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INTRODUCTION

Our goal is to nondestructively determine effective case I}
depth via an ultrasonic procedure. Characteristics which

would be desirable for a case depth meter are measurement

localization to.a well defined area, effectiveness over a

large range of .case depth values, consistent accuracy, and

application to the wide range of steels in which case hard-

ening is performed. A technique thought to have such char-

acteristics is the ultrasonic pulse-~echo angulation method.

As. reported by Emerson {1} three basic nondestructive methods
exist for measuring case depth; ultrasound, eddy current, and
magnetic permeability. Each method has advantages and .restric- -
tions which make one technique more pragmatic than another under
a given test criteria and environment. The dominant parameters
affecting the selection of a given methodology over another is

. the inherent sensitivity restrictions characteristic of a given
technique for a specific case depth, Table 1,

Regarding the ultrasonic pulse-echo technique, area localization

is determined by sonic resolution, approximately 1mm or .04 inch,

the range of case depths which this method may be effective is
approximately .01 inch and greater. This range reflects an ex-
tension of angulation meiucds previously reported, Table 1. The
accuracy restrictions of the technique are related to the un-
certainty involving leading edge detection of the Rayleigh back
seatter and the offset-distance between the desired effective

case depth and the back scatter leading edge. The difficulty has
been the extremely low signal-to-noise ratio due to- the inherent

low signal amplitude of the back scatter response, -By means .
of signal averaging and spatial averaging an extreme amount of ;
progress has been made concerning the implementation. of this

method as a quality control tool.

The accurate and consistent measurement of effective case depth
is a vital concern being that insufficient case depth would in-
dicate an article not able to meet specified wear constraints
while an excessively large case depta could facilitate a fracture
due to increased brittleness of the hardened zone. Case depth
can vary considerably from piece to piece within a signal- batch
of articles and even from point to point on a given article.

S Four significant parameters affecting case depth are solid car-
burizing material distribution, temperature distribution, quen-
ching, and material removal by either grinding or machining {4},

In discussing case depth, two definitions must be clarified,
total case depth and effective case depth. Total case depth
| represents the surface depth to which the parent core material is:
. affected by the case hardening procedure. Effective case depth
represents the surface depth.to which a specified hardness is
, achieved. Most material specifications give an effective case
. depth and a hardness value to which effective case depth is
measured.
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Our first goal was 1o refine a technique such thut the signal-
to-noise ratio was sufficiently large to provide consistent
measurements and second, to relate effective case depth to the
depth at which the back scattered energy originated.

TECHNIQUES EVALUATED FOR OPTIMAL DATA ACQUISITION

Several ultrasonic techniques were evaluated for their respective
effectiveness in terms of signal-to-noise ratio. Techniques
that were evaluated included normal beam pulse-echo via immer-
sion and beam angulation pulse-echo via immersion in both the
refracted longitudinal mode and the refracted shear mode. To
further enhance data acquisition high energy pulsers, computer
interfaced systems, and electronic shielding devices were also
considered,

Consider the technique illustrated in Figure 1. A longitudinal
wave is impingent on a water/steel interface at a known inci-
dent angle. When the incident angle equals zero we have the
trivial case of normal incidence., As the incident angle is in-
creased, back scattered signal amplitudes can be monitored. Given
case depth measurements, time ranges can be established where

back scattered signals are anticipated. Angulation techniques
suggested by Perennes, Jussiaume, and Gaillot {2} and Flambard

and Lambert {5} direct the reflected wave front away from the
transducer. This action is two-fold in function. First, the
front wall surface echo returning to the transducer is a2 portion
of the spherical wave pattern and, therefore, the energy levels
are smaller than the reflected plane wave front by several orders
of magnitude. This reduces the masking eifect of the front wall
echo on superficial scatters. Second, the incident angle is such
to cultivate the back scattered signal. Goelbels {6} examined

the tradeoffs between using shear waves over longitudinal waves
and documented that the relative difference between back scattered
energy of shear to longitudinal mode of vibration is a facter of
approximately 45 or 33 dB.

Prior to discussing data acquisition and signal analysis, let us
first discuss the preparation and various material characteris-
tics of the case hardened specimen.

CASE HARDENED SPECIMEN, PREPARATION AND MATERIAL CHARACTERISTICS

A block of 1060 steel having a rectangular c¢-oss-section of di-
mensions 2.5 c¢m by 2.5 cm, 1.0 inch by 1.0 inch, and a length

of 10.2 cm, 4.0 inch, was induction hardened such that a planar
case depthof 2. mm, .08 inch, existed. Induction hardening pro-
cesses were used to prevent surface composition changes associa-
ted with diffusing additional carbon into the surface layer,

i N VIR



T e it RIS BSOS (A PRGN = S kT

Specimen
Label
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Induction
Hardened Surface

M = Line Along Which Hardness was lleasured

Figure 2. Case Hardened Specimen with Indications
M1 through M6 Displaying Position of
Microchardness Traverses
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Microtransverse hardness profiles via a Knoop microhardness in-
dentor were acquired along six marked indications, Figure 2,
Transverse hardness profiles corresponding to each marked indi-
cation are illustrated in Figures 3 and 4. A surface hardness
of 54, Rockwell scale C, was obtained with a smooth transition
to the softer core material.

For the particular specimen considered a hardness value of 30,
Rockwell scale C, was selected as the effective case depth
specification value. Nominal case depth at three points were
measured. These measurements were determined as the average
between the case depths measured respectively along the lines
M3-M4, M2-M5, and M1-M6, Table 2.

TABLE 2, CASE DEPTH MEASUREMENTS OF 1060 STEEL SPECIMEN, RAW FINISH
LINE EFFECTIVE CASE DEPTH
= LEFT POINT RIGHT POINT AVERAGE LINE VALUE

M3-M4 M3: 2.2mm, .085" M4: 2.lmm, .083" 2.lmm, .084"

M2-M5 M2: 1.7mm, ,076" M5: 1.5mm, .058" 1.7mm, .067"

M1~M6 M1: 0.6mm, .024" M6: 2.6mm, .104" 1.6mm, .064"

Micrographs were acquired of the case, transition zone, and

core areas, Figure 5, Each micrograph represents a 500X mag-

nification. The left micrograph is characteristic of a nearly ‘
100% martensite. The fine intergranular structure forms the

bulk of the hardened region. The center micrograph displays J
the transition between a predominately martensitic structure

to a predominately pearlitic structure, The pearlite is char-
“acterized by alternating laminates of cementite and ferrite,

The interlaminar spacing between these layers becomes more coarse

as depth increases. The right micrograph illustrates a predom-

inately pearlitic structure. Note the diamond impressions re-

sulting after a Knoop hardness test at various depth indications.

The difference in ultrasonic scattering properties are thought to

be related to these changes within the internal grain structure.

A tapered wedge.can be removed from the case surface by grinding.
If .76mm or ,030" are removed from the unlabeled edge, the
average line effective case.depth measurements are 1,98mm, ,078";
1,40mm, ,055"; and .91mm, ,.036" for lines M3-M4, M2-M5, and Ml-

M6 respectively, Figure 6.
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Figure 6. Preparation of 1060 Steel Specimen
for Variable Case Hardened Depth
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DATA ACQUISITION

A block diagram of the computer controlled data acquisition and
analysis system appears in Figure 7, Contained within the
system is a UTA ultrasonic pulser and receiver, a fixed gain

RF amplifier, a Biomation 8100 transient recorder, a PDP 11/34 J
minicomputer, and other peripheral equipment such as a CRT mon- i
itor, a magnetic storage device and a graphics terminal., An

optimized protocol was developed via this system for enhanced

data acquisition. This resulted from the accumulative effect ]
of a series of ministudies to evaluate various techniques that
would be contained within the data acquisition protocol. The
ministudies included RF signal averaging to reduce noise levels and
transducer angulation to determine optimum svstem sensitivity
towards the combined effects of sonofication, scattering, and
reception of back scattered signals from the core material,

Other phenomena discussed are obscuring effects of lateral beam
resolution, beam side lobes and surface roughness.

et b s

Signal Averaging

U W

Signal averaging was used to reduce noise levels to acceptable
levels, Progress in this area can greatly simplify further
analysis and increase system consistency. As illustrated in
Figure 8, a single RF transient response is characteristic of a
signal-to-noise ratio of approximately one-third. Since spurious
RF spurts occurred randomly, their effects could be minimized
through signal averaging techniques. Normally an averaged res- !
ponse of 8 signals provides sufficient noise reduction, Figure 9. %
However, since the spurious signals are approximately 3 times i
larger than the Rayleigh back scatter, averaging of 25&% times '
proved useful, Figure 10. Note the noise reduction corresponding

to the case layer between the 8 and the 255 times averaged signal, i
This is significant since the accurate determination of case i
depth is dependent on clear separation of the two regions, low i
versus high amplitude back scatter. |

Transducer Selection

A variety of immersion transducers were used to determine optimal
transducer characteristics for data acquisition and analysis,
Figures 11-16. Primary concerns were sensitivity to receiving back
scatter responses, axial resolution relative to the separation of
low versus high back scatter regions, and the obfuscation of the
surface echo with the interaction of the side lobe energy reflected
from the case specimen surface. Table 3 itemizes several trans-
ducers according to their characteristics and lists comments
relating to their desirability.

Transducer F0O5008 was selected dve to the relative amplitude dif-
ference between values oi the back scattered signals resulting
from the case and core regions, the sharp transition between the
two forms of back scattered energy, and the insignificant level

17
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of side lobe energy. The lack of shurpness regarding the transi-
tion between the case and core region may be attributed to lat-
eral beam resolution, Due to a transducer angulation of 20° in
water the refracted shear wave lateral resolution has a projected
component which affects the resolution of the case and core areas.
Transducers of high lateral beam resolution are critical to form-

: ing a sharp distinction between the two areas, Figure 17 illus-

b trates the effects of lateral resolution., For the remainder of

the study transducer F05008 was used exclusively,

vy

TABLE 3. ULTRASONIC TRANSDUCER EVALUATION REGARDING CASE DEPTH
3 MEASUREMENT
; Transducer Case/Core Separation Side Lobe Energy
A Focal
i No. Dia. F* Depth
' Al18824 .25" 5 1.3" Case/Core transition Significant presence
! not easily resolved
- C28028 .25" 10 2.7" Case/Core transition Significant presence
4 not easily resolved
3 ) _ A
3 G15118 .50" 10 1.5' Case/Core transition Not observed
1 not easily resolved
3
' K20822 .25" 20 1.,3" Case/Core transition Significant presence

easily resolved
B11728 .25" 25 1.5" Case/Core relative Not observed

amplitude signifi-
cantly different

F05008 .25" 15 1.5" Case/Core transition Insignificant
easily resolved presence

*Values given in units of MHz

Transducer Ansulation

Sonic beam angulation enables us to selectively use refracted
longitudinal or shear waves. As reported by Perennes, Jessiaume,
and Gaillot {2}, and Flambard and Lambert {5} an inclination
angle of 200 in water, 45° in hardened steel, was used. Goelbels
{8} in his discussions concerning ultrasonic grain size measure-
ment elaborates that the relative amplitude difference between
shear and longitudinal back scattered energy in steel is approxi-
mately a factor of 45 or 33 dB. Frequency values for each vibra-
tion mode were selected such that the wave lengths of the

two respective vibration modes were set equal, Since the back

27
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scattered signals are extremely small, shear wave excitation
would seem the only logical choice until a system incorporating
high energy pulsers, more efficient transducers in both send and
receive better electronic shielding, and greater signal amplifi-
cation allow longitudinal wave back scatter to have a realistic
signal-to-noise ratio,

To form a complete study, back scattered amplitude values were
recorded at selected degree inclinations from 0° through 30°, in
water, A graph of recorded amplitude values versus inclination
angle, Figure 18, showed 19° and 20° as optimal inclination angles,
A more detailed analysis indicates that three independent wave
phenomena effect the received amplitude values due to angulation
alone, They are percentage of mode conversion of the incident
wave 1o a refracted shear wave, resolution dependency on trans-
ducer lateral and axial resolution restrictions, and lateral
displacement offset of back scattered spherical wave fronts,
Figure 19. The predominant effect in this study is attributed
towards the percentage of mode conversion. Since the case depths
are relatively small compared to transducer diameter, lateral
offsets were thought to have an insignificant effect. Signal
amplitude values corresponding to angles O“through 14°were not
graphed since signal amplitude values could not be isolated.

Surface Rouchness

Past work efforts attempt 1o measure case depth by an extension {
of using pulse-echo techniques such as

Tbs - Tfs' Vss |
d = Vss <____7?————> cos [Arcsin(v—— sin6> , Equation (1)

VT wl
where 4 = Case Depth
8 = Inclination Angle, Water
le £ Wave Velocity, Water Longitudinal
Vss = Wave Velocity Steel Shear
Tbs Z Arrival Time, Back Scatter
Tfs = Arrival Time, Front Surface

An inherent foible contained within this approach is the accurate
determination of Tfg. This is routinely performed in most pulse-
echo situations. However, the water-to-steel interface echo
response can vary significantly at a precision ground surface

let alone a rough or raw machined surface, Figures 20 and 21.
Since in practice a designed probe would be placed on the ar-
ticle surface to be evaluated the surface displacement could be
included within a calibration procedure. The instrument wou d
then assume that the probe would be placed on an article in a
like fashion for all subsequent measurements., Truly the in-
stability of the front wall echo could otherwise be a signifi-
cant error source,

——— m
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Figure 19. Lateral Offset Caused by Changes in
Incident Angle, (Affects More Pronounced
for Greater Case Depth)
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Figure 22, Signal Processing Involving Envelope Determination and Smoothing:
a., RF Signal, 255 Times Averaged
b, Signal Envelope Via the Hilbert Transformation
¢. Smoothed Envelope Using a .04 u Second MAW
d. Smoothed Envelope Using a .09 u Second MAW ;
e, Smoothed Envelope Using a .14 u Second MAW i
f. Smoothed Envelope Using a .19 u Second MAW !

34




F o cren o T T RTINS SR YWD, TRy

SIGNAL ANALYSIS

In determining case depth three processes were accomplished
sequentially. They were envelope determination via the Hilbert
transform, spatial averaging of several stored envelopes, en-
velope smoothing using a Moving Average Window (MAW) and deter-
mining the beginning of the back scatter phenomena using a
threshold criteria., To determine case depth it became .extremely
important to obtain an analysis procedure which could be repeated
with acceptable accuracy. After acquiring an enhanced RF signal
via singal averaging an envelope was determined by means of the
Hilbert transform. However, the envelope underwent a signifi-
cant change with the slightest displacement of the case hardened
specimen {6}. To obtain back scattering characteristics of a
material zone rather than a specific point spatial averaging of
several envelopes, in effect from.the same region, was performed.

Envelope Determination and Smoothing

Initially the RF signal envelope was determined, however, depres-
sion of an irregular and severe nature hihdered the detection of
the leading edge of the back scattered signal. A MAW of variable
length was used to filter high frequency components from the en-
velope. These effects are illustrated in Figure 22, The trade
off in using this technique is decreased resolution with an in-
creased window size, Window sizes of .04, .09, .14, and .19 yu
seconds, were used to establish trends.

Another problem developed with respect to what seemed periodic
peaks and depressions in the smoothed envelope. Although these
responses are valid and are repeatable at a particular point,
they became a significant error source regarding consistency in
back scatter leading edge detection, This resulted since the
back scatter signal is extremely dependent on point location
and that a lateral displacement of an order of several grain
sizes can cause significant signal changes. This information
may be useful in measuring properties of the material micro-
structure, however, a spatial characteristic was desired for
case depth measurement., To accomplish this spatial averaging
was used.

Spatial Averaging

Combined effects of spatial averaging and smoothing via the
moving average window is illustrated in Figure 23. Illustra-
ted is a typical RF signal, the signal envelope of the RF
signal, a moving average of the determined envelope, a spa-
tially average envelope consisting of eight unique signal en-
velopes and the smoothed spatial averaged. envelope using MAVW.
Clearly the combined effects of spatial averaging and smoothing
via the MAW is advantageous. The number of unique RF signals
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Figure 23, Affects of Spatial Averaging Combined with the Moving Average Windov 1
a. RF Signal, 255 Times AVeraged
b, Signhal Envelope Via Hilbert Transformation
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L
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Comparison of Back Scattered Energy at Different Effective

Figure 24,

Case Depths, (All Envelopes determined by Spatial Average
of 8 Signal Envelopes and Smoothed with .09 p Second MAW,)
a. Effective Case Depth Equals 1,98mm or 0,030"

b. Effective Case Depth Equals 1,40mm or 0,055"
c. Effective Case Depth Equals 0.91mm or 0.036"

d. Unhardened Surface
37




T

T A i .
hd N . P 100 i - . R s akial o s e S e S

T e e

>/
-
. .
. - © . -
[ - .
. - . . .
.
.
. . .
’ . . . . . . . . . . -
. . - - . . -
. .. . . . R . . . . . LN
. * . . ‘. ¢ v . -,
. .
) .. . . e . . R . - e - P L
. i *
e * L L R . * 8 ’ . LA P S .
- PO 14 . .. -
. . e = L L
R . . - - . .
e o o *, e . . . e o -
T - .

Figure 25,

Cj cos 0

=
]

~

14/]
|

=
@
rf-
Q,
A}
HA

Known Case Depth

Known Back Scattered Distance

w
A)
n

d =Vss(Tbs—T’bs)cos 0+ d”

2

Model Representation of Case Hardened Specimen for
Ultrasonic Pulse-Echo Angulation Determination of
Effective Case Depth

38

[ A N OR )

W R mE g R v




to be used in the spatial average process and MAW size are
determined from a consistency view point and are discussed later,
At this point a procedure has been established whereby a back
scattered envelope characteristic of a localized region can be
determined in a manner whereby leading edge detection can be
accomplished with increased sensitivity and consistency.

CASE DEPTH

Before proceeding with further analysis and ultimately with
algorithm development to automatically measure case depth

by the ultrasonic techmiques previously described, it would
behoove us to confirm our thoughts regarding expected trends.
Currently the shift of the back scattered leading edge should
be proportional to a relative shift in thickness of case depth.
At this point no attempt has been made to associate the initia-
tion of the back scatter phenomena with a known hardness value.
The assumption made is that the two are interrelated in a pro-
portional manner, '

R Expected Trends

To evaluate case depth as a function of arrival time, four graphs
are presented ‘in Figure 24. The three graphs plotted to the left
represent from top to bottom, respectively, ultrasonic signatures
of progressively thinner effective case depths, To aid visual
preception of corresponding shifts of the back scatter energy,

an arbitrary abscissa value was selected as a visual aid. Shift-
ing of the leading edge relative to the reference point is clear-
ly evident and confirms the basic premise that relative changes
in case depth are proportional to a relative shift of back scat-
ter arrival time. The fourth graph displays an ultrasonic sig-
nature resulting from a nophardened surface, the opposite side

of the case hardened specimen. As indicated by the graph cor-
responding to the unhardened surface, the leading edge occurs
concurrently with the front wall echo,

Model Analysis

In our analysis of wave behavior lets assume we are the refract-

ed shear wave entering a case hardened specimen. As we propa-

gate through the hardened surface layer we eventually encounter

diffuse scatters after traveling a distance S, Figure 25. Also,

as we propagated through the steel specimen we traversed a plane
characteristic of a given hardness value which segregates the

effective case layer from all other material. - If we measure the

distance along our propagational path between the discriminating

hardness plane and the point where significant back scattering

is initiated and label this offset, O, the effective case depth :
can be determined. :
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Case depth can be mathematically defined by the following equa-
tion:

d = (S - 6) cos ) Equation (2)

By using a calibration procedure where an ultrasonlc signature
is acquired at a known case hardened depth, d” a simple re-
lation can be formulated as the following:

v [T .- ] . _
a=-58LDs bS] o5 6+ d, where Equation (3)

Tps designates the arrival of the

back scatter leading edge.measured

during the calibration procedure,

and ]

d” is a known effective case depth
corresponding to a point measured :
during the calibration procedure.

Note that the quantity (Tbs—Tgs) relates to relative time change i
and therefore simplifies the case depth measuring process,
To test this model on its accuracy and consistency a series of i
ultrasonic measurements were performed on the case hardened i
specimen, However, the criteria for determining leading edge

arrival time of the back scattered energy has not yet been
established.

Threshold Criteria

To determine the optimal criteria for calculating leading edge
arrival time seven discrete threshold.values were.selected at
given dB levels, namely O, 1, 3, 6, 10, 12, and 20. This

action consisted of selecting the threshold value and corres-
ponding offset value which best approximated the known case
depths. Other miscellaneous points needing clarification are the
number of RF signals needed for spatial averaging and the MAW

gate width,

Leading Edge Determination

In determining the most consistent manner of leading edge de-
tection, three criteria must be considered, the number of
unique signal envelopes needed for spatial averaging, the

MAW gate width, and the threshold. This was . ~:omplished by
use of a data base which consisted of twenty four sets of sig-
nals, eight sets for each of the known effective case depths,
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Since spatial averaging is assumed to enhance the back scatter
profile, Figure 24, a total of eight unique envelopes were

used for each data value. This produced a data base consisting
of a total of one hundred ninety-two unique signals, 1In optim-
izing the determination of the leading edge, analysis of the
MAW gate size is performed followed by the threshold analysis.

MAW Gate Size Criteria

To evaluate the affects of the MAW as a function of gate size,
selected values were used in conjunction with a given threshold
value of 3 dB. Plots of "True Case Depth" versus "Calculated
Case Depth" were used to visually inspect measurement variance
and. ranges of overlap between the class sets of 1.98mm, .078"; .
1.40mm, ,055"; and ,91mm, ,036'"., Figures 25-28, respectively, :
illustrate the effect of the .19, .29, and a .39 u second MAVW .
gate widths, Notice the reduced within-class.scatter as the gate

size increases.. As gate size increases, however, spatial resolu-

tion is reduced. Our selection criteria becomes a gate size

sufficiently large to reduce within-class scatter to an acceptable

level without progressing to an overly large window,

A gate size of .29 u seconds was selected as being optimum,

This was done with the thought that the point having.a true

value of 0.91lmm or .@36" and a calculated value of 1.97mm or
0.078" was an abnormality and not characteristic of that particu-
lar data set. In this manner the .29 p second gate was the min-
imal window with what was subjectively determined as an accept-
able within-class scatter level,

PRSI A X P

Threshold Criteria

Plots of "True Case Depth" versus '"Calculated Case Depth" were
made ‘for each of the threshold values for the MAW gate.selected
above and visually inspected to determine the optimum. value
based on the criteria of minimum within-class scatter, Figures
29-31 show graphic results for the respective threshold values
of 0 dB, 6 dB, and 20 dB., Threshold value less than 20 dB were
not considered.since noise levels were thought to obscure signal
values, The 20 dB threshold value obviously forms the best dis-
criminating criteria for the three true case depth data sets,

In using this technique. only one point of the 1,39mm or ,0553" set
overlaps the 1,98mm or .078" regime. All other points are well
separated into their respective class sets, '

Model Reevaluation

A reevaluation of the previous model is in order since the
calculated values of effective case depth do not seem to

form a strictly linear relation with true values of effective
case depth., Governing reasons for this trend are thought to

be associated with lateral beam resolution, beam divergence, etc,.
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At this time let's assume a more complicated relation exists
between effective case depth and arrival time.

Since a linear relation was previously assumed, and only three
known case depths are given, a quadratic equation of the form

given below would be a natural choice,

Equation (4)

- 2 '
d =W, (F%) + W, (F) + W,

where,

Wl, w2, W3 represent respective weighting functions,

and F equals the feature value defined by the relation

»

F= Tyg = Tps -

By using the mean arrival time values determined by the ,29 u
second MAW and a 20 dB threshold, the weighting coefficients
can be determined. Figure 32 illustrates effective case depth
determined with the weighting function. This method allows for
emperical fluctuatioans such as lateral beam resolution, beam
divergence, etc, In analyzing the data,statistical information
such as the standard deviation at each of the three known case
depths measurement can be used to evaluate algorithm stability,
Table 4,

TABLE 4. STATISTICAL DATA ON VALUES
DETERMINED FROM QUADRATIC ALGORITHM

True Effective Calculated Mean Calculated Stand-

Case Depth Value ard Deviation

.91lmm or .036" «94mm .25mm
.037" .o1o"

1.40mm or ,055" 1.40mm «24mm
.055" . 009"

1.98mm or .078" 2.11mm .81lmm
.083" .032"

CONCLUSIONS

An algorithm has been formed which can nondestructively deter-
mine effective case depth via the ultrasonic pulse-echo angu-
lation technique, This technique integrated various signal
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processing techniques to form a relatively consistent and
accurate method. Moreover, the results demonstrate that a
strictly monatomically increasing relation with respect.to true
effective case depth exists in the regime of .91mm to 1.98mm and
back scatter arrival time. This can be used as an extension of
the linear relation established for large.case depths of 2mm and
greater. There are also reasons to believe that even thinner
effective case depths such as ,2mm are feasible, This is a most
desirable characteristic since the methods currently used. to
measure case depth are restricted to limited depth ranges,

The reason for the belief that accurate measurements can be made
on thinner values is due to an offset that exists between the
respective planes of critical hardness and initiation of back
scatter, This offset is seen as the large time difference
between the front wall surface echo and the small relative time
shifts corresponding to changes in effective case depth, This
indicates that back scatter is initiated posterior to the dis-
criminating hardness plane. Thus, when effective case depth
equals zero a separation between the back scatter leading edge
and front wall surface echo could still exist., Shift of the
back scatter leading edge to the left of this point would indi-
cate the surface hardness being less than the specified hardness
value.

Prior restrictions of ultrasonically determine effective case
depth were due to resolution problems caused by the extremely
low signal-to~noise ratio and the apparent obscuring effect of
the front surface echo. With improved signal processing techni-
ques many of these restrictions can.be relaxed, The.final al-.
gorithm was able to predict effective case depth at .91mm, 1,40mm,
and 1.98mm at ultrasonically calculated values of ,94mm, .1,40mm,
and 2,11lmm with respective standard deviations of ,25mm, .23mm,
and .81lmm. Error sources are extremely localized fluctuations
in case depth, small changes in the relative position of trans-
ducer and specimen, and those relating to the ultrasonic tech-
nique used.

To date, various methods have been proposed for measuring case
depth in case hardened steels, Each method as described in past
literature is restricted in practical application due to problems
in area localization, geometry, sensitivity, compositional varia-
tions of different steels, and compositional changes due to car-
bon and/or nitrogen gradients formed during the hardening process,
Ultrasonic pulse-echo angulation is thought to have an inherent
advantage over other methods. First, the use.of focused probes
allows area loczlization of approximately lmm. This allows a
probe to be manufactured that could easily be positioned at
different localities or to be mounted on a special shoe to fit
the curvature of a specimen, A restriction would apply to cur-
vatures that would act as a distorting lens to the sound beam,




The use of eddy current is considered more severely limited
with respect to area localization and as a.result is suscept-
able to small changes in object dimensions., Eddy current is
also noted to being more sensitive to near surface changes,
this can be detrimental since small anterior changes can mask
the measurement of case depths posterior to the surface varia-
tion. Ultrasound is not affected by dimensional changes and
is relatively less sensitive to the compositional changes oi«
different steels and localized gradient changes resulting from
nitrogen and carbon which are commonly used in the hardening
process,

Feasibility. for development of an ultrasonic device for measur- -
ing effective case depth in case hardened steels has been 'shown.
This is due to the added range of case.depths that ultrasonics
can measure, area localization, relatively insignificant signal
distortion due to depth, relative stability regarding material
composition, and especially the potential for further technique
refinement. More work is needed to reduce the scatter of measure-
ments of thin case depths.and to more firmly establish the pre-
viously defined relations. This work can be defined.in two
parallel efforts, first increased signal processing via software
to establish optimum methods.and second, the acquisition, inte-
gration, and possibly the development of state-of-the-art elec-
tronic instrumentation.-; This would enhance the signal-to-noise
ratio causing better analysis and possibly lead to a purely .
-analog instrument that would greatly expedite testing procedures,
The two processes, of course, would have feedback such that the
best in both microprocessors and analog circuitry would be com-
bined. Extensive studies regarding different steels#, hardening
procedures, and degrees of hardness are recommended for future
technique refinement in consistency, particularly thin case
depths, calibration, and defining limiting conditions.
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