Chapter 7 provides an operatlonal definition of
the internal structures through a set of routines available to the Implementor of an ALOE which
can be invoked from action routines or extended commands. Chapter 8 defines the system or
environment specific routines whose standard implementation is provided. Any
implementation can redefine some or all of these routines. Chapter 9 describes the window
manipulation package and how to use it. Chapter 10 describes the use of the display handling
package. Chapter 11 explains the process of generating an ALOE once the grammar has been
created and the rest of the system has been written. Finally, appendix | gives a detailed
example of the implementation of an ALOE for a simple language. The example defines actlon
routines, provides extended commands, and redefines some of the environment specific
routines. '

[

B R

USER INTERFACE "

Chapter 2

User Interface

2.1. Goalé of the User Interface

One of the most important goals of the user Interface of a syntax-directed editor is to make
it possible for the user to interact with the editor in terms of the structure of his programs and

systems. Other important goals include:

o Minimization of effort. !t shouid take the user minimal effort to indicate the
actions he wants applied. Especially, it should be very easy to invoke simple and

frequently appliec operations.

I .
o Flexibility. The user Interface should be flexible enough to respond to the needs
of novice as well as expert users.

¢ Inmediate feedback to user. In an interactive environment, the user should know
the current state of his system. This can be achieved by updating the screen after
every interaction. In this manner, the user gets immediate feedback as to the

effect of the action he just invoked.

o Minimization of delay. Any interactive system should provide an adequate
response time. Delays between interactions should be small.

2.2. Syntax-Directed Editing

One of the important advantages of a syntax-directed editor as the uniform interface of an
integrated procramming environment is that, in the process of creating, modifying and
executing programs and systems, the programmer is able to concentrate on his algorithms
and program and system structure, rather than on their specific textual representation and on
the different tools of the environment and the different languages used to communicate with

. them.

i

12 USER INTERFACE

An ALOE cari be visualized as a constructive editor that understands the syntax of the
language. Language constructs, such as variables, operators, expressions, statements,
declarétions. etc., can be added, modified and removed. The user communicates with ALOE
in terms of these language constructs. The user constructs his program by inserting
temblates répresenting different language constructs and then filling the unexpanded parts of
those templates with other templates. Since ALOE knows which constructs are valid at any
given point, it allows the programmer to insert a language construct only where it is

syntactically correct.

In its interaction with an ALOE the user thinks of his program or system in terms of the
language constructs and lets ALOE handle the concrete syntactic details. For example, when
a user adds an if statement to his program, he thinks of the abstract structure of the
construct: a language construct with a test and two statements to be executed depending on
the outcome of th2 test. ALOE adds all the keywords, punctuation marks, separators,
terminators, etc., required by the language. So, instead of typing the character sequence for
an if statement in C [Kernighan 78], the user calls on the template if.

Figure 2-1 shows the display before the construction of the 1f statement and the resulting
display after its creation. The program cursor, highlighted in the display (indicated by a
rectangle in the figure) is advanced to <expreSsion> so that it can be similarly expanded.
This construction was permitted because it was syntactically correct, the program cursor was
located at a <statement> meta node indicating that only a statement could be legally
constructed at that point. Note that ALOE provides all syntactic sugar required by the
language like the parentheses around the <expression> construct required by the C
language syntax. Problems such as misspelled or non-matching keywords cannct occur
because the language constructs are inserted by ALOE and not by the typist. ALOE relieves the
user from worrying about the concrete syntactic constraints imposed by the language.

Internally ALOE represents the program as a syntax tree. Each template corresponds to a
node of a certain type in the tree. The unexpanded nodes of the templ-te are the offspring of
the node. These unexpanded nodes will be referred to as meta nodes. They will be filled in
with subtrees representing their expansion. Terminal nodes correspond to the terminal
operators of the language (variables, constants, efc.). Non-terminal nodes correspond to
non-terminal operators and are of two types: fixed arity nodes with a fixed number of offspring
and lists with a variable number of offspring. For a complete desc:iption of the internal
representation of ALOE see [Medina-Mora 81a].

USER INTERFACE 13

structi fract *add(struct fract *fri, *fr2)

{

struct fract *fr3;

return(fr3);

struct fract ®*add(struct fract *fri, *fr2)

{

struct fract *frd;

if (l <expression> I)

{statement>
else

{statement)
return(?7rd);

}

Flgure 2-1: Construction of an IF statement

The user actually constructs and manipulates a program tree without necessarily being
aware of it. However, it is desirable for the user to think of the program in {erms of the syntax
tree instead of the displayed text. To display the text of a program to the user, ALOE uses an
unparser that translates the syntax tree into text. As part of its task the unparser formats the
program. The unparsing process is driven by unparsing schemes specified in the grammatical
description. These schemes describe the mapping ‘from the abstract syntax to the concrete
representation for every language construct. The clear separation of abstract syntéx and
concrete representation places the emphasis on language constructs and not on speciflc
syntactic details.

Many design decisions of a user interface are determined in a significant manner by the
characteristics of the input and output devices chosen for an implementation, as well as by
the baud rate of the communications line. The design space of input devices includes
keyboards with different characteristics and different kinds of pointing devices. Keyboards

can include special characters (e.g. control characters, meta characters, etc), function keys,

cursor pads, etc.

T

SR O—

14 ' USER INTERFACE

The design space of output devices ranges from simple scroller Interface (hardcopy
devices and display devices used as such), to the use of displays as two-dimensional devices,
to sophisticated graphic displays. Display’s characteristics can also include several fonts and
highlighting capabilities.

For the implementation described In this dissertation we have chosen the Concept-100
terminal [HDS 79]. Its keyboard includes control characters, function keys and cursor pad.
The display is used as a t_wo-dlmensional device. It includes highlighting capabilities as well
as mechanisms, such as character and line insert/delete, which facilitate the fast update of

the screen.

2.3. Area Cursor

To provide Inmediate feedback to the user, at any point in the interaction ALOE displays the
current state of development of the program. The program cursor, i.e. the position In the
program tree where the next command will be applied, must be indicated in the display.
Taking advantage of terminal hardware facilitles, ALOE uses an area cursor. ALOE highlights
(in reverse video, for example) the textual expansion of the whole subtree. This mechanism
also helps in emphasizing the structure of the program and provides an excellent feedback to
the user: when at a statement, the whole statement is highlighted, when atan expression, the .

whole expression is highlighted.

Some systems, such as the Synthesizer [Teitelbaum 81a] use a single character cursor to
indicate the program cursor. In some cases a single character is not enough to indicate the
current program structure that the cursor represents: it is ambiguous. In the Syntheslzer
there is only one case of ambiguity of the single character cursor. It is described in section
6.8.1, but this is not necessarily the case in general. In ALOE, the cursor can be placed at a list
to refer to the entire list. In this case the single character cursor would be ambiguous because
the cursor would be placed under tpe first character of the first element of the list and it would
not be clear if it refers to that element or to the entire list. This situation does not arise ir the
Synthesizer because the cursor can only be placed at elements of .Iists and not at the entire
list. When an editing command is applied to a list, the extent of the list must be explicitly
specified. When the cursor is used at run time, to trace the program as it is executed, the
cursor is changing positions very rapidly and a single character cursor may be better in this
case [Teitelbaum 81b]. If the grain for tracing is not too small, for example, tracing only
statements and not expressions, the area cursor is also acceptable [Feiler 82a].

i

T

SRR T e

USER INTERFACE 15

An alternative would be to use a two character cursor [Barstow 81]: the first and the last
character of the subtree expansion. This solves the ambiguity problemn but does not
necessarily emphasize enough the structural view of the program.

The textual expansion of the Internal tree representation is controlled by the unparsing
schemes. If a particular operator's unparsing scheme does not Include any text (aside from
the text generated by its offspring), it could cause some ambiguity in the display. It Is up to
the ALOE implementor (i.e. the writer of the grammatical description for an instantiation of an
ALOE), to make sure that all operators have some text in their unparsing scheme. This
ambiguity problem is independent of the type of display chosen for the program cursor. It Is
frequently found in the cases of lists with one element. in general, the list operator itself does
not add any extra text to the text produced by the single element. This problem Is recognized,
and cursor movement, discussed in sectlon 2.4.2.1, takes it Into account.

2.4. Command Language

Every ALOE has two different types of commands: editing commands and /anguage or
constructive commands. Editing commands are common to all ALOEs. They are used to
invoke language independent operations such as program cursor movement, read and write
from files, insert, delete and modify subtrees, etc. Constructive or language commands are
the names of the language constructs (henceforth referred to as operators of the language)

defined in the grammatical description of every language.

Editing and constructive commands are specified using different naming conventlons, so
that the ALOE implementor can select good mnemonic names for the language operators
without having to worry about naming conflids with the names of editing commands. This
also allows for extensions to the set of editing commands independently of any ianguage.
Extended commands can be added to an ALOE to implement language or environment
specific operations. The interface of extended commands is the same as .for editing

commands.

For any ALui command the user only has to type the minimum number of characters
needed to specify the command. This design decision helps achisve the goal of minimization

of user effort.

(AT

0 A

R

16 USER INTCRFACE
2.4.1. Constructing or Language Commands

The names of constructing or language commands are the names of the operators of the
language defined in the grammatical description. Figures 2-2 and 2.3 illustrate a sample
editing session for the process of constructing a for statement in C [Kernighan 78). The first
column gives the commands typed by the user, the second column shows how the terminal
display would appear after the command is executed and in the third column the syntax tree
structure being built is presented.

When the ALOE linplementor is choosing names for the operators of the langvage, he must
be aware that he is designing part of the user interface of the editor, he is choosing the names
for the constructive commands too. In the grammatical description, operators are grouped
together in classes. Every class contains the set of valld operators that can replace a meta
node of a particular offspring of a non-terminal node. Within any class the set of operators
should not have names with common leading characters, so that the user can type few
characters (one would be best) to specify the command, but the ALOE implementor must
choose the names so that they are mnemonic (i.e. thelr name Indicates unambiguously what

they stand for).

Another characteristic of the grammatical description that impacts the user interface is its
flat structure as opposed to the hierarchical structure of traditional BNF formalisms [Backus
58). For example, at the expression level, any operator can be applied directly without having
to apply intermediate operators such as term and factor which would be necessary with a
hierarchical definition. Precedence values are associated with the operators to be able to
generate the correct parenthesization of expressions. One of the early efforts with syntax-
directed editing [Hansen 71)] uses a moaified BNF formalism in which non-terminal operators
at the expression level are at the same level, but terminal operators such as variables and
constants are not. It is necessary to go through one extra hlerarchical level to construct
simple expressions such as 'a + b'. A more detailed comparison with traditional BNF

formalisms can be found in section 3.2.9.

i

USER INTERFACE 17

3

§ Typed
[by Display Syntax Tree
% User
- FOR
= ? for ({ <oxp> I i <expd; <expd) ~
- <stat> <exp> <oxpd Cexpd <staddy
FOR
. for (| <exp> | = <axp>; <exp>; <exp>) ASSIG <oxp> <exp> <statd
<statd>
<exp> <exp’
ﬁ_/fmﬂ__—\
s i for (1 = : <exp>; <Cexp>) ASSIG <oxp> <oxp> (stat>
I <statd> .
I i <oxpd
. P
|

it ol

0 for (1%0; ; <oxp) ASSIG <oxp> <oxp> Cstatd

<stat>
1 0

[} L [}

[} L [}

L] L] L]

, FOR
S for (1.0: 1(“: 1**) /———4\——_\
r <expd; ASSIG LSS . mlcn ASSIG

E i o .1 i Cexp> <exp>

Figure 2-2: A Sample Editor Session

T

i

18

USER INTERFACE

Typed .
by Display Syntax Tree
User
FOR
sum for (4 = 0; 1< n; 1ee)
sum ; ASSIG LSS m'cn ASSIG
1/\0 1 i sum <exp>
b e B e S I O A T o LS e R e 3 o T T e O O e COUOTRIC E L St
* for (1 'Lg—‘_g'—ﬂ :‘('”)) ASS16 LSS INCR ASSIG
sum = | <ex exp>; |
{ 0 4 i sum PLUS
<oxp> <oxpd
r ------ s S O - EED D oo S OO ® SRS SO ® S E R RS o EEE e S A S EE S @ e O @ EEGD®® R o
FOR
sum for (1 2 0; t < n; 14+) i
sum * sum + E; A/SS{ |-/35\ mlcn A/SS{
1 0 i i sum PLUS
e * o/ sum <exp>
[] [] L]
FOR
1 for (1 =0; 1 < n; 1+) ASSIG LSS INCR ASSI
sum = sum + arr[i]; I
i 0 1 i sum PLUS
sum INDEX
arr i

Figure 2-3: A Sample Editor Session (continuation)

g2k R b b

T

GG T RS R D

=
=

:

USER INTERFACE 19
2.4.1.1. Synonyms

One important Impact un the dual role of grammar operators as constructive commands is
«nat, for some constructs of the lanruage it is natural to think of thern in terms ot their name;
such is the case of constructs like while or for statements. Bu* there are others such as
plus and less-than for which a more graphical representation would be better for a
command name. To address this problem the concept of synonyms for language operators
was introduced. These synonyms are specified as part of the grammatical description. The
user can invoke a command by typing its name or Its synonym (th< characters '+ ' and ‘¢’
would he the synonyms of the examples cited above). It was found ihat this additlon greatly
improved ALOE's user interface. Users thought that it was extremealy cumbersome to build
expressions using names such as plus. After synonyms were Introduced users felt that

constructing expressions was much easler.

2.4.1.2. Lexlcal Units

Some tarminal operators have values associated with them. For example, the name of a
variable, the value of a constant, etc. ALOE piompts for these values whenever the user

applies the corresponding command.

ALOES do a very limited form of automatic lexical analysis for terminal operators by
distinguishing between variables and different types of constants. Action routines can
~erform some form of lexical analysis by validating or rejecting the associated values of

terminal operators given by the user.

An important improvement can be made to the user interface by making ALOE understand
about lexical units. The current set of terminal operator types in the grammatical description
includes variables and constants. A better set of constant operator types, such as integer, real
and character constants, can be incorporated. A lexical routine would be associated with
each one of these types for recognition. The ALOE implementor could redefine any one of
these routines to accommodate special language characteristics. For the classes that
contain an operator of one of these types (e.g. the exprassion class), the ALOE generator
could ensure that all operators of the class have a non alphanumeric synonym. When the
program cursor is at a meta node that corresponds to such a class, the lexical routines would
be invoked to identify a command as one of these constant operators types, if one is
successful, the corresponding terminal operator would be invoked and the command string is

given as the associated value.

A e el

il i

T,

[t it i ki

e o

it

20 USER INTERFACE

This sizygested Improvement is equivalent to requiring that the operators of these classes
have non alphanumeric names (e.g. to have '+’ as the operator name instead of PLUS), or that
full names be used to specify them (for operators such as MOD and DIV in PASCAL [Jensen
74]). Section 3.2.2.1 contains further discussion of lexical analysis Issues. Section

3.2.7 further discusses synonyms for language operators.

2.4.1.3. Screen Update

ALOE updates the ‘JIsplay after every command is applied. With bandwidth limitations it is
often desired to issue several commands before an update. In ALOE several commands can
be typed in a single line of input. ALoE then applies each command, one at a time. The
display is updated only after the application of the last command. This also eliminates
intermediate states that could be distracting. Drawbacks of this approach are especially
evident when there are errors caused by a command and the rest of the commands must be
flushed or applied out of context. A bétter interface would let the user edit the command line

after the error, avoiding both problems.

An alternate solution is to provide an explicit command ‘o update the screen. There are
two important drawbacks to this approach. First, it requires more effort from the user by
having to explicitly invoke this command every time an update is desired. Second, the display
will not reflect the current state of the program which is an important goal of interactive

systems.

2.4.1.4. Cursor Movement

After every constructive command, ALOE moves the cursor to the next meta node, thus
guiding the usar in the construction process by placing the cursor in the next available node
for e. nansion. During program construction this may b2 the desired behavior, but cluring
program editing it may not be: if the program is already complete then the result is
acceptable, the cursor is kept at the current node, but if there is an unexpanced node in an
Jnrelated section of the program, ALoE moves the cursor to an undesired location, causing
confusion to the user. Instead, itis desirable that the cursor be keptin the imiiiediate context.

There are severzl ways to solve this problem. First there is the .back command that moves
2 cursor from its present location to the previous one (sec section 2.4.2.1) . The second

solution is that ALOE interprets the command terininator to indicate the action to take. There

TR

E

i
il

USER INTERFACE 21

are two different standard command terminators, the normal one (a CR) indicates that ALOE
should move the cursor to the next meta node, the second one (a LF) indicates that ALOE
should leave the cursor at the resulting node after the command is applied. There are two
important drawbacks to this solution. First, the user will not always remember to type the
second command terminator, and second, with multiple commands in one line there is a need

for two command separators, which makes the command interface more confusing.

Any cursor movement command can also be used as a command terminator, as is also the
case in the Synthesizer [Teitelbaum 81a]. The cursor will then be placed at the corresporiding
node after applying the cursor movement command. This feature is hardly ever used in
practice in ALOE; in the Synthesizer it is important because it provides the transition between
text editing of phrases and structured editing: when a user is at a phraseit should not matter it
he just entered it or he moved the cursor there, in any case a cursor movement command

should be applicable.

The third solution, and possibly the best, is the definition of constructing and editing modes
of operation. While In constructing mode, ALOE move: ihe program cursor to the next meta
node. In editing mode it moves the cursor to meta nodes only within the newly created
subtree in case of a éonstruction of a non-terminal operator, and moves to the next node
(meta node or not) after the creation of a terminal operator. That is, the search for meta node
is restricted to the currant subtree. These three solutions are not mutually exclusive. They all
are available in any ALOE. Section 2.7 contains further discussion on the different modes of

operation of an ALOE.

There can be classes in the grammatical description that contain only one non-terminal
operator. When a meta node for these classes is created, ALOE will automatically apply the
operator, thus saving the user the need of invoking it explicitly. If the only operator of a class
is a terminal operator, automatic application is not performed because this requires the user
to specify also the value of the operator (e.g. the name of a variable, the value of a constant,
etc.), and the user may not want to instantiate those terminals yet. Automatic 'application
could be extended to terminal operators that do not have values associated with them (e.g.
static terminals used for predefined type names of a language, such as int, float,etc.).

|
|
|

T e

22 USER INTERFACE
2.4.2. Editing Commands

Editing commands are used to invoke language independent operations such as program
cursor movement, read and write from files, insert, delete and modify subtrees, display
manipulation, etc. In this section we discuss the interface of editing commands as well as
some of the more interesting commands. For a complete list of all editing commands and

their functionality see appendix A.

As discussed before, editing and constructive commands are specified using different
naming conventions. Editing commands are prefixed with a period ("."). This solutlon
achieves the purpose for which it was designed but does not necessarily provide a good
interface for an expert user. The user has to type at least three characters (the dot, at least
one character for the command and a command terminator) to specify any editing command.
To improve this, the use of ASCIl control characters as synonyms for editing commands was
introduced, taking advantage of the fact that language commands will not use control
characters in their names. Experience with the use of control characters for commands has
been good with text editors such as EMACS [Stallman 81]. To experiment with these decislons
and to provide the flexibility necessary for different kinds of users, both forms are available In
an ALOE: sometimes it is easier for a user to remember a command by its name than by its

control character synonym,

Users go through a learning process of the command language. Again, experience with the
use of EMACS [Stallman 81] supports this hypothesis: once the user learns the command
equivalences, he will not need to refer to their name. To provide the necessary flexibility, a
help facility displays both names and synonyms of commands. The considerable savings of
keystrokes (a command terminator is not needed, neither is the ') makes the learning effort
worthwhile. In EMACS, the user may decide the binding of control character keys to editing
commands. Some users may want to decide a binding that helps them remember the
commands much easier, or to bind certain commands of their preference (there are more
comma.nds than keys available). On the other hand, this causes the creation of many

individualized and incompatible editors.

We have used the cursor pad function keys to invoke the program cursor movement
commands with great success. We have not yet fully explored the use of other terminal
function keys to invoke editing commands. This is a possibility explored with success in some

USER INTERFACE 23

other systems such as the Synthesizer [Teitelbaum 81a]. The only big problem of using
function keys is that any terminal keyboard has a limited set of these keys and this could
preclude making extensions to the set of editing commands. Given this limitation, terminal

function keys should be used for the most common editing commands.

2.4.2.1. Cursor Movement

Cursor movement is not done following the textual representation of the program (as most
programmers are-used to with text editors), but rather following the structure of the program,
reflecting the result of the move by highlighting the new program cursor. There are five basic
cursor movement commands defined in an ALOE:

e Cursor out: Moves the cursor one level up in the program tree (to the parent
node). If the cursor is at an element of a list with only one element, ALOE moves
the cursor past the list node that represents the whole list. This feature was
added to the original design of ALOE because in most cases the highlighted area
in the display does not change when moving to the list node, and it was very
confusing. The change was found to be extremely helpful: it is always clear
where the program cursor is.

e Cursor in: Moves the program cursor one level down in the tree. Movesiit to the
first offspring In a fixed arity node or to the first element of a list. If the cursor is
moved irto a list node, and the list has only one element, ALOE moves the cursor
to that element. In this manner cursor movement Is symmetric with respect to
lists. If the cursor is at a terminal node it has no effect. -

e Cursor next and cursor previous: Move the program cursor to the next or
previous sibling if one exists. If not, they move it to the next or previous sibling of
the parent node recursively. One problem with the cursor next and cursor
previous commands is that they are not symmetric. A cursor next command
followed by a cursor previous commard does not necessarily move the cursor
back to the original position.

o Cursor home: Moves the program cursor to the root of the current window or
context. It is equivalent to a series of cursor out commands. If the current node
is a root itself, it moves the cursor to the root of the previous window in the
context window stack (see section 2.6). It, of course, has no effect if applied at
the system root. This command lets the user move more rapidly out of contexts.

All these cursor movement commands can take a numerlcal argument which specifies the
number of times that it should be applied. This helps the user move faster through the
program. This basic set of cursor movement' commands can be naturally extended with two
other cursor movement commands that would move the cursor following a preorder traversal

of the tree. These commands would be symmetric and the user could move the cursor to any

i

wmmnmmymmmmmnﬂmmmmmm—mm, HEEPH == i e

24 USER INTERFACE

place in his program by using repetitions of the same key. This form of cursor movement has
been successfully used in the Synthesizer [Teitelbaum 81a]. In fact, the Synthesizer has
thirteen different cursor movement commands. A user must type several cursor movement
commands to move from one place tc another in his program. The same is true in ALOE, and
as long as the system response is fast enough, with practice the user rapidly gets used to
typing several cursor movement commands consecutively to get to the desired node.

There are three other Important cursor movement commands:

¢ .find: This command lets the user move rapidly to nodes that are not very close
to the current node. Very helpful when the desired node is not currently
displayed. The .find command restricts the search to the current window (see
section 2.6) and wraps-around the root to search for nodes that appear before the
current node.

ALOE lets the user specify a search pattem (a string) and moves the cursor to the
first node that matches the string. On terminal nodes (constants, variables, metas
etc.), a substring match Is done with the associated value of the node. On non-
terminal nodes the match Is done with the names of the corresponding operators
and their synonyms. So, it is possible to search for variable names, constant
values and names of meta nodes as well as for 1f or whi1e statements.

e .back: Moves the program cursor back to Its previous position, provided that no
change has been made that invalidates that position. For example, if a node has
just been deleted, the previous cursor position no longer exists. The .back
command is very helpful in situations where the result of another cursor
movement command was not the desired one.

e .window: This command is used to move from one program window to another,
or to move to and from clipped area windows (see section 2.6). Every window has
a program cursor associated with it. Applying this command, implicitly indicates
a cursor movement to that window's cursor.

The Synthesizer [Teitelbaum 81a] has no searching commands, all cursor movements must
be done with one of the explicit cursor movement commands. Even if response from the
system is fast, this may not be appropriate for large programs where it would require too many

cursor movement commands to get to nodes that are not close to the current node.

In MeNTOR [Donzeau-Gouge 80}, c'irsor movement and searching is performed using
MENTOL, a tree manipulation language that is the command language of MENTOR. Complex
tree pattern matching can be performed in MeENTOL to perform searching. In some cases it is
very cumbersome to express the pattern to look for, when a simple string match would be

il

0T T S e i G

i

T

B e ey e

USER INTERFACE 25

easier to express as it is done in ALOE. For further discussion on the comparison of ALOE with
these and other syntax-directod editors see section 6.8.

A pointing device cuuld also be used to indicate cursor movement by moving it to different
locations on the screen. Emily [Hansen 71] used a light pen pointing at the screen to indicate
cursor movement. In order {o do this, a mapping between tree nodes and screen positions
must be made. This information is available when the node is unparsed and could be stored
with the tree node. '

The highlighting of the program cursor and the cursor movement commands strongly
emphasize the structure of the program. For new users this Is extremely useful in helping
them to deal with their programs structurally instead of textually, especially for those that have
used text editors.

Display Syntax Tree
while (<exp>) WHILE
| max := value; |
<axp> ASSIG
max value
while (<exp>) WHILE
it (<exp>) /\\
max := value; <axp> IF
<exp> ASSIG
mix value

Figure 2-4: Nesting an assignment statement into a 1f-then statement

T Wl

T

AT

il

i L

26 USER INTERFACE

2.4.2.2. Tree Manipuiation Commands

A set of basic tree manipulation commands is provided as part of the editing commands of
an ALOE. These commands are very important because they address the issue of editing
structures in syntax-directed editors which has been traditionally considered one of its
problems. The basic set of tree manipulation commands include:

e .cllp and .insert used to copy and move subtrees. Clipped subtrees are kept on
aseparate clipped area where they can be inspected and edited.

e .delete and .replace used to delete subtrees. The .replace command leaves a
meta node in the place of the deleted subtree.

e .nest and .transtorm are very important because they make editing structures
much easier and contribute towards making structured editing much more
attractive. The .nest command makes a new subtree in the place of the current
one with the current subtree as offspring of the new root provided that the
resulting subtree is a legal one. Figure 2-4 shows the effect of necting an
assignment statementinto an 1f-then statement.

The .transform command changes the operator of the current subtree root
provided that the transformation is a legal one. Figure 2-5 shows the effect of
transforming an if statement into a while statement. This kind of example is
often used to show the difficulties of editing structures in syntax-directed editing
because normally it can only ‘be done with a sequence of .clip, .delete and
.insert commands [Teitelbaum 81a]. The Synthesizer has been extended to
support some transformations [Teitelbaum 82].

2.4.3. Extended Commands

As every ALOE is generated for a different language to form an environment, there is a need
for some language or environment specific behavior. One way of achieving this behavior is
through the introduction of extended commands to implement language or environment
specific operations. The format of extended commands is the same as editing commands:
the command name is prefixed with a period (".") and control characters are used as
synonyms. ltis important to select the names of extended commands so that they do not have
common leading characters with the names of editirg commands. Their control character
synonyms should also be different from those of the editing commands.

Typical uses for extended commands include commands to communicate with other tools
of the environment threugh the uniform user interface of ALOE (e.g. communication with the

run-time environment through .run and .continue commands), commands to perform

Al

i O 00000 R A

USER INTERFACE 27

Display Syntax Tree

it (are[i] !=0) IF
{4+ /\

NEQ INCR

INDEX 0 1

while (arr[{i] t= 0) WHILE
fos . /\

NEQ INCR

INDEX 0 i

arr 1

Figure 2-5: Transforming an IF statement into a WHILE statement

language or environment specific searches (e.g. a .find-spec command to locate the
specification of a procedure), etc. For further discussion and examples of extended

commands see section 5.2.1.

2.5. Multiple Unparsing Schemes

The structure and format of unparsing schemes is discussed in section 3.2,5. In this
saction the discussion focuses on their impact on the user interface. Unparsing schemes
specify the mapping from the internal program representation (defined by the abstract syntax)
to the concrete textual representation used for display. In ALOE we can specify several of
these mappings for every language operator, thus providing a facility for muitiple views of the
same program. Unparsing schemes are specified by the language designer in the

grammatical description of the language.

= T

28 USER INTERFACE

The ability to specify multiple unparsing schemes Is obiained because of the clear
separation of the abstract syntax and the concrete representation of the language operators
in the grammatical description. |f traditional BNF [Backus 59] (or a varlant) had been used,
this would not have been possible because in BNF the concrete representatlon is part of the
syntactic specification.

2.5.1. Different Abstraction Levels

The ALOE implementor can specify different levels of abstraction (or different levels of
detail) for the program. The user sees these different views of the program when the current

unparsing scheme is changed. The internal program is the same.

Structured editors for LISP [Teitelman 78], use the concept of depth of the tree to present
to the user different levels of detail, while eliding the rest of the program. MENTOR
[Donzeau-Gouge 80] uses the same concept for eiision or hoiophrasting applied to algebrale
languages. The drawback of this design is that program structures that are at the same depth
are not necessarily at the same level of abstractlon, wnich then resulis in many irstances In
which too much or too little detail is given to the user.

Holophrasting was used in Emily [Hansen 71] as an abbreviation mechanism for a node. A
holophrast of a node consisted of the leading portion of its textual expansion together with
some distinguishing marks to indicate it. Holophrasting was a property of a node. The
Synthesizer [Teitelbaum 81a] achieves a similar effect through the use of comment
statements. When the eiision command is applied to one of such statements, the comment
part is displayed in the screen and a set of dots replaces the expansion of the statement. In
both cases elision is controlled explicitly on a node-by-node basis, no depth value is used.

The PDE system [Alberga 81, Mikelsons 81] uses a very sophisticated algorithm that
assigns weights to different nodes in the tree according to their relevance to decide which
ones will get unparsed given the size of the screen. The algorithm is evaluated for every
redisplay and changes the weights for different abstraction levels. This causes an alteration
of the display after every cursor movement, which could be very distracting and could cause

some delays in the updates.

With multiple unparsing schemes in ALOE, the language designer has the ability to specify

USER INTERFACE 29

the different abstraction levels. He indicates, for every different scheme, which nodes get
= unparsed, and how. One good example is the development of unparsing schemes to show a
procedure call cross reference in a program. All the information in the program is ignored
except for procedure calls. In this manner, the desired abstraction level is achieved.

2.5.2. Pretty Printing and Syntax Variation

Since the unparsing scheme language Includes commands that support Indentatlon,
column positioning, etc., pretty printing of programs can be done automatically. With multiple
unparsing schemes, different pretty printing styles can be specified.

A gond example of the use of multiple unparsing schemes can be found in ALOE .. The GC
language [Feiler 79] is 2 variant of C [Kernighan 78] with a different syntax for procedure
speclfication. The abstract syntax of both languages is identical, so ALOEGC has an unparsing
scheme to unparse GC programs with C syntax. Figure 2.6 shows a procedure specification
unparsed first with GC syntax and then with C syntax.

UE A

boolean answer{struct fract °fri, °*fr2; char op)

boclean answer(fri, fr2, op)
struet fract *fri, *fr2;
char op:

Figure 2-6: Tweo different unparsings of a GC procedure specification

[

Aloegen, an ALOE used to construct an edit the grammatical description, produces a set of

tables written in C[Kernighan 78] which constitute the syntax tables used by a generated
ALOE. These tables are produced entirely through the use of many different unparsing
schemes. More examples of different uses for multiple unparsing schemes can be found In
section 5.2.8.

2.5.3. Language Translation

Another example exploits the similaritles of GC and PASCAL[Jensen 74]. A large
percentage of GC and PascaL have the same structure, so it is possible to have an ALOE,.
with unparsing schemes to show PascaL syntax for those constructs that have the same

=

il
I

30 USER INTERFACE

struct amployee

{
char name(84];
int ssn;
int salary:
»
int maxsalary(struct employas payroli[512]: int num)
{
E int 1;
5 int max;
max = =1;
for (1 = 0; 1 < num; ++1)
it (payroll.salary[4i] > max)
max = payroll.salary[i]:
raturn max;
}
MODIJLE example;
EXPORTS
TYPE amployaa = RECORD
nama : ARRAY [0..64-1] OF CHAR;
ssn : INTEGER;

salary : INTEGER;
END;
FUNCTION maxsalary(VAR payroll : ARRAY [D,.512-1] OF amployes;
num : INTEGER) : INTEGER:

T

i AR i

PRIVATE

TYPE amployea = RECORD
nama : ARRAY [0..64-1] OF CHAR;:
ssn : INTEGER;
salary : INTEGER;

END;

et i

1

FUNCTION maxsalary(VAR payroll : ARRAY [D..512-1] OF employes;
num : INTEGER) : INTEGER;:
VAR {1 : INTEGER;
VAR max : INTEGER;
BEGIN
max := =1;
FOR 1 :=» O TO num-1 DO
5 IF payroll.salary[i] > max THEN
= max := payroll.salary[i]:
- BEGIN
maxsalary := max:
EXIT(maxsalary)
END
END;

i

Figure 2-7: A small program unparsed with GC and PASCAL syntax

structure [Feiler 82b]. The equivalent effe.ct can be achieved in an ALOE, .., . Figure
2.7 shows an example of a small program unparsed first with GC syntax and then with PASCAL

syntax. A similar effect could be achieved for common subsets of ADA and PASCAL [Albrecht
80].

(T T

L

ity

USER INTERFACE 31
2.6. Screen Organization

One of the maijor limitations imposed by the terminal is the screen size (typically 24 lines by
80 characters, for the kinds of terminals selected). There is a large amount of information that
needs to be displayed and not enough screen space is available for it. The screen
organization then becomes extremely important for the user interface.

In any ALOE there are many different kinds of information that are displayed to the user. Itis
very important that users always have a clear picture of the system state. This is specially true
with new users that will be faced with a totally different system from the ones they are used to.
Information of a particular should always appear in the same placein the screen.

The ALOE interface divides the screen in different sections (called windows). To take full
advantage of the terminal capabilities and to be able to display all the information needed, it is
very important to have a sophisticated window interface with different kinds, sizes and
functionality of windows. The different kinds of information are then displayed In these
windows. In most cases the sizes and distribution of these windows can be modified by the
user: however, every ALOE provides a default window layout, which is normally sufficlent.
Figure 2-8 shows the distribution of the different windows and the different kinds of
information in a typical screen layout of an ALOE. Windows limited by dotted lines in the flgure
are normally only displayed in the screen when a speclfic request is made for the Information
that is displayed in them. The clipped and help windows are typical examples of these
windows. In simple ALoEs debugging and user 1/0 windows will never appear. A detailed
description of the display and windowing characteristics of an ALOE can be found In
[Medina-Mora 81a] and [Feiler 81)}.

ALOE organizes the different kinds of information as follows:

e Command input. There is a command window which is two lines long and Is
normally placed at the bottom of the screen. The first line of it is used for echoing
command input from the user.)

e Last command. In the second line of the command window, the full name of the
command just invoked by the user is displayed, while ALOE is waiting for a naw
command to be typed. For novice users it is helpful to show the commands that
they applied so that they can learn to associate the commands with their effects
on the programs. It is also very useful when a command is typed In error.

¢ Prompts from the system. Sometimes ALOE needs to prompt the user for values

T TS WA i B E - s

T T e ——

et

|
|

32) USER INTERFACE

Programs Help Information

Documentation

L oocooooaoocoooocaccoa e L L IS oonooooocoo0ono
Debugging

Clipped Subtrees
Information

UsoriProgram Input/Qutput

Context Stack

Status

Command Input

| Prompts and Messages from System

Figure 2-8: Screen Organization in an ALOE

(e.g. the name of a variable, the value of a constant, the name of a file, etc.). The
second line of the command window is used for prompts. The command typed by
the user is still in the first line of the command window, so a novice user can
understand the need for the prompt,

o Messages from the system. The second line of the command window is also '1sed
for ditferent types of messages that the system displays at various times. These
include system errors (e.g. when an inconsistency is discovered), other system
messages (e.g. confirmation that a file was successfully written) and messages
from action routines and extended commands. Th2 error interface for action
routines and extended commands (see section 4.5) combines the display of the
message with the highlighting of the node associated with the message.

e Programs. The concrete representation of the internal abstract syntax tree is
unparsed into program or tree windows. ALOE maintains a stack of such windows
(referred to as context stack). It is useful to divide the program data base into
different contexts so that only the current context is displayed at any moment.
Previous contexts are stacked and can be accessed through the cursor home

USER INTERFACE

command or the .window command (see sectlon 24.2.1). Because of the
restricted screen space, every context window is overlaid in the same area of thr.
screen.

As the user attempts a cursor out command at the root of a context window, ALOE
makes an action routine call to let the action routine pop the context window
stack and meake ALOE display the previous context. A similar situation occurs
when a cursor in command is attempted at a node whose oftspring are not
unparsed (i.e. they are not visible), the action routine can then change the -
I unparsing scheme into one that would unparse the offspring and push a new
|

I

context window into the stack. This can be also visualized as an opening of a
new context or level of abstraction.

'E ¢ Clipped subtrees. The .clip command is used to copy subtrees from the program

tree into a scratch area called the clipped area. Clip windows are used to display
3 clipped subtrees. The cursor can be moved to a clipped subtree using the
.window command (see section 2.4.2.1). The user can then edit the clipped
subtree before moving it for insertion elsewhere in the program. The clip window
usually appears at the bottum of the program window (sharing part of it) and
disappears as soon as the cursor is moved back to the program window. Only
one clipped subtree can be displayed at a time.

o Status Information. A one line status window is used to display the status of ALOE.
This information includes the name of the operator that corresponds to the
current node, the class it belongs to, the name of the current context window and
the settings of the various modes of ALOE. This status information is extremely
helpful to novice users because it helps them understand more rapidly both, the
behavior of ALOE and the structure of the corresponding language. The status
window is shown in reverse video and is normally placed between the program
and command windows, serving also as a convenient window separator betweern
them. ‘

T

i o Context stack window. When ditterent contexts are stacked, it is very usefu! to
see the contents of the stack. The context stack window is a one line window that
is displayed if there are nasted contexts. The context stack window is &élso shown
in reverse video and is normaliy placed above the status window taking one line
away from the program window.

o Help intormation. The help window is used to display the names of all the legal
operators and their synonyms when the current node is a meta node. It iq also
used to show the names of editing and extended commands. The user can
request this help information explicitly by typing the .heip (or ?) command. It will
be automatically displayed when the novice mode is set (see section 2.7). When
help information is not being displayed, the help window is normally overwritten
by the program winaow.

e Documentation. The program or tree window can also be used to display long
pieces of documentation text (defined in the grammar as text constants, ses
section 3.2.2.1). The document operators can be defined in the grammar to open
a new context so that they can be displayed separately from the program.

T

T] TS T e s

34 USEK INTERFACE

¢ Debugging information and other information about the programm.:g
environment. An ALOE implementor can also define an additional set of windows
for displaying other types of information. In the GANDALF environment,
debugging information (see section 5.2.5), such as the monitoring of variables is
displayed on a special monitor window.

o User Program 1/Q. If the ALOE is a programming environment in which a user is
going to run programs, a separate section in the screen is needed for the input
and output of user programs. A user window can be allocated for these
purposes. The ALOE implementor can then use the windowing capabilities of the
ALOE implementation environment (see section 4.5) to provide the user program
with 170 capabiiities. Normally the user window will use a smal! part of the screen
L -use it is desired of it to coexist with the program window that displays the
u ngtam that is generating the output or requesting the input.

After every interaction with ALOE the screen is updated to reflect the new state. |If the
communication line baud rate would be large enough to allow instant redisplay, the ALOE
would simply redisplay the screen image every time. Since this is not the case in general, it is
important to have ai intelligent display interface that would update the screen as fast as
possihle using the terminal capabilities to update only the parts of the screen that have
changed. To this end. ALOE uses the display package developed for UNix'™ Emass [Gosling
81a, Gosling 81b). The package uses an optimal algorithm for redisplaying the screen every
time it changes.

Better displays could clearly be exploited to provide an improved screen organization. The
current system has been developed for a Concept-100 terminal [HDS 79]. Displays with
similar characteristics could also be used with similar results.

One of the first improvements would be to take advantage of terminals with larger screens
or with additicnal local memory. Several screen images could be stored in the terminal's
memory, so switching from one screen image to another would be instantaneous. This
capability could be used to help solve the problems, discussed above, related to switching
between different displayed contexts, to the coexistence with user program 170 as well as to
orovide a larger window size for several of the above mentioned wincaws.

Beyond this, terminalc with rcster scan displays are more suitable fc- windowing and
distribution of different kinds of information [Teitelman 77, Sproull 79, Ball 80, Ball 81]. The
use of these kinds of displays would greatly improve the user interface (and the usability) of

ALOES.

=
E
=
=
=
=
=
=
E
¥
=
1=
=

MM

YT R T I

TR TRAH: gnm i TN AT T

L

USER INTERFACE 35

With respect to user input to ALOES, the current system only supports keyboard input.
Although the use of control characters and function keys has greatly improved the user
interface, a pointing device, such as a mouse, couplec with the display's improvements
discussed above would make possible the use of menus that have been used successfully in

.r interactive systems [Teitelman 77, Lampson 79, Ingalls 78).

2.7.Modes of Operation and User Profiling

One goal of interactive systems is to have enough flexibility to be able to deal efficiently
with the different levels of expertise of their users. Novice users should find it easy to learn
how to use the system. Experienced users should be able to achieve what they want to do
without an excessive effort demanded from them.

For these purposes every ALOE operates in two different modes: novice and expert mode.
In novice mode a help window is constantly maintained and is used to display the list of
language commands available to the user. After every command is given the help list gets
updated accordingly. In expert mode no continuous help is maintained, but the user can ask
ALOE to display the help window whenever it is needed, by typing the .help command. A user
profile could be used to provide the default value for this mode. '

Most languages will have unparsing schemes that specify that nodes be unparsed in the
same order as they appear in the abstract syntax specification. However, there are some
larguages for which the user would like to build programs from left to right (e.g. functional
programming languages such as ALF/. [Habermann 80]). To achieve this, the unparsing
schemes specify a different order of unparsing than the abstract syntax tree, and the ALOE
would follow the order of the tree while moving the cursor from one node to the next, thus
achieving the desired effect. Figure 2-9 shows the effect of buil-u.y a function composition in

ALOE The components of the operator COMP are unparsed in reverse order, and appear

ALFA’
then to be constructed from left to right.

In the case of searches however, one user might want ALOE to follow the internal tree order
while another user might want it to follow the textual order which is the one that the unparsing
schemes define. To provide the needed flexibility to achieve the desired behavior every time,
ALoE defines a mode that affects the tree traversal order. On the normal setting the program

cursor follows the internal tree structure. It can be changed so that the program cursor

e

idartaitf

1t

il

36 3 USER INTERFACE

Display Syntax Tree
FUNDECL
func : (int,{int) -> int := /|\
fnew) CLASS <expr>
DOMAIN int
int int
Commands: COMP f : FUNDECL
func : (iit,1iat) -> int := i(expr)'; f
fnew cLASS " coMP

PN /

Commands: COMP g ' COMP I/

func : (int,int) -> int := - geof /\

f comp
] <expr>
Commands: h COMP
func : (int,int) -> int :=h e g o f /\
f comp
9 h

Figure 2-9: Building a Function Composition in Alfa

USER INTERFACE 37

follows the concrete textual order. In either setting the program cursor will not be moved into
a node that is not currently unparsed, i.e. if it is not referenced in the current unparsing

scheme.

The need for this mode was not anticipated because it was thought that all languages
would unparse their internal structure into text in the same order. It was learned that this was
not the case when At_oriALFA was generated. For other languages that do not have this kinds of

constructs, the mode setting is notimportant.

As part of the constructive approach to program building in an ALOE, the program cursor i3
moved to the next meta node after every constructive command. The space in which the
search for the meta node is performed varies according to the satting of the editmode. When
in constructing mode, ALOE searches the visible context, when in editing made the search is
restricted to the particular subtree where the previous operation took place. This avoids the
undesirable effect of having the cursor moved to an unrelated section of the program that
happens to have a meta node left. The .ﬂnq command can be used to search for any meta
nodes left.

For ALaEe environments that use the facilities provided by the stack of context windows the
setting of the show-windows mode causes the context stack window to be displayed. This
mode is only meaningful for ALOEs that will have different contexts defined.

The window layout on the screen can also be defined through a user profile. ALOE reads a
file that contains the definition of the window layout and every user can then define it to his
convenience. This profiling mechanism could be extended to provide users with the ability to
choose between different formatting styles and other such features that could be

customizable in an ALOE.

T ™

TR

-
P
|
3
E
%

il

Chapter 3

The AL.OE Generator

3.1. Introduction

In this chapter we will discuss the issues involved i th? generation of syntax-directed
editors, as well as the structure and properties of the ALOE generator. The ALOE generator
produces an editing environment based on a grammatical description of a language. A wide
variety of editing environments can be generated: from simple stand-alone editors with only
syntactic knowledge to very complex sofiware development environments such as GANDALF
[Habermann 82], discussed in chapter 5. In section 6.6 we will discuss how the design
decisions are influenced by the differences of generating syntax-directed editors as opposed
to building a hand-crafted editor for a particular language.

Every generic system like the ALOE generator will have a kernel, common to all the
generated systems. It also needs to have some form of input that specifies the language or
structure for which an editor is going to be generated. If the resulting product Is to have some
language specific behavior, some extensions should be provided. Consequently, evéry ALOE

generated has three major components:

e The ALoE kernel, common to all ALOEs. It understands and manipulates the
internal representation of trees (e.g. programs) and is language independent. It
provides an extensive set of editing commands for tree manipulation, cursor
movement, input/output, display manipulation, etc. (see chapter 2). It.also
provides the default implementation of the set of environment specific functions
such as the symbol table manipulation (see chapter 5 for a detailed discussion of
these functions).

¢ The syntactic tables produced from the grammatical description of the language.

They piovide ALOE's syntactic knowledge of the language, as well as the
unparsing knowledge through the unparsing schemes.

[——

L

40 THE ALOE GENERATOR

o Implementation of action routines. extended commands and environment specific
routines. These provide the language specific behavior of an ALOE that is beyond
its syntactic capabilities. Action routines are discussed in detail in chapter 4. The
use okextended commandsin a large integrated environment is discussed in 5.

AT

3.2. The Grammatical Description

The most important contributions of the design of the grammatical description are:

o Clear separation of abstract syntax and concrete representaticn of the operators
of the language (discussed previously in chapter 2). The ALoes directly
manipulate the abstract syntax; all interactions are in terms of this syntax. The
concrete representation specification is only used fer display purposes. This
allows the implementor of an ALOE to define multiple concrete reprecentations for
a single abstract syntax.

T

e The grammatical description defines an important part of the user interface. The
names of the language operators are the names of the constructive or language
commands of the ALOE (see chapter 2).

The grammatical description follows certain syntactic iles and its syntax can be expressed in

terms of itself. This means that an ALOE can be generated to create and manipulate
grammars. This ALOE will be referred to as aloegen. The concrete representation of
grammars is no ionger important just as concrete representations of other languages are no

longer importantin the ALOE context.

The following sections discuss in detail each one of the conceptual pieces that form the
grammatical description. These pieces are interleaved in the actual description. To facilitate

the discussion, this is a list of the conceptual pieces:

;
g
:
]
2
E
-

¢ The name of the language.

e The abstract syntax descriptiqn of the language.
e The root operator.

¢ The precedence of non-terminal operators.

e The unparsing schemes that describe how the (internal) tree form is displayed on
the screen. They describe (potentially many) mappings from the abstract syntax
to the concrete representation.

e The action routines associated with each operator of the language, needed to
expand on the syntactic capabilities of the basic ALOE.

T T T T

A

g

i

THE ALOE GENERATOR 41

e The synonyms available for each operator.

o Whether or not the corresponding node of a non-terminal operator should be a
root of a separately stored tree.

Figure 3-1 shows the grammatical description of 2 very simple language that implements a
small interpreter. Throughout this chapter, this example will be used to illustrate the different
parts of the grammatical description. The grammatical description used in MENTOR
[Donzeau-Gouge 80] is similar to the one described here, in secticn 3.2.9 we will discuss their

differences.

3.2.1. The Name of the Language

The name of the language is specified as part of the grammatical description of that
language. It is really a name of the ALOE version for a language. This name is encoded in
every tree that an ALOE writes and is used to prevent an ALOE for one language from edliting a
tree of a different language or a tree of a different version of the same language. In the
example of figure 3-1, the name of the language is INTERP.

During development of a grammar for a new language, changes are made to the grammar
that make the trees created by an earlier ALOE version no longer manipulable by the new
version. The ALOE implementor does not always change the name of the version whenever
there is a change in the grammar, and inconsistencies may develop when the ALOE tries to

manipulate a tree that is really of a different version.

This situation can be dealt with through action .routines of aloegen (the ALOE for
grammars), that could change the name of the version whenever a structural change is made
to the grammar. Since only the abstrac* syntax structure is stored in the files and changes to
the unparsing schemes do not affect this structure, it is consequently not necessary to

change the version name after making modifications to the unparsing schemes.

There are certain changes that should not cause incompatibilities in the files. For Instance,
adding new operators should not make previously stored trees that do not use these
operators, incompatible. The problem is that the format of the tree files includes references to
the table of operators that defines the language. These references change when new
operators are added unless the operators are added at the end of the list of operators. They

aiso change when operators are deleted.

%
g
|
L
!

wamsmmsmmme 1118 M i it WMWW' it

42

Language Name: INTERP .
Root Operator: PROGRAM
/* terminal operators ¢/
LOOPVAR = {v}
| (0) "as”
| action: <none>
| synonym: "°"

INT = {c}
| (0) "@c"
| action: aINT
S | synonym: "#" ;
EMPTYSTEP = (s}
P (0) 1"

{ action: <none>
| synonym: <none> ;

/* non-terminal operators */
PROGRAM = stmts
(0) 1"
action: <none>
synonym: <none>
precedance: <none>
Filenode:
PRINT = <exp>
(0) "print 80,"
action: <none>
synonym: <none>
precedence: <none>
Non-filenode:
FOR = Toopvar exp exp stepexp stmts
(0) "for 81 = @2 to @3 step 048+@n@509-"
(1) "for (81 = 82; %1 <= 83: %1 =+ @4)@+@n@58-"
action: <none>
synonym: <none>
precedence: <none>
Non-filenode;
PLUS = exp exp
(0) “@1 + @2~
action: <none>
synonym: "+°
precedence: 1
Non-filenode;
TIMES = exp axp
(0) "@1 * @2"
action: <none>
synonym: "*"
precedence: 2
Non-filenode;
STMTS = <stmt>
(0) "e0@n"
action: <none>
synonym: <none>
precedence: <none>
Non-filenode:

}

{ /% classes ¢/

stmts = STMTS

exp - INT LOOPVAR PLUS TIMES ;
lToopvar = LOOPVAR ;

stepexp - INT PLUS TIMES EMPTYSTEP ;
stmt - PRINT FOR ;

}

THE ALOE GENERATOR

Figure 3-1: Grammatical Description of a Simple Language

T

il

e

i

A e

T

E;

i
é

THE ALOE GENERATOR 43

This problem could be avoided through action routines of aloegen which could generate a
rreve relerence every tima a new operator i added, and not reuse tha relerence lor a deleted
operator, although this could ultimately result in a very large table with many empty entries.
This 508= nol &olve e proulam of sodilying s dbstrast 8ynites dsasmplicn o & parsisuler
operator: adding a new offspring, deleting one or changing the order of them.

What is needed here is a general mechanism to map one tree into another given the
changes to the grammar. This is not necessarily an easy task and is probably not worth
providing it, if one considers that during development of a new grammar all programs are
illegal until the _ﬁnal form of the grammar is developed. There may be some exceptions to this
situation. The grammaiticai description itseil is one: sometimes it is desired to change it to add
a new piece of information (for example, when synonyms were added). These changes could
cfine pravious Wee crammar flge 1 be incompelitls. Jthai possible GxoEiliong me
grammars for complex language systems, such as GANDALF [Habermann 82], in which new
features may be added through modifications to the language.

Jther oystens that Jdeal with structured intermal representations most deal oith This
problem too. In the IDL Translator [Lamb 82] an attempt is made to provide the mechanisms
to perform the transformations on the structures when changes are made.

This problem does not arise in parser generators because the programs are kept in ‘textual
form and are always reparsed into the internal representation. Changing the grammar for the
parser generator does nct make the old program incompatibie. It may cause it to have
syntactic errors according to the new grammar but it Ul ¢an be protessed. The important
difference here is that no iniplicit language information is encoded in the text file,

3.2.2. Abstract Syntax Description

The description of the syntactically correct sentences in the language is done in a two level
structure. Cne level provides the description of each language construct (called dperators of
the language). There is one production in the grammatical description for every operator.
Operators correspond directly to nodes in the internal tree. There are two possible
descriptions of this type: terminal operators, whose corresponding nodes represent the
leaves of the tree (e.g. an integer constant or an identifier) and non-terminal operators, whose
corresponding nodes represent either an ordered set of offspring or a list of offspring {(e.g. an

o

44 THE ALOE GENERATOR

IF statement or alist of variables). The second level of the description lists the classes of the
language. Classes represent the set of leqgal operators that can be created in a place of an
unexpanded offspring (referred to as a meta node). In the example of figure 3-1, the class exp
includes the operators INT, LOOPVAR, PLUS and TIMES.

A good way to luok at the grammatical description is that the sentences form AND/OR
structures [Tichy 82] where the operators provide the AND functions (the structure of the
offspring is uniquely determined) and the classes provide the OR functions (a choice from a

set of operators is specified).

3.2.2.1. Terminal Operators

There are several types of terminal operators. They differ from each other and from non-
terminal operators with respect to user input interface (some constant types have embedded
blanks, others do not), and with respect to their internal node representation. The internal
representation is not important to an ALOE user but it Is important to an ALOE implementor
who must write action routines. For a detailed description of the internal representation see
[Medina-Mora 81a].

The production for a terminal operator in the grammar specifies its type, the set of
unparsing schemes, the action routine name and the synonym for the operator. In the
example of figure 3-1 the terminal operator INT is specified to be of type constant, with one

unparsing scheme, an action routine called aINT and '#' as its synonym.

The original design included the following set of terminal operator types:

e Static operators are used for some concrete pieces of the language like the name
of a type (e.g. float, integer, boolean, etc.). The corresponding nodes contaln no
other information.

e Constant operators are used for integer or chzracter corstants. Their
corresponding ncdes contain ASCIH values other than blanks.

e Variable operators are used for the variables of the language. Names of variables
are entered into a symbol table. The ALOE kernel provides an interface to a very
simple name table structure which can be replaced by a more complicated
symbol table mechanism (see sections 3.3 and §.2.4).

As more grammars that included string constants and comments were developed, it
became apparent that constants with embedded blanks should be treated differently.

T

Al e R b

e

THE ALOE GENERATOR 45

Experience with long comments and the creation of the GANDALF grammatical description
[Notkin 82b] (see chapter 5), which included documentation and log messages, underlined
the need for an underlying text editor to deal with long pieces of text. Two new terminai
operator types were then introduced:
e Long Constant operators are constants whose corresponding nodes contain
ASCII values including blanks. These operators are used for language constructs
such as comments and string constants. Their internal representation Is identical

to constant operators. They differ with respect to user inputinterface: the input is
different because of embedded blanks.

» Text Constant operators are used for long pieces of text that requira text editing
capabilities for their creation and modification. Again, they differ from the other
constant operator types with respect to user input interface: an external text
editor (UNIX EMACS [Gosling 81a)) is used for creation and modificatlon of text
constants,

The additions of long constants and text constants were motivated more by Issues of user
interface than by issues of lexical analysis. But one might canceive of a larger set of constant
operator types to deal with lexical differences. For exaple, we could have integer, real,
character constants. ALOE could perform automatic lexical analysis to valldats such
constants as they are entered. ‘However, the lexical rules can change from language to
language. What is needed is a specification of the lexical rules as part of the grammatical

description.

in the current ALOES, lexical analysis (if desired) is performed by the actlon routines
associated with the constant and variable operators. Lexical analysis is only needed for
constants and variables and it differs from the lexical analysis needed in a compiler where
keywords, brackets, punctuation marks, etc., must be identified.

Text editing capabilities should be incorporated into ALOES to be able to edit the textual
pieces in the context where they appear, rather than editing them in a separate environment.
Itis desirable to be able to implement this via an interface to an existing text editor rather than

having to write a new one.

Unfortunately most of the good existing display editors have their own idea of the screen
and window manipulation so that they can take reasonable advantage of it. In the ALOE
context the text editor would have to interact with ALOE's handling of the display and its
windowing capabilities as well as with the unparsing process. To edit textual pieces in the

b

o

46] THE ALOE GENERATOR

context where they appear means to have the éurrounding pieces of program displayed at the
same time, which is what the Synthesizer [Teitelbaum 81a] does. The difficulties in this case
are with respect to the growing or shrinking of the size of the textual piece being ediicd.
Another source of difficulty is the operating system interface. Different editors require
different "settings” of the terminal I/0 handler. A new implementation based on ALOE'S
display and unparsing mechanisms may be easier to do. This may be definitely worth dolng in
the context of generating an ALOE for a document production system like ScriBe [Reid 80]

whose terminal operators would be paragraphs of text.

3.2.2.2. Non-Terminal Operators

There are two types of non-terminal operators: fixed arity operators and varlable arity (i.e.
list) operators. Fixed arity operators are described by listin 3 the (ordered) set of offspring.
Each offspring is represented by a class that specifies the set of legal operators for it. In the
example of figure 3-1 tive FOR operator has five otfspring of different classes.

Variable arity operators are described by specifying the name of the class from which
elements of the list must be selected. In the example of figure 3-1 the STMTS Jperator has a
variable number of offspring of class stmt. Lists in an ALOE can be empty, th=. Is, they are

defined to be lists of zero ur more eléments.

The production for a non-terminai operator in the grammatical description specifies its
abstract syntax structure (i.e. if the operator is of fixed or variable arity and the classes of the
offspring); the set of unparsing schemes that specify the different mappings from the abstract
syntax into the concrete representations; the name of the action routine associated with the
operator; the precedence value of the operator; a synonym for the operator; and whether or
not the corresponding node should be a root of a separately stored subtree file. All the
information after the unparsing schemes is optional. In the example of figure 3-1 the FOR
operator has five offspring of different classes, two unparsing schemes and no action routlne,

precedence or synonym specifled.

3.2.2.3.Classes

Classes provide the OR functions of the AND/OR structure that defines the abstract syntax
of the language in the (rammatical description. The class represents the set of legal

operators that can be created to replace a meta node of a particular offspring of a non-

e T

T R

THE ALOE GENERATOR 47

ierminal node. Meta nodes are automatlically given the name of the corresponding class. It Is
then clear in the display the kind of operator that is expected.

There are some cases in which a class wiil have only a single non-terminal operator. For
example, if an implementor wants to have the effect of a list of pairs, in the grammatical
description he would have to specify-an extra level for the pair. This extra level Is a fixed arlty
node with two offspring. The class of elements of the list then contalns this non-terminal’
operator as its only member. Another case arises when the desired effect is to have one of
the offspring of a fixed arity node be a list: an extra variable arity operator must be introduced
as the offspring.

3.2.3. The Root Operator

This is simply the start or distinguished symbaol of the grammar. The root operator I8
invoked as a constructive command on startup of an ALOE. The resulting node is referred to
as the system root. In the example of figure 3-1, the operator PROGRAM is the root uperator.

3.2.4. Precedence

Non-terminal fixed arity operators may have a precedence value associated with them.
These values are used to provide automatic parenthesization while unparsing Into Infix
notation. They are mostly used for expressions which are the constructs of the language
traditionally shown in infix notation. In the example of figure 3-1 the operator TIMES has a
precedence value of 2 and the operator PLUS has a precedence value of 1.

" For the correct parenthesizalion of expressions it Is also necessary to know if the operator
is associative in addition to its precedence. For example 'a - b - c¢'is not equivalent to
'a - (b - c¢)'because the operator "-" is not associative. If associativity is not handled,
expressions like this must be broken into separate exprgssions, if the textual, form of a

program is (0 be used.

It should be clear, however, that precedence and associativity values are only needed for
the concrete representation mapping if expressions are going to be unparsed in infix notation.
They are not necessary for the correctness of the internal representaiion: the abstract syntax

description is unambiguous. In fully developec programming environments, such as LOIPE

Wl b e b Sl T

it

48 THE ALOE GENERATOR

[Feiler 82a] and GANDALF [Haberman‘n 82], code is generated from the internal tree and thus
the correct code is always generated regardless of possible ambiguities in the concrete
representation.

ALOEs are deslgned so that the valid version of the structures or programs created is the
internal tree representation. The different concrete mappings should be only for display and
readability purposes. Nevertheless we have tried to include all the necessary mechanisms so
that every ALOE generated can produce a correct and unambiguous textual representation of
its structures or programs (at least for the main unparsing scheme). After all, the concrete
representation is the only feedback the user has about his structure. Precedence and
gssociativity values are one such mechanism. Section 6.4 discusses more issues about
ambiguity of language constructs. Section 6.2.2 discusses more issues about unparsing

expressions.

3.2.5. Unparsinog Schemes

The clear separation of the abstract syntax from the concrete representations of structures
or programs allows the ALOE implementor to define multiple concrete representation
mappings for a single abstract syntax. This is one of the major advantages of the design of
the grammatical description. Sections 2.5 and 5.2.8 contain a collection of examples and
applications of multiple unparsing schemes. Using the windowing capabilities and the action
routine interface the language developer can define many different views of the system by
having new windows defined at different leveis of the grammar and using multiple unparsing
schemes.

Unparsing schemes are used only as a means to generate a textual representation from the
valid internal tree representation for display and readability purposes. Unparsing schemes
consist of running text mixed with formatting commands. Some of the available unparsing
co nmands include:

e Commands to identify the type of node (like constant vs variable), so that its
representation can be correctly retrieved.

¢ Commands to deal with indentation, spacing and line breaks.
e For non-terminals the commands define recursive invocations of the unparser to

process the offspring. For fixed arity operators the order ¢f unparsing can be
different than the internal order.

Lo

Ay e

M

T AT

T A O

.S

THE ALOE GENERATOB 49

o For lists the scheme specifies the separator between elements of the list and a
special unparsing to be used when a list is empty, can be specified.

¢ Cominands to dynamically change the unparsing scheme used.

For a complete set of the unparsing commands see appendix B In the example of figure 3-1,
the operator FOR has two unparsing schemes which would produce the following two
ditfeient representatlons:

for 1 = 4 %0 3 step 2
prirn. (1 ¢ 3) * 1, 1

for (1 = 4; i <= 8; {1 =+ 2)
print (1 + 3) * 1, 1

Unparsing schemes are also used to specify cure movement (see section 2.4.2.1)
depending on the value of a mode. The mode specifies whether the Internal representation
ordering of the nodes (the one defined by the abstract syntax structure) or the unparsing
order determines the order of cursor motion. This can be used to specify right to left
movement in some structures instead ot left to right by unparsing Its offspring in inverse
order.

Unparsing scﬁemes also define the visitility of nodes in the tree. There are three different
possibilities: either the node is not visible at all (it is not referenced in the unparsing scheme),
or it is visible but not a legal cursor pesition (it will be unparsed but the cursor wiil skip it), or
the node is both displayed and a legai cursor position. The second possibility can be used
when structures have a name that 12 repeated in several places but it is desired that the user
only edits it in one place with the ot.i2r places reflecting the changes immediately, or to
disable the modification of a particular node, by not letting the cursor stop there, while stlll
showing it on the display. Section 6.5.3 contains an evaluation of the use and limitations of
multiple unparsing schemes:

3.2.6. Action Routines

One action routine may be associated with every language operator. These action routines
will be called by ALOE in a variety of situations, such as the creation of a node, deletion, cursor
movement, etc. Inctead of one routine per operator, an .ilternate wesign could nave a set of

action routines specified in the grammar for e~ch operator: one for each kind of action call.

e —— s

It

e

i OO

80 THE ALOC GENERATOR

The former was chosen because it keeps the grammar much simpler and because the action
routine implementor can then decide if he wants to have a separate routine for each action or
if he wants to share some code for several of the calls. In some cases it is desirable that

several calls have similar behaviors.

These action routines add language specific functionality to an ALOE that is usually non-
syntactic. They can be used for a wide variety of tasks from semantic checking to
manipulation of the display. Chapter 4 discusses in detail the action routines interface and
their applications. In the example of figure 3-1 the INT operator has aINT as its action
routine.

3.2.7. Synonyms

As described above, the grammar defines part of the user interface when it defines the
names of language operators. This is fine for high level structures especially because the
editor needs only as many characters as needed to specify a name unambiguously. However,
at the expression level it would be a bad user interface if the user had to specify PLUS or even
P for an addition operator. To solve this problem synonyms for operator names were
introduced and are specified (optionally) in the grammar. In the example of figure 3-1,a'+'Is
defined as the synonym of the PLUS operator, and '*’ is defined as the synonym of TIMES,
The user can invoke the constructive command using the operator narae or its synonym.

It is also the case that the operator could have been called '+' instead of PLUS avoiding the
need foi a synonym in this case. There are other cases like the assignment operator in C
[Kernighan 78], in which if the implementor were to use 's' as the name of the operator
instead of ASSIGNMENT, with '=' as the synonym, a user not familiar with the language would
have no way of knowing that this was an assignment operator instead of an equality operator.
In other situations there can be different types of similar operators that could have the same
synonym. For example, different types of identifiers could have different operator names
(MIDENT for module identifier, FIDENT for function identifier, etc.), with the same synonym as
long as they do not appear in the same class. This way the user can uniformly use the
synonym for all the identifiers, while the ALOE implementor can still be able to differentiate
between these operators for unparsing purposes or for differences in the action routine

implementations.

i

T

S L

THE ALOE GENERATOR 81

3.2.8. File Nodes

The final part of the description indicates whett.er or not a non-terminal operator has
associated with it a file node. This indicates that the non-terminal is the root of a subtree that
is stored in a separate file (for storage and checkpointing purposes). The root operator (see
section 3.2.3), the operator PROGRAM in the example of figure 3-1, Is automaticaily set by
aloegen to have a file ncde associated with it.

File nodes are used to achleve the separation oi programs and data bases into smaller
pieces. They have information about the file that contains the subtree. File nodes can also
have a symbol table associated with them, in which case the name of the file ‘where the
symbol table is stored is kept in the file node. Unparsing schemes can be used to hide the
subtrees that are pointed to by the file node: a special unparsing command in the unparsing
scheme of the non-terminal indicates whether or not the subtree is visible and should be
unparsed. Checkpointing and visibility rules can be coupled, but they are two different
mechanisms that can be used separately.

3.2.9. Comparison with Other Grammatical Descriptions

Other grammatical descriptions and formalisms, such as BNF [Backus 59] and the MENTOR
grammar [Donzeau-Gouge 80], have been used for syntax-directed editors. One of the early
efforts in building an editor generator using a grammatical formalism was the Emily System
[Hansen 71]. It used a modified BNF as its formalism. In automatically generated syntax-
directed editors the grammatical formalism defines part of the user interface and thus the
formalism should be designed taking this into account. In BNF and other formalisms,
productions are grouped together forming hierarchies of productions. For any particular
construct of the language there is a hierarchy of productions leading into it. Example
3-2 shows a typical BNF description for expressions. '

Precedence of operators is handled through this hierarchy concept. As we can see,
arithmetic expressions have simple arithmetic expressions, which have

terms, which have factors, which have primar ies as offspring.

The Emily system [Hansen 71] takes the first step towards solving this hierarchica! problem

2' the expression level by having all non-terminal operators at the same level. Terminal

|

by TR

52 THE ALOE GENERATOR

<arith-axpr> := <simpla arith-axpr>
|] <if clause> <simple arith-expr>
else <arith-expr>
<simple arith-axpr> := <term»
| <adding oparator> <term>
| <simplie arith-axpr>
<adding oparator> <tarm>

<tarm := <factor>

| <term> <multiplying oparator> <factor>
<factor> := <primary>

| <factor> t <primary>
<primary> := : <unsigned aumber>

| <variabla>

| <function designator>
_ | (<arith-expr>)
<adding oparator> := *

| -
<muitipliying oparator> := x
| 7

Figure 3-2: A typical BNF description for expressions

operators are still at a different level in the hierarchy. It is necessary to go through an extra
level for identifiers when constructing simple expressions such as 'a + b'. BNF is a very
good formalism to be used for parser generators and other such systems but does not provide
a good user interface. Aside from the problem with hierarchies, the concrete representation
of the constructs is mixed with the abstract syntax, as'we can see in the example 3-2. In Emily,
the productions that could be applied at any particular point were displayed in a menu. By.
mixing the concrete representation in the production, the space available for the menu is filled
up very quickly, and in this case, the user has to request to see more of the menu. This just
makes it confusing for a user when he tries to choose which production to apply.

The ALOE generator grammatical Jescription solves the problem by providing a flat
structure instead of a hierarchical one, and by separating the abstract syntax specification
from the concrete representation. All exiyression operators are at the same level (they are
members of the same class). Precedence and associativity values are used to provide the
correct parenthesization of expressions. Parser generators, such as YACC [Johnson 75] also

use precedence and associativity values

MenTor [Donzeau-Gouge 80] uses a similar grammatical description as that of ALOE. It
distinguishes between operators of the language with abstract syntax specifications, and
classes to group them. It does not have multiple unparsing schemes, specification of action

routines, precedence values, synonyms or file nodes.

THE ALOE GENERATOR 53
3.3. The ALoe Kernel

As described above, the kernel is common to all ALOEs. It provides an extensive set of
editing commands that include, among others, commands for insertion, deletion, clipping,
cursor movement, searching, scrolling, reading and writing from files as well as more
complicated tree manipulations such as nest and transform (see section 2.4.2). It also
provides the language Independent command interpreter that distinguishes between editlng'
and constructive commands, as well as the table driven constructor that lets the user replace
meta nodes with legal operators only (the tables are generated by aloegen as an alternate
unparsing of the grammatical description). Finally, the kernel provides default
implementations of the environment specific routines described In the next section.

3.4. Extensibility

ALOES can be extended to have language or environment specific - ahavior. There are
three ditferent kinds of mechanisms to provide these extensions: Implementation of action
routines, extended commands and environment specific routines.

Action rogtines are used to Implement language specific functionality such as
programming language semantic checking, access control, automatic generation of program
pieces, interface to other parts of the environment such as code generation and debugging,
etc. Chapter 4 discusses these apnlicatioris in detail.

Extended commands are adde¢ ?! .0 the basic set of editing commands to expand on the
capabilities of an ALoE. Some examples of possible extended commands include commands
for running programs, continue execution aﬁer interruption, envii. nment specific searches,
etc. Chapter 5§ discusses some of the applications of ex*.nded sommands for a large

integratea s ftware dcvelopment enwvironment.

Experience has shown that some ALOES desire certain functionality that can not be
produced simply through action routines or extended commands. A clear example of this is
the symbol table manipulation. Ditferent environments may want to implement different
symbol table mechanisms. The kernel provides a uniform interface to the symbol table
mechanism through a set of routines. A default implementation of these routines is provided
for ALOEs in which a simple name table mechanism is sufficient. For others, some or all thése

54 THE ALOE GENERATOR

routines can be replaced (sometimes only a couple of them need to be replaced) by the
routines that implement more complex symbol table schemes. A full description and
specification of these routines is given in the ALOE Users' and Implementors’ Guide

[Medina-Mora 81a).
Grammar Tables
: ——> | Alcegen |—
for L in C
Action
——>| Ldaloe ——>| ALOCE L
Routines
Environment Extended
Specific
Routines Commands
Figure 3-3: The ALOE Generation Process

3.5. The Generation Process

The ALOE implementor goes through a set of simple steps in order to generate an ALOE.
First, the grammar is created or modified with aloegen, the ALOE for grammars, which
produces the language tables and compiles them [Notkin 82c]. Then, the implementations of
action routines, extended commands and environment specific routines are written and
compiled. Finally, /daloe is Invoked which will load the language tables together with the

L

THE ALOE GENERATOR 55

language specific implementations to produce an ALOE. Figure 3-3 illustrates the ALOE

generation process.

This process has been successfully applied on a wide variety of languages:

o A set of algol-like languages such as GC (GANDALF-C [Feiler 79], a slight variant
of C) which includes a parser for programs constructed outside of ALOE, C
[Kernighan 78], PASCAL [Jensen 74], ADA [DoD 80], ditferent subsets of C and

Ada, etc.

o GANDALF, a large integrated software development environment whose language
is a combination of a language for system version control [Kaiser 82], project
management [Habermann 79a], and the programming language (in this case GC).
Chapter 5 elaborates on the issues that arise in the implementation of such a

large environment.

e A functional programming language, Alfa [Habermann 80] through which we
have gained experience with ALOEs for non algol-fike languages.

e Aloegen, an ALOE for the grammatical description. One unparsing scheme shows
the grammar syntax, the others generate the language tables in C.

e A large collection of small languages that helped us invastigate different aspects
of ALOEs within simple enviror.ments. :

A

o

i

T e

I

57

Chapter 4

Action Routines

4.1. Introduction

Action routines are specified as part of the grammatical description of the language. One
routine can be associated with each operator of the language. Action routines are used to
perform context sensitive processing and to add language specific behavior to an ALOE.
Action routines are called by ALOE in a varlety of situations as described below. In this
chapter, the application of action routines and their communication interface with the ALos
kernel will be discussed. The ALOE Implementation environment, that provides the facilitles
and mechanisms for the implementation of action routines, will also be discussed. Actlon
routines are optional, they need not be specified for all the operators of the language. A
purely syntactic ALOE without action routines can also be generated.

The ALOE kernel communicates with the action routines by invoking them at the appropriate
times. Action routines communicate with the ALOE kernal through their return values and
through the invocation of functions from the ALOE implementation environment. Action
routines communicate with other parts of the environment through explicit invocation of thelr
functions and through modifications made to the common internal representation. The writer
of action routines will be referred to as the ALOE Implementor.

4.2. Uses of Action Routines

Action routines are used for many purposes. The original design was intended to provide a
mechanism for.checking programming language semantics. However, in highly interactive
environments such as the ones provided by ALOES, action routines can be used to implement
a large number of functions that some times have very little to do with programming language

r.__—;_a.;éﬁ‘_ = =%

j PRECEDING PAGE BLANK-NOT FILMED

—tma =

58 ACTION ROUTINES

o

semantics. Although the limits of thelr application have not been explored completely, they

certainly promise a wide variety of possibilities, including:

e Programming language semantics checking. As said above, thiz was the first
motivation for action routines, and is a very important applicatior. ALOE can give
the user immediate feedback on semantic errors as soon as they are made, giving
him the opportunity to correct them immedlately. The action routines can also
provide some abtomatic correction themselves (e.g. automatic declaration of

E variables, spelling correction, stc.).

Some semantic errors can be precluded by modifying the syntax of the language.
In an ALOE environment, the user is explicitly specifying the language constructs
that he wants to create, instead of having a parser infer them from examination of
some text. So, the syntax can have richer constructs that would be difficult to
disambiquate with a parser. For example, the use of "+" as a function name.

In some languages, the syntax is disambiguated through semantics as is the case
of the expression "f(n)" in ADA [DoD 80}, which could be a function call or an
array reference. In an ALOE, this is not an issue because the user will speclfy
which type of construct he is building. The fact that the concrete representation
is the same does not matter at all.

T

¢ Record state. Again, a lot of information is available because the environment is
actively participating in the construction and modification of the programs. As
the interaction with the ALOE takes place, status information can be recorded, -
updated, used, checked, etc. The ALOE implementation environment (see section
4.6) provides the ALOE implementor with a set of routines and data structures to
help manipulate this state information.

An important example of the use of state information is the implementation of
some of the project management functions of GANDALF [Habermann 82), that
synchronize the access of multiple users to the environment (see sectlon 5.2.2).

ST e T il

o Interface to other parts of the environment. Every generated ALOE Is an
environment for a particular language. Action routines can be used to Interface
to the available tools of the environment. Some of these interfaces can be made
transparent to the user and applied at the appropriate times. For example, a code
generator can he invoked from the action routine associated with a particular
operator (e.g. a procedure) when the user finishes entering the associated
subtree. From the user point of view, compilation happens automatically. This is
yet another example of the active participation of the environment in the
programming process, and is not limited to construction and modification of
programs.

Another example is the interface with the display mechanisms, allowing the action
routines to update the window allocation under certain circumstances (see
section 4.3.3).

e Automatic generation of program pieces. There are a large number of cases in

I

i

bR

e

THHATi

o T e e

ACTION ROUTINES 59

which information already entered in the program can he taken advantage of an4
used to generate some pieces of program elsewhere. Some examples include
automatic deciaration of variables, derivation of specifications, initialization of
default values, etc. In aloegen, the ALOE for creating graminatical descriptions
(see section 3.2), entrles for classes and operators can be made as soon as they
are referenced.

This is one clear advantage of the interactive nature of ALOEs: the ALOE can
anticipate what users may want to do and thus save time and effort. Itis alsoa-
clear indication of the possibilities of exploitation of its language knowledge.
However, every ALOE implementor may desire certain behavior for any particular
language. For this reason, action routines are the proper mechanism to
implement this functionality by giving the Implementor the control over this
behavior.

o Lexical analysis. ALOEs do a very limited form of automatic lexical analysis (see
sections 2.4.1.2 and 3.2.2.1). As discussed In those sections, the automatic
lexical analysis capabilities could be expanded. But action routlnes can also
perform the lexical analysis when a terminal node is created and they can abort
the creation if the token is illegal (see section 4.4). The lexical analysis performed
by action routines need not be restricted to checking for the legality cf tokens, but
as semantic checking is coupled, the action routines can also check for
duplicated names and other such kinds of name checking.

o General communication mechanism between different parts of the environment.
In an integrated environment as the one an ALOE provides, the tools of the
environment know about each other and can then cooperate towards a common
goal. They can communicate with each other and transfer the necessary
information through calls made, and data structures maintained, by actlon
routines.

One example of this communication is the one made between the code
generator, the loader and the debugger in GANDALF [Habermann 79b, Feiler 82a).
If several of these applications will be hanc'ed in a single action routine, the separation and

interaction among them must be handled explicitly In the action routine itself.

In an ALOE environment, action routines must deal with dynamic programs (i.e. programs
that are constantly changing), as well as with incomplete ones (i.e. not yet fully. specified).
This contrasts with semantic checkers of compilers which deal with static programs: once the
program is handed to them, it is complete and will not change. Action routines must then
address and understand the impact on the semantics of a program when it is being constantly
modified, action routines should also recog‘nize when programs are incomplete and they

should act accordingly.

L etk s O G R

MM

60 ACTION ROUTINES

Another Important difference with semantic analyzers In combllers is the fact that programs
may be semantically incorrect after an error is made and detected, and will not be necessarily
corrected immediately. Deletion and modification of program pieces imply undoing of
semantics (as well as other side effects, like the setting of defaults, etc.). It Is then necessary
to broadcast the effects of a modification. For a detailed discussion of how this is done In a
particular programming environment see [Feller 82a).

In MenTOR [Donzeau-Gouge 80] semantic checking routines can be written in MENTOL and
can be invoked by the user. This invocation must be made explicitly by the user Instead of
being done imolicitly by the system as is the case in ALOE. Thé semantic checking that
MENTOR provides is not automatic nor does it provide some of the other automatic processing
that ALOE provides through its action routine interface (for example, the automatic generation
of program pieces or the automatid invocation of other tools of the environment).

4.3. Calling Instances

ALOE activities are classified into different kinds of actions. There is a set of basic actions
that include: CREATE for creation of nodes, INSERT and DELETE for insertion and deletion
of subtrees and ENTRY and EXIT for moving in and out of nodes through cursor movement.
When the .nest and the .transform editing commands were added as editing commands,
the need for special actions was discovered and the NEST and TRANSFORM actions were
introduced. When the windowing and context switching capabilities were implemented, the
need for calls to deal with changing the contexts was discovered and the FAILUP and
FAILDOWN actions were added. The calls on FAILUP and FAILDOWN are made when an
unsuccessful attempt is made to move the cursor out of a node and into a node respectively.
For every one of these actions there is a call on an action routine. Two parameters are
explicitly passed on the call: the node where the action takes place and the kind of action. In
this section each kind of action will be discussed.

The action routines are organized around these actions with the purpose ¢/ providing a
genera!l and flexible mechanism for the implementation of a variety of different environments.
They could have been structured around the applications mentioned in the previous section
but that would take away some of their flexibility by imposing a predetermined structure. It
could also have an impact on their efficiency: lexical analysis or automatic generation of
program pieces is not done everywhere. l-;mally, some of these applications were discovered

fimi

B o e e T A

ACTION ROUTINES _ 61

through the experience of using action routines and more applications will be fcund as more
experience is galned.

No action calls are made in the clipped areas (see section 2.4.2.2). The clipped areas
contain subtrees (pieces of programs) that are out of context and whose semantics could not
be checked at that point. The semantics are checked, through an action call on INSERT,
when a clipped free is inserted. '

4.3.1. Creation of Nodes

An action céll on CREATE is made when a node Is created as a result of a censtructive
command. A CREATE call on a non-terminal node can be used to automatically generate
some fields (e.g. defaults), on a terminal node, it can be used to validate the value of the
terminal node given by tha user. When a non-terminal has just been constructed, its offspring
are meta nodes. The CREATE action can be aborted by the action routine and ALOE will then
undo the operator application and put the meta node back in its place. This Is very useful
particularly when the action routine is performing lexical analysis and determines that the
token is illegal.

If the construction | rocess of the tree would be static (i.e. once the tree is created, It is
never modified), then the only action call needed is the one on CREATE. Indeed, this is the

type of interface found in parser generators that include semantic routines [Johnson 75}.

4.3.2. Visiting Nodes

An action call on EXIT is made when a node is left, golng up towards its parent node In the
tree, as a result of the cursor moving out of the node (see section 2.4.2.1). An action call on
ENTRY is made when a node is entered from above, as a result of the cursor moving in to the
node. Figure 4-1 shows a portion of a syntax tree indicating the direction of the cursor motion
and the corresponding action routine call on ENTRY. Figure 4-2 does the same for the call on
EXIT.

Communication with other pieces of the environment, such as access control, code
generation, debugging, etc., is achieved through the action calls on EXIT and ENTRY
because they provide a convenient synchronlzation mechanism on the construction and

modification process.

é 62 ACTION ROUTINES
Display Syntax Tree

if (arrfi] 1= 0) ENTRY on NEQ -
- Jous 0 /)\\
NE

INCR

______ PN |

INDEX 0 i
4+

Figure 4-1: Action routine call on ENTRY

Display Syntax Tree

i

while (<exp>) WHEC EXIT on IF
(]
M ((pr>) /\
ue;

max := val <oxpd IF

e e <exp> ASSIG

while (<exp>) | max velue

it (<expd)
max := value;

LA et ARATR iy

Figure 4-2: Action routine call on EXIT

4.3.3. Unsuccessful Cursor Movements

An action call on FAILUP is made when an attempt is made to move the cursor out of a
node that is the root of the current window. This call gives the action routine the opportunity
of updating the window allocation: it may cause a change of the current window, most likely &
pop of the context window stack (see section 2.6). As part of the ALOE im~lementation

environment, the window manipulation routines are provided.

An action call on FAILDOWN is made when the current node has no visible offspring as
defined by the current unparsing scheme. This call gives the action routine the opportunity of

il

T e TR

:

c
E
S
£

ACTION ROUTINES 63

updating the window allocation and change the current unparsing scheme. It will most likely
push a new window onto the context window stack with the current node as the root of the
window and & new unparsing scheme so that the offspring are now visible. This manipulation
can be viewed as a change of context in the program.

It has been observed, however, that the action routines follow a very unitorm behavior in
the FAILUP and FAILDOWN cases, namely the opening and closing of new contexts.. This
wehavlor could f_Je abstracted and provided automatically by ALOE. The grammatical
description would include information as to which operators will be roots of context windows
together with ghe unparsing scheme to use when entering a new context. These changes
would make the calls on FAILUP and FAILDOWN obsolete, making the writing of action
routines much simpler. Keeping the calls as they are, gives the ALOE Implementor more
flexIbility and control; but our observation is that it is not really needed for these cases.

The ALOE implementation environment provides a set of routines to implement the
mechanisms for static and dynamic access control (see section 4.6.2 below), which are
normally Invoked from ENTRY and EXIT action calls. It has been suggested [Notkin 81a] that
the access control mechanism could also be abstracted and incorporate& into the
grammatical description. This again makes the writing of these action routines m.uch simpler
at the expense of some flexibiiity and control, on the ¢ther hand, It increases the complexity of
the grammatical description. But if the specification language is rich enough to express the
desired behavior, action routines for these mechanisms are no longer needed.

As more experience is gained with ALOEs and action routines, it is expected that more of
these mechanisms and applications can be automated and expressed with appropriate
specification languages in the language descrig tion.

4.3.4. Tree Transformation Operations

An action call on DELETE is made just before a subtree is deleted. This is to allow the
action routine to use all the information contained in the subtree before it is lost. The return
value from a DELETE call can indicate that the deletlon should be aborted, in which case
ALOE will not perform the deletiZ.

In the case of DELETE, as well as with the other calls caused by tree transformation

64 ACTION ROUTINES

operations, semantic information (as well as other information and side.effects caused by the
construction process through CREATE calls) must be undone. The effects of the modification
must be reflected in related nodes so that the proper and consistent stat2 can be kept. These
effects must be propagated explicitly by the action routine. For different types of nodes and
different kinds of operations, these changes will require varying amounts of processing. With
respect to semantics, it is not the same to delete a constant that to insert a !arge subtree.

An actlon call on INSERT is made when a node from . 1e clipped area is inserted. Although
it should be similar to the CREATE call, in this case the actior routine may not want to set
default values or do other automatic ceneration. The insertion process works top down in the
subtree with an INSERT call being made 2t every node as it is inserted. So, for non-terminal
nodes, at the point of the call, its offspring are meta nodes a< in .he case of the CREATE call,
but those offspring will be immediately filled in after the call returns, as the insertion process

continues.

An action ¢l on NEST is made when a subtree is being nested into a new subtree which
will replace the original one. The .nest com nand (see section 2.4.2.2) is only allowed by
ALOE when the nesting.and the resulting subtree are syntactically correct. Depending on the
language and the application the NEST call may behave as an implicit CREATE, since after
all, there is a new node being created.

In terms of the syntactic structure of the tree, the effect of the .nest command can be
achieved with the following sequencé of basic tree modification commands: a .clip and
.de’ete of ihe current subtree, followed by the construction of the new node, followed by the
.insert of the clipped subtree. Even though users learn very rapicly to think in terms of these
basic operations, as avidenced by the experience with the use of different ALOEs and with the
Synthesizer, it is not an efficient way to achieve the cesired effect. From the point of view of
action rou ‘nes it is even worse because the DE! ETE call will then have to assume that the
subtrae is really being thrown away with all its information and the effects must be propagated
and the corresponding nodes invalidated, just to have the set of INSERT calls reconstruct all
these information again. With the .nest command, all information contained in the subtree is
kept and in most cases will probably not change. Figure 2-4 shows the effect of an

application of a nest command.

An action call on TRANSFORM is made after a transformation is performed on a subtree by

e —— e

lﬂ

S At

i LR

il

T

Ll

ACTION ROUTINES 65

mapping it into another, by changing the root node. The .transform command (see section
2.4,2.2) is (niy allowed when the offspring of the original node and the new node match. The
TRANSFORM call may perform the functions of a CREATE call on the new root. The
differance with the creation is that the offspring of the node are not meta nodes, so only a
subset of the CREATE functionality would probably be desired. Figure 2-5 shows an example
of the application of a .transform command.

As in the case of .nest, the effect of the .transform command can be achieved with the
following sequence of basic tree modifications: first, the offspring of the current node are
clipped and deleted; then, the current node is deleted; then, the new node is constructed and
the clipped subtrees are inserted back again. Again, it is very cumbersome for the user to
achieve the desired result. The action routines would not be aware of the kind of
transformation that is taking place and would have to do more than the necessary processing.
The calls on NEST and TRANSFORM are more efficient because they utilize the information
that is available and that would otherwise be destroyed by the DELETE calis and
reconstructed by the CREATE and INSERT callis if the basic commands would have been
used.

An action call on TDELETE is made on the original node before the transformation takes
place but after it has becn determined that it is a legal one. The call is necessary because the
root node will be deleted and substituted by a new node. The TDELETE call can also be
aborted in which case ALOE will not perform the transformation. Information contained in the
node may be used and any side effects must be taken care of. it is different than the DELETE
call because the subtree will not be deleted and information contained there may be kept or
updated accordingly.

An action call on EDIT is made after a constant is changed by an .edit command which
invokes a text editor for editing text constants (see section 3.2.2.1) because ALOE lacks
support for underlying text editing. This call aliows the action routine to validate the value of
the constant (as it would do in the case of a CREATE). As the only changing struc;ture is the
value of the constant, the node itself dces not change at all. One possible action that may be
desired, is that of recording that a change was made in a particular subtree.

If new tree transformation operations are added to the set of editing commands of ALOE,
corresponding action calls must also be added, so that the action rcutines can take full

g A F L ToEas Tt LIy G P P B A, = el —

ﬂ

O R

E

S T TR

66 ACTION ROUTINES

advantage of thelr knowledge about the kind of operation that is taking place and manipulate
the information and state accordingly. If these transformations are added through extended
commands, then they apply to a particular ALOE only and the implementation of those
extended commands will take caie of the semantic effects. No general mechanism needs to
be provided In that case.

Action routines are used to maintain certain state informatior.\ in the nodes of the tree. This
state information can be‘used for many purposes including access control, to indicate if a
subtree is correct, if there is an error or if it should be checked, etc. It is important that ALOE
makes a consistent sequence of calls every time a node is visited: for every ENTRY call, there
shculd be a corresponding EXIT call. This would guarantee that if the ALOE implementor
wants to keep the information in a stack of some soit, the number of push operations (on
ENTRY) will match the number of pop operations (on EXIT), as the cursor is moved around
the tree.

For the purposes of this consistency, a call on CREATE or INSERT should also perform the
necessary functions of an ENTRY call, since no separate ENTRY call is made. Since all the
information is available to the action routine , the extra call is not necessary and this also
helps the efficiency of the action routines interface. Similarly, calls on DELETE or TDELETE
should behave as an implicit EXIT. The call on NEST should behave as an EXIT on the

original subtree and as an ENTRY on the new node (maybe through a CREATE). The call on .

TRANSFORM should perform the necessary functions of an ENTRY on the new node (agaln,

maybe through a create).

4.4. Return Values from Action Routines

The communication between action routines and the ALOE kernel is achieved through the
return values of the action routines, as well as through calls to routines provided as part of the
ALOE implementation environment described in section 4.6 below. The ALOE implementation
environment includes an error reporting interface that provides the means of communication
between action routines an the user. There are several possible meanings that return values
from action routines can have:

e Abort the action. Applies to the CREATE, DELETE and TDELETE calls. !n the

CREATE call it means that the operation should be undone and a meta node
should be placed back in that position. The program cursor is positioned at the

= e e e — —— ey

i

TR

ACTION ROUTINES 67

meta node. In the DELETE and TDELETE cases it means that the operation
should not take place. The program cursor is not moved.

¢ Continue. The program cursor will be positioned where it would have been
positioned if there were no errors. If errors occurred, they are showri to the user
but the program cursor is not repositioned.

o Redirect the program cursor to the node of the last error reported. In general this
is used to let the user select the error he wants to correct next. In the absence of -
errors this and the previous case are identical.

o Redirect the program cursor to a specific node. This is used to force the userto a
particular node as a result of some action. An example of its use is for access
control. In a case in which a particular node in the tree should not be entered by
some user, the ENTRY action call can redirect the cursor to the parent node, thus
effectively preventing the entry to the node. An error message can be generated

to explain the reason for this action.

e To indicate that the current node (the node where the call Is made), has been
replaced by the action routine.

in some of thase cases, the program cursor will be redirected to a different node than the
one where the call was made. In order to keep consistency, ALoE will find the path from the
original node to the resulting one and will make all the necessary EXIT and ENTRY calls. If
the original node was replaced, the path is found starting at the replacement node.

4.5.Error Reporting

If there are errors generated by the invocation of an action routine, ALOE will display them
to the user one by one. After every error is displayed, the user has the optjon of stopping at
that error or looking at the next error. This error reporting mechanism provides the

communication from action routines to the user. Its flexibility allows the user to stop at any

particular error to correct it.

When a user decides to stop at an error, the reinaining errors are not kept by ALOE. ALOE
does not understand the content or the kind of error (it only knows the difference between
errors, warnings and simple messages). ALOE would not know if an error that is pending Is
corrected by a modification that the user makes. ALOE assumes that pending errors will be

regenerated if the modifications do not correct them.

One problem with this scheme is that situations may arise in which the same error message

il

TTHETTTITTAT

%E
%
F
E
%
%
;
1
g
%
5
1
=
g

68 ACTION ROUTINES

will be produced over and over again until the user corrects it. In some instances this may be
undesirable and the action routines may want to filter some errors already displayed and not
display them until the user leaves some context. For a discussion of one such error filtering
mechanism, see [Feiler 82a].

4.6. The ALOE Implementation Environment

The ALog implementation environment provides an environment for the impleinentor of
action routines and extended commands. It provides a data encapsulation mechanism for the
internal representation that defines the data structures that are accessible as well as the
operations that can be performed on them. These operations provide the facilities for
inspection, traversal and modification of the internal tree representation. They guarantee the
syntactic correctness and integrity of the internal representation. The ALOE implementation
environment actually provides an operational definition of the internal structure. Using this
environment, the task of implementing action routines and extended commands is much
simplified and secure {modifying the internal tree representation in undesired ways, is
precluded). The C programming language [Kernighan 78] does not provide enough
protection mechanisms to enforce this mechanism. So, the integrity of the internal
representation can be guaranteed only if it is accessed through the ALOE implementation

environment.

The ALOE implementation environment also provides mechanisms for other operations
such as access control, error reporting, tree traversal, window manipulation, status checking,
etc. The following sections discuss the main characteristics of these operations. For a
detailed description of the specification of the primitives provided by the ALog implementation

environment, see C.

4.6.1. Error Reporting Interface

The ALOE implementation environment provides the primitives for the general error
reporting interface for action routines described in section 4.5 The error interface provides
the communication between the action routines and the user. The interface recognizes three
kinds of messages: errors, warnings and plain messages. The display and window facilities of
ALOE (see section 2.6) are coupled with the error interface to provide a better user interface.
The error interface buffers all messanas caused by an action routine call and then displays

them, indicating the kind of message and highlighting the associated node.

i

:

:
E
=
.
.
:
i
=
-
:
E
!
|
]

E

E
E

ACTION ROUTINES 69

4.6.2. Access Control

The implementation environment provides a set of acc.ss control primitives for restricting
and enabling editing commands at different levels of the development of the internal tree.
This includes environment specific extended commands. Constructive commands are
restricted or enabled as a group, no control of individual commands is provided. It would be
very desirable to be able to have access control over individual language commands as well.
A very interesting application of this form of access control would be In teaching a
programming language. A small subset of the most important language corstructs of the
language is made available in an ALoOE for the full language. As the user learns the new
language, more language commands are made available. Until finally, the whole language is
made available. The help facility in ALOE is coupled with access control, so only the available
commands are displayed when help is requested. In the learning process, the user interacts
with an ALoE with the same user interface.

The primitives for access control communicate with the ALOE kernel by setting an attribute
associated with every editing command that determines whether or not the command is legal.
The kernel checks the value of this attribute before executing the command. The ALOE
implementor does not access this attribute directly but does so through the set of action
control primitives.

ALoE maintains a stack of access control words, each of which controls the set of legal
commands. When a certain level of the tree is entered, an action routine can push a new
access control word into the stack, thus redefining the set of legal ccmmands for the new
level. When the subtree is left, the action routine can then pop the stack to reset the access
control state to where it was before entering the level. '

As the user moves in and out of subtrees, the action routines use the access control
primitives to permit or restrict some commands, thus shaping the accepted behavior of

different users of the environment. Different users may have different kinds of rights.

These access control primitives provide the action routines with the mechanisms to
implement static and dynamic access control. Static access control can be set by defining
the set of commands that are legal upon entering the system root. Dynamic access control Is
implemented through the calls to the primitives that are manipulating the set of legal
commands,

e T s

analka RGO

70 ACTION ROUTINES

Access control is primarily used for project management [Habermann 82] that synchronizes
the access to a system by different users with different access rights. For further discussion

on project management and access rights, see section 5.2.2.

4.6.3. Tree Traversal

The ALQE implementation environment provides a set of routines to traverse the internal
trees. Access to parents nodes and offspring (i.e. internal tree pointers), Is not done directly
but through a set of tree traversal primitives that allow the action routines to move through the
tree and get to desired nodes.

These primitives make file nodes (see section 3.2.8) transparent to the ALOE implementor.
ALOE provides ~utomatic checkpointing of the files associated with subtrees through flle
nodes. This checkpointing is done whenever a file node is passed through, either by golng
from a node to its parent node or to one of its offspring nodes. This passing is referredtoas a
context change. When a context is changed, if the subtree has been modified, it is written
out.

These mechanisms, coupled with the ability to partition the data base (or program) into
small separately stored files through file nodes, provide a very convenient checkpointing
capability but suffer with respect to recovery, that is, the ability to undo commands [Archer
81a], because files are automatically overwritten quite frequently (depending on how much of
a partition is specified).

Other tree traversal primitives are provided to action routines for browsing through the tree
with no context kept and no checkpointing done. They provide a more efficient mechanism to
move around the tree when no modifications will be made.

There are some instances in which the action routines need access to the file nodes
themselves. Sometimes it is desired to stop at a file node without reading in the subtree
associated with it. Also, symbol table implementation needs access to file nodes because
symbol table files can also be associated with the file nodes. For these purposes there are
specific primitives to give access to file nodes. For further discussion on the advantages and
disadvantages of file nodes, see section 5.2.6.

“\
l
L
]

ST AT

w AL i L i R G R

ACTION ROUTINES 7

4.6.4. Window Manipulation

Ad discussed previously in section 2.6, there is not enough screen space to display all the
necessary information in an ALOE environment. The screen organization is then critical to the
efficient utilization of the available resources. The ALOE kernel uses a sophisticated display
and window interface to manage the screen [Feiler 81]. Some of he window manipulation
facilities are made available to the ALOE Implementor through the ALOE implementation
environment. Among these facilities is the stack of context windows maintained by ALOE. The
ALOE implementation environment provides a set of primitives for manipulating this stack.
Using these primitives, the ALOE implementor can then dlvide his structure (or program data

base) into different contexts and have them displayed In overlaying windows.

If the ALOE implementor is developing a programming environment in which a user Is going
to run programs, he needs a separate section In the screen for the Input and output of user
programs. As part of the display interface of the ALOE kernel, a user window is provided for
these purposes. The implementation environment provides the necessary primitives to

manipulate the user window.

4.6.5. Status Manipulation

Every node in the internal representation contains an extra field for status information. A
typical use of the field is to put semantic information in it. This status information is stored In
the files written by ALOE, thus saving semantic information that can be used again and does
not need to be recomputed. The implementation environment provides a set of primitlves to
implement a simplé scheme for status manipulation that helps in setting and resetting status
values as well as broadcasting changes. If the action routines implementation requires a
more complicated status manipulation mechanism [Feiler 82a], the status fields in the nodes

are accessible through the ALOE implementation environment.

4.7. Extended Commands

The ALOE implementation environment is also available for the implementation of extended
commands. The implementation of these commands can also invoke action routines and use
the same action routine communication interface the the ALOE kernel uses. Figure 4-3 shows

the implementor's view of the ALOE system.

72 ACTION ROUTINES

Tree Manipulation
and
Tree Traversal

ALOE Error Reporting
ALOE __.9
Implementat ion

Implementor

Environment Access Control

Window Manipulation

O

Status Manipulation

> Action Routines
> Extended Commands
! .
N Environment Specific
/7 Routines

Figure 4-3: An implementor’s view of the ALOE system

4.8. Attribute Grammars

As discussed earlier in section 4.2, the motivating application of action routines is checking
programming language semantics. It would be very desirable to express those semantics

using a formalism like attribute grammars [Knuth 68].

Attribute grammars have been ftraditionally used in compiler generators [Nestor

81, Ganzinger 77, Rahia 77]. But compilers deal only with static programs: once the program
is entered, it never changes. In an ALOE environment it is necessary to deal with dynamic
programs that are constantly changing as well as with incomplete programs. This situation
arises due to the interactive nature of an ALOE environment in which the user interacts directly

with the environment in the process of constructing and moditying his program.

s ; i

ACTION RQUTINES 73

The important implementatlon Issue is that of undoing semantics and the propagation of
changes. When the user makes a change to his program, some semantic knowledge or
structure already built must be modifled or removed. The effects of a modlfication are rarely
localized in a particular node. In most instances the effects must be propagated to other
nodes so that other information and status that is related to the modification can be updated.

In an ALOE environment it is also necessary to deal with semantically incorrect programs for’
various periods of time: for instance, the user has been notified of hls errors, and either he
decides t¢ correct them later or he is in the process of correcting several of them. In a
compiler environment, when a semantic error is found, the program is illegal, or if the error is
a simple one, and the compiler is smart enough [Graham 78], the compiler will correct it and
the program Is no longer semantically incorrect.

The use of attribute grammars for syntax-directed editors has been proposed in [Demers
81]. An algorithm Is proposed for the reevaluation of attributes given a subtree replacement.
An optimal algorithm is proposed in [Reps 82]. One of the most important aspects of an
evaluator in an interactive system is that it must be efficient (ie. it cannot cause any
significant delay in the response time of the system). If a change is made that affects an
attribute of a node that is not in the vicinity of the changed node, the corresponding attributes
of all the nodes in the path between the two nodes must be reevaluated. This is because
attributes can only depend on attributes from the parent node or from one of its offspring.
Reevaluation of attributes is not the only task to be performed, but also the determination of
the set of attributes that must be reevaiuated, but this is handled implicitly through the

attribute relationships instead of having to be done explicitly as with action routines.

An implementation of the algorithms has been done [Reps 81]. The use of these algorithms
in a generator of environments will probably answer these efficiency concerns, especiai y In
dealing with symbol tables whose handling in attribute grammar systems has been

traditionally very inefficient.

To address some of these efficiency concerns, Johnson and Fischer [Johnson 82] propose
the modification of attribute grammar formalisms to include non-iocal attributes and attribute
flow relations that are not confined to the parent or the offspring of a node. Using this model,
direct attribute links can be provided between definitions and uses of variables. These links
can be provided in an ALOE environment through the symbol table manipulation interface and

action routines [Kaiser 81].

il

I

i

A e R e s

L

74 ACTION ROUTINES

Related also to the efficiency issue is the impact of the tree tr.ansformation commands such
as .nest and .transform (see section 2.4.2.2), on the semantic checking. it is true that these
commands can be replaced with a series of .clip, .delete and .insert commands. However,
most of the semantic information already In the tree can be kept. For exariple, in the case of
.nest, the subtree is really not deleted at all (an extra node is inserted 1.’ the tree), and thus,
the semantic information need not be undone. The same is true for .iransform and any
other tree transformation operation that could be added. In section 4.} we discussed the
need for a NEST and TRANSFORM action routine calls to take .a'dvantaga of the information
pravided by the type of operation that is taking place. The attribute grammar mechanisms
would have to be modified to be able to take the same kind of advaniage. This implies that
subtree replacement, as proposed in [Reps 82], is not necessarily the correct unit for attribute

reevaluation.

With attribute grammars it is stlll necessary to provide a semantic function for every
att. jute. in many cases the code in an action routine is basicaily oniy the equivalent of
attribute evaiuation. Writing action routines is made much easier with the ALOE
implementation environment, It is not ciear that writing the attribute grammar is easier than

writing the actlon routines.

in section 4.2 we discussed the many applications of action routines. As discussed above,
attribute grammars (or a suitable variant) could be used to help in automating the generation
of more sophisticated integrated programming environments. Attribute grammars, as they
have been traditionaliy considered, may not be a powerful enough formalism for some of the
appiications discussed. One such application is the automatic generation of program pieces
and in general the ability to modify the internal structures. Action routines have this abiiity
through the ALOE implementation environment. Attribute grammars have been traditionally
considered as a formaiism for language recognizers and not for language generators.
Another application is the ability of an action routine to abort a deletion of a subtree to
provide one form of access control. This functionality is not available in an attribute grammar

system.

Attribute grammars implicitly specify the dependencies between operators and evaiuation
order information, while action routines have to explicitly implement them. Action routines
provide a very flexibie mechanism but with little control. Some synthesis of both approaches

is worth investigating as a natural extension of this work.

ﬁ,,
|
|
;
|
|
|

TS

75

Chapter 5

Building a Large Integrated Environment:

The GANDALF Environment

5.1. Introduction

The ALOE imp'ementation environment, described in section 4.6 lets the implementor add
the environment and language dependent functionality needed to develop large integrated
environments. The key feature of an ALOE that permits this development is the uniform user
interface that, together with the common program representation, allows the integration of the
environment pieces. The GANDALF software development environment {Habermann
79b, Habermann 82, Notkin 82b] is the most complex instantiation of an ALOE environment
built to date. In this chapter we discuss the different kinds of support provided through the
ALOE Generator and the ALOE implementation environment for the development of such large
integrated environments, focusing the discussion on the development of the GANDALF

environment,

The characteristics that make GANDALF a software development environment rather than
just a programming environment are the incorporation of system version control [Kaiser 82]
(referred to elsewhere [DeRémer 76], as programming-in-the-large) and project management
that synchronizes the access to the system data base by a group of members of a project with
different access rights[Habermann 79a] (referred to elsewhere [Notkin 81b], as

programming-in-the-many).

Al this functionality is incorporated in GANDALF through the mechanisms of an ALOE.
System version control is incorporated through a language description of the version control
structure of the system and through some extended commands. This structure is checked

L o

I

76 THE GANDALF ENVIRONMENT

and validated through action routines. Project management Is incorporated through the
addition of some extended commands and through #iction routines that implement some of
the project management functions automatically and transparently to the user.
Documentation is also added to a GANDALF database structurally as operators of the
language. Documentation operators are terminal operators of type text constant (see section
3.2.2.1) which are entered and edited using a text editor that is Invoked by ALOE for that
purpose.

5.2. ALOE Support for Large Integrated Environments

The generated environments have four Important properties:

o Uniform User Interface. All interactlons with the environment are done through
the user interface of ALOE. Users thereby have a single language for
communic.ation with the environment instead of a collection of different
languages or interfaces to communicate with the different pleces or tools of the
environment. The user need no longer be aware of the specific invocation of a
particular tool but instead he concentrates on the tasks he needs performed (e.g.
program editing, program execution, system description, etc.).

o Integrated. All pieces of the environment are now knowledgeable of each other
and can collaborate towards a common goal, instead of being a collection of
independent tools [Dolotta 76, Ivie 77). This integration is supported In an ALOE
through the use of a common program representation that the different pieces
access and modify. Invocation of certain functions of the environment is now
implicit and transparent to the user. For example, the compiler need no longer be
explicitly invoked by the user but rather the environment can invoke the code
generator every time a compilation unit {e.g. a procedure) is completed by the
user.

e Incremental. As the user orogresses through the development of his programs
the environment can collect information that allows it to perform incremental
checking and updating. For example, after every construct is entered it can be
semantically checked, code generation can be performed after a procedure is
completed, common defaults can be automatically generated as constructs are
entered, etc. :

o Interactive. Every ALOE generated is a1 interactive system. The incremental
nature of the generated environments makes it possible to process small pleces
of program at a time instead of having to process the entire program. ALOE takes
advantage of the users’ think time at the terminal to perform this processing.

The ALoE facilities that provide the functionality to support the development of large

integrated environnients are: extended commands, access control, action routines,

THE GANDALF ENVIRONMENT 77

environment specific routines, and multiole concrete representations. This support gives the
ALoe implementor the ability to incrementally develop an environment. He can start with a
simple syntax.directed ediior and then incrementally expand it through the Implementatior: uf

action routines and environment specific routines and adding extended commands. In this

manner the complexity of the environment can be increased in a controlled form.

The rest of this sectivn discusses separately each one of these different mechanisms witt
respect to the support they provide for the development of large integrated environments.

5.2.1.Extended Commands

The basic set of editing commands discussed in section 2.4.2 can be extended with
commands that invoke environment specific functions through the same uniform interface of
ALoe. Typical uses of extended commands are for communication with other pieces of the
environment. Commands in GANDALF such as .run and .continue communicate with the

run-time environment.

Project management functions [Habermann 79a, Habermann 82] which provide, among
other mechanisms, synchronization between raultiple users of the environment, are invoked
. through commands such as .reserve which makes a particular unit modifiable only by the
* programmer making the reservation and .deposit which makes the unit avallable again for
other programmers. Commands such as .revise which creates a new revision of a version' Is
an example of a sy'*'tem version control function [Kaiser 82] implemented via extended

comrnands.

in a simple stand-alone ALOE, searches done with the .find commahd (see section 2.4.2.1)
search through the whole program tree. In more complex environments .find only applies to
the current window or context. For these environments it is useful to include environment
specific searching commands that understand the structure of the program data base and
can focus the search using this knowledge. For example, in GANOALF a search for a
procedure looks within the current version and revision instead of the first occurrence of the
procedure in the program data base. GANDALF search commands understand the structure
of GANOALF data bases.

The complexity of the implementation of extended commands depends directly on the

B — =

78 THE GANDALF ENVIRONMENT

complexity of the function to be performed. The ALOE implementation environment provides
the vasic facilities for accessing and modifying the data base, but cannot predict the kinds of
operations the implementor might want. This allows the ALOE implementation envirénment to

nrovide flexible facilities for the development of a wide variety of functions.

Commands such as environment specific searches are straight forward to implement and
amount to a knowledge directed simple tree searching. On the other hand, commands like
.depaosit are not so trivia_ll because they have to check and validate large parts of the daia
base before allowing the act. ~ deposit to take place.

5.2.2. Access Control

The access control facilities allow the ALOE implementor to provide different levels of user
rights for access and manipulation of the program data base. For example, in GANDALF, anly
the project leader can modify the list of programmers that have access to the data base. This
is an example of static access control. The status of the program data base can also be used
to decide whether or not to permit certain operations. For example, a data base' that has
alrecy been deposited (i.-. made public) cannot be edited again. Another interesting
example is in a list of log messages, 'where the commands .axtend and .append are
restricted and only .prepend is permitted. This guarantees a chronological order (most
recent first) in the logs. These are examples of dynamic access control.

As discussed in section 4.6.2, the implementation of access control is dong through a
vector of access rights with one entry per editing command. The implementation of access
control policy for a particular environment is rather straight forward through the use of the
basic set of routines that manipulate the access control vectors provided by the ALOE
implementation environment. These routines are normally called upon initialization to set up
the static access control based on 'the rights of the user and from action routines as certain

nodes are entered or exited to et the dynamic access control.

P s - =S e e ey — F e =

THE GANDALF ENVIRONMENT 79

5.2.3. Action Routines

In section 4.2, the many possible applications of action routines wer> discussed. Some of
these applications were anticipated and were the motivation for the design of éction routines.
These include semantic checking and implicit invocation of other tools in the environment
such as the code generator. Other applicatior:s were discovered in the process of developing
different ALOEs especially GANDALF. Examples of these include automatic generation of

program pieces, lexical analysis, interaction with display management, etc.

The ALOE implementation environment, discussed in section 4.6, provides a flexible but
controlled and safe access to the internal representation as well as mechanisms to perform
common operations such as tree traversal, error reporting and display management, among
others.

The design of the action routine interface, discussed in section 4.3, gives the ALOE
implementor full control in the process of building a program or data base. Action routines
are called whenever nodes are created, deleted, transformed or visited. In addition, there are

two special kinds of action routine calls: when an attempt is made to leave a node that is
curre: tly the root of the current wingow (a FAILUP zall) or an attempt is made to enter a
subtree that is not currently visible (a FAIL'DOWN call). In the first case, the action call allows
the implementor to reassign the root to an ancestor node and to change the window to a
previous context. !n the second case, it lets the implementor.change the unparsing scheme
a, allocate a new window for a new context. The ALOE implementation environment

provides the routines for these window manipulations.

The action routir = intertace also defines certain mechanisms for communication from the
action routines to the ALOE kernel (see section 4.4). One of them indicates, for the cases of
creation and deletion, that the operation should be aborted, that is, that the creation should
not be allowed and the meta node should be put back in its place or that the deletion should
not take place.

The action routine interface permits and supports incremental development of programs or
data bases by being able to process small units at a time, due to the fact that action routines
are invoked almost after every inieraction of the ALOE. Every action routine invocation only

needs to do a small part of the tz.on allowing the environment to be really interactive by having

the delay per interaction not too large.

T T A i mwm%

I T e T T T

80 THE GANDALF ENVIRONMENT

As with extended commands, the complexity of the implementation of action routines
depends directly on the complexity of the desired functionality. The ALOE implementation

environment cannot predict all the onerations that the ALOE implementor wants to perform.

Simple operations such as status checking, that only operate on the node the action routine is

called on, are very easy to implement. Other operations that must traverse and update values
at many nodes within the data base are more difficult to implement. Some other operations
depend on the existence of support from the other pieces of the environment that are being
integrated. For example, if an incremental cod2 generator is not available, then the
complexity of providing incremental code generation is not in the action routines interface but
in the implementation of the incremental code generator itself.

Some specific examples in GANDALF of the notions and applications discussed in this
section include: automiatic generation of program pieces is done, among other instances,
when a log message is created, the user id and the date of the log are automatically entered in
the log subtree. On exiting from the list of leaders of a project, which is part of the GANDALF
data base, if the list is empty an entry is automatically generated by the action routine, thus
avoiding leaderless projects.

The ability to abort a construction on a CREATE call is used to avoid duplicate entries in
several lists, such as the leaders and programmers lists. The same ability in the DELETE call
can be used in the case of the leaders list to prevent it from becoming empty.

Typical examples of operations done normally on exits from nodes include: code
generation, consistency checks, removing of unnecessary meta nodes, stopping lists from
becoming empty, etc. Most of these functions are then transparent to the user, unless an
error occurs. This means that the user does not have to worry about this function explicitly
any more. The support given in ALOE for these functions is very flexible, and indeed these
functions do not have necessarily to be invoked all the time. For example, code generation at
procedure exit may not be invoked until the procedure is fully specified in one case, or it is
invoked always if the ALOE implementor wants to provide support for incomplete programs. In
either case itis entirely up to the ALOE implementor to make this decision.

:

THE GANDALF ENVIRONMENT 81

5.2.4. Environment Specific Routines

Certain mechanisms of an ALOE require different functionality for different environments.
Some examples of these mechanisms include the symbol table manipulation, mapping of data

bases to the file system, window layout definitions, initialization and clean up operations, etc.

ALOE provides a set of redefinable routines, invoked by the kernel, that implement thes;
mechanisms. For a complete description of the sei of redefinable environment specific
routines see [Medina-Mora 81a]. ALOE provides a set of default implementations for these
routines that provide simple versions of these mechanisms. The ALOE implementor can
redefine somelor all of them to provide the desired environment speacific behavior. For the
implementation of these routines, the ALOE implemantor can use the ALOE implementation
environment. In many cases the ALOE implementor is able to simply modify the default version

of aroutine, which makes his tazk easier.

For a simple stand-alone ALOE the symbol table manipulation need not be anything more
than a simple name table scheme for unparsing. For environments that need to perform
semantic checking or code generation through action routines, a more sophisticated symbol
table manipulation is necessary. The design of the GANDALF environment includes a multi-
level symbol table, which consists of three levels of symbol tables. At the top level there is a
single symbol table called the global symbol table which contalns an entry for every’BOX or
MODULE. There is one module symbol table for every MODULE and finally at the lowest level
there is one local symbol table for every compilation context. For a detailed description of the
GANDALF symbol table, see [Kaiser 81].

The symbol table manipulation mechanisms were the motivating force behind the design
decision of allowing redefinable routines for certain mechanisms. It became evident.- when
more sophisticated environments were developed, that the simple symbol table manipulation
mechanisms provided for a stand-alone ALOE was not enough for other environments,
especially in the case of GANDALF where a muiti level desigrn was desirable. But it was also
clear, that all the complexity of the GanDALF symbol tables was not necessary for simple
ALOEs. ltis likely that in the process of develcning other sophisticated environments, it will be
found that the redefinition of some other mechanisms should be allowed, to provide the
desired functionality.

T T

Lt

82 THE GANDALF ENVIRONMENT
5.2.5. Display Management

Any ALOE user has some control over the layout of the different predefined windaws on the
screen, described in section 2.6. When more sophisticated environments, such as GANDALF
are developed, it becomes necessary to provide more types of windows than in a simple ALOE.
Examples of such windows include windows for debugging information, such as a window for
monitoring values of variables and a window to display the call stack structure of a running
program. There is also a need for a user window for input/output of the user program being
developed using GANDALF. A {ull description of the ALOE window manipulation interface can
be found in [Feiler 81].

With this expanded set of windows the screen organization becomes much more important
and the physical limitations of the screen have a greater impact. The context window stack
(see section 2.6) also becomes very important and is heavily used in environments iike
GaNDALF. The ALOE implementation environment provides the support for manipulation of

this stack from action routines.

Two special action routine calls were added to the existing set of calls for this window
management. They are the FAILUP and FAILDOWN calls, described in section 4.3.3, which
are used by the ALOE implementor to allocate and deallocate windows in the context stack, so
that the current context is always the one that is displayed, The context stack window is very
helpful in showing the current nesting of contexts but takes away one line from the program
window (where the context windows ére overlaid). Similar trade-offs exist for other kinds of

windows: useful information vs space restrictions.

One big design problem is that of the user window. As discussed above, it is used to
provide input/output for the user program being developed but it is a window and not a full
screen as any user program would normally assume. Difficulties arise if the user program
wants to make any use of the screen capabilities directly. On the other hand, to provide
language oriented debugging [Feiler 82a] it is necessary to share the screen between
program developmeni and program input/output. A solution to this problem was proposed in
the Copilot system [Swinehart 74] through the use of multiple screens. Better display
technologies will constitute a big step ahead by being able to provide full screen functionality
through independent virtual windows or displays in one screen as is done in AT [Ball 80],
Canvas [Ball 81] and in the display oriented Interlisp [Teitelman 77, Sproull 79].

il e

AT

R

gt Y P

THE GANDALF ENVIRONMENT 83

5.2.6. File Nodes

In stand-alone ALOEs and for simple environments, the developed programs are stored in a
single file. In more sophisticated environments such as GANDALF, the user is actually building
large data bases that include many programs. The need for a partition of these data bases
into separate files, became evident. The concept of file nodes was then incorporated into the

design of ALOE (see section 3.2.8).

The ALOE implementor determines the partitioning explicitly in the grammatical description
by indicating which operators should be roots of separately stored files. In the internal
representation, a separate file node is inserted on top of these special nodes upon their
creation. The file node contains information about the name of the file where the associated
tree is stored. When reading a subtree, the file nodes appear as leaves of the subtree with the

actual subtree stored in a sgparate file.

This partitioring of the data bases in separate files makes checkpointing of files rather easy
and is automatically handied by ALOE. Every time a user leaves one of these subtrees, if the
subtree has been modified, it is written out. Another advantage is that the whole data base is
never read when a session begins, but its different pieces are read as required. This has the
advantage that although previous versions of a module in a GANDALF data base are part of the
data base and of the logical structure, they are hardly ever read unless a user specifically
wants to look at them. This keeps the in-memory size «: data bases well below the actual size
of the data base with the obvious advantages in efficiency. The traditional critizism of syntax-

directed editors of using too much space [Morris 81], is no longer necessarily true.

File nodes can point to symbol table files that will also be stored separately. This feature is
extremely convenient for multi level symbol tables such asAthe GANDALF symbol table. Some
of the operators where the partitioning takes place coincide with the logical levels of the
symbol tables. For example, in GANDALF the file nodes associated with a module point to the

symbol table file for the module symbol table. .

It is possible to couple file nodes with visibility rules and contexts so that every operator
that is a root of 2 separately stored subtree can also be the root of a subtree in a window. As
the user moves into one of these subirees, a new window can be allocated to display the
subtree, defining a new context. However, contexts are not bound to the partition determined
by the file nodes. In GANDALF there are contexts that get opened at points in the structure

84 THE GANDALF ENVIRONMENT

that are not file nodes. On the other hand file nodes and contexts work together in a natural

manner.

The original design goal of fiie nodes was to make them totally transparent to the user, and

in most cases, they are. It was discovered, during their implementation, that file nodes were
legal cursor positions for the cases in which they appear as leaves of the subtree of a previous
context, when the associated subtree has not been read yet. A cursor-in command opens
the new context and moves the cursor to the associated node. If no new context is associated

with the file node, then the file node is not a legal cursor position and is then totally

transparent to the user.

In figure 5-1, we can see that in the BOXES context, the file node associated with module
BasicOps is the current cursor position. After a cursor-in command, the MODULE

BasicOps context is entered and the cursor is at the module subtres.,

The ALOE implementation environment provides a set of routines for tree traversal (see
E section 4.6.3) that hide file nodes from the ALOE implementor and perform automatically the
reading and writing of the associated subtrees. For the cases in which there is a need to get
‘ to the file node directly, especially for those action routines that implement functions related
to the symbol tabie manipulation, the ALOE implementation environment provides the

necessary routines to access the file nodes.

In the original design of file nodes, it was also intended to hide them from the ALOE
implementor except for the cases in which he explicitly wanted access to them as described
above. The idea was to handle ttem only through the set of tree traversal routines mentioned
above. Their internal structure design is different from the rest of the tree nodes (for details of
their internal structure see [Medina-Mora 81a]). This turned out to be a big flaw in their
design. During their implementation it was decided that file nodes could be legal cursor
positions for the cases described above, and thus they no longer were hidden from the rest of

the ALOE kernel and the ALOE implementation environment.

All the other tree nodes have a similar interna’ structure and can be handled in the
implementation code in a uniform manner. and only those routines that neeo to differentiate
among them will access the fields of the nodes according to their specific structure. But file
nodes with their different structure must be handled separately and in many parts of the
implementation code special cases for dealing with them had to be introduced. Their

|
i
i
|

‘]
i
|
]
]

e, o

T

A

A e

THE GANDALF ENVIRONMENT 85

box FRACTIONS is
module BasicOps;

local module Tools;
local module MylO;
local module Types;
Documentation

ano FRACTIONS

box LIBRARY
module String;
module TheirlQ;
module Misc,
Documentation
end LIBRARY

Context Window: root BOXES

Window: BOXES Node: FILENODE Class: componant Mode: Trea/Expert/Constructing

module BbasicOps

state: not reserved
provides:
struct fract *add{struct fract *fr1, *fr2);
struct fract *subtract{struct fract *fri, *fr2);
varsions:
impl 1
Documentation
Log

end anicOpsl

Context Window: root BOXES MODULE

Window: MODULLT Node: MODULE Class: component Mode: Tree/Expert/Constructing

.

Figure 5-1: Effect of a cursor-in command on a file node

implementation had an impact on the implementation of almost every aspect of ALOE, thus
making their irncorporation difficult. If the operating system provides a good virtuai memory
implementation, the need for file nodes disappears, becaiise the cperating system will read

the pieces of ihc data base only when they are explicitly referenced.

f i

Y TR T

T

ki

i

i

I

m

T

e e 111) e T T TR T TR e

86 THE GANDALF ENVIRONMENT
5.2.7. Parser Interface

An ALOE implementgr may want to provide a parser for programs built with text editors so
that they can be incorporated into the ALOE environment. Every ALOE, upon invocation can
invoke a parser that would build an abstract syntax tree from the text representation of a
program. These parsers must be written explicitly for any desired environment, they ars not
automatically genérated. The GANDALF environment does not include a parser, there are no

GANDALF data bases built as text files.

The automatic generation of parsers from the graramatical description is a natural
extension of this research. It would be desirable tc get a parser for the language for which an
ALOE is being generated so that all previously built prog-ams can immediately be

incorporated.

3.2.8. Multiple Concrete Representations

The ALOE implementor can define multiple views of the abstract syntax through the use of
several unparsing schemes in the grammatical description (see section 3.2.5). In this manner
the implementor defines the visibility rule’ or his language. Different unparsing schemes can

be defined to provide concrete representations at different levels of abstraction and detail.

Possible uses of muliiple concrete representations in specific ALOEs include the following:
at the top level the modular structure of a program can be shown, another urnparsing scheme
can be used to show all procedures and their specifications, another can show a procedure
call cross reference, another can show the full syntactic expansion of the program and yet
another can show a different syntax. For example, as shown in figure 2-7, in an ALOEGC, a
program can be unparsed with PascaL syntax for those constructs that are equivalent in both
languages [Feiler 82b). Other examples of the use of multiple concrete representations In

general are described in section 2.5.

Visibility rules can be caupled with the use of context windows. Figure 5-2 shows different
context windows of a GANDALF data base. At the BOXES level, the names of all the modules
are shown with the cursor placed at the module BasicOps. At the MODULE BasicOps level
the state of the module with respect to project management, the specification of the facilities

provided by the module and its versions are shown with the cursor placed at the

i e i R AR A R A

W

%
%

T O

THE GANDALF ENVIRONMENT 87
box FRACTIONS is module BasicOps
module BasicOps:A] state: not reserved
local module Tools; provides:
~local module MyIO; struct fract *add(struct fract *frl, *fr2);
local module Types; struct fract *substract(struct fract °*frl, °*fr2);
Documentation versions:
end FRACTIONS -
Documentation

box LIBRARY
module String;
module TheirlO;
module Misc;

Log
end BasicOps

Documentation
end LIBRARY

Context Window: root BOXES Context Window: root BOXES MODULE

STD impl1 1 ravision 4
with Tools, Types, MyIO, /LIBRARY/TheirlO; state: reservad by gandalf
default <no defaults>; procedure add .
revisions: procedure substract
[:::] Lﬁprocedure muqu
1
instantiations:
3
2
state: reserved by gandalf
Documentation
- Log
end 1

Context Window: root BOXES MODULE IMPLEMENTATION| Context Window: root eee REVISION

Figure 5-2: Context Windows in a GANDALF Environment

implementation '1°. At the IMPLEMENTATION 1 level, the specification of the implementation
is shown with the cursor placed at the most recent revision. The REVISION 4 level shows all

its procedures with the cursor placed at procedure main.

All these context windows are not shown concurreritly on the screen as the figure may

i Ty

A

—

88 THE GANDALF ENVIRONMENT

seem to indicate, but they are overlaid in the same section of the screen (referred to as
program window in section 2.6). Through cursor movement, these context windows are
allocated and deallocated dynamically, and a one line context stack window shows the
current nesting of contexts. With a better display technology, all these windows would not
have to be necessarily overlaid. Every une of these windows, as well as all clipped windows,
have their own cursor position. A possible extension to the basic capabilities of ALOE could
include the ability to have more than one windéw (or stack of context windows) on the same

tree or data base.

/* traced */ main()

{
struct fract *fri;
struct fract ® fr2;
char op;

frl = getfract():
fr2 = getfract();
op = getop();
it (op == 'a')
answer(fri,fr2,"+" add(frl,fr2));
else

if (op == 's')]
answer(frl,frz."-",sub;ract(drl.frZ));]

Context Window: root BOXES MODULE IMPLEMENTATION REVISION PROCEDURE

Window: PROCEDURE Node: IF Class: stat Mode: Tree/Expert/Constructing

>

Figure 5-3: Procedure Context Window in a GANDALF Environment

Figure 5-3 shows a normal GANDALF screen with the PROCEDURE main context currently in
the program window. The one line context stack and status windows and the command

window are also shown.

J T e

1T

THE GANDALF ENVIRONMENT 89

In the GANDALF environment other types of informati.on are also shown to the user. These
include documentation that are pieces of *axt associated with the whole data base and with
every module; log messages that keep track of the changes performed in the data base;
debugging information that is provided through two independent windows: the monitor
window used to show the values of certain requested variables as they change during
program execution and the callstack window that shows the structure of th9 call stack at any
point during program execution, for a detailed discussion of the representation of debugging
information to the user, see [Feiler 82a]. ' ‘

There are cases in which an ALOE implementor may decide that certain nodes must be
unparsed but the user must not modify them once they are created. The unparsing scheme
language includes a special command that indicates that a subtree may be unparsed but it
should not be visited. One example of it.s use in GANDALF is the date and user identification of
a log message that are automatically generated and unparsed with the log message but that
cannot be modified by a user.

5.3. Summary

The support provided by the ALOE system for the development of a large integrated
environment, gives the ALOE implementor fiexibility tc shape the resulting environment.
Through the implementation of action routines, the ALOE implementor decides when and how
much semantic checking is performed, establishes the communication with other parts of the
environment, etc. Through extended commands the ALOE implementor adds the necessary
commands to provide the functionality needed for his particular environment. Through
access control the ALoE implementor controls the behavior of the environment with respect to
different kinds of users. With multiple unparsing schemes, the ALOE implementor provides
multiple views of the environment and decides when and how much of the environment's data
is shown at any particular time.

el B e oo ZEMLS s T Sk e e e e e T = = = ao? A LI

91

Chapter 6

Evaluation and Technical Issues

6.1. Introduction

In this dhapter, an evaluation of the desici1 decisions discussed in previous chapters, is
presented, with an emphasis made on the technical issues involved. Some of the Important
aspects of the design of ALOE discussed and evaluated in this chapter include: its user
interface, the effect that the equipment chosen has on the design, the features of
programming languages that are particularly impacted in the design of a syntax-directed

editor, the impact that building a generic system has on the design, etc.

A comparison is made with a text editing environment as well as with other syntax-diracted
editors, followed by a discussion of some strategies used in the design and implementation of

the ALOE system and an evaluation of the success rate of the design decisions.

6.2. User Interface

6.2.1. Command Language Synt&ax

The command language Syntax of an ALOE defines the commurication language between
users and environment. Some of the vocaby “ry of the language changes from ALOE to ALOE,
because the language operators are part of the vocabulaury: they are the constructive
commands of an ALOE (see section 2.4.1). The basic editing commands remain constant but

extended commands are specific to every ALOE.

The use of control character keys as synonyms for editing commands provides the

necessary flexibility for a system with both novice and expert users. Novice users will use the

= =

'r,, ,_,V' = — =
?h FRECEDING PAGE BLANK-NOT FILMED

e e

At O

EVALUATION AND TECHNICAL ISSUES

explicit name of a command (or its leading characters) and, as they gain experience, they will
use the control character synonym. Cursor pad function keys are used to invoke cursor .
movement very successfully, other function keys could also have been used for the most
common editing functions, as is done in the Synthesizer [Teitelbaum 81a).

Multiple language commands in one line saves intermediate states that couid be
considered unimportant and enhances the system response time by updating the display only
after all commands have been applied. On the other hand, this could make it difficult for the

user to recover from an error if the sequence of operators was not the desired ona.

6.2.2. Editing Expressions

In most other syntax-directed editors and environments, programming language
expressions are entered as text and parsed by the editor. Some systems [Teitelbaum 81a! are
hybrid, that is, the rest of the program structure ‘s entered constructively and expressions are
entered as text. Other systems [Donzeau-Gouge 80, Archer 81b] simply support parsing for
input of all the language constructs. Other systems [Alberga 81] even support incremental
parsing for the whole program. . '

There is a clear motivation for parsing expressions: most users are used to text editing,
parsing expressions is rather easy, and expressions are difficult to deal with structurally if one
thinks of the hierarchical structure of expressions as specified in a BNF formalism [Backus
59]. Furthermore, expressions are displayed in infix form whereas to think of them structurally

amounts to dealing with them in prefix (or postfi;) form.

One of the research goals of this thesis was to investigate the feasibility of using struct ral
aditing at all levels of the language, including expressions. To this end, a different kind of
grammatical description was developed (see chapter 3). An important aspect of its design is
that it provides a way 10 express a flat structure for expression. instead ot a hierarchical one.

In this manner, all expressions are at the same syntactic level instead of in a hierarchy.

Experience with the use of ALOEs for several different languages showed that it was easier
than anticipated to construct expressions. While unparsing, all expressions are automatically
parenthesized by ALOE, using precedence values specified in the grammar (see section 3.2.4).

The difficulties arise with editing the expressions. Special commands, such as .nest and

EVALUATION AND TECHNICAL ISSUES 83

transform (see figures 2.4, 6-2 and 2.5), that are not available in other systems (with the
exception of the Synthesizer, which has been extended to support some kinds of
transformations [Teitelbaum 82]), are very helpful for editing expressions.

The commands .clip, .Insert, .nest and .transform are very successful because they are
conceptually simple. The user has no difiiculty in understanding the effects of the tree
transformations performed by them. On the cther hand, there are some transformations, such
as a change from .t,he expression 'a + b * ¢’ tothe expression '(a + b) * ¢’,shownin
figure 61, which implies a simple change of the evaluation order or the operations. The user
may be used to thinking of this change as a simple insertion of parenthesis with a text editor.
We could describe this transformation as a rubber pull in which a node of the tree is pulle.
upwards as if the edges of the tree were made of rubber. The change would be very difficuit
to express in terms of the modification of the tree structure, as can be seen from the syntax
trees in the figure.

Display Syntax Tree
it (<exp>) IF
<exp> ASSIG
d PLUS
a TIMES
b c
1 (<exp>) IF
' <exp> ASSIS
d TIMES
PLUS c

Figure 6-1: The Rubber-Pull Tree Transformation

(1

T

94 EVALUATION AND TECHNICAL ISSUES

A set of more complex tree ‘ransformation operations couid be provided to solve the
probiem for the exampie above, and other simiiar ones. However, these compiex operations
may be difficult to understand and their effects difficuit to anticipate. There couid aiso be
examples, such as a very large expression, for which the set of operations cannot be easiiy
appiied to achieve the desired transformation. The semantic implications are significant: an
action routine cali type (see section 4.3) wouid have to be added for every one of these
transformation operations. The impiementation of action routines wouid be made more
difficult because coda wouid have to be written for eilery one of these operations and would
have to understand aii the semantic impiications of the transformation. On the other hand,
these kinds of transformations would be very rarely used and so, their complexity is probably
not cost efficient.

As the user‘can edit 5ubexpressions, the user only needs to deal with those parts of the
expression that must be modified. Any modlfication can be achieved with the use of the set of
simple tree transformation operations of ALOE. As these changes are performed in a very
localized context, the extent of the semantic effects due to the changes is very limited.

it could be said that the user shouid have the option to decide whether he wants to enter
expressions textually or structurally. indeed, it wouid be rather easy to provide an expression
parser in the current ALOE system through action routines: a terminal operator of type
constant is added to class expression; the user invokes that operator and gives the textuai
expansion of the expression as the constant's value. The action routine parses the

expression and substitutes the node with the resulting subtree.

The argument in support of user choice couid also be taken to imply that parsing should be
provided at all levels of the ianguage. The basic flaw with this argument is that the major
.motivation for structured editors is precisely that of dealing with programs structuraily rather
than 12xtually. It is very confusing if the user has to enter his programs as text pieces and see
and edit them as structures. There are some language-oriented editors such as the PDE
system [Alberga 81] which support text editing for all constructs of the language. This system
works in conjunction with an incrementai parser that updates an internai parse tree after
every change is made to the text. Section 6.8.4 gives a detailed comparison between PDE

and ALOE.

Most users, if given the choice, will choose the method or tool they are famiiiar with

I

EVALUATION AND TECHNICAL IZSUES 95

especially if they feel comfortable with it. This precludés them from investigating and iearning
the benefits of new toois or methods. This applies not only to the problem of editing
expressions but applies in a more broader sense to the general problem oi structure editing
vs. text editing.

What makes expressions different from statements is that they are always shown in infix
form. There is a natural tendency to deai with statements.structuraliy and this Is not
necessarily the case with expressions. Evidence of this situation is the hybrid design ot the
Synthesizer [Teiteibaum 81a].

Display Syntax Tree

——————————

it (Cexp>) IF

<exp> ASSIG

PLUS

if (<exp>) If

d ¢ (a+b)* Coxp> | ",/”’g\\‘\‘\\

<exp> ASSIG

PLUS <exp?

Figure 6-2: Nesting an addition intoa multipiication

As we have already stated, one goal of a friendly user interface is to make it easy to
accomplish simple and frequent actions. However, the fact that something was easy to do
with some tool does not mean that the underlying concept is simple. For example,
modifications that represent compiex tree transformations can sometimes be accomgplished in

a simple manner with a text editor and might be much more difficult with a structure editor.

QI

96 _ EVALUATION AND TECHNICAL ISSUES

Other tree transformations like 'a + b' Into '(a + b) * ¢’ amounts to a simple .nest
followed by the construction of 'c', as can be seen in figure 6-2. ALOE supplies the
parenthesization of the resulting expression automatically. The user might have forgotten to
include them if he was using a text editor.

Itis very possible that the problem of dealing with expressions structurally can be solved by
unpa-sing them in prefix form just as they are entered. Unfortunately this has two important
drawbacks. First, users are too used to reading and understanding expressions in infix, even
if they like to enter them to a structure editor or to a pocket calculator in pre.ix or postfix form.
Secondly, we are gengrating editors for existing programming languages and would like to
keep the syntactic correctness of the concrete representation of programs. However, this
could also he solved by providing several unparsing schemes (see section 2.5), one of them
unparsing to the legal syntactic form, and ‘others to provide a better structural view of the
programs.

6.2.3. Lists and Optional Operators

Lists and optional operators are related In several ways. This relationship can lead to some *
confusion in the behavior of an ALoE: All lists (i.e. variable arity non-terminals) in an ALOE can
be empty. When the current meta node is an element of a list, a <cr>, used as a command,
indicates the termination of the list expansion. If a meta node was the only element of the list,
the result is an empty list. As we already discussed in section 3.2.2.2 there is a need for a
differentiation in the grammatical description between lists of zero or more elements and lists
of one or more elements, and probably with lists of two or more. If this difference is not made,
syntactic inaccuracies can be generated in the concrete representation. For example, an
empty list of variables in a declaration in C [Kernighan 78], such as

‘int
which is a syntax error: "missing variable name(s)". Tnis can be solved in the current system
by unparsing something special when the list is :mpty, but the syntactic error still exists. If

this were a list of one or more elements, a meta node would be left in the list when the last

element is deleted, so that it never becomes empty.

Another concept missing from the grammatical description is that of optionality. To solve
this problem, an ALOE implementor would include the operator EMPTY in the classes where

the operators are optional and the user could choose EMPTY as the operator whenever he

T

it i

TR

A A

EVALUATION AND TECHNICAL ISSUES 97

did not want to instantiate the corresponding optional operu.or. To improve the user
interface, ALOE recognizes all operators that start with the characters EMPTY as spucial
operators. Whenever <cr) is typed. and the current meta node is not in a list, EMPTY is
automatically applied as a constructive command if there is an operator in the current class
that starts with the characters EMPTY. '

-

Consequently <cr> as a command has two meanings, that although are similar, could lead’
to some confusion. Empty lists and the EMPTY operator are two different structures. Oneisa
non-terminal node and the other is a terminal one. Cursor movement and editing commands

behave differently.

Another important problem with empty lists and EMPTY operators Is thelr concrete
representation. If‘ nothing is unparsed for them and the cursor is moved into them, no
highlighting is done and the user will be confused as to where the program cursor is. The
information is included in the status window (see secticn 2.6), but that only tells the operator
name and does not give its location. So, the user would know that the program cursor is at
the EMPTY node but not where It is.

The unparsing scheme of a list can specify a special unparsirg to be used when the list is
empty. Similarly an EMPTY operator can be un~arsed as a simple blank character. When the
cursar Is not at the node, its unparsing \s Qirtually meaningless, but when the cursor is moved
into the node, the single blank character i» mighlighted clearly indicating the cursor position.

Even with these facilitles, dealing with aptional operators can become very cumbersome In
the cases of languages such as ADA [DoD 80] where there are many optional operators. One
possible solution would be to design several types of optlonal operators: those that are very
likely to be used, those that are not used frequently and those that are very rarely used.
Unparsing could be done accordingly, the frequently used ones always shown whereas the
rarely used ones only shown by special command.

Action routines can automatically make the nodes of rarely used optional operators into
EMPTYs during the CREATE action call (see section 4.3.1) of the operator that creates the
subtree where these optionals appear. This is also another useful application for multlplé
unparsing schemes: the normal uhparsing scheme hides the undesired optionals, an
extended command can be used to show them (by changing the unparsing scheme).

A i

[

o8 EVALUATION AND TECHNICAL ISSUES

The 3ynthesizer [Teitelbaum 81a) has a special cursor mox;ement command that lets the
user go to an optional part whereas the normal cursor movement command skips these
optional parts which are not even displayed if they have not been instantiated. The user must
know that there is an optional part there. The proposal mentioned above, of using special
unparsing and a specific extended command to show the optional parts is similar to the
Synthesizer's solution.

6.3. Device Issues

6.3.1. General Characteristics

Display characteristics play an enormous role in interactive systems. Characteristics such
as bandwidth, size of the screen (measured by the amount of information that can be
displayed), ability to highlight parts of the screen, treatment of the screen as a two
dimensional display rather than as a one dimensional scroller, input devices, etc., can make a
big difference in the usability of an interactive system independently of its rea/ functionality.

Far the purposes of our research we decided to investigate the feasibility of ALOE for a
particular class of widely available terminals with a minimal set of hardware capabilities which
included cursor addressing, insert and delete of characters and lines and highlighting
capability. The initial implementation was built for the Concept-100 family of terminals [HDS
79], which has precisely these capabilities, and is being extended to other similar terminals.

if the bandwidth of the communication line were large enough to allow instant redisplay of
the screen, ALOE would simply redisplay the whole screen after every interaction. As this is
not the case even for the highest bandwidths normally available (e.g. 9600 baud) it is
necessary to have an intelligent display interface that would update the screen optimally using
the terminal capabilities to update only the parts of the screen that change after every
interaction. To this end, ALOE uses the display package daveloped for UNix'™ Emacs [Gosling
81a, Gosling 81b]. The package uses an optirﬁal updating algonthm.

The smaller the bandwidth the more important the display package becomes. As the
bandwidth increases, the optimal algorithm becomes less critical. At a certain point the cost
of redisp’aying a whole line becomes cheaper (i.e. faster) than the sequenrce of character

insert and deletes necessary to update it, because of the time it takes to perform the update

=
:
=
=
[

At R R R

T

T e T T T

EVALUATION AND TECHNICAL ISSUES 99

algorithm. Any redisplay algorithm should take this into account, the one ALOE uses [Gosling
81b) does.

As discussed in section 2.3, highlighting the area cursor is very important in the context of
stiucture editors. The area cursor really makes the difference in emphasizing the structure of
the program as the user moves through it. Highlighting this area cursor is a device
characteristic that is critical if the area cursor concept is to have a real feedback and
information value.for the user.

The terminal highlighting capabilities will have an impact on the user interface of ALo€E. The
optimal situatior is that highlighting be specified independently from the characters
themselves, so that, in order to update a screen In which the only change from the previous
one is the highlighting, the old highlighted characters and the new ones do not have to be
redisplayed. This sltuation typically occurs on cursor movement which Is one of the most
frequent operations in an ALOE. The Concept-100 terminal has this capabllity.

The highlighting capabillties of most terminals require that the involved characters be
redisplaved. This will work fine as long as the bandwidth is large. Some tenninals have a
rather unacceptable characteristic: for every line with highligihting two extra characters from
the display are used to set the highlighting. This is a source of confusion to the user.

Finally, the type of highlighting is also important. As said before the purpose of highlighting
is to show the area cursor, thus making a strong emphasis on the structure of the programs.
Reverse video has worked just fine for these purposes. A blinking highlight would be

distracting (end even annoying for large cursors).

6.3.2. Windows

The concepts of contexts and windows (discussed in section 2.6) are very successful In
achieving the desired functionality. They also have proven their usefulness in other
interactive systems suchs as the Display Oriented Interisp [Teitelman 77}, Smalitalk [Ingalls
78], and others. The implementation of windows is only possible when the screen is
considered as a two dimensional display instead of as a one dimensional scroller (as in
Mentor [Donzeau-Gouge 80]).

The size of the screen (typically 24 lines of 80 characters for the types of terminals

e e A e

T

anmmmmmmmmmmmww (A A TR
[l

100 EVALUATION AND TECHNICAL ISSUES

considered) is definitely a limiting factor in the usefulness of windows, not only because of the
limi‘ed amount of space, but also because such windows cannot be easily separated (with
clear borders) or partially overlaid (as we overlay pieces of paper on the top of a desk):
orders would take away precious space needed fnr real information.

One of the first improvements would be to take advantage of terminals with larger screens
or with additional local memory. Several screen images could be stored in the terminal's
memory and then switching from one screen image to another would be instantaneous. This
capability could be used to help solve the problems, discussed in section 2.6, related to the
switching between different displayed contexts, the coexistence with user program 1/0 as
well as to provide a larger window size for severai of the windows mentioned in that section.

Beyorid this, screens with raster scan displays are more sultable for windowing and
distribution of different kinds of information [Teitelman 77, Sproull 79, Ball 80, Eall 81]. The
use of these kinds of displays would greatly improve the user interiace (and the usability) of

ALOES.

Nevertheless there are some limiting factors to the use of windows and contexts.. First of
all, given any display size, it would be used up rather quickly, and unfortunately, real screen
size cannot be increcsed arbitrarily. On thé other hand the amount of partially overlaid
windows that the user can manipulate without gétting confused is also limited. This means
that, even with larger and better displays, screen organization and management for its optimal
use is still an extremely important cohsideration in the design and implementation of any

interactive system,

6.3.3. Wrapping Long Lines

There can be instances in which a line in a program is wider that the window used to
display it. It is important to have some way of accessing tnose parts of the line that do not fit
in the window. As a first approach to a solutior: ALOE scrolls the window to the left when the
cursor includes a long line and tries to display the entire cursor. There are also explicit
editing commands to scroll the window left and right. Unfortunately many times simple cursor
moving commands in and out of those lines causes the screen to scroll back and forth which

can be relatively annoying.

|

=
=
E
L
5

U

i

A T

al

EVALUATION AND TECHNICAL ISSUES 0 101_

A solution to this problem, adopted by the Syntheéizer [Teitelbaum 81a), is to move the
starting point of a line to the left margin, if it would start past some predefined column position
that varies according to the width of the window. The following lines would then be indented
relative to this line. If a phrase (comments, expressions, etc.) is too long, it is broken and
indented relative to its starting Hosition in the previous line.

The solution to this problem is to have fiexible or conditional line breaks, as pruposed by
Oppen [Oppen 79), incorporated to the unparsing schemes language. In this manner, lines
are broken depending on the length of a particular line and the available width of the window.

6.3.4. Enhancements

As discussed in previous sections, even though the terminals we are dealing with have
many advantages and are definitely sufficient for simple ALOEs, they are still very limited for
the kinds of integrated environments that we want to develop, such as the GANDALF
environment described in chapter 5. The number of windows is very limited and some of them
must be overlaid. A better display could provide a larger collection of windows.

With respect to user input to ALCES, the current system only supports keyboard input.
Although ti’ue use of control characters and function keys has greatly improved the user
interface, a pointing device, such as a mouse can be used to point to specific parts of the
screen as in the Eravo text editor [Lampson 79]. Coupled with the display's improvements
discussed above a pointing device would make possible the use of menus that have been
used successfully In other Interactive systems [Teitelman 77, Ingalis 78]. The pointing device

‘could also be used to indicate cursor movement by moving it to different locations on the

sCreen.

6.4. Language Features

In this section we try to identify those programming language features that are impertant In
the ALOE context, that is, in the context of structured editing.

It is ce: uinly the case that the language features that are well structured are best exploited
by a structure editor. Whereas features that lack structurs, such as macros and comments

(see following sections) are definitely difficult to handle.

e e . T

i

=
=
3

e e

MM s

T

T

T

it b aaani BRI

102 ' EVALUATION AND TECHNICAL ISSUES

One interesting aspect of programming languages that is greatly impacted by structured
editing is that of ambiguity of the language sentences. A typical exampie of ambiguities is the
well known dangling else probiem of certain ianguages. The ambiguity only exists in the
concrete reprasentation, because it has to be parsed =iid e/se parts have to be associated to
the corresponding if statements. in an ALOE the user aiways Indicates by construction the
kind of statement he wants built (this is the principie behind the constructive approach of
program buiiding), and therefore, there is no ambiguity as to which e/se part matches every if
statement.

As long as the text produced by ALOE's unparser willi not be parsed, indentation can be
used to indicate the matching e/se parts. in the extreme case of an application of an ALOE for
which the text will be parsed eisewhere, action routines can generate dummy e/se ciauses to
solve the amhiguity of the concrete representation.

Another typical example involves constructs like 'fun(arg)’. The ambiguity here is that
in certain languajes it could either be an array reference or a function cali. Cumpilers must
use semantic krowledge to disambiguate the construct. In an ALOE this Is definitely not
necessary bec ‘i the user has already indicated the kind of construct he wants buiit. The
concrete represe- ation of the construct is totally unimportant except for feec}back pumo§as.

Other types of syntactic sugar like punctuation marks such as commas, semicolons and

parenthesis are often incorporated into languages to disambiguate constructs or to make the
parser's job easier. As parsers are no longer needed, syntactic sugar can be much simpiified
and some of it even eliminated. New concrete representation styies can be adopted that give
the user better feedback about the real structure of his program but that do not have to be
parsed and neither has the user to type them.

This aiso affects language design because it is now easy to deal with ambiguous
languages, it is no longer necessarily bad feature for a language to have ambiguous
constructs (with respect to parsing) as long as their visual representation is unambiguous (by,
for example, assigning meaning to indentation level).

-

i

|

EVALUATION AND TECHNICAL ISSUES 103

6.4.1. Macros

The idea of macros and structured editing clash in some important ways. Macros
conceived just as text substitution have no struciure to them. Macros are designed with a
preprocessor in mind: the preprocessor performs the textual substitution before the parser
processes the program. Tha program that the user sees is different (in its form) from the one

the compiler gets. In the context of structured editing there is no such thing as text

substitution.

Most uses of macrcs in languages such as C [Kernighan 78] are due to lack of richness of
the language itself. Language constructs such as constant deflnitions, in-line procedures,
type definitions and enumerated types, etc., should be used instead of macros (version 7 of C
fixed the last two items in this list). Some other uses Include modification or abbreviation of
language syntax, and these can be solved through different concrete representations through
unparsing schemes. '

The design of the ADA programming language [DoD 80] solves the problem of macros by
providing some of the language constructs mentioned above as well as generics, some
instances of which can be thought of as some kind of structured macros.

6.4.2. Comments

Commments are extremely irﬁportant because they are the only way to provide in-code
documentation, which is fundamental for good programming style an«l practice. The problem
with comments is that they have no internal structure. They are mostly designed with lexical
conventions and cdesigned to be thrown away by the lexical analyzer and not kept or
processed by any other tools. Comments are normally not considered to be part of the syntax

of a language, or a meaningful language construct.

A comprehensive design of structured comments can be added to any language
incorporating them into the abstract syntax. This design would differentiate between different
types of comments and their concrete representation would use different formatting styles for

them, and would, therefore, make it much easier to understand documentation.

ALOE itself does not understand the concept of comments (as it understands the concept of
optionality through the EMPTY construct, see section 6.2.3). Comments are incorporated into

= S e ES = e

1l T

e ————————

104 EVALUATION AND TECHNICAL !SSUES

ALOEs directly through the grammar as string constants. As part of the design mentioned
ahove, ALt could understand comments as a special concept in itself.

One of the biggest protiem with comments is that even though in the context of ALOES,
parsers are no longer needed, there is sometimes the need to write a parser to translats
programs into ALOE's internal language representation to be able to Incorporate existing
textual programs into the environment. The parser must then understand comments and
must be able to decide where and how to associate the comments with the Internal structure.
As there are no fixed rules as to how comments are associated with the language constructs
and every user has his own conventions, the task of the parser is ciose to Impossible. There
will always be situations In which the comment wiil be associ.ted with the wrong construct.
For example, some people like to put a comment before the statement it is referring to and
others like to put it after the statement. in many situatlons the reader must understand the
comment to be able to determine which construct it is referring to.

Comments are very necessary in programming languages but they should not be
unstructured. New programming language design should incorporate comments in a
structured way associating them with the construct of the language. The PL/CS language of
the Syntiesizer [Teitelbaum 81a] includes commented statements. These comments are also
used as placeholders for the whole statement for elision purposes (to hide implementation
detail to be able to show a greater context in the screen). The structured comments design
should not be tno simplistic or restrictive so that the user will not feel that he cannot place all
the comments he wouid like to include.

6.4.3. Extensible Languages

ALoEs have difficulties with extensible languages: the syntax tables, generated by the ALOE
generator, are static, and thus new operators cannot be added. This precludes the pessibility
of making new operators or types become legal operators of the language. For example, it
would be desirable to add every new type as a legal operator of class type. The probiem Is
that the syntax tables contain the permanent structure of the language and informatior. in
them is used when files are read or written. The temporary operators would have to be kept in
aseparate table where information is not used for storage but only for user interface.

e e —eeee S==c e e e

%
E
:
.
:

et

EVALUATION AND TECHNICAL ISSUES 105

6.4.4. ALOE for Othe} Structures

Throughout this dissertation we have emphasized the generation of ALOEs for program:ming
lunguages and systems because they are their motivating appiication. ALOEs can aiso he
generatad for other languages and structures that can be expressed using \he grammatica!
description. An important exampie is Aloegen, the ALOE for creating and editing grammatical
descriptions. The -vntax of the grammaticai description can be expressed in terms of itseif
2nd thus, the same ¢ sneration process can be followed as for other ALOEs. Other interesting
examples include an A:.0€ for SCRiBE [Notkin 82d] and an ALOE for a mail system [Notkin 82a].

SCRIBE [Reid' 80] is a document production system. ScriBE documents are very structured.
Most of them are divided into chapters, sectlons, subsections, etc. Within these structures
there are other structures that specify special formatting characteristics'such as tabies,
examples, itemized lists, etc. These structures can be expressed using the grammaticai
description of the ALOE generator. The terminal - ‘erators cf such an ALOE are paragraphs of

text.

An ~lectronic maii message has a fixed structure. It has a header and abody. The headeris
divided into several fields, such as the identification of the message, the sender, the
recipients, the subject of the message, etc. This structure can be easily described using the
grammatical description and an ALOE can be generate "~ it. Invocation of the mailer éystem.
once the message is composed anuJ the reading of mes. ~es from .he maii boxes of users,
would be done through action routines and extended commands.

Before any realistic use of ALOEs for these applications can be done, it will be necessary to

.add support for direct text editing within ALOE instead of invoking a separate text editor for

large pieces of text.

T

e

106 EVALUATION AND TECHNICAL ISSUES

6.5. Language Issues

6.5.1. Editing language vs. Edited Language

Traditional programming environments provide a collection of languages. Every tool of the
environment has its own language, so the overall language Is an ili-formed one with no
consistency or uniformity. The user must remember which tool of the environment he Is

communicating with.

By providing a uniform user interface to an integrated environment through ALOE, the
language of commuaication is the command language of ALOE. Part of the vocabulary of this
language changes from ALOE to ALOE: the operators of the language are the constructive

commands of ALOE (see section 2.4.1).

It is important to note the difference between this editing language and the language of
program or structures being edited (the edited language). ALOE does not use this edited
language as its language of communication, but, on the other hand, there is an important
connection between the two languages: the constructive commands of the editing lenguage
(i.e. part of its vocabulary) represent the constructs of the edited language.

An extension of the capabilities of the ALOE system could include the possibility of editing

the editing language, so that editing macros could be provided.

6.5.2. The Grammatical Description

The ALOE grammatical description Is operator oriented, that is, the emphasis is placed In
e constructs of the language rather than on a collection of productions. When the ALOE
nap'ementor assigns names to the constructs of his language in the grammatical description,
he is actually defining part of the vocabulary of the environment language (the editing

language).

The separation of abstract syntax and concrete representation, which allows the
specification of .multiple concrete representations, permits variants in the form of the edited

language. We can think of them as different views of the language.

LT O

EVALUATION AND TECHNICAL ISSUES 107

As we have already pointed out, some important concepts are missing from the design of
the grammatical description. It is lacking lists with at least one element (i.e. lists that cannot
be empty), it should have a way of expressing optionality and one should be able to include
associativity values In addition to precedence values for operators.

Non-empty lists are necessary to be able to avoid syntactic inaccuracies in certain
constructs of languages that require them (see example in section 6.2.3). Optionality is a
concept that appears in most languages and it would be much better if ALOE would
understand the concept rather than include it by way of the special treatment of operators
that start with the characters EMPTY (see section 6.2.3). Associativity values are needed for
the correct parenthesization of expressions that include non-associative operatoré. for
example the expressions 'a - b - c’and 'a - (b - c)’ are notequivalent.

All of these missing concepts should be included in the next implementation. The problems
caused (as already discussed) are well understood and their solution is feasible. They were
not added to the current version because other additions and improvements were considered
more important and not because any important technical difficulties.

6.5.3. Unparsing Schemes

The experience with the ALOEs generated so far tells us that, when the formatting of
programs is Jone automatically and in a reasonable and consistent way, the users rapidly get
to like it. The mair reason for this is that users do not have to deal with formatting explicitly
any more. It is also the case that several formatting styles can be incorporated into any ALOE
through multiple unparsing schemes.

In sections 2.5 and 5.2.8 we included many examples of the different uses of muiltiple
concrete representations. Unparsing schemes provide a very powerful mechanism to achleve
the translation from the abstract syntax structure Into several concrete representations. The
ability to change from within an unparsing scheme, the scheme used to unparse the offspring
of a node provides some ability to unparse based on context. For example, in the GC [Feiler
79] to PascaL [Jensen 74] translator [Feiler 82b], referred to in the example of figure 2.7, the
GC increment construct 'i++' is unparsed in the PASCAL version as 'i := ! + 1’ except
when it is located as the increment in a for loop, in which case it is unparsed as the keyword
TO. Similarly, the decrement construct '1-~' would be unparsed as DOWNTO if found in the

for loop.

R

e AR

i

108 EVALUATION AND TECHNICAL ISSUES

*However, the unparsing scheme language does not provide by itself all the desired
functionality of a general unparsing mechanism. The basic problem is that the concrete
representations are fixed because they are statically determined by the unparsing schemes.
Some dynamic elements can be obtained if the unparsing schemes are combined with actlon
routines.

An example of such an occurrence, taken from the GC to PASCAL translator [Feiler 82b], is
the return statement in_ a function. In GC, the statement is unparsed with ‘he keyword
return followed by the value returned. In PASCAL the value is assigned to the function name
in the body of the functjon. When the statement is being unparsed, the unparsing scheme has
no access to the name of the function at all, and so, direct trahslation cannot be
accomplished. Actlon routines can be used to achieve the desired effect in the following way:
the structure of the return statement is defined to have two offspring instead of one. The
action routine associated with the return operator will fill the name of the function. In the
unparsing scheme for GC only the value returned is shown. In the PASCAL scheme the name
of the function is also unparsed and is available at time of unparsing.

Another similar example occurs in the implemr:ntation of Aloegen [Notkin 82c¢], the ALOE
used to create and edit grammatical descriptions. The main unparsing scheme is used to

show the structure of the grammar as is shown in the example of figure 3-1. The other

unparsing schemes are used to praduce the syntax tables that form the language knowledge
of an ALOE. At some point in the generation of these tables it is necessary to know the sizes of
some lists. This knowledge is not available directly from the unparsing schemes. This
problem is solved in a similar way as the previous example: an additional offspring is defined
for such constructs, its value is filled in by the action routine, it is unparsed when needed and
ignored by the other unparsing schemes.

The solutions to the problems mentioned in these two examples use 1he basic mechanisms
of ALOEs: action routines and multiple unparsing schemes. However, they require the
redefinition of the abstract syntax structure to achieve the desired result, even though the
fogical structure of the language is not changed. It is the lack of processing power at
unparsing time what forces these modifications. In section 3.2.1 we discussed the difficulties
associated with the modificatlons to the structure of operators in the grammatical description.

In order to provide a more general mechanism, several additions to the unparsing scheme

GG

EVALUATION AND TECHNICAL ISSUES 109

language must be made. These include control structures, such as conditional unparsing
schemes that could test several conditions and unparse based on them, loop constructs for
unparsing elements of lists, and functions specified in the unparsing schemes and invoked by
the unparser, that would compute the necessary information without requiring a change In the
structure of the operators. Other simple extensions would Include mechanisms to deal
intelligently with leng lines and the ability to specify conditional line breaks, as was already
mentloned in section 6.3.3. -

6.6. Generic Systems

It is different to build a syntax-directed editor for a particular language than to build a
generator of such editors. Some design declsions are influenced by this difference. In
particular, design declslons must be made to provide solutions with general mechanisms

rather than providing a specific solution that solves a problem for one language but not for

another.

For example, in the design of the command language for an editor built for a particular
language, such as the Synthesizer [Teitelbaum 81a), the command names for editing and
language commands can be chosen so that they would not have similar leading characters in
their names. This allows a single naming convention to be used for both kinds of commands.
In a generic system, the names of language commands are not known in advance, they are
determined by the language description. The choice of different naming conventions for both
types of commands lets the ALoE implementor select good mnemonic names for his language
constructs without having to be concerned with the names of editing commands. It may also
be desirable to make the user aware of the difference between editing and language
commands. Introduction of new editing commands will not cause the ALOE implementor to _
rename some of his language commands that could have similar leading characters in thelr

names as those of the added editing commands.

Another example is tire choice of cursor display. A single character cursor may be
ambiguous in some instances (as seen in figure 6-3). In a particular language there may not
be any situations in which a single character cursor is ambiguous, or there may be just one
language construct that is ambiguous (as in the case of labeled statements in PL/CS). If an
editor is built for these languages, the single character cursor may be a good design decislon,
but in a generic system it is important fo provide a more general mechanism, such as the
area-cursor of ALOE, that solves the problem pf these potential ambiguities.

(T

=

110 EVALUATION AND TECHNICAL ISSUES

In an editor for a particular language, unparsing rules are part of the code of the
implementation. In a generic system, these rules must be specified in some language. The
unparsing scheme language of ALOE described in section 3.2.5 is one such language.

6.7. Comparison With Text Editing Environments

it would be unfair to compare structure and text editors for creating and editing programs,
in terms of the time it takes to do it. The aims and goals of both types of systems are very
different. For the text editor the contents of the file being edited is unimportant, it only
understands about characters (and possibly lines and screens). No knowledge or support
(except for some small support for formatting programs and template expansion In some
editors) is given when the text editor is used fpr editing programs as opposed to editing a
document. ALOE is knowledgeable of the contents of the entity being edited. The ALoEe
structure allows the environments to take advantage of a large collection of informatlon for
processing while the user is entering and modifying his program. This means that an ALOE
may be doing much more processing than just ensuring syntactic correctness. This can
include semantic checking, automatic gensration of program pieces, lexical analysis,
invocation of the code generator, etc. (see section 4.2).

The compilation cycle is a more realistic unit for comparison (for aloes for programming
languages). it can be defined as the time (or number of keystrokes) it takes to construct a
program and get it to compile correctly in the syntactic sense (i.e. no syntax error left). This
often requires successive invocations of the text editor and the parser.

It is also true that the text editor and the corresponding parser were not designed as an
environment, so we would be using two almost unrelated systems together, for comparison
against an integrated environment. This means that the two systems are not directly
comparable in terms of time or keystroke count.

On the other hand, the combination of UNix'™ EMACS [Gosling 81a] and the Make facility
[Feldman 79] in UNix'™ can form an interesting compiling anvironment in which Unix™
EMacs understands the error messages caused by the compiler invocation (through line
numbers associated with these errors), and places the user in the position in the text file
where the error occurred. This is of great help in reducing the time it takes to get a program
correctly compiled. But, of course, UNix'™ EMACS is not preventing any kind of errors nor is it

Gl

T T T T, M T

EVALUATION AND TEQHNICAL ISSUES 11

doing any extra processing while the user is editing his program, except for some support for
formatting programs of certain languages that it knows about.

ALOE guarantees the syntactic correctness at all times. This correctness is with respect to
the abstract syntax structure. A concrete representation can be provided that would be
syntactically correct if the program text were to be parsed, even though it may not be the main
concrete representation preferred by the user. As previously discussed, ALGE may also be
doing other kind; of processing. Formatting is also handled automatically and several
formatting styles can be supported by an ALOE. These styles are expressed in terms of
unparsing schemes and are not madifiable by the user. A possible extension of ALOE could
allow the user to define unparsing schemes as long as he does not get more access to nodes
than what the defined unparsing schemes give him.

Another comparison measure is the size of the program files stored as text by a text editor
and stored as trees by ALOE. ALOE stores semantic information (currently one computer word
per node in the tree) that can be reused when the program tree is read. If this were not the
case, the size of program tree files would be smaller that the corresponding text files. With
the added semantics and some space used as a file header to identify the language of the
ALOE and other information, the sizes of program files are comparable fdr large programs (i.e.
of at least 60 lines of code), while for smaller programs the text files can be of anywhere from
half the size to comparable size of the corresponding tree files deperiding on the amount of
white space (i.e. indentation) contained in the text file. The reason for this reasonable file
sizes is that all the keywords, punctuation marks and all the white space required in the text
file are not stored in the tree file.

6.8. Comparison With Other Syntax-Directed Editors

In this section we will discuss the similarities and differences of ALOE with other syntax-
directed editors. We do not intend to discuss all of these editors, but we have picked a set of
well known editors for this comparison.

I

it

e

A

112 EVALUATION AND TECHNICAL ISSUES

6.8.1. The Cornell Program Synthesizer

The Cornell Program Synthesizer [Teitelbaum 81a] goals are quite different from ALOE's.
This explains the different design decisions. First and most importantly, ALOE is a generlc
system, that is, it is a generator of syntax-directed editors instead of an editor built "by hand"”
for a particular language. The Synthesizer is a syntax-directed editor impiemented for PL/CS
[Conway 76] a small subset of PL/l. The Synthesizer does not use different naming
conventions for editing and language commands. Editing command names were deslgned so
that they wouldn't conflict with the PL/CS language commands.

The Synthesizer was implemented for a microcomputer and for this reason its power has to
be limited to work for small programs. ALOE was designed to permit the generation of large
integrated software development environments. such as GANDALF [Habermann
79b, Habermann 82}, described in chapter 5.

The Synthesizer is a nybrid editor that combines a structurc edlitor for the high level
language constructs (e.g. declarations and statements) and text editor for low levei
constructs, called phrases (e.g. expressions, assignments and parameter lists). This design
has an important impact on the user interface. Curso~ movement is different depending on
where in the program the cursor is. At a high Ieve! structure it moves structurally, at phrases it
can move character by character.

Construction commands also have this difference. At the high level, they are commands to
introduce program templates, at phrases they are plain text. This implles that after the input
of a phrase and after editing it, the phrase must be parsed into the internal structure.
Information about parenthesization must be kept in the internal structure so as to be able to
reproduce the phfase as the user typed it.

ALOE provides a uniform interface at all levels of the program structure. There is no need to
parse these expressions, and subexpressions can be handled separately. The Synthesizer
cannot treat subexpressions as structures in themselves. In particular, a subexpression
cannot be pointed at and extracted from an expression and inserted elsewhere. Section
6.2.2 contains an explicit discussion of the differences between text and structure editing of

expressions.

The program cursor in the Synthesizer is a single character cursor as opposed to the area

EVALUATION AND TECHNICAL ISSUES 113

cursor of ALOE. This causes some ambiguities in case.s such as the one in figure 6-3 where
the cursor is at the 1abe1 and it is not clear if it refers to the label only or to the whole labeled
statament. The area cursor of ALOE solves this ambiguity and also makes more emphasis on
the structure of the program. In ALOE the cursor can be placed at a list, that is, including all
elements of the list. In the Synthesizer the cursor Is only placed at single elements of lists, in
order to apply editing commands to lists, the first and last element of the list must be
specified. A single character cursor would be ambiguous if the cursor were allowed to point
to the whole list. A possible advantage of the single character cursor is that, if used to trace
program execution, the cursor is changing rapidly and a single character cursor may be
better in this case than the area cursor [Teitelbaum 81b].

label: IF (K » 0)
THEN statement
ELSE sta.ement

Flgure 6-3: Single character cursor in the Synthesizer

The Synthesizer is not only a syntax-directed editor, it is a programming environment that
integrates interpretation and debugging facilitles. Its characteristics as a programming
environment should be compare& with LoIPE [Feiler 82a, Medina-Mora 81b] an Integrated
programming environment based on ALOE.

Current developments of the Synthesizer include the development of a generator of
Synthesizer-like editors with the use of attribute grammars for expressing the semantics of
language templates [Reps 82]. Section 4.8 contains a discussion of the use of attribute
grammars in syntax-directed edlitors.

6.8.2. The MenTOR System

The MenToR System [Donzeau-Gouge 80] is a structured editor for PASCAL [Jensen 74]. It
also has goals that are different from ALOE's. MENTOR is based on parsing of input for all
levels of the language although it also supports some form of constructive editing. The
MeNTOR implementors decided to support parsing of input because users were more
comfortable with writing their programs as text from their experience with text editors. '

The problem with parsing on input is that users enter their programs as text but then they

3
E
E
3
=

il

i%,
=
%
é
=
E
-
E
=
%
%
%
1
1
-2
=
=
3

114 EVALUATION AND TECHNICAL ISSUES

must deal with them structurally for editing and inspection. it can be very confusing if the
user enters his program as text, but must edit it as structure.

MENTOR has a scroller type display interface, similar to that of some LiSP systems
[Teiteiman 78, Perdue 74] instead of the two dimensional display interface of ALOE. This
means that a_fter every interaction, if the user wants to see the result of his action, the current
display is not used and the subtree on which the user Is focused must be redisplayed again.

MENTOR uses MENTOL, a tree manipulétion language, as its command language. MENTOL is
used for ali manipulations from cursor movement to searches using pattern matching to tree
transformation and sontext sensitlve checking. Cursor movement can be particuiarly
cumbersome because, to get feedback on the resuit of the cursor movement, the subtree
must be redisplayed again Instead of the immediate feedback given by ALoE which only
changesthe highlighting in the screen.

Complex pattern matching structures can be handied in MeNTOL; to perform searches, for
example, the command

QTXT F @ if $V1 then X:=3V2 else $V3

will look in the subtree denoted by the marker @TXT for the next IF statement containing an
assignment to variable X as its then part. This seems to be a rather complicated way of
achieving the desired search. The .find command in ALOE, described in section 2.4.2.1,
provides better feedback by automaticaily dispiaying the resuit of the search. It is much
easier to invoke, and it is incremental so that, if the first attempt at locating the desired node
fails, the command can be repeatedly invoked without having to specify the search parameter
again.

The MeNTOR user can control the depth to which a subtree is displayed. This concept i
referred to as holophrasting in [Hansen 71]. As MENTOR does hot have muitiple concrete
representations and, since its display interface is not interactive, it must redispiay the
subtrees every time the user wants to see them, the concept of controlled depth is
fundamental in MENTOR. I this manner, larger contexts can be visualized and it also takes
less time to display & particular subtree. Unfortunately, simple depth restrictions do uot
necessarily convey the desired level of abstraction in languages such as C [Kernighan 78].

il

L

IS e

EVALUATION AND TECHNICAL ISSUES 115

For example, certain depth level may show all the details of a declaration including its
initialization ar:d none of a nested statement. Constructs at tie same conceptual level some

times do not appear at the same depth level.

Another problem cf this type of interface is that the context around a particular construct is
not shown when the cursor Is at the construct. The user must move the cursor up to some
node in the tree and redisplay again if he wants to see the surrounding context. ALOE will
always place the area cursor in the middle of the window that is currently being used for
display of the program. In this manner the surrounding context is al.ways visible. Different
abstraction levels can be achieved through multlple unparsing schemes that also are
knowledgeable of the structure of the language, and will show constructs at different depths

but the same contextual level.

MeNTOR Is not an integrated programming environment. Its internal representation is not
used by a compiler to generate code, nor is this step automatically invoked as is the case In
Loire [Feiler 82a, Medina-Mora 81b] or GANDALF [Habermann 82, Notkin 82b] (see chapter 5).
The MeNTOR user must explicitly unparse his tree into a text file and glve it to a compiler for
processing. The compiler, of course, will duplicate many of MENTOR actlons. There Is no

direct-support for program execution, only for program building.

MENTOL is used to build routines to chec;k context sensitive properties of P.3CAL programs.
MENTOL is not a general purpcse programming language but a tree manipulation language
with the ability to manipulate a'ttributes in nodes. The ALOE implementor through the use of
action routines has all the support of the ALOE implementatior environment, described In

section 4.6, to write the equivalent routines in C [Kernighan 78).

5.8.3. The Emily System

The Emily System [Hansen 71] was one of the first efforts with syntax-directed editing. Itis
a menu-driven system, with selections made with a light pen painting at a graphics display.
The programmer constructs a program by selecting a BNF production to replace the current
non-terminal node. The BNF productions in Emily include the concrete representation for the
constructs (keywords, separators, terminators, etc.), and so, the programmer still had to be

aware of the details of the concrete syntax.

L G

116 ' EVALUATION AND TECHNICAL ISSUES

Emily was not very fast (the major delay was in filling the screén after every interaction), and
experience with it showed that it took longer to construct a program using Emily than with a
text edltor, even though there was a considerable saving of keystrokes. It should be noted,
however, that fewer errors were made when using Emily. Simple editing operatlons, such as
the deletion of a construct, required several interactions, instead of one, thus making the
editing of program somewhat difficult. Emily was not an integrated system, in order to
compile a program, text was produced an had to be parsed, the internal structure created by

Emily was not used.

6.8.4. The PDE System

The PDE1L system [Mikelsons 80] is a program development environment for PL1L, an
extended subset of PL/I. It is a successor of LISPEDIT [Alberga 81], an environment for
LISP/:‘;'IO. PDE1L is not a syntax-directed editor, but it is language-oriented, that is, the
interactlons with the system are based on the language constructs, but the user manipulates
the textual representation of the program. PDEIL is an integrated environment that
incorporates to the editor an incremental parser, an interpreter, a compiler and a debugger.
As In ALog, the user interface of the editor provides a uniform user Interface to the

environment.

By manipulating the textual of his program, a user can introduce syntax errors to his
program. For example, the user realizes that there is a missing END statementi because the
indentation of his program is not what he expects. Syntax errors, when detected, are
displayed in two different forms. When text that is inserted in the program cannot be parsed
consistently with the surrounding text, it is highlighted to indicate so. When text Is deleted In
such a way that the remaining text cannot be parsed, the deleted text is replaced with one or
more meta symbols that indicate the nature of the missing material. In ALOE, syntax errors

simply cannot occur.

PDE1L has a large set of editing commands that are applied to the current focus, the
equivalent of the cursor in ALOE. The focus represents a portion of the parse tree. The focus
can be changed through cursor motion commands. The user is then dealing with his program
structurally, but he still has to enter it as text. The user has to concentrate both in the
concrete form and in the content of his program. In ALOE, the user always deals with his

program structurally and can concentrate in its content without worrying about its concrete

form.

EVALUATION AND TECHN!CAL ISSUES 117

PDE1L has a very sophisticated dispiay aigorithin [Mikeisons 81] that considers tha reiative
importance of the language constructs with respect to the focus, when decirling which
constructs are ur->rsed and which are eiided. One problem with the algorithm is that the
relevant parts of the parse tree are traversed twice to achieve the correct unparsing.

in PDEIL, ali input is entered in a speciai input section of the screen and notdirectly where
it will be inserted. When the user finishes the input it is parsed and inserted in the correct
place. Feedback on errors Is not given until the text has been parsed and inserted and not as
itis typed. ' |

6.8.5. The Interlisp System

The interlisp System [Teiteiman 78] is a very sophisticated programming system for LISP.
The simple syntax and semantics of LISP iend themselves very weli to more structured
manlpulation of programs, its interpretive nature lends itself better to the edit/interpret
approach. interlisp incorporates powerful faciiities iike structured editing, sophisticated
debugging techniques, automau error correction, the analysis subsystem, the programmaer's
assistant and others. Many of the ideas present today in syntax-directed editors were first
introduced in LISP environments. The display-oriented programmer assistant [Teiteiman 77]
makes excellent use of sophisticated display and window manipulation mechanisms [Sprouil
78).

Interiisp does not provide a uniform user interface. There is a different interface depending
on the tool of the environment the user is communicating with: the editor, the debugger, the
analysis subsystem, etc. Different interfaces for different tools focus the user's attention on
the tool rather than on the program being developed.

Input 1o Interlisp is given as text and it is parsed and inserted at the current position.
Editing is done structurally. This means that the user has to deai with both text and structure
when he is editing his program. This is not so important for LISP systems because of its very
simple syntax, although syntax errors can be made and feedback from the system is only
given after all the input has been processed and not as it is typed.

[TTI ATt T

Bl

e A

118 EVALUATION AND TECHNICAL ISSUES
6.9. Design and Implementation Strategy

This section discusses a set of strategies used in the design and impiementation of ALOE
quaiified by the experience gained thr sugh the actual impiementation.

6.9.1. Frequent Operations

As discussed in chapter 2, one of the‘ goals of an editor iike ALOE is that, frequent
operations, such as cursor movement and simple constructive and edi‘ing commands, shauld
be easy to provide and perform. They shouid also be as efficient as possibie so as not to
cause a significant delay in the response time of the system.

One identifiabie probiem in ALOE in this respect is the input of variables, a very frequent
operation in any language oriented editor. in ALOE, the name of the operator (e.g. IDENT) or
its synonym (e.g. a quote mark (")) must be entered before the variabie name, which is entered
In the command line or as an answer to an exnlicit prompt. The suggestion to add lexical
specification or lexicai routines described in section 2.4.1.2, would solve the probiem of
having to type a command or a synonym for terminal operators. if the user makes a typing
error, the variable must be deleted and entered again. This is an impiementation flaw in the
current ALOE that will be fixed in future versions, by providing text editing capabilities for
terminal operators. This problem does not occur in systems such as the Synthesizer
[Teitelbaum &1a) in which expressions (which contain the variabie names) are entered
directly as text and edited with text edIting commands.

6.9.2. Infrequent Operations

There are some attractive features from the theoretical point of view that couid be added to
a syntax-directed editor. It could be very difficult to implement them, and would probably be
used very rareiy, and thus would not impact in any significant manner the performance and
usability of the editor. Examples of these features include complex tree transformations that
couid be useful in a very limited set of cases and which will not be applied frequentiy. On the
of.ier hand, experience with these transformations would help understand and experiment
with new ways of interaction with structures. -

For exampie, the tree transformation that would change the expression 'a + b * ¢’ into

T L D CRLE, o e e e s = = = T =

e

i

=

il

£% ALUAT!UN AND TECHNICAL ISSUES 119

'(a + b) * c' (see figure 5-1), which could be thought of as a simple parenthesization

operation, involves a complex .ree traiisformation as can be seen from the figure.

On the other hand, the user would probably use sequences of .cllp, .llnsert. .nest,
transtorm, .delete and constructive commands to achieve the same results before realizing
that the desired transformation Is actually one of the provided ones. One explanation of this
situation is that the transformation performed by these commands are simple transformations’
and it is easier for the user to identify their need and their usefulness that it would be with the
more complex tree transformations. We have said before that the .nest and .(transform)
commands, described in section 2.4.2.2, were very useful commands. It turns out that, they
are really not used that often, because the situations in which they can be applied do not

occur very frequently.

It should also be noted that the impact of .transform in the action routine interface Is a
significant one. As discussed in section 4.3.4, the action routines implementation has to take
into account all possible semantic effects that such a transformation implies. Mcre complex

tree transformations would only make this task more difficult.

6.10. Conclusions

6.10.1. Successful Aspects

In summary, the aspects of the design of ALOE that have been more successful are:

e Separation of abstract syntax and concrete representation, which permits the
structure of programs, not their form, to be emphasized.

e Multiple concrete representations, which permits different views on the same
data, and also different contexts and levels of abstracti~n,

o Uniform user interface for large integrated environments, which allows the user to
deal with his environment as single system instead of as a collection of unrelated

pieces.
e Area cursor which permits to place the emphasis on the program structure.

e Synonyms for editing and language commands, that provide the necessary
flexibility for novice and expert users and help in constructing and editing

expressions.

i

e e O

L

120 . EVALUATION AND TECHNICAL ISSUES

¢ Efficient use of the limited screen space, as a two dimensional display, given the
restrictions imposed by the choice of terminal,

e Support for large integrated environments, which makes it possible to
automatically invoke other tools of the environment.

o Data base partitioning which makes possible the definitlon of different contexts in
large integrated environments.

o Flexibility for the ALOE implementor to shape the behavior of the enviranment,.

6.10.2. Missing Features

In different places in this dissertation, we ha\ e painted out some of the important missing
featuras in the design of ALOE, and at the same time, solutions to these problems have been

proposed.

e Underlying text editing capabilities, fundamentai for editing variables and
constants and for development of ALOEs for structures other than programming

languages.

e Lexical knowledge, which is extremely importa::r for a better interface for
constructing and editing expressions. ;

e Complex tree transformations (although we have argued that their inclusion might
not be cost efficient).

e Some form of an undo command, which is very necessary for a smooth rezovery
when errors are made.

o Non-empty lists and optional operators in the grammatical description.

o Control constructs and function invocation in the unparsing scheme language.

6.10.3 Further Research '

Solution to these missing features would constitute a natural extension of this work. Other

areas that could also be considered for future research include:

e User interface. More work and experimentation is necessary to fully understand
the important aspects and fine points of the user interface of syntax-directed

editors.

e For context sensitive processing, some form of synthesis of action routines - that
provide a flexible mechanism but little control - and attribute grammars - with
some modifications to increase their efficiency - seems worth investigating.

il

T

i

EVALUATION AND TECHNICAL ISSUES

o Important aspects of language design can be Influenced by the existence and use
of syntax-directed editors. -

¢ We have succeeded in producing a generator of extensible syntax-directed
editors that support the development of large integrated environments. The next
step is to produce a generator of such environments, that would automate more
aspects of their development.

11

i AR B R

123

Appendix A

Editing Commands

Editing comr;nands are common to all ALoes. These commands are invoked by typing a dot
(".") followed by the name of the command and a carriage return. Only enough characters to
designate the command unambiguously need be entered. For the common commands, one
character usually is sufficient. All editing commands also have synonyms defined which are
entered without either the dot or the carriage return and are, in general, control characters.
Some commands require arguments, such as the name of a file, the name of a tree, etc.
These arguments can be given directly after the command or in response to ALOE prompts.
When a prompt is given, a default value is shown enclosed in square brackets. A simple
carriage return indicates that the default value should be used. Otherwise, the value entered

is used as the argument.

The editing commands for an ALOE are described next. The synonyms for each command
are shown in parentheses following the command name. The "$" symbol in synonyms stands

for the <escape. character.

A.1.Cursor Movement

Cursor-in

._IN (<cursor-pad-down>)
Moves the cursor Into the first legal offspring of the current node
according to current unparsing scheme. Cursor-in automatically does a
cursor-next if at a terminal or non-visible node.

(TR T TRTRTR

e e et

124 EDITING COMMANDS

Cursor-out

..OUT (<cursor-pad-up>)
Moves the cursor to the parent of the current node.

Cursor-next

._NEXT (<cursor-pad-right>))
Mov as the cursor to the next sibling of the current node if one is defined
according to the current unparsing scheme and the setting of the
cursor-follows mode. If no sibling is defined, the cursor is then moved to
the next sibling of the parent of the current node, recursively. If the
current node is the last in the tree (as defined in pre-order) then the
command has no effect.

Cursor-previous

._PREVIOUS (<cursor-pad-left>)
Moves the cursor to the previous sibling of the current node if one is
defined according to the current unparsing scheme and the setting «f the
cursor-follows mode. If the current node is the leftmost node tien the
cursor is moved to the previous sibling of the parent of the curient node.
If the current node is the leftmost node in the tree (as defined in pre-order)
then the command has no eifact.

Cursor-home

._HOME ({cursor-pad-home>)
If the current node is not the root of the current window, cursor-home
moves the cursor there Otherwise, it moves the cursor to the root of the
previous context window.

Cursor-back

.BACK (tb)
Moves the cursor back to its previous position, provided that the last
command was a cursor moving command.

Find

.FIMD <string> (1)
Searches the tree for a matching variable name, constant name, operator
synonym, or operator name. The search is restricted to the current
window. !f no string is given one is prompted for. If a carriage return (<cr>)
is typed for the string prompt the string specified in the previous search is
used.

EDITING COMMANDS 125

Rfind

.RFIND <string> (txb)
Searches the tree in reverse for a matching variable name, constant name,
operator synonym, or operator name. The search is restricted to the
current window. If no string is given one is prompted for. if a carriage
return (<cr)) is typed for the string prompt the string specified in the
previous search command is used. N

Class

.CLASS <string> (txtn)
Searches the tree for the first node in the specified class. The search is
restricted to the current window. If no string is given one is prompted for.
If a carriage return (<cr) is typed for the string prompt the string specified
in the previous search command is used.

Rclass

.RCLASS <string> (tx1p)
Searches the tree in reverse for a node in the specified ciass. The search
is restricted to the current window. If no string is given one is prompted
for. If a carriage return (<cr>) is typed for the string prompt the string
specified in the previous search command is used.

First

.FIRST (txtb) if the current node is on a list, then the cursor is moved to
the firstitem on the list. Otherwise the cursor is moved to the first sibling.

Last

{LAST (txtl)
If the current node is on a list, then the cursor is moved to the last item on
the list. Otherwise the cursor is moved to the last sibling.

Next

NEXT (tn) Searches the tree for the next declaration or statement
depending on your context. The target is set to a declaration as you enter
a procedure and changed to a statement when you enter the statement
list. The search is restricted to the current window.

Previous

.PREVIOUS (tp) Searches the tree for the previous declaration or

statement depending on your context. The target is se’ (o a declaration as
you enter a procedure and changed to a statement when you enter the
statement list. The search is restricted to the current window.

|
I

i

AR LY ST

il

fiHitHIm

T T

126 EDITING COMMANDS

Numerical Arguments for Cursor Movement

<number>
The explicit cursor moving commands (cursor-in, cursor-out,
cursor-next, cursor-previous, and cursor-home) have an optional
parameter that precedes them. The numerical argument indicates how
many applications of the given command should be made. The argument
is nota command In that it cannot be used alone.

A.2. Help Information
All help information available through these commands is displayed in the help window.

Operator Help

HELP (1x?)
If the current node is a meta node, .HELP displays the list

of applicable language commands (and their synonyms). Otherwise, the
list of editing commands is displayed.

Command Help

2 ()
Displays the list of editing commands (and their synonyms).

A.3. Tree Manipulation

Clip Subtree

.CLIP <tree-name> (tk)
Clips current subtree into a named tree which is kept in the clipped area
separate from the main tree. The name of the tree can be specified
following the command or it will be prompted for.

Insert Subtree

.INSERT (tree-name> (txti)
Inserts a clipped subtree at the current node (which must be a meta node)

provided that the root operator of the subtree is legal in this position. If no
tree name is specified one is proempted for.

|

5
:
=
%
.
g

EDITING COMMANDS 127

Extend List

.EXTEND (te)
Extends a list with a new meta node. If the current node is a list node

(variable arity node) then an element is created at the beginning of the list.
If the current node is a member of a list then the meta node is inserted
immediately after it.

Extend List Backwards

.BEXTEND (txtb)
If the current node is a member of a list, it places a meta node immediately

before the node. It is not applicable anywhere else.

Prepend to List

.PREPEND (txta)
if the current node is a member of a list, it places a meta node at the

beginning of the list.

Append to List

.APPEND (txte)
if the current node is a member of a list, it places a meta

node at the end of the list.

Delete

.DELETE (td)
Deletes the current subtree. If the subtree is an element of a fixed arity

node, then a n 2ta node is inserted In its place. If the subtree is an
element of alist, the element is removed completely from the list.

Replace

.REPLACE (tr)
Deletes the current subtree. If the subtree is an element of a fixed arity

node, then a meta node is inserted in its place. If the subtree is an
element of a list, the element is replaced by a meta node of the
approprlate class.

Nest

.NEST <operator name> (tn)
Takes the current subtree and nests it into a subtree that will have the

operator as root operator. The operator name can be given following the
command or it will be prompted for. A nesting that would result in an
invalid tree is not permitted. If the new subtree has more that one

128 EDITING COMMANDS

offspring, it finds the first match (independent of unparsing scheme) for
the current subtree in the new subtree.

Transform

.TRANSFORM <operator name> (rt)
Transforms the operator of the current node to the desired one. For the
transformation to-succeed, the new operator must be in the same class as
the old one and the respective offspring must also match exactly.

A.4. Input/Output

Read Program

.READPROG <file-name> (txtr) 7 :
Reads a tree from a file. Checks that the file contains a valld tree.
Replaces the current tree with the new tree. Checks with the user if the
current tree has not been saved. The file name can be given after the
command or given to the ALOE prompt.

Load Tree

.LOADTREE <file-name> (txtv) .
Loads a tree from a file into a clipped area. A clipped window is assigned
to it with the name of the window taken from the file name. The name of
the file can be given after the command or given to the ALOE prompt.

Write Tree

.WRITE (txtw)
Writes a tree into a file in tree form. The default prompt is the file name
given at invocation of ALOE.

Unparse into File

.UNPARSE <file-name> ({txtt)
Unparses the tree into a text file. The file name can be given after the
command or to the ALOE prompt. Useful for producing printouts. Note that
this command differs from .WRITE only in the form the written file takes.

= = = e S

wmmmmmmm\

R

|

EDITING COMMANDS 129

A.5. Exit ALOE

Quit and Save
QUIT (txtf)

Saves the current tree in a file in tree format and leaves ALOE. It uses the
file name given at invocation.

Cancel
LCANCEL (t¢)

Leaves ALOE. If the tree has been changed since the last .WRITE
command, the user is warned and given a chance to abort the command.

A.6. Display Manipulation

Display Tree
.DISPLAY (t1)

The screen is cleared and redisplayed. Useful when operating system
messages or other such noise gets displayed in the screen.

Window Down

WDOWN (twtn) g
Scrolls the tree window down by one half of the window length.

Window Left

WLEFT (twta))
Scrolls the tree window left by one third of the window width.

Window Right

.WRIGHT (twte)
Scrolls the tree window right by one third of the window width.

Window Up

WUP (tw1tp)
Scrolls the tree window up by one half of the window length.

= .- e — SR
e = e e e e e e e S S =

el

130 EDITING COMMANDS

Select Window

.WINDOW <window-name> (twtw)
The selected window is displayed on the screen. The window name c¢an
be given after the command or to the ALoE prompt. The window mustbe a
tree or a clipped window. If it is a tree window, the appropriate context
switch takes place as if the cursor had been moved there explicitly.

A.7. Other Commands

Fork a UNIX Shell

Jd o (tx1)
Calls the UNIX shell from ALOE.

Edit

EDIT (1x1t)
Invokes the text editor specified by the shell variable EDITOR, to edit a
constant, long constant, or text node. Upon return the screen is updated
to incorporat: the edited string.

Set Mode

.MODE (txtm)

Sets the mode to the new value. ALOE first prompts for the name of the
mode and then for the new value of the mode.

Set Unparsing Scheme

.SCHEME <scheme-number> (txU)
This is a command to let the user change the current unparsing scheme.
Takes as argument the number of the unparsing scheme. The scheme
number can be specified after the command or given to the ALOE prompt.
If the argument is out of range (larger that the largest defined unparsing
scheme) then scheme zero is used.

131

Appendix B

Unparsing Scheme Commands

Each unparsing scheme is a string which has descriptions of the text to be used, the
syntactic sugar to be used and the formatting style. The text given in the unparsing scheme
is displayed as is. Only sequences starting with the "@" or "%" character are treated
differentiy. The formatting commands avaiiabie in unparsing schemes are:

Gn Insert a newline in the output.
E 0t or 8> Insert four spaces in the output.
Q< Go back four characters (stopping at the beginning of the iine).
E e+ Increase the indentation level (to take effect at the next "@n"). Every
indentation is four spaces. :
e- Decrease the indentatjon level (to taka effect at the next "@n").
@1 Flush left (start next piece of output at left margin of current iine).
= @h Go back one character (provided it is not at the beginning of a line).
gz @b Go back to previous line (undo "@n").
% Bu<n> Change 'the current unparsing scheme to <n>. Push the current scheme

index on a one-level stack.
Gu Reset unparsing scheme to vaiue of the one-levei stack.

Bp<n> Push marker <n> onto stack. Markers are used to "remember" coiumn
positions for formatting. They are speclaliy useful when the desired
formatting depends on the size of identifiers or strings. First marker is
numbered zero.

‘ Gr<n> Pop marker <n>.

T

T

T R Tl

132 UNPARSING SCHEME COMMANDS

@g<n> Get marker <n>. Moves the unparsing cursor to the column position
specified by the marker.

Qe Dispiay an "@" character.

8% Dispiay a "%" character.,

The way the objects of the nndes are dispiayed is differcnt for terminals and non-terminais.
For terminais, the foilowing unpaising commands are available:

8c Display vaiue of character constant, string, text, integer, real, boolean,
user node, or userblanks node.

@s Display variabie name from symboi tabie.

The unparsing commands availabie for non-terminais are:

B<n> Unparse the <n>th offspring recursively. Used oniy for fixed arity nodes
where the offspring are numbered from one on up. For example, "while
(@1)8+6n@2@-Gn" specifies that the node should be unparsed starting
with the string "while (" followed by a recursive invocation of the
unparser on the first offspring, a ")", a line break, the unparsing of the
second offspring indented one level, and another line break. The order in
which the offspring are unparsed can be different from the one specified
in the abstract syntax. The "n" in "<n>" refers t0 the abstract syntax
specification order. Finally, nodes can be hidden (made "non-visible") by
simply omitting them in the unparsing scheme.

<pr>@0<t>[@q<po>][Be<s>]

Unparse the list node. Used only for non-terminais that are list nodes. The
"@0" indicates that each element of the list should be unparsed in order,
The "<pr>" is the prelude string that shouid be printed before the list is
unparsed. The string "<t>" is used to separate iist elements "(<t>" is
terminated by either the following "@q" or the end of the unparsing
schema). The string "<po>" is the postfix that is printed after the list is
unparsed. The optional "@e" indicates how the list shoiid be unparsed if
it is empty (i.e., has no current elements). All of the strings may contain
text and other unparsing commands. The parts in square brackets are
optional. If no empty specification is given then nothing will be unparsed
when the ist is empty. For example, the scheme
"versions:@+@n@0;8n@qB8-@nend@e<no versions>" specifies that
the list shouid be unparsed starting with the string "versions:", a line
break and then the eiements of the list separated by a "; " and a new line,
The list should be terminated by a new line and the word "end" aligned
with "[versions:]". If the list is empty then it shouid only unparse the string
"<no versions>".

@x Used only for non-terminals that have fiienodes associated with them and
indicates that the subtree is not "“isible".

i

e e *

|

UNPARSING SCHEME COMMANDS 133

8z Used in conjuncticn with "@x" to specify the place where tha name of the
filenode shiould be placed.

All the letters after the "@" in unparsing commands may be either upper or lower case.
Additionally, with one exception, anywhere an "@" can occur a "%" can also be used. The

exception is that in fixed arity operators, "@<n>" means that the node should be unparsed
and visited (i.e., you can stop the cursor there), while "%<n>" means to unparse but not to
visit the node. In the case of lists it means that no element of the list can be visited.

138

Ly

Appendix C

ALOE Implementation Ehvironment Routines

The ALOE implementation environment provides an environment for the implementor of
action routines and extended commands. It provides a data encapsulation mechanism for the
internal representation that defines the data structures that are accessible as well as the
operations that can be perforiied on them. These operations provide the facilities for
inspaction, traversal and modification of the internal tree representation. They guarantee the
syntactic correctness and integrity of the internal representation. The ALOE implementation
environment actually provides an operational definition of the internal structure.

The remainder of this appendix is broken up into logical groups of routines. The
specification for the routines is given using the GC [Feiler 79] format with the types of the
parameters specified in the parameter list. A full and detailed explanation of these routines
can be found in [Medina-Mora §1a].

C.1. Tree Manipulation Routines

This section describes routines that are used to manipulate nodes and subtrees of the tree.

int ismeta(struct tnode *node)
Check for meta.

struct tnode *findmeta(struct tnode *node)
Find meta.

T o e

struct tnode *chkmake(1int opt;struct *thisnode ~har *valuestr)

i Validate and make a node.

struct tnode *chkcopy(struct tnode *source, *dest; inl doact)
Copy a subtree.

e

136 ALOE IMPLEMENTATION ENVIRONMENT ROUTINES

struct tnode *delsubstree(struct tnode *thisnode)
Delete a subtree.

struct tnode *applyauto(struct tnode *thisnode;int doact)
Automatic zpplication of operators.

T iWalk(struct tnode *thisnode; int (*proc)())
Apply a function to each element of subtree.

RemA11Metas(struct tnode *11ist)
Remove all metas in list.

char terminal(int optype)
Get type of node.

int arity(int optype)
Get arity of node.

char *opname(int optype)
Get operator name.

struct tnode *getsysroot()
Get system root.

struct tnode *getroot()
Get root of window.

C.2. List Manipulation Routines

This section describes routines that are available for the manipulation of variable arity
nodes (also referred to as list nodes) in ALOE. All these routines report an error "node is nota
list" and return NIL whenever the pointer passed to it is not a list (or a member of a list when
the parameter is supposed to be one).

struct tnode *addfirst(struct tnode *1ist)
Add meta to front of list.

struct tnode *addlast(struct tnode *1ist)
Add meta to end of list.

struct 1istnode *getlist(struct tnode *1ist)
Get list header.

int islist(struct tnode *1ist)
Check if list.

int lengthlist(struct tnode *1ist)
Get length of list,

i

T

s

et el e T

ALOE IMPLEMENTATION ENVIRONMENT ROUTINES 137

int listindex(struct tnode *node)

Find element index.

1istwalk(struct .tnode *1ist; int (*proc) ())
Apply function tolist elements.

struct tnode *nthlist{struct tnode *1ist; int n)
Get nth. element.

struct 1isinode *searchlist(struct tnode *node)
" Get header element.

struct 1istnode *cdr(struct 1istnode *cell)
Get next header.

C.3. Access Control Routines

This section describes the routines that are provided to control the commands and
construction capabilities of an ALOE. The basic idea is that there is a stack of bit vectors that
represent which commands are legal at various levels of the tree. The top of the stack
indicates the current set of legal commands. The elements of this stack are of type struct
LegalAction * (pointer to LegalAction structure, the details of the type structure .are
hidden). These elements should be created (by topAction or newAction) and pushed onto
the stack whenever rights are changed (usually on an ENTRY action call) and popped off the
stack when they are to be restored (usually on an EXIT action call).

initAction()
Initialize access stack.

struct LegalAction *newAction()
) Create new access element.

restrict(char *cmd: struct LegalAction *curAction)
Restrict command.

permit(char *cmd; struct LegalAction *curAction)
Permit command.

consNOTOK(struct LegalAction *curAction)
Restrict construction.

consOK(struct LegalAction *curAction)
Permit construction.

pushAction(struct LegalAction *curAction)
' Push access element onto stack.

il

! . 138 ALOE IMPLEMENTATION ENVIRONMENT ROUTINES

1 popAction()
l Pop access element.

struct LegalAction *topAction()
Take top access element.

| C.4.Error Reporting Routines

g This section describes routines that help the writer of action routines with Interfacing to the
error raporting mechanisms provided by ALog. Errors, warnir.ys, and plain messages are
queued in a buffer. Upon return from an action routine or an extended command, ALOE will
dispiay all the messages in order.

syserror(char *msg)
Indicate a system error.

sysabort()
Abort the system.

error(char *msg; struct tnode *enode)
Queue an error.

warn(chér *msg; struct tnode *wnoda)
Queue a warning.

message(char *msg; struct tnode *mnoda)
Queue a message.

int errcnt()
Get error count.

C.5. Filenode Routines

This section describes the routines needed to manipulate filenodes (a filenode Is often
referredto as a tnodef). Filenodes are used to "partition" the internal tree into a database of
separate files. The routines listed here provide all the necessary manipulation. of file

databases. In this section, context is the smallest subtree that the current node is in, whera
the root of the subtree is a FNONTERMINAL (a non-terminal node with a filenode associated
with it. A context stack is ai'tomatically kept by an ALoE. Elements are pushed on to the stack
as contexts are entered and popped off when they are exited.

int istnodef(struct tnode *node)
Check for filenode.

-
.
%

=
=
E

TR T

e =

e e — R B i1

ALOE IMPLEMENTATION ENVIRONMENT ROUTINES 139

struct tnodef *curcontext()
Get current context.

entxdirty()
Dirty current context.

struct tnode *getfather(struct tnode *thisnode)
Get parent.

struc. tnode *tofather(struct tnode *thisnode)
Get father, save context. -

struct tnode *getson(struct tnode *thisnode; int wson)
Get offspring.

struct tnode *toson(struct tnode *thisnode; int wson)
Get offspring, save context.

struct tnode *getcar(struct 1istnode *header)
Get list element.

struct tnode *tocar(struct 1istnode *header)
Get list element, save context.

struct tnodef *gettnodef(struct tnode *thisnode)
Get parent of FNONTERMINAL.

struct tnode *getfson(struct tnnadef *thisnode)
Get Offspring of filenode.

struct tnodef *findfnode(struct tnode *node)
Find filenode above node.

CheckPoint(struct tnode *node)
Checknoint a subtree.

C.6. Status Manipulation Routines

This section describes the routines provided for manipulation of the status fields of trea
nodes. They may be used by an ALOE implementor in cases where the status checking
needed for trees is relatively simple. In other cases, the implementor should write and use

more complex status schemes.

All the routines in this section access the status field by using the tnstat type definition.
The two fields manipulated are actstat and count. The actstat field can contain three
values: OK, NOTOK, and UNK. This indicates the current status of the tnode (UNK indicates

140 ALOE IMPLEMENTATION ENVIRONMENT ROUTINES

the status is currently unknown). The count field is the number of offspring of the node that
have a status of OK. The routines described below manipulate these fields with these

semantics in mind.

initstat(struct tnode *node)
Initialize status.

statusOK(struct tnode *node) c
Set status OK.

statusNOTOK(struct tnode *node)
Set status not OK.

int checkit(struct tnode *node; int nsons)
Check for status.

C.7. Window Manipulation Routines

This section describes the rc utines needed to manipulate the windows on the screen.

struct window *LkupWindow(char *windname)
Look up window.

AsgTextWindow(struct window *wind)
Assign text window.

AsgTreeWindow(struct window *wind; int scheme; struct tnode *rnode;
struct tnode *cnode)
Assign tree window.

NewTWindow(struct tnode *rootnode; int scheme; char *wname)
New tree window.

struct tnode *RemTWindow()
Release tree window.

struct window *SetWindow(struct window *wind)
Set current window.

RelWindow(struct window *wind)
Release window.

int setoutwind(char *wname; integer clear)
Set output window.

resetoutwind()
Reset output window.

ALOE IMPLEMENTAT!QN ENVIRONMENT ROUTINES
C.8. Miscellaneous Routines

changedtree()
Indicate that the tree has changed.

struct tnode *callonpath(struct tnode *fromnode, .'tnode)
Call action routines on path.

141

142

[Alberga 81]

[Albrecht 80}

[Archer 81a]

[Archer 81b]

[Backus 59]

[Ball 80]

[Ball 81}

[Barstow 81]

[Conway 76]

REFERENCES

References

Alberga, C. N, Brown, A. L., Leeman, G.B. Jr., Mikelsons, M. and Wegman,

M. N. :

A Program Development Tool.

In Proceedings of the Eight Annual ACM Symposium on Principles of
Programming Languages, pages 92-104. January, 1981.

Albrecht, P.F.
Source-to-Source Translation: Ada To Pascal and Pascal to Ada.
Sigplan Notices 15(11), Nov, 1880.

Archer, James E. Jr, Conway, Richard and Schneider, Fred B.

User Recovery and Reversal in Interactive Systems.

Technical Report TR 81-476, Cornell University, Department of Computer
Science, October, 1981.

Archer, James E. Jr. and Conway Richard.

COPE: A Cooperative Programming Environment.

Technical Report TR 81-459, Cornell University, Department of Computer
Science, June, 1981.

Backus, J. W.

The Syntax and Semantics of the Proposed International Algebraic
Language of the Zurich ACM-GAMM Conference.

In Proceedings of the international Conference on Information Processing,
pages 125-132. UNESCO, 1958. :

Ball, J. Eugene.

Alto as Terminal.

1980. :

Internal Documentation. Carnegie-Mellon University, Department of
Computer Science.

Ball, J. Eugene.
Canvas: Graphics for the Spice Personal Timesharing System.
In Proceedings of Comgraph 1981. Online Conferences, October, 1981.

Barstow, David R.

Overview of a Display-Oriented Editor for Interlisp.

In Proceedings of the Seventh international Joint Conference on Artificial
Intelligence, pages 927-929. August, 1981,

Conway, R. and Constable, R.

PL/CS -- A Disciplined Subset of PL/I.

Technical Report TR 76-293, Cornell University, Department of Computer
Science, 1976.

) D L AL L) L A L A R B LR

R TATITAATI

e e P T T e

T e R AR e

REFERENCES 143

[Demers 81] Demers, A, Reps, T. and Teitelbaum, T.
Incremental evaluation for attribute grammars with application tc syntax-
directed editors.
In Conference Record of the Eighth Annual ACM Symposium on Principles
of Programming Languages, pages 105-116. ACM, January, 1981.

[DeRemer76] DeRemer, Frank and Kron, Hans H.
Prograr iming-n-the-Large vs Programming-In-the-Small.
IEEE Transac*in.'s on Software Engineering , June, 1978,

[Deutsch 80] Deutsch, L.P. and Taft, E.A. (editors). '
Requirements for an Experimental Programming Environment.
Technical Report CSL. 80-10, Xerox Palo Alto Research Center, June, 1980.

[DoD 80] United States Department of Defense.
Reference Manual for the Ada Programming Language.
1980.
Proposed Standard Document.

[Dolotta 76] Dolotta, T. A. and Mashey, J. R.
An Introduction to the Programmer’'s Workbench.
In Proceedings of the Second International Conference on Software
Engineering, pages 164-168. ACM & IEEE, 1976.

[Donzeau-Gouge 80]
Donzeau-Gouge, Veronique, Huet, Gerard, Kahn, Gilles and Lang, Bernard.
Programming Environments Based on Structured Editors: The MENTOR
Experience.
Presented at the Workshop on Programming Environments in Ridgefield,
CT on June 1980.

[Feiler 79] Feiler, Peter H. and Medina-Mora, Raul.
The GC Language.
1979.
Gandalf Internal Documentation. Carnegie-Mellon University, Department
of Computer Science.

[Feiler 81] Feiler, Peter H.
The Gandalf Display Package.
1981.
Gandalf Internal Documentation. Carnegie-Mellon University, Department
_of Computer Science.

[Feiler 82a] Feiler, Peter H.
A Language-Oriented Interact: 2 Programming Environment Based on
Compilation Technology.
PhD thesis, Carnegie-Mellon University, Department of Computer Science,
1982,

T T

144 REFERENCES

[Feiler 82b] Feiler, Peter H.
A GC to PascaL translator using ALOE.
1982,
Private Communication.

[Feldman 79] Feldman, Stuart |.
Make - A Program for Maintaining Computer Programs.
Software - Practice and Experience 9(3):255-265, March, 1979.

[Ganzinger 77] Ganzinger, H., Ripken, K. and Wilheim, R.
Automatic generatior: of optimizing multipass compilers.
In B. Gilchrist (editor), Information Processing 77, Proceedings of IFIP
Congress 77, pages 535-540. North-Holland, 1977.

[Gosling 81a] Gosling, James.
Unix Emacs
Carnegie-Mellon University, Department of Computer Science, 1981.

[Gosling 81b] Gosling, James.
A Redisplay Algorithm.
In Proceedings of the ACM SIGPLAN/SIGOA Symposium on Text
Manipulation, pages 123-129. ACM SIGPLAN/SIGOA, June, 1981.

[Graham 79] Graham, Susan L., Haley, Charles B. and Joy, William N.
Practical LR Error Recovery.
In Proceedings of the ACM SIGPLAN Symposium on Compiler
Construction, pages 168-175. ACM SIGPLAN, August, 1979.

[Habermann 79a] Habermann, A. Nico.
A Software Development Control System.
1979.
internal Documentation. Carnegie-Mellon University, Department of
Computer Science.

[Habermann 79b] Habermann, A. Nico.
The Gandalf Research Project.
in Computer Science Research Review 1978-79, pages 28-35. Carnegie-
Mellon University, Department of Computer Science., 1979.

[Habermann 80] Habermann, A. Nico.
Notes on Programatics and its Language Alfa.
1980.
Private Communication.

[Habermann 82] Habermann, A. Nico and Notkin, David S.
The Gandalf Software Development Environment.

1982.
Carnegie-Mellon University. Submitted for Publication.

REFERENCES

[Hansen71]

[HDS 79]

[Ingalls 78]

[Ivie 77]

[Jensen 74]

[Johnson 75]

[Johnson 82]

[Kaiser 81]

[Kaiser 82]

[Kernighan 78]

[Knuth 68]

145

Hansen, Wilfred J.

Creation of Hierarchic Text with a Computer Display.

PhD thesis, Stanford University, Department of Computer Science, June,
1971,

Human Designed Systems, Inc.
Concept Reference Manual.
Human Designed Systems, In¢, 1978.

Ingalls, Daniel H. H.

The Smalltalk-76 Programming System Design and Implementation.

In Conference Record of the Fifth Annual ACM Symposium on Principles of
Programming Languages. ACM, January, 1978.

lvie, Evan L.
The Programmer's Workbench - A Machine for Software Development.
CACM 20(10), Oct, 1977.

Jensen, K. and Wirth, N.
Pascal User Manual and Report.
Springer-Verlag, 1974,

Johnson, S. C.
YACC - Yet Another Compiler-Compiler.
Technical Report Cumputer Science 32, Bell Laboratories, July,]975.

Johnson, Gregory F. and Fischer, Chartas N.

Non-syntactic Attribute Flow in Language Based Editors.

In Conference Record of the Ninth Annual ACM Symposium on Principlas
of Programming Languages, pages 185-195. ACM, January, 1982.

Kaiser, Gail E.

The Gandalf Symbol Table.

1981.

Gandalf Internal Documentation. Carnegie-Mellon University, Department
of Computer Science

Kaiser, Gail E. and Habermann, A. Nico.

An Environmen® for System Version Control.

1982,

Carnegie-Mellon University, Department of Computer Science. Submitted
for Publication. .

Kernighan, B. W. and Ritchie, D. M. :
Prentice-Hall Software Serigs: The C Programining Language.
Prentice-Hall, 1978.

Knuth, Donald E.
Semantics of Context-Free Languages.
Mathematical Systems Theory 2(2):127-1485, 1968,

]
i
-

e

146 REFERENCES
[Lamb 82) Lamb, David A.
IDL Translator Design Document.
1932,
Internal Documentation. Carnegie-Mellon University, Departmer.. .¢
Computer Sclence.
[Lampson 78] Lampson, Butler.
Bravo Manual
XEROX Palo Alto Research Center, 1979,
[Medina-Mora 81a]
Medina-Mora, Raul and Notkin, David S.
ALOE Users' and implementors’ Guide.
Technical Report CMU-CS-81-145, Carnegie-Mellon University, Department
of Computer Science, November, 1981.
[Medina-Mora 81b]
Medina-Mora, Raul and Feiler, Peter H.
An Incremental Programming Envire nment.
IEEE Transactions on Software Engineering SE-7(5):472-482, September,
1981,
Revised version of the paper presented at the Fifth Internatlional
Conference on Software Engineering, San Diego, march 1981.
[Mikelsons 80] Mikelsons, M. and Wegman, M. N.
PDE1L: The PL1L Program Development Environment Pri~ciples of
Operation.
Technical Report RC 8513, Computer Science Depariment, IBM T. J.
Watson Research Center, Yorktown Heights, NY, September, 1980.
[Mikelsons 81] Mikelsons, Martin,
Prettyprinting in an Interactive Programming Environment.
In Proceedings of the ACM SIGPLAN/SIGOA Symposium on Text
Manipulation, pages 108-116. ACM SIGPLAN/SIGOA, June, 1981.
[Mitchell 78] Mitchell James G., Maybury, William and Sweet, Richard.
Mesa Language Manual
XZROX Palo Alto Research Center, 1978.
[Morris 81] Morris, Joseph M. and Schwartz, Mayer D. :
The design of a language-directed editor for block-structured languages.
In Proceedings of the ACM SIGPLAN/SIGOA Symposium on Text
Manipulation, pages 28-33. ACM SIGPLAN/SIGOA, June, 1981.
[Nestor 81] Nestor, John R. and Beard, Margaret A.

Front End Generator System, User's Guide.

July, 1981.

Internal Documentation. Carnegie-Mellon University, Department of
Computer Science.

T

REFERENCES

[Notkin 81a}

[Notkin 81b]

[Notkin 82a]

[Notkin 82b}

[Notkin 82¢]

[Notkin 82d]

[Oppen 79]

[Perdue 74)

[Rahia 77]

[Reid 80}

147

Notkin, David S.

On the specification of Access Controi.
1981,

Private Communication.

Notkin, David S.

On the use of the term: programming-in-the-many.
1681.

Private Communication.

Notkin, David S.

"implementation of a smaii maii system using ALOE.

1982,
Private Comminication.

Notkin, David S. and Kaiser, Gail E.

The Implementation of the Gandaif Software Development Environment.
1982.

Carnegie-Melion University, Department of Computer Sclence. To appear.

Notkin, David S.

On the impiementation of Aloegen.
1882,

Private Co:nmunicatlon,

Notkin, David S.

On the Impiementation of an ALOE for SCRIBE.
1982.

Private Communication.

Oppen, Derek C.

Pretty Printing.

Technical Report STAN-CS-79-770, Stanford University, Computer Science
Department, October, 1979,

Perdue, Crispln.

User's Introduction to UCI Lisp.

Technical Report, Carnegie-Mellon University, Department of Computer
Science, August, 1974.

Rahia, K. J.

On attribute grammars and their use in a compiler writing system.

Technica! Report A-1977-4, Department ot Computer Science, University of
Heisinki, August, 1977.

Reid, Brian K. and Walker, Janet H.
SCRIBE Introductory User's Manual
Unilogic, Ltd, 1980.

148

[Reps 81]

[Reps 82]

[Ritchie 74]

[Sproull 79]

[Stallman 81]

[Swinehart 74]

[Teitelbaum 81a]

[Teitelbaum 81b)

[Teitelbaum 82)

[Teitelraan 77]

[Teitelman 78)

REFERENCES

Reps, Thomas.

The Synthesizer Editor Generator: Reference Manual

Interral Documentation. Cornell University, Department of Computer
Science, 1981.

Reps, Thomas.

Optimal-time Incremental semantic analysis for syntax-directed editors.

In Conference Record of the Ninth Annual ACM Sympaslum on Principles
of Programming Languages. ACM, January, 1982.

Ritchie, Dennis M,
The Unix Time-Sharing System. .
Communications of the ACM 17(7):365-375, July, 1974,

3praull, Robert F,

Raster Graphics for Interactive Programming Environments.

Technical Report CSL-73-6, XEROX Palo Alto Research Center, June,
1979.

Stallman, Richard M.

EMACS, the extensible, customizable, self documenting display edlitor.

In Proceedings of the ACM SIGPLAN/SIGOA Symposium on Text
Manipulation, pages 147-156. ACM SIGPLAN/S!GOA, June, 1961.

Swir.ehart, D. C. .
Copilot: A Multiple Process Approach to Interactive Programming Systems.
PhD thesis, Stanford University, July, 1974,

Teitelbaurn, Tim and Reps, Thomas.

The Cornell Program Synthesizer: A Syntax-Directed Programming
Environment.

Communications of the ACM 24(9):563-573, Septen ber, 1981,

Teitelbaum, Tim, Reps, Thomas and Horowitz, S'isan.

The why and wherefore of the Comell Program Synthesizer.

In Proceedings of the ACM SIGPLAN/SIGOA Symposium on Text
Munipulation, pages 8-16. ACM SIGPLAN/SIGOA, June, 1081,

Teitelbaum, Tim.

Transformations in the Synthesizer.
1962,

Private Communication.

Teitelman, Warrern.

A Display Orierted Programmer’s Assistant.

In Proceedings of the Fifth International Joint Conterence on Artificlal
Intelligence, pages 905-915. August, 1977.

Teitelman, Warren.
Interlisp Relerence Manual
XEROX Palo Alto Research Center, 1978.

REFERENCES 149

[Tichy 82] . Tichy, Walter F.
A Data Model for Programming Support Environments and its Applications.

in Schneider, H.-J. and Wusserman A. (editor), Automated Tnols for
Information Systems Design, pages 31-48. IFIP, North-Hollaind,

January, 1982.

