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ABSTRACT

This interim report covers research performed from October
1, 1980 through September 30, 1981 on electron-beam excited
plasma turbulence and electromagnetic e¢mission, on provagation
of intense electromagnetic radiation in the earth's ionosphere,
on plasma diagnostics, and on experiments to accelerate ions and
excite low frequency turbulence in the laboratory.




I1.

ITT.

V.

TABLE OGF CONTENTS

List of Appendices

Abstract

Introduction ....... et eee e et e et .o
Summary of Acccemplishments ........ e e
A. Beam-Plasma Interaction ..... e e .
B. Radiation-Plasma Intcraction ...............

C. Laboratory Research on Ion Beams
and Acceleration -~ R.A. Stern . ...,

Publications and Presentations During
this Grant Period ....... e e e et e

A. Published versions of Preprints
included in last interim report ............

B. Publications of (new)work nerformed
during period covered by this report ......

. ©pPavers submitted for publication
during period of this revort ...... et

D. Invited Talks .. ..o eeenn et e e

H. Contributed Talks at

Scientific MeCtings ... ieeeeeenennen e
1. Ph.D. Thesis Completed .......... e e
J. Conferences Organized ... .. iieeennoesens .

Rererences

Avvendices

13

14

15

16

16

16




I. Introduction

This interim report describes work perforrm-d under AFQSP
grant #80-0022 durinag the period October 1, 1980 to Septomhber
30, 1981. The subject of rescarch has been the theory of
"Plasma Wave Turbulence and Particle Heating Causcd by Dlectren
Beams, Radiation, and Pinches". The period covered is the third
stage of a comprehensive research program concernced with the non-
linear behavior cof plasma subjected to intensely energetic sources.
One of *the significant developments in plasma physics cver
the past decade has been the theoretical and experimental proqgross
made in our understandina of nonlinear plasma wave evolution in
response to external sources: A wide variety of radiation sources

2 i

2 . 3,4
'" microwaves, '’ and radar, '

such as lasers, and of electron

7,8

beam sources, such as solar electron streams and laboratory

beams9 can oxcite plasma wave instabilities in tareet nlasmas.

The waves saturate intco a turbulent spectrum,10 and may hcat the
wwlasma, accelerate plasma particles, and/or emit their own radi-
ation. Such processes have been linked to inertial11 and magnet -

.12 : . .
ic controlled thermonuclear fusion schemes, radar communicaticone

. . . 7,8
in the earth's ionospherc, and Type III1 solar radio bursts. '’
The phenomena also bear heavily on certain fundamental guestiona

of plasma turbulence, such as wave collapse in phasec spacce, clec-

13,14 and the nature of the

tric-field envelope-soliton cvolution,
13

so-called "strong turbulence".




In the following summary, we include accomplishments of

our program from October 1980 to September 1981. The founda-
tions for this work were laid durina carlicr sponsorship,
under AFOSR #F49620-76-C-0005 from Auagust 1976 through Septem-~
ber 1979. Refercence should be made to the November 1979 final
reporc for this project, as well as the January 1981 interim
report covering the period October 1979 through September 1980
in order to get a full picture of the underlying motivation and
total perspective.

Our rescarch has been divided into three main arcas:

Beam-~-Plasma Interaction
Radiation-Plasma Interaction
Laboratory Research on Ton Beams

We shall summarize recent accomplishments in cach of these arcas
separately. The details can be found in the Appendices, which

are ordered as follows: Appendices A-E represent oublished ver-

sions of preprints included in the last interim report; Apvendices

F-J are publications of (new) work performed durinag the period
covered by this report;

articles, and Appendix N is a rescarch report.

A. Beam-Plasma Interaction

Our research hascentered upon the nonlinear evolution of
electron-beam excited Langmuir waves, and the clectromaanetic
emission from such waves. In new extension of previous numer-
ical studies in two dimension, we have found that svatial sclf-

focusing of Lanamuir wave packets is invariably preceded by a

Avpendices H-M are preprints of submitted




stage of linear instability. 1In the case of the weak eolectron
streams which propagate throuah the solar wind, this lincar
instability is stimulated scatterina off ions into low momentur:
regicons of phase space (sce Appendix F). 1n the case of the
more intense relativistic clectron beams studied in ‘he labor-
atory by Benford, ct al.,ls the linear instability is modula-
tional instability which causes break-up of beam-resonant wave
r.ackets 1nto smaller vackets whose size is determined by the
wavelength of the fastest-growing unstable mode (see Aunendix ).
Spatial collapse follows the stage of linear instability. For
the case of weak electron beams, the integrated eneragy in small-
scale-slize structurecs is a small fraction of the total wave
energy, in agrecment with the sredictions of self-similar solu-
tions (Apvendix B). In work to be revorted in detail in the next
interim report, it 1s shown that non-thermal Tandau damrine in
the vicinity of the beam velocity can lecad to a steady state
turbulence in which most of the encrgy resides at scale sizes
longer than the beam-mode wavelength. It is likely that these
long wavelenath waves arc resronsible for emission ncar the
plasma freguency (by varametric instability in a hiqhly homo-
geneous plasma, and by conversion off density fluctuations in
a plasma with low frequency turbulence present).

We have also explored the foundations of any statistical
theory bkased on the dynamical (Zakharov) equations of beam-
driven plasma turbulence, by studying intrinsically chaotic

behavior of the solutions to the dynamical cquations, as a




function of the beam urowth rate. A nestdoctoral rescarch
associate, Dr. D. Russell, has studicd the transition to
turbulence under assumed conditions of adiabatic ions, and
with truncation to a few Pouricer modes. With a beam mode,
and two (degenerate) modulationally unstable modes, stranqge
attractors and limit cvelues were obscrved in phase space
(Appendix H). A program of increasing the number of modes
1s now underway.

In further numerical work performed by another post-
doctoral research associate, Dr. B. Hafizi, recurrent be-
havior was observed in nonlinear Jdynamical systems such as
those described by the cubic Schroedinaer and Xortweqg de-
Vries cqgquations (Appendix Gy, In Arvendices ¥ and L,
modulational interaction of nontinecar waves was modeled
using three-, five-, seven-, nine-, and sixty-four-wave
truncations of thce nonlincar Schroedinger equation. A
detailed description was aiven of the phasce space for the
three-wave system, and comwarcd to that for the five-mo Je
system analvtically. 1t was shown computationally that tne
recurrence time for all the truncations was almost the same,
and that the distribution of eneray over the modes rapidly
reached an asymptotic form as the number of modes was increasod.

In Aprendix M, single ion trajectories in an axis-symmetric
space-charge wave on an c¢lectron beam were studied. The beam
was assumed to move parallel to a strong uniform magnetic

tfield. 1t was found that wave amplitudes too small to tran




Leam electrons were alse too small to engoender stochact 1o
motion ¢t an ion inittally trarved in the wave, and the

ien remains tranced.

B. Radiation-Plasma Interaction

Anpendix 1 1s a reprint of a noew *heorctical vaner on
modification of the ionospherce by HD radar. For pavamcetoers
characterizing the Platteville, (onlorado, ionospheric heating
facility, the HP radar cexcites hangmulr waves at its cxact
roflection voint by the so-called oscillating two-stream
instabi]ity.5 The sunscgquent ovolution of this instabilitv
is studicd nuerically, and found to involve spatial self-
focusing and collarse of Lanamuiv wave packets., Comarisons
are mnade with experiment.,

Our paver on thermal self-Vocvsing of HE radar and/om
microwave bezams in the ionosphere has been published and is

included as Appendix . 1

C. Labecratory Rescarch on Ton Beams and Acceleration

- R.4A. Stern .
The coal of the on=-gaina »roaram 1s to develon and

cnhance the officiency with which larce-amplitude waves

in plasmas can accelerate ions. Two general dircctions !
were identified at the outset. TFirst, the accelerat ion
of ions in segments by means of ion-acoustic waves, in

unmaanetized as well as magnetized plasma. IHere the ion




O

beam eonds w with 1ts nomentum «directod along the divreetion
of propacation of the wave, which ts--1n maagnetized tlasnas
--parallel to the magnetic field. Second, the acceleration
~f ions across strong magnetic ficlds, by beams of cross-

field instabilities. This totally new vrocess has funda-

mental consequences of imvortance to other aswects of wlasrc
nhysics such as 1lonosvheric particle transport, and isotope

seoraration.

1) Instrumentatinon Development and Testing

a) To stuady the acceleration of ions by icon-acoustic
waves in unmacnetized »lasmas, a surtface-macnetic structure
confived lasm: doevice was assenbled and tested.  The basic
configuration (Fisure 1) consists ol a gas discharae inside
a larje motal charmber of about 40 cm diameter and S0 cm lenath,
surrounded »n oall sides by rermancent magnets with about 1 ko
field strength. In this chamber, it proved nossible to operate

R

a pvlasma at a backaround prossure of 10 > Torr, morc than onc
order of maagnituic below that of orevious studies. As a result,
charge-exchange degradation of ion waves, which limited the am-
plitude of ion-accelerating waves in previous experiments, 1s
avoided. Fiqure 2 shows ton-acoustic shocks (i.c., fully
steepened ion-acoustic waves) provagating in this plasma.
As secen, the waves are not at all degraded in amplitude.
In contrast, similar wavcs at the higher pressures degrade
by an order of magnitude. In conclusion, we have established

that the surface-magnectic structure device operates as expected.




The size of th toest metal chanbeor (contriboatess by Do,

. Her
demic

factor
the di
strong
of the

enerqgy

shxowtiz of the University of §ow: who suent the acoa-

sear 1980-1981 with cur group), is currently a lirotine

in the excitation o! strong ion beam segments.  boecause
stances from control arids to wolls are limited, and thoe
magnetic confinement ficld occupy a sizeablo tfraction
se distances, calculations show that the relatively low-

beams we can excite end up in curved rather than straiatt -

line trajectories. To avoid comvlications resulting fron thesc

cffect

5, a doubling of the chamber dimensions is under corsaid-

deration. We have designed and requested independent suipert

for the construction of a matina chamber of cqgual volume.

by To minimize the scattering of ion beam scament s 1,

otf-axis ion-acoustic waves--onc of the princinle limitina fac-

tHors 1in 1ion beam acnervation--we have put together an eoxpoerimen-

tal conficuration involvina a strong magnetic field. Here the

unstab

le svectrum is narrower, and can be exvected to have o

corraspondinaly reduced coffect on the ion beam. This deviceo,

a plasma column generated by microwave breakdown of a noble

qas inside a solenoidal magnetic field, was contributed bv

Bell haboratories. 1t was assembled and tested, and fullwy

instrumented with motorized axital and radial Langmuir proboes,

aptica
a rajo

noisc

1 mcasurements have been delayved, pending resolution of
r technical problem: the presence of parasite radio

from an as-yct undetermined source.
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Preliminary measurcments of wave excitation reveal that

large-amplitude waves launched in this device are indeed froc

of degradation by off-axis ion-acoustic turbulence. An in-
teresting new observation has emerged: it appears that som
coupling from the on-axis ion-acoustic wave to cross- fieldl

ion-cyclotron modes is occurring. We are studyina this inter-
action theoretically.

ii) Cross-Field Jon Acceleration in Magnetized Plasmas

As indicated in the proposal for this contract pcriod, a
principal new development of our work is the observation that
ion beam segments can be driven across strong magnetic fields
by electrostatic ion-cyclotron waves (EICW). We intended to

guantify the process by measuring the relationship between

beam speed, magnetic field and beam radius. We have success-
fully carried out these studies, using the O-machine faciltiy
at the University of California, Irvine, and have obtained a
firm model for the underlying physical process. To summarizc,
the radial electric field component of EICW imnarts radial
momentum to ions, which end up in large-diameter lLarmor orbits
convolved around the source region. The envelope of the ion
circulation adds up to an aximuthal ion beam. Ion bunchinag
occurs At the apogee of thec orbits, as in magnetron motion,

leading to the formation of beam segments.

A full report, included here as Appendix J has becen rublishod
as a Physical Review Letter.
Bascd on this understandina, further technoloagical develon-

ments are indicated. First, the process itself basically alters




e
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cur picture of transport processes in unstable plasmas, includinc
the ionosphere. Specifically, the lona-range ion transport de-
monstrated here indicates that multi-stage ion motion can occur,
with scale lenaths totally unrelated to density or temperature
gradients, as in ordinary diffusion. Seccondly, isotowe separatiornr
processes now under development may be able to utilize our results
to enhance spatial separation of particles with differinag mass

(for reference, see Appendix J).

III. Publications and Presentations durinc this grant period
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246, 306-313 (May, 1981).
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"Progress and Problens in the Theory of Type 111 Solar
Radio Emission", Martin V. Goldman, submitted to Solar Phvsics,

1981.

D. Invited Talks presentced between October, 1980 and

September, 1981

"Soliton Collapse and Flectromagnetic Emission", M.V,
Goldman, invited onec-hour lecture given, at the invitation
of the Soviet Academy of Sciences, in Telavi, Georaia U.S.s.Kk.,
at a Workshop of Plasma Physics and Controlled Thermonuclcar
Physics, October, 1981.

"Lanamuir Turbulence", M.V. Goldman, invitcd vaper at
Workshop on Stochasticity and Turbulence, los Alamos Centcr
for Nonlincar Studies, June, 1981.

"N Review of Solar Radio Wave Emission", M.V. Goldman,
invited talk: Radiophysics Laboratory, CSIRQ, Evppina, Australia,
March, 1981.
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Invited Seminar, Los Alamos Scientific Laboratory, R. Stern,

April, 1981.

H. Contributed Talks at Scientific Meetinas

"Thermal Self-focusing of Radio Waves in an Underdense
Ionosphere", M.V. Goldman, F.W. Perkins, APS Plasma Phyvsics
Meeting, San Diego, November, 1980 [Bull. Am. Phys. sSoc. 25,
914 (1980)].

"Harmonic Emission by Adiabatically Ccllarsina Lanamuir
Solitons", B. Hafizi and M.V. Goldman, APS Plasma Phvsics
Division Meeting, San Diego, November, 1980 [Bull. Am. Phys.
Soc. 25, 914 (1980)].

"Langmulr Collavse in a Weak Maanetic Field", J.C. Weatherall,
M.V. Goldman, and D.R. Nicholson, APS I'lasma Physics Division
Mectinag, San Dicaqo, November, 1980 [Bull. Am. Phys. Soc. 25,

984 (1980)].

"Ten-Channel Optical Polychremator for Dovpler Ton Temperaturce

Measurements on the Dodecavole Surmac", K.L. Lam, R.W. Schumachor,
and R.A. Stern, APS Plasma Physics Division Meetinag, €in Dieqo,
November, 1980 [Bull. Am. Phys. Soc. 2%, 959 (1980) 1.

"Azimuthal Ton Ring Beam Generation in Unstable Magnetized
Plasmas"”, R.A. Stern, D. Hill, and N. Rynn, APS Plasma Physics
Division Meeting, San Diego, November, 1980 [Bull. Am. Phys.

Soc. 25, 985 (1980)].
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"Solitons and Ionospheric Modification", D,R. Nicholson,
P.J. Hansen, G.L. Payne, J.C. Weathcrall, M.vV. Goldman, and
J.P. Sheerin, URSI XXth General Assembly, Washington, D.C.,
August 10-19, 1981, Symposium on Active Ixperiments, Ionospheric

Modification Session.

I. Ph.D. Thesis Complected

"Nonlinear Langmuir Waves in a Weak Maanetic Frield",
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J. Conferences Organized

Martin V. Goldman was oraanizer of an International Workshcn

on Plasma Physics, at the Aspon Center for pPhysics, June, 1980.
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Recurvive behavior has been observed in a two-dimensional electrosiatic particle simulation of s coherent
intense Langmuir wave packet The revursion may he nssocisted with the fact that the plasma frequency has s
spatial vanation in the density depression created by the ponderomotive force

The behavior of ntense Langmur waves inv.ves
many pussible processes, solitons,' wave packet col-
Lipse,” cascading. ' stimulated scattering, nonlinear
Landau dampine, explesive instabilities ) aad noodula-
tonal mstabihities,” are only a few, Cornpetitt o be-
tween some of these effects 1s only just beginning to be
studied, Effects seenin o two-dimensionual electrostatie
part:cle simulation including son and electron dynamics
are reported here: Animtial wave packet underyoes
virtually complete reconstitution following it imitial
L reak-up.

Use is made of a standard fimte-sized particle code.
Thesmtial condition consists of a Langmur wave packet
shich hias o Gaussian intensity profile in wavenumber
space with average wavenumber k,, - kX and half-width
Ak, = ak k. The Langmuir waves are turned onan an
mtially uriform unmagnetized plasma over the time in-
terval /- 0to /= Lejt. The waves have approxamately
constant energy after the imual transients subside,
Typical parameters in our study are; number of elec-
trons (tons) YN} - 32766, number of grids in the ()
direction 7 128 (L 0 32)an this doubly pertodic sys-
tens; electron ion; Debhve tength 2 () 1Ak
212- 1284 qn the dorectiond; 3k AL - 20 324, the
-9, and particle s1ize w, o A, where
A is the gnd spacing in buth the vand y directions, In
such a system, the electron e¢ollision frequency is 5
< 107' ., and the electron Landau damping decrement
for the & mode 15 3 + 107" ,. The plasma s therefore
fairly dissipationless over the period of 104",

Biass ratio M ou

Figure 1 shows three snapshots of equi-encryy con-
tours of the clectrostatic wave eneryy densaity for a
case with the imitiad wave amplitude for the 7 - 2 mode
of Ly sk, nia, & 20,6 and the average wave energy W

£ 2an T 0.5 vver the perod of /25,1000
Here, the angular brackets denote spatial averaging.
The peak of the wave packet is located at v=645 at /=0,
It travels 1n the pusitive « direction with the group ve-
locity v, *0.6Au, until / 10w,;'. Linear theory predicts
r, 20.473w,. Figure 1(b) illustrates a slightly later
stage f - 20uw,;". The coherent wave packet hasbrokenin-
tu many seemingly random subpackets all over the
space. The hreak-up occurs not only in the « direction,
bul «Iso i1n the + direction. The behavior of the wave
intensity in wave vector space not shown here) indi-
cates that the peak of the wave encrgy has shifted from
hsloto roughly = le,at /- 20w, The assemblage of
subpackets continues to change its structure until /
~504';'. when o sumewhat more aorpamized structure be-
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pins to emerge. Figure 1.¢) at /= 700, shows thot b
process of reconstitution uf the subpacket his veen
completed and the wave packet profile 1s clase to the
one at + 0, althowh at a somewhat shifted pusition.
Alsu, 11 k space we see that the energy has _scillate s
back to around k - K, in the k space. When we made 1|
256, the packet first propagated forward, then bace. -
ward, and becan.¢ many subpackets, it evintyalls
bick to the oryginal shape at the same place in about +
same time. The size of the plasma does rot appear t
be a fuctor in the results. The denstty dep:eosion o -
sociated with the packet became shallower ang wio
tme elapsed, Although Fermi ¢f af." founs onhine o
recursion th a computer simulation of the viviraty - !
aononbinear string some two decades age, there are @
works i fluid or plasma physics dealing with the rec ir-
sive process until the recent work of Yuewn ¢ ./, wt,
solved a mudel nonlincar Schrodinger couut. voan e
dimension, numerically.

To dotermine the physicad process 1espoisible for i
wave packet recursion, we have made runs with several
different wave packet energy densities, Fioure 2.6t oay
the recursion time vs the average wave packet enere.
density, All the cases shown in Fig. 2 produced recu -
sion. All parameters except for the packet encrgy doni-
sity ate fixed at the same values as for the c.~c W - 0.5,
With W ranging from 0,25 to 0.75, the recursion time
7, was found to be approximately inversely proportional
to the wave energy density W as shown in Fig, 2. There
were only minor differences in the wave packet evoly
uon during the various recursions.

The observed behavior of 7, as a function of W1s
cunsistent with the theoretical observations made Ly
Kaw ¢/ «l." who studied the cffect of fixed, spatiaily
periodic ion density fluctuations on Lanzmuir wave v
lutions. The break-up and recursion of an original
Langmuir plane wave is due to the density dependencc
of the plasma frequency, which causes the oscillations
i different spatial regions of the plisma to o 1n and
vut of phase with each other, In Fourier space the
wave vectors k, of the jon density fluctuation mix in
with k,, producing sidebands at k,2 k,. The original
mode at k, becomes smaller in amplitude at first, but
then returns at the time when the Bessel function, /
has its next edremum. This gives an approximate re-
cursgion time of

B 7.7w!" N

0, 2
[T L T




where on,,, i8 the maximum of the density ripple.

In our problem, the density perturbation is self-con-
sistently gencrated by the ponderomotive force of the
Langmuir wave packet., U the ions are roughly adiaba-
tic, then balancing the plasma pressure against the
ponderomotive force gives the relation between the den-
sity perturbation and the Langmuir field: on,,,/n,
= -W/4. This predicts a scaling

1,=31/W, (2)

which shows good agreement with the results of simu-
lation, as given in Fig. 2. [Also, the numerically ob-
tained 6n,,, measurements were in good agreement with
Eq. (1).] The argument in Ref., 8 predicts a temporally
periodic migration to both higher and lower wavenum-
bers in the Fourier-space evolution of the packet, We
do not observe the generation of higher Fourier modes.
Their absence is probably due to Landau damping, so we
see only oscillation in the direction of lower wavenum-
bers and back.

Since the submission of this manuscript we have found
suome recent theoretical results which appear relevant

F1G. 1. Time sequence of contours of electric-field energy
density EV/45 ip 3-y space. (a) att=10u,', ®) atf=20w,', and
) at t=70.,". Real lines represent high-energy contours and
dotted ones low contours.
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FIG. 2. Inverse of the wave packet recursinn tr o ws * o
malized wave-energy density W, obtained by .tiiot

to our numerical studies, Thyragarajs® hu: L' 1
recurrence can be expected in one-dimensicnri v
phenomena describable by a cubic Schrddine . -
and has pointed out'? that, in two dimension.. sush .,
tems will either collapse or recur. The wive jiur .t
we have studied should be roughly adinbatic, «nul to
fore be describable by a simple cubic Schriding. -
tion? to the extent that damping is negligible.
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Harmonic emission from adiabatically collapsing Langmuir

solitons
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Numerical studies of radiation at 2w, from a Langmuir envelope collapsing adiabatically in three dimensions
show that the emissivity is higher than expected. A volume emissivity obtained from an approximate density
of collapsing packets leads to favorable comparisons with measurements of type-111 solar radio bursts.

. INTRODUCTION

It is now believed that a type-III solar radio burst is
associated with an electron beam launched into the
solar wind during a solar flare, leading to electro-
magnetic emission at the fundamental and harmonics
of the local plasma frequency. Gurnett and Anderson'
have measured the volume emissivity of harmonic
emission at ! a,u,

Recently. Goldman et al.” proposed a model for the
emission based on the following model: An energetic
beam of electrons launched into the solar wind excites
Langmuir waves. Computations® indicate that a
Langmuir wave packet grows up to a point where the
spatially-averaged energy density W (normalized to the
thermal energy) in the packet exceeds the threshold,
W, . for direct collapse.™* The collapse time is
infinite at threshold and decreases ravidly as W
increases above W,..” It is foundthat.typically,apacket
continues to grow in strength up to about twice the
threshold energy density before there is noticeable
evidence of spatial collapse (and broadening in wave
vector space). Once the packet becomes broad enough
in k space. it should be kinematicaily possible to
couple two Langmuir waves into a photon at twice the
local plasma frequency.

The physics of Langmuir collapse is described by
the Zakharov equations.’ The general solution of these
equations is unknown, however, it is known that they
possess certain invariants,'=" It is also known™ " *
that in some cases the solutions approach a self-similar
form over a region of space. There are two distinct
stages of early collapse, the subsonic or adiabatic stage
(described by a cubic Schridinger equatioi.j, and the
supersonic stage. In the subsonic stage, the ions
respond to the ponderomotive force adiabatically, while,
in the supersonic stage, ion inertia plays an important
role.

In Ref. 2, using the plasmon number invariant, an
upper bound, and using a supersonic self-similar
solution, a much lower estimate of the emissivity of a
bunch of collapsing packets was obtained. It was argued
that most of the harmonic emission would occur in the
supersonic stage.

In the present work, we examine the adiabatic stage
numerically. We find that an adiabatically collapsing
wave packet can lead to emission in the subsonic stage
which is significantly higher than was thought possible.
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Owing to subtle stationary phase effects. this can occur
for packets whose width Ak is still smaller than «, ¢,.
With reasonable choices for the number density of
collapsing wave packets, we find levels of emission
consistent with the experimental estimate' for the

volume emissivity.

1. EMISSIVITY OF A LANGMUIR WAVE PACKET

The emissivity is given by

JP (7’
T r«r:' j »thxB,

where ¢ is the speed of light. E(B} is the electric
(magnetic) field. and r is the distance between the point
of observation (where EX B is evaluated) and the origin
In terms of the current, J, . , at twice the doe wal)
plasma frequency w,. the emissivity is.

dp fdu.‘ - . s i
a0 4_” lr‘-: T .ul\|J_ (AP w))"sin e, 1)

where ? is the unit vector directed toward the point of

observation. wis the frequency variable in the temporal
Fourier transform of the current, A
and 8 is the angle between J_

. (}\’i\.w)x f';.
I

‘u' —w;‘l')!l [
wp(l\’r. s)and r. i.e..

sind = |J,_
We now make use of Zakharov's fundamental simpli-
fication' by expressing the current as a slowly varving
envelope j. and a rapidly oscillating phase:

i, \
J,. (KP.w) =i, expl-iw,t)-c.c..
“p »

where « is the photon frequency.
then be expressed as®

The emissivity can

dP _Kyu sin’¢
g 810 Yy
) Br l im N J’ zll ive (1\ T/ (2)

where Eq. (1) has been simplified by taking an “average™
angle 6,, wavenumber K,. and frequency .. out of the
integral, where

Ko=l o= o0 e (3)

This procedure should be valid as long as the direction
of J;wp(Kf'. «) does not vary significantly over values of
the integrand in Eq. (1) for which J., ~is large.

w

il. DYNAMICS OF A LANGMUIR WAVE PACKET

We describe the nonlinear wave packetby a Schridinger
equation with cubic nonlinearity
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(,a T e - ]Ei)

2m w0, 8w,
T=yT,+,T
(ion) temperature, with 3 (7,) being the associated
adiabaticity index; m,, ¢ are the mass and charge of
the electron, respectively. E is the envelope of the
electric field E:

where Vv =8/8r". T,(T)) is the electron

E(r’,t)=3E(r", ) exp(-iwt) +c.c.
Under the following substitutions:
E ~(32mn, T)!/?E, t~wyf, r'-¥3 a,r’, (4)

where n, is the backgroand number density and A, =(T,/
4an,e 2)”‘ is the Debye length, the dimensionless form
of Schrddinger's equation is obtained:

(i8,+iv°?+ |E|))E=0 (5)

We note that the use of the Schrddinger equation is valid
only inthe subsonic stage, where the ions are adiabatic,*5 "
In the Appendix, this is justified for the time scale over
which we calculate the emissivity.

The electrostatic field envelope E can be written as
E(r, 1) = = wliv(r, {) explike r/k))]. (6)

Here, k,=w,V,/r, is the wave vector of the most un~
stable beam mode. At /=0, ¢(r, +=0) is a real func-
tion which is localized around r=0 and has spatial
widths parallel and perpendicular to k,. These initial
widths are set by the k-space contours of the beam
instability.® Roughly, |w|=ak,|¢! and {v,4] ~ ak,|¢!
where Ak, and Ak, are the parallel and perpendicular
widths associated” with the beam instability; initially,
Ak,,"« kg .

Our central approximation will be to take & to be
spherically symmetric at the initial and later times,
so there will only be a symmetric width measure which
changes withtime. Throughout the calculation, the in-
equality |9y |« ky|¢| will be satisfied, so that the wave
packet will remain relatively narrow in k space. This
enables us to write Eq. (6} approximately as

E(r’, 1) <k 0(r’, 1) expliky-r’). (67)
This field still has the phase factor exp(ik-r ") and is
thus not spherically symmetric. However, the mom-

entum K, can be transformed away by the following
gauge-frame transformation’;
W 1) = o(r, ) exp(—ikit/2),

7
r=r’ —Kky. ()
Using Eqs. (5)-(7), we find that the spherically sym-
metric scalar ¢(r, ) satisfies

tio, + v+ 9|9 =0. (8)

We have studied this equation in Ref. 7. It was shown
there that the condition for the electrostatic approxi-
mation is

r 1
VJJ w kg,

which is well satisfied for most times of interest. This
differs substantially from the so-called head-on approx-
imation often made® to calculate harmonic emission. In
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addition, conditions were found for the adiabatic apprux-
imation. These can be expressed as

2 g0
lets, kyscm M,

In the Appendix, we shall consider the validity of these
inequalities for the parameters of the present calcul-
ation.

In terms of ¢, the current density lm cain be written
as (see Eq. (33) of Ref. 2];

-3V 8B T
lZu <K0r:’)— :LU_Q K,

x(g ~r- ﬁoﬁ‘,)exp(—iﬁo - K,r)
X J’d3r¢>2(r) expl-i(KyF - 2ky) - .

The angular part of the integral can easily be evaluated,
leading to

, s [ V2 6Twnd
i 0 ()

x. 1: rélsin(Sr)dr ;, (9)
where
S = |Kof - 2k | =V 3 (v, /c)(19 -8V 3 p)’%,
u=kyr. (10)

The quantity S is the momentum mismatch between the
harmonic photon and two plasmons: also, r,, is the
electron thermal speed. Use has been made of the fact
that for emission at twice the local plasma frequency,
Eq. (3) gives K,=V3 (w,/c); moreover, lky|=2(w,/c).
[Note that in Eq. (10) the dimensionless forms of K,
and k, appear in accord with Eq. (4). |

Substituting Eq. (9) for the modulus square of the 2.,
current into Eq. (2), we have the following expression
for the emissivity of a single wave packet

dP . ., VBT Ky [0 VP
ar _ 2g YONOL) Ropwy (Ten ' (50 2
aq =TSN g eV we ( ) Tw lim g
,2 o ]
X _r dl {[5drro sin(Sr)|-. (11}

~T/2

IV. NUMERICS AND SCALING

Equation (8) is solved in the Hilbert space of ¢ by an
implicit finite difference method in spherical geometry.
The following invariants can easily be derived from
this equation®®:

= 1’ |¢|2r2dr, I=

where I, is proportional to the boson number and I, is
proportional to the Hamiltonian. The accuracy and
stability of the numerical scheme is checked by the
(semi) invariance of the discrete forms of the func-
tionals I; and [, on the Hilbert space.

iH)dr, (12)

The computations are started by choosing a Gaussian
for the initial potential
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o W

6(r, 1 =0) = oy exp(=2r""1°). (13)
For the particular mesh size chosen, we take ! =5.66.

From Eq. (9b) of Ref. 2, the parallel half-width
of the packet is found to be

Ak, ky=tar,/ vy,

[Eq. (9b), Ref. 2], where r, is the beam speed and
Ay, is the spread in this speed. From the values quoted
in Ref. 2 we find

_A_kuEA&L: I_A_’_'.h_k_(l; 'x107%

ko Uxp vy kp ? )
Notethat the Schrodinger equation (5) is invariant under a
stretching of r’ by a factor 4, provided the time / is
stretched by A%, and E is reduced by A. With A=300,
our choice of [ =5,66 can be made to correspond to the
above value of Ak,. We therefore arrive at the fol-
lowing approximate scaling from type-IHI values (sub-
scrint "1II") to computational values (subscript "c"):

(¢>)n| = (300)-l(¢)cy
(thu =(300)2(I)c,
(r)m = 300(r),_. . (14)

We choose (¢,), to be 1.18, corresponding to an average
energy density (W),, at twice the threshold value. ™’
Using the scaling of Eq. (14), this leads to a value for
(Whn = 107, which is in agreement with the value used
in Ref. 2. Further, from Eqs. (4), (10), and (14) we
find that

(8),=300(S);;; =300V 3(r, /c)(19-8V 3", (15)

With (2, /c) ~4.5%10"" in Eq. (15), § is sufficiently
large for all ¢, so that the spatial integral in Eq. (11)
is seen to be practically zero for an initial ¢ of the form
of Eq. (13). Thus, the scaling implied by 2%, [Eq. (9b)
of Ref. 2| leads to a negligible emissivity initially. The
interesting feature that emerges from our computations
is that the modulus and phase of ¢ change sufficiently

in the subsonic regime to enable substantial emission

to occur.

V. RESULTS AND DISCUSSION

Figures 1 (a) and (b) show the time development of the
emissivity of a single packet, i.e., the expression given
in Eq. (11) before performing a time average. The
emission grows in an approximately exponential manner
for most of the time development of the packet, reaching
a maximum and decreasing thereafter until the collapse
point. In this calculation ¢, has been taken as 45° [see
the remark following Eq. (2)] and u =k, * ¢ has been
taken as v 32 (£, making an angle of 30° with »).

We note that the emissivity climbs from an initially
negligible value to a peak many orders of magnitude
larger, and then begins to decay. The peak occurs at
0.994/_, where /. is the adiabatic collapse time. In
order to understand this behavior, we note that P> 2
in Eq. (11} is proportional to the absolute square of the
following integral over 5"

1 [rlr riy sinSr . (16)

147 Phys. Fluids, Vol. 24, No. 1, January 1981

tal

EMISSIVITY (Iog,ol

EMISSvITY

e

———— e —

13 1304 1308 32 1 ;!6 ! ;?O 1.3.4
+
FIG. 1. Temporal development of emissivity fram a collapsing
wave packet. Note the logarithmic scale in (@) for the early
stage, and the lincar scale in (B), close to the collapse time,
The scale on the time ax  is in 4‘;‘ and the computational scal-
ing [see Eqs. (1) in text]  Collapse time is 1.3265,

Let us now write - lexplra), where A()) is a real
modulus, and () a real phase. and both are spher-
ically symmetric. The integrand will be largest around
the peak of rA'. provided the phase factors expli(2.y
+351)| do not produce severe phase mixing.

For our initial » of Gaussian form, « is zero and the
quantity »A’ @ rexp(-2r '1') peaks at r, - 2, and has a
width of Ar, = 2. However, sinSr oscillates with a
half-wavelength = 5+ 0.5. Hence, there is strong
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phase mixing of the emissivity. This corresponds
physically to the failure to conserve mumentum in the
coalescence of two plasmons to produce a photon.

At later times, the packet has collapsed considerably,
so the rA’ can peak at smaller r values with a smaller
half-width, which is therefore less susceptible to phase
mixing. In Fig. 2(a), we have plotted A’ as a function
of rat t=0 and at /=1.312. The half-width of A® has
decreased by a factor of 6. In addition, the quantity
rA? now peaks at 1, ==0.25 with a half-width Az, ~0.25.
This peak and half-width coincide with the peak and
half-width of the first maximum of sin»S, which would
seem to indicate reduced phase mixing. However,
effects associated with the phase « of the field are
also beginning to come into play at this time. A region
of stationary phase in the integrand v, Eq. (16) cor-
responds to a range of points where |Ss(8a/ar)]|
becomes significantly smaller than S. Such a region
of stationary phase is beginning to occur at /=1.312
and is seen to overlap the peak of rA*. This also con-
tributes to the reduction of phase mixing. The normal-

140 4
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FIG. 2. Langmuir packet evolution, (a) Square modulus of
Langmuir field, |¢]> as a function of » at £ =0 and at ¢ =1.32,
Note the Gaussian at ¢ =0 appears flat because of limited range
of r plotted. (h) Gradient of intrinsic phase of Langmuir enve-
lope in units of momentum mismatch S, as a function of 7,

for £ =1.312.
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ized gradient of @, (9a,/8r)/S, is plotted as a function
of r in Fig. 2(b) for the time /=1.312, and is seen to
reach a maximum absolute value of about }.

The phase «a is also responsible for the eventual
reduction of emissivity at later times. In Fig. 3, we
have plotted (9«/3r)/S as a function of » at the later
time (=1.324, corresponding to a reduced emissivity
[see Fig. 1(b}|. The emissivity is reduced at this time
because of the positive and negative oscillations in the
gradient of @ which once more lead to phase mixing.
The reduction can also be viewed as a cancellation of
the integrals over exp[i(2a +Sr)| and exp[+ i(2a - Sr)l,
which have slightly different narrow regions of sta-
tionary phase.

A word is in order concerning the physical signif-
icance of the phase @. The momentum density carried
by the Langmuir field is’ p=(1/2i}(E4VE, - E,VE}).

In owr case, this reduces to

p=[i, + va(n])|E|’.

Hence, Vv« is a local plasmon momentum, which arises
from the nonlinear dynamics of collapse, and adds to
k= w,v,/t,. (We should bear in mind, however, that
arerage plasmon momentum is conserved’ and equal

to k, in the adiabatic stage of collapse so (va) = [d’r
xiEl*va/{d*r|E|*=0.) The momentum conservation
in the coalescence of two plasmons to produce a photon
thus becomes 2k, —= K; - 2V =0, which is essentially the
stationary phase condition in the integral in Eq. (16).
Since the square modulus A narrows spatially, the
failure of this phase matching condition is less serious.
The gradient of 4 is | VA/A[, which we may identify

as a spread of wavenumbers ak, Its maximum value

1M

|-
q.v'm
~la
o
]
ot
od

-

FIG. 3. Gradient of intrinsic phase of Langmuir envelope in
units of momentum mismatch S, as a function of » for ¢ =1.324,
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of Ak < (ar)™ becomes broader as real-space collapse
progresses (as Ar, tends to zerv). At /=0, we find
Ak b, = 107, whereas at time /:=1.316, b A, x 60,
Thus, stationary phase becomes less important as
collapse proceeds. The exception is the late stages

in which the phase nscillated rapidly, causing the
resumption of phase mixing.

It is important to note the role of coherent phase in
this calculation. Past estimates® of the volume emis-
sivity have been based on Fourier space expansions of
the secend-order current in terms of Langmuir fields.
In the resulting current-current correlation function,
the decorrelation of four fields is performed by as-
assuming the random phase approximation. Our cal-
culations are in real space, rather than Fourier space.
The existence of an assembly of wave packets in real
space is due to random k-space phases, which cause
constructive and destructive interference. However,
once a real-space packet begins to collapse, there is a
phase coherence which is preserved even for the in-~
creasingly widely separated k-space components in the
spectrum of each collapsing packet. In this respect,
the ccherence of each collapsing packet is taken into
account in our caiculations, although the contribution
{rom different packets are incoherent with respect to
each other. Statistical assumptions underlie only our
treatment of the density of collapsing packets, which
yields the volume emissivity.

Another differnce between the present calculation and
past work" on the emissivity concerns the relative size
of the average plasmon mecmentum K. In the "head-on"
approximation, * the plasmon momentum spectrum is
assumed to extend over a region of & space much
greater than A, and containing "head-on, ""or oppositelv
directed, plasmons whose momenta are much greater
than K,. This is not true for our initial spectrum, but
in the late stages of adiabatic collapse where we {ind
the greatest emission, the spread of momentum com-
ponents Y« in the packet is on the same order as A,

S0 our approximations are of marginal validity (see the
Appendix).

In order to compute the volume emissivity, we need
to know the density of collapsing packets »_in the beam.
We just quote the estimate made in Ref. 2,

ne= 7lrcF"o !

[Eq. (59), in Ref. 2], where 3, is the beam growth rate,
7. is the collapse time, 1, is the density of wave
packets, given by

n, = ok (ak)/8

[Eq. (56), Ref. 2| in terms of the parallel Ak, and per-
pendicular Ak, width of a single packet, and ¥ is a
dimensionless unknown parameter in our model that
essentially measures the fraction of energy transferred
from the beam to collapsing packets.

In arder to work out the time averaging implied in Eq.
(11}, we follow Ref. 2 and compute the fractional time
that the emissivity is within a half-width of its peak
value. From Fig. 1, this fraction is roughly 0,025
1.325. Thus, we write,
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AP\ 0.025 . rs sec-! gp-!
<1134>, 1.325 0.16:20.003 ergssec~'sr!,

and obtain for the time-average volume emissivity the
following result

P
:I‘ - iy
“» "'<(m>‘

- 78‘ 7EALR(Ak) 20,003,

RN EATIRN AT :
“3(3«) o (A"f,) ~1.3265 ~ 300~ F

1ap, o (1) " )
x ~-b T2 - st ) x
4 vy, 4 ( "y 0.003.,

where 1.3265 300 ' ., is the numerically determined®
collapse time, and

e (AN Y
o, \Be 1, \dr,

following Eq. (62) of Ref. 2: », is the background den-
sity, 40 em’’, u, is the beam density, 107v,, r, and
Ay, are the beam speed and spread in speed, with

A, vy~ 5, Ak, ko~ ' Eq. (92) of Ref. 2, and Ak, b
= (ary, 1), Eq. (9b) of Ref. 2. The quantity F is

a factor (described in Ref. 2) which relates to the
depletion of beam modes according to two different
evolution scenarios. The final answer for the volume
emissivity is therefore

Jo., 1> 107" "Fergsem™ sec™'sr . 17

This is compared with the measured’ value of 2>10°
[see ulsu Eq. (1) of Ref. 2|. We see that in order to
reconcile the two values, F has to be around 107
Considering the arguments presented in Ref. 2 con-
cerning the magnitude of /', we see that a value of 10°
is not unreasonable.

Vi. CONCLUSION

Our calculations for a group of collapsing Langmuir
wave packets account quite reasonably for the observed
emissivity associated with type-III solar radio bursts.
These results are encouraging enough to merit further
elaboration: in particular, there is a clear need for a
better estimate of the density of ' collapsons.”
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APPENDIX: VALIDITY OF ADIABATIC AND
ELECTROSTATIC APPROXIMATIONS

Our calculations have been based on the cubic Schrd-
dinger Eq. (5). The validity of this equation requires
that the wave field be predominately electrostatic, and
the low-frequency (ion) maotions be adiabatic. The
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conditions for both approximations are set forth in the
Appendix of Ref. T.

For the waves to be electrostatic, we must satisfy
Ak k< ],

where Ak x JAlol,¢! is a measure of the gradient of
#. Our wave packets satisfy this criterion up until
the very latest times of t =1.324, where ak/k, = 60% .

The adiabatic ion approximation requires that
e, EI <m/M=5.4%10",

The condition on k, means that the mean wave packet
group velocity is siow enough for the ions to follow the
ambipolar field adiabatically. Since k,=10"? in our
calculations, it is always satisfied. The second con-
dition essentially requires that the collapse speed
remain subsonic. Taking into account the scaling of
¢ in Eq. (14, we may rewrite this condition as

[oc|"<50.

This condition breaks down at » =0 near the time of
peak emissivity at  =1.312. However, only the peak
of r|¢.|” is significant for the emissivity in Eq. (16).
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At this peak, we find from Fig. 2 that  ¢.|" is of orcer
50, so the adiabatic approximation is marginal. At
later times, it would appear to be violated. However,
we have found the emissivity to go down at these times
[see Fig. 1 (b)), so our calculation probably does not
overestimate the emissivity.
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Seclf-Focusing of Radio Waves in an Underdense lonosphere
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The theory of self-tocusing instabilities i the sonosphere s developed eniphasizing the criucal param-
eters required to obtan suficiently tast temporal and spatial growth rates so that the instability may be
vbserved Ttis shown that self-focusing will not oceur unless 2c'/7¢ 2t < 1. where ' 1s the radic wave fre-
quency. a ivpacai ionosphene plasmia frequency. and [ the spatial growth length. (In the #Fregion, { <
23 hm s used. whule an the Eaegion ! 2 1 hm ) In the F region, the threshold power flux P, o P, = (15
AW Ty LS MHOT CF L0 SR 0t eme Yy C,L where n and T, are typical electron densities
and temperatures. and €, ~ 1 depends on spatat and temporsd growth rates In the Fregion, the result s
P, mWomh) o IS MEA 0T cm Y0, where (= 1 again depends on growth rates Iimen-
sienal analysis sndicates nonhinedar saturation will set in when vanatons of order unity oceur 1a the radio
wave intensity The correspondine relative electron density thuctuatiens are given by dn/n ~ =71 Ap-
phications to planned wnosphernic heating expenments and wnospheric modification by the mucrowave

heam tram a satellite power station are discussed

I INTRODUCTION

Scil-focumnye of radio waves 1o the F oregron of the wono-
sphere has vccurred 10 many overdense wonosphere modifics-
uon expenmenis {Thome and Perkins, 1974 Duncan and
Behnke, 1978] and ats prnciples are well understood in terms
ot theor, [Vashoy and Gurevich, 1976, Cragin and Feger. 1974,
Gurevich, 1978, Perhiny and Valeo, 1974]. These theories all in-
dicate that self-focusing should occur 1n underdense iono-
sphene conditons us welll and recent observanons {Novoshi-
fon and Savelvev, 197%) are quabitatinvels i accord with this
prediction The improved onosphernie heatng faciliiies now
neanng compleaon at Arecibo and Tromse will permit scien-
nubcanvestigation ot underdense self-focusing both an the #
and # regwons, Furthermore, there s current interest an what
ctfect the 29 GHyz imucrowave beam from a proposed Satellite
Power Stanon (SPS) [Brown. 1973, Glaser, 1977 Vanke et al
1975] would have on the wnosphere Tt will be shown that
selt-tocusing of the SPS mucrowave beam may well occur, but
not under all wnosphernic conditions

tos important to state clearly what the word underdense
means We tahe it 1o mean that the radwwave frequency f ex-
ceeds the mavimum onosphene plasma frequency /..,
that resonant anteractions, such as parametnic decay 1n-
stabdities [Ferer and Aua, 1973 Das and Feger, 1980, Perkins et
al 1974, DubBoirs and Goldman, 1972, Vas'kov and Gurevich,
14770 which require the frequency matching conditton

Cowe beosainshicd somewhere n the wonosphere, cannot oc-
cur With his detmion, g radiowave ith freqeeney o
several times the mavmum wnosphene plasma trequency can
be retlected chhquely trom the wonosphere and sull be consid-
cred s underdense, as indeed was the case for the drsgnostic
wave 1 the Mesochiloy and Savel'vev [1978) expeniment. We
will conmider ondy cases wath > 0 sothat just the selt-fo

S

cuseng instabthty operates and parametre decay processes are
not aflowed

The book by Gurevich [1978] provides an excellent sum
mary of the physies goverming the 7 region selt focusing msta-

Copyricht by the vmenican Goephieaca T
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bility. In particular, the nstabiliey exhibats exponentigl
growth both in ume and in space. along the direction ol the
radiowave beam. The goal of this work 15 (o use this undes
standing to caiculate the threshold radiowave power tlun £
required 1o nduce the seit-focusing instabiliny i cases ot
pracsical nterest The kev considerations bevond the ba
phvsical princples denve from the fintte extent ot the wene-
sphere (whiwh means that the spatial amphfication must e
sufficienthy rapid) and the fimte width of the radiowasv e beam
In particuiar. the wemporal growth time must be a sl tra
tion of the tme 1t takes the ambient Fox B drdt o convedat the
1wnosphenic plasma through the beam These two conditions
set the practical threshold power thux In contrast. according
to equation (6.31) of Gurevich [1978]. there is no thieshold
power flux for the self-focusing instabihity!

There are some interestng new physics puints as weil s

we shall show that there s an upper imit 1o the radionave

trequency above which sell-focusimg will pot occur for & me-
dium of fimte extent Secondly. in the £ region, the 1on-neu
tral collision frequency r, exceeds the 1on gyrofrequency {2
e, >> 2 which means the 1on moton across the magnetic
field hine is allowed As a consequence, 10n motion can be sl
ficiently rapid so that recombination does not suppress the
selt-focusing instability as predicted by Gurevich

The question of whether the SPS mucrowave beam will 1
troduce structure into the sonosphere vig the sell-tocusing
stabality v best addrensed by a combiaation of thears and oy
peniment. As s the case wath Ohmue heating [Perkiny ana
Roble, 1978]. experiments done at a frequency of 15 MHZ -
g the improved Arectbo heating fuciity waill both amilbate
the geometry of the SPS beam-wnaosphere and be clearhy e
the underdense repime. Results of these expenmenis can he
utthzed to vahidate and refine the theory developed helow | he
toreat s extrapolated to the SPS parameters But thas extrape
laton imvolves very Jarge lactory  Totan ticquenay 4 |0
i threshold power flux  and should be taken as indicatine
rather than quantitatine

Section 2 of this paper sets torth the moded Sedtioa b
rives the expressions for the critcal power ux in ihe £ oand ¢

[




PERKINS AND GOLDMAN: ONOSPHERIC SELF-FOCUSING (LW

3>
\\\.\"4\ N
. N
~
NI

%0 .
////‘\ y is out
“RADIO 4

- n wAVE
b.g Y BEAM
Q -Q
b) x STRIATION
GEOME TRY

~

Fig 1. Geometry of the self-focusing instability (a) The radio-
wave beam 1s propagating in the z direction. The actual onentation of
z 1n space depends on the application (see text). The magneuc field
lies 1n the b direction which is taken to be in the x ~ z plane. The fi-
nite dimensions of the radiowave beam in the x — 2 plane are in-
dicated. (b) Geometry of the self-focusing stniations as viewed along
the radiowave beam. The striations are elongated along the magnetic
field and grow slowly in the direction of the radiowave beam, but they
have a rapid spatial variation the z x b direction (i.c., the v direction).

regions. Section 4 applies these formulas to planned iono-
spheric heating experiments and to the SPS microwave beam
The paper concludes with a discussion and summary. Centain
aspects of the eigenvalue problem associated with the finite
beam width are discussed in the appendix.

2. MODEL AND EQUATIONS

The basis for our model is the recognition that the trans-
verse dimeasions of ionospheric modification radiowave
beams are substantially smaller than the characteristic lengths
associated with the ionospheric plasma. We shaii therciure
adopt the model of a plasma with spatially uniform properties
but containing a radiowave beam of finite transverse dimen-
sions. 2a. propagating in the z direction. The plasma contains
a uniform magnetic field B in the b direction which we take to
lic in the x — 2z plane. The principal spatial variation of the
striations associated with the self-focusing instability can then
be shown to be in the z x b direction (i.e., the y direction).
Figure 1 portrays the geometry.

The actual orientation of the z direcuion in space depends

on the apphication: For most ionospheric modification experi-
ments z 1s vertically upward; for SPS beams, z is inclined
downward, for powerful HF transmissions, z is almost hon-
zontal [Novozhilov and Savel’yev, 1978).

The previous work [Perkins and Valeo, 1974, Gurevich.
197%{ has shown that self-focusing stnations do not propagate
relative to the plasma. But the ambient E x B dnfts will con-
vect the plasma through the radiowave beam which is station-
ary. Typical convection velocities ¢, range from 20-60 m s '
|Blunc and Amayenc, 1979), yiclding interaction times 7T giver.
by

T= 2a 30ms™!
tp

= (300 5)('5—%;) (-——vn ) ()

In order for instability to fully develop, we require that the
growth rate y satisfy

yTz 10 (2)

In practical units, (1) and (2) combine to give

| \ 5 km i
Y>(3OS}( a ) 30m/s) @

Our model takes into account the finite size of the micro-
wave beam by requining that the growth rate be suthcenth
fast. Apart from this. it is a good approximation to assume
that the initial microwave beam intensity s independent of
the ) coordinate. so that in 4 linear stability analysis one can
employ plane wave structures in the yp direction. Quan-
titatively, this approximation requires that the beam intensity
change by a negligible amount over the scale size of a stna-
tion. One can easily check a posteriori that this approximation
1s well satisfied.

In the F region, a plane wave approximation is not appro-
priate in the x direction because electron thermal conduction
and plasma ambipolar diffusion along the magnetic field play
an imporntant role in determining the threshold power flux
Following the previous work, we shall assume that the per-
turbations grow exponeatially aloag the center of the beam as
e”'. Hence, the self-focusing instability is a spatial amplifier,
requiring seed perturbations 10 get it started. The growth
length ! must be sufficiently short so that the total spauial am-
plification e* is large (A4 = 7). For the F region, we shall adopt
a nominal value of | = 25 km while for the E region ! = 1 km
It is important to keep in mind that ! represents the ex-
ponentiation distance along the radiowave beam Beams
propagating obliquely through the ionosphere clearly have a
longer path length available for amplification than do veru-
cally incident beams.

The calculations below constitute linear stability analysis
which yields a generalized dispersion relation, i.e.. a function
which relates the temporal growth and the spatial amplifica-
tion lengths to the power flux in the beam and the wave-
number in the v direcuon. This dispersion relation wili form
the basis of our application discussions.

Our model wncorporates the {ollowing physics: (1) Radio-
wave propagation is adequately described by an isotropic.
parabolic approximation to the wave equation [Fock, 1965)
An isotropic index of refraction 1s a valid assumption because
the radiowave frequency 1s large compared to the electron gy -
rofrequency w >> £,. (2) The calculations are done in a frame
in which the ambient electron dnifts vanish. (3) lon motion 18
controlled by ambipolar diffusicn through the neutral gas In

- o r—————— et = 8 S T3 =
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the £ regwon, the wns have an ambient dnft relative to the
clectrons tn the range 20 100 m s * [Hurper et al., 1976). (4)
Electron motion and thermal conductiviy 1s along the niag-
netic ficld and controlled by diffusion through 1ons and neu-
trals. The E x B velocity does nol generate density fluctua-
uons because it represents incompressible motion. For
simplicity, the ambient electron temperature is assumed eqgual
to the ambient 10n temperature. (5) Recombination takes place
in the E region. (It will be shown to be of moderate impor-
tance.) (€) No 1on temperature perturbations occur because of
their good thermal contact with neutrals. (7) Ohmic heating
by the beam provides a heat source in the electron equation.
Electrons lose energy by exchange with 1ons (in the # region)
or with neutral molecules (iz the E region). We have ne-
glected electron cooling by excitation of O('P) levels in the F
region, as 1t 1s generally less than electron-ion cooling at and
above the peak of the F region |Perkins und Roble, 1978, Fig-
ure 7). Furthermore. the comment following (52) makes 1t
clear that our Fregion results are not sensitive to the electron
cooling process.

Let us first turn to the equation governing radiowasve propa-
gation in a medium with weak density fluctuations Since we
can safely assume that the wnosphere 1s an wotropic medium,
the equation govermng linearized wave propagation is

2 2
(V" oz _""_L‘,‘,))E =0 (4)
pE

which 1s solved by
E(x 0= {E, + E(x, 2)e" cos (ky — wnj et -
+{E, + E,*(x. 2)e" cos (ky — wnje "= (S5)

The jusufication for steady state in (4) 1s the condiion ylw,/
'k, |, where [1s the scale length. |£,/9.E,1. The plasma fre-
quency w, (%) 1s given by

w, XY = w, (L + 8n/n,) (6)
in terms of the relative density fluctuations
dn/n, = A(x, 2)e” cos (kv — wr) (7)

Our notation 1s straightforward. & is the wavenumber of the
plasma density stnation in the y direction, w and y denote the
frequency and growth rate of these striations, w, and &, = (w,’
— w,”)' ‘¢ ' the frequency and waver mber of the intense ra-
diowave 1n the absence of stnations. « ne Poynting flux P, of
this wave is

‘:;k_li

§

where the last factor is effectively unity because the plasma s
underdense: W’ > w,’. Let us substitute (5) into (4). retain
only terms hinear in &n and FE.,. and make the assumption

F) d

—_— » -
a: a8

EJjc

P, ’m

k,

which leads to the hineanized parabolic wave cquauons

# '
i < - k') E ~ "5 AF, =0

2ik,, 4 E + (a
X

(8)

The overall lensing erfect associated with A& has been oy
nored Since the tiest order held, B, propagates almaost pars
W Fo(e s K sec Ay), we have taken their polanizations o b

‘p.uullcl and used scalar ticlds £, and £, 10 (8). A further simi-

plitication resulis by noting that the plasma density stniati ns
will vary much more rapidly in the y direction than the « Jd:i-
rection. so that the « denvatives can be ignored n (). This
simplitication s based on the recognition thal vanations in the
vdirecion imply vaniations along the magnetic field (see Fig-
ure 1). The high electron thermal conductivity combined with
rapid x vanduons supresses instabilities. Hence equations (»)
become

A W,
2k, "B - KE, = - AE,
az ¢

)

a4 . - o
- Nk, - F*—KE* = T AR,
az I

The self-tocusing instability 15 driven by spatially depen
dent ohmic heating () which enters through the steady state
electron heat equation

a4 o,
o= N
da§ a.

¢ T,+Q -vemtT,.— I 1y

where

Q= —“‘{',: |E + ELE, + E*)e cos (k, ~wi}+ - ) thh)
Wi &7

and £ i a coordinate paraliel to the inagnetic field (see Figure
la). Here. v, denotes the electron energy relaxation ire-
quency. ¢ the electron momentum collision trequency. and A
the electron thermal conductivity. One can easily check a pos-
teriort that the temporal growth rate for self-focusing in-
stabilities s small compared 1o the faster of two rates (1) the
rate of electron heat diffusion across the radio beam (# re-
gion) or (2) the electron thermal relaxation frequency v, (£
region). Hence the steady state heat equation 1s appropnate

The electron heat equation is best discussed separately for
the £ and # regions. Let us first consider the F region where
electron-on collisions dominate the physics. The appropriate
cothmon trequencies and thermal conductivity are {Braginshir.
1965]

27)' % ne® In A

VST it

where m and M d.10ote the electron and 10n (taken to be O
mss, respectively. Both a zero-order and a first-order solution
to (10) and (11) are revuired. Let us write this as

T,= 8T, 4 8T, + T,

where 7. is the ambient temperature. 47,'™ is the heating cor-
rection prowduced by E,2 and 8T, is due to E,E,. We assume
that departures from the ambient electron temperature 7, arc
small:

8""[0)« 7‘” 87"“;«5‘,“1!'

wlhicre

G

e

ed

and

dnd
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The electron heat conductivity equation can then be written
as

2.9 C; B P Lo .
0= 0 8 CAAY s B, + B

ag’ A
(n/n,y
e ‘\ KD 0‘
C re - N (13
where
0=(T./Tu)y': (14
and
31670,
¢ =2
my,
C, = wu'n/dne IR))
Cy=3T nw,(m/ M)
Let us expand 8 as
=1+ 80" + 6" (16}

where 86" satishes the hnearized equilibrium equation with
constant Jdensity

0=

~jrs

é 2
il ¥, 1111 S22 S oam
C, 86" + C,E, (\7150 umn

The equation governing the linearized response to the self-fo-
cusing ohmic heating term is

0= (.i'iso'wc Ep 20 s
5€ LY
. . 5
s B2 ED - G5 aw

v

where we have heglected the small cross terms 88 58", etc
Let the temperature perturbation associated with the self-fo-
cusing nstability be denoted by

h
6?,-‘*‘- 2‘50“57(( 2)e” cos (ky — i) (19
Then. in terms of the power flux P, the equation goverming 7
reads

& T 3 Po l Pn El + EI.
LA, A Y e e X B
IRl LA YN R e P.( E, , =0
where
. C._ LOST, (M
L' = C\ - m"u.‘ (m) (2”
1 111 u2
Py LG 2

272G, 4ne’M

and A s defined 1n (7). In practical units. the formulas for P,
and L, are

P, ’{“’0 )(10(»0° )(H‘Mﬁ/) 2%
T, 100 em
L, =13 km)( lOO()"K) { : ) 24)

The last term on the left-hand side ot (20) brings out the com-
petiuon between the stabilizing effects of density fluctuations
(caused by the density dependence of the collision frequency)
and the destabilizing contnbution from self-focusing

In the £ region. electron-neutral collisions play the prina-
pal rolc. Furthermore, the ohmic heating may be sufficiently
inlense so that the electron temperature in the radiowave
beam considerably exceeds the ambient electron temperature
[{Perkins and Roble, 1978]. The principal electron temperature
dependence of electron-neutral collision processes 1s ade-
quately represented by considering only electron-N. colli-
sions. Thus, in (10) and (11), we can use [Banks und Kockaris.
1973]

1000°K
(25)
K= § .','“7' = ("n“
% my,, n,

The electron-neutral energy relaxation frequency #, 1s gener-
ally miuch smaller than the momentum collision frequency r,,
but has important variations with temperature. For energy
loss by excutation of rotational levels, one can take {Banks and
Kockarts, 1973}

=11x10 "(—“)—OOJK -

n, (26)

-

while for excitation of vibrational levels of N, the appropriate
formula s
o

re=86x 10" (71(‘)0_(_)_[\7)8 VR ey 27
According to (26) and (27), the transitton between rotational
and vibrauonal cooling occurs near T, = 1500°K. A lower
transition temperature would result had vibrational ex-
citations of O, been included. but this will not be important to
our arguments.

The next question to answer is: Will thermal conduction or
local cooling control the electron temperature perturbations in
the £ region? Let us introduce a characteristic length [,
which makes the rate of cooling by thermal conduction (es-
mated by (K/n)L, °)) equal 1o the local cooling rate The
formula for L., reads

(-—w) =(l km) —
nove

where we used the rotational cooling rate (26). The Cira
(1972) atmosphere gives n, = 5 x 10" at 120 km Hencee
throughout the F region, electron thermal conduction will not
play a major role, provided the self-tocusing striations have 4
parallel wavenumber satisfying k& L., < 1. On the other hand.
the charactenistic scale sizes for radiowave beams and typical
vanauons (n £ region parameters are at least several kilome-
ters It follows that in the E region a plane wave model with
A L., = | can be used in the direction along the magnelic field.

To reiterate, our arguments show the importance of thermal
conductivity 1s different in the E and £ regions. Because [, i
comparable to or larger in the £ region than the size of the ra-
diowave beam. 1n the F region we must treat a nonlocal ther-
mal diffusion problem. In the £ region, the radiowave in-
tensity does not vary over the charactenistic scale /,
permitiing a plane wave approximation

T \l:

,
000" K/ (28)

-

=
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As was the case 1n the £ region, the sulution 1o the electron
temperature equation in the & region s composed of an equi-
bbnium pant T, which can be taken as spatially uniform and 4
perturbed part. The equiibrium pan is the solution of

W, Ey va
= —==(Ta-T,) (29)
2aws’ng Ven
where the night-hand side is just a function of 7., The per-
turbed part satisfies the equation

&F RN E .+ E*\
= [, + £ - 30
0=L. 8?7 w‘,’ZnnoT,‘,ym,‘\ E. ) A 49
where

- _ ekl Toove) 3

B=1+ 2rws e, Ty (p,, aT |, l Gle)
T, T ave

S [ (N .4 3b
B +[ T,.) ‘--4 aT), i (31b)

Here 1 = 8T,/T,, and the subsc 1pt 0 on cothsion frequencies
and temperatures denotes evaiuation at the equilibrium elec-
tron temperature 7., In (30) we have retained the thermal
conduction term. For a thermally stable equilibrium solution
1o ewust, one must have > U.

In the case of HF 1onospheric modification experiments. the
second term 1n f3 will be small near threshold and 7., will be
close 1o 7. Under conditions where the equilibrium electron
temperature is well above the ambient temperature T, > T,
[Perkins and Roble, 1978]. (31h) shows that f < (T/v )dr,/
aT) = 4 because of the rapid increase of vibrational cooling
with electron temperature.

3. SELE-FOCUSING INSTABIITIES

The equations governing plasma motion aiso differ in the £
and F regions, because in the F region the ion-neutral colli-
sion frequency »,, is much less than ion gyrotrequency £, and
plasma motion can proceed only along magnetic field lines. In
the £ region, v, > {1, and ion motion across the field is impor-
taat.

Let us turn first to the F region, where the formula for r,, is
|Banks and Kockarts, 1973)

v.=TX 10" n, (32)

At an altitude of 300 km, the Cira (1972) atmosphere yields v,
= 1 Hz

Upon elimination of the ambipolar electric field, the mo-
mentum and continuity eguations governing plasma motion
yield

0A ar
0= -ZTOE - T(,E - MV.;.";‘ (330)
oA c
‘E"*;-EI“U (334)

where A and 7 arc the relative electron density and temper-
ature fluctuations defined in (7) and (19) respectively. Equa-
tions (9), (20), and (33) form a closed set which govern the lin-
car stability of self-focusing striations.

These equations are most easily solved 1n the (¢, 1) coordi-
nate system of Figure 1. It is clear that the dependent van-
ables shouid depend on the distance along the magnetic field

from beam center. { — £, where §, = —n(sin ¢,,/c0s ¢,,). and

should show spatial exponential growth along the direction of
the beam In other words the functional dependence will e

A=A~ Lyexp(n/lcos o) (34a,
NT T /
Adom) = AL+ "L_?'mﬁ'— exp| -~ - | 134h)
Cos ¢y, | {cos c,,,}

where /s the real spatial growth length along the dtrection o1
the beam. und ¢,, 15 the magnetic dip angle (see Figure lg;
All other dependent vanables will have the same functional
form. A standard coordinate rotation yields

COs ¢ d d 38
=COS Q= ~ SN ¢y, 35
on

az a¢

with the consequence that

nsin ¢,,‘.

=) (36
COs Q)

.s-u——-(s

Using the funcaonal form (346) for £, £,* and 3 and (35, we
can solve equations (Y) to obtain

T

where
a=k1/2k,, (38

The dependence of (37) on a is charactenstic of modulational
instabilities [Bardwell and Goldman, 1976]. Two interesting
observations can be made at this point. First. the term eval-
uated in (37) 1s the destabilizing term in (20). The most un-
stable modes will occur when (37) has its maximally negaine
value. Since /15 fixed by the requirement of a particular rate
of spatial growth, the most unstable mode will occur when the
function 2a/(a’ + 1) has its maximum value. This occurs
when

a=Kl/2k, =i {39)

In practical units, the perpendicular wavelength A, of this
mode 1s

27 w=lc {oV IS Mg .
A= A ( ) =(].2 km)(25 - (——(—J (403)

where f 15 the radiowave frequency

The second observation concerns the competition between
the destabihzing (37) and stabilizing terms (24) in (20). Thus
for a self-focusing instability to occur, in the F region. the in-
equality

w L 7()0( it _]( ! }(15_}\_4&
€

Y 0 em |25 kml| 7 |71 @b

must be satistied. Clearly, there 1s no question that this in-
equality will be strongly satistied for HF wonosphenic modii-
cation experiments. But the SPS application is a close call We
can recast inequality (41) into the form

n, 24 (1H1
a4
(IO“ cm (2s km)( > @

which shows the ionosphere is ordinarily just dense enough 1o
permit self-focusing at the SPS frequency. Inequality (41) hay
physical significance: it says that a 1007 density modulation
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should produce a phase shift of at least 2= between two ray
paths in a distance ! It evident that unlc\\ the wonosphere 1s
suthciently dense to produce significant phase shufts, seli-fo-
custng could not take place

Let us return 1o the calculanon of the threshold value tor F
region self-focusing. It will turn out that the threshold flux is
substantially less than P, Thus. combiming (20). (37) and (41),

we obtain the ¢equation
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d“ . oo

A- —s4=Ae v A (553,

ou”
where
u, = (a/L, cos ¢,) (54)
DP, 2a

A= S — € 5S
vyl 2P, lu® + ] ©2)

a3 T .(5 &) 2«'
T = = 4
& LT LR v TS @3
where
6mu,'¢
P, =n.,T,<( ”"p.l) (44)

and we have explicitly indicated that the power flux in the ra-
diowave beam varies as a funcuon of £ — §.. Combining (33a)
and (33b), one obtawns the plasma ambipolar diffusion equa-
tion

3

ol — 5
Y D A«rDa£ (45)

where
D=1T,/M:, (46)

Substitution of forms (7) and (19) 1nto (45) shows that w = 0
and

a’

yA = ZD A +D ag @n
The coupled set (43), (47) can be simplified when the vana-
tion of P, (§ — §,) occurs on a much faster spaual scale than
L,. Indeed, this is our basic approximation. Hence in regions
where P, is appreciable, we can ignore the term involving L,*
on the left-hand side of (43). This permits an elimination of

&7/9¢° and the ¢igenvalue equation becomes

8 Ps-&) 2a
Ta 280 o Tme T oula 0
DA ag* L,’P, A(u’ +1 ‘J 48)
and the boundary conditions are
-~ Y x|
a~dexp’ - 5..(‘2 D) | (49)

as |§ — §,] — oo. For definiteness, we shall assume that the ra-
diowave beam has a Gaussian dependence in the x direction

PAE — &) = Poe "' = Pgitt iemioy ) (50)

where ¢, is the magietic dip angle (see Figure la). We make
the change of variable

u= (¢~ &)L, (51)

T, Y1 Hz\'? (10
ol (2] 2

-2

i/2

)
e
Y

(52)

(The neglect of the L,
fied by the wnequality L' « L,

* term on the left side of (43) is justi-
) This change of variables

leads to the nondimensional eigenvalue equation

The next step 1s to find the eigenvalue A in terms of the pa-
rameter u,. In general an analytic solution of (53) is not pos-
sible. However, we can obtain solutions when w, > | and
when u, « | For the case u, > |, we expand the expounenual
and obtain the harmonic oscillator equation of quantum me-
chanics

Cav a-n- M 4o (36)
ou’

u,

whose fundamental sofution 1s accurately given by

Azl + —- RS

When u, is large, A becomes small before u/u., reaches unity,
justifying our expansion.

When u, << |, the exponential term varies rapidly compared
to A and we can integrate (53) assuming 4 is constant (but 43
du varies) to obtain the eigenvalue equation

= u,, (39)

An adequate interpolation formula which combines (5%} and
(59) s

2

A=1+ —+
s

(01)

Most self-focusing experiments have u, 5 |. In the appendix 1t

is shown by a variational principle that the interpolation for-

mula (60) is likely to be accurate in the vicinity of w, = 1.
Qur key result, the generalized dispersion relation, is

2

1+
P,=P T (6l
1) ¥ 2" _ f )

I +af 2
where
vL,*P, cw, '\ .\ (M

= -—= = =315 owd oaC) - 62
P, 3D 15(n, Tr) )( )‘ (62)

In practical units, the formula for P, , 1s

pW1 10" cm Hf___ ! 3
Por= ('5 )( )(loom (HMHI (3

with the definition

: y__|[25 kmi[ »,
(’s(l()" ,( 7 )(le) (64)
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We note that the cnical power flux is quite sensiive 10 tem-
perature and Jdensity, principally because ot the density and
temperature dependence of the clectron-won collision fre-
quency v, The requirement for a rapid growth rate hmuts the
self-focusing perturbation to the center of the radiowave
beam. because otherwise plasma ambipolar diffusion would
not be fast enough. This is 1n contrast to the results ot Gurev-
ich [1978} and Vus'kov and Gurevich {1977a. b), who ignore the
fact that ambipolar diffusion proceeds at a fimte rate and that
only a limited interaction time is available because of ambient
E x B drifts (see (1)).

The plasma dynamics of the E region requires separate con-
sideration of ions and electrons. The ion motion is governed
by the E region ion-neutral collision frequency [Banks and
Kockarts, 1973}

v, =715x10 "n, (65)

Using the Cira (1972) atmosphere, we tind »,, = 1.4 X 10" at
110 km_ Since v, > §,. the ion motion 15 unmagnetized am-
bipolar diffusion and governed by

a—l+v,,-VV 1+V.y,=-13 (46]
Tﬂl T‘lr
= + 67
YT M, Ta A} oD
v=ep/To I'=2an, (68)
where ¢ 15 the electrostatic potential, anda = 3 x [0 "cm’s *

1s a typical E region recombnation coefficient. Equation (66)
takes account of the relative electron-ion drift v,,. The corre-
sponding electron equations are

a3
A+V.v.=-1"A {69)
a
=T .
. = Ll v
Ve = B, yxb (70)
1.-i{V(A—V'+-r) n
my,

where », denotes the electron-neutral collision frequency (25)
evaluated at temperature T, .
The appropriate torm for the dependent variables s

Ao gr.§ ) Rel, e =

Voo gt £ ) Re gy, et =" 2
rocgt. §.n) Rer, et =
where
Rt &, m = e cos [k (£ — £.)] exp [n// cos o, (73)

and A, s real. Hence 4 has exacily the same form (7), (34) as
the F region calculations. It follows that we can use (37) in
(30) 10 obtan

& w, v JE} Zﬂ
0=1,° - - e L 7
6 27 ar 47”«:“"',{0"0”‘4) 8 (u + I { 4)
Equation (74) can be recast into
. (75)

3
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where

N hn ‘,r N 1 .
Py= (1T ) S {"«1— U +kiLay (6

4
fw. v,

Next, we make use of (75) and of the fact that the most rapyd
spatial vanation comes from the exp [i(ky — wr)] dependence
1o evaluate (66) (71):

kJTU k T i
Py Dk Vo - w)+ ort A.,——My“q,., 77
) 2 P, kT,
y+l—aw+L—T—"’l———,AU=—‘——'—‘i\'m, (78)
my, Pyl my,
“he solution of (77), (78) 1s
‘ k‘my,
=AV, P I+ — ; 79
CTEe T M, o
T,  (y+ DMy, Kmy, !
n= + o > T 1
PomPod g v = T i, 8O

Let us discusy the result of (80). First, for nominal £ region
densities #, ~ 10" ¢m*, the recombination rate I = 2n,a ~ 6
X 10 78 'is comparable to the growth rates we envision. Sec-
ond. for values of a = k*l/2k, near unty. the 1on diffusion rate
Yo 15

_ k(T +T) k(T + T _ iy | L km
Yo = M. a '——IM*——”" =(0.1 s )a ]
(15005 (T + TWl[_f .
v )| T000°K |15 MHz )

which is also comparable to growth rates. We can, however,
satisfy the double inequality

i
F»kl|z»k1 M» (82)
+ "
because
8
kL3 ;"{'—:‘—’ - ‘!i’— « | (83)
in T Vro

The first pant of the inequality (82) justifies our assertion that
thermal conduction is small relative to local cooling 1n the £
region. As a result, we can choose &’ so that terms involving
k.7 in (76). (79) and (80) are ignorable. This choice minimizes
the threshold flux and leads to the generalized dispersion rela-
tion

2 + | ~
P..ar‘_,_(" oD, (84)
2a . aym
where
P ,=n(Ty+ 7‘(1)(‘2(;‘9(". vm‘) (85)
b, ',
In practical units, the formula for P, , is
10" ¢m ** ,
( ) iR (' )‘ e e
where
. T, + T,}[1000°K}'*[ 1 k
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The temperature and density dependence are not so strong
in the £ region because neutral rather than charged particle
collisions are involved. The strong dependence un radiowave
frequency remains. Formula (40) shows that the per-
pendicular wavelength of the striations will be close t0 300 m
for E region self-focusing. The next generation of ionospheric
modification experiments will easily exceed this threshold
value for self-focusing, especially if the frequency is near f = §
MHz.

4. APPLICATIONS AND DISCUSSION

Our central results are the threshold power fluxes for the
onset of self-focusing instabilities: (63) for the F region and
(86) for the E region. For comparison. the European iono-
spheric heating facility nearing completion at Tromsg, will
have an effective radiated power of 360 MW, yielding an £ re-
gion flux at 2 mW/m’ and an F region flux of 300 pW/m?
These fluxes will exceed the respective threshold fluxes, even
when [ = 15 MHz. The question then arises, what are the con-
sequences of self-focusing instabilities and how do we detect
them?

Dimensional analysis of linear theory provides estimates for
the nonlinear consequences. We can interpret (37) as giving
the fluctuations 8P in the power flux

8P Snfw 2a
o ot
P, 2 n 4k, la? + 1 (88)

while (41) shows that the coeflicient of 8n/n is very large.
Consequently, nonlinearities will develop first in the wave
propagation equation and the self-focusing instability will
cause intensity fluctuations of order unity to develop. Equa-
tion (88) provides an estimate of the magnitude of the con-
comitant density fluctuations when 8P/P, = 1. The expected
wavelength of the density Auctuations is given by (40) and
Figure | portrays theic geometry. Vus'kov and Gurevich
19776} discuss-a mathematical model for the nonlinear satu-
ration.

It is important 1o recognize that the self-focusing instability
generates density fluctuations with just the correct magnitude
and onentation to produce intensity scintillations in the driv-
ing beam. Hence, in order for these fluctuations to produce
significant intensity scintillations in a diagnostic wave, that
wave should be propagating parallel (or antiparaltel) to the
dniving wave and should have a frequency which differs from
the driving frequency by no more than a factor of 3. In partic-
ular, the diagnostic wave shouid not have a component of its
wave vector in the 7 X & direction. which would result in its
propagating across the density maxima and minima, thereby
averaging out their effect. The geometry of Novozhilov and
Savei’yev [1978] was 1deal from this point of view with the di-
agnostic wave propagating antiparallel to the driving wave
and closely matched 1 frequency. Radio-stars are another
possible source of diagnostic waves. In this case, the driving
wave would be launched in the direction of the radio-star. and
saintillations of the radio-star signal should be observed up to
frequencies several times the driving frequency. As (88) and
(41) show, the density fluctuations associated with HF-driven
self-focusing instabilities have a magnitude 8a/n ~ 10 ' and
are probably not directly observable The charactenstic ex-
ponentiation times of roughly 10 s 1mply delay times of
roughly a munute after transmitter turn-on before scintilla-
tions become observable. The Novozhilov and Savel'vev {1978)

SteE-Fooesisa o1t
expeniment agrees with this prediction Although high-peak-
power radars can exceed the threshold power flux. the long
growth times show that the selt-focusing instability i driven
by the average. not peak. power ol a radar system.

There 15 a distinct possibility that the 2.4 GHz miucrowave
beam from a proposed Satellite Power Station could produce
selt-focusing. Recasting (63) into a forin appropriate o the
SPS. we find

Rl

n

0 l, a ‘. 1 )
m (mw] (z_a am) “

where (', is given by (64) and is roughly unity. Although
planned power fluxes for the SPS are in the range 250 W o -
natural vanations in jonospheric density and temperature can
raise the threshold flux to this value. Furthermore, the ohoc
heating of the 1onosphere by the SPS microwave beam itselt
{Perkins and Roble, 1978] can raise the electron temperature
above 2000°K, which works toward stabilizing the instability
Hence one cannot make an unequivocal prediction regarding
whether the SPS beam will generate self-focusing. Our et
estimate 1s that at times the ionosphere could be sufficientiy
cold and dense so that self-focusing would occur According
1o (40), the wavelength of striations created by SPS selt-focus-
ing will be A, = 100 m. By (88) and (42), the density fluctua-
tions would be quite large: da/n ~ 10 ' A scaled HE test or
self-focusing at [ = 15 MHz could validate predicuions for the
threshold flux, but would have a much smaller eflect on tele-
communications than SPS self-focusing because of the much
weak=r density fluctuations at HF combined with the larger
scale size. Ten percent density fluctuations with scale sives of
100 m can seriously effect ionospherically propagated shorn-
wave broadcast signals. If the sinations were steepened by
E x B drifts as in the case with artificial plasma clouds |Scun-
napieco et al., 1976}, then higher frequency telecommunica-
tions systems could be aflected as well. A quantitative invest-
gation of this question awaits future work. It is also eviden:
that if the SPS generates self-focusing, then intensity fluctua-
tions of order unity could be expected on the rectenna

In closing. we can remark that thermal sel{-focusing v un-
der investigation 1n the laboratory (J. Drummond und W 8
Thompson, private communication, 1980) and in laser-tusion
applications | Langdon, 1979]. The details difier from the 1ono-
sphenic theory.

APPENDIX. VARIATIONAL PRINCGIPLE APPRONIMATION
TO EIGENVALUE PROBIEM

In the eigenvalue problem of (53). namely.
8, - 1A =-ANe * =2 (Al

the lowest eigenvalue A may be found appronimately by the
following variational principle [Morse and Feshback 1955 p

1108):
A= / duld,” + A’]// dulde v *

The eigenvalues are not ternbly sensitive o the precise
shape of the inal function. We use the trial function.

(A

A=e ™~ (A}
to lind

(A4

A=(l+ 17007 (1 +a2)

o o e g2 oy -1 e == = =

T =
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Differentiating with respect to a gives the mimimum eigen-
value, A, at

a={(1+ l6uh * - 1)/4u,} (AS)
From (A4) and (AS), we find the asymptotic behavior
2!
hm A, =
w0 u (A6)

. |
Iim A, =1+ —
e Uy

These agree quite well with the exact asympiotic solutions
(58) and (59). (Mote, the exact coefficient 2/7' 2 = 1.13 is
slightly smaller than 2'/%.) Moreover, when u, = 1, (Ad) and
(AS) yield A,,,, = 2.10, whereas the interpolation formula (60)
gives A = 2.13.
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With magnetic fields that are not too weak. |angmuir collapse times can be prolonged and the packet

geometry sigmficantly distorted

I. INTRODUCTION

Within the last few years there have been great theo-
retical strides in the understanding of “self-focusing
mechanisms for the nonlinear saturation of certain
Langmuir wave instabilities.”"® In particular, it has
been shown® for a class of weak “bump-on-tail” insta~
bilities that direct spatial collapse can occur due to the
self-ponderomotive force of intense Langmuir wave
packets, This may have important implications for
type-11I solar radio bursts.'™ for the radar- modified
1onosphere,’ and tor laboratory and space beam-plasma
systems.

In physical problems a weak background magnetic
tield is nften present pointing parallel to the direction of
propagation of the driven Langmuir wave packet. Linear
stability analyses have recently teen performed®® for
monochromatic Langmuir waves in the presence of a
weak magnetic field.

There has been little work on the effects of a magnetic
field on collapse. One theory’ claims to have found
stable pancake-shaped Langmuir solitons pumped by
radio waves in the ionosphere. Other studies'®!' have
shown Langmuir collapse in magnetic fields, but only
for special symmetries and in parameter regilaes ap-
parently unrelated to experiment. Qur work differs
from these in terms of parameter regime, geometry,
phenomena observed, and physical explanation.

First, we shall demonstrate, numerically, that weak
magnetic fields can significantly prolong the time for
collapse of a broadband Langmuir wave packet, and al-
ter its geometry into a more dipolar form, but cannot
render it one dimensional. Second, we prove analytic-
ally a magnetic virial theorem which gives sufficient
conditions for collapse, and helps explain its retarda-
tion. Third, we demonstrate that measured wean solar
magnetic fields might affect the Langmuir collapse as-
sociated with type-IlI bursts at 0.5 a.u., although only
for relatively low wave energies.

il. LANGMUIR WAVE COLLAPSE IN A
MAGNETIC FIELD

The Langmuir field envelope § obeys a generalized
nonlinear Schridinger equation
3,6 +59T -6 <iClUXYXE -1t P- E~tnb =0, (1)
where the units of time are w;'. length is measured in
units of V'3 times the Debye length, | §|% has the units
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of 64m 8, where 8 1s the common clectron an:d 1on tem-
perature, and

2
-

Cl=zcWarl=1, Q° W, wi 1.

The magnetic dispersive term, (=Q° 2) (P-8 }. arises
from an exApgnsion in the magnetic field, The operator
Piy=8;; —bb, projects oul vector components perpen-
dicular to the magnetic field direction b, In the hineur
limit, Eq. (1) gives the quasi-longitudinal dispersion
relation for an oblique Langmui--wave envelope

w =5kt + 107 sin®e 12:0

where 6 is the angle betweer k and b. The condition tor
neglect of the transverse part of the tield is

Qsind CH?, (2b)

which we shall assume 1s well sutisfied. U we restrict
the electric field to two dimensions, the condition which
must be satisfied is weaker: 2°sin’e - L7,

The density deviation & 15 1n umits of 2n,. where n, 13
the average background density. !t obevs a hvdrody-
namic equation driven by the pondiromotive force

(CFa+ia, =¥hmy . TS, (3)

where (', is the ion-acoustic speed 1n units of (3¢ m.)' "
and ¥ is an operator representing the effect of Lundau
damping of ion-acoustic waves in an equal temperature
plasma. We have also briefly studied® magnetic field
contributions to Eq. (3), but find no eftect on the non-
linear evolution of a broadband packet (only a smallvol-
ume in k space is .ffected).

Our numerical work assumes &  =Y¢), and generates
solutions to Eq. (3), together with the divergence of Eq.
(1), namely,

13,92 + 1 V6=V P - Vo= V. (V&) .. 0. )

In k space we take an initial packet of randomly phas-
ed modes with a shape characteristic of a prior, slow
bump-on-tail instability.” In real space this appears as
an initial pattern of wave packets oriented along the di-
rection of the beam [see Fig. 1(u)]. The initial wave
amplitudes are centered about a A-space wavenumber of
ky-:0.011 k,. The parallel and perpendicular widths are
Ak :0.25 ky, Ak, =017 ky. The choice nf these parani-
eters is motivated by the application to type-111 solar
radio burst phenomena at 12 a.u. The imtial enerpy
density is (W) - 16(//)D - 1.3 x107", This value assures
that (W) far exceeds the threshold'  for adiabatic col-
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FIG. 1. E-olution of Langmuir waves.
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In ta), th), (c), and {d), we plot contours of equal La gmuir field modulus in real space.
Contours 1, 2, and 3 corre.pondto W=1,6x10"%, T.3x1074,
(a) is at t=0: (b) is at wyt 0. 76 10° with B ¢; () and (d) represent the evolution from (a) (at times ol 3.6

~ 10" and 4.1 ~10% for the case weg/wpe 0.1; (€) and () show ficld contours in k space for the nonmagnetic case (e) and the mag-

netic case (f) at times corresponding to (b} and (d), respectively.

lapse, although it is not necessarily the only choice for
the type-II problem (see Sec. V). The real space pac-
kets collapse as shown in Fig. 1(b).

Next, with the same initial conditions, we introduce a
small magnetic field in the k, direction, such that
=0.1. The collapse is slowed down by a factor of 5, as
shown in Figs. 1(c) and 1(d). The packets now tend to-
ward a pancake shape, but are not one dimensional.

We shall argue that the effect of the small magnetic
field when 2 =0.1 is to retard direct adiabatic collapse.
In the magnetized case, induced scattering of Langmuir
waves off (dynaric) ions®'? seems to occur before sub-
stantial steepening of the wave packets, whereas in the
noamagnetic case it occurs later. For our parameters,
:he scattered waves are in the forward direction,® with
wavenumbers on the order of ky/3. The evidence for
this is shown in the k-space picture in Fig. 1(f) for the
€ =0.1 case, compared with Fig. 1{e) in the nonmagnet~
ic case, 2 =0, The geometry and time scale for the
configuration shown in Fig. 1(f) are similar to what we
obtain for a monochromatic initial packet, with B set
equal to zero (not shown here). For a monochromatic
initial packet, direct collapse cannot occur, because
there is no ponderomotive force, and the linear induced
scatter instability dominates at early times. This en-
ables a fairly positive identification of Fig, 1({f) as re~
sultirng from induced scatter off ions. A more one-di-
mensional configuration in k-space results, followed by
collapse,

In Fig. 2 we plot, as a function of 2, the time for the
peak energy density in a collapsing packet to increase
by a factor of ten. Significant slowing requires Q> 0.1.

I4. VIRIAL THEOREM FOR MAGNETIC COLLAPSE

We now offer a theoretical explanation for why the di-
rect collapse is slowed down by a magnetic field. The
results shown in Fig. 1 all occur in the regime of adia-
batic ions, where Eq. (3) reduces to
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on—| 8|2, (5)

We now derive a virial theorem for Eqs. (4) and (5)
(with § ==V ). This derivation represents an improve-
ment over the derivation ot Ref. 4, even in the limit B
== 0, because the electromagnetic terms are treated
more directly. That is, the VXV X § term in the full
vector field Eq. (1) is explicitly eliminated when the di-
vergence is taken to obtain Eq. (4) for the scalar poten~
tial ¢. The Lagrangian density for Eq. (4) with &1 given
by Eq. (5) is

£=5i(d* 00 - dV%6%) - | Vig |?
-1QYVo P Vo) +5 Vet (6)

5x10

4:!05

3x10°

2x10%

|l|05

1 1 1 1
0 0.05 00?5 0.4
a
FIG. 2, Time for central energy density in collapsing wave
packet to reach ten times initial value for different values of
1, as determined numerically from the initial conditions given
in Fig. 1(a),
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The dependence on V¢ requires a generalization of La-
grange’s equal.'mn.l3 Hence, the equation of motion [Eq.
(4)]. is obtained from

Qxge + 9 Ly e = {(07/0x 0L/ 0 (0% 0% ()]} =0,
where a subscript of £ indicates differentiation with re-
spect to that variable,
13,14

From the Lagrangian density we derive a momen-
tum equation
Jp+V T =20, (7)

where the momentum density is p= (8] V8, - §,
-V8})/2, with §;, =-V¢, The stress tensor'™" for a
Lagrangian with higher order derivatives is

LYY * * * g ag
Tis= - b8, - (‘Pu— ¢ )

2 13x, ) 3azor oxf) T S

where c.c, stands for the complex conjugate. A sub-
script i on ¢ or ¢* indicates a derivative with respect
to x;, and there is no sum over i.

The total momentum, P= fdrp is conserved for fields
which fall to zero fast enough at infinity in the (unbound-
ed) plasma. Another conserved quantity is

HE%fdr[]V-SL\Z— |8.1%]+ Ha (8a)
where
2
we fanls, i

The final equation needed to generate a virial theorem
is obtaineu from the longitudinal part of Eq. (1) rather
than from Eq. (4). For an initially longitudinal wave
packet, the transverse part of the field §, will remain
small as long as inequality (2b) is satisfied, and as long
as k<« k,. Then, | S, =0({§, | #'C*) < [&,]. We
take the scalar product of Eq. (1) with §7 and subtract
the complex conjugate to obtain the approximate resuit

2 (6.1 + v p=0. ()

From Egs. (7) and {9) we derive a virial theorem® for
the mean packet width, (6v%)= [dr 6r®(§, [%/N, where N
= [dr|§,|? is the conserved quantity which follows from

(9). The virial theorem involves the trace of the stress
¢

tensor.” The result is
3% (Ar?) = 2(A - 2(Ha/N)] + (2~ D){|8,]%), (10a)
A=2H/N ~(P/N). (10b)

Here, D is the dimensionality of coordinate space (D
=2 for the numerical simulations),

What can this theory tell us about the magnetic field
strength necessary to affect collapse? Let us consider
a two-dimensional Gaussian wave packet

8 = i(Ey ko)W explikor -5 (k) = L {AklyY)]. {11)
We find that

L (ARl ak? Ak, w)
=3 - ———— . ]
A 2(7{*73‘*35{" 24 f2)

When there is no magnetic field, the condition for col-
lapse is D - 2 and A <0, For the two-dimensional wave
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packet, the collapse threshold condition can then be
written

Wi24 = (AR + Ak K. (13

In two dimensions, the rate of collapse is a constant
because A is invariant,

With a nonzero magnetic field. the threshold condition
for collapse to begin is still (13), but the rate of c¢ol-
lapse [A - 2Hz N, in (10a)] can change sign because ai-
though A is invariant, Ha can decrease with time'
Therefore, collapse is not assured even if initially .|
- 2Hg/N is negative. We find ir. the numerical simula-
tions that Hg can decrease with time. As Hggets smali-
er and A remains constant, the collapse rate will go
from a large negative number {(fast collapse) to a
smaller negative number (slower collapse). The col-
lapse rate, A - 2Hyz/N, can even change sign, thus lead-
ing to inhibition of collapse due to magnetic dispersion.
provided

ARE o ARE AR W
3—/\'3 . -;g +—;%- —‘2*4 . (14

Ciose to the collapse threshold, the right side of (14)
can be near zero. This implies that an infinitesimal
magnetic field can alter a marginally stable collapse.

While (14) is necessary, it is not a sufficient condi-
tion for an effect of the I field on collapse. This is be-
cause we have assumed that Hg decreases with time,
although this is not always true. The condition for Hy
to decrease cannot be derived from theory, but is dis-
covered empirically from numerical simulation to re-
quire that the magnetic dispersion be larger than the
nonlinear refraction contribution to the invariant A [sec
Eq. (12)]

(ARt aphNt ~ w24, (15)

When the inequality (13) is satisfied, so that collupse
can begin, then the ordering implied by {15) yields the
following easily interpreted criterion for an effect of
the magnetic field on collapse

Q2 =3k, (16)
This just means that the magnetic dispersion in the
wave packet exceeds the thermal dispersion. This con-
dition is independent of the packet width Ak,.

For type-1II parameters at 0.5 a.u., k= 0.01 &, and
2 ==0.01, so that the terms in (16) are roughly equal.

IV. DISCUSSION

In the previous section we maintained that a magnetic
field can cause a wave packet to evolve loward smaller
perpendicular wavenumbers and cause Hg to decrease.
When Hp gets smaller. the collapse rate can change
sign, which means collapse may be prevented. When
this occurs, our numerical solutions show that other
nonadiabatic wave interactions. such as parametric in-
stability, take place, and the viral theroem no longer
applies. These interactions seem to lead ultimately to
a geometry in which collapse can occur (for example,
by cascade down to a “condensale ™),

These points are well demonstrated 1in the imtial val-
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ue simulations. In the case of no magnetic field, the
evaluation of A gives

A=-0.6%10%, (1

This rate of collapse remains constant as long as the
collapse is abiabatic. In the other case, when the mag-
netic field is such that 2 =0,1, the magnetic term is

2Hp /N =8x107, (18a)
The rate of collapse is proportional to
A-2Hg N=-0.6x107, (18b)

This has the same numerical value as (17) because the
Hg term contained in A is explicitly subtracted out.
Therefore, collapse can begin, even when the magnetic
pressure is relatively large, Numerical simulation
shows that subsequently 2Hz/N gets smaller. We show
the behavior of 2Hy/N during adiabatic collapse for dif-
ferent values of the magnetic field in Table I, For
some cases {(in particular, when 2 =0.1) there is a sig~
nificant decrease in 2Hy/N, enough to make A - 2Hp /N
positive. This effect is observed empirically to occur
when the magnetic energy is greater than the nonlinear
interaction energy, as given in Eq. (15) for a Gaussian
wave packet.

We can construct the following scenario for magnetic
collapse of Langmuir waves, When the condition (15)
is satisfied, the collapse transverse to the B field is
inhibited. The transverse dimensions of the packets
remain the same. However, the longitudinal dimension
becomes smaller because nonlinear self-focusing still
occurs along the direction of B,. The collapse rate is
slower than the case 2 =0. Eventually, parametric in-
stability (induced scatter off ions) occurs to produce a
new k-space configuration. Such instabilities will be
very intense because the background level of the un-
stable modes is enhanced during the longitudinal con-
traction of the wave packets, Since the k-space scatter
is principally in the B, direction, the real space wave
packets become increasingly elongated in the trans-
verse direction. The new configuration produces pan-
cake-shaped wave packets which can collapse in both
directions. Although our simulations cannot continue
beyond this point, the results of Krasnosel’skikh and
Sotnikov'® show that as collapse proceeds to dimensions
such that &k,/k , < 2, the wave packet tends to become
symmetric.

The magnetic effects on parametric instability do not
depend on pump energy, but occur when the magnetic

TABLE [. 2Hg/N vs time for different values of Q.

) 2=0.01 0=005 9=0.075 2=0.10
0.14x10°  0.84x10™ 2, 7x107" 6.Ix10"% 8.3x10°°
0,27 0.85 2.7 5.9 8.1
n.41 0.89 2.6 5.7 8.0
0.55 0,99 2.6 5.3 7.5
.69 1.4 2.7 4.8 7.2
0.83 2.8 4.2 7.1
.96 1.8 7.0
1.1 6.7
2.1 5.6
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dispersion of an unstable wave exceeds the thermal dis-
persion

Qsind <k, (19)
These effects are geometric, %1%

The new behavior we have just described also depends
upon the energy W, according to Eq. (15). The fact that
magnetic effects scale with W is important to the type-
1II problem, .s we discuss in the next section.

V. EFFECT OF MAGNETIC FIELD IN TYPE-If
BURST LANGMUIR TURBULENCE

The connection between the initial value problem we
have solved here and the beam-driven type-Il problem
has been stated in our previous work.® The role of the
beam is to “prepare” the Langmuir wave packets into a
state {given by our initial value data) which then passes
over into a collapse, and decouples from the beam.
Recent dynamic models'® in which the broadband pump
is allowed to grow exponentially due to the interaction
with a type-1III electron stream at the rate y w, = 10,
show that the pump saturates at a level where (147 =1077,
Also, an experimental upper bound on the mean solar
magnetic field at 0.5 a.u, is found to be 2 =0.01."" To
make contact with the discussion given here and the
type-1II problem. we repeat the initial value simulations
for ©=0,01 andtwo values of \ W), 1.0x10-*and1.0 ~10-",
The resulting collapsing wave packets are shown in
Figs. 3(a) and 3(b). When (W =1.0 ~107" [Fig. 3(a)],
there is no distortion of the collapsing wave packet.
Magnetic effects are observable for this (W) only when Q
< 0,03, In the case when (¥) =1,0 <10, which is per-
haps more relevant to the type-II problem [Fig. 3(b)],
the collapsing wave packets are elongated because of the
magnetic field.

The result is consistent with the empirical scaling of

Ly L y
2
3
] -
Q [
X ’
'
P
(o] Ly (o] Ly
‘g (b
FIG. 3. Contours of equal Langmuir field modulus when Q

= 0. 01 for two values of initial energy: (@) (W) 1,0x107% @as
in Fig. 1) at time wpt =0.78 x10° and (b) (W)-1.0x107° at
time wpf = 5. 7x 10°. The magnetic field has more cffect on
case (b). Contours, 1, 2, 3, and 4 correspond to W 0.3

x 1074, 1.0x10°4, 5.0x10~4, and 10, 0x 104,
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Eq. (15). When the electrostatic energy is less by a
factor of 1 10, the magnetic effects can be expected to
occur when 2° is also smaller by 1.10.

Hence, we find that magnetic effects may have some
significance in type-IlI plasma wave evolution. How-
ever, these effects are only marginally evident when @
= 0.01 and \W) =107°,

VI. CONCLUSION

In numerical simulations of collapse we have identi-
fied two effects due to the magnetic field; a change in
the shape of the collapsing wave packet and a slowing in
the collapse rate. These effecis seem to be related.
The virial theorem shows that the rate of collapse is
slowed because of a decrease in magnetic energy Hg,
which is brought about by a decrease in perpendicular
wavenumbers. This occurs because nonlinear wave
transitions favor modes with smaller perpendicular
wavenumbers when the magnetic energy is larger than
the interaction energy.'t

In the examples given here, the magnetic {ield does
not prevent collapse. Even in cases where the initial
wave packet does nat itself coilapse, wave interactions
seem to eventually create a pancake shaped wave packet
which does.

When this theory is applied to growing beam prob-
lems, the slow down results in an overshootl of the beam
saturation levels and introduces more electrostatic en-
ergy into the system.'” In the type-III problem. this ef-
fect might enhance the wave energy, and produce in-
creased electromagnetic emission for realistic values
of the magnetic field. The altered packet shapes would
also be expected to affect the pattern of electromagnetic
emission and its polarization characteristics.
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ABSTRACT
Parametric instabilities in a weakly magnetized plasma are discussed. The results are applied o
waves excited by electron streams which travel outward from the Sun along solar-wind magnetic ficld
lines, as ina tvpe I solar radio burst.

Subject headings: hydromagnetics - - instabilities - plasmas  Sun: radio radiation

L INTRODUCITTION

Intense waves in plasmas are known to cause prametric instabilities, resulting in the transfer of energy from the
intense wave to other waves: for a review see Nishikawa er af. (1976). An important astrophvsical phenomenon
involving such intense waves is the type HI solar radio burst. involving a stream of electrons which travels outward
from the Sun along sofar wind magnetic field lines: for reviews, see Nicholson er ol (1978), Smith and Nicholson
{1980). and Goldstein, Smith, and Papadopoulos (1980). There has been a great deal of work involving the application
of parametric instability theory to type 11 solar radio bursts: see Papadc poulos, Goldstein, and Smith (1974), Bardwell
and Goldman (1976), Smith, Goldstein, and Papadopoulos (1976, 1979). Nicholson ¢r al. (1978). Goldman and
Nicholson (1978), Nicholson and Goldman (1978). and references therein.

There is a substantial body of literature concerning parametric instabilities in a magnetized plasma: see. ¢.g.. Kaw
(1976), Porkolab and Goldman (1976). Kaufman and Stenflo (1975). Sanuki and Schmidt (19773, and Dvsthe and
Peeselt (1978). Nevertheless, previous applications of parametric instability theory to tvpe T bursts have not treated
magnetic ficld effects systematically. (Sce, however. a qualitative discussion in Nicholson ¢r ol 1978, Also see Freund
and Papadopoulos 1980 for a treatment of some, but not all, magnetic field effects.y This paper represents a step in the
direction of a proper inclusion of the effects of magnetic ficld on wave evolution during tvpe I bursts. Tt is a direct
generalization of the earlier work of Bardwell and Goldman (1976).

1I. PARAMETRIC INSTABILITIES

An clectron stream traveling through a background plasma gives rise to Langmuir waves (high frequencey electron
plasma waves with frequency near the local clectron plasma frequencey) through the well known beam-plasma
instability. As a first approximation, the spectrum of stream-excited Langmuir waves can be represented by a single
large-amplitude monochromatic wave. As discussed in detail by Bardwell and Goldman (1976), this is in many respects
not a very good approximation. but it allows analvtic progress, the results of which may have important implications
for the true situation.

Our theoretical model thus consists of an intense single monochromatic Langmuir wave (the “pump™ wave) travehng
along a uniform background magnetic ficld B, in an infinite. homogencous plasma. The electric field of this intense
wave is given by

E(r. 1) Sicos(hox wir). (N

where & is a real constant, and 1 is the magnetic field direction. Even though F is an intense wave, we assume that it i
still weak enough that it propagates as a linear wave and satisfies the lincar Langmuir dispersion relation

Wt ow T XA e (2)

where w,is the electron plasma frequencey. w, © dma,e” m o the average clectron density is 1, the clectronic charge

06
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has magnitude ¢: the electron mass is m_: the thermal speed ¢, - (7, /m )" 7 and the electron temperature 7, has units
of energy so that Boltzmann's constant does not appear explicitly.

In accordance with standard parametric instability theory, we suppose that high frequencey and low frequcency
Mluctuations in the plasma are coupled together by the pump wave and grow exponentially. In general. the coupling
involves the pump wave, a low frequency wave characterized by a complex frequency @ and wavenumber &, and two
high frequency waves characterized by the frequencies and wavenumbers (w, + w. k,, ~ k) and (w,, —w*. k, — k). For
stmplicity, we assume throughout this paper that all waves are longitudinal. having clectric ficlds parallel to their
wavenumbers. The possibility of electromagnetic decay waves is brieflv discussed in § IV. The low frequency wave is
therefore characterized by an clectric field £, of the form

E (r.)= 15, Kexpl —iwr+iker)= L& *Lexpliw*r - iker). (2)
while the high frequency electric fields are
F (ro)='5 k. cxp[—z(w,‘ ~whr+ilk,. +k )-r] ek cxp[/(w‘. ~w*M -tk ~k )-r]. {4)
and

E (r.0)= '8 K cxp[ﬂ‘( w, Wt tilk, —k )°r] TN cxp[z(wﬁ wli— ik, —k)r]. (5)
where A . are unit vectors in the k., =k directions. The relation among the four different wave vectors is shown in
Figure 1. While Figure 1 is drawn in the & -4 plane. all figures in this paper can be rotated around the A axis to
obtain a fully three-dimensional picture.

The high frequency and low frequency modes couple together 1o produce new normal modes described by the
dispersion relation:
1 1 S poo [T

xdw k) x0T AN ek, k) T e w ke KD ®)

where the angular factors are

Kok .. ()

Il

[THR

the clectron Debve length A =t /w_. and the dimensionless energy density

W= (8)
"Zdan,T,

Kaw (1976) uses an equation similar to (6) to study instabilities of clectrostatic waves in a magnetized plasma, but with

a dipole pump. [The reader mav recall that in studying lincar longitudinal waves, one writes Poisson’s cquation

v -E=4mp as tk(1 +x,. +x,)E=0, where the clectron susceptibility x,. is proportional to that portion of the charge

density p duc to electron motion and where the ion (in this paper. proton) suscepuibility x, is proportional to that

1=

Fi. 1 Relaton among the four wavesectors imvolved g parametnic imsiabiliny

r
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portion of the charge density p due to ion motion. The combination e~ |+ x, +x, is called the linear dielectric
function, and the dispersion relation for the wave involved is contained in the expression ¢ = 0. It is this diclectric
function ¢ which appears twice on the right side of (6).] In the next two sections we evaluate the dispersion relation (6)
in the unmagnetized case.

I UNMAGNELIZED CASE
We first solve the dispersion relation (6) neglecting the background iaagnetic field, with parameters roughly
corresponding to a tvpical tvpe I solar radio burst at a position one-third of a solar radius above the Sun's surface.
These are (Bardwell and Goldman 1976): n, — 10> em °, 7. =T =140 ¢V, kA, =0.05. and W, =10 * In the
unmagnetized limit, we take the dielectne function needed on the right side of (6) from fluid theory (Krall and
Trvelpicce 1972)

w N .

Hw, 2wk, k)= =2 AN S ekk A7, (9)

where throughout this paper @ <€ w, . w, and w, Tw,.

For the low frequency susceptibilities needed on the left-hand side of (6). we use the results of kinetic theorv, as has
previously been done by Bardwell (1976). This is somewhat more accurate than the fluid model emploved by Bardwell
and Goldman (1976) especially in the present case of equal electron and ion temperatures. The results of the fluid and
kinetic approaches are in quite good qualitative agreement, and differ quantitatively only by factors of less than 2. The
kinetic susceptibilities for species s are {Montgomery 1971)

Jr-sze60). (10)

|
lw k)= -
X ')\l'

>

where
w

El El\l' '

\

[

S,

(1

with v, the thermal speed of species s and Z the plasma dispersion function (Fried and Conti 1961) which arises
because the background electron and ion distribution functions have been taken to be Maxwellian.

The dielectric function (9) and the susceptibilities (10) are inserted in the dispersion relation (6) which is then solved
numerically to yield the complex frequency w(k). The imaginary part of this frequency is then plotted as a function
not of k. but rather as a function of the Langmuir wave vector. k' =k, —k. Figure 2 shows the resulting contours of
constant growth rate. This two-dimensional contour plot can be rotated about the & (B,) axis to vield a fully
three-dimensional contour plot. Figure 2 is in agreement with the corresponding figure in Bardwell and Goldman
(1976). As discussed in detail by Bardwell and Geldman (1976). there are three distinct regimes of instability; these are

Fi1G. 2. - Solution to the dispersion relation (6) in the unmagnetized case: the contours represent the imaginary part of the frequeney (the
growth rate) as a function of two-dimensional Langmuir wavenumber k' =&, & This figure can be rotated about the & | ' axis to obtain a
fully three-dimensional picture. The contour labeled | represents a growth rate w, *w, - 10 ¢ while the contour labeled 10 represents a
growth rate w, /w, — 10 ° The parameters are those of § I11.
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labeled PDI (parametric decay instability), SMI (stimulated modulational instability). and OTS (oscillating two-stream
inatability). The purely growing modes we idenufy as the OTS are confined to the small region of A-space with k L &,
and & -« A, . This should not be confused with the OTS described in Papadopoulos, Goldstein. and Smith (1974) and
Smith. Goldstein. and Papadopoulos (1979), which occurs in the large amplitude limit such that W, 2 10CA A, ) (see
discussion in § V of this paper). The maximum growth rate w in cach of the three regimes is close tow cw, = 13710
in the present case. The properties of these three regimes in the unmagnetized case have been reviewed by Bardwell and
Goldman (1976) in the n <t section we consider the modification of these three regimes in the weakly magnetized
situation.

IVOOWEAREY MAGNTLIZEL AN

In this section we consider the modification of the previous results in the presence of a weak magnetic field. In this
paper “weak™ means that the electron gvrofrequency &, 2= ¢B,, - mi ¢ (¢ is the speed of light) is much less than the
electron plasma frequency w . For example, with the solar corona parameters of the previous section and a reasonable
magnetic ficld strength of 2.5 gauss, we have £, ~0.1. Note that while the magnetic field is weak in the sense we
have deseribed. the magnetic field energy density for the present parameters exceeds the kinetic energy density of the
background clectrons (i.e.. this v 2 low-f plasma).

The magnetic field affects both the high frequency and the low frequency wave motions. For the high frequency
longitudinal waves, the clectrons feel a X B foree in addition to an clectric field force. and the diclectric function
becomes (Ginzburg 1964)

flw, mw. k, k)= =29 3&kA T T6kek A (p. 1)
w w

(12)

which must be used on the right-hand side of the dispersion relation (6).

There are also magnetic field effects on the low frequency wave motions, For heuristic purposes. suppose we ignore
the strong ion Landau damping of ion acoustic waves in an equal temperature plasma and use the dispersion relation
w = ke, to estimate a typical ion-acoustic frequency. With the sound speed ¢ = (7, /m )" - and a tyvpical low frequency
wavenumber AA, ~0.02, we have w/w, ~4>x10 * The ion gvrofrequency €, ~5>10 ‘w,. and the ion (proton)
plasma frequency is w, ~0.02«,. Thus, the frequency ordering of interest is € @ <w,, <8, <.

For most of the wavenumbers &' in Figure 2, the product of the ion gyroradius p,. with the low-frequency
wavenumber, k="'k,, —k" . is substantially greater than unity. We find that the modification of the low-frequency ion
susceptibility due to a magnetic field is insignificant for most of the wavenumbers in this problem. The exception is the
OTS. Along the dashed line labeled A in Figure 2, w is purely imaginary, and at maximum growth rate «'/w, =1i.0
10 *<Q /w, and kp, ~1. We shall find that the OTS branch is substantially suppressed. but we attribute this to the
low frequency effects on the electrons. not to kp, ~ ). The magnetic ¢ffects on the low-frequency ion motion do not
seem to be important because the results are the same whether they are included in the calculation or not.

As for the electrons, the fact that @] <Q, (and typically & p, < 1. where p, is the clectron gyvroradius) means that
the low-frequency electron motion is indeed strongly magnetized. In other words. electrons are not free to follow low
frequency motions across the field lines. but rather they begin an EX B, drift when subjected to low-frequency clectric
fields perpendicular to the field lines. Along the magnetic field lines the electrons are perfectly (ree to move, like beads
on a wire. As discussed in somewhat more detail by Nicholson er al. {1978), the net result of these parallel and
perpendicular effects is that for angles (~k  /k ) which are greater than (m_/m,)' = from perpendicular to B, there
is no effect of the magnetic field on the low frequency wave motions (m, is the proton mass). Only in the small range of
angles |k /k [<(m_/m) ° are the electron motions inhibited greatly and the low frequency wave propertics
modified. As we shall see, the instability growth rates in this small range of angles can be severely reduced because of
the inhibition of electron motion across field lines.

Let us perform a simple analytic calculation to illustrate onc case of a reduction in growth rate due to the magnetic
field. We focus our attention on the dashed line labeled A4 in Figure 2. Along this line where k<&, = 0. the instability is
purely growing with w=iw,. Now suppose we have a plasma with cold ions and a growth rate whose magnitude is
small. The unmagnetized fluid susceptibility for species s is x, = ~ w, */{w" — k", *). which means we can ignore the
ion susceptibility term on the left-hand side of the dispersion relation (6). Inserting the clectron susceptibility
X, = 1/k-\_ ", the unmagnetized dielectric function (9). and the assumption w = /w, into the dispersion refation (6), we
find

|
g!:(gw;,kllz\(’fzk“)«‘_‘ . (13)
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whereupon the highest growth rate is
w w M8, {14)
which oceurs at
KX, () (15)

Now. how is this result modified when the magnetic field is included? Continuing to ignore the ions in the Jow
frequency susceptibilities on the left-hand side of (6). there are two places where magnetic field effects enter. The {irst
is in the high frequency dielectric function. where (12) replaces (9). One may think of the change as replacing 3A°A -
N by —3K°A T (p . T D, T w, T in(12). As both terms are negative, this effect is as if the wavenumber in (9)
were increased: the result s merely a shift in the growth rate curve to smaller wavenumbers with no change in the
maximum growth rate obtainable. This effect was first suggested to us by Smith and Tsvtovich (1977).

The second place where the magnetic field effect enters is in the low frequency electron susceptibility. For the case
under discussion with k- B, =0, the unmagnetized clectron susceptibility, (AA.) 7, is replaced by x, =« ~ Q -,
corresponding to polarization drift: and, neglecting for simplicity the high frequency magnetic effect of the previous
paragraph. the dispersion relation (6) vields (without assuming w purely imaginary)

‘,‘!-“i‘)/\w)\ o 3 MLKCA, J“,’r::gk’kJ I-
P R - a

© ¢ .

{16)

N

o~

which does not predict instability at all for the parameters of the present paper. This crude calculation exhibits the
reduction in the growth rate when the low frequency mode propagates within an angle of (m,,/m )" © with the
perpendicular to the magnetic field.

We emphasize that this great reduction in growth rate occurs only for the branch marked OTS in Figure 2. For the
other branches marked PDI and SMI in Figure 2. the low frequency mode has an angle greater than (m,, 'm )"~ to the
perpendicular to the magnetic field, and propagates as if the medium were unmagnetized.

To make these remarks rigorous, we numerically solve the dispersion relation (6) with the parameters already
mentioned (£, /w, =0.1). For the low frequency electron and ion susceptibilities we use the magnetized kinetic version
which is given by (Bekefi 1966)

] z Q
Aw. kY= [1+¢expl-a)y S 1(a)Z[t—n 0 - L] (17)
X, (w P g.exp L=, {a)) | T

where ¢ =w/2' *k v, a, =k, ‘p . and the /, are modified Bessel functions. For the high frequency diclectric
functions we use the fluid versions (12). The solution of the instability dispersion relation (6) is shown in Figure 3.
Comparing this figure to Figure 2. we notice several effects of the magnetic field. The most dramatic effect s the
disappearance of the OTS branch. in agreement with the crude analvtic calculation. The other dramatic effect is a
squeezing of the contours in the y-direction for both the PDI and SMI branches. We ascribe this effect almost totaily to
the magnetic term in the high frequency dielectric function (12).

It is important to note that despite the squeezing of the contours in the direction perpendicular to the magnetic ficld.
the vertical extent of the region of fastest growth (the contours labeled 10) is only slightly affected by the magnetic

10

1

Fra 3 Solution of the dispersion relation (6) 10 the weakly magnetized case: All parameters and contour Jabels are the same asin g
Al
Lwith, w, 01
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field. This 1s true for both the SMI and the PDI branches: the maximum perpendicular extent of the 10 contour is
reduced by onlv 10% of its unmagnetized value in each case.

Returning to the OTS branch, we have seen in Figure 2 that in the unmagnetized case it has as large a growth rate as
any other branch. while when Q_/w_=0.1 (Fig. 3) it has completely disappeared. In order to explore the nature of this
transition, we show in Figure 4 curves of growth rate versus perpendicular wavenumber A A, for various values of
2, /w,.with k&, = 0. The horizontal axis of this figure should be identified with the dashed line labeled 4 in Figure 2.
We see that even for the smail value € /w, =0.005, the instability has almost disappeared. The OTS branch is very
sensitive to the presence of a weak magnetic field: the main reason for this is the resistance of the magnetic ficld to
motion of electrons across field lines.

In this paper we have considered only longitudinal decay waves. There also exists a host of potential electromagnetic
decav products. Although we have not performed a systematic numerical study of the electromagnetic decay
possibilities. we have considered many specific examples within the context of the present parameters. In every case, we
find growth rates far lower than the maximum growth rates of the SMI and PDI branches. Of course, in a particular
region of wavenumber space, an electromagnetic instability can have the largest growth rate. For example, when the
OTS instability is reduced to zero growth rate by the weak magnetic field, the region of wavenumber space which
formerly contained the OTS can now support a parametric instability involving a magnetosonic wave. Whereas the
low-frequency electron motion across ficld lines is inhibited by the magnetic field. a magnetosonic wave moves the ficld
lines, thus allowing the electrons to move and enhancing the tendency toward instability. Our caleulations indicate.
however, that the resuiting growth rate is very much smaller than the growth rates of the PDI and SMI branches in the
weakly magnetized case. Thus, we feel that there is no indication that clectromagnetic effects would change the overall
growth rate picture in the weakly magnetized case. The effort required to produce a comprehensive contour plot such
as Figures 2 and 3 including all electromagnetic effects does not seem to be warranted.

This concludes our detailed calculations. All of the results of this section agree with the qualitative predictions of
Nicholson ef al. (1978)." In the next section we discuss the implications of these results for parametric instabilities and
soliton collapse associated with type 11 solar radio bursts.

"In § IV of this reference. the expression Ap, 800 1n the sixth paragraph should be repliced by the expression Ap, 20, Eguation (13
should read

§.9,
Ik, A8, w1

(¢
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V. SUMMARY AND DISCUSSION

In this section we summarize the preceding results and discuss the miplications of these results for the theory of tvpe
11 solar radio bursts.

In the unmagnetized version, the parametric instabilities to which an intense monochromatic Langmuir wave s
subject consist of three kinds: the OTS, PDI, and SMI. The maximum growth rates in cach branch are comparable.
One of these branches, the OTS, is very sensitive to the addition of a weak magnetic ficld. For the parameters of the
present paper, this branch is virtually wiped out for a magnetic field such that €« 0.005. The other two branches,
the PDI and the SMI, are very insensitive to the addition of a weak magnetic field. This is true both for the maximum
growth rate in cach branch, and for the extent of cach branch in the wavenumber direction perpendicular 1o the
direction of the magnetic field.

We conclude that to the extent that the stream-cxcited Langmuir waves of a tvpe HI burst are monochromatic, the
lincar parametric instabilities 10 which these waves are subject are not one-dimensional in nature. The presence of
weak magnetic ficld does not change the overall growth rate picture. The detailed tvpe HI Langmunr wave scenarios of
carlier work (Bardwell and Goldman 1976; Nicholson er </ 1978) need not be modified.

This strong conclusion must, of course, be tempered by repeating the observation that the Type TH stream-eacited
Langmuir waves are not monochromatic, but have a spread of wavenumbers along the magnete ficld and across the
magnetic lield. No satisfactory general theory of parametric instabilities due to a broad-band pump wave presently
exists even in the unmagnetized case, although some results have been obtained (Bardwell and Goldman 1976,
Thomsen and Karush 1974; Smith, Goldstein, and Papadopoulos 1979). The frequency spread in a broad-band pump
will tend 10 disorder the coherent growth of the modes in Figures 2 or 3. However, in a statistical sense. those modes
may still experience instability. In numencal simulations, parametric wave growth is sull observed with a broad-band
pump (Nicholson et al. 1978).

Broad-band ceffects can often speed the nonlinear processes. as in the case that the regions of constructive
interference of Langmuir waves in real space undergo a direct collapse. In the low solar corona. where A, >(m, m ' -
the wave packets have a group speed larger than the ion-acoustic speed. and collapse cannot oceur without some
scattering, perhaps by the instabilities considered in this paper. For 'AU. when & A :0.01, the wave packets can
collapse directly, thus bypassing the stage of parametric instability (Nicholson er al. 1978).

In recent papers putting forth a theory of type I radio bursts, Smith. Goldstein. and Papadopoulos (1979). and
Goldstein, Smith. and Papadopoulos (1979) study rate equations in which a lincar instability plavs a central role in the
transfer of energy out of resonance with the tvpe 1 clectron stream. That instability, which they refer to as the
osciflating two-stream instability (OTSI), is supposed 10 occur for A»4,,. The fact that we do not find such an
instability in our analysis deserves further comment.

The geometry of the purelv growing instability is determined by the values of the pump energy and wavenumber, ¥,
and k,,. If W, < 10(k,A )", as in the present paper. then the instability will have A <A, and have a maximum growth
rate perpendicular to the pump wave vector. On the other hand, with B, 10(A A, )7 then A >4,.. and the instability
has maximum growth rate along the direction of the pump wavenumber A, as in Smith ¢r a/. Nonctheless, both
instabilitics rightly have been called oscillating two-stream instabiiities, and the failure to distinguish between these two
cases has undoubtedly caused some confusion.

In cither case, the OTSI involves two Langmuir daughter waves, with wavenumber &, * & shifted up and down
relative to the pump wavenumber, k,,. The instability occurs when the upshifted and downshifted waves beat with the
pump wave at nearly the same frequency. The frequency mismatch, or the beat frequency, 8 .. for the two waves is

8. = WkA o

e 3 kk A, . Jw,, .

In the dipole imit (). k>>k . both daughter waves have nearly the same mismateh because of the small wavenumber
of the pump wave, k,,. The threshold for instability is W, >3(AX )’ (Smith, Goldstein, and Papadopoulos 1979).
Because Ak, this threshold condition implies #;, > 3(A,A ). In the other limit (), A~ h,. the mismatch
frequencics are made equal when & L &, (Bardwell and Goldman 1976). The fastest growing wavenumber for this
instability is given by equation (15). Since the wavenumber A is assumed to be much less than A, this requires
W, < 12(k,A )

Hencee we arrive at the important conclusion that as the pump strength B increases, the OTS1 goes from case () to
case (a). The character of this instability is described in detail in Bardwell's PhuD). thesis (1976). Although the effect of
the magnetic field is to suppress completely the QTSI in the small A limit. in the other limit, A >4 . the magnetic field
has important, but less drastic effects (Freund and Papadopoulos 1980),

After the completion of this work (Weatherall, Goldman, and Nicholson 1978). we became aware of the related work
by Freund and Papadopoulos {1980) which examines magnetic ficld effects on tvpe HY generated parametric instability
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at ‘AU for large values of pump energy (B 10 10 ). Because W, (A, A, ). they study a regime complementan
to ours. However, they ignore the effect of the magnetic field on the low fregueney motions. This is not likely to affect
their results, since they do not consider waves perpendicular to the magnetic field where we find the effct important.
Generally, their work agrees with ours in finding the decav branch to be quite insensitive to d weak magnetic field.
except for a shift of unstable wave vectors 1o smaller perpendicular wavenumbers.

To conclude. the results of the present paper are applicable in the regime [case (£)] of relatively low pump energies
(W, =10 * and parameters appropriate to a distance of one-third of a solar radius above the Sun's surface). The
complementary regime [case {« )] of relatively high pump energies has been considered in the work of Smith. Goldstein.
and Papadopoulos (1979). Goldstein, Smith, and Papadopoulos (1979). and Freund and Papadopoulos (19%0). Which
of these regimes is t::ore appropriate will depend upon the detailed parameters of an individual tvpe I solar radio
burst. As pointed out by Smith, Goldstein, and Papadopoulos (1979), these parameters can vary over wide ranges from
burst to burst.

This work was supported by the National Science Foundation, Atmospheric Research Section under ATM 76-14275
and by the Air Force Office of Scientific Research (M.V.G. and J.C.W.) under contract F49620.76-C-0005. We also
thank the National Center for Atmospheric Research, supported by the National Science Foundation. for computer
time vsed in this cesearch. One of us (D.R.N.) was supporied by the Atmospheric Research Section, National Science
Foundation, grants ATM 78-22487 and ATM 79-18778, and by U.S.D.0.E. grant EY-76-5-02-2059.
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The ¢volution of Langmuir waves predicted by the beam-driven Zakharov equations 1s studied numernically
with high resolution in one and two dimenstons, for parameters appropriate to type I solar radio bursts at
0.5 a.u. It is found that collapse 1s preceded by momentum transfer to 1n-acoustic quasimodes even 1n the
absence of a weak solar magnetic field. The early evolution 1s mimilar 1in one and two dimensions A zeto
momentum condensate forms in both cases, but its subsequent behavior differs in one dimension and two
dimensions. The corresponding real-space wave packets collupse rapidly in two dimensions, but evalve as

slowly growing solitons in one dimenston. Detailed cor: arisons are made with other rone-dimensional
models of “'strong” Langmuir turbulence associated with type I bursts

1. INTRODUCTION

In principle, there are two classes of nonlinear
phenomena which can saturate Langmuir waves driven
unstable by a warm (“bump-on-tail”’) electron beam,
wave-particle interactions and wave-wave Interactions.
In the former, the back reaction of the resonant
“beam-modes” on the beam electrons can lead to pla-
teau formation. This is treated by various versions of
quasilinear theory. In the case of wave-wave interac-
tions, energy 1s spread from the resonant beam modes
to nonresonant modes by stimulated scattering off
background ons' or 1on-acoustic waves, and by non-
linear self-focusing effects such as modulational 1n-
stability*™ and collapse.””” The so-called Zakharov
equations” can be used tu treat all of these wave-wave
interactions simultanesusly.’ In the present paper, we
shall be concerned with the interplay between the var:-
ous wave-wave interactions, and its significance for
the Langmuir turbulence associated with type III solar
radio emissions.’ "

In the Zakharov ~3juaations, low-frequency ion-acous-
tic waves are driven by the ponderon:tive force as-
sociated with Langmuir waves. This 1s described by a
hydrodynamic equation for the low -frequency density,
in which the ponderomotive furce acts as a source
term. The resulting modulations in the density cause
nonlinear refraction in the Langmuir waves. This is
described by a nonlinear [.angmuir wave equation, in
which we also employ the approximation of a purely
electrostatic high-frequency field having a slowly varv-
my envelope. For our purposes. therefore, the Zak-
harov equations are two coupled nonlinear partial dif-
ferential equations for the fow-frequency (ion) density
and for the L.angmuir envelope.

In the cases of interest to us, the electron and ion
temperatures are assumed to be equal. This means
1on-acoustic waves are heavily damped by ion [ andau
damping . and should. more properly. be called ion-
acoustic quasimode. We therefore insert a strong
phenomenological damping into the on-acoustic equa-
tion. One of the nonhinear effects then contained in the

392 Phys Flinds 2602}, February 1982

0031 9171.82 020392 10501 90

Zakharov equations 1s the induced scattering of a [Lang-
muir wave off such an 1on-acoustic quasimode 1nto
another wave.” The scattered wave may be backward
or forward in relation to the first, but 1t always loses
momentum to the guasimode 1n the process. It can be
shown that scattering off such ion-acoustic gquasimodes
is roughly equivalent” tu scattering off discrete 1ons
(which requires a kinetic equation tor the wn distribu-
tion function). Another name for the latter phenome-
non 1s “nonlinear L.andau damping off 1ons.” while the
tormer s sometimes called a parametric decay insta-
bility. We shall use all these terms interchangeably,
smee we have assumed equal electron and jon tempera-
tures.

Induced scattering off 1wns forms the basis for what 1s
sometimes called " weak turbulence” theory. A group
of unstable or large amplitude waves. centered narrow-
Iy around a wave vector, k,. undergoues a cascade ol
scatters toward lower wavenumbers &k~ k. [t there
1s enough limear dissipation. the cascade stops. a
steady state develops, and the instability saturates.
When the phases of the various modes are random,
this 1s an example of saturation by a weak turbulence
process.

It there 1s not enoush hinear dissipation, energy ac-
cumulates at very small wavenumbers 1into a “conden-
sate.”” When the condensate has enoush energy (rela-
tive to itg square width, ak-), 1t can spill out to high-
er wavenumbers by means of modulational mteraction
twhich s the basis for " strony turbulence”™ thearyv).
Thas process has a stmple mterpretation in coords -
nate space. The wave packels associated with the con-
densate cause density cavities to develope due to pon-
deromotive force. The resulting sell-tocusing leads to
the spatial collapse™™ of the packets 1o dupensions
which may be on the order of several Debye lengths,
The Fourier components of such a narrow wav ¢ packet
now see heavy Landau damping. because ©as on the
order of the Debyve wavenumber b0 Hence, by tins
crrcuitous route. a steadv-state saturation of the org-
sinal mstability may be possible.
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Many aspects ol this sequence ol prucesses are still
quite controversial. However, the cascade-collapse
sequence has been contirmed’ by two-dimensional
numerical solutions to the Zakharov equations, for
the case when the “pump’ waves around k, are assumed
to have initial amplitudes much larger than the noise
level of other modes. In these studies, the pump waves
were not driven by any linear instability, such as beam
instability. We shall refer to such cases as "undriven.”
In the undriven cases studied, k, was chosen to be
large enough so that many (back and forth) scatterings
were possible in the cascade. The condition for this is
ko> (m M) "%k, where m ‘M is the electron to ion
mass ratio. This condition is equivalent to the require-
ment that the group velocity of the pump waves be much
larger than the 10n-sound speed.

In other? two-dimensional numerical studies with the
Zakharov equations, a different mode of behavior was
vbserved for an undriven group of pump waves around
ko om M) 7k, When the initial energy density in the
undriven pump waves was made sufficiently large, a
direct collapse of the associated real space wave pack-
ets occurred. Such direct collapse was enabled, in
principle, because the group velocity of the pump wave
packets was less than the ion-acoustic speed, so the
nonlinearly refracting cavity of density could keep pace
with the packet. Direct collapse occurred even though
one final induced-scatter off ions was still kinematical-
ly possible (in the forward direction, due to the low
value of k).

A theory for direct collapse of an initial undriven
broadband pump was developed,® using the approxima-
tion of adiabatic ions, in which particle pressure is
assumed to be balanced by ponderomotive force. The
theory predicted the collapse threshold pump energy
density, W = |E 12 ’4mn6 (in units of the background
electron energy density n6), in terms of the pump
bandwidth, ak: W, = 48(ak)*. This threshold condition
is approximately satisfied for the numerical studies
which showed undriven direct collapse {e.g., Fig. 1 of
Ref. 6), although the adiabatic approximation is not
strictly satisfied, due to momentum transfer to ions.

The further claim was made®' that direct collapse
also occurs when beam-modes (centered about ky/ky
= 0.01) are driven by the weak electron beams associ-
ated with type III bursts at 0.5 a.u. The argument was
based on numerical integration of the Zakharov equa-
tions which seemed to show® that the weakly driven
beam modes grew to an energy density two or three
times the collapse threshold, and that afterward direct
collapse occurred exactly as in the undriven problem.
However, subsequent studies'! included a weak back-
r,round solar magnetic field, and showed that direct
collapse was slowed down sufficiently by magnetic
effects so that substantial induced scatter off ions did
have time to occur, and prevented direct collapse. The
relevance of direct collapse for the physical conditions
of the type III problem was therefore significantly di-
minished.

We seek to establish in this paper that even for non-
magnetic conditions under which a driven direct col-
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lapse was thought to be pussible. a substanual build-
up of scattered waves occurs at small wavenumbers,
The observed collapse is associated with this “counden-

sate” of wave modes, rather than the beam-resonant
modes. The interpretation is more in line with earli-
er’*!? pictures of cascade followed by collapse. How-
ever, lhere are additional unexpected nonlinear effects
present, such as long-time phase coherence of wave
packets and a continual loss of momentum to ions. In
addition, the final condensate is centered around zero
k, rather than the wavenumber associated with induced
scatler (a result also found in Ref. 13).

We begin with a two-dimensional numerical solution
to the beam driven Zakharov equations for a case when
Ry kp < (m,, m;)!’?. The choice of physical parameters
is motivated by the type Il problem at 0.5 a.u. The
qualitative behavior in this simulation is not different
from previous studies.® but the improved time and spa-
tial resolution make it possible to follow the collapse
of the wave packets for longer times than before, and
identify a migration of the Langmuir spectrum toward
smaller wavenumbers. The major point of this paper
is that the depletion of the beam-resonant (pump) waves
is due to scattering off ions, rather than collapse.

In order to support the interpretation of the results
we solve the same Zakharov equations in one dimension.
The time scales and energy densities in one dimension
are found to be comparable to the two-dimensional case
during the early time evolution, even though collapse
is not seen. This means that the scattering instabilities
(which occur predominantly in one dimension) must
have a significant role in the saturation of the beam-
plasma instability.

We give another solution in one dimension, repre-
senting the limit of adiabatic ions for which the Zak-
harov equations reduce to a nonlinear Schrédinger
equation, The purpose of this example is to demon-
strate the role of ions in the scattering of the Lang-
muir pump waves to smaller k modes.

After the condensate has formed, there appears to
be a difference between the further time development
in one and two dimensions. In one dimension we see
real space solitons intensifying on the time scale of the
beam growth rate, whereas in two dimensions the soli-
tons are collapsing unstably at a rate which is an order
of magnitude faster, for as long as we are able to fol-
low them, There are theoretical reasons''*'* to expect
collapse to depend strongly on dimensionality in cer-
tain limits, but this problem requires further numer-
ical study.

The plan of this paper is as follows: InSec. 1l we
set up the basic equations and describe the initial
conditions and boundary conditions, which are appro-
priate in the type 11l problem at 0.5 a.u. InSec. IllI.
we present a two-dimensional numerical solution of
the Zakharov equation. Section IV is devoled to the
one-dimensional Zakharov equation for both the adia-
batic and nonadiabatic cases. These examples serve
to clarify the roles of the various nonlinear processes
identified in the two-dimensional solution. In Sec. V
we elaborate on the limitations of one-dimensional
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solutions to the Zakharov equations. The implications
of our results for various aspects of type lII theory
are described in Sec. IV. Finally, inSec. VII, we dis-
cuss how our work and conclusions differ from the
one-~dimensional statistical theory of Smith, Goldstein.
and Papadopoulos'®'!? in the context of the type Iil
emission problem.

1l. EVOLUTION OF NONLINEAR LANGMUIR
WAVES

The starting point in studying nonlinear Langmuir

waves is Zakharov's equations

(i3, iv, + VY)V-E=V-nE, (1)

@ v, -vm=vE[, (2)
where E(x,t) =-V¢ is the low frequency envelope of the
assumed longitudinal Langmuir field: E (x,¢)= E(x.t)
X expt —iwut) + c.c., and n is the perturbation on the
background ion density . n;. The units of time, length,

density, and electric field in vur dimensionless nota-
tion are

3/1m /2
[X,,v]=§(;;;:) Ao

["];’%‘n(m, ming ,

i/2 12
1. m) (lﬁanT,>
l£) n(mi 3

where the plasma frequency is given by w,, = 41rn0e2 My,
the electron Debye length is », = (T, m,w%). and the
dimensionless ratio n=(;,T, +y,;7;) T,. The ratio of
ton- to-electron mass is m; m, = 1836, T, and T; are
the temperatures and,, and,; are the ratios of speci-
fic heats for the electron and ion gas. Although these
equations describe complicated wave-wave hehavior,
they do not include particle-wave eftects except in the
phenomenological damping terms. v, and v,.

In order to simulate Langmuir wave phenomena dur-
ing type IlI solar radio bursts at 0.5 a.u., we solve
Egs. (1) and (2) by the split-step Fourier method un a
finite grid."""*'* The computation is set up as follows.
The beam unstable modes are centered at k), — 0.011,
with a finite bandwidth ak, and ak, (v is parallel to the
beam and #,; v is in the transverse direction), The
beam plasma instability is simulated by transforming
Eq. (1) into & space and using a negative damping
rate.*?" v, w, = 10", for the appropriate k modes.
Other relevant parameters are: T,~T,=20¢eV, w,
= 4x10° sec™. ny=50 em™, \, - 470 cm, n= 2. Except
for the beain unstable modes, the plasma wave damping
1s 1, = 0, v, = 2ke,, corresponding to heavily damped
wn-acoustic modes. [Initially. all of the plasma wave
maodes are given some small, randomly phased ampli-
tude (noise).

ill. SIMULATION IN TWO DIMENSIONS
In our two-dimensional calculation. we use a 64 x 64

pomnt grid. with ak - (1 6¥e, and Ak, (1 2)k,. First,
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we present the history of the wave energy density dur-
ing the simulation whict. shows that the wave processes
contained in Eqs. (1) and (2) can effectively decouple
the system from the beam. In Fig. 1 we plot two curves
which show the total enerpy densily 1n the system and

the energy density in the beam-driven modes, W 1s a
dimensionless ratio. W - E(\) © 4o, T,. where
([E “y denotes a spatial average of E(\}[". Remember

that the beam modes are beiny pumped throughout the
run at a constant rate. These modes prow Linearly at
early times until they saturate at enerpy Wy, - 107,

At later times these pump modes experience a drastic
loss of enerygy due to nonlinear wave processes. The
rate of energy transfer to the plasma w aves depends
upon the term v, & . With the pump modes severely
depleted the enerpgy input mto all waves 1s practically
cut off. leading to the saturation of the total energy m
Langmuir waves. We are still not seeing a fully-de-
veloped steady-state turbulence, because we have not
included Langmuir wave dissipation. Note that the
total wave enerpy has a slight positive slope.) A major
unanswered question is whether. given enough time and
accuracy, the enerpy yrows to a significantly higher
level.

Let us examine, in detail. the wave behavior at three
times f, f;, and {;, as indicated in Fig. 1. The behavior
at these times is representative of the variety of non-
linear phenomena observed in the simulation.

At time f;, we observe wave packels propagating at
0.025:,, slightly less than the group velocity of the
beam resonant waves, i, = 3k, )i, = 0.033:,. as
shown in the sequence of pictures in Fig. 2(a). The
time between frames is 0.07x10% w3}, and the spatial
width of the frame is 3.7x10%\,. Therefore, a ther-
mal electron traveling at speed », will traverse the
horizontal length of the frame 18.5 times in the mter-
val between frames. Because the grid is periodic, a
wave which exits one side of the grid will reappear on
the opposite side.

The wave packet in Fig. 2(a) does not behave accord-
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FiG, 1. Energy density an the pump resonant modes, (W,

and total energy density () during the two dimensional sim
ulation of s avpe 11 burst at 005 aou
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FIG. 2,

Successive time snapshots of contours of constant electric field amplitude [E1 in real (x-v) space during nonlinear phases

of type Il Langmuir wave interaction. (a) coherent wave propagation near time f; (b) decay instability near time #.; (¢) Langmuir
collapse near time #;. Amplitude labels are in dimensionless units [F).

ing to the rules of linear waves. Because of thermal
dispersion, this wave packet should “disperse” on time
scales of

2 dw\t 1LY
- R - d—gx10iy!
T (L’ dk0> 3w 810005 » t3)

where the width of the wave packet is about L =500 3,.
Clearly, it persists longer than this time, The reason
is that nonlinear forces are very important. A cal-
culation shows that this wave packet, with central
amplitude, E,, is just at the threshold for collapse®
(for adiabatic ions in an infinite plasma):

IE |3 <L2
— > th = -4
T,y =485 = 1ex10%, @
whereas
[Eo1? 20m(T, + T{) =1.7%x10% . i5)

For energy values near threshold, the collapse time®
can be very long

A [EZ-IE1G N\ o "
Te= E_If—[(Znno(T,+T.))] Wi =3X10%, . 6
The k-space distribution of wave amplitude at time

t,, shown in Fig. 3(a), indicates that wave energy is
being transferred from the pump modes into neighbor-
ing modes in k space. This broadening in k space can
correspond to the nonlinear steepening of wave packets
in real space. Although we may be seeing the begin-
ning of a direct collapse. it is relatively slow, and
does not have time to develop. Part of the reason is
the instability which affects the packets by the time t,.
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Fl1G. 3. Coitours of clectric field amplitude in %k space at
times () ¢y, showing collapse broadening, () .. showing the
parametric excitaiion of particular wave modes, and ) 1,
showing the formation of a condensate. Contour labels indicate
refative amplitude.  The rectangular box shows the pump deam
unstable) modes centered at Ead, = 0L 011,
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At time ¢,, which marks the precipitous depletion of
the pump waves, there are discrete modes which have
enhanced amplitudes {see Fig. 3(b)]. These are iden-
tified with modulational and scattering instabilities.
For example, induced scattering off ion-acoustic
quasimodes is known’** to occur for waves with Lang-
muir wavenumber and maximum growth rate

kL,\';-kOA‘ +(4I]"ly 27;;“)”2'
y =3 W, 16w, . (1)

(These formulas assume a monochromatic pump.) The
feature we see 1n Fig. 3(b) at k2, = 0.002 is due to this
instability. The observed growth rate of this mode,
approximately 5x10° W« 1S consistent with the theo-
retical growth ratey when W, ~ ¥, 107, The insta-
bility yrowth time is comparable 0 the collapse time
siven in Eq. (6).

The two contours which are off the 1 axis in Fig.
3(b). appear to be the modulationally unstable waves
studied by Bardwell and Goldman.® We note that the
beam-modes pump these waves in a forward cone,
rather than at high backward and forward wave vectors
in one dimension. as suggested by Smith, Goldstein.
and Papadopoulos.'® The forward cone geometry of the
modulational instability is only transformed into the
backward-torward geometry at much smaller pump
wavenumbers (where the “dipole” approximation is
valid), or much larger pump energy densities. In this
lumit, another pseudonym for the modulational msta-
bility becomes appropriate; the “oscillating two-stream
instability "***" Theory’ predicts the same growth
rates for the modulationally unstable waves as for the
waves which have undergone induced scattering. This
15 10 accord with Fie. 3ub). The modulationally un-
stable waves are predicted’ to vceur at kv, - (W,
12)' 2165107, also 1 rough agreement with Fig.
3ib). Although this 1s the first time the torward cone
modulational mstability has been found to be exctted
by a broadband spectrum of beam-driven pump modes.
the immediate subsequent evolution of the Langmur
waves appears to be dommated by the induced scatter
tdecay) instability.

A sequence of wave packet configurations in real
space at this same time {. is shown i Fig. 2tb). The
wave packet is now traveling with a mean group velo-
city which 1s much slower than before. This corre-
sponds 1o the lower centroid of wavenumbers it we
make the identification », - 3k, )r,. The wave packet
suffers some distortion, which may be associated with
the mstabilities. but then appears mtact again wn the
final frame. The coherence of the packet is rather re-
markable. The location of a packet in real space de-
pends un a particular set of (random) phase of the
maodes n k space. whose interference pattern pro-
duces the real space packet. The tendency of the
packet to stay together may be evidence that there s
no phase shift associated with the scattering process.

Subsequent to time /., and up to the time /.. we see
a catastrophic collapse |Fig. 2ic)] until the lenuth scale
becomes too small for the grid. The collapsed wave
packet continues to lose momentum untl a0 appears
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nearly stationary. Wave energy is distributed in a very
large region of k space, including backward traveling
waves, as shown in Fig. 3{c¢).

From the example given here, we can conclude that
the ¢ollapse of growing broadband pump waves does not
occur fast enough compared with the secondary param-
etri¢ instabilities excited. In fact. the scattering (de-
cay) instability seems (o be very important in depleting
the pump modes. While the inclusion of vollapse has
been a principal motvation for doing the calculation
two dimensions, the scattering mstability is predomi-
nantly one-dimensional. To tind out how well a simpler.
one-dimensional model can do in this problem, we re-
peat the simulation in one dimension.

IV. SIMULATION IN ONE DIMENSION

For the same parameters. the one-dimensional cal-
culation uges a discrete svstem of 128 modes. with
three pump medes and Ak - & 3. The results allow a
similar interpretation as in the previous case. During
the linear growth phase. the pump waves are enhanced
in amplitude. as shown in the & space spectrum i Fig.
4(a). At a later time, the k space spectrum has evol-
ved into that of Fig. 4b). First, we note that the pump
modes, instead of being of equal amphitudes. have de-
veloped a peak on the lower wavenumber side. Second.
the pump modes have caused the amplitude m adjacent
modes to grow. This is similar to the collapse-hke
broadening also observed in two dimensions. Fially .
the broad teature near the origin of & space s appa-
rent, and s due to the scattermyg cdecay) mstability |

At the time that the decay mstability becomes pre-
valent. the pump modes deplete rapidly. as shown i
Fig. 5. The saturation of total enerygy is at about twice
the level given in Fie. 1 Jor the two-dimensional case.

Figure 61a) shows the envelope waves i real space
at the time curresponding to the depletion ot the pump
waves. Collapse is not vceurring as 1t did 1 two di-
mensions. but a modulational interactiont” !
beginning to produce shorter length scales. The con-
dition for this process is W - £{akv,.). where ak s
the wavenumber spread in the Langmuir waves and £ 1s
a number of order unity. At the tume of Fig. 6(a). this
mequality is margmally satistfied with # ~6x 107 and
{aM )P ~5% 107 (the scattering mstability has broaden-
ed the k-space spectrum to such an extent that the
bandwidth of the beam-modes is irrelevant). There-
fore. the lormation of caverns 1s energetically pos-
sthle. SUll. we expect the transfer of energy to short
wavelengths to proceed rather slowly since the condi-
tion for the modulational mstabibity 1s only mareanally
satisfied. At a much later time, soliton-like strue-
tures have formed as i Fig. 6,b).

[N 1S

Is the rapid depletion of the pumnp truly due to the
scattering tdecay) imstabihity ol the Langmuir pump
waves 7 One way to approach this question 1s to use a
version of the wave equations (1) and (2) which assures
that no momentum be lost 1o the 1ons. A nonhinear
Schridinger equation,
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FIG. 4, Electric field amplitude in k space during the one-
dimensional simulation at times (a) T=4.6x10° .} showing
the enhancement of the pump modes, and (b) T=6.7> 108 w;“,
showing many of the same features seen in Fig. 3(b). The
amplitudes of 60 wave modes centered at zero are shown. The

largest wavenumber k, is 0.025 ;"

is obtained from Eqs. (1) and (2) by neglecting the time
derivatives in the ion modc equation (the adiabatic ap-
proximation), and therefore it excludes the scattering
(decay) instability. Analytic work®'" on direct collapse
has been in the context of this equation. By solving Eq.
{8) in one dimension for our choice of parameters at
0.5 a.u.. we find that with the transfer of energy from
pump modes into neighboring k-space modes. the pump
energy saturates, but does not deplete (see Fig. 7).
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FIG. 5. Energy density in the pump resonant modes, 1),
and total energy density (W) during the one-dimensionul simu-
fution.
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FiG. 6. Electric field amplitude in real space during the one
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F1G. 7. Energy density in the pump resonant modes, (ll'),,.

and totid energy density W) during @ one-dimensional simu-

lation using Eq. %) instead of Egs. 1) and (2),

Therefore, the depletion of the pump modes must be
associated with the scattering (decay) instability.

V. DISCUSSION

The interpretation of the role of parametric instabi-
lity viven here derives from more detailed two-dimen-
sional numerical simulations than were previously
available, and is reinforced by a direct comparison of
one- and two-dimensionai models. As was explicitly
pointed out, the earlier two-dimensional models® of
direct collapse were limited by the eventual break-
down of energy conservation; the loss of energy in the
system was attributed to the loss of wave energy into
parts of the grid where it was subtracted by aliasing.”?
Those runs were also done on a 32X32 grid. A more
efficient algorithm now available enables the more ac-
curate (smaller time step) simulation on a 64%x64 grid
presented here. The results are very similar up to the
point where the earlier runs become limited by numer-
ical errors. Our present simulations are not limited
by the accumulation of errors, but the finite number of
modes available in the grid, Collapse does not pro-
ceed past the last frame in Fig. 2(c), because it has al-
ready reached the size of the grid spacing. However,
there are no evident losses in energy. Because of these
these facts. the simulation in this paper must have
more value in mterpreting the wave behavior at later
times when collapse, scattering instability, and nu-
merical limitations occur in short order. In particular.
we can now conclude that the distorticn of a wave packet
such as seen in Fig. 2(b) is due to the scattering (decay)
instability . and not a change in the physics of direct
collapse due to an artificial numerical damping.

OQur interpretation is also facilitated by the choice
of ak, - (1 2)ak,. This is about half the bandwidth of
the previous work.' and 1s desiuned to model the beam
unstable modes more accurately. As il turns out. the
evolution of the pump modes experiences a more pro-
longed “saturation,” as exhibited by the plateau of
W, i Fig. 1, in comparison with the case ak, ak,

398

Phys. Fluids, Vol. 25, No. 2, February 1982

studied previousty o Thas enables the vdentiticatyos

ot a saturation and depletion phase as a distinet phys)-
cal process. Nonetheless. 1t appears that the inhibi-
tion of direct collapse and the final level ot total ener-
¢y saturation are not sensitive to the bandwidth ot the
pump. (We have verified this lor the case previously
studied.” in which ak, — Ak, - &, 6.)

Although the one-dimensional model was adequate to
describe the decay instability and the subsequent deple-
tion of the pump waves, the behavior during the “col-
lapse” is markedly different frum the two-dimensional
model. For exawmple, the localized structures appear-
ing in Fig. 6 stowly steepen on the Lume scale of the
beam growth, mvolving some 10" plasma periods. The
two-dimensional collapse shown 1y Fip. 2:¢) 15 much
faster 1y comparison, occurring in 10" plasma periods.
The problem with the une-dimenstonal calculation 1s
that it allows wave packets tu evolve wto “solitons.”
Solitons are exact solutiuns 10 the wave equation with
the form

E= (1 =-V) 2] %0x sech Y Cexpithay = 0)j.

Cov V. v (B —wy). V= 2k,

19)

For tastance, with the ¢huce of vy - 0.37 and V' — 0.
this solution describes the central spike tn Fig. 6ib)
very well. These one-dimensional solitun solutions
are not physical. because they are not stable 1n higher
dimenstons.” **= They continue to steepen here be-
cause eneryy is beiny added to the system by means
of the beam 1instability. The time scale for their evo-
lution 1s related to the beam growth ratey by

Ty W, Wy ()

where W ,1s the enerygy i the pump modes, and W

1s the total energy in the soliton. This tinke 1s longer
than the collapse tume scale given by Eq. (6) and de-
monstrated by the two-dimensional simulation. There-
fore. beyond the depletion of the pump by the scatter-
1y, 1instability . the one-dimensional calculation be-
comes physicaily inaccurate. A two- or three-dimen-
sional model is necessary to include the dissipation

of energy thirouph LLandau damping ot collapsing waves.
Such @ process may be relevant to the establishment
of a tully developed turbulent state.

The twc -dimensional simulation described here have
also been done with a background macnetic tield."
The magnetic field cannot justify a one-dimensional
treatment because 1t does not prevent collapse trans-
verse to the field.!" However, up to the point when
collapse occurs. the magnetic stmulations appear al-
most one-dimensional because of the etfect on the
collapse time and on the scatteriy mstabnliy .7
this problem ., there can be magnetic eftects even when
the electron ¢velotron trequency 1s as small as o,

- 0.01 wy. which s a realistic value at 0.5 a.u. For
wee© 0.03 wy . the saturation jevel of electrostatic
eneryy 18 sitiilar to the vne-dimensional value,

VI. EFFECTS ON TYPE |1l EMISSION

The fact that scattering of team-modes 1to a low-&
condensate pyecedes collapse mav have miportant
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consequences for the type 11l solar burst problem.

Fiust, we note that the beam-driven modes are re-
mote from the condensate, and the rate of injection of
energy into the condensate is, therefore, very slow
once the beam modes are depleted. In fact, the region
of k space where the scattered waves accumulate is the
negative slope region of a realistic type I burst bump-
on-tail beam. In this region the beam should absorb
Langmuir waves rather than emit them.

Second, the waves at the plasma frequency cannot
remain predominantly electrostatic, uniess the spread
i wavenumber Ak Is much less than k,, the mean
wavenumber.® Since this 1s not the case for the con-
densate, a large electromagnetic component near w,
may develop. Such a mechanism could be responsible
tor type III burst emission near the plasma frequency.

Third. calculations' "+ of electromagnetic entis-

ston which involve beam parameters must be viewed
critrcally if collapsing wave packets are decoupled
from the beam as a result of their low group velocity.
For example. Hafizi and Goldman,'” taking as their
premise the earlier work®*'" on direct collapse, rep-
resent the electric field by a scalar function @(».f),
by writing

E(r.4)~kyo0r, b expliky 1) . (11)

This requires that the spatial variation of ¢ be small
compared with the phase term. If wavenumbers tend
to zero as a result of decay and modulational process-
es before the collapse occurs. then not only does the
use of the beam resonant wavenutuber &, seem inap-
propriate, but the electrostatic approximation breaks
down, and the use of a scalar field cannot be justified
directly. We do not know how these changes will
atfect the results of the emission calculation.

Finally, it is possible that the background solar
magnetic ficld plays a prominent role during the early
tume evolution of the condensate. This is because. at
such low wavenumbers, magnetic dispersion is much
larger than thermal dispersion in the Langmuir wave
dispersion relation, even for the very weak solar
magnetic field at 0.5 a.u.

All of these effects are currently under study.

VIl. COMPARISONS WITH OTHER MODELS OF
“STRONG"” LANGMUIR TURBULENCE IN TYPE Il|
BURSTS

Smith and his co-workers'"'%!'" have studied the type
1II problem in one dimension, extensively. Their ap-
proach is to use phenomenological rate equations for
the average spectral energy density W, in one-dimen-
sional k space. This is different from our method of
solving the Zakharov equations. In both cases the
saturated energy density in Langmuir waves occurs at
similar levels, ‘W)~ 10™, despite the difference in
parameters, spectral shapes, and physical mechan-
isms. This may ve the results of comparable roles of
parametric instability on the evolution of the pump
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waves.

In the work of Smith et al.,'""'" the following physical
processes are represented by rates in one dimension:
prowth of beam modes by a beam distribution based on
in situ ohservations at 1 a.u., the uscillating two-
stream instability, anomalous absorption of Langmuir
waves by 1on density fluctuations, and Landan damping
by solar wind electrons.

An example of a type Il burst simulation at 0.5 a.u.
1s given in Figs. 4.a)-tc) of Ref. 17, although the value
of beam number density 1s n, n— 5X10™, which 1s
much larger than cur choice of », n - 10™. (Generally,
their values of n, n are 5 to 100 times larger than
ours.) The beam resonant modes grow up around &2,
- 0.01, and have a width ak k&, of about 10°. When the
eneryy density /W', exceeds 3% 107, there is a transfer
to higher wavenumbers (more than five times larger
than the pump wavenumber) by the oscillating two-
stream instability. This spectrum 1is stabilized by
anomalous absorption of Langmuir waves due to ion
density fluctuations, and Landau dampiny by solar wind
electrons.

We have the following comments regarding these
results:

(1) The induced scatter off ions. or decay instability.
which we find dominates the early time evolution of
Langmuir waves, is explicitly neglected. This neglect
is based on an estimate {Ref. 16, p. 354) for the
threshold of the decay instability. Nonetheless. our
numerical experiments in one and two dimensions of
the beam-driven Zakharov equations consistently sup-~
port the appearance of this instability. and at the same
time do not exclude a priori oscillating two-stream in-
stabilities |see, for example. our Fig. 3(b)| and the
associated explanation]. This discrepancy in the nature
of the parametric instability has been addressed over a
period of many years by both groups.?* 4% we be-
lieve that the decay instability occurs for relatively
weak beams (1, n- 107°) and low pump wave energy.
The dipole limit of the oscillating two-stream insta-
bility seems to be appropriate only for strongly pumped
waves.

To some extent, the saturation of the beam driven
waves does not appear to be sensitive to the nat- - ot
these instabilities. It turns out that the threshold used
for the oscillating two-stream instability 1s of the
same order as the threshold we observe for the decay
instability. The transfer of energy out of the beam
modes when /W3, ~3X 10”15 common to both models.
The difference is that while the oscillating two-stream
instability transfers energy directly to larger wave-
numbers, the decay instability precipitates the forma-
tion of a condensate, which then collapses to produce
large wavenumbers., Although it may appear that after
the condensate forms at early times the two models
effectively approach the same state, we are concerned
that the following differences between the vscillating
two-stream instability and the collapse of the conden-
sate may be important: first 1 ecause of the momen-
tum transfer to ions or ion-ac . »tic quasimodes, the
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cuttdensate has zero momentuin, not the monmentum ot
the beam modes, second, the beam modes are driven
locatly . whereas the condensate 1s driven nonltocally
{in k space).

(2) We have shown the limitation of a one-dimensional
treatment of the condensate, and found the time scale
for k-space broadening to be characteristic of the
beam growth rate. This is an order of magnitude
slower than the evolution of the condensate which we
observe in two dimensions and associate with Lang -
muir collapse in real space. This limitation of a one-
dimensional treatment has been recognized by other
workers®' "%, the usefulness of one-dimensional simu-
lation has nonetheless been demonstrated in some
cases. particularly for strongly pumped turbulence.
For the example 1n this paper. the one-dimensivnal
treatment is adequate only for the initial stages of the
wave evolution.

(3)Smith ¢f a/.'? are able to fully stabilize the beam
instability by a combination of anomalous absorption
and Landau damping, after the Langmuir spectrum
has spread to higher wavenumbers. Our calculations
are stopped at much lower wavenumbers because of
expected inaccuracies in the numerical technique {(even
with the improvements that have been built into the
present codes). Thus, we have only studied the early.
and perhaps transient, phase of what may or may aot
be an eventual steady state. Landau damping at large
wavenumbers, not included in our code, will undoubt-
edly play an important role. We point out that the
anomalous absorption considered by Smith e¢f al. is
fully contained in the Zakharov equations with no addi-
tional terms needed. In fact, it is possible to derive
the anomalous absorption term formally from the Zak-
harov equations by assuming that there exists a mean
Langmuir field and ion density which are coherent over
long times and distances, and by averaging over short
wavelength, fast fluctuations.

{4) The kind of coherence that we find to be occurring
in Langmuir wave packet collapse. and even in the
scattering {decay) instability, cannot be found with a
statistical theory, and may not be consistent with
assumptions such as the random phase approximation.
Real space wave packets cannot be constructed without
phase information, nor can collapse be inferred unam-
biguously from the spectral information yielded by a
statistical theory. We therefore believe there is par-
ticular value in performing the kind of detailed analysis
of the dynamical wave equations studied in this paper.

The most relevant systematic statistical treatment
to date is that of DuBois and Rose,***** who apply the
direct interaction approximation directly to the one-
dimensional Zakharov equations, and address problems
such as the self-consistent renormalizations of re-
sponse functions and correlation functions, closure
(the handling of higher order correlation functions),
intermittency, and the existence of mean fields. They
stress the importance of the behavior of a zero wave-
number condensate, and show that only a fully renor-
malized statistical theory can treat the highly nonlinear
behavior of the condensate.
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Perturbative, spatially-pecriodic solutions of the Kortewecy-deviicus,
the modified Korteweg-deVries, and the nonlinear Schrodinger
equations are shown tc be recurrent and non-stochastic, denscly
covering parts of the phase-spacce bounded by level surfaces of ithe
constants of motion. The connection of this result with the nuoe -
ical phenomena of recurrences and the slow randomization of

nonlincar systems is discussed.
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[. INTRODUCTION ;
The nonlincar Schrodinger and the modithed rorteweog-dov:
equations describe a number of ohvsical oiiocts 10 the rogam.:
where the lincar approximation to collective disturbances ceave
N e . ‘
to be valid. For exampl », thesoe cquations have been dedavea
studies of the modulational instability and provagation of o0 -
. . . T 2,3 "
magnetic waves in cold, ~ollision-free plasmas, and the
modulational instability of Langmuilr waves in warm, collizi. -1
4 iy 3o - v - BT ¢ " - .
rlasnas. Mhe importance of these (and cervailn other) oruat o

is not only their ubiquity but alsoc the fact that they are

-y -

solvable by the method of the inverse scattering proulen,
rasically, the Cauchy problem for thesc eguations is solved
the class of rapidly decrecasing functions (on the real ling)
L means of the scattering theory of an auxiliary lincar crora:

I.. &0 equation of the form

teu o= sfu]

where S is a nonlincar operator, can be solved provided it it
" PO - 5 ll8

the "La: representation
ool = i[L,A]

for some operator, . Here [+, -0 denctes the usual commaut. o

For the nonlinear schrddinger equation,

‘- . e 12 .
Lyt e d b = 00, (for complex u) Co

t
the operators ar




1+p 0 0 u*
L =1 G+ ,
0 l-p X u 0
1 0 ) fu{z/(l+p) is u”
A = -p \x + 2 ’
0o 1 ~-id_u -lul“/(1~p)

where K = 2/(l'p2) .

For the modified Korteweg-deVries equation

- 2. 3
‘tu + 6u un + '« u = 0 , (for real u) (7

the operators arc7

0o 1 0 u !
L = =i Ux + , i
-1 f
0 | u 0 ‘
] ? j
1 0 \ I(u-iv u) 0
A = =41 Hx) - iJK X Y
0 IJ : ; 0 3(u 415 u)
X
3(u“~-1i. u) 0
_i 2 AI .
0 3(u+id u) ®
X

It is natural to consider the eigenvalue problem

where { is an eigenvector belonging to the cigenvalue V. DY

one insists that the *time cvolution of o be govorned by

iBtL = Ay,

it is rcadily shown that the spectrum of the operator I doo:

not vary with time. It is then possible to reconstruct the

I




operator L [and hence the solutlon v(x,t) appcaring

i

its spectrum by wc!li-known mc. hods” uains only the

Lehavior of its cigenvectors. The orucial

for rapidly decrcasing functions u(x,t)

and temporal behavior of o fov large x|

desired functior u{x,t). ‘.5 mcethod he

o
5

(as |x!—u), the sio

point hore

in L

Tron,

isymptroet o

is that

is independent of the

gate the time-asvortotic Lehavior of solutions of Egs. (1)

peen used to investi-

Al

(2) and also some oportant particular oo luticns derciibing *h
t !

interaction of a finite nuiirer Of soliton:

solutions.

In a number of cases, the solution:

5 of Bags. (1)

ander spatially-periodic boundary conditions are roquired.,

a large number ¢! very interesting and i1lluminating computat jor .

studies, where the use of Leriodic boundary conditions ig

, the aulti-soiit..

ey e
Tavy,

natural, have roeveaiod that the propagation of Langmuir wave:.

in plasmas, etc., have an apparently recurrent temporal behavior., '

An cxample of thuis ycecurrent behavior for

waves 1s presentoi in Sec. T1 of the presont paper.

naturilly like to stady this process in
underlying mechanism(s).  In at.emptina
one finds that the power of the inversce

for functions u{x,t) periodic in x.

5,10~

once

ithe case of Lanamuir

woi

cracr to undorst st b

to examine this vhenomen: i

scatterina moethod

12
However,

ther:>

1 1

have

been some i1nterocsting studies for this case, tou. Such studics

have been concernced with certain (xact analytical

are the analogs o* the multi-soliton solutions in

. R ) ( 1
rapidly decreasing functions. os1lsto

cut to be similar ¢ that in the bani theory of

the

solid:,

casoe

solutions th..

QO

In fuct, the problem turos

Thus,
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any instant in time, the operator 1. is a function of u(x), which
in turn is a pericdic fanction of Nx.o Phe spectrum of 1, 18 then
characterized by the presence of allowed and Forbidden ones,
with eigenvectors of the Bloch to'm. For the Korteweg-deVries

equation,

. 3
o 10 ; -
u + 6u u -+ s u 0 ' (for real U)

for example, which describes nonlinear magnetohydrodynamic wavow

. . 14 . . . .
in warm, collisionless »nlasmas, L is the usual Sturm-Liouvi! .

operator, -H*Z + u(x,t).8 It has been shown that the analoa o

the n-soliton (multi-soliton) solution is the manifold of

solutions u(x), such that the spectrum of I has exactly n forb.dl=

zones.13 Further, 1t has been shown that the dynamical behavi: .
of these special soclutions is almost-periodic in time. (For til
definition of an almost-periodic function, see Eg. (19).) The
special nature of these solutions is made apparent by noting th-t
a typical periodic function u(x) has infinitely many bard-gans.
Further, the stability of thesce special solutions to small
perturbations has not been co:isidered.

Our investigation of the nonlinear Schrodinger and o1 the
modified Kortewcq-deVries equations was motivated by the desire
to understand the anomalously slow randomization of one-dimensior.

norlinear systems, originally studied by Fermi, Pasta, ant

Ulam.g'ls'lo

1t is observed numerically that a given distributior,
of energy amongst the modes for either the nonlinear Schrddinger
equation, thc modified Korteweg-deVries equation, or an anharmonic

lattice periodically rccurs with apparently little thermalis.ation

{or cquilibriatien).

[}




The slow randomization of nonlinear systems has also been
examined from a ditf.rent point o viuw.l7 This is based on
the rigorous peirturbhation theoreom ol rolmogorott, Arnol'd,
and Moser.18 According to this thceorem, under certain
circumstances (Hamiltonian) perturbations of a Hemiltonian svst
merely lead to a distortion of the lincar-solution manifolids,
thus retaining the alnost-periodic character of the linear
solutions.

Our purpose here is to prescnt an approximate solution o
the nonlinear Schrddinger and of the nmodified Korteweg-doVrice
eruations in the spirit of the Kolmogoroff{-Arnol'd-Mosor theorven.
It turns out that the mode-mode interactions are such that the
Kolmogoroff-aArnol'd-Mosar theorem cannot guarantee the prescr .t
of tne linear manifolds; in fact, our perturbation soiutiorn
cshows this. Even so, the (approzimate) solutions turn out to ..
almost-periodic in time. The almost-periodicity of the
solutions was suggested by the numerical solutions of the non-
linear Schroédinger c¢guation, described i1n this paper.

According to a well=known theorem of Liouvillv,m 1
Hamiltonian system of N dcarces of treedom and N commutina
integrals of motion 1s comuletoly integrable, thus 3l lowina
separation ¢f variables and iatroduction of action-angle
variables. This rules out the possibility of complete vander-
zation.16 When the nunber of degrees of freedom is not firite,
the existence of (an "equal” number of) constants of moticn
is necessary but not sufficient for integrability. For the

class of rapidly decreasing functions, both the Kortewca-deVrio g




and the nonlincar Schridinger cquations have been shown to e

integrable by explicit trenstormations to action-angle variabi: s
20,21

’

furnished by the scatioring data of the inverse method.
However, the non-inteqgrability of a very general version of the
nonlinear Schrodinger cyuation for periodic functions u(x,t)
has already been suggested using the superconvergent method
proposed by Kolmogoroff.22

Attention must be drawn to the following. The discovery
of solitons in one or the carly computations of thce Kortewrna-r+oVi:i.o:

.9 .
equation” has led some to believe that the recurrence phenonenon

observed tliere is due to the solitons, which interact elasticail..

It must be noted that this is not so. In fact, it has been

: conjectured by I.ax11 that all spatially-perlodic solutions of
the Korteweg-deVries «quation have recurrent behavior. This h .o
r becn proved for the special multi-soliton solutions mentioned
earlicr; it 1is true for the zero-order (i.e., non-soliton)
solutions of the nonlincar Schrdédinger, modified Kortewecqg-deolUyri. -,
and Korteweg-adeVries cqgquations [cf., discussion following bn. (8} T
it is also true for the perturbative solutions given in this
paper. The true explanation of the recurrence phenomcnon scem.:
to lie in the bounduary conditions and the existence of (poerha

an infinite number of) constants of motion.

II. NUMERICAL RESULTo

Our investigations were in large part directed by numericad
solutions of the nonlincar Schrodinger coquation with periodi
houndary conditions. We assume that u(x) is periodic with

period L and has continuous derivativis of all orders.  Thor o




can be represented in terms of its ouricr cocfflicients uy

1
u(x,t) = == u, explikx)
E:k D ‘
JI ’
l;_“

. i 2 . .
whoere kX = 171 (¢ is o intocer)

The varticular nonlinear Schrodinger cauation of interest has

the torm

. 2 Co 2 2

10 + o Tu o+ (tua - <iu;

t x :

where < > denotes a svpatiol average. The subtraction terin in

fg. (4) 1s a peculiarity of wave-wave intoractions in a plasoa

(It must be emphasized that the nature of the solution given ..
not an artifact of this torm.)

Iy. (4) can be considered as o set ol ordinary diffcrenti o

equaticns in the spaco

v i ] Z Y
u{x) —\ﬁ; “k oxp(iky): :ukfaw

{ - k
with the usual norm !'fua(x) = = E ;ukf
71
£ ==

By dirc >t substi.ution of 1. (3) 1nto Tg. (4), o heo

q 4
i —Eﬁ - kzu + TS.‘ "
dt k50 L Mk ke Ykekrake SO0 e
k', k"
/
where E indicates that k' £/ k, this being duc to the subitr it (o
k', k"




It is well-known thot the nonlincar Schrdédincer cyuat: .n
. C . . . 6
has infinitely many commuting intcegrals of motion. The oncs
associated with the 1invariance group of the Lagrangian densit:

of Eq. (4) are23

’
E : 2. .2 1 E * *

H = k ¢ Yk Yk Yk Ykekrakt

X x,k', k"

. D

P = k,Uk ’ 1

K

. -2

B = Iuk' ¢ i

k

representinag the Hamiltoniarn, the momentun, and the bosor nua

respectively.
rd

E : indicates that k' # k.

k,k',k"

The computati s woere performed by the Galerkir method <
using a finite nuarber (+2) ot rourier modes spanning the dosie

soluticn spoce.  The 1ntraration of the ordinary differenticl

equation, Ekg. (5), was carriced out by splitting the evolutioun
operator into its .iucar and nonlineuar parts. The linear s art

of the integration was performed exactly and the nonlinear pardi |

by implicit methods in x space. Aliasing errors were avoided '

1

the usual method.24 The crrors sustained in H, P, and B were

less than 1% in the computations,

The evolution of a group of clectrostatic (Langmuir) waves




10

having initially o saussian distriburion in kK spacoe was exar fnod

for scveral values oY the boson number 3. Follow.iig our coiznoern- o
in the Introduction, the ubiquity of the nonlinear Senrodina .y
cquation onsures that Ly suitabie ruscaling, the evolution of t:

packet may be recaricd as tyvpileal foro many different, real

phiysical problems; tor oxanle, troeveling waves of finice oo
; G 25
on decp water (SLokes waves)., ‘v sl cases, the wave onchet

was observed to hreak up (in x gpaco) 1nto several local maxim-
ind minuima and te spproximarely reconstitute the original ofte
a long time. FPigure 1 shows *he trijectories for the sccond o
the sixth modes over o period ot approximately three recucre: s
the: 1nitial Goussian ;icker. (We note that the initizl Sav,s:
racket was centered ot sixth-mede i kK ospace.)  Teo orend
tigurs clearar, o o, ety ocaarculer area centerad o v
origyin of the conrdinate axes hins beon removed, thus oxpogas g
orbit structure considerably., 1§ this is not done, an oriit
appears as a circle whose circumfererce is a thick linc.

The approximat~ recuirrence »nf the wave packet ard the
orhit structures usiiggest that the solutlions are alinost-periaiic
in time, as is the case for th - gpecial, firnite~zone potontial
noted ecarlier. Tt must b borne in mind, though, that duc to
iraccuracies and thc tinite magnitude of the time step, it

can nuver be proved whether an orbit is simply-periodic ard

closes on itselt or that it is almost-periodic and does .ot
4,9

quite close on itsel?.




iil. PERTURBATION ANALYSI1S
In this scctior we prescent an anatvsis of the computatior:
which 1s not bascd on the special, exact results of the
method for finite-zone notentials. However, our results orre
special also in that they are approximate and assume a corver-
gent perturbatic: exnansion. tarther, in what follows, wo 39a

~hat the Fourier serics cxpansiorn In Ea. (3) is absolutelw o
f 1 ;

unjiformly convergent o that ull the manipulations are ric rou

valid.

In the linear arjproximation, itg. (%) becomes

duk
ay T ot ul o Soroall ok

representing a coustaliy infinite sot of uncoupled harmonios

. 9
oscillators, uk(t) i (L) oxp(=127t), for ali
N

he With coor
intinite constants ¢ mo. 1o, iuy(t)f (for all k), and whaos.

integrabrilty is shown oxplicitly. Clearly, any solation i =
o an intinite-dimer. i-al torus whose cross-sections ayp«

R ] . I -4 < - fay L G '
circles of radius v ST & R e (fo:

. caary )
N I .

Furtner, Eg. {6) =t tihnt the flow o the torus i¢ chor.o ..o

by a frequercv vecto. :

e ey -;Yl “l’ 01 ']l-'°

with

(! is a. intrgoer)

[
I

{7




Since the ftrequency components are rationaliy dependent o by

integer multiples ot one another, 1t felleows that the flow oo o

torus is simply-periodic with pericd {recurrence time)

-
N

r = =

r

"~
i

e

2
")

The constancy of the f{requency vector ., Eqg. (7), on the const..
enerqgy manifolds implies that the syctem is degeneratrz.l8

In order to appiy the Rolmnogorofi-arnol'd-Moscer stabilite
theorem, we procecd as [ollows. As a functional of u(x), thc

Hamiltonian of the neiinear Schrodinger equation is

o

1./2
. : _— 1 2 : 2 : 2
il = / dx ‘ 'xu -5 ' (Vul —<'uf /) . (9
-L/2 J

Defirning real-valued ‘unctions q(x) and p(x) threoh

ulx) 7 g(x) + ip(x) '

Eq. (9) takes the foam

1./2

\ N ' SRR E
o= dx (@)™ v )T -5 ) {(qzﬂf))-‘(q“n,‘) |\

which becomes, on usina

1 Ty
(g,p) (x) :{ﬁf E (qk' hk) exn(ikx) , k—A‘ﬁ:E ]

the following




* * 5 * A
PP PenPeg ok T Tk Tk PPkt vkt |

where use has been made of

* *
(qk ’ Pk) = (q_kr n-k) '

which foliows from the reality of g({x) and p(x).
Introducing (zeroth-order) recal-valued action-angle variulles
[(J' ':) ’ (I, t)] th]_'OLlﬂh

gk =“Jk oxXp o (1 ‘};) ,

—

'Dk —"Ik XL (ifk) ’

the Hamiltonian, Eq. (10), becomes

(1)

H o= + kz(J +1,) - L ’(1 NI I | l/zex "i T -
§: kTR’ T DT Z UK R R TRk 4k p kKT k'R

k ko', k"

\l, 2
+ (Ika'Ik"‘Lk-k"“k" / ('}Xp[ (r;\k—lbk"*bk"—pk'kl'*'k")J

1/72 (
e (Jka'Ik"Ik‘k'-'rk"\) exp 1(‘k'‘k""k"'"1<—1<'+k") |

()




All perturbation theo:r o of the stability of linear tiow (o

Hamiltonian svstems are bhos i o the 1desd o a seguence of
[ .
canonical transformaticas ({T,0); (I,:)J - DJ PECE IF A & S
such that the final namiltonian is a function only of the
action variables, thus roducin: the solution to one of simpl.
gquadrature. This is the well-known process of transformaticn
. 18

a Birkhoff normol fYorm. However, there are certain require-
ments for the coenvergero s of this process. These requiremon.s
are 2180 npecessar, for Yo precervation of the invariant
the linecar flow g cmbodied in the Kotmogoroff-Arnoel'd-Mos. . '
theorem. In particular, it 1s necessary that there be no low-
sesonances between irdlependent degreces of freedem of the 1iaar
flow. However, w-> soo trom Bgs. (11) and (8) that the freuernco .
of Jk and Ik arc identical for overy k. Thus, whencver thoers -
a4 coupling between two suchh modes, theve is the possibility
resonant cnergy cxchiange. Such a coupling is manifest in the o0
term in the braces in tg. (11). Under these circumstancces, the
Kolmogoroff-Arnol'd-Moser theorem cannot guarantce the prosorv. i
of the tori of the linecar flow and, in fact, the destruction of
these tori is possible.

Since the came method o golution 1s used, ihe detai: -
the calculation for Fe. (1) only wiill be given, and the solutic
of Eg. (2) will be guoted at the end.

A naive perturbation calculation of Eq. (5) c¢nds un with ‘
18

a "smell divisor" problem. T» avoid this secular behavior, 5

‘. (P
{ )/

several time scales are introduced via the following expansions 7




- (0) o (B, , N
uk(t) ’*uk (”; )';/’,I'..) '\Uk (‘0;\1/2,-..> L (‘)

where € is a small paramcter ond ‘ar 1t ... are indenende:

time variables.

An € is appended to the nenlincar term in Eg. (5); Eas. {'0)

and (13) substituted in to obtain, to osrder CD,

17 uk(o) -~ kz u RV 0 (
1]
with the gencri solution
m( ) 2
u;\ 1 gt i 2! ) uk o e f-gk 'O ’ { /
here u, (9 (-, e . .
where up ( 1 2,...), A function ¢ the (slower) time-variabl. .

Tyr T5ee-ey is to be determined.

With the aid of wg. (14), the verturbation « ¥b.nsion 1o

1
order ¢.° s

1 2 . L
R L R LU i “k(m"‘““('“‘" N

IO K
4 . !
- I () ()& , w{0) . v ’ ' " ;
T. My dy e Uy v 4k eXp j-1lk +2(k -k) (h -F )] u&'
k"k“ . ‘(

with the gener:l soiution
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(1), L (1

uk ( 0' 1’ ) uk ( 1l-~-)‘\“( } [“)

(0) ’
iu ] K
0 E iy 2

- '1uk( ) . — ’uk,( )’ exp (-ik ‘O)

1 kl
7o 0 (0 (0) i T T
- ;%”f E k < k- k1K oxXp i—l{k2+2(k'—k)(k'—k”)i\ NP

\' ’

/
ZI |2
where uk(l)(;l,zq,...) 15 to be determined, iﬁ“(o)i iy .
P { N i
. kl
that k' # k, and E indicates that k' # k ana k' # k". ‘i
k',k"

latter exclusion is preciscly due to the mode-resonancea phoncs .o

mentioned earlier, which gives rise to the secular term

Non-secular behavior is cnsured by choosing

. (U) 4 | -
oy M L0 "
‘aldk i Uy { = 0.

kl
. . . , | (o)l2
This equation inplics « |nk f = 0, whence its solution aw

L (o) i‘N‘.UkJZ"‘l
uk (:10‘21---) = Uk("z,...)uxp IL‘ ’ (ll\) "

where Uk('z,...) is to be determined and

!
i
{
i
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. !
N = 2 : [U Cogrigrens )]

k

Using Egs. (14) - (16) in Eq. (12), wc finally have

V/4 *
r , Up U 11
. 2,2 ) :E : KOkt e
= aner Tt P - = KR sTA
uk(t) = eXp ‘ 1(N .‘U‘! k L/t/IA Uk 21, (k'-k) (k'—‘r’.")
L kl'k"
. 2 ol .2 2 . L ]
* fexp l[!Uki —iL]k,‘ +.U}_:.,! —!Uk“k'+k"| -2(k'=k) (k'-k )L]L/Tvs - i

where € has been set caual to ! and uk(l) has boen chosen ruch

that uk(f=0) = Uk and that ftg. (17) rreserves the constants of
motion H, P, and B to order (ll(') (se» Appendix A) .
An identical calculation leads te the followina solutico:,

for the modiried Kortewcg-doVries cqguation

74

. U U WUy
= ik (M=10. 0 2ex 7, 1. KD nl koR'onl o
u, (t) = exp llk\M e R A (K*+k"™) (ke "=k) (R7=2)
k',k"

ol ) 2 ’ iy 2 ' " t . (R P
i[k?U -K'!Uk.gu—’":U ”—(k-k'—k'),Uk_k,_k,.l =3k k") (kP -r) (7N

|
K"

- 1]+ ow?, (-

where

ahadiuion
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uk(t:O) = Uk andd E ndrcates that WY A SRkt K 0, and

kK, k"

k" # k.

. . 2
We note that by a vemarkable nonlinear transformation ,

given by a Riccati equation, Eqg. (18) aives also an explicit

solution for the Kortoweg~deVrics coquation.

1V, DISCUSSION
As they stand, th: solutions given by Egs. (17) and (1%) ar 1

not particularly informative. 1In order to understand the l-hoooou ‘

of these solutions, we nced to consider the class of almost-

periodic functions.

For illustrative purposes, take the simple case cf a flow ]

the surface of a two-dimensional torus, Figure 2. Dcnote tie

geographical coordinates by ql (longitude) and ., (latitude), o7

<

take the flow given by

d7
ST
My
dt "2
1f '1/“2 =m/n (m a1 n being integers), then in a time

t = 2vm/m] = 2wn/ . a point on the surface of the tcrus tracces oo
a trajectory which cluses on itself after winding on the surface
n-times the lonag way around and r-times the short way arour . Th.s

is an example of a :viodic flow, If m]/f2 is irrationa., i.. .,

not the onotient of twe integers, then the moving peint ne o a0 te
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returns to its oriqginal position. In fact, the trajectory covers
the surface of the torus densely and cergodically. This is an
example of an almost-periodic flow.

Closely associated with an almost-periodic flow is an alro s -
periodic function, an exwaple of which is ¢ ({t) = sint + sin .95 1.
Since V5 is irrational, therc¢ is no (non-zcro) time t such tha:
a(t) = 5(0) = 0, although it approaches zero infinitely many tir.s
to great accuracy. The subtletics of this behavior arc embodicd

in the following definition.

DEF[NITIOszg e (t) 1s an almost-periodic function of t 1t
for every « - 0, there exists a 10(() (.
and o 0 in cvery interval of length e
such that b (ey=-:(t+ ) o, for oall k.

This essentially savs that 1t we Jdivide the t-axis nto 1nvo

of length 1 then in cvery ono of tinese the function approximst

0'
a particular value that it has in each of the provious inter il
Perhaps the charactcr of an almost-periodic functiow ic

29 .
best captured by a theorem of H. Bohr to the effect that oace.

a function may be roprescnted by a (generalized) Fouricr ser o

a

() = E .ﬁ eXp (iujt) , (i i

J:—-

where the frequencies = dare not nocessarily integer multipies
of a given frequuncy o
Comparing Eas. (17) and (18) with Fq. (19), we conclurde (0w

Appendix B) that the soluitrons of the nonlincar fchrédinger, ti.
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Korteweg-devries, and the mecaified Fortoeweqg-deVrics ¢ mations o
almost-periodic functions of tinc and come drbitrari.y cinse vo
any point on their orbit in the course of their time cevorution,
In the linear approximaticn, we saw that thoe frequencics oy
the modes were .nteger multiples of one another, leading to a
simply-periodic time devclorment. However, due to mode-mod.
intcractions [cf., discussion followinag Eq. (11)] there arise
resonant interactions between the lincar m.des, leadina to th.
exchange of encrgy. one oifect of this resonance intcraction

to re-normalize the zero-order frequencies. The anplitude-3onog,os

{renorinalized) frognencies are no longer simple multiples of

onc another, in genoeral, and so the trajoctory of the syster 1o
not close on itscli. In fact, the orbit wiil densely cover a 1o o
of phase space that is bounded by the level surfaces of the
constants of motien I, I, and il {sce Appendix A).  To our koo’

it is not known i!, under poriodic boundary conditions, the
modified Korteweg-~deVries or the noulincar Schrédinger cguatio:.:
possess an infinite set of constants of motion associated witn
their hidden symmetrics. We have only determined that the
solutions given herce preserve the obvious constants of motio:
related to thoe invariance group: of the Lagrangiun density.

What about stcchastization? ‘the original expectation in th
computations of Fermi, Pasta, und U]amls was that with the
inclusion of nonlinearity an arbitrary distribution of encrg.
amongst the modes would evolve irreversibly toward an asymntobli.-al’
stationary cquilibrium state. The ncqgative results obtained by

Feimi, et al., can be accounted for by an almost-pLeriodic s lulice




for the nonlinear oscill.aitors, such

(In this connectien, refoerence must
30

as those given in this

also be made to the roelatod

prabs

work of Thyagaraj;: .) Although tne almost-periodic characte:

thase solutions 1o due to energy oxchange amongst the meodes,
the system neither cvolves irreversiblv nor equilibriates.
Thus, starting from an arbitrary distribution of eneragy amoras!
the modes, rather thuan evolvina irreversibly towards a stair i
which there is a stationary distribution of enerqy over thc

modes, the cneray oscillates back and forth over the modes

(almost-)periodically, at least for the time-scale over which

our perturbative solution is vatlid.

For consider the two-+inc

autocerrelation function R(T) of an almost-neriodic solution

w{t):

R(T) - lim 1 / S U0 B 4 4 RS £ o

- Y

where @ 1s, for exompiae, the envelope of

for stokes waves on duep wate:s, or

of Langmuir waves in a plasma. Since . (t)

can be represented as

[N

Mte) - E la‘lpxp (lﬁnt) R

n=- -

where # rational number.

" N
‘n/ m

Substituting Eg. {(21) into Eq.

the

free-su.fac

the electric ticld cuvaio; o

(n is an integer)

(¢,

W

have

is almost pericdic,

it
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L sin( +. ) /2 )
= T QA : P L L L L, R o .
R(T) im rom axn (l"“l (. O ) 75 ‘n Ry

[
n,m i m n

For a stochastic (c¢r mixing) f£low, the auto-corrvalation furnct!
must decay to zoro (s 1T ). However, we sece from Ba. (20)
that R(T) oscillutes as a function of T. ({t may bc recallel it
the Landau-Hopf modeil of {luid turbulence is no lonaar reaardc

. - s . . 31 .
as a viable theory for ihis samn reason (amornag ~ther short -

) 32

comings).

Ergodicitv ot the flows, which 1s a stronger conditico:.
dense orbits butf weaker than stachasticity, remains oo i
guestion. For crgoudicity, one must show that the time sorat 0
the trajectory of the system in a reaion of phase sy e i
proportional to the rea (or measure) of that redicr.  For oo

intinite dimensional system, there are considerable technico

difficulties involved in demonstrating this. In this connect .o,

we note that the creodicity of cortain somilar degoehorat.

. . - 3
Hamlttornrar s, 5t e hys o lready beor cstabilshed.,

In closing, we¢ must reiterate some of the mala points i
our study. As roted in the Introduction, the nonlinear eauations
which are the objects of this work are well-known for their
common occurrence in many branches of physics. With such
equations at hand, one often uses nuncrical methods of soluting,
with periodic boundary conditions. This is no doubt motivatc.i
in part b the fact that in the linecar approximation, thesc

equations possess the usual sinusoidil solutions. 1n this 1w,

v




therofore, 2 collocrtion o7 Tliamitly woar o5t b, L anata, ok
by the nonlincar Schrddingoer cauation, o0 JToRes waves on -

]

water, described by ... same oquation,)" would disperse and viher
reconstitute exactly the original wave-packet when the diffore:.
harmonic components corme under constructive interfierence.  ihe
result of this paper iy be succinctly cexpressed by the stater nt
that, for small nonlincarities, one can still exnect (approxim o)
reconstitution of the original wave packet over and over ag.ain.
As 1t stands, thig statement may be of limited value for the

perscn performing ¢ mputaticonal studies of, say, Otokes waves

.

on deep water, since the small departures from the perfectly recurs oo

linecar system may not amount to much over a limited computavieo.

time. However, it must be noted that the almost-recurron:

behavior predicted by the solutions given here may imply an
ergodic temporal dovclopment, which would be cf considerabl.

import in the statis al theories of fluid turlulence.

)
4

The rccent compurational study by Yuen and Ferquson™  of

the modulational interaction o! Stokes waves on decp water [roe oo

us with the basic clue o to how to modify the present colouicoi.os

'n order to describe the recarrvence phonomena in regines wie o

the nonlineari*tics are not swvessarily small. tnoa future

c

35 ) . . .
article, we will vrovide o devniled andvtical study ot the

nonlinear Schrédinger cguation with particular reference to St

. 25 34
experiments

and computations.




V. CONCLUSION

For small departuves from lincarity, we have deternmined
that the spatially-neriodic soluticns of the Korzeweg-deVries,
the modified Kortcweg-deVrics, and the nonlineur Schrodinger
equations are almost-periodic functions of time. This behavior
is connected with the approximate recurrence pheaocmena nbscerr d
in numerical computations of nonlincar systems and their
associated anomalausly siow stochastization,

The almost - i-wdicity of certaln exact, special sl a
of these cquatrions nas circady heen established. 1t is of
interest to deternine v this characteristic is shared by ol
the spatially-periodic solutions, as conjcectured bLv Lax for th.
Korteweg-deVrics eguation. Our results hint at such a ponsind
Finally, we note that in the same regeme of val:dity, cur
calculations can be casily generalized to more than one dim ...
and to vector rielas.

After completion of this work, we became aware of an
interesting recent pnpor]ﬂ addressing a related problem.
Specifically, the authors ot this paver consider the slow modu-

lJation of the exact finite-gap solntionslo']l’13

in space ond
in time under the influcnce of perturbations, using the method

of multiple scales.
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ATPENDLEY A

In this appendix, we show that the perturbation solutinn
of the nonlinear Schrddinger cquation prescrves the boscn nuuber
to appropriate order, i.e., O(UG) . The conservation of the
momentum and of the Hamiltonian can be similarly demonstrated.

The boson number 1is defined following Eg. (5):
! ‘ ;
B = E guk(t)!z . (n1y %
k ?

trom g, (17), the right-hand side of Bg. (Al) is given by

) V73 . * vk
E:Iu (£ 2 - 2 ot - 2: ik Ve ik
PR k 2T, (k'-k) (k" -k™)
k k k,kl'ku
. |2 2 : ‘l . .? _i ( *\
« : - - I -1 ! - Pt ' [ I P TR N s
exp | -110, Up ot 4 Uy 720U gyt = 2(k =K (=R IR )

* *
1
Uk Uk'Uk" Lk—k'+;<"
(k'-k) (k'-k") .

o
g

3 . - .3 ! 1‘
4 exp +1[!Uk! -;Ukl- "'IUkn! —iuk_k|+ku'2-2(k"k) (k"k")T}t/] (

{(I2)

-1 + 0(06)




Under the following scauence ot oweratiens: k - k' + k" nt

k+—=k', and k'" »k", the sccond - :rorential term in kg, (A0

* * 4 ;
M YUk Y 1‘
{k'-k) (k'-k") 1
: i 2 B -3 | |2 | 2
exp =ifiug T- oo, TRl Tl e U= 2k k) (kR T

[ —'
e
\_—”

which cancels the first oxpornential term; whence

_Z' 2 Ny 12 6
B = ;uk(t)! = zdvlk! + O(U) ,

k K

. . ' toy
expressing the invarianc: oF the bBocon number E ‘“k : i

its 1nitial walue. g




APPENDITX R

The purpose of this appendix is to prove:
THEOREM: uk(t) as given by Hq. (17) or Eg. (18) is an

almost-periodic furction of time.

We remark that Egs. (17) and (18), truncated to a finite number

of terms, constitute, by definition, quasi-periodic functions

of time.29 By a well-known theoren, such functions are almost
periodic. We, therefore, have to prove this property for the
full set of terms in Eqgs. (17) and (18). We¢ give the details for

Eq. (17) only.

PROOF: Consider

N *
u U |}
i z N S U S .
R ki3 (=K (k=km) TP iy pen et
. Inz= —u

Lk"/271= =w

where

|2 2. 2
“k’ko'kn ‘[luk _lUkl! +{Ukul _![jk_kl-’_k"lz-z(k'—k) (k|"k")T:|/L (1)

We have assumed that E iUk! is absolutely and uniformly converaent
Lk /2n= ==

. * .
(Sec. ITI); so, therefore, is E luk'uk" Uk-k'+k"l’ Let
kl'k"

*
2 !Uk'Uk" Uk‘k"”‘("l < 7 . (pn2)

kl 'k"




Suppose € - 0 is given and let

where [a] denotes the largest inteqer less than a.

By definition, the finite sum

2.0 /T . *
Yo Yie Ukeak

K=K Tk P e ket
k'-K, KT-K"= —27n /T,

(n)
Sy (t)

is a quasi-periodic function o!f t.

Clearly,
I, ,U *)
I U
n K' k" Yk-k'+k" .
g, (t) - Sk( )(t) = E ; KT-K) Tk =k") Oxp(w»k'k
k'-k,k'-Kk" 2:n/T,
kK'=-k,k'=k" <=2 /1,
Now, there exist a xo(\) 0 and a ¢ - 0 in everv interval o7 l1nn -
0 such that
f N !
fsk(n)(t) - Sk(“)(t+.)? oS3, fFor oall ot i
by quasi-periodicity of sk‘”’, and
| (n) ‘
a, (t) - 8, (LYl < o/(3v/ch) = - /3 , for all ¢t

by Egqs. (B2) and (B3).

1
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Now,

(
gy (t) = gy (t+1) = [qkm- s, "M () sk‘”’(t)] - Lyt

- Sk(n)(t+x) + Sk(n)(t+1)] = [qk(t) - Sk(n)(t)] - [qk(t+') - S,(n)(fw 1

A
(n) _ (n) ,
whence, by the Cauchv-Schwartz inequality,

g (t) - g (k) o (g (1) - sk‘“)(t)l + lap (e+1) - sk“‘)(t“)‘

+ 3Sk(m(t) - Sk(m(c +1)) - '3 +€/3 + €/3 =€, for all t
[by Egs. (B5) and (is6)].

Thus g, (L) is an almnost-perlodic function of time. By stalclord
N

theorems, t' -cetfore, so arc uk(t) and u(x, t).
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Fig. 1. Trajectories of k siace modes cver a period of threoo

recurrences of an initiallv-Gaussian wave-packet. (a) second
mode, (b) sixth mode. At any instaxn! in time t, the electric

ficld is given by v (Uexpl{i (t)]. ¢ R is the minimum vaiue of
r{t) in the computations, tho ordinate and the abscissa are the
and the real parts of [r(t)-0.9Rlexpl[i! (t)]), respectively, and
labeled Imaginary (E'k) and Real (E'k) on the figures. This
transformation renders the orbit structures much clicarer, hud

greatly exaggerates the angles of intersections in (D).

Fig. 2. Torus, representing the phase-space of a system with .o
degrees of freedom. Geographical coordinates are ay {longitud.:)

and a., (latitudce).
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The nontinear Schrodinger equation with hnear growth and damping 18 truncated to three waves oo

resulting system of nonhinear ordinary differennal equations desenibes the excitation of hnearly damped waves

by the osaitlating two-stream instability driven by a hnearly unstable pump wase This system represents
simple model for the nonlinear saturation ot a hneardy unstable wave The model 1s examined analytcally and
numencally as a function of the dimensionless parameters of the system It » found that the moadel can exhibit
4 wealth of characteristic dynamical behavior including stationary equilibna, Hopf biturcations to periodic
vrhits. penied doubhing bifurcations, chaotic solutions charactenstic of a strange attractor, tangent

brturcations from chaotis to periodic solutions, transient chaos. and hysteresis Many of these features airc
shawn (o be explatnable n the basis of ane-dimensional maps In the case of chaotic solutions, evidence for

the presence of g strange attractor s provided by demonstrating Cantor set-hike structure e, scale

invariance: 1n the surtface of section

t. INTRODUCTION

Recently, 1t has become clear that nonconservative
dynamical systems can exhibit various types of charac-
teristic dynamical behavior,  Particular interest has
centered on brturcation phenomena and on the possibihity
of chantie motioas on a strange attractor G definition of
HIDY. It is probable
that these concepts will have an impact on plasu:a phy-
s1es, particularly in the area of plasma turbulence.

4 ostrange attractor is given in Sec.

The present work considers a simple model for in-
stability saturation of & linearly unstable wave: the
vrowth of enerey 1n the unstable wave is arrested when
its amplitude 1s larye enough to parametrically excrte
Linearly damped waves. In u previous pap(*r1 this pro-
cess was studied for the case in which the parametrie
excitation of the linearly damped waves was due to the
resonant three wave decay instability process. In the
present paper we consider the case in which the para-
metric excitation of linearly damped waves is due to the
oscnlating two-stream anstability.  (This problem has
been studied elsewhere,? however. the present paper 1s
4 more thorouch investigation of the problem and re-
veals a greater variety of dyvnamical behavior than was
tound in Ref. 2.)

In the case of the resonant three-wave decay instabil-
ity. Ref. 1. it was reported that as a parameter of the
system was increased a sequence of period doubling bi-
turcations leading to apparently chaotic solutions took
place. Tt wus also observed that perwodic solutions re-
cmerged trom chaos (tangent bifurcations) and existed
over parrow ranges of the varied parameter. These
teatures were mnterpreted on the basis of 4 numericalty
In contrast
with this previous work, i the preseal paper we are

obtained, smiooth, one-dimensonal map.

¥ - .
S irecent address: Department of Astro-Geophyveies Canersiy
Sf Colorado, Boalder, Cofo. ~oioy,
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able to discern a richer variety of characteristic d -
namicai behavior. This behavior includes the previous-
ly discussed period doubling bifurcations, chaos andd
tangent bifurcations, 1n addition to phepomeni not ob-
served in the previous paper: fransient chaos, hystere-
s18, and Cantor set-like structure.
hysteresits and transient chaes could also Le found an
the three-wave problem but for different purameter
ranges than those studied 1 Ref. 1,
structure 18 also aimost certunly present but could o
be computitionally resolved. ) Another difference 1y o
the model discussed in Ref. 1 1s that, 1n the case -t b
oscillating two-stream instabihity, stationary fing!
states occupy a comparatively iarge region of paranae -
ter space.

(It s possible

Cuantor set-hke

The starting point for obtaiming the model cquations
studied here 1s the one-diny-asional nonlinear Schri-
dinger equation with lincar wave growth and damping

included
b AT R ,
,(}r-,k-)f-_-’;&( Ef- EZE 0, Y .

where £ is the complex amplitude coetficient of the a-
directed electric field, ‘£ § denotes the spatial averace
ot F.' andy is alinear prowth-damping operator de-
fined so that the Fourter transform of < F(x, 1) 1a

- ()E, (). where F, 15 the Fourier transtorm coetlicient
of £, In addition, normahlizations have been introduced
S0 as to absorb any parametrie dependences of the ¢o-
efficients of the various terms an kg, (1), We now cone
sider (and subsequently jusniv) an appronmma’e solution
ot (1) for which F consists of three traveling savos

EGun - EdDexplilia = o
s FUADexpli(k = o
CFDexpliep - w1 o

whepe 24 e by w B2

o

V120 . -

YART Apver g o bear gt o PHo -y Y




= F . Introducing (2) in (1) and taking the &y, &y, and
k, components of (1) we obtan

Eg==2(k)Fy +il1 B, YE, » Fy BE,

v 2E,F Eqexp(2i6t)], (3u)
Ey ==y (k)E, w1 Eg 2K, v By R

v E3E, exp(~2i60)], (3b)
By <=3 Uy +i[ By TE, + 1 F P

+ ERE exp(~2:1)], (3¢)

where 5 - (5 + %) '2, and I:.‘,-'-dl-.‘",’d(. [These equations
can be solved analvtically? in the case s (kg ;) < 0. |

We nuw discuss our truncation of the nonlinear Schri-
dinger equation to just three terms. - Consider a system
which 18 periodic in » with period L; then, & .- 2mn.'L,
n=11,22,... For example, we could take k; to be the
wavenumber of the fundamental mode, ky =27l cou-
pled resonantly to a pair of shorter wavelength side-
bands, &y =2mn 'L and &; ~+27(2~-n) L. Our use of only
one set of daughter waves (i. e., one value of ») might
be justified; for example, if other sets of daughter
waves experience much stronger linear damping.
generally, in many physical situations described by Eq.
(1), a proper model may require une to include addition-
al daughter wave pairs in the decay process, thus re-
sulting in a larger number of coupled ordinary differen-
tial equations. Nevertheless, we believe that, even in
such situations, the present analysis may be of some
use in that it iflustrates, at least qualitatively, a type
of behavior that may arise. Accepling the consideration
of only vne relevant linearly damped daughter-wave
pair, we also need to consider the k components which
are generated when (2) is substituted into the nonlinear
term of (1) {i.e., the term E1*L - £'E, where £ de-
notes the conjugate of £). These k components are just
the original k& components (ky, ky, k;), plus four addition-
al components:

2Ry = ko,

More

2Ry = ky. 3k~ 2ky, and Ik - 2k,

Equations (3) represent a self-consistent solution of (1)
only if E, is negligibly small for these additional & val-
ues (i.e., the additional ¥ components are strongly
damped).

Introducing amplitude-phase variables
Eg =z a,(Dexplit (1), 0 =0,1,2, where a, and &, are real,
Egs. (3) (which are three complex equations) reduce to
four real equations,

Qg = Yoo + 2a4a,a; 8in 9, (4a)

51,11‘71,2”1,2‘“%“2,t5i“9- (4b)

f--20+ (@ +dd =24 + [40,:11 - nf,(? + -:-‘)]cns 4, (4c)
T

where *(f) = 24y - = 2484, Yo© —? U«’o). Y1,2° 7“‘}_1’»

and we assume that 14,3, »; are all positive, With this
choice of signs, wave 0 is linearly unstable and its non-
linear decay wave products (waves 1 and 2) are linearly
damped. Furthermore, we may assume that the ampli-
tudes ag and the time have been normalized so that 1y

=1. 1In this casc 1,2 are dimensionless and become the
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decay wave dumping rates divided by the pump wave
growth rate. Likewise, 7 becumes the trequency mis-
match normalized to the putap growth rate. Hence-
torth, we take yo: 1. In what follows we make a further
sunphiying restriction; we assume thut 5, =3, (€. g,
consider Landau damping of the sidebands in the case of
an even electron velocity distribution function with &

S —ky ko). Inthis case Egs. (4b), when multiplied by
ay,5 and subtracted from each other, yield

;1’ (@t = a}) = =24 (ab - ab),
£

where 3 =1, =3;. Thus, (df - a}) decays exponentially
with time. Since we are particularly interested in the
lung-time behavior of Egs. {4), we set a; =a, from the
outset. In this case Egs. (4) reduce from four equa-
tions to three equations:

g = ay + 2apad sin 9, (5a}
ay =-ya, - dha, sin !, (5b)
0. -26 +2{(ad - a}) + 228 - @A) cos 2, (5¢)

The rest of this paper will be devoted to a discussion uf
the properties of the solutions of Eqs. {5). SectionIl
discusses analytical results which can be obtained from
(5). Section I presents numerical results and discus-
sion. Conclusions and summarizing remarks appear in
Sec. IV,

(i. PRELIMINARY ANALYTICAL RESULTS AND
DISCUSSION

A. Phase space contraction

Let by=a} and by =a?. Equations (5) then becume
b =2bg + 4bgby 5in b, (6a)
by - =2vby — 2bob, sin g, (6b)
¢ = 2(by ~ bo) +2(2by = by) cos 8 - 26.. (6c)

We view Egs. (6) as generating a flow in a three-dimen-
sional Cartesian phase space, (by, b;,9). By partial dif-
ferentiation of Eqs. (6) we obtain thc divergence of the
“velocity” of this flow,

b, 2b; 38
M BV SR -1}, ()
2by b, Tag - 20 ) :

Thus, the divergence of this flow is a constant and is
negative if ¥>1 (i, e., if the damping rate exceeds the
growth rate). Therefore, any volume in this phase
space which evolves under the flow generated by Egs.
(6) varies in time as V() = V{0)exp|-2(y - 1)t]. Here,
we shall only consider the case y > 1. (Saturation of
the instability was not found for » < 1.) In this case
volumes always contract exponentially with time. Thus,
if the solutions remain bounded (i.e., the wave 0 is
saturated), they are expected to eventually approach
confined subspace of the original three dimensional (4,
hy, #) space which has zero volume. This conclusion
has important implications, some of which are dis-
cussed in Secs, 1IB and 11D,

N A Russell and £ Ot 1977




B. Oscillating two-stream instability

Here, we show that Eqs. (5) vield the well-known hin-
ear parametric instability threshold condition on the
pump amplitude.  in partcular, 1t will be shown thae
5. 01s necessary for the oscillating two-strewm an-
stability o exast. Thus, only negative 5 need be con-
stdered in our subsequent discussion, To obtan the
Linear parawmetric instabnlity we consider g, a4y, ond
neplect any nnme dependence of a, [1.e., disrevard the
self-consistent evolution of 4, generated by Ey. (5al?
In this case (5¢) becomes

s =2[8 ~ a1 + cos 9],

Focusing our attention on purely growing modes, we
set -2 0, and obtain an equation for cos 9,

cos¥ = -{1+(6/ad)].

Thus, & must be negative in order that icosi-. 1.
From (5b) the instability growth rate is -3 - af,sin 3,
Thus, for the instability sin“ < 0 and ad sin®6 = ai(1
- costy) - 7'2, which, when combined with the result for
cus . yields the linear instability threshold conditions
A -4+ 80 (-25 and A- 0. While this analvsis re-
vlects the self-consistent evolution of ay, it dues pro-
vide considerable insight into the full evolution of Eqgs.
(5). If Eqs. (5) are initialized with small amplitudes.
ay will start off growing exponentially at the rate one,
and a4 will damp exponentially at the rate ;. Eventually,
ay will become lurge enough so that a; hecomes unstable
to the vscillating two-stream instability; a, then grows,
We will find (Sec. 111) that, depending on the parameters
and initial conditions, several possibilities then exyst
for the subsequent evolution of the system: (a) the
vrowth of 4y may nut be sufficiently strong to arrest the
instability, and ag still grows without bound: (b) the sys-
ten eventually settles down to a slationary state (g

4 - 0); {c) the svstem eventually settles into a limit
cvele for which gy and 9 are periodic functions of
tinue; and (d) the final state of the system is one in
which ay y, and < vary chaotically with time and ag ,
does not go to infinity. Such chaotic solutions are char-
acterized by broad frequency power spectra and sensi-
tive dependence of the solutions upor initial conditions.

In agreement with the conclusions reached in Sec.
1IA. tor cases (b) and (c) the solution is obviovusly
asymntotic to a zero volume subspace of the original
(hy, by, ?) space. For (b) this subspace is simply a
point (the stativnary state); while for case (c), the sub-
spiace is a closed curve which the orbit of the system
traces out on each period of its motion. These subsets
to which the system orbit asymptotes are called attrac-
tors. 1n Sec. HID we discuss the attracting sct for the
case (d), the case of chaotic motions,

C. Stationary equilibria and their stability
In order toinvestigate the possibility of stationary,

time-~independent solutions of (6), we sct l;" hy 0
and obtain (¢f. Appendix):

19/8

Phys Flands, Voi 24 No 11, November 1981

Y- .\HI".)", Ha:
b =y (st By
AT LA1 (O VSIS IR ‘

sSiny 52 . ( ~ ]'2 X t

Wil e ’1: acd ¢f denote stationag s adues 4 vad
¢
solutions correspondin: (o the tw o st possibibinee o
b,
hi 00 {Ths condition s necessary bocause i

: 11 [ CRCI (A i), there are o Staliondar, soluaros
to Egs. (B) stnee (8e) then bee oo W s

'

discuss the stabihity of theso steionars ~olations,

. (;. - i). there are lwo possible stalionar. st

Both of these solutions satialy sin=' U, - that

cotnples,

do s we linearize Egs, (6) 1or pervarbations ab oot the
stationary state:

o /J;, = Shg explst),
o e B (‘X[)(S” .

A cubic equation for s results which can be analyzed t
obtain the stubility conditions fur the stationary states
(ef. Appenaix). Itis found that the sulution correspond-
ing to the choice of the plus signoan Erq. (8e¢) s alwavs
unstable. The stability of the remaimny root 18 sam-
marized in the 5~ space diagram shown in Fig, 1.

H1. NUMERICAL RESULTS AND DISCUSSION

In this seclion we present the result of into rrating
Egs. (5) numerically. The frequency nusmateh s held
constant, & = -6, so that we are describing the behavier
of a dynamical system that depends on a single parance-
ter, 3. (The behavior (o be described ceneralizes 1o
other values of 6 as well,} (See Fig. 2.) The discus-
sion is divided into four parts, Part A 2ives a brief
summary of vur findings and demonstrites hvsterests.
In B we analyze the periodic trajectories using power
spectra and a one-dimensional map defined on the sur-
face of section. In C we prescnt some general features
of the chaotic behavior as a function of 3. This behav-
ior includes chaotic transients and tangent bifurcations.,
QOur discussion of chaos is completed in D where we in-

YAk
[ STAT:ONARY
POINT
i '
’ ,
i .
: :
! ! |
i ! UNSTABLE i
L I EEEEE -
112 5 o
Fra. 1o Stabitity of the steionary point P2 ocorrespondims '

the minus sign choice in Foo s v 0370 10 s

V2o Co v =) v 1 o e

() A Russelland £ O1t 1078




N
t ¢ 1‘
\ 1

|
(NO “TABLE |
| EQULIBRILM STATIONARY |
| SOLUTION

FlG, 2. [RERAN R

Long-time asymptotic behavior of ().
chaotic behavior. 00 —limit cyeles, Overlapping regions
indicate the presence of two attractors. « The low ¥ region
hus been exuggerated for clarity. Curves A, B, and C are
the same as in Fig, 1.)

vestivate a strange attractor.  Examples of a,(f) versus
t for typical cases for which the attractor is chaotic, a
simple limit cycle, a stationary point, and a stationary
puint with a chaotic transient are shown in Figs, 3(a)

to (d).

A. General remarks and hysteresis

Above curve Ain Fig. 1, i.e., 5 - 58+ (=36.75
here), 1t is observed that the pump wave amplitude,
a,(), eventually diverges exponentially in time. How-
ever, three types of saturated behavior are possible
for 36.75~ -1, The trajectory may converge to a
stable statwnary point, a limit cvele, or a compheated
“surface” on which the motion is chaotic (a strange at-
tractor). Thus, we have isolated three types of attrac-
tors: points, closed curves, and strange attractors
(cf. Table I).

The characler of an attractor may change with 3.
For example, when 36.75 -3 ~9.77 (i.e., betwen
curves A and C in Fig. 2) the stable stativnary point 1s
the unly attractor present in phase space. Aty -9 77
the system undergoes Hopi bifurcation (cf, the Appen-
dix): the stationary puint loses stability, and a stable
lhimit evcle is born in its place. With decreasing ».
this orbit goes through a sequence of period doubling
bifurcations that terminates in chaotic behavior at y
- 6.7925.

For two ranges of y we observe two co-existing dis-
tinct attractors (cf. Tabie 1). Which one a given orbit
eventually is asymptotic to is determined by its initial
conditions. Aside from their types and locations in
phase space we distinguish between them using the long-
time average of the pump wave intensity, (a,?) (sce Fiy,.
4). Consider the two attractors, labeled Al and A2 in
Fig. 4, that are present when - is between 5.55 and
6.84. Al has the larger a2 value and changes from a
humit cycle to a strange attractor asy decreases from
6.84 10 5.55. A2 has the smaller a2, value and chung -
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TABLE L.
cycle.
range of gamma,

Saturated behavior of system (5).
If more than one type of hehavior is listed then there are two attractors present for that

sSsb—stable stutionary point, ~LU—simple limit

Q.77 Sy 6. TH ssb
[P F-] v 8,77 z sLe
6,82 Y 6.587 .g 2-cycle ar SLO G s
65,7966 R (P )] g decycle or S
6.7956 ¥ooo6.T965 2 =eyole ar s Le
5, TH2 895 Sy s 65,7935 - I6-¢yele or SO
v 6, 79287 Bl-evele er SLC
6,62 At B.T92 00 Chaiox o SO B o6 0 or SSP Ly 600
617 ¥y .6l SO ar s=p
6, 07 y*  6.186 . 2-evele or RSP
.05 Yy 6.06 # deeyele or Ssp
60356 voo 6. 043 % s—evele or sSSP
6. 134 N2 Syt 6.0355 2 Thi-cyele or S8p
6. 034 601 yx 6,034 81 < d2-cyele or SSP
6. 084 556 vy 6.033600 - 61-cyvele or SSp
y= 6,031 505 125-cvele or S8y
2.55 v 6, 003 54 Chaos Oar SKp
1.~1 Ty 5. 50 " sSsi
v 1, R05 é Chaos or Ssp
v 1,50 E s-evele or RN
3 1.75 2 2-eyvele or Sap
1,05 v 1.70 - SO or sSSPy > )
- or SLC tHopf, 1oy <4.3)
es from a limt cycle (different from Al) to a stable generate a sequence of points Laylt,). ay(1,)]}, wheret,
fixed point us ; decreases through the same range. Al is the time of the nth piercing of the surface of section,

1s absent and A2 is a point if 3 - 5.55. A2 1is absent

and Al is a limil cycle if y - 6. 84.

Suppose we choose a value of 3 for which both attrac-
tors Al and A2 exist and pick initial conditions on Al,
We allow the system to evolve in time and slowly de-
crease y.  The tragectory will remain on Al until this
attractor vanishes at 5 -=5.55, then the trajectory will
be drawn to A2, Apparently, this is because as j ap-
proaches 5,55 from above, A2’s neighborhood of attriac-
tion swells to intersect Al. Initial points that would be
on or near the strange attractor, Al, forjy -5.55 con-
verge to A2 for 3 © 5,55 along trajectories that wander
chaotically for a while as though Al were still present,
(See Sec. WIC for a discussion of such chaotic transi-
ents.) Increasing 1 to its original value, we will have
changed the state of the system from Al to A2. By
analogy to magnetostatics, the existence of two states
of the system for a given choice of 3, or equivalently,
the dependence of the global behavior on initial condi-
tions, is called hysteresis.? [Notice that from (6) we
have (1102)/’\'(112', = 27 for all saturated states of the sys-
tem, |

B. Period doubling bifurcations

Figures 5(a) to (c) show a,(t) for three values of 5 il-
lustrating successive period doubling bifurcations.
Three sequences of such bifurcations, beginning with a
simple limit cycle, have been observed for 6 - =6 (see
Table 1). To study these bifurcauons, we record the
intersections of the trajectory with a - - constant plane,
This plane is our surface of section. For definiteness,
we keep only those points for which @ - 0. Thus, we
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These points represent a cross sectivn of the attractor
in the lonz-time asymptotic fimit,

P lagita), a ) = lagltyy), ay ()]
delines the Poincare map ot (5). This 15 a discrete
two-dimensional map and is necessarily invertible be.
cause (5) is a system of first-order, ordinar, diftc:on-
tial equations.
It is often observed that the orbit trajectory intersects
the surtace of section on what appears (at least to
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FIG. o, agct) allustrating suceessive period doubling bifur-
cations cady - 6.25, a simple Limit evele, (W) v=6,12, a
2 evele, and ced v - 6,005, 2 d-cyele.

first approximation) to be a simple smooth arc, In
such cases it makes sense to construct a discrete one-
dimensional map, F,. from the Poincy . é map. (F,
plays a fundamental role in our description of period
doubling bifurcations in this section and is used to ac-
count for the tangent hifurcations from chaotie to peri-
odic behavior described in Sec. 1IC.)

For manv-times bifurcated periodic orbits, this arc
has u roughly semicircular shape. We choose to adopt
polar coordinates in the surface of section [ef. Fig.
6(a)!. This turns out to be a good choice for defining
F,. I, may then be written as 7,(p,, d,) - (p,.q, Op.0),
where (p, 57 [ nl1,), &(,)]. Suppose we restrict our
attention to the coordinate & and craph &, versus &,
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FIG. 6, Construction of the one-dimensional map, F,, from
points in the surface of section. (a) surface of section and
(b) one-dimensional map, F,, constructad from the 37-cv e
(n=5) at y=6.0347. (c¢) F_for the 32-cvcle at y - 6. ETRA

for each trajectory in (ag, ay, v) phase space that we
wish to study using F,. For all of the periodic orbits
studied, this discrete graph appears to lie on a simple
smooth curve in the (o, ¢,.q) plane [cf. Fig. 6{(b) and
(c)]. Furthermore, this curve intersects any ¢, von-
stant line in at most one point. Therefore, we dehine

, lo be the simplest smooth interpolation of the dis-
crote graph [(@,, ®a.q)] such that

F,((h.) Sy

This gives us a well-defined, i.e., single-valued. map
for all trajectories observed to be asymptotic to a per-
odie orbit, provided that some of the early triunsient
behavior is ignored, It is understood thal there are
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cnouph points 1o the diserete graph to niake this anter -
polation rexsonably unambizuous. For exaple, o
twice-bifurcited simple linnt cycle inersects the sur-
tace of section t only tour potnts. Nevertheless, we
witl ssume that the wap, F,, o at s "= cle™ s s

e to that which is more comancely detined at hivher

burcations of the same cycle, This assunuption s
supported by the transient behuvior of trajectorie < neat
the 4-cyeler the corresponding transient potnts i the
wscrete graph, (o, 0, le along ares represeating
preces of Fo,oat higher bifurcatio ns,

['he construction of F, is iltustradeain Fuo 50 We
require only that p- 0 be “inside” the attrictune are 1
the surtuce of section and that ~ U be chosen so us e
permit construction of a well-defined F,. This was al-
ways possible lor the cases studicd. Otherwise, the
chonee of origins for poand @ does not affect the beho -
1 ol Fy,as s pertains to the bifurcation phenomena to
be described.

The maps, F,, are not invertible: two ditterent 5,'s
are mapped into the same ¢, ... In the chaotic regimes,
where virtually no interpolation s roguired, this {eoine
bined with the necessary invertib:ity o0 P) nmplies
that the are o the surflnce of section nust have ot
width: f

r
(O 0 A 0 TR IR (Y TANLN0 I SRR I

"’l
then p, # e, The structure witiun the witracting are in
e case of chaote motien as discussed g See. D,
(Naturally, 1t1s reasonable to reduce the two-dimen-
s oonal Powneare map te the one-dimenstonal map B
only i the transvers=e thickness ot the are contaiiny
this structure s Cun,)

erates of e map are detined voan oby s way e

L e I Y N Y I A 1 I A Y AR AN PR R OO

s

The tixed points of Fi*' are the intersections of its

praph, .., F',';(:.-,,)_ with the dentaifv o, -, I
A2as a fixed pomt of FAY) then 22, L0 Linear-

g M abeut the fixed poist, s cass to see that
,: 15 stable at, and only af,  DE(AD) 1. where

/ﬁl‘"[,” denotes the dernative of 2

arvainent. By the chamn rule

with respe et to s

FUT SR O T N FURNS TN (RS B A IR

-

and the prie denotes differestiation with respect to the

arcvue.ent,

12 as o ixed poant ot FUY but not ol 200 12,

’ .. . L]

ce k=1, then soare the b= 1 poants 2 00 0y
o ;. These L fixed points of F‘,” are cycled among
themselves by F, and share the same staibility because
IiF’," has the same value at each of them, et us call
e se points the 1y ceducible fixed pomts of F2Y ey

ey o may ot exist, depending on

A Intureation sequence mayv b desceribed as tollows,
A stab e Iut evele exists tor values of 3 in ene ot the
thres artervals caven an Table I Each atervalas par-
tittoned by sequence of critical values ot o0 0y

1,2.... ). Beweenthe 3 )'s the peried 1 of the oy -

cre s oo conting us unction o bat duties shisoomtin

1990 Py b oo vl U Te PRI

uoushy at cach y

Iti,ee) 1
MG 2

{upper stons reter Lo sequences boed Boan Table B
lower siens refer o sequence T11H)

Wihen poas between 5 and o, L the apot ovcde snter -

seets the surface of sectoon e 27 points . R
2" srable reredueible hised poaats, .', these wi i V-
Iy stabl fised points that 2" has, e Lo
trapectory as called w "2 el o) As o s

. -
DETNE) approaches =1 from above . et o

ent ponts are observed to canverse more alowts t L

to altersate about, the stable fixed pomts. As - i
throuth o, 4, each irreducible fixed prant of #0771
stability, bifurcating into two of the 27
irredueible fixed ponts of #1¢ B
lustrated in Fig, 7.

et ~tabl

This prowesc gy -

Fuizenbaum has conducted theors treal studies 0o
class of one-dimensional maps having a siale ooy
muwin and depending on a s Je parametor, b Qo e
apparently belong to this class, These maps ceneprace
an intinite sequence of period doubline biturcations as
the paraucter approaches a cvitied vadue boothe b
pomt ot the 5,

s, and o thys Lient shoow =tk e o -
sal quantitative behavior, We new brret - descraoe s
predicted bebavior near 5 1o asd compare st wat
muncrical results,

Il rarce of 5 over whieh a stable 27 eocle exast e
creases deotetricalhy tast et aere sons T

Ay U=, Ga=1a0).

For nmuapes having a quadratic extremnu o
Fole =y (han)?

the theory determnes thadt

i o0 4.6642016. . . .

We frad thar [or sequence |
20 L6 0060

Ll b seguence 1!
A 4.77:0.18

(e 5. T s as fur as we were able to par e e
LU ~equence T was not o cnretully svadic 1o dae i
comparative by slow tine evo i of e costen)

Tt % 4 1,2, Mobet eredu e bl ;
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{c) " ‘1
2.095 - |
' i
| / H
2.090 I» s ’
/’
9 (1) ‘
2.085
2.080 P
2orsf
1800 1805 1800 185 1820
a, (t)

For large n these two pairs are also in some small
neighborhood of ¢,. When 7 is chosen so that

DFP (1) 20, j=1,2,...,2"", ¢]" and ¢} (83" and
o1'!) are separated by a distance &} (4;"). Feigen-
baum’s theory determines that for large », d'{/d'l'"} ~a
constant depending only on the order ot the extremum
®o. For those ¢} and ¢7"! nearest to ¢, the theory pre-
dicts that

Lim (d}/d}*)=2.5029... =«

"o
for maps with a quadratic extremum, In other words,
the distances, d], between ¢}’s near ¢, are rcduced by

a factor of o upon bifurcation.

1983 Phys. Fluids, Vol. 24, No. 11, November 1981

[ @ my e @l <y
R Fy i) =Py iy s 1
1.0 b 222
]
|
o F {
¢>nﬂ 1 :
! |
1 I
l i
10k ' 1
J I
[ 1
l 1
¢-I @"
2o o
1 1 - — & )
-20 -1.0 0 1.0

FIG. 7. Surfaces of scction and one dimensional maps F, and FI'l, just before
[(a) and (h): ¥=6.17] and just after [(c)and (d): ¥y=6,16] the bifurcation of
the simple limit cycle at y - 6,165. Arrows indicate the convergence of transient
points. (e) F& 9 when DE»9(4}?) = 0 defining d}r?.

If F, has a quadratic extremum, then 1F,{4])~ F,(53)
~ 1T = A~ (@) and 1F (A7) = F (830 ~ (P~
o, But, F,(57") and F,($]") bifurcate from F,(57).
Therefore, the distances, d}, between ¢}’s near F,(5)
are reduced by a factor of a? upon bifurcation. In gen-
eral, the d}’'s rescale under bifurcation according to &
complicated function of 6. However, for large n, a
first approximation to this function has half of the ;s
rescaling by o and ha!f by n? (cf. Ref. 5).

This rescaling has important implications for the
spectrum of a highly bifurcated limit cycle. Let A™w)
be the frequency specirum of a4 2% eycle.  Log 1AM W)
has pronounced peaks at wy= w,(k 27), k =1,2,...,2%,
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for some w,{ ).
of the spectrum.
totically large,

CARL 1Al e, k=1,2,000,20

Feigenbaum shows® that fur » asymp-

Here, A}, ; is ubtained by smoothly interpolating the
od ik components of AMw) and p =4o(2(1 + )2
-6.57.... Thus, in the limit of many bifurcations the
udd subharmonics of the spectrum tend tv be self-siumi-
larly reproduced. For sequences | and Il we calculate
an average odd subharmonic rescaling factor:

log () = dog! Aql "‘Hng‘A;;l-h - ‘il‘)gno "‘:";l’! Dodan

for » =2 through 4 and 8, respectively. We offer the
averaged values of log,y(i,) over all bifurcations of the
sequence for comparison with Feigenbaum'’s result,
logo{u)=0.818...

0.781,
Sequence I {log(o{b e 2,94 = 0.832 @
.832, a,

{o. 834, a,

Sequence II: logyo{r a2 . 1= 0.832 &
. , 4.

[Here 7, ¢ indicates the spectrum of ay (1), ]

C. Cheotic behavior and tangent bifurcations

The long-time asymptotic behavior of (5) is said to be
chaotic when the motion is not discernably periodic.
Nonperiodic motion is observed to be stochastic: if two
initial points in (ay, 4y, #) phase space are chosen very
cluse to each other, but not on the same trajectory,
then the distance between them, 8x(f), diverges expo-
nentially fast immediately after they begin to move
along their respective trajectories,

5a(t)~ bx(0)exp(ri 1), Y =2,()"-0. 9)

Eventually this exponential divergence saturates abrupt-
ly, and 6x(f} becomes an erratic function of time (sce
Fig. 8).

VU SO SRS S SRR J ERO DU W
10 20 30 a0 50
1

FIG. % Stochasticity: the natural logarithm of the distance,
Sxit), hetween two initiallv very close points when the long-
time asvmptotic hehavior is chaotic. ¥- 6729, Imitially,
Avit) oscillates about an averuge vialie that diverges expon-
entially in time,

1984 Phys. Fluids, Vol 24, No 11 November 1981

Let A7 = A™(w,) denvte these components

Euach of the bifurcation sequences described above
culminates in apparently chaotic behavior. In principle
this chaos is a product of infinitely many period doub-
lings as - approaches the critical pomt I',, and the
period of the motion diverges. - In fact, when ; is just
beyond the critical point the puower spectrum,
logy o iA{w) 1, may be thought of as a superposition uf
two parts. One part is discrete and consists of i finute
number of sharp spikes. The other part is continuous
as a function of w. The spikes achieve a height abive
the erratic, or “noisy,” part of the power spectrun,
they are evenly spaced and correspond closely t. the
taller spikes in the power spectrum of the periodic me.-
tion vbserved just before ¥ moves through T'.. This en-
durance of the stronger subharmonics of the periodic
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FIG. 9. Quasi-periodic chaotic behavior: the power spectram,
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motion gives the onset of chaus a “quasi-periodic” char-
acter, as shown in Fig. 9. The average height of the
noisy part of the power spectrum increases as )y moves
away from I into the chaotic regime, but the heights

of the sharp spikes remain approximately constant.
Consequently, the smaller spikes are successively lost
in the noisy par( of the power spectrum as y moves be-
yond the critical point.

The chaotic regimes are punctuated bv sudden appear-
ances of stable 3- and 5-cycles. These periudic orbits
are born via “tangent bifurcations™ when F1%*' 13 tan-
genl to the identity, &,= 55, asin Fig. 10@). Peri-
od doubling to stable 3x 2" and 5% 2" cycles vecurs as
described in Sec. 1IIB and eventually resuits in a return
to chaotic behavior., However, it is observed that these
3x2"and 5+ 2" cycles exist only over a very small in-
terval iny (e.g.. the range inj is less than 2 10% for
the 3%2" ¢ycles). In the ehaolic regime following se-
quence 1 the map, F,. develops an inflection at its
minimum. This new local maximum rises with de-
creasing y to intersect the identity and terminate the
chaotic regime. This is shown in Fig, 10(b). The sim-
ple limit cycle that begins sequence Il is thus born by
tangent bifurcation,

Suppose a tangent bifurcation to a stable &k cyele oc-
curs at 3, such that the behavior is chaotic fory -7,
when the attractor intersects the surface of section in
some arc. Then for 1y ~ 3, trajectories are observed
to puncture the surface chaotically along the arc until
the intersections fall within the attracting neighborhood

(a)

(b)

~40 R w RS

FIG. 10, Tuangent bifureations to a) the S-evele at a5, 8885
and (b the simple lim evele at s~ 6,561,
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Y

of the stable fixed points of M. The duration of thes _
“chaotic transients” ™ depends sensitively v the il ‘
point chosen and oy, As 3 approaches 5| from below,

the attracting neighborbood of the fixed poants dimin-

ishes, and the transients tend to last o

wer.

Chaotic transients are also observed foll wing the
disappearance of the strange attractor (labeled Al n
Fig. 4) at ¥=5.55. For 3 -5.55 this attraclor coexists
with a stable stationary point (A2 in Fig. 4). As . ap-
proaches 5.55 the neighborhooud of attruction of e
fixed point apparently interseets the strange atiractor,
If we choose an initial point in {ay, a4y, ) phuase space
that would lie on Al for » °5.55 and evolve the systen.
in time with ¥y 5.55, so that Al doues not exist, the
immediate subsequent behavior is as if Al were still
present. That is, for )y slightly less than 5. 55, transi-
ent points are distributed along an are n the surface uf
section that is nearly indistinguishuble from the inter-
section of Al with the surface of section observed when
y 5.55. The durition of this chaotic transient depends
strongly on where we choose the inttial point on the
“remnanl” of Al. Eventually, the trajectory converyes
(o the stable stationary point A2, Sowe exan pies of
chaotic transients are illustrated in Fig. 11,

D. A strange attactor

Bifurcation sequence [l converges 103 to chiotie be-
havior at 3 =1.805. The chaotic behavior is very

o e — — —_—

20 + /‘ o T

I :

o)

FIG, 11, Chaotie transients  profection o, the motion onto
the 8 - coordinate plane when coavergence is ta 0o the =ty
tiopary point at « LocA0 transient points in the sarface of
sections amd ch) o evele o S ussTr harraee e
points 0 the surtfioce of section),
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short-hived in 3 (cf. Table 1). At these smaller values
of ; the system evolves more slowly in time and is
globilly much more sensitive to initial conditions,
Possibly due to the slower contraction of phase space
volumes, the attractor intersects the surface of section
in an arc of easily discernible thickness,

On magnification, the attracting arc is seen to be
made up of several closely spaced lines some of which
appear to be thicker than others. Higher magnification
of one of the thick lines {cf. Fig. 12) reveals the same
pattern of lines as was found by the first magnification,
This repetition of a pattern under magnification, or
“scale invariance,” is also a property of the Cantor set.
(See the Appendix for a definition of the Cantor set.)
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Q
Fit, 12, Scale invariance of the strange attractor ity 1, <00

ta) the attracting arc in the surface of section, (b)Y enlarge -
ment of the small box in (), (¢) enlargement of the smull
box in (b},
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Attructors having Cantorp set-hke scale invariance are
among the earliest theoretical examples of strunue at-
tractors. %' This structure has sincc been vbserved
numerically in the strange attractors of some twu-di-
mensional maps used o model dynamical systems, 4%

To compare the structures of different uttractors, we
define a fractional dimension'® as follows, Let M) b
the minimum number of cubes of side length « required
to cover the attractor. Then,

- log Ne)
e Hm SRt
oo log(1/6)

is the Hausdorff dimension of the attractor. To l.-te
the attractor to within the precision ¢« we need N ) tats
of information. For small ¢, Me)~¢"?, For exumijle,
the dimension of a point is zero [N(r) =1], that of 4
closed orbit is one [N(e)~¢], and that of the surface
a three-dimensional sphere is two [N(e)~ 2],

110}

For most purposes, an attractor will be said to be
strange if its dimension is nonintegral. The dimension
of the Cantor set defined in the Appendix is lop'2)
1og{3) =0.6309... . Inan earlier paper'® we uscd the
definition, Eq. (10), to determine D numerically for the
chaotic attractor at » =1. 805:

D-=2.3181+0.002.

As an example of a set with dimension between two and
three, consider the union of concentric spherical sur-
faces in 3-space whose radii are the elements of the
Cantor set defined in the Appendix. The dimension of
this set is 2.6309. .. .

The dimension may be related to the local stability of
trajectories on the attractor. Let 8x(t) denote the vec-
tor displacement of two points in phase space that are
evolved by Egs. (5). For 18x(0)! arbitrarily small, we
may assume that subsequently

ox(1) =A(r) - 8x(0) . (11)
Writing (5) as x = G{x), we find
A=DG(x)- A,

where DG is the Jacobian of (5). Let [o (1), y -1.2,3
be the eigenvalues of A(t). Then,

yelimdnlo, (0 ¢, j21,2,3,

fe®™

defines the Lyapunov “type numbers™ of (5}, One of
these, \; say, is necessarily zero. [To see this notice
that the distance between two close puints on the same
trajectory varies as (G(r);.] From (11), phase space
volumes contract exponentially at the rate =(d <), &3 ),
so that using (7) we have

M+ =20 -1)}-0. (12)

For stochastic trajectories one of these, Xy sayv, 1s
greater than zero. [This is the sane N, asan (9), ]

A cunjecture has recently been made relating the Lva-
punov numbers to the dimension of a strange attractor, !
For n-dimensional phase space this comjecture is

2 N, A, e e N

Dokt

- Y
.
"\nl
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where Ay - X3~ -+ - A, and & is the largest integer for
which Xy #2, #+-++2,~ 0. For the present system &
=32. Aided by Ey. (12), we have found the Lyapunov

numbers numerically':

D, 22.317:0.001,

so that 1 D, to within the ubtained accuracy, consis-
tent with the conjecture.

IV. CONCLUSION

We have modeled the nonlinear saturation of the os-
cillating two-stream instability using a three-dimen-
swonil dynamical system resulting from i truncation of
the nonlinear Schrodinger equation to three modes. A
discrete one-dimensional map constructed numerically
from the trajectories describes much of the global be-
havior of the system in a way consistent with the gener-
al theory of such maps. In particular, we find bifurca-
tion sequences of periodic urbits that are n vood quan-
titative agreement with the theory,

Chaotic behavior is observed to take pluce on strange
attractors having Cantor set-hike structure. Qur study
of one of these attractors strongly suggests a relation-
ship between their fractional dimension and the leeal
stability of thewr irgjectories. Such a relationship
would be important for the theory of distribution func-
uons on strange attractors.
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APPENDIX
1. Stability analysis
The fixed points (b by, 4°) of (6) are given by

by =y sins®, A -1 @2swm-),
where * solves

(1 -1 -20 - 1)cos<"=20sins" 10, (A1)
with sin~*- 0 since hg 1 = :1%_1. Let

cogiy T o= (A 3 -103n2
and

sindg-y =1 [F3+( 1)) 2,

where 0 )y 7 2 since > Oandsy -1, Then, (A}) be-
comes

sm("‘ + "0) [‘,} ._2(}-_1 1)2-5 v (A2)

5
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16,13, sing 8.« 68, adentifving the two stitiotary ponts
- . .
10 corresponding to 6y, ..

Equation (A2) can be solved providedd

y #+34, At
With (A3) enforced, we see trom Fig, (13) that {A2)
has two pussible sclutions, #* 7 Foou o 02,

sty 0, so that ) is an admissible solution to (A2),
. as .
1% adm.ssible provided

sin(s =) e e kTR
sinlr =+ (7 6 T

which, on using the expression fur sin- Ghove, s
ecasily seen to be satisfied for ali ;. Therdfore, -
are two stationary points of (B) fop = & =70 Froo,
(A1) we find

. 8, =4 1: (G =1F( . o ¢

sin H]"z =T B SR i= .
Label the two stationary poir =, (7.0, SRR
respectively.

Assuming a solution to (6} of the form

* »
bo p=-by w50 pexplst)y R eapdetd
and linearizing the resulting equations i ., and * -
we oblain @ homogeneous system of algebrale equats: os
which is solvable provided

F(s): S+, vy =00 0, Adw
where
Cy720-1).

Co(2y sint=")2 ~3ros " 220084570,
and

Co= (8 sine")[G =D + 6 =4)eos
(" stands for i ,). Letus weite (Ada) as

F(g) s 2ol —aXs=.])

s =sfn v e belar s oy oy
(Ad4b)
where oas the comples conjugate of a0 and s real
A stationary porn’ is stable only it . Oand v+ v 0L
. -
Fop both 1, 2 1 s strawhtforward G shoe that 5
(-0 )aszero 5 oat S s peesite e
) A Russeil and b AR




uve) for 0 ¢raf s M e gL Theretore, the statimary
pont £’} is unstable,

The stability of ) 1s determined entirely by & + 4
because O for thas point. From (Ad), o - Ut
and only 1, (remember, 3 - 1)

casy 20,6 -3) =1 - (A5)
[The Latter equality in (A5) requires - 4.
In parumeter space (%,3) (AS) are, respectively,
y=4-6and A G-+ 36 -4), T U,
The stability of I’:‘ 1s summurized in Fue, 1,

2. Hopf bifurcation

Hold 5 fixed and let 3 cross one of the hines (A5) .t
7., S0 thut the stationary point P7 loses stability, As
this happens Re(a) crosses the origin in the pusitive
sense, and Im(a) approaches w.. (wo7 0 because

Fo 2 20 only at -~ R+ % .) Uader these conditions,
the Hopf bifurcation theorem' states that a limit cyele
s bora at /77 with period 27 w4 and radius growing as
[ =507 % The lumt cycle is stuble (unstable) and
exists for Re(o) 0 and {Re(v) 0] if a certain function
of 5. V), is less than (greater than) zevo at .. The
calculation of UV from (5) is quite involved, and Jdetails
are qiven in Ret, 18, We find that V(; )-. 0 so that the
Hopf cycles are attracting for all 3, on the critical loci
(A5). For & - -0 we have 1suiated the three Hopt eveles
numerically; they are indicated in Fig. 4.

3. Cantor set

We construct an example of a Cantor set from the unit
interval [0, 1] as follows, First remove the open inter-
val {1 3,2 3), leaving S, ~{0.1 3] .[2 3,1]. Now re-
move from $; the two open intervals (1 9.2 9) and (7 9,
8 9), leaving 5;- (0,191 {2 9,1 3 [2:3.7 9] 8 a,
1], and so on. The Cantor set. 8, 1s

1988 Phys Fiangs, vl 23 No 1 Sovember 1981

(In ceneral, we coald bevin by ronoson ans o ante, dds-
joint Lnnly of open subinterals trom the umt it ryal,
Provided that this fipst excision does not leave us wath
only isolated points, iteraties the process indefitel,
alsoovields o Cantor set,)

Notice that 350 [0,37]1- 37 S0 That 1s, uny one o
the closedantervals comprisine S, conbans a copy 1 S
redbieed by the factor 370 Tlas praperty of S s Called

5 oade mvartance.” Notice also that the denatl of S 18
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Sohtons und lonospheric Heaung

Sttrin, DR NIchotsos. G
AND P )

J.C Wiravimkaie )P Paysi. MO Gotoaas

Hassi s’

bFor putameters charactenzing the Platieville onosphene he g facbity . the | eipnng wave
evolution ul the exact reflection pomt ot the heater wave involsves an osadlinteng Twosstieat istabibin
followed by g colhsionudly damped three-dimensionad sobiton coliapse The
altlernutine explanation fou certain eapenmental obseryations

result provades an

1. INTRODUCHION

Modification of the 1onosphere by intense radio waves
launched from the carth’s surface conuinues to be an active
ares of experimental and theoretical research: reviews cun
be tound in the November 1974 issue of Radio Science
tvolume 9, number 1), in the articles by Fejer [1975, 1979].
and in the book bv Gurevich [1978]. The important role of
nonhnear wave etfects during 1onospheric heating 1s by now
well established. and these effects have at least quahtatively
explained muny of the observatonal phenomena.

The purpose of this reportis 1o explore the possibility that
three-dimensional Langmuir sohton collapse occurs during
wnospheric heating, This possibihity was first introduced
Penviashvili [19751976], who emiphasized the importance of
the geomagnetic ficld. Previous analy tic theories of nonlin-
car wave interaction during onospheric modification, as
summarized 0 the work by Fejer (19750 1979] and by
Nicholon {1977 have mainly concentrated on three-wave
parametnie anstabiities: see. for example. Beszerides and
Weinvtack [1972]. Chen and Fejer [1978), DuBois and Gold-
man [1972]. Kruer and Valeo [1973]0 and Porkiny et al.
119741, Most of these theortes have acglected the four-wave
parametnic instubility | also known s the modulationat 1nstag-
bty or oscillisting two-stream instubihity | despite the tagt
that this instability was the one discussed in the original
paper of Perkins and Kaw [197 1] introducing the significance
of parametric instabifities 10 onospheric modification The
four-wave interactions were usually neglected becatse they
are guite difficult o treat analyucally . and because the
nonhnear saturation mechanism of these instabilities was
unhnown. The latter dithiculty was remedied by Zakharor
{1972]. who showed that the modulational instability leads to
the formanion of solitons. regions of intense locahized clectig
ficld. which 1n the unmagnetized. three-dimensional situg-
ton can cotlapse catastrophically 10w singularity, like o
black hole. In this paper we use the term soliton to mean
coherent. nonhinear entity: this contrasts with certain strict
mathematical definitions 1in which a <oliton 1s a one-dimen-
stonal object which can pass theough nother soliton with no
change. The dithculty in analytically treating the modula-
tonal anstubidity has beea aircumvented by numernically
solving an appropnate nonhincar wasve equation. 'his numer-
ial work has been pursued by Zakharov and co-workers
(Zakharov et al 1974 Degivarey and Zakharov. 1974, 1975

" Astro - Geophysics Depantment. University of Colarado. Boul
der. Colorado 80U0

S Physics and Astronomy Department. Uanersity of Towa. lowa
City ., lowa 52242

Copynght « 1982 by the Anciinan Geophysical U on

Paper number 1A I662
Q13K-0227/ 82 I A- 16623 (0

Degryarev eta 1975 Zanharoy cral V978 Bicdnova o
19750 Degrvarey er al. 1976] and by others {{rivas o
1974 Gale vetal, 975 Percira et al . 19770 Ncincvong o
al., 1978, Nicholson and Goldmen, V978 Goldoaa, oof
Nicholson, 1978 Weatherall ¢t al . {9811,

In this paper, we treat the evolution of Langmuer waves o
the exact reflection point of the modifier wave. the point
where the madifier frequency s exactly equal to the plasma
frequency (2 = 0 in Figure 1) At this spatial point. it s wcil
Kknown [Chen. 1974) that only the four-wave osallating 1w o
stream instability can occur. Previous theories usmg three-
wave parametric instabilities are appropriate to spatial foa
tions somewhat closer to the earth, including the locatorn
where the maximum amplitude of the standing heater wane
oceurs. The competiion among three-wave inleractions.,
four-wave imteractions, and soliton formation al these low ey
spatial locations will be treated by us in future work Heo
we numerically solve a nonlinear wave equation for parame-
ters appropriate to the Platteville modification fucility W
find that the Platteville modifier wave is intense ctiough to
excite an oscillating two-stream anstability which evolves
o a sct of three-dimensional collapsing sofitons. Becuuse
of collisional damping. these solitons do not collupse cata-
strophically to a singularity. but rather undergo a peniod of
virulent collapse followed by exponential damping due o
collisions,

In the pest section, we review the wave cquaiinon wheoi
desertbes ponhinear Langmuir waves 1o the absconce o
magnche ficid. and solve stfor purameters appropriate 1ot
Plattevilie fucility . In the succeeding section. the eflecis o
the peomagnetic field are adued: this results in o sigmiticant -
change in the shape ol the coliapsing soltons but does poe
significantly Change the ume scale for collapse. In the b
secuion. conclusions are preseated and the possible applica
tion ol the resalts o expliain certin observational facrs s
discussed.

2. SOLITON Colt APSE TGRORING THE GEOMANGNE T
Fieto

The equations describing the nonhinear evolution ot | ang
mutr waves were introduced by Zakharov [1972] and aie
Known as the Zakharov equaiions. From Nicholvon cr !
{1978]. these are

.. S ‘I, Y . et
T vk Utk
Jw,m, ", w,
[CI P TP IR W 715 WA T -V Ok 0
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Pig 1 Standing wave pattern of the heater electric ficld and
direction of the geomagnetic tickd over Plattesie, Colorado.

togeiher with © x E = 0, where Etx, 1) 1y the low-freguency
eavelope of tae total high-frequency clectnic held E'x 0
~ Etx, N x exp (—iw, D plus the complex conjugiate: nti. ) is
the deviation of the ion density from its avcrage value 2, w,
~ t4mnae ) 7 s the background clectron plasma frequen-
oy om, () s the electron ton) mass; ¢ s the absolute value
ot the charge of the electron: & &) 1y the high dow)
frequency phenomenological energy damping rate (twice the
amphitude damping rate): the sound speed ¢, - (v~ v 1)
m)' 7. where y, (v,) is the electron (ion) specific heut ratio
charactenstic of low-frequency oscillations: 1, (1)) s the
clectron Gon) temperature: and X - (4, ¥) and £ represent
dimensional space and time, while ¥ s the dimensional
gradient operator. Throughout this paper, a tilde represents
a dimensional variable. While the Langmuir wave evolution
duning 1onospheric heating 15 expected 1o be tully three
dimensional, for numerical convenience we work i two
spatial dimensions. We discuss below the ditferences to be
capected between our two-dimensional calcutations and the
true three-dimensional wave evolution. Equations (1) and (2)
have been dernved heuristicully by Smith and Nicholson

{1979].
It is convenient to introduce the dimensionless vanables

2n m, .
t = -—-— A)
( 3 py (.l

dm, A 3)
"= a
dnm, | \ny
02 352 12

) (‘161"'01:. )

3 m, R
V., = ! A
2n/\m, e fwe)

where the electron Debye length A, = (7,/m,w,” ) and the
Jdimensionless ratio n = (T, ~ ¥ T)/T,. With the detinitions
13). (1) and (2) become

tio, + iv,d2 + CHV-E(x. 1) = ¥ - nE) 4)

t, Y« 8a, -~ Cmx. n = CIES ()

SOLITUNS AND FONOSPHEKIC HEATING

Phe pliysicat etfects contuned in 4y and 3 have boer
discussed by Zakharoy (19725 by N o il TS
and by many others. These imclode e ihree wane pateias
ric anstabihity often called the decay mstabiliy . foaica o
patametne instabihities cablca the stumuiated moduiation |
mstabahity and the modulational o osadiabinmg bwo st o
mstabihy - and sohtoa fotmation and collaps,

Wo consider paramieiers | Nocsolvon 197 Chasactern
ol ordinary -mode nightume heating by the Plattevaic Cone
rado, facility. The heater frequency is tuhen ta be o, 2
4.9 MH7 so that the reflection point oceurs at an clectron
density ng = 3 x 10° cm ™} approximately 200 km above
carth’ s surfuce; 7, = 7, - 0.1 eViclotron collision tregnen
¢y due o ons wnd neutrals thigh-trequencs amphitode damp
ing rate) 5. 2w, = 2 x 10 5 power density ancideni at the
base of the 1onosphere S0 uW’nf‘, 1wnospheric density saaoe
fength SO km. We are interested in the clectric tield ot the
ordinary-mode heater wave at the exact reflection pont
where w, = wy (2 = 0in Figure 1), Here, the heater clecting
field 15 along the geomagnetic field with an effecuvely inhinie
wavelength, The formulas of Ginzhurg [1964]0 taking o
account the Airy enhancement of the heuter wive us shown
in Figure 1, predict an electric hickd of 1.0V m for the states
incident power density. A naturul measure of theantensity
this ticld is the ratio W = E~4=n.d, of electiie held encrgs
density to beckhground electron Kinetio energy density o o
these parameters we have W= Wy - 4.4+ 10 Y atthe it
ume. This electric fic!d acts ws o pump o drver tor
parametric instabilities. L-or the param-fers being considered
here, we shall see below that this instability s on osadlating
twosstream instability involving u fow frequency perturb.e
tion which is purely growing. We tind thut a ty pical cicctron
traverses many wavelengths of this low frequency perturka
tion in one growth time, so that the clectrons are isothermud
with respect 1o the low frequency response. and we must use
Y. - 1 as in an on-acoustic wave. On the other hand. o
typical ion does not move a substantial fruction of o wave-
length in one growth time, so the 10n motion s adiabatic. The
1n colhision time is much :arger than a growth time. so the
adiabatic compression is one dimensional (d = Dand v, -
+ 2)d = 3. Thus 5 = 4. Finally, we need the low frequenc,
damping coefficient. In an equal temperature plasma, this is
usually quite large due to jon Landau damping. To avoud the
complicated expression for this type of damping. we adopt 4
simple model damping which after Fourier transformation i
5Kk} = 2ikic, or v{k) = 2iki; this model yiclds a damping rate
of the same order as the undamped linear frequency. and has
been shown by Bardwell and Goldman (1976} to be sufhi-
ciently accurate for the present purposes.

Choosing the heater field Eq in the £ direction which s ilso
the direction of the geomagnetic field, we follow Nichaolson
ei al. [1978] and study. the stability of the heuter ficld by
inserting the forms

E(x. 1) = Eg + E; exp (—iaf + &' X)
+ Es exp tiw*t — ik - ») (6t
and

nix, ) = n' exp (~iwd + K x) + complex conjugate
7y

into (4) and (5). There results the dispersion relation
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i |
| s (8i
wt 2 kT w ¢ LY kT

where

uo= kY )
The threshold for a purely growing instabiliny is found by
setung w 0 in (3): this yields (for k = A¥)

EyT = w2 (10)

or in dimensional units for the present parameters, £ = 0.6
V.m. which is well below our value of £y — 1.0 Vim. This

conclusion is in agreement with the oniginal prediction of

Perkins and Kaw [1971].

In oider to determine the nonlincar evolution of the
oscilluting two-stream instability, we solve the Zakharov
cquations () and (5) numericaily in two spatial dintensions.
The numenical techmque 1s described by Nicholson et al.
{1978} and by Nicholson and Goldman [1978] 1t uses 64 x 64
gnds in wase number space and in contiguration space. The
intal electne ficld consists of the “pump’ electric ficld with
wave number zero pointing in the X direction, representing
the heater field, and small random electric ficlds at all other
wave numbers in the two-dimensional wave number grid.
The initial density perturbation is zero. All electric field
components are subject to the linear damping /2, eacept
for the pump electric ficld which has zero linear damping.
This is 4 model which 1s intended 1o represent the steady
state in the absence of nonlinear effects) which results from
the linear dumping of the heater wave balanced by a continu-
ous flux of energy from the heating facility.

At early times, some of the wave number components
with initially small amplitudes grow due to the oscillating
two-stream instability. The contours of constant growth rate
atw.d = 2.2 x 10° or 1 = 0.007 s are shown in Figure 2. The
maximum growth rate, contour 3 in Figure 2. has a value v/
w. = L4 x 10 Yory=420s 'and occurs at a wave number
Ly, - 0.005 or A = 22k = 5.4 m. These values are in good
agreement with a direct numerical solution of the dispersion
relution (8). If we were treating the fully threc-dimensional
problem, Figure 2 could be rotated about the &, axis to yield

Fig. 2. Contours of constant growth rate of electne tield amplh-
tude in two-dimensional wave number space at w,r = 2.2 x 10* or 1
= 0.007 5 Growth rute yis linearly proportional to the contour fabel,
with contour 3 indicating Yw, = 1.4 ¥ {0 ‘ory - 420 < ' The
pont .Y 18 the maximum wave number retained by the computer
program. and corresponds Lo AYA, = 0.034 Likcwise. A corre-
sponds to A YA, = 0017, The wave number corresponding to the
highest value of yis A A, = =0.005,

;o /i ;o
" Vi S
" »
- ',\\ ;
S .
by . . | N
o ) v
] ‘\/,‘ VY ? R
A Aoy S
,/‘;l / /{/ i ‘// ]
y v /)
K / \\ . J
. v \ . n
v’ . -7
Volvoo, ]

Fig. 3. Conatours of absolute vulue of ciectr.. field in contigura
tion space al w,t = 4.4 2 10°0r ¢ = G014 4. The spatial region show i
is thut used by the computer program. with /., corresponding to /
A, - 7400 0r L, = 32 m,and £, = 64 m. Contour 2 Corresponds to
the initial electric field energy density W, contour | s 3% below the
initial value, and contour 3 is 3% above the inihal vaulue.

the full three-dimensional growth contours. The maximum
vertical extent of the region of substantial growth cun be
predicted from the dispersion relution (8). It we fix &, at the
value of maximum growth (contour 3 in Figure 21 and study
the growth rate as a function of 8 = tan "' (A/4,). we tind
from (8) that growth ceases when t(very roughly) 8 - 45..1n
agreement with Figure 2. This is due to the fact that 1" 1s
replaced by iky* cos® @in (8).

AU a later time in this run, w = 4.4 x 10 or7 = 0.014 .
the unstable modes in Figure 2 have exponcntiated sufhi:
ciently from their initial noise levels that the absolute valbue
of the total electric field, Figure 3, shows regions of substun-
tially enhanced field and regions of substantially depressea
field. The lowest contour level 1 corresponds to a value of
electric field energy W which is 3% below the mitial value
W,. contour level 2 corresponds to the initial vaiue. and
contour 3 corresponds to a value 3% above the mibal valuc
Figure 4 shows the contours of constant absoluic value o

'l

Fag. 40 Contours of absolute value of electric ficld in wave
nuniber space, the other parameters have the same values as
Figure 3. Most of the energy s stdlain the k
this figure.

O made, ool shownn
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Fig. 5 Contours of ubsolute value of electne held in conhgura-
tion space at w,t = 6.2 x 10° or ¢ = 0.020 5. Contour | cosTesponds
toW =738 x10 * contour2toW =99 x 10 * and contour3to W
= 1.2 x 107 Other parameters are the same as in Figure 3.

electric field in wave number space at the same time as in
Figure 3. Those modes with the highest growth rates in
Figure 2 have reached substantial amplitudes in Figure 4.
Most of the energy still resides in the k = 0 mode, not shown
in Figure 4.

Figure 5 shows the absolute value of electric field in
configuration space at w,? = 6.2 X 10° or r = 0.020 s. Regions
of high electric field energy density W at the earlier time of
Figure 3 have become even more intense in Figure S, while
regions of low W in Figure 3 have become even lower. The
regions of intease field in Figure S begin to collapse at this
time, so that at w.z = 7.9 x 10° or ¢ = 0.026 s (Figure 6) they

!

kg 6 Contours of absolute value of electnic field in contigura-
ton space st w,f = 7.9 x 10°or 7 = 0.026 5. Contour 1 corresponds
oW - 24> 10 ‘. contour 2o W - 97 < 10 * and contour Yto W
22 = 10 ' Onher parameters are the same as in Figure 3.

Fig. 7. Low-frequency density vanation in configuralion space
at ume wt = 7.9 x 10° or 1 = 0.026 5. Contour 1 corresponds (v a
zero density variation, contour 2 corresponds 1o a/ng = --0.002 or n
= 600 cm™?, and contour 3 (in four places, unmarked on figure)
corresponds 1o A/ng = ~0.004 or A = ~1200cm . Other parameters
are the same as in Figure 3.

have become even more intense. At this time, the low
frequency density variation n (Figure 7) has minima in the
same spatial locations as the maxima of the electric field
amplitude in Figure 6. This is as expected for the oscillating
two-stream instability and the subsequent soliton collapse.

At the final time of this run, o,/ = 8.9 x 10* or f = 0.029 s,
the collisionally damped collapsing solitons are quite promi-
nent (Figure 8), and have absorbed most of the wave energy
from other spatial regions. The absolute value of the electne
ficld amplitude in wave number space at this time (Figure 9)
shows some spreading. However. because of the relatively
large collisional damping, the soliton collapse in configura-
tion space and consequent spreading in wave number space
is much less pronounced than in situations with no collision-
al damping [Nicholson et al., 1978: Nicholson and Goldmun,
1978].

The relative clectric field energy density W/W, versus time
throughout the run is displayed in Figure 10. After time us, ¢
= 7 x 10%, the unstable modes take a substantial traction of
energy from the oniginal k = 0 pump mode, this energy 1
subsequently lost due to collisional damping. The net damp
ing is always slower than the collisional damping rate
(dashed line in Figure 10) because a substanual traction of
the total wave energy continues to reside in the undamped k
= 0 mode at each time. The collisional damping in this case
acts.fast enough to prevent the collapse of the sohtons to
such small spatial regions that the accuracy of the computer
code s lost. Thus the computer code 1s accurate vver the
entire iength of the run, in contrast to previous work in the
undamped regime {Nicholson ¢t al., 1978].

The numerical work described here is in two spatl
dimensions, while the actual soliton collapse dunng tono-
spheric heating occurs in three spatial dimensions. Thus the
spatial dimensions of the solitons, and the maximum energy
density in the center of the solitons, may differ by factors ol
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two or more in the actuil physical situation from those
obtained here. However, the time scules involved are proba-
bly very close in the two-dimensional und three-dimensional
cases.

There has been a fair amount of work on analytic solutions
describing collapsing solitons, and this work is reviewed in
the appendix. Most of the analytic work does notinclude the
effects of collisional damping (see, however, Degivarey ¢t
al. [1976), Pereira et al. [1977), and Goldman et al. [1980)).
s these results cannot be directly compared to our numeri-
cal results.

Before discussing the implications of these results for
ionospheric heating, we proceed in the next section to add
the effect of the geomagnetic field. This resuits in significant
quantitative differences: the overall qualitative scenario.
however. remains unchanged.

3. SOLITON COLLAPSE INCLUDING THE GEOMAGNETIC
FiELD

The earth’s magnetic field is such that the electron gyro-
frequency €. is roughly Q./w, = 1/3.5 for the parameters of
interest. For Langmuir waves along the geomagnetic field,
there is no effect of the geomagnetic field. However, for
linear Langmuir waves with a wave number component &,
perpendicular to the magnetic field, the unmagnetized dis-
persion relation

& = w1+ 3N (n
is replaced by
- s N R
w = w ||+ 3N+ — 808 (12)
w,*

where # = tan ' (K,/A,). Thus we include the effect of the
geomagnetic field in our numerical calculation by making the
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Fig 8  Contours of absolute value of electnic ficld in conhiguta-
on space at w,7 = 89 x 10°or ¢ = 0.029 «, Contour | correspands
oW - 1410 * contour 2toW =S4 « 10 * and contour 3 (in
three places. unmarked) to W = 1.2 x 10 ' Other parameters are
the yume as in bigure 3

Fig. 9. Contours of absolute value of electnic field in wave
number space; the other parameters have the same vilues as in
Figure 8. There is a small amount of energy in the k - 0 mode. not
shown in this figure.

following replucement of the dimensionless Fourner repre-

sentation of the operator ~V- in (4):

I L S
A= k" + ————s5in" 8 (AR}
4n . m,

There is also a more complicated effect on the low-frequency
equation (5) which we include. In previous studies [Weather-
all, 1980; Nicholson et al., 1978, Weatherull ¢t ul., 19%1:
Goldman et al.. 1981], we have found that this Jow-frequen-
cy etfect is substantial only in a very limited region of wave
number space, with a negligible contribution to the vverail
wave evolution. ’

With the replacement (13), the dispersion relation (¥)
becomes

)

w + ivs2 — k* — 450 sin° ¢

W+ ke — kT = KAE? ,L‘-(

1
- . 3 rahg i
w1t v/ + k5 - 450 sin” @
——r—r7—r———
ob
£
3
g [
ol b
‘]-A‘
L
i i A 4 i i i
o 44r10° 89110°
TIME w, T

Fig. 10, Logyo of the relative electne ficld encrgy density W W,
versus ime for the entire unmagnetized run. The dashed line shows
the rate of energy decay which would occur if all modes were
colhsionally damped. The actual decay is slower than this because ot
ciavh tme a significant fraction of the wave energy iv 1n the
undamped k- 0 mode.
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Fig 1. Contours of constant growth rate of clectric held amph-
tude 1n two-dimensional wave number space sl w,s = 2.2 % 10%0r ¢
= 0.007 s. in the magnetized case. Growth rate y is hinearly
proportional to the contour label, with contour 3 indicaung v w, -
1.4 % 10 “or y = 420 « ' The point 4, 18 the maximum wave
number retained by the computer progrant, and corresponds (o
YA~ 0.034. The maximum vertical wiave number is 4, %4, Y
1.02. Note that this figure has been stretched by a factor of 2¢n the
vertical direction,

The angular effect in the denominators on the right s nuw
much more important than the g factor in the numerutors.
‘The growth rates for &, = 0 are unaffected by the magnetic
field. so the fastest growing mode 18 the same in the
magnetized case as in Figure 2 in the unmagnetized case.
Fixing &, at this value, analysis of (14) shows that growth
ceases at an angle @ = k/k, = 0.05 radians = 37,

With the modification (13) to our compuler program, we
repeat the calculation of the previous section. Since only
wave numbers with small values of &, ure predicted to grow
by (14), and since we are himited by computer resources o a
grid of 634 x 64 points, we resobve the behavior in wave
number space by choosing £7L, - S0 with 1 the sume asin
the unmagnetized case. This implies that the ratio of the
sides of the gnd in wave number space s & ALY 2002,
allowing detailed resolution of growth rate contours in wave
number space.

With all other parameters the same s in the preceding
section, we repeat the previous cakulauon. Fgure L
analogous 0 Figure 2 in the unmagnetized case, shows
contours of constant growth rate of ¢icctne feld amplitude
in wave aumber space at w,d - 22 > 0T or 2 - 07 s,
Although this figure appears very similar (o Figure 2, note
that it has been stretched by a fuctor of 25 n the vertical
direction. Thus, growth occurs only tor angles /A, of less
than a few degrees, in agreement with the prediction of the
dispersion relation (14).

Figure 12. analogous to Figure S in the unmagnetized case,
shows the electric ficld in configuration space at ©,f - 6.2 %
107 0r ¢ 0,020 s The formaion ¢ collapaiag soliops is
observed. Note that this figure s compressed by a factor of
25 in the vertical direction. At the later e w1 = 7.9 = 10"
o b= 0.026 5. the collapung solitons have intensitied (Figure
13, analogous to Figure 6 1n the unmagnetized case). The
maximum cnergy densities here are actually twice as large as
mn the unmagnetized case. We interpret this as follows. In the
magnetized case. the spatial configuration is much more one
dimensional than in the unmagnetized case. [t s well known
that disperston s more effecuve in inhibiting one-dimension-
al collapse than an mhibiting two-dimensional collapse.

SOLTONS AND JososrHe Ric Hi s

stream modes can remain in phase with the pump for 4
tonger time. This allows them to uhsorb more wi the pump
cnergy than in the unmagncetized case: at a shghtly later ume,
when the waves do decouple frons the pump and begin 1,
collupse. they have a somewhat greater intensty than n the
unmagnetized case. This effect s helped by the fact that the
magnctized solitons involve the collapsing encrgy from 4
spatial volume roughly S0 times Larger than in the unmugne-
tized cuse: thus it is not surprising that the intensity gt the
very center of a collapsing soliton is latger in the magnetized
cane.

Figure 14 shows the clectnie field amphtude in wave
number space at the final time w2 - 8.9 % 10 "or 1 — ¢ 02
s. The churacteristic spreading in wave number space due to
the spatial collapse 1s again observed.

Figure 15 shows the relative electric field energy denwity
versus time for the entire magnetized run. The cnerg,
dissipation at late times is even coser to the collisiona)
damping rute than in the unmagnetized case ibgure 104
consistent with our previous interpretation of o greater
efficiency n the conversion of pump cnergy (o unstable
mode energy in the magnetized case.

There are two major differences between the present work
and the actuat physical situation ncar the reflection point of
the hcater wave. Fust, the present calculations ure per
formed in two spatial dimensions, whereas the actual physi-
cal situation is fully three dimensional. We do not expect any
of the scale fengths in three dimensions to be different than
those found here. Since soliton collapse s tavored an three
dimensions. the time scale for collapse may be somewha
shorter than found here, but probably by less than a tactor of
5

Second. he actual physical situation involves o back-
ground jonosphere which s anhomogencous with scale
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Fig. 120 Contours of absolute value ol electrn ield in conticur.,
ton space at w1 6.2+ 10%0r7 - 00208, for the magna hized cas.
1. corresponds to [ A, 7400 or {1, Vm, and { { o
Contour § correspondsto W T4 - 10 Coour 2o 9
10 and contour Yo W - 12 - 100N Note tha this tignre ha

been compressed by o factor of 25 i the verticai direction
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length 50 hm rather thun homogencous as assumed here. The
effects of inhomogeneity are much more dithicult to predict
than the cffects of three dimensionality, parttally because the
inhomogeneity enters in three ways: the heater wave prohle,
assumed to be an Airy {unction, is inhomogencous with a
scale length of order 100 m; the heater wave frequency s
different than the local plasma frequency by an amount
depending on the distance from the exact reflection point;
the Langmuir waves excited by the modulational mstabality
find themselves in an inhomogeneous plasma. While 1t s
beyond the scope of this paper to attempt even a semiquanti-
tative treatment of inhomogeneity. we can make several
observations. The locally homogencous dispersion relation
tfor the modulational insiabtlity ut all levels above and below
the exact heater reflection point can be casily obtained from
(4), (5). and (6) of Nicholson et al. {1978] by setting kg - 0
(since the heater wave is a dipole ficld if the Airy inhomogen-
eity is ignored) and by letting w, represent the diflerence
between the heater frequency and the exact local plasmu
frequency. The solution of this local dispersion reiation then
predicts that the threshold for modulational instability . and
the growth rate above threshold. are both quite insensitive to
the distance from the exact reflection point. However. the
range of unstable wave numbers is quite sensitive to the
height. with a scale length of order 10 m. Thus the fastest
growing wave number at the height of the Airy function
maximum, roughly 200 m below the exact heater reflection
point, Is 10 timer larger than the fustest growing wave
number at the exact reflection point. Furthermore. the
tustest growing wave number at the exact reflection point is
not growing at all a short distance of order 10 m (or a few
wavelengths) below the exact reflection point. Of course, at
any location below the exact reflection point. the tour-wave
maodulational instabilities must compete with the three-wave
parametric decay instabilitics. The rapid change in the

-

b 11
(00 space al w, !

Contours of absolute value of clecine held in contigeia-
79« 10 ort - 0.026 v, for the magnetized case
Contour 1 corresponds to WS4 < 10 * contour 2to W - 2.2 x
10 Y, and contour Y to W = 49 x 10 ' Other parameters are the
same as in Figure 12 Nore that this figure has been compressed by a
factor of 29 n the vertical direction

oy
T, > e
L [t v
N "
X .

Fig. 14 Contours of absolute valuc of electric field in wave
number space Wl wt = 8.9 x 10 “orr 0.029 s, fur the magnetized
cise. There is some energy in the k = 0 mode. not shown in thes
figure. Other parameters are the same as in Figure 11 Note that this
figure has been stretched by a fuctor of 25 1n the vertical direction

magnitude of the fastest growing wave number with heighit
probably means that the collapsing solitons of section 3 will
not maintain the coherence over scales of order 100 miin the
¥ direction as shown in Figure 12. However, this would in no
way change the time scale for collapse. as section 2 showed
similar collapse time scales for solitons with inttial dimen
sions of order S m in both directions. Thus we huve no
reason to think that the proper inciusion of inhomogencity
will affect the importance of collapse or the ume scules for
collapse: it may strongly affect the vanation of spatial scales
of the imtial collapsing objects. We will treat this subject.
and the subject of the competition between three-wave und
four-wave processes, in future work.

Previous work on the analytic study of collapsing solitons
is summarized in the appendix. Since most of this work does
not include collisional dissipation, we cannot directly com-
pare it to oar numerical results. In the final secuon, we
summarize our conclusions and discuss the implications of
our results.

4. CONCLUSIONS AND IMPLICATIONS

We have demonstrated numerically that the ordinary
mode Platteville modifier is intense enough to cause an
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Fig 150 Log,, of the relative elecine held energy density W §
versus time for the entire magnetized run The dashed line shows the
rate of energy decay which would occur if all modes were collision
ally damped  The actual decay 1s slower than this becatse at cach
time a sigmficant fraction of the wive energy is in the undamped &

0 mode
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osallating twosstream mstability at its exact reflection pont.
Phisonstabity Jeads 1o regions of spatiadly Tocalized intense
clectric field which become collisonaliv damped coilapsing
solitons  The ume scule tor collapse s o few n11|ln>cmnd>.
The spatial scale of the collapsing solitons is ibout 1 m along
the geomagnetic tield, and., because of the geomagnete tield,
about 100 m or less perpendicular to the peomagnetic fiekd,

Our results lend anntngaing interpretation 10 an impor-
tunt observational fact. It has been observed that when the
modifier at Arectbo is turned on, the intensity of the plasma
line echo s inittally quite intense {Maddrew and Showen,
1977 Muldrew, 1978 Showen and Behnke, 1978 Showen
and Kim. [978: Fejer. 1979} this phenomenon s called
“plasma hine overshoot 7 According to hnear plasma theory,
this result is difficult to understand. since it requires Lang-
muir waves created by the moditicr to travel up or down in
an essentially  vertical direction. However, the unstable
oscillating two-stream instability of the present paper. and
the parametric decay instability of the carher theories of
wnospheric modification reviewced in the introduction, both
produce Lungmuir waves travelling predominantly along the
geomagnetic ficld. not in the vertical dircction. However,
this difficulty does not occur if one has three-dimensional
collapsing solitons. These nonhinear entities contain all wave
number components, not merely the ones allowed by the
linear Langmuir wave dispersion relation. Thus, at least
qualitatively, the three-dimensional collapsing solitons of the
present paper could 'ead to a substantial plasma line intensi-
ty. Although the heating powers at Arecibo are lower than at
Platteville. they are sull quite possibly high cnough to excite
coilapsing solitons. We note that the collapsing solitons have
4 {requency spectrum characterized by the heater frequency
(local plasma frequency). broadened somewhat by the sever-
al millisecond coilapse time scale. An alternative explana-
tion of the ongin of the intense plasma line using linear wave
propagation has been presented by Muddrew [1978). Tt s
quite possible that his mechanism and our mechanism oceur
simultancously with an additive effect. We do not attempt to
explain here the fact that the plasma line decays after its
mitial overshoot: although the dissipation of pump encrgy
duc to sohton formation and collisionally damped collapse
cauld contribute, the complete explanation presumably in-
voives all of the parametric instabilities and nonlinear effects
aceurning at the reflection point and below it {Fejer, 1979].

In tuture work, we will make o quaatietive prediction of the
pooosma hine echo to be expected fram the three-dimensional
collapsing solitons predicted by the present work. and
compare it 10 that observed.

There are several other implications ol our work which
can be explored. First. all of our solitons are observed
collapse and colhistonally damp. We do not obseive the
formation of steady state pancake solitons as studied by
Perviashvdi 11975, 1976). Second. it does aot appcar that our
mechanism will help to explun the production of hot elec-
trons and the resuftant wirglow observed during ionosphenie
heating {Nicholson, 1977]. The smallest spatial dimension
observed an the present work is about 1 m or 2000 A, Maost
theories of clectron acceleraton due o colfupsing solitons
require the localization of intense felds to sizes 10X, or
lens [Morales and Lee, 1974, Be:zerides and DuBos, 1975,
1s notat all clear at this tme whether the change from two
dimensions to three dimensions can produce a localization
by a4 lactor of 200 We will eaplore this question in future

work, both for Platteville parameters and tor paramicters of
new faciites. binally, as stated above, we will exploie
future work the effects of the onopshenie inhomogenats on
the conclusions of this paper. together with a detailed sty
of the competition among three-wave ntcractions, o
wave nteractions, and sohtion cotlapse at heights below thie
exact heater reflection pont.

AVPENDIA

Analytc descriptions of collapsing solitons were shown by
Zakharov [1972] to take the form of self-similar solutions
(558). Discrepancies among the results of various authors
[Zakharoy, Y972: Litvak et al., 1974 Degtvarey und 7ch-
harov, 1974, 1975, Degtvarey et al.. 1975 Nishthawa 1 al
1975] have led to some confusion in their apphication. Galec.
et al. [1975] pointed out the important role that scaling faw s,
nherent in u 888, play in determining the spectra of strony
Langmuir turbulence. Thus it is imperative te use a 5SS
its appropriate context. In what follows, a generahized 888 18
developed for the Zakharov model (equations (4543 with
out damping (v, = & = 0) for both the mugnetzed and
unmagaetized cases. All previously obtamned results are
regained and a unified perspective is possible In addition,
directions for further development and apphcations to re-
sults of computer simulations are suggested

The general SSS for (45 with w1, =+, = 0is of the tarn:

F = {1y — /)(.J‘f. 7)) Uxp {/ f Friga] (//)

£= {1y — D

n= Aty = D% VAD

n— Uy — DE 1)

=y -0
where £, 7, a0 v, nare the dimensioniess vanables detined in
(3). In the unmagnetized case, previous work. mentioned in
the preceding paragraph. assumed the soliton collapses
symmetrically. This is equivalent to seting ¢ v Waith this

assumption, substitution of (A1) into (4) yields the following
relutionships between exponents:

2B =2y 8= ¢ tAD

This leaves two exponents to be determined. « 1y fived by
the dynamical eqitation used for the ions . depends upon hiow
the clectnic field envelope changes in timie.

lon dvnamics.  The form assumed for the won-acoustic
cquation (5) divides solutions into the following repimes

L. The first is the “supersomic” regime. For very antense
ficlds (W min). (51 1s approximated s

o VRS tAY)
Substitution of (A1) with (A2) into (A3 yields

a - | LA4)

2. The second s the “trans-sonic™ regime. For less in

tense ficlds. the tull 1on-acoustic equation is used. Again. the
result s a -~ 1. The Jast exponent is also determined.
however,
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Fig. 16, Relative absolute value of electine field as a function of

w, M = w ity - 1) for the magnetized run. The collapse time, 4. 18
defined as the time at which the collapsing solton would have
reached singulanty if there was no damping 3¢ decreases toward
the right so that real tme is increasing toward the right. The value
w1, corresponds (0wt - 605 x 10% 1 Figure 1S

3. The third 1s the “static” regime. For weaker ficids (W
-« m.m,). the density is given by

n=-F° (AS)

In this case. a = - /2.

Eleciric field envelope.  The rematming exponent s deter-
nuned by how the electric field envelope changes in time: (1)
the slowly vurying envelope—if the time dependent equation
43 is used. then

[ | (A6)

This solution, however, does not conserve the first mtegral
of motion, plasmon number. (2) the adiabatic envelope
approximation—this approximation ignores the time depen-
dence of the envelope: the first integral of motion must be
invoked to determine 8. the plasmon number is given by

L= [ ETdr 1AT)

where D 1s the dimensionality of the system. Substitution of
the $SS in (A7) yields

&= -4D tAB)

Thus. assuming the tme rate of change of the envelope is o
constant and plasmons are conserved. the scaling laws tor
the collupse become dependent on the dimensionality of the
system.

The introduction of an ambient magnetic tickd into the
model breaks the symmetry previousty assumed. Perviash
vili [1978) and Galeer [1975]) denved a modified version ot (4)
to include the weak dispersion transverse to the ambient
magnetic field.

PR Y % _ A
— i B nl o tAY)
dN” [N Jve

For the asymmetnie collapse, (A2) s replaced by

= y=8 (R

SOLITONS AND JoNOsPHERIC HEAaTING N3

The shape ol the solution s that ol o “pancake.” The rate of
cullapse of this panciake i twice as fast an the darger
dimension trunsverse to the magnetic fichd hine than along
the fichd hine. Thus, duning the asymmetric stage of collupse,
the puncahe becomes more symmetric. The discussions of
wn dynamics to determine the exponent a, and the envelope
approximation to determine o, carry over from before. Note,
however, the form for the integrai in (A7) changes to include
the asymmetric geometry. In this case, the assumption of
conservation of plasmon number leads to

&= -4/2D - 1) (ALD

The general S8S. (A1), includes all previusly obtained
results as special cases. These results [e.g.. Zahharov, 1972]
typically assumed sphencal symmetry and conservation of
plasmon number. Computer simulations {Lipatov, 1977)
suggest, however, that these approximations may not hold in
the cuse of hughly distorted structures such as pancakes. The
asymmetric collapse parameters, (A10). apply o sohtons in
a magnetic ficld. Interestingly. the asy mmetric collapse man
be applicable to highly distorted wave packets 1n unmagne-
tizesd plasma as well. Computer simulations by Percira ot al,
HH977) show collapsing puncakes for B, - 0 with the trans-
verse dimension decreasing at twice the rate of the longi-
tudinal dimension. Indeed. this presents some of the best
cvidence 1o date for differential scahing of o collapsing
pancake.

Comparison ol the 888 with simulation results presented
i this paper v hampered by the inclusion of damping.
Quahitatively. we can see the production of highly elongated
pancakes which collapse faster lengthwise than along the
width. ‘This i1s observed in both the magnetized and unmag-
nctized runs.

The relative absolute value of the electnic held s plotted
on a double logrithmic scale, as a function of &7 (- 1, - 1),
for the magnetized run (Figure 16). Note that 37 is decreas-
g toward the right so as to preserve the sense of real ume
which is increasing toward the right. The collapse time. 1. 15
detined as the time at which the collapsing soliton would
have reached singularity if there was no damping. The slope
of the hine in the log-log plot gives

a =~

This result is exactly that predicted for dynamic 1ons (eqint-
tion (Ad). A breakdown of the static approximation (equa-
tion (AS)) is indicated, as expected for the large values of
electric field obtained. 10s interesting to note that results in
the unmagnetized case [Pereira et al., 1977] compare more
closely with predictions for static ions. To make more
detailed comparisons, the theory must be modificd to in-
clude the efect of damping.
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A laser diggnostic yielding detailed space and time resalution of the ion-velocity dis-
tribution function reveals that ions ejected by electrostatic instabilities can form a fre-
quency-coherent beam circulating diamagnetically at large radii around the unstable

reglon,
larger than conventional processes.

PACS numbers: 52.40.Mj, 52.25.Fi

In collisionless {hot or rarefied) plasmas,
transport and dissipation are caused by wave-
particle interactions. Such processes are gen-
erally stochastic (noncoherent), as in current
studies’ of electrostatic ion-cyclotron waves
(EICW), eigenmodes of magnetized plasmas with
wide occurrence.?”® Using novel diagnostics, we
have ubserved and maximized a new type of wave-
particle interaction in which coherence is dom-
inant. It causes ion transport in EICW with much
larger intensities and distance scales, totally
unrelated t., the usual parameters (gradic 3 and
wave fields), and also leads to secondary wave
excitation. Besides their basic interest, our re-
sults bear directly on magnetospheric transport,?
fusion physics,’ and isotope separation.*

Elementary physical concepts underlie this proc-
ess. In electrostatic oscillations, half-cycles of
potential rise and fall, which cause particle ac-
celeration and deceleration, aiternate and nearly
cancel. Transport and dissipation are therefore
caused by stochastic, high-order noncoherent
processes. Under inhomogeneous conditions,
however, particles can be irreversibly expulsed
during a fraction of each cycle from an intense
lucalized potential wave channel. If the orbits of
expelled particles close on themselves in a time
equal to the wave period, feedback and reinforce-
ment can vccur. Such synchronization is possible
in EICW, where the collective mode frequency w
18 very close to the free-particle (orbital) cyclo-
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This results in anomalous transport with fluxes and over distance scales much

tron frequency w,.

This process is demonstrated by exciting EICW
within a narrow channel in a plasma, and measur-
ing the details of the ion distribution function
flv, 7, t) in velocity v, in space », and time f. A
single-ended @ machine® generates a 5-cm-diam
Bal plasma column in a uniform magnetic field
1<B <6 kG [ Fig. 1(a)]. Charge densities are be-
low 10° ¢cm™3, and neutral pressure <10-® Torr,
to minimize collisions. Ion background tempera-
tures are typically 3000 °K, A metal electrode
is inserted across the plasma column., When an
electron current to the hot plate exceeds 100 A
cm™?, potential oscillations at w < w_, become
excited. The very small electron-cyclotron radii

(b)

(@ 1o
CURRENT ELECTRODE
CHANNEL l

N

¢

——
PLATE B
BEAM AND
TO Ti
PMT OPTICS
F1G. 1. Schematic of experiment and geometry.
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{«<0.1 mm) ensure that the current chaanael, ana
consequently the source putential vsciulations,
are eatirely tocalized within the clectrude radius
r £ 3 mm.

To measurc 71, r, (), we develop an extension
of selective excitition spectroscopy,” A single-
mode dye laser 18 beumed across the plasma
column and its wave number & 1s electronically
scanned across the D, resonance line of Ball at
4934 A. The emutted fluorescence intensity #
i8 proportional to f at v -ﬁ-;/k, where 4 is the
laser propagation vector. Velocity resolution
is maximized by the narrow laser linewidth (<1
MHz). ions which fluoresce have velocities in a
range less than 1077 of the mean (thermal) ion
speed. The fluorescence is detected by a long-
focal-length lens miechanically coupled to the
laser, so that both can be indexed simultaneousiy
across the plusma | Fig. 1(a) and Fig. Iib);.
T antersection determines a diagnosed volume
with resolution of order 1 mm®. The time be-
havior uf f 18 obtained from a frequency analysis
of FUr, », t) with use of a radio receiwver and
phase-sensitive detector., Bandwidth and phase
resolution are iess than 107% and 5, respectively.
In sumn'mry, we obtain the Fourier transform,
F(e, r,u), of £, r, t) with unprecedented detail.

Below are presented examples of the most sigmf-
icant new observations: (1) Generation and local-
1zation of an ion beam, (II) identdication of co-
herent and incoherent beam density components,
(I11) excitation of secondary density oscillations,
and (IV) unfolding of the ion-circulatfon process,

(I) Figure 2 shows the behavior of the time-
averaged value of F=F (1, r). In the absence of
E'"W, F is the same at all positions », as in
trace (a). Note that F is symmetric 1n 1, except
for a flattening at high velocities, which 18 due
to hyperfine structure, At finite EICW excita-
tions, traces {d~(7), F becomes strongly altered,
depending on position. First, at the center of
the current channel {»r -0), trace (b), F remains
symmetrical but 18 appreciably broadened. Thnis
represents heating of the unstable ptasma by the
localized oscillating fields,' Traces (¢)-(e}
foilow F at successively increasing radii onfside
the current channel, all measured along the
same azimuthal angle, at 90 to the laser axis.

F remains narrow as at (¢), but becomes strong-
ly asymmetrical; a velocity space resonance is
seen to emerge (arrow). The resonance 18 cen-
tered, for these conditions, at the speed V- 4
x10' cm sec ™' in velocity space, and the posi-
tion K, - 12 mm 1n configur.ation space.  Finaily,

————
10% em/sec
FIG. 2. Evolution of the ion beam in velocity ans:

coordinate space. Vertical: £( 1, time averye of
ion distribution function, linear scale, and arbatrary
units. Horizontal: ion velocity:, linear scale indi-
cated. Trace @), no excitation; (M-, excitation o,
positions (0Y y  0; (V) r =9 mm; W) r= 10 mm; &ir
12 mm, on same azimuth; {f) » -~ 12 mm, opposite
azimuth,

trace {f) shows F at the same radius as tracce
(¢}, but on the diametrically opposite side f the
channel center (i.e., opposite nzimuth), Here
the resunance is seen (arrow) tn occur with the
opposite speed in velocity space, 1= -1V, Sys-
tematic measurements of this type reveal that
EICW excitation creates a localized ion beam,
with azimuthal circulation in the direction o the
diamagmelic ion ciorvent, surrounding and con-
centri: with the current channel.

(I1) We now study the time dependence of # in
the region where the ion beam 18 localized, e.g.,
r =12 mm. First, using a phase-sensitive de-
tector, we resolve F(r, r, t) at discrete phase
points 1 (90 ), 2 (0 and 180), and 3 (270 ) within
an individual EICW oscillation period. As seen,
the bulk (low-velocity core) of F undergoes littie
change in comparison with the velocity-space
regime centered on V5. Within the latter—the
1on beam-—the distribution function is almost en-
tireiy wmodulated in cohervence with the wave-
potential oscillations of the scurce region at »
=3 mm. The modulated beam density amounts
tu about 25'%, of the background plasma density.
Evidently particle transport is occurring on a
massgive scale, and over a distance scale one
order of magnitude larger than the thermal-i1on
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v 10% em/sec

FIG. 5. Evolution »f the ion beam in time. Vertical:
F(u,7r, ), lon distribution function, lincar scale, and
arbitrary units. Horizontal: ion velocity., linear
scale indicated. Position {2 » = 12 mm. (a) Phuase
locked with reference from EICW oscillation and
(L) radio signal, (1) and (3), radio tuned to «, excitation
on and off, respectively; (2}, radio detuned (..'), ex~
citation on.

Larmor orbit i~1 mm for these conditions).

At larger excitations the plasma also acquires
an appreciable incoherent component, i.e., non-
oscillatory distribution function changes, induced
by the EICW. To identify these, the detector
{PMT) signal is fed to a radio receiver. This
can be tuned to the EICW center {requency w, or
to another frequency «' outside the bandwidth of
the EICW oscillations. In Fig. 3(b), traces (1)
and (3) show F with (1) and without (3) EICW oscil-
lations, at the ion beam position » = 12 mm with
the receiver tuned to .. As seen, these exhibit
a net difference in the beam region V', and cor-
respond to traces (1) and (3) in Fig. 3(a). Trace
{2) represents F(w’, »=12 mm, vJ, in the pres-
ence of intense EICW. The sharp resonuance at
V' x has been replaced by a filiing 1. of the dis-
tribution function tail. These incoherently ac-
celerated ions comprise about 104 of the back-
ground, and we presume they represent diffusion
of ions heated within the source.

(II) At intense excitation levels the moduiation
extends over both positive and negative velocities,
with a minimum at + - 0. It acquires the appear-
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FIG. 4. lon-circulation analysis and test. (a) Model
of fon circulation. () Radial scan of F{V'g, w,7); hor-
izontal, radius (on same azimuth); vertical, wutensity,
and linear scale. (¢) Measured vs calculated ion beam
radius, K.

ance of an instability driven nonlocally by the
coherent ion beam, We note that conventional
(Langmuir) probes in the beam region yield
signals which could be misinterpreted as denoting
the presence of a local destabilizing current.

(IV) From the preceding, we obtain a physical
model for the creation of the ion beam | Fig. 4(a) |
(i) The potential oscillation within the current
channel has radial gradients which accelerate 1on
bunches during a half-cycle of each oscillation
period. (ii) Ions *falling” down this potential
“hill” leave the channel and enter into ballistic
{free) orbits with a gyromagnetic radius R de-
termined by their exit speed ', and the magnetic
field B according to the Lorentz formula: 1t
= (Vo 'B)Mc ‘e), where e M 13 the 10n charge
mass ratio. Two adjacent orbits are sketched
in Fig. 4(a), with open circles representing 1ons
being expelled. (iii) One-half an EICW period
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later, these ions reach the apogee uf their orbit
(closed circles), As seen, they are nuw bunched
and nearly collimated in both configuration and
velocity spaces. (iv) The envelope of the expelled
ion orbits therefore constitutes an ion-beam cir-
culation 1n the azimuthal-diamagnetic direction,
with radius R, twice the size of the gyromagnetic
radius R .

To verify this concept, we measure K, as a
function of the parameters ( Vg, B) which deter-
mine R =3R,. (i) For a given B, the laser wave-
length is tuned to excite ions with a selected V',
(ii) their fluorescence is fed to a radio receiver
tuned to w, (iii) the diagnosed volume is scanned
across the radius » of the plasma. Records of
F(Vg,w,7), Fig. 4(b), exhibit two resonances.
The outermost, sharply peaked at R,, represents
the spatial localization of ion orbits determined
by the choice of (V,, B). The inner, confined to
the wave channel region » «+ 3 mm, represents the
return circulation of ion orbits with the same R
but centered on the opposite azimuth. Radii R,
obtained by this method are plotted in Fig. 4(c).
The straight line is the theoretical value Rg=2R;
no fitted parameters are involved. A possible
intercept at 2 mm may be due to the finite radius
of the source (~3 mm), not considered in our
simple model.

QOur observations and model describe a station-
ary saturated state where source-potential oscil -
lations are strongly coupled to beam ions, which
comprise roughly 50% of the source density,
“load” the potential, and maintain a balance be-
tween mean beam energy and potential excur-
sions. Probe-measured potential peaks of 1 V
max are consistent with peak beam speeds of 10°
c¢m/sec and magnetic field-determined radii,

Fig. 4. Hence beam ions retain mean energy on
successive orbits, while ions scattered out of
phase constitute the *incoherent” broad back-
ground (above).

Extrapuadating 1o magnetospheres® with poren-
Bals oy kT -1eVat 10'T, cruss-ficld ruda are
0.1 -1 ki, In fusion plasmas?® with 10 kV, rudn
range from 1 cm at 10 kG to « {(muchine s17e) at
critical field-reversed layers (4 =0).

In conclusion, we present a new mode of wave-
particle interactions which generates anomalous
particle fluxes and ncnloc |l field excitations. In
mul:iply filamented plasmas,?? the flux driven by
one filament may pass through another filament,
be expelled in turn, and cause multistage trans-
port over scales independent of conventional pa-
rameters,
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Abstract

Modulational interaction of nonlinear waves is modeled
using three-, five-, seven-, nine-, and sixty-four-wave
truncations of the nonlinear Schrodinaer equation. A de-
tailed description of the phase-space for the three-wave
systems is given, showing the various modes of evolution. It
is shown that under certain circumstances the saturation
level of the side-bands is computable from the linear dispevsion
relation for the instability. The quantitative accuracy of the
three-wave system as regards the recurrence-time and the dis-
tribution of energy over the modes is verified by comparison

with the other truncations.
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I. INTRODUCTION

The collective interaction of many diverse phenomena in
fluids is described by the nonlinear Schrodinger equation; for
2xample, the modulational instability and propagation of
Langmuir waves in a warm, collisionless plasma,l or the modulational
interaction of progressive waves of finite amplitude on deep-
water (Stokes waves).z’3 To be specific, we take the Schrodinger
equation to have the form

i E+ o 28+ <§E2 - -1E12>>E =0, (1)

where E is proportional to the complex envelope of the electric

field for Langmuir waves and -..." denotes a spatial average.
Since <]E}2~ is a constant [scc Fg. (3)], by a suitable change
ot variables, Eg. (1) can be transformed into the form given in

Ref. 2, with é representing the frece-surface clevation of Stokes
waves on deep water. {All the variables in Eq. (1) are in
dimensionless form.]

Noting that a spatially and temporally uniform fiecld EO
satisfies this equation, the stuability of this solution is
determined by examining perturbations of the form é exp (t+ikx),
leading to the well-known dispersion relation for modulational

instability

Vo= k(2|é 2 k2>1/2 , (2)

as plotted in Fia. 1.




In an interesting set of water-tank experiments on Stokes

waves, '

it was discovered that following the modulationally
unstable stage, the waves showed a remarkable behavior
in that after the saturation of the instability, the original
form of the wave-packet was reconstituted over and over again.
The small deterioration in the process of reconstituting the
original form of the packet along the length of the water tank
was attributed to cffects such as the viscous dissipation of
surface waves.

To understand the e¢ssential physical mechanism underlying
this process of recurrent temporal behavior, we show in this
paper that it is imperative to note that the boson number B, given

*

by

is a constant motion of Eq. (l). 1In k space one has

— "iz-—’l“vz .‘12
B = E , |E‘ki - 1“05 + 2 : I}'kn (3) .

k 'ki>0

We thus find that as the perturbation grows, }Eof must decreasc.

Provided |k| is not too small (compared to .2

[éo.), we show thuat
the instability is quenched when the pump mode has been depleted
to such an extent that the radicand in Fq. (2} becomes negative.
The subscquent development of the system involves a perindic

interchange of energy amongst the modes. (Sce also Fig. 3, Ref. 2.)

For small values of 'k’, this picture fails since such verturbations

o




cause vonsiderable depletion of the pump and the linear analysis
upon which Eq. (2) rests breaks down. Notwithstanding, for thcse
perturbations, too, the system evolves periodicallv.

A detailed picturce of the phase flow is constructed for the

three-mode system, classifying the fixed points and determinina

the periods of oscillation (when applicable) about them. This
analysis is not limited to small amplitude perturbations unlike
the case 1n a recent study5 where, in addition, the pump ampli-
tude was not allowed to varv.

The results of the thrcece-mode system are then compared with

those of five-, seven-, nine-, and sixty-four-mode systems. We
find that the recurrence-time is almost exactly the same in all
cases. Turther, the distribution of cnergy over the modes for
the three-mode and the sixty-four-mode systems are in fair accord
and as more and more modes are added to the three-wave svs-
tems there is a rapid approach to the results of the sixty-four-

wave truncation.

II. THREE-WAVE TRUNCATION OF SCHROEDINGER EQUATION
. . 2
Our aim is to examine only the case of "simple" recurrence. -
Thus, we neglect the harmonics of the verturbation. In particular,

we choose

E = EO exp(i&o) + E exp(ikx+i!) + E exp(-ikx+i;) ,
(k-C; EO, E, ¢, vo are real) '
subsitute into Eq. (1), and separate real and imaginary terms f

to obtain (using a super dot to denote the time derivative)

, e




(Ua)

E = EEO sin® (4)
£ = -28%E_ sin+ (5)
o o
§ = -2E 2 {(l+cos) - 4E2 cosi - 2E2 - 2k2 ’ (6)
where
o= 28 - 2% (7) 1
o

Note that in the expression for é, we have chosen the amplitude
for the perturbation at k to be equal to that for -k. This is
done because if these amplitudes are the same initially, as in
the computations,2 one can show their equality for all time.

Egq. (3) then bccomes
. 2
B =L + 2E° = constant . (8)

Using B, we need only consider, in lieu of Egs. (4)-(6),

- 2 .
= - (R=- )
Bo (B EO )Eo sini . (9)
4 = 2E %(l+cosn) - 2(B-E %)cos: - (B-E %) -2k? . (10)
(@] [o] [0}

There exists another constant of motion
. 2 22y _ Yace 2y | Liper .2 ;
H = k (B—Lo ) 2(8 LO ) [Z(B EO ) + ZLO (l+cos )] , (11)

which is the Hamiltonian of the system.
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I'1T. PHASLE-FLOW OF THII TRUNCATLD EQUATIONS

h
As usual, we regard Bgs. (9) and (10) as detcermining a

vector field in the two-dimensional phase-space (EO,'); i.e.,
defining a unique direction along which the system evolves.

However, there are exceptions to this: at the fixed points of

the flow, where the right-hand-sides vanish, there is no

defined direction. The fixed points are

. 2

E = .8 , = = arc cos(k— - 1> : (ZB*kz) (121)
(e} \B

‘ 3B+2k2 -

Eo = 5 , v =0, 21 (12i1)

A

B_ = JB_ZkZ AT (B 2k?) (12iii)

E =0 L= x? ) (B 2k?) (12iv)
5 = , = arc cos|—g 5 iv

Since physically the phase difference of éo and ék is restricted
to -w + 4=% < n , the condition on ¢ is -2n * ¢ - 23, where
is defined by Eq. (7). Using the fact that E_ - VB [see Eq. (8)1],
we see that the phase-space of Egqs. (9) and (10) is a cylinder of
length B and radius 2, obtained by identifying the lines ¢ = 2~
and " = =271 . |

We now detcermine the nature of the phase flows close to the
fixed points by studying their stability; i.e., linearize Fgs. (9)
and (10) about each of the fixed points in turn and substitute

in perturbations of the form ‘EO , Yt exp(it). The following

characteristic exponents ' ava then obtained:




7
Vo= 2B Sinv'\ , 7:—’5)— = ~12_13__§.%_Q;~__ ,
' E[(4k"/B) ~1]
(131)
= -2B sin® , E_ =0 ;
O
2 2, |1/2 “E
o= g | A43BR2KC) 2Bk ) , —2- 2 (13i1)
14E
o]
VR \
= ti2k(B-2k2)1/2 , =2 = - = ; (13iii)
‘ 2F
V' = -B sint o= 0 ’
X = 2B sin , ‘E_ =0 ; (131iv)

corresponding to the fixed points given in Egs. {12i)-{12iv},
respectively. In these equations, we have also given the eigen-
vectors. The cxponents given by Egs. (13i) and (13iv) show that
the fixed points given by Egs. (12i) and (l12iv) are saddle points,

with a one-dimensional stable manifold Ri-.v (corresponding to

14

. . . + .
0), a one-dimensional unstable manifold Ri iv (corresponding
’
to » - 0), and with the phasc curves having a hyperbolic structur.,
as shown in Fiqure 2. The exponents given by Egs. (13ii) and

(13iii) show that the fixed points given by FEgs. (12ii) and (12ii1i)
are centers with elliptical phase curves, as shown in Figure 2.
Note that the sense of rotation of the phase curves around thesc
fixed points are opposite to each other, as is easily checked

from the linearized forms of Egs. (9) and (10).




Iv. EXAMPLES OF RECURRENT FLOW

Let us first consider the results of Ref. 2, In thosge
computations, the initial fieclds are rcal-valued and the
perturbation is of an amplitudce much smaller than that of the
(uniform) pump. Thus we begin at ¢ = 0 and near the top of
the phase~space, below the line E, = /B in Fig. 2. The trajectorv
then moves clockwise parallel to the stable manifold Ri- for
awhile, sharply bends downwards, moves towards i+ = 0, turns

upwards, and then returns to the vicinity of where it started

from, parallel to the unstable manifold Ri+. Fig. 3, obtainc¢d
by solving Eags. (9) and (10) numerically for k = 1.2 and the
initial conditions EO = 1 and E = 0.05, shows clearly the structurc

just described. Thus, initially, as seen from IEg. (2) the
system is unstable and the modulation of the uniform field grows.
From Fig. 3, we see that the pump decays to an amnlitude of

=0.828, at which point the instability is gquenched, since the
2

radicand in Egq. (2) now equals 2x(0.828)2 - 1.2 = -0.069. The
subsequent periodic flow is obvious from the phase curve.

In Fig. 4 we show a phasc curve that comes under the influence
of most of the fixed points as it transverses the phase-space. In

this figure, we have indicated the relative positions of the

fixed points, which induce the particular form of this phase curve.

V. EFFECT OF HIGHER HARMONICS ON 3-MODLE SYSTEM
In order to evaluate the ~:tent to which our results, based

on the solution of Eqs. (9) and (10), faithfully capture the




essence of the actual problem, we have solved Eq. (1) usina five |,
seven , nine , and sixtv-four modes. For retercnce we give the

equations for the five-mode system only:

- 2 . . .
- T iy o > =) =E Y=o
E, ElE051n + 2E1F2[F051n( w) FZSln(Zq )1, (14)
f = -2E (Ezsinﬂ+E2sin2r) - 2E2F [2siny+sin(+-.) ], {(15)
o) o 1 2 ) 172 ' R
F2
N 2,2 .2 A . _;l , 2_,5.2 o2
= 2[-k +LO Ll+q“2(Lo E )cos\+(Eo 2El)cos 282cos2.
5 o
) 2
+ 2E2(xo-Eg)cos(t-L)+2£2cos(2u—v)] , (16)
2,22, 5.2 0 _ a2 2 .2
Vo= =4k +LO—L2+hh1(ﬁ; - EO)COS“_ZElcos‘+(Eo-2E2)COS2'
2 Eo E2 2
+ EE(—— - 2==")cos (=) +2E cos (2 uv=-0) , (17)
E E 1
2 (o}
where
2 2 2
B5 = EO + 2hl + 2L2

is the conserved boson number for the five-mode system, and the

Fourier expansion of the electric field in Eq. (1) has the form

E = Ej expli: ) + E)[explikx+icy) + exp(-ikx-i7,)]

+ Eylexp (i2kx+id,) + exp(-i2kx-ii,)]

and we have re-defined the following linear combinationsof vhase- 3

angles for the five-mode system (cf. Ea. (7)
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As in the case of the three-mode system one can try to
determine the fixed voints of Eqs. (14)-(17). As an example,
the fixed point corresponding to that given in FEq. (121i) is

2 2

S . kK™ -1 4k
Eo = 'B, = arc cos(§~ 1), v = 5 arc cos(—E— 1),
E1 = Lz = 32,
provided one uses gl = 0 in IFys. (16) and (17).
2

Unfortunately considerable difficulties are encountered

in determining some of the other fixed points. To illustrate,
we note that ¢ = = 0 are fixed points for Eas. (14) and (15).
Substituting these into Egs. (16) and (17) one ends up with the

following bi-guartic algebraic equation

2 202,02 4020 2 o2 o2 2,2 .23
12 (ES-EY) © (2BJ-4Kk%) (k“-2FJ+38]) +216E] (B -o])

202 502 202y3 150202 002 2202 2 2
~E (k-2E+387) *-12R] (k“-28 +3E]) “(ES-E]) = 0

. - 7 )
Although there is a formula that cexpresses the roots of this
egquation in terms of combinations of radicals of rational

functions of the coecfficients, the result is so messy that

not much can be gainred from it.
In order to make further progress as regards the effects
of higher harmonics on the three-mode system, we have numericallv

solved the five-, scven-, nine-, and sixty-four-mode truncations

of Eg. (1). 1In all cases we find that the system behaves i
according to whac Yuo:n and Ferguson2 termed "simple"-recurroence, 1
with almost identical recurrence times. Table 1 gives the distri-

bution of energy over the modes at half the recurrence time, when




11

the cnoergy content orf the sotellivtes with respect to the pumn
rode 1s maximal. The table c¢learly shows the ranid anoroach
S oan Masyvmptoriot o eneray o drstr cbhut en o as the nambor o o eandes,
used in the computations increases. This behavior is shown
more graphically in Fig. 5, where we have plotted R(-_/2)

r

2 - 2 . - . .
2.0 . /2) /T (t=0) as a function of number of modes

Ei#OAK r O
retained 1irn the computations; here - denotes the recurronce
time in the system. Fig. 6(a) shows R(t) as a function orf
time for the system with 64 modes and I'ig. 6(b) shows the k
spectrum of Langmuilr waves obtained from Eg. (1) at the tine
when the maximum value of R is attained. At this time thore
arc a number of very intense solitary waves in x snace [sec
Fig. 3 in Ref. 1 and Fig. 1(a}) in Ref. 2}. Fiqg. 6(b) is shown
here in order to give an indication of the extent to which owur
threce-model truncation of the Schrdedinger equation is a v.iiid
description of the process. The solitary waves formed in x
snace, although very intense, are smooth structures. To form
these, one needs thc high mode-number parts of the spectrum,
with appropriate vhases, in addition to the low wave number
components. In Fig. 6(b), we see that at their peak the
amplitudes of the former group are at least a factor of four
smaller than those of the latter group.

It is important to note the following. The finite separation

of the modes that inevitaviy arises in any numerical experiment

and shown graphically in Fig. 6(b) might lead some to suspect
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that by incloding pore oad more modes, as 1n a real experinent,
the phenomencn of recurrence would give place to irreqular mo-
tion. We have two comments against this presumption. First,
the very nonlinear coupling that transfers energy in between

i the modes strongly couples nearby modes to each other, thus
causing some degreec of ever-present coherence among them.
Second, the phenomenon of recurrence has alreadv been observed

in actual water-tank expcriments of Stokes waves on deep watar.

VI. CONCLUSION

We have presented here a detailed description of the nhase
space of the nonlinear Schrdedinger equation, describing the mo-
dulational interaction of three waves. It is shown that one can
determine the nonlincar saturation level of the modes f{rom the
linear dispersion relation of the system provided the wavenumbor
of the pump is not too small. We have also shown that the threc-
mode model is fairly accurate, by comparing its predictions for

the recurrence time and the distribution of energy over the modcs

with those of five-, seven-, nine-, and sixty-four-mode truncations.
After the completion of this work we were made aware of

o . . . 8

similar work on the three-wave systems by Rabinovich and Fabrikant ,

and the integration of the three-mode equations by Infeldg.




13

ACKNOWLCGEMENTS

The author thanks M.V. Goldman for bringing kef. 2 to his
attention. Critical commerts by H.A. Rosc and the referces
are gratefi'ly acknowledqged.

This work was supported by the National Science Foundation
under Grant ATM 7916837, the Air Torce Office of Scientific
Research under Contract F49620-76-C-0005, the National Aeronau-
tics and Space Administration under Contract NAGW-91, and thc
National Center for Atmospheric Rescarch Computing Facility irn

Boulder, Colorado.




l i

9.

14

REFERENCES

G.J. Morales, Y.C. Lee, and R.B. White, Phys. Rev. Lett.
32 457 (1974).

H.C. Yuen and W.E. Ferguson, Jr., Phys. Fluids 21, 1275 (1978).
B.M. Lake, H.C. Yuen, H. Rungaldier, and W.E. Ferguson,
J. Fluid Mech. 83, 49 (1977).

B.M. Lake and H.C. Yuen, J. Fluid Mech. 82, 75 (1977).
P.A.E.M. Janssen, Phys. Fluids 24, 23 (1981).

V.I. Arnol'd, Oridindary Differential Equations (MIT Press,

Cambridge, Mass., 1973).

M. Abramowitz and I.A. Stequn (Ed.), Handbook of Mathematical

Functions, p. 17 (Dover, New York).
M.I. Rabinovich and A.L. Fabrikant, Zh. Eksp. Teor. Fiz.
77, 617 (1979). [Sov. Phys. - JETP 50, 311 (1979)].

E. Infeld, Phys. Rev. Lett., 47, 717 (1981).




15

FLGURE CAPTIONS

Fig. 1. Growth rate Y of modulation E cxp(it+ikx) on uniform
pump field Eo' as a function of wavenumber k. Dashed line shows
effect of pump depletion: an initially unstable mode k causes
instability to be quenched by extracting enerqgy from the opump.
Fig. 2. Phase-space for k2 - B/2. Note that this is a cylinder,
obtained by identifying lines 0 = -2+ and = = 2-; tan: =

ZBsinﬁ/[EO(4k2/B-1)]. Dot-dash curve shows relative vosition

of phase-curve of Fig. 3.

Fig. 3. Phase-curve for initial conditions Eo =1, £E = 0.5, and

k = 1.2. Location of hyperbolic fixed points is shown.

Fig. 4. Example of phase-curve traversing phase-spacce. Initially,
E = .531, E = .86, k = .6, and » = .987 . Location of fixed

points is indicated.

: -y 2
Fig. 5. R(1_/2) v IEQ15/2)!“/§E (t=o)}2 as a function of
k#o ©
number of modes used in computations; T, denotes the recurrence
time.
. o (2, |2 . .
Fig. 6. (a) R ;Eklt)} /gho(t=0), as function of time,
21

using 64 modes. (b) Spectrum of Langmuir waves in k space at

instant when R is maximum.
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TABLE CAPTION 1

Table 1. Distribution of energy amongst the modes for various
levels of truncation of the nonlinear Schrodincer equation at
half the recurrence time. Mode number n corresponds to the
term énexp(inkx) in a Fourier representation of the electric

field; n = o being the pump mode.




NODE NUMRFR

17

TABLE T

0

12

16

NUMBER
DF MODES

IN COMPUTATION

1
o
t
|

AMPLITUDE AT HALF THE RECURRENCE TIME

3 16.96 10.57 - - -

5 14.20 11.82 3.244 - _

7 13.39 12.06 3.821 1.189 _

9 13.19 12.08 4.030 1.326 0.4324
64 13.14 12.07 4.095 1.391 0.4727
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in One Dimension

B. Hafizi*
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University of Colorado
Boulder, Colorado 80309

Abstract f
The modulational interaction of Langmuir waves in the

absence of forcing and of dissipation is studied by pertur-

bation theory and by numerically solving 4-mode and 128-mode

truncations of the zZakharov equations, In the 128-mode sys-

tem, following the usual weak-turbulence process of inverse

cascade a Langmulir condensate forms whose self-modulations

lead to the formation of intense Langmuir wave packets which
propagate with fluctuating amplitudes and velocities. The
behavior of the 4-mode system follows that of the 128-mode
system for a brief time interval before the formation of the
condensate in the latter. 1In both cases several diagnostics,

such as the two-time autocorrelation function, indicate a

partially stochastic late-time behavior. It is shown that
this behavior is consistent with the rigorous perturbation
theorem of Kolmogoroff, Arnol'd and Moser, and that the non-
integrability of Zakharov's equations is due to the presence .

of everywhere overlappring resonances.

*Permanent address: Science Applications, Inc., Boulder, Colorado
80302.




I. Introduction

The efficacy with which a powerful laser or relativistic
electron beam may be used to heat a plasma is intimately con-
nected with the problem of Langmuir turbulence. The under-
standing of the latter was greatly advanced by Zakharov1 who
derived a self-consistent pair of equations describing the
interaction of Langmuir and sound waves. These fluid-like
equations provide a succinct description of many phenomena,
including the modulational interaction and incipient collapse
of plasma waves.l'2’3'4

Recent progress5 in the study of plasma turbulence based
on the direct interaction approximation uses externally-generated
sources of noise, and damping in the Zahkarov equations. The
application of the dynamical renormalization grouo is
also based on an open system.6

In view of the tremendous excitement that has been generated
by the studies of intrinsic stochasticity exhibited by a number

of nonlinear evolution equations7'8’9

it would appear worthwhile
to examine the Zakharov equations in a similar vein. In parti-
cular, there is already some evidence that the Zakharov equations
are not solvable by the method of the inverse scattering problem
and that they do not possess any symmetries (and therefore con-
stants of motion) apari frcm those associated with the invariance

group of their Lagrangian density [namely the Hamiltonian, the

momentum, and the boson (or plasmon) number]. The evidence alluded




to in the foregoing ~ and this is only circumstantial evidence -

10

comes about in computational studies in which, rather than the

more well-known elastic collisions of the solitons described by,
say, the Korteweg-deVries equation11 , the solitons of the
Zakharov equations under certain circumstances fuse oncollision.

It is well-known that the nonlinear Schrddinger equation
(which is a limiting form of the Zakharov equations) is solvable
by the method of the inverse-scattering problem and that it

possesses an infinite set of constants of motion.12

Thus a trajec-
tory of this equation, lying at the intersection of the level-
surfaces of all these motion-invariants, is severly constrained

in its topology and its disposition relative to nearby trajectories.
One thus finds that waves of finite amplitude on deep water (i.e.,
3tokes waves) described by this equation show such remarkable
properties as recurrence and phase-coherence over long distances.13
Then, if it is true that the Zakharov equations have only a few
integrals of motion one might expect non-recurrent behavior .

In the present work we describe some initial-value solutions
of the Zakharov equations in one spatial dimension. Starting from
a single monochromatic wave and small-amplitude noise in the other
modes we find that a Langmuir condensate forms through the process

of inverse—cascade14 (or parametric instability). The self-

14,15

modulational interaction of the condensate then develops intensec

1

Langmuir waves™ that propagate in x space with fluctuating velocity

and amplitude. Based on these and other information, such as the

behavior of the autocorrelation functions for the various modes,




! it 1s concluded that the Zakharov oquat tons can show ilutrinsic
| stochasticity. The theoretical foundation for this behavior
i1s provided by the rigorous perturbation theory of Kolmogoroff,

7,8

Arnol'd and Moser. It turns out that the Hamiltonian of the

Zakharov equations 1is degenerate and the the tori of the zero-

order Hamiltonian are destroyed under the influence of arbitrarily
small perturbations. Further, the presence of everywhere over-
lapring resonances accounts for the nonintegrability of these

equations.

II. Parametric instability and 4-wave interaction

There are basically two processes involved in reaching the
late-time behavior of the solutions of the Zakharov equations:
First, there is the parametric instability of a (large~amplitude)

wave leading to the formation of a Langmuir condensate in k space14

14,15 of the conden-

and second, the self-modulational interaction
sate, which results in the appearance of flutuating, intense
Langmuir waves in x space.

As noted in the Introduction both of these processes find

a self-consistent description in the form of Zakharov's equations:
[iL‘vE+(3Te/2mmp)ﬂilé(f(,f) = (Zﬂez/mwo)ﬁi‘.,
(i-CalIN(x,8) = (1/4m>:~.;{iz(2,

where E(%,t) is the low-frequency envelope of the Langmuir field:

ELang(x’t) =(1/2E(x,t)exP(-1mpt)+c.c.; N(%,t) is the perturbation

in the background ion density, N_; wy 7 (4nNoe2/m)1/’ is the plasma

frequency, m(M) being the electron (ion) mass and e the electronic

charge; C5 : l(ycTC+\iTi)/M]1/’ is the sound speed, TG(T ) being

i

the temperaturec and .“(..) the adiabatx:iity i1ndex of electrons (.ions).




Defining dimensionless variables through

the equations become
(iat+a§)E = NE , (1)

(Bf-3 )N = 5 [E[? (2)

here r_ = (Te/4nNoe2)1/2 is the Debye radius and

In Eq. (2) the term B;IElz is (proportional to) the pressure
force of the Langmuir oscillations on the sound waves. The com-

pletely integrable nonlinear Schrddinger equation is obtained
E? 31nE

N —— 2 -IB s A3
when BWNOTe' (rD 3 < 9 On the other hand, the validity of

the Zakharov equations is guaranteed provided

E2
87N_T, <1 ’ (3)
and
krD << 1 ’ (4)




in the last inequality k represents the dominant wavenumber in the

spectrum. In gencral, the wavenumber is given by 20v /1, where
is an integer rovresenting the mode number and Lors the pevonda v
length.

We now derive a set of evolution equations for 4 wave processcs, one

of whose diagrams is shown in Fig. 1, where two pump waves of amplitude L and
wavenumber ko interact via an intermediate sound wave of amplitude

N, and wavenumber k, producinyasStokes (down-shifted) and an anti-

k
Stokes {up-shifted) Langmuir wave of amplitude E; and E, and wave-

number ko+k and ko—k, respectively (k<0); i.e.,

E(x,t) = +!E_expl-ik x) +E,expl-i(k +k)x]+4E exp-i(k~k)x} ; |

N = %[Nkexp(—ikx)+N;exp(ikX)] '
vV = %[Vkexp(--ikx) +V*exp(ikx)] ,

k

where V, the "hydrodynamic" velocity, satisfies

a 3 = .
tN + xV 0

Substitution of these expressions into Egs. (1) and (2) yields

éo + %(ezsinw+elsin0) =0 ’ (5)
ne_

é - T sin¢é = 0 ’ (6)
ne_

é, - — - siny =0 ' (7)

n-kv sin¢ = 0 , (8)

|
|
1




. e
v + kinsing + $°le,sin(y+¢)-e sin(0-¢)1} = 0 , (9) )
. A n, <2 e1 €5
g - k(k+2ko+ﬁcos¢) + f[g_ cosy +(€— - E:)cosﬁ] =0 , (10)
o] o]
* _ k,v'-n? ®o _
¢ - ! cos¢ - y—le,cos(y+¢) + e cos(8-¢)]1} = 0, (11)
" + k(k-2k Y cosd) + E[—l ose+(fi - EQ)Cosw] =0 (12)
v o n L'e ¢ e, e, !
wherein a super dot denotes a time derivative, and
EO = eoexp(i(bo) ’ i
E, = e exp(i¢,) '
E2 = ezexp(i¢2) '
N, = noexp(i¢)) '
Ve =V exp(i¢v) ’
8 E ¢°°¢1+¢n ’
Y = ¢o'¢2-®n '
¢ = ¢n-¢v ’ - ;

with e , e , e , n, v, ¢,, ¢ , ¢ , ¢

) n’ and ¢v being real-valued

1l

functions of time.

Examining Egs. (5)-(12) one can extract the following

constants of the motion




8
— 2 2 2 ;
: b = e, + e1 + e2 '
%
i = 2 2 _ 2_
| p koeo+(ko+k)e1+(ko k)e2 2nv cos¢ ’
! 2.2 2,2 2.2 2 2 2neo
h = koeo+(k°+k) e1+(ko-k)'e2+n +v +—ET—4e1cose+e2cosw) ’

(13)

representing the boson number, the momentum and the Hamiltonian,
respectively.
The corresponding invariants of the untruncated Zakharov

equations are proportional tolo’16

o]
|

= J dx!E(x,t) |? .

o {
J dx(E.axE—E’%xEHJ dxNv

jao)
1]

i
2
j dx [ E{"+NIE|7+HV/2(N?+V?) ] ,

in the integral reoresentation.

As is well-known,14 a monochromatic pump-mode of wavenumber

korD > %/m?M is unstable to the inverse-cascade process whereby
it decays successively into daughter waves until a Langmuir con- -

densate is formed in the region o < IkrDI < % m/M. With the
formation of the condensate there arises the question of the
means by which to dissipate this energy in a region of phase-

space where the uvsual process of Landau damping, radiation, etc.

are ineffective. [By dissipation we mean the transformation of
the electrostatic cnergy residing in the condensate to other forms,

via processes lying outside the scope of Eas. (1) and (2).]




The way out of this difficulty was first pointed out by

Vedenovand Rudakov15 who showed that the Langmuir conden-
, sate is unstable to spatial modulations when §?ﬁ;¥; 2 (AkrD) ,

where Ak is the average spread in the wavenumbers of the
condensate. It was later shown that the self-modulation
can lead to the formation of intense solitary waves, thus

transferring energy into the dissipative region.1

I1I. Computations
The computations were performed by the Galerkin17 method
of using a finite number (128) of Fourier modes spanning the

solution space. The integration of Egs. (1) and (2) was carried

out by splitting the evolution onerator into its linear and
nonlinear parts. The linear part of the integration was carried

out exactly in k space and the nonlinear part by implicit methods
in x space. Aliasing errors were avoided by the usual method.18

The errors sustained in B, P, and H were less than 1%.

.
s 7

Landau damping is neglected since ErD << 1 and Te >> Tl

further, following the definition given after Eg. (2), n = Yo = 1
since the electrons are isothermal on the ion-sound time-scale.

The periodicity length used in theso computations is L = 64x%(%)%r0.

The initial-value problem was set-up with iorD = 2.4 x
FRIM(E, = B = 45.2), (K +k)r, = -0.6 x 3/@/M(E, ,, = E,= 0.021)
o o
and all the other modes at round-off amplitudes (<107!®). The

Stokes mode chosen (Ro+i) is the one with the fastest parametric

growth rate, obtained by solving the usual dispersion relation19

for parametric instabilities for constant Ek = EO:
(o}

v _ 3 212 2, 2 3 - 2. %2 i 2 ? Yo .
w" =4kk jw +(4k] k‘-1)k’w?+4k kom (4k .-k +2,Eo[ /L?)k" = 0 ;

(14)




with the imaginary part of w determining the growth-rate.
Fig. 2 shcws the spectrum of Langmuir waves at wpi =192 (M/m).

In this figure we sce the pump-mode and a strongly driven Stokes

mode. Since the magnitude of the wave number of the latter,

0.6 x % m/M, is less than %Kﬁ7ﬁ it cannot decay. As usual, one

can also see a prominant anti-Stokes (up-shifted) mode. The

19

standard normal-mode analysis determines the ratio of thg

Stokes mode L, to the anti-Stokes E, to be

i K - 2
E T (ko k)

=] = | P 3
wo+“ (ko+k)

where Wy is the freauency of the pump-mode. Note that this ratio
is independent of the pump-amplitude, Eo. The ratio of the ampli-
tudes determined from Fig. 2 1is within a factor of three of that
given by this exoression. Of course, this agreement is very rough
because the above formula is obtained from a normal-mode analys.is
with a fixed pump amplitude, whereas the computations refer to a
system (and in particular a pump-mode) that changes considerably.
Although the Stokes component cannot decay into another
Langmuir wave with the emission of a sound wave, it is still
unstable with respect to the 4-wave instability shown in Fig. 1.
We have checked that, making a rough estimate for the amplitude
of the Stokes mode (as the pump-mode), the unstable modes pre-
dicted by Eq. (14) correspond to the sub-satellites of the Stokes
mode, designated ss in Fig. 2. The sub-satellites on the right-
side of the pump-mode and the right-side of the anti-Stokes mode
could possibly be generated by parametric interaction with the

sub-satellite on the right-side of the Stokes mode. Thus, the
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wavenumber and frequency selection rules for the 3-wave process20

(neglecting the anti-Stokes mode) Langmuir-»Langmuir+Sound are

respectively
ko = (ko+k) -k ’ (15)
ko = (k,+k) *- k] , (16)

in dimensionless units.
One can now excite a sub-satellite of the pump-mode, with
only a small mis-match for the frequency selection rule using

the existing sound wave:
[(k +k) +6k1-k » k_+8k ' (17)
[(ko+k)+6k]2-|k| - (ko+6k)2 . (18)

If Eq. (15) is satisfied then so is Egqg. (17); if Eg. (16) is
also satisfied, then Eg. (18) has a frequency mis-match o (k).
In Egs. (17) and (18) (k°+k)+6k is the wavenumber of the sub-
satellite on the Stokes mode and ko+6k that for the sub-satellite
on the pump-mode.

One can also generate sub-satellites to the sound waves
(as observed in the computations) by beating a sub-satellite

of the Stokes mode with the pump-mode:

ko - [(ko+k)+$k - {k+6k) '

ko =+ [k +k)+8k]? - [k+6k| ,

in obvious notation.
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As regards to the sub-sub-satellites and the sub-sub-sub-
satellites we believe that they are excited throuah the modula-
tional (4-wave) 1nstability of the Stokes mode, and harmonic

generation .

This is suggested by

the disposition of the sub-sub-satellites and the sub-sub-sub-
satellites with respect to the Stokes mode and its sub-satellitcs

in k space.

Fig. 3(a) shows the k spectrum of the Langmuir waves at
mptlE 624(M/m) . The Langmuir condensate has already been

1 has led to the

formed and its self-modulational interaction
development of an intense solitary wave as shown in Fig. 3(b).
Fig. 4 shows a plot of R(t) Ek;k !Ek(ﬁ)l7/lEk (t=0) |’ as
a function of time. After a period of recurrent egergy exchange
- principally between the pump and the Stokes mode ~ an apparently
time - asymptotic state is reached, with fluctuations of about
5% on the mean value of R. 1In this late-time stage the pump
mode is almost completely devleted and most of the plasmon
energy resides around the origin of k space.

At this juncture it must be pointed out that a picture

similar to that in Fig. 3 1s obtained if one starts with a

broad-band pump, since in both cases the Stokes wave and its
21

sub-satellites form a broad spectrum around k = 0
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1V. Theory and Discussion

We now proceed to examine Fig. 4 in more detail in order
to gain an understandina of its two main features, namely the
initial periodic behavior and the final random oscillations
sunerimposed on a mean Jlevel.

Examination of the k spectra of the Lanamuir oscillations
reveals that in the initial stages most of the enerqgy resides
in the pump and the decav mode, which exchanaes energy in a
neriodic manner. Eas. (5)-(12) for the four-wave system have
been solved for the same set of initial conditions as that for
the many-mode computations. Fig. 5 shows the amplitude of the
»ury mode as a function of time, which can easily be compared

with Fig. 4. From Pig. 5, the pump is depleted to a value - 12.5,

45,22-12.62
45,22

at which time R = = 0.92, compared to 0.725, 0.9, and

0.73 for the first three maxima of R in Fia. 4, for the 128-mode

system. The oscillation period for the pump in Fig. 5 is 37 %u;
M -1 _
—-w_ .

m p

We note that the oscillatory part can also be accurately described

and that for the initial oscillations in Fiq. 4 is 44

by a 3-wave system20 in which the anti-Stokes mode e, is neglected
in Egs. (5)-(12); this being due to the fact that this mode has
relatively small amnlitude.

We now proceed to examine the late-time behavior of our
solutions. After the formation of the Langmuir condensate
and its self-modulation, there appear intense Langmuir waves
in x space which propagate with fluctuating amplitude and velo-
city. It is well-known that the decay instability is subsonic

provided14
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om
N - ’

8"N T M

wherein éo is the peak value of the electric field in x space.
_51___; im
8WNOTe 3 M

Further, due to the decay process and the associated emission of

For the parameters of our problem we find at t = 0.
sound, weak turbulence is accompanied by sound turbulence. Under
these circumstances one observes break-up and fusion of Langmuir wave
pad«xs.lo Fig. 6 shows the space-time path of the fluctuating wave
packets. One can see that as it progresses its speed on occa-
sions approaches that of sound and then abruptlyv slows down. Its
terminal speed is close to 0.4CS with small fluctuations about

this value and little emitted sound energy. However, the ampli-

tude of the wave-packet varies within a factor of 3 in this time

interval, 630 g < mpi < 720 %. It must be noted that at
about wot = 636 %, for example, one observes the wave packet

to slow-down cornsiderably and to break-up intc two wave-packets
one of which then intensifies and moves away from the other. (/n
creaple of break-un iz given later, Fia. 10). The displacement
Slotted in Tig. 6 is that of the dominant wave packet observed.
(In the snap-shots obtained in our computations there has always

been one dominant wavenacket even when two wavepackets have collided

[ 17
o

or one has broken uo.) The larsest value of TN T in this
v n o e

nroblem is 4 % in the course of computation. Fig. 7 shcv's the sound
momontum (=vadx, as given in the expression for P, following

Eq. (13)], indicating a fluctuating interaction with the Langmuir

oscillations in the late stages.
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Let f(t) be one orf the variables characterizing the systenm.
The two-time autocorrelation function for this variable is qgiver

by

T

f N
I At [£*(t+1) - <£*>][f(t) - <f>] ' (19)

o =37,
where <...> denotes the time average. We have computed the (real-
part of the) two-time autocorrelation function for the Langmuir

modes zero through fifteen, two of which are shown in Fig. 8.

The integral in Eqg. (19) was performed for the time interval : |
4
~ M . .
630 g < mpt = 720 o The decay of the autocorrelation function

to zero as 1+x is regarded asg a signature of stochastic flow.za

>
Bearing in mind the limited time-lengt® of our comoutations, Fia.
8 indicates that our varticular problem ig partially stochastic:
'The definition of autocorrelation function given in Eg. (19) is
that usually used in real experiments as opposed to idealized

mathematical systems where the time-averaging is performed over

an infinite time interval. The finite number of sample points
implies that relatively large errors are incurred in evaluating
the autocorrelation function, which error increases as T increases

due to the reduced number of sampling points. For the eigth modc,

Fig. 8(a), the error at mpf = 5 is 3%, that at wpf = 25 is 20%

and that at mpT = 40 is 60%. We have referred to the state of

the [28-mode system as partially stochastic since, given the errors in-

volved and the limited time over which the system has evolved,
once cannot conclude that the two-time autocorrelation function
decays to zero. In fact, the very presence of one or more in-

tense Langmuir waves implies that there is a certain cohegrence

anongst the Fourier components that make up the wave packet(s). Particularly
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in the late-time stages of the computations we have observed that
the wave packets propagate for distances corresponding to at
least a few decorreclation-times (i.e., the time duration in which tbhe
correlation function fall by a factor e) while maintaining their
integrety, albeit with fluctuating amplitucdec and velocities. Thus,
although the autocorrelation functions decay to about 1/3 of their
peak value, there is certainly the remanent of organized behavior
in the 128-mode system, for the particular parameters used here. We refer
to such behavior as partially stochastic. The autocorrelation
functions for the other modes have a similar behavior except that
the numer of oscillations per unit time interval increases as the
mode number increases. We have also analyzed the temporal spectrum
of the Langmuir oscillations (at a fixed point in x space), obtainina
a continuous, broad-band spectrum over a decade and half of
frequency.

The next obvious auestion is how these results are altered
as one increases the initial pump amplitude? For this purpose
we need to rewrite the four-wave Hamiltonian in action-angle
variables so as to be able to use the Kolmogoroff-Arnol'd-Moser
stability theorem23 and some of the numerous numerical studies
performed to investigate the stochastic behavior of Hamiltonian

7,8,9

systems. The details of the calculations are given in the

Appendix; the four-wave Hamiltonian has the form

h = [TSIJO"’(ko*k)’J1+(ko-k)’J,] + k] (T4+3u)
k|J
+ 2 T, o)%(J3C083¢)3+JuSin3¢.,);’[J;15 COS(¢>o-¢>1-¢n)
% (20)
'+ J; cos(do=0o+0 )]
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wherein the J's denote the action variables and the ¢'s the

angles, with |

L

E. = LJ.)? exp(-i¢.), j =0, 1, 2
i { i p( ¢j) (3 )

- | I / cox L 7
N, = (LIk]) *(J; cosd, + iJ? sinp,) , 5

- Js.% sing j
(bn arc tan[(:],—:;-) Eﬁﬁ] ' (21)
v, = i(Lik) 307 sing, + id¥cos ¢,)

J N O

note the change in the sign of the exponential for the electric
field as compared to that given following Eq. (12) (For the trans-
formation to action-angle variables it is natural to use the vari-~
able U defined in the Appendix, Eq. (A2). However, for our compu-
tational work for reasons of symmetry we have found it natural to
use the "hydrodynamic" velocity Vv, defined just before Egq. (5);
they are related via V+BXU=0.)

The basic question is if the Kolmogoroff-Arnol'd-Moser theorem

can guarantee the preservation of the tori of the unperturbed sys-
7,8,23

tem. The basic requirements of this theorem for stability are
: i) The nondegeneracy condition
detleml £0 , 2,m=0,1,...,4

ii) The condition for isoenergetic nondegeneracy

wim “)R.

0
wn

det # 0 £,m=20,1,...,4
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iii) Absence of low-order resonances, i.e., no relations

4 4
.Eoziwi = 0 with integers %; such that 0 <i2012il < 4.
i= =
In these formulas Wy is the frequency corresponding to the
3h
. . L - & = o _ -k) 2 i
action variable JQ, ie. w, T o0, 37, (ko k)2, hO being the
zeroth order Hamiltonian
h = k33 + (k +k)2J_  + (k_-k)2J_ + |k|(J_+J ):
o] o O o) 1 o) 2 3 y

in addition, Wom denotes the derivative of W with respect to Jm.
Straightforward calculations show that conditions i) and ii)
fail for this Hamiltonian.

Now consider tte decay mode corresponding to the perturbation

term cos(¢0-¢l—¢n) . By definition, and using Eg. (21).
. 3h
0o = 53; = ké /
. aho
v, = 33, = (k0+k)2 ’

cos o, =o,)
o, = :
n -~ cos?*¢ +(J,/J3,)sin?4,

k] = [k

where in the last step we have specialized to a diagram of the
kind shown in Fig. 1 in which J =J and ¢,=¢,.
The decay is resonantly driven when

k2 + (—1)(k3k)3 + (-1 |k| =0 , (22)
and the coefficients of this relation give
1+ -1] + [-1] = 3<4

whence condition iii) fails.
The other angle dependent term, cos(®0-¢y+¢n),1eads to another

resonance




ké + (—l)(ko—k)2 + (+1)|k|] =0 (23)

which again fails to satisfy condition iii).

As 1is well—known,7’8'9

the presence of two or more resonances
is the basic ingredient required for chaotic behavior. A graphic
confirmation of this is shown in Fig. 9, which is discussed in the
sequel. But first we wish to point out some of the pecularities
of the Zakharov system.

In general, the resonance conditions for a Hamiltonian system
depend on the action variables, with the result that the resonance
is satisfied on a certain subspace of the phase space. Given two
or more resonance conditions the proximity of the resonant subspaces
is a crucial factor in determining the threshold for stochasticity,
which will be limited to the region formed by the union of the
resonant subspaces. But, the resonance conditions given by
Egqs. (22) and (23) are independent of Jo' J,, and Jz. Thus, in
the action space spanned by (Jo’Jt’Jz’Jg'Jk)' these two resonances
overlap on the hypersurface J3=J“ for all Jo, J

J, (provided

1’ 2

these arc small enough for the validity of perturbation theory).

We therefore reach the important conclusion that the Zakharov

equations may be stochastic for arbitrarily small values of Jor J,v

and J, (but not zero). It should perhaps be pointed out that the
extent to which, for example, the temporal behavior of the
electric field wculd appexr to be irreqular or random, is deter-
mined by the absolute value of the nonlinearity, and the randomness

would grow as the nonlinearity increased.
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It must be remarked that the presence of a single resonance and
the failure of the Kolmogorov-Arnol'd-Moser theorem means that
the tori of the zero-order Hamiltonian are severly distorted,
but the system is still integrable. As soon as two or more
resonances overlap, the global invariants (or constants of
motion) of the system are destroyed, leading to a nonintegrable
motion:LBIn otherwords, the speculation that the Zakharov
equations are noninteqgrable, which arose from numerical studies1
in which Zakharov solitons were observed to fuse on collision, or

breakup, has its fundamental basis in the presence of (everywhere)

overlappina resonanca5. ¢ should also be pointed out that the

Kolmosoroff-Arnol'd-Moser theorem is basically a theorem of sta-
bility; i.e., it guarantees the preservation, under perturbation,
of the tori on which the unperturbed flow takes place when certain
conditions are satisfied. When these conditions are not satisfied,
the destruction of the tori is possible. The numerical results
presented are therefore necessary in order to confirm this possi-

bility, as is the usual practise.7’8

Now consider the subspace J, =J J on which the Hamiltonian

4

is

- = 2 -—
hy = k23 + (k *tk)23  + (kg k)23 + 2{kx|g

k|3 J
+ 2¢e( 2

L
£2-) FLTjeus (0,70 =) + Jlcos (4 -t ,+0 )],
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where an ¢ has been appended to the nonlinear term to indicate

smallness, and the following (time-dependent) canonical trans-

formation
2

F(¢'QIJO;¢1IJ;;¢21327¢nIJ) = QZOJQ((t‘Q'—th) + J(¢n-wnt)
The new angle variables are, by definition,z3

_ J3F _ - _
012»3']?—¢% ugt L =0,1, 2

= 9F _ -
“h T %3 T ¢n T upt

and the new Hamiltonian is

k13,3
h = h ___ig_)%[j?cos(ao—al-an)+j§cos(ao—az+an)].

© 4+
O (0]

= 2¢(

25

In consequence of this expedient we find that if hé governs a

stochastic motion, this stochasticity will persist for e+o+, since

~ is just a multiplicative factor which only affects the time scale.

Egs. (5)-(12) for the 4-wave system have bheen derived with
no assumption as regards the value of ko; thus, the resonance
overlap in Egs. (13) and (20) exists also for interactions involvinq
four waves in the condensate, and therefore the condensate itself
can be stochastic.

Without going into details, we report that as the pump amplitude
is increased, the 4-wave system becomes (more and more) chaotic; that
is, the two-time autocorrelation functions for the variables
decay to zero (approximately) in a very short time 1 [See Eq.

(19)]. Fig. 9 shows the chaotic temporal behavior of the pump

mode for the four-wave system, starting from a pump amplitude

e, = 88.6, all other parameters being the same as for Fig. 5.

A similar behavior is true ?f the many-mode system. Starting

§;§§%; - 3 M after the formation of the

Langmuir condensate and its self-modulation, there appears a

from a state in which
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very intense Langmuir wave and one much less so, both of which
propagate with fluctuating amplitude and velocity. Fig. 10 shows
an example in which a wave at x -~ 13 breaks-up into two

and two at x - 35 and 38 merae into one another;

M M

Fig. 10(a) 1is at t = }40 = Fig. 10(b) is at th = 144 o

p i
lEoi
31N T
o e

tation. The two-time autocorrelation functions for the Langmuir

equals 70 M in the course of compu-

The peak value of M

modes, Fig. 11, have a form similar to that shown in Fig. 8,

with the difference that, for each mode, the decorrelation time

is decreased as comvared to the previous one in Fig. 8. The
decorrelation time is defined to be the time semaration “p{ at
which the correlation function falls to a value l/e. Comparing
Figs. 8 and 11 one can descern a somewhat nore rapid fall-off in the auto-
correlation functions in the latter. 1If one imagines fitting an
envelope of the form CXO(-T/lc) to these curves, with t_ being
the decorrelation time, the envelopes would hug the vertical
axis in Fig. 11 more tiqghtly than in Fig. 8, hecause of the more
rapid fall-off in the former. Futher, the first "recovery" of
the autocorrelation function after its first dip towards zero

is smaller in Fig. 11. (tThe errors involved in Fig. 8 and 11

are about the same.) This indicates (but not prove ) that the
degree of stochasticity incrcases with the intensity of the ini-
tial Langmuir field. This result and the suggestions that the
many-mode system is chaotic should not be surprising in view of

our foregoing arquments as regards to the presence of overlapping

resonance in the 4-wave system. Thus for the many mode systcm
one might expect a large number of overlapping resonances whose
simultancous “"pulling” on a phase-space trajectory leads to com-

7,8,9

plicated and stochastic flow, specially in view of the in-

dications that the Zakharov equations possess very few constants !

of motion.




For simplicity, let us now consider the following form of

Zakharov's equations

(13,_+A)E = NE R (24)
t
i
(a;-A)N = A|E|2 , (25)
wherein A = 3; + 3; + a;; similar equations have been used to

study the stability of solitons {which are special solutions of

the one dimensional Zakharov equations, Egs. (1) and (2)], to

perturbations?4'25'26 Using the Lagrangain dersity

ircgn ) 1 1
cgg;l S[E*3 E-E(3,E*)] ~VE*-VE + 5(3,U-|E|2)2 - 5(Vu)2 ,

the Fourier expansions

1 .
E=f3 ) E exp(-ik-r) ,
k3
No= o Y N, exp(-ik-r)
L3kls ~ =~ !

(N=3tU-|EI2 being the momentum conjugate to U) and following the
procedure outlined in the Appendix, the Hamiltonian for Egs. (24)
and (25) in action-angle variables is

= 1 %
H = E[kZJk+|5](IE+KE)] * 3% L glgle,Jk+k,)

. Y .
2 - - -
X (Ikcos £, +K 51nzck) expl l(¢k‘ ¢k+k’ ak)]

~ ~ ~ -~

(26)




wherein 3

E}E = (LaJ]S) eXP('l¢}§) ’
2L31 213K
Uk = K)%sini + i(_.———}-sg)%cosck ’
& Ik ! - x| -
N, = (2L3|k|1 )%cosg + i(2L3lk|K )%sinc
kT <11 eosty <) ety
K sing
“k = arc tan[(__}_s.)L5 u___i] ,
Ik COSQK

and L3 is the volume.

The linear dependence of the zero-order part of Eg. (26) implies
the violation of the nondegeneracy conditions. Consideration of

decay processes of the type ¢y - = 0, (cf. Fig. 1) for example, will

“Oak "%

bring in overlapping resonances and the consequent stochastic flows.

It must be mentioned that in all the computations presented
here the maximum wave number (or the number of modes used) have
been chosen in such a way that a negligible fraction of the energy
lies in the large wave number region. Indeed, this is a necessary
condition for the accuracy of the code [as measured by the (semi-)
conservation of the Hamiltorian and of the momentum.]

In closing we note that several computations have been
performed with different periodicity lengths L, using the same
(initial) boson number per unit length and the same modes with
no change in the results obtained. Further, we have also per-
formed computations in which modes =32 through +32 (c.f. Fig. 2)

wé;é'lnitially at the same level (=0.021), the pump mode at E, =

kO
-15

45.2 and modes 33 through 64 and -33 through ~64 at - 10
(c.f. Section III). 1In this case the late-time behavior was
stochastic and similar to the previous cases, except that the
transition to the time-asymptotic (in the context of our compu-

tations) state was faster. This is because there were fewer




large-amplitude oscillations initially (c.f. Fig. 4, for mpt £ 150).
The reason is, of course, that with so many modes in the condensate
region at relatively large amplitudes and the fact that for a given
pump mode there is band of modes that are parametrically unstable,

the condensate forms much faster,
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V. Conclusions

The results of computations on wave-wave interactions in a
plasma described by the Zakharov equations have been reported.

A number of diagnostics, such as the two-time autocorrelation
function,used in those experiments indicate that the interaction
of plasma waves in the absence of forcing and of dissipation
leads to partially stochastic flow, wherein there remains, in
the parameter range reported here, remanents of organized be-
havior, such as intense, large amplitude Langmuir waves.

It is argued that the fundamental theoretical basis for
such behavior lies in the fact that the Hamiltonian Zakharov
equations are degenerate (in the sense of the rigorcus pertur-
bation theory of Kolmogorov, Arnocl'd and Moser) with everywhere
overlapping resonances. Herein lies the reason for the non-
integrability of the zZakharo' - Juations, a conclusion which is
independent of the dimensionality of the system. For the para-
meter range of interest to this work the effects of Landau
damping are negligibly small. If the width of the wave-number
spectrum is sufficiently large so that the influence of dissipation
need be included it is possible that with appropriate amounts of
forcing the wandering phase point corresponding to a solution
of Zakharov's cquations falls into the basin of an attractor
introduced by the dissipation. 1In this case it is possible that

the chaotic motion would take place on a strange attractor.

B ..|
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Appendix

| The purpose of this Appendix is to cast the four-wave
Hamiltonian, Eg. (13), in the form required for stabilitv

analysis via the Kolmogoroff-Arnol'd-Moser theorem. To do i

this we must determine the action-angle variables for the
Langmuir and for the sound waves.

It can easily be verified thatlo’l6

g= %[E*\sts-(th*)}:]-(sxs*)(3x1~:)+7(otu-!a|2)2-%(axm2 (Al)

is a Lagrangian density for Zakharov's equations, Egs. (1) and (2),

where U is related to the density perturbation N (which is the

momentum conjugate to U)
N =3,.U-~- [E|2 (A2)

L4

We need to consider a single mode only,

E = % E exp({~-ikx) ,

k
~ Ly exo (- vex 3.
U = L[Ukexp( ikx) + Ukexp(lkx)] R
and the bare Lagrangian densities for the Langmuir wave, LL'
and for the sound waves, LS’
L. = rdg= 1 (ErE -Erp ) - X2|g |2 (A3)
Lo . 2L kTkTUkTk L k! '
¥ 1 .
Lg = )(dgg%= ing 12 - k2lu ly (R4)

in obvious notation. The respective Hamiltonians are, following

the usual procedure,

H = 7—|E 12 (A5)

1 .
Hg = _L.(;Nk,z + k2|u,[2?) (A6)




We first determine the actijon-angle variables {or the

Langmuir waves. This is particularly simple since

1.
Ey = (LJ) ¢ exp(-id) (A7)

with J being the action variable and ¢ the angle variable is the
required transformation. To see this note that the Langmuir

Hamiltonian (AS5) in terms of J and ¢ is

— 2
HL K2J

which is independent of $, Justifying the designation of (J,¢)

as the action-angle variable. We now need to show that the trans-
27

formation (A7) is canonical®’, i.e.,
T A = ~
a7~ do = dpy dEk + c.c. (A8)
iEk*
2L
momentum conjugate to the coordinate Ek' as follows from Eg.

where -~ is the symbol of wedge product and Py = is the

{2a3). The right-hand-side of this expression is

. - *
p dE + dpk dEk idek dEk zdek dE

= id[J%exp(id)] ~d[J exp (-id)]
i expl(iv) "
= [—'_“‘-‘;5 AJ + iJ%exp(id ) d¢]
2J
exp(-i¢) X
~ L dJ - iJ%exp(-i¢) 44}
2J

= %[-idJ ~do -idJ ~d¢]
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= C?\T "d‘fW '

which equals the left-hand-side of Eq. (A8), showing that Eg. (A7)
represents a canonical transformation. (In manupulating the above
wedge product we have used the usual ru1e527, such as dx~dx = N,
dx~dy = -dy-dx, for any x and y.)

Next we examire the sound waves and write the Hamiltonian

(A6) as
1

He = E[Q§+k2P§) + (Q2+k2pP2)] (A9)
where Uk = P_+iP,; and Nk=03+iQ’. The Hamiltonian is now
similar to that of two simple harmonic oscillators, whose action-
angle variables are well-—known29

P o= (3, = (L3, |k|) %cos¢,  (A10)

3 7 \'!-]-(-l' siny , 03 = (L 3 .I) COSQ‘3 £

P, = (%)%cosol_, 0. = (L3, |ki)%sins,  (ALD)
Now,

N, = Q, + iQ, = (Iikl)%(J%cos¢ +ig%sing,)

'k 3 N ! 3 2 4 v

= n(cos: +isin¢
( n 151n¢n) '

wherein the expression for Ny given following Ea. (12) has been

used in the last step. Tt follows that
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. = Juy% sind.
v, = arc tan[(Js) cos¢?] (Al12)
e !5 2 BelA %
n (Lik]) (J,cos2¢ +J,sin2¢,) (Al13)

Using Egqs. (A7), (a9), (al0), (All), and (Al3) we have the four-

wave Hamiltonian, Eg. (13), in action-angle variables:

h = [k;JO+(ko+k)2J1 + (ko-k)szl + !kI(J3+Ju)
k[T o .
+ 2 T 0)2(J3c052¢3+JQs1n2¢“)¥[J?cos(¢o—@l-¢n) 3
+ J%cos(ﬁ -o,+0_)]
2 Pe=P2TP

(Al4)

in obvious notation.
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Figure Captions

Fig. 1. Scattering of two Langmuir waves (ko) into
a Stokes (ko+k) and an anti-Stokes (ko—k)

mode, mediated by a (virtual) sound wave ).

Fig. 2. Spectrum of Langmuir waves versus mode number
at wa = 192 %. (If k = %1 n is a wavenumber,

the integer n is the mode number.) p: pump
mode; s: Stokes mode; as: anti-Stokes mode;
ss: sub~satellite to Stokes mode; pss: sub-
satellite to pump mode; sss: sub-sub-satellite
to Stokes mode; ssss: sub-sub-sub-~satellite to

Stokes mode.

Fig. 3. (a) Spectrum of Langmuir waves at wa = 624 %.
{b) Corresponding electric field distribution
in x space, showing an intense vacket of
Langmuir oscillations (dashed line) trapped
in a local rarefaction in ion density -
(full line).
Fig. 4. Plot of R(t) = § |E (t)[%/|E, (t=0)]? as
k k
k#ko o
a function of time. (Values on the abscissa
nust be multiplied by the mass ratio % to

obtain actual mpE.) ko labels the wavenumber

of the pump-mode.




Tig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

A

Aamnlitude of pump-mode versus time for the four-
wave system. (Values on the abscissa must be
muliplied by the mass ratio % to obtain actual

L tl)

p
Displacement versus time for the solitary
wave shown in Fig. 3(b) (values on the
abscissa must be multiplied by the mass

ratio M to obtaln actual w £.) :E denotes
m p Cq

speed of the solitary wave in units of

sound speed CS.

Momentum in the sound waves as a function
of "time". (The values on the abscissa

must be multivlied by the mass ratio %

to obtain actual upt.)

Real part of two-time auto-correlation function
C(7) versus time separation wp% (values on the

abscissa must be multiplied by the mass ratio

% to obtain actual wp%.) (a) Eigth mode;
E?
- o _=~1lm
(b) eleventh mode. At t = 0 'é—j"-}‘:— ™ 3 ﬁ

Amplitude of pump-mode versus time for the
four-wave system, in the chaotic regime.

(Values on the abscissa must be multiplied by

the mass ratio % to obtain actual mpf.)




Fig.

Fig.

10.

11.

37

Flectric field (dashed line) and density
perturbation (full line) in x space, showing
solitary wave break-up.

(a) o t =140 %; (b) w t = 144 ¥ |

Real part of two-time auto-correlation function
C(i1) versus time separation mp? (values on the

abscissa must be multiplied by the mass ratio

M to obtain actual w T.)
m P

(a) Eighthmode; (b) eleventh mode.
E2
o

8ﬂNOTe

_ ~ 2 m
At t = 0, I M

.
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Ion trajectories in a space charge wave

on a relativistic electron beam

D. A. Russell
Department of Astro-Geophysics, University of Colorado,
Boulder, Colorado 80309
and

E. Ott
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Motivated by the possibility of collective acceleration of ions
trapped in an accelerating space charge wave on a strongly
magnetized electron beam, the ion trajectories in such a configura-
tion are studied. The motions perpendicular and parallel to the
beam direction are coupled by a nonlinear term in the ion
Hamiltonian that is proportional to the wave amplitude. Because

of this coupling, the motion deviates markedly from that of a

linear harmonic oscillator in certain resonant regions of phase

space. A sequence of canonical transformations is used to study ;

hm

the motion in these regions. It is shown that wave amplitudes
that are too small to trap beam electrons are too small to cause
these resonances to overlap. In the absence of such overlap, the

motion is not discernably ergodic in any three-dimensional sub-

space of the energy hypersurface because there exists a third




o

constant of the motion in addition to the total energy and

anqular momentum. These conclusions are verified using :
surface-of-section techniques to study numerically integrated |
ion trajectorics. It is observed that the third constant of

the motion constrains an ion initially trapped in a potential

well of the wave to remain trapped in that well. Therefore,

within the bounds of the physical model presented here,

ergodic behavior poses no threat to attempts at collective

ion acceleration in space charge waves on an electron beam.

{
1
i
i




I. INTRODUCTION

We consider the motion of an ion in a space~charge wave
on a strongly magnetized electron beam. 1In cylindrical geometrv,
the wave has both radial and axial potential variations
which couple the ion motion parallel to the beam to that
perpendicular to the beam. Due to this coupling, there is
not, in general, a constant of the ion motion in addition
to the total energy and angqular momentum. The absence of &
third constant of the motion could permit the ion's radial
oscillational energy to be converted into axial translation-
al energy and thus defeat attempts to trap the ion in the
potential wells of the wave. For example, if ions are
loaded with zero velocity from the edge of an electron beam,
then, when they reach the center of the beam, they have
kinetic energy in radial motion approximately equal to the
radial electrostatic well depth. This kinetic energy will
typically exceed the axial well depth since the amplitude
of space charge waves cannot be larger than a critical value
at which wave breaking (overturning) occurs. Thus, if at
some time during the particle's orbit a large enough frac-
tion of the kinetic energy of the particle is converted to
axial kinetic energy, then the particle will no longer be
trapped in the potential well of the space charge wave.

In § II we derive the ion Hamiltonian. A canonical

transformation to action-angle variables is introduced in




§ I11.A which allows us to study the ion motion in a con-
venient toroidal representation. In § I]I.B we prove the
existence of an approximate third constant of the motion
using perturbation methods. These analytical findings are
supported by studyilng the numerically integrated ion tra-
Jectories using surface-of-section techniques. Summarizing

remarks and conclusions appear in § IV.

IT. THE ION HAMILTONTIAN

Consider a cylindrically symmetric electrostatic wave
perturbation of a cold electron beam of uniform density,
ng. which fills a conducting cylinder of radius a (cf.

Fig. 1). A strong magnetic field in the z-direction is
assumed to constrain the electrons to move only parallel to
the z-axis. In the beam frame (i.e., a reference frame at

rest with respect to the beam electrons) we take

b (r,z,t) = ¢4(r) + @l(r)exp(i(k“z + wt)] ,
ve(r,z,t) = vl(r)exp[i(k“z + wt)] ,

and
n(r,z,t) = ng + nl(r)exp[i(k”z + wt)] ,

where ¢e 1s the electric potential due to the electrons, Ve
is the electron velocity in the z-direction, and Ne is the

electron number density. ¢1, vy and n, are small quantitics.




" B

To zeroth order, Poisson's equation,
2 =
\% ¢e = 4nene ’
implies that
¢0(r) = mnger

where e is the magnitude of the charge of an electron.

Linearizing the electron continuity equation,

an
e , 9
ot az e e

in the small gquantities n, and vy we find that

ivn, + 1k”novl =0 . (1)

The linearized electron equation of motion

ov ¢
m -t = _ €
e 3 iz

implies that
iwv, = ik“e¢l/me . (2)

m, is the mass of the electron. Eliminating Vi between

(1) and (2) we find that

m w

which, when substituted into Poisson's equation for ¢1(r),




6
yields
2
2 w
1 d 2 P _ _
a'—‘ ¢l(r) +F ar ¢, (r) + KH (—2— )¢l(r) =0
r w
(3)
- 2 1/2 .

where wp = (4nnoe /me) is the background electron plasma

frequency measured in the beam frame.

Equation (3) is to be solved subject to the condition
that ¢l(r) vanish at r = a, so that the electric field,
V0. has no componcnt tangent to the wall of the conducting
cylinder. Furthermore, ¢l(r) must be non-singular at

r = 0. We find that

o (6) = D0 I (B r/a)
n=1

where JO is the Bessel function of the first kind of order

zero. pg is the n-th zero of JO' and we demand that

k 2 iE« -1 ?P" : fﬂ_
I w2 S22 T2 T (4)

(4) is the dispersion relation of the wave with amplitude
2

¢n' Obviously wpz > w if the wave is to propagate (i.e.,

k must be real). For simplicity, we retair only one wave,

that having the lowest radial wavenumber, so that

¢>1(r) = ¢>1Jo(plr/a) . (5)

Here and henceforth we suppress the subscript 1 on ¢1, Py

and "y and assume that v 2 0.

ettt




In the wave frame [z » z - (w/k“)t], the electric

potential is independent of time:

¢e(r,z) = ﬂnoer2 - ¢J0(pr/a)cos(Kz/a) . (6)

An ion (charge = Ze, mass = mi) in the wave has potential
energy Ze¢e(r,z). Since R is independent of the angle a,

the angular momentum about the z-axis, La S mirz(da/dt),

. . . 1 . . , .
1s a constant of the ion motion,  and the ion Hamiltonian is

2
L
H{(r,z;P_,P_) = L (P L 2 2) + & + Z7un ezr
r'-z 2m. r z 2 0
i Zmir
- Ze¢JO(pr/a)cos(Kz/a) . (7)

(Pr,PZ) are the canonical momenta conjugate to (r,z).
Since H does not depend explicitly on the time, the total

energy, E, 1s also a constant of the motion:
H(r,z:P_,P,) = E
Let
2 -

= 2 _ 2
wo z z4ﬂn0e /2mi = zwp me/Zmi

2
We divide the Hamiltonian (7) by m a w02 and make the

following sulstitutiorns:
r *r/a, z~*+ z/a .,

p[ hd P[‘/(miwoa) ’ PZ -+ PZ/(mina) ’




and

t wot

Now the ion motion is described by the dimensionless

Hamiltonian,

H(r'z;Pr'Pz) - % Pr2 + % P22 + %E? * % r2
r
- €Jy(prjcos(kz) , (8)
where
22 z Laz/(miza4w0‘) ,
e = eoltim atu ?) (9)

and (r,z;Pr,Pz;t) are dimensionless dynamical variables.
We take (8) to be the fundamental ion Hamiltonian.

However, we have neglected the magnetic field B = Boez’ which,

we have assumed, constrains the electrons to move only paral-

lel to the z-axis. 1In Appendix A we show that irncluding the

magnetic field in the ion dynamics only adds a constant term

to the ion Hamiltonian (8) (and requires us to redefine the

parameters ¢ and Q2). Therefore, the motion described by the

Hamiltonian (8) is qualitatively identical to the ion motion

including the effects cf the magnetic field so that our

conclusions, based on an analysis of (8), are easily generalized.
The ion moves along a trajectory in the four-dimensional

(r,z;Pr,Pz)-phase space described by Hamilton's equations!
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. oH . oH
r = .= =P, Z = a5 =P_,
9 r r 3 z z
-p_ = ;S &E + r + epJd, (pr)cos(xz)
ST 3 PA 1P '
and
. dH .
- = . = K
Pz 3z EKJO(pr)51n( z)
{The dot denotes differentiation with respect to t.) Each

trajectory is constrained by the conservation of eaergy to
lie on a three-dimensional subspace of the four-dimensional
phase space. This subspace is described by Eg. (8) and is
called the energy hypersurface. 1If there were a third con-
stant of the motion, the trajectories would lie on a two-
dimensional surface in phase space.

For definiteness, we take € and % to be greater than
zero. These two parameters are then bounded above, % is
bounded by requiring that there be at least one point of
stable equilibrium with r < 1. This must be so if an ion
is to be trapped in a potential well without striking the
walls of the cylinder. For our purposes it is sufficient
to monitor this constraint on & numerically.

€ is bounded by requiring that the wave not trap beam
electrons. Trapped electrons would violate the assumptions
made in deriving the expression for the Hamiltonian (8).

Using the dispersion relation (4) we find that
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ey

€ = ——

’

Woal

2,2, 2
+ K
vp (p )

where Vp is the phase velocity of the wave in the beam frame.
But, to zeroth order, vp is the velocity of a beam electron
in the wave frame. Thus, the requirement that the wave not

trap beam electrons is

-1
€ < (pz-sz) S S (10)

The primary conclusior of this paper is that, with the
wave amplitude e so bounded, the kind of ergodic behavior
that would discourage attempts to trap and accelerate the ion
does not occur. This conclusion is also valid when the effects
of the magnetic field on the ion motion are considered (cf.

Appendix A).

III. ION TRAJECTORIES

A. € = 0: Conserved Action Variables

It is convenient to study the ion motion in a coordinate
system different from the cylindrical system of §IT. To
introduce this new coordinate system we first consider the

case € = 0. 1In this case, there is no wave on the beam,

and the ion motion is uescribed by the Hamiltonian

2 2 2 1
(Pr +PZ ) + —s 4+ 5 r = E . {11

Ho(r.z;Pr,Pz) E

0ol =
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We specify a canonical transformation to action-angle

variables

(c,2;P ,P_) = (8,633 ,3,)

2

using Hamilton's characteristic function W(r,z;Jr,Jz). W
is defined, to within an additive constant, by the relations r
_ W _ oW
Pr = oF and PZ i T (12a)
From (11) it follows that W must solve the Hamilton- :
Jacobi equation,
2 2 2
1 [aw 1 (3w '3 1 2 _
3 (3?) + 3 (32) + ;;j + 5 r- = E . (12b)

The dependence of W on the action variables (Jr’Jz) is given

by the defining relations

-1 -1 oW
Jf = '2—% fprd( ﬂ f—a—f dr ’ (lZC)
and
o1 1 W
JZ = -—2—1:‘ szdz = ﬁ f-a—i dz P (lZd)

where the integrals are over a complete period of r and z.
(We adopt the con.ention that H, is periodic in z with
period 2n.) Notice that J, 2 0 because the motion is bounded
in r. Once Egs. (12b)-(12d) have been solved for W,
the angle variables (6(,62) are defined by

ow W

6[ = —a‘—J—; and 62 = 33* . (126)
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W 1s called the ggneratiqg~function of the canonical trans-

formation given by Egs. (12a) and (12e).

We easily find (cf. Appendix B) that

r 1/2
W :J _,J.) = 2E - J 2 _ 52 - 22 ds + zJ
(r,z; c'Y2 =z ;—2‘ 2 z !
(13)
where
1 2 " .
E = > JZ + NJr + 2 . (14)

It follows from (14) that in the action-angle variables

the Hamiltonian 1is
K3 ,3.) = <32 +25 + ¢ (15)
0'"r’'vz2 2 r :

Since K0 is independent of 0, and 62, both actions are

conserved:
J (t) =3 (t=0) = 3.° (16a)
r r B r
and
J_(t) = J. (t=0) = 3.° (16Db)
2z z z
Therefore, Hamilton's equations for ér and éz,
IK . 3K
s 0 _ _ 0 _
O T3y =2 and &, =55 =J,
r z
are trivial to integrate:
o]
B (t) = 2t + 0 {1léc)
r r

and
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g_(t) = tJZ + 0 . (164d)

Using (13), Egs. (l2a), (1l2c), and (12d) are easily

solved for (r,z;Pr,Pz) in terms of (er’sz;Jr'Jz) (cf.

Appendix B):

z = e ’ P = J ’ (173)
r = [B + /82 - £2 cos@r]l/2 , (17b)

and

2,2, 1/2 .
p = 21T slntr (17c)

where B © 23+ L.
It is convenient to think of the motion, Egs. (16},
as taking place on a torus (cf. Fig. 2). For gilven initial

conditions, (ero,e O;J O,JZO), the ion's trajectory subse-

2 r
quently will be confined to the torus with radii (JIO,IJZOI)-

The two characteristic frequencies of this motion,

aKO
wr :a_J_= 2 ’ (lsa)
r
and
3K0
o T ag T 9n (18b)

are constant on each trajectory. Clearly this motion
consists of simple harmonic oscillation in (r,Pr)—space

and uniform translation in (z,PZ)—space.
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At this point we introduce a technigue that will be
used In § III.B to study the trajectories of the full
Hamiltonian (8) numerically. We record the points of
intersection of a given trajectory with the plane «xz = 0

(mod 27m). This plane is our surface of section. For

definitencss, only those points with Pz > 0 will be recorded.
(Obviously, taking z ejual to any constant would do for a
surface of section if ¢ = 0, and the same pattern of inter-
sections would result no matter what constant we chose.
z = 0 1s a good choice if € # 0 because this plane contains
all points of stable equilibrium; all of the trajectories
that we observed punctured this plane repeatedly as the
equations of motion were advanced in time numerically.)

In the case ¢ = 0, we know from Egs. (17b) and
(17¢) that the points in the surface of section lie on
the curve

p.%r? + (r-? =82 - 0%, (19)

corresponding to the (Jro,JZO) torus determined by our

choice of initial conditions. Of course, in the toroidal
(ar,ez;Jr,Jz)-representation any trajectory will puncture
the surface of section (KOZ = 0, mod 2m) along a circle in

the (Gr,Jr)-paane.

If there cxist non-zero integers (m,n) such that

mw + nw, = 0, where w. and w, are defined by Egs. (18),

then the motion is periodic, and the trajectory will intersect




the surface of section in finitely many points. (The pericd
of the motion 1s the least common multiple of 2n/wr and
2ﬂ/wz.) I1f, on the other handg, Mw, + nw, = 0 implies that

n =m = 0, then the trajectory never intersects the surface
of section in the same point twice. The intersections fill
in the circle in the (Gr,Jr)-plane, and the curve (19) in
the (r,Pr)-plane, densely as time increases without bound.
Such motion is called "conditionally periodic." On the
(Jr'Jz) torus it 1is known3 that conditionally periodic
motion is ergodic: as time increases without bound, the
fraction of the total elapsed time spent by the phase point
in a small neighborhood of any point on the torus approaches
the fraction of the total area of the torus contaired in
that small neighborhood.

We have seen that if € = 0 the ergodic motion is con-
fined to the surfaces of two-dimensional tori whose charac-
teristic frequencies (wr,wz) are not rationally related.

If € > 0 there may exist three-dimensional regions of phase
space in which the motion is ergodic and a third constant

of the motion does not exist. In this case, a single tra-
jectory would intersect the surface of section densely in a
region of finite area. For our purposes it is necessary to
determine whether or not such three-dimensional chaos exists
and the effect such behavior would have on our ability to

trap an ion in the potential wells of the wave.

e e ———
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B.

(K}

> 0: Resonant Islggd_qxgilag

If € > 0, there exist trajectories for which {xz(r)l
< 1, and such motion is observed to be oscillatory in both
r and z. If the energy, E, is sufficiently large (E > f+€)
there also exist trajectories for which the motion is un-
bounded in z. Both types of trajectories are illustrated
in Figure 3. Notice that these trajectories puncture the
surface of section along simple closed curves that arc 1in
fact very close to the curves given by Eq. (19). Thus,
these trajectories must lie on two-dimensional surfaces
embedded in phase space. We conclude that for these trajec-
tories there exists a third constant of the motion.

If E and € are held fixed and K is increased, some of
the simple closed curves of Figure 3a are distorted into
chains of islands, as shown in Figure 4. A single trajectory
generated the chain of two islands, while a different tra-
jectory generated the chain of three islands. Yet all
observed trajectories intersect the surface of section in
simple closed curves, so there still exists a third constant
of the motion for these trajectories. Both island chains
correspond to unbounded motion in z. Only those simple
curves nearest the energy curve (i.e., the outermost curve
in Figure 4, where all of the energy is in radial oscilla-

tions) correspond to bounded motion.

If now E and ¥ are held fixed at the values they have

in Figure 4 and € is increased, the two-island chain is
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completely destroyed, as are the simple curves near the
energy curve. That is, there is an annular region between
the energy curve and the three-island chain (i.e.,
what remains of the three-island chain) that trajectories
puncture randomly. The annular region shown in Figure 5a
was generated by a single trajectory. Apparently, a third
constant of the motion does not exist in this region.
The corresponding motion in 2z (cf. Fig. 5b) vascillates
randomly between bounded oscillations in the potential wells
and unchecked flight over the crests of the wave. Obviously,
such behavior must be avoided if we are to trap the ion
in a potential well. Our main conclusion is
that motion such as that depicted in Figure 5
does not occur for € < Emax‘ Indeed, the parameters used
to generate Figure 5 are not physical since they correspond
to € > € max
We may attempt to understand the behavior depicted in
Figures 3 through 5 using perturbation techniques as follows.
Employing the canonical transformation given by Egs.

(17), the ion Hamiltonian (8) becomes

K(er’ez;Jr'Jz) = KO(Jr’Jz)

- Ci(Jr)[cos(ier-Kez) + coscier«ez)] : (20)
i=0




is given by Eqg. (15),

0
2m 1,2
-1 f2_ .2 ,
Ci(Jr) : 57 J’ JO[p(B + /B7-2 coser) ]cos(ler)der
0
(21)
and B = 2Jr + 2. Clearly lCi(Jr)I £ 1 so that from

Hamilton's equations,

. 3K . 3K
-J =+ and -J_ = == ,
r er Z aez

we see that 3r and 32 are of order ¢; that is, Jr and Jz
are conserved to zeroth order in the small parameter ¢,
[Jr and Jz are the actions of (8) only if € = 0.]

We specify a canonical transformation to new dynamical

variables,
(e['eZ;J['JZ) > (Wr,\l)z:jr,jz) [}

using a generating function, T:

T(er,ez;jr,jz) = jrer + jzez + eS(Br,ez;jr,'z)
(22)
The transformation equations are given by4

N 3Ss

w = = 0 + € = , (233)
r ajr r ajr
aT 39S

" = —5— = § + g 5= , (23b)
z ajz z ajz
_ 3T _ . 3s

I T A [ A (23¢)
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and

Q

I PR o (23d)

Replacing the old variables with the new ones in (20) gives

us the transformed Hamiltonian, K':

aK aK
' s 0 3s 0 3S
K (erwzljrljz) KO(JI'JZ) tE {337 3% +a—J'_z§IiJz

- Zci(jr) [cos(iwr-m{;z) + cos(iwrﬂwz)]}
1=0

+ 0(e?) . (24)

[Here we have used the Taylor expansion of KO and are
treating S as a function of (w[,wz), correct to lowest
order 1in €.]

If the term proportional to € in (24) vanishes,
then jr and jZ are conserved tc order 62. Furthermore, if
aS/aer'z does not become large, then Eqs. (23c) and
(234) imply that jr and jZ differ from Jr and Jz by
terms of order €. In other words, 1f we can find a suf-
ficiently smooth function S for which the term in brackets
in (24) vanishes, then the ion trajectories will lie on
surfaces that differ very little {(~c) from the tori of
§ IIT1.A. Such trajectories would puncture the surface of

section along simple curves as in Figure 3a.

—
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u Equation (24) suggests that we take S to be of the
form
S(er,ez;Jr,Jz) z E : Al,m(]r,]z)31n(26r+mKez)
=0
-+1 (23)

Substituting (25) in (24) we easily discover a suitable

definition for A

Q,m:
AE&fEEl if IC, (3.1 s [fw_ £ kw_|
QwriKué L -r r z ’
Al,tl : - 120
0 otherwise

Here, (n\r,r.)z) = (”KO/:;jr'ﬁKG/ﬁjz) = (Z’jz)'

In those regions of phase space where no denominator
(ZQtsz) is small, we may expect the trajectories to lie
on surfaces similar to the tori of § III.A. In this case,
the motion is described by the Hamiltonian

2

, 7 23+ L.

N
Koliped,) =53 r

Therefore, jr and jz are constants of the motion (up to
terms of order 62 which we are neglecting). But, according
to Egqs. (23), Jr and Jz differ from jr and jZ by sinusoidal

functions of 8, and ez that are of order €. The trajectories

[

are therefore constrained to lie on surfaces in (Gr GZ;JI,Jy)
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space resembling slightly rippled tori. Because thece

rippled tori are topologically equivalent to the tori in the

case € = 0, they are said to Le preserved by the transforma-
tion T. (Two surfaces are topologically equivalent if one
can be continuously deformed into the other.) A preserved

torus intersects the surface of section in a simple closed
curve. The curve is approximately described by Eq. (19),
up to silnusoidal wiggles which are imperceivable ‘n the {

numerically generated surface of section plots shown 1in

Figure 3a.
Let 1
. N _ .
Jz = & 2N/k , (27a)
and
y N o1 E—Q--zl“—z (27b
lpy =32 , Kz . )

We cannot expect the ion trajectories in regions of phase

space near (er,ij) to lie on surfaces closely resembling

tori. Those tori corresponding to (er,ij) (i.e.,

JrN = % [E—l-(ZNz/Kz)] and JzN = 1+ 2N/K) ure said to be
resonant under the transformation T. {[Tori close enough

N N

to (Jr ,Jz ) to be strongly distorted by T are considered

to be resonant as well.]

Recall that Jr is by definition positive. J, and jr
. 1
differ by terms of order €. Therefore jrh must be positive,

up to terms of order €. C(Clearly, if
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K < E=g

then there are no resonant tori (N 2 1) present. This result
depends only on the form of Hy in Eq. (11) and on the fact

that there is a single k on the beam.

fl

Near the N-th resonance, AN -1 = 0, according to Eq.
I

(26), and the motion is described approximately by the

Hamiltonian

K Wb i9,03,0 5 Ko(i 03,0 - eCu(l Jcos (Ny_—«y ) . (28)

r Z

(Our conclusions do not depend on which sign is chosen for

ij in (27a). We have taken the + sign for definiteness.)

From Hamilton's equations,

_’ - aKN N

I, = ggz = NeCN51n(NWr—K¢z)
and

J, = 3$; = -KeCysin(Ny -ky ) ,

it is clear that

RS S (29)

r z

is a constant of the motion for Hamiltonian KN. Let

eliminate j, from Eq. (28) wusing (29) and set Yz = 0
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to see how resonant torl intersect the surface of section.

Solving Eq. (28) for djr we find that

s =_-1[g_ ¢ 21| _ n?
Iy 2 A K2
N 2 1/2
N 21 4N . N
x - Z(E -2 - ———) + —— + 2eC. ( ) cos {(NVY )]
¢ [ " I<2 N 3r r
(30a)

{(We have neglected the dependence of Cy ©on 6jr and have set
KN = E to get this approximate result.)

For given 1N the radicand in Eq. (30a) may be positive
only for values of Wr in one of N intervals between 0 and
2n. The corresponding resonant torus would intersect the
surface of section in a chain of N islands as in Figure 4.
Since we have kept only terms of order € in KN, the islands
are called "first order resonant islands." (Higher order
perturbation techniques would reveal chains of much smaller
second order resonant islands surrounding the first order
chains, etc.) 1If the radicand is positive for all wr, the
corresponding torus is not resonant but is only rippled by
the transformation T, in accord with the description of
preserved tori given above. Between the preserved and

resonant tori there is a separatrix given by Egq. (30a) when

IN is chosen so that

2t an?

- - = i N
S A
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Since in this case

. € . N N[ . N ]1/2
63r = -3 |cN(3r )bz < 2€ICN(3r )I(ltcosNWr) '
we see that the maximum island width is
1/2
- AN N
we 2 A feic g, M) (31)

If the motion can be described to order & by either
KO or by KN, for some N, then in all of phase space there
exists an approximate third constant of the motion which,
we observe, keeps the ion from escaping from a potential
well once it is trapped. If, however, there are regions of
phase space in which two or more denominators (2Ninz) are

simultaneously small this may not be the case.

It is well known5 that for conservative dynamical
systems of two degrees of freedom the motion is ergodic in
those three-dimensional regions of phase space where
resonant island overlap occurs. For our purposes it is
sufficient to determine whether or not the motion is
observably ergodic due to the overlapping of first order
resonant islands. Resonant island overlap occurs approxi-
mately when the distance between two resonant tori is less
than the sum of the half-widths of the corresponding island

chains. That is, when

er -3 N+1 <_% (WN + WN+1) , (32)

we should expect trajectories to puncture the surface of




25

section chaotically in a roughly annular neighborhood of

JrN and JrN+l. Using Egs. (27b) and (31) we obtain

from (32) the resonant islant overlap criterion:

N

)1]1/2

1/2
2N+1 < 2NK|e1C, (3 + 2(n+1)k]elc N+l,, .
N'“r

N+l(j:
(33)
This is, of course, an approximate condition.
It is interesting to notice that if & = 0, Cy is zero
if N is odd, and

c 1/2]

omy Mo 2 1 .m _
amG™ = 0™ P p(35,™) ], om0z,

where now

and Jm is the Bessel function of the first kind of order
m. (See Appendix C for a discussion of the case & = 0.)
Thus, the m-th resonant torus intersects the surface of
section in a chain of 2m islands. The overlap criterion
corresponding to (33) is

2m+1 < Zchl/z

el 3.7

+ 2(m+l)n<el/2

(34)

1/2
1 . m+l ]
Jm+llp(7 Iy ) l ’
and it is easy to see that this inequality cannot be

satisfied if e < € max unless m = 0. This corresponds to

I
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overlap of the 2-island chain and the energy curve in the
sur face of section. This overlap and the chaotic motion it
engenders are shown in Figure 6 for ¢ > €max * {(We took a
large, forbidden value of ¢ to produce apparent chaotic
behavior.)

I1f 2 > 0, our numerical calculations reveal no resonant
island overlap for N 2 1 and ¢ < € nax " Presumably this is
because the overlap criterion (33) cannot be satisfied.
The only observed chaotic behavior for e < emax.results
from overlap of the energy curve and the l—isI;nd chain.
This overlap and the chaotic motion it produces are shown
in Fiqure 7 for € > € max {Of course it is possible that
this chaos is a product of the overlap of higher-order,
smaller resonant islands whose theoretical origins we have
ignored in our first order perturbation analysis and whose
existence we were not able to document numerically. Never-
theless, the observed chaos appears to result from overlap
of the 1l-island chain and the energy curve.)

All N-island chains (N 2 1) are observed to be produced

by motion that is unbounded in z if € < ¢ We may under -

max’

stand this observation as follows. Using the constant of

the motion, Eq. (29) to eliminate jr from the resonant
Hamiltonian, Eq. (28) we find that on the separatrix,
Eq_ (30b) ’

L N 1/2
1, =5t {2elcg (i )] [l t cos(NWr-sz)]} .
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Thus, the most negative value of jZ in the N-island chain

is approximately

1

, 1/2
2N . N ]
< Z[E‘CN(JL‘ )

which cannot be less than zero if ¢ €max and N 2 1 pecaucse

ICN: = 1. Because the energy curve is a resonance of no
width, the l-island chain must get very close to it to
produce chaotic behavior. But then there are few, 1f any,
bounded trajectories left to protect. (Obviously, the
energy curve 1tself cannot be destroyed by overlap.) Thus,
the Hamiltonian (8) manifests no chaotic behavior that
would discourage attempts to trap the ion and keep it

trapped.

IV. CONCLUSIONS

We have considered the motion of an
ion in an electrostatic wave on a cold, uniform electron i
beam. We find that if the amplitude of the wave, €, 1is
insufficient to trap beam electrons then there exists a
third constant of the ion motion, in addition to the angular

momentum and total energy. This third constant of the motion

constrains the ion trajcctories to lie on two-dimensional
tori embedded in the four-dimensional ion phase space. The

motion on these tori may be either periodic or doubly
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periodic. If € exceeds the critical value for wave break-
ing, the ion motion is observed to be chaotic in certain
three-dimensional regions of phase space where resonant
tori overlap and a third constant of the motion does not
exist. Were this chaotic behavior physical (i.e., if the
wave were not broken) 1t would undermine attempts to trap
and accelerate the ion in the potential wells of the space
charge wave. However, if € is less than the critical value
for wave breaking, the existence of the third constant of
the motion throughout all of phase space ensures that radial
oscillational energy cannot be converted to axial transla-
tional energy so as to liberate an ion initially trapped in

the potential wells of the wave,
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APPENDIX A

lagnetic Field Effects on the Ion Motion

Since we have assumed that a uniform axial magnetic
field, B = Boez, constrains the electrons to move only paral-
lel to the z-axis, we must include the effects of this field

on the ion motion. We do so using the vector potential,
é(r) Bor e,

such that B = *A. Including this vector potential, the ion

-y
¥
—

Hamiltonian analogous to (8) is:6
P 2
1 2.2 1 ( a _ Ze )
i . = = — & . ce
L(r’z'pr’Pz) 2mi (Pr +pz )+ 2mi r c Bor

+ Zeée(r,z) .

Here ¢ is the speed of light in vacuo and (Pr'Pz’Pu) are the

canonical momenta conjugate to (r,z,n), respectively:

P Z m.r P = m.z and
r it ! 4 it
2
_ “ Ze 2
P - m.r « + — r B
(t i c

Because the Hamiltonian is independent of «, Pa is a con-
stant of the motion.

Introducing the ion cyclotron frequency,

0 =z ZeB /m.c
C z o/ i~ !
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and a frequency N !

Al

w = 2 + Zw 2m /2m, ,
c p e i

we divide H by m‘.azmo2 and make the following substitutions:
r +r/fa, z +»z/a,

Pr - Pr/(miAoa) ;P Pz/(mimoa) ’

Lol Ammria

and i
t » w t .
o

Under this change of variables, the dimensionless Hamiltonian

is
1 2 1 2 g2 1 2
H(rtziPr:Pz) =-2'Pr +-2—Pz +—2—+—2-r
2r
- ¢J_(pricos(xz) - 6 ,
where
9'2 z Paz/(miza‘lmoz) ’
L= 2 2
) £ T Ze‘b/(mla ‘Uo ) r
and
_ 2 2
8§ = Qcpa/(mia W ) .

Since this Hamiltonian and (8) differ only by the added ;
constant &, the motions they generate are qualitatively

identical.

j
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Using the dispersion relation (4) we may rewrite . us
2
e/ (km v ©)
L = - e e e e ——— ,
2 2.2,
prA Tempat /(u%m—v )

where vp 1g the phase velocity of the wave in the beam iruapv
In order that the wave not break, the numerator must be less

than 1, or:

22 2 2 2. .-1
v IpT ?mia ‘o /(Z‘,mevp ) ] .

, ' . 2.2 -1
This upper btound on ¢ is even smaller than € max (p™+ 7]

used to bound when the magnetic field is neglected.
Therefore: 17 wave amplitudes that are too small to trap beam

electrons are tco small to foil attempts to trap and acceler-
ate an ion whoen the effects of the magnetic field on
the ion motion are neglected, then (because the respective

Hamiltonians arc of the same form) the same is true when tho

effects of the magnetic field are included in the ion dynamics.
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APPENDIX b

Action-Angle Variables

We assume a solution of the Hamilton-Jacobi equation,

2
_’_.9.’_2.:1-:,
2r

|~
—
m[o)
N|Z
e
[\

+
ol —
—
QJ,Q)
NiE
S
38

+
Nl —

~
3]

of the form
W(r,z) = Wl(r) + wz(z) .

It follows that dwz/dz = g constant = J

2m
1 oW
= .___-d ’
Jz ZTTf 5z %
0

in agreement with the definition of action, Eq. (124),

L1 Say. Notice that

The action in the (r,Pr)—plane is

aw
=1 -1 .1 -3 2 _ .2
I, = 37 fdr T B (ZE J, ro-

o

2 1/2
dr ,

(Bl)

ol

r

where we must take the plus sign for increasing r and the
minus sign for decreasing r. It is convenient to rewrite

the action integral (Bl) as

1/2

(x 2 22)(22 ‘ 2)

=1 - -

v T f[ T R ] dz (B2)
€12 2

e
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and to evaluate this 1ntcgral in the complex plane. The
integrand [=I(z)] in (B2) is singular at the origin and at
the point at infinity. There are four branch points: irl,2‘
We choose one branch cut between r, and r, and another
between -ry and Lo both along the real axis. The action

is given by the integral along the contour Cl2' as shown in

Figure 8, wherc the integrand is taken to be positive

above the cut and (therefore) negative below. Deforming

the contour C12 arounrd the origin, the point at infinity,

and the cut between “r and -~r we find that

1’
= 1 1 I1(1/2)
ZJY = ’2‘:“ .{ I(Z)dZ + 'i—n f——?— dz . (B3)
o o

Here wc¢ have uced the fact that the integral around CiZ 1S
equal to -J, and have transformed the integral around the
point at infinity to one around the origin using the sub-
stitution, z » 1/z. 1In evaluating both integrals in (B3)
we takce care to choose the signs of I(z) and I(l/z) con-

sistent with the choice in (B2). We find that the residue

at z = 0 of I(z) is if(% > 0). The residue of I(l/z)/z2
at z = 0 i1s ~-i(E - % Jzz). Applying the residue theorem,
we find that

23 L+ E-35J3°,

that is,




J 2 + 23 + £
z r

t
1
[N
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(B4)

To determine the old variables (r,z; P ,PZ) in terms

of the new variables (er,er,J

r

r,Jz) we first note that

w2(z) = zJZ + a constant, which we take to be zero.

Therefore

1/2

W(r,z) = 2J_ + ( 43 +20 -r'? - &E— ar’
' I R 2 '
r

where we have used (B4). Two
equations,
oW A _ oW
62 = 55; and PZ = 5y

are trivial to solve:

We also have

of the transformation

r
r=_¥31 j‘ 2dr

[4J[+2£-r'2-(é7}r'2)]

72 - (B5)

Changing the variable of integration in (BS) from r' to ¢,

whore

cos¢ = 2—T72
(8

and B = 2Jr+Q, we find that

2 1/2 1/2

r = (B+(82—Q ) cosor]

(B6)
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Finally, substituting this expression into the Hamiltonian,

Eq. (11), we find that

2 _ 8°-2%)sin’6r
r r

(B7)

Because Pr is positive for increasing r and negative for

decreasing r, we must take

2 /2 _

. 1 .
[sin er] smer ,

as in Eq. (17c), if r is given by (B6).
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APPENDIX C

The Case & = 0

In the case ¢ = 0, we do not obtain correct expressions
by setting £ = 0 in (B4) through (B7). This is because the
action integral, Egq. (Bl), is discontinuous in % at % = 0.

The integral is, however, elementary in this case, and we

easily find that

Proceeding as before, it is now straightforward to show
that the canonical transformation to action-angle variables

is given by the following equations:

r = Y2 cos% ., Pp = -/27 sin6,
In this case, the N-th Fourier-cosine coefficient in the
expansion of Jg (PL) is

2n

1

TZ_TTf Jo(p»’ZJr cosGr)cosNBrder
0

Therefore, in the notation of Eq. (20),

VA
1 fo
CN(Jr) = 5% f Jo(p 2Jr coser)cosNGrdOr ,

0
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if 2 = 0. It is easy to see that Cy = 0 if N is odd. If

N 1s even,

2
C, (J,) = (—l)me (pV3_72) , m=0,1,2,...

Therefore, in action-angle variables, the Hamiltonian (8)

1S

1 2
H HN N = =
(er’ 9z' )r' Tz) 2 Jz * ‘Jr
~ & z CZm(Jr) lcos(Zmer-Kez) + cos(2m6r + Kez)] .
m=0

The resonant tori, analagous to Egs. (27a) and (27b)

are found at

J = +2m/«

and

'm:E-—_z.m_z.'
Ir K2 !

but now these tori intersect the surface of section in chainn
of 2m islands. We find that the m-th chain will overlap

the m+l-st chain if
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172
. . m
2m+1 < 2mk{£lC2m(]r )1

+1 172

+ 2(mel)e(€]C X :

(3 m
2(m+1) I

which is expression (34) in the text.
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FIGURE CAPTIONS

FIG. 1. The cylindrical coordinate system used to analyze

the ion trajectories.

FIG. 2. The toroidal representation of the ion phase

space. (J_ < [Jz[ is assumed.)

FIG. 3. 1Ion trajectories unaffected by nonlinear

resonances. (a): Intersections of the surface of section
by ion trajectories that are (A) bounded in z and (B} un-
bounded in z. No nonlinear resonances are present. E = 0.6,
¢ = 0.1, «k = 1.0, = = 0.02. (b): «xz as a function of the
time t for trajectories (A) and (B) of Fig. 3(a). (c): r

as a function of the time t for trajectories (A) and (B) of

Fig. 3(a).

FIG. 4. Intersections of the surface of section by ion
trajectories on strongly distorted, resonant tori. (A) is
the energy curve, (B) is a chain of two islands, and (C) is
a chain of three islands. E = 0.6, & = 0.1, « = 7.0,

e = 0.02, fmax - 0.018.
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FIG. 5. 1Ion trajectcries strongly affected by resonant
island overlap. (a): Intersections of the surface of
section by two ion trajectories. One trajectory produced
the chain of three islands; another trajectory produced the
stippled region. E = 0.6, ¢ = 0.1, « = 7.0, ¢ = 0.1,

‘max © 0.018. (b): «z as a function of the time t for the

ion trajectory that produced the stippled region in Fig.

5(a).

FIG. 6. Intersections of the surface of section by several

ion trajectories, in the case ¢ = 0, when the two-island

chain (B) overlaps the energy curve (A). The stippled
region was produced by a single trajectory. E = 0.6,

2L =0, «w =5.0, ¢ =0.1, € nax ~ 0.0324.

1 °G. 7. 1Intersections of the surface of section by several
trajectories when the one-island chain (B) overlaps the
energy curve (A). The stippled region was produced by a
single trajectory. E = 0.65, £ = 0.1, « = 5.0, = = 0.1,

€ = 0.0324.

max

FIG. 8. Contours in the complex plane used to find the

action, Jr.
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FIGURE 1
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FIGURE 2
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Summary of Simulations Relevant to thne

Benford Beam Emission Experiment

J. C. Weatherall and M. V. Goldman

Department of Astro-Geophysics, University of Colorado,
Boulder 19809

Research Note




This computer simulation differs from the Type III driven
problem in using a larger amplitude pump, and smaller wave-

number pump:

W = le().4

koke = 0.005 . i

This is a new parameter regime (W > 10 kozkéz) for which wave-

packets are expected to be unstable to short wavelength per-
turbations, and break-up may precede collapse.

We are motivated by Benford's experiment, for which

_ 11 _ .13

Woe = 1.8x10°° (ng = 10°°)
8, = 8, = 10 ev

Y
59— = 0.03 (W~ 1)

pe
FTRS U SR |

kg 10 Kyg 3

Yce
m—*: = 0-01

pe

Our work uses a broadband, initial value pump (no beam growth

rate), Ej = 0.283 (W = 5x107%); 64x64 grid of length




and maximum growth at k = EO' or kxe = 0.006. In this

: problem, wavepacket dimension 1is 2n/4k 2n/%k0 = 5000 Aot

The instability wavelength is 2n/0.006 1000 Ae.

II. Computer simulation, Wee T 0 (Figures 2 through 8).

Shows modulational instability and collapse.

III. Computer simulation, w = 0.033 w
ce pe

(Figures 9 through 15),

From J. C. Weatherall's thesis, a sufficient conditicn

for a magnetic field to alter collapse is

2 2
Ak.l_ “)CO . W
3k W 2 20
o pe

2.6x10 > ~ 2.1x10°°

The condition for the magnetic field to affect parametric

instability 1is

Ko W
Loce 3 ko
kK w ~ K
pe De
1 - ~ o
3 (0.033) > v (0.306)

0.018 > 0.010




L = 10,000 Ae' Pump modes consist of & box in k-space of
six modes, Ak, = 24k = 1 K- (Dimensionless units are ac
4 i 4 70

in Nicholson, et al., 1978.) We observe modulational
breakup and collapse. With a magnetic field of woe T .035

w -, collapse is c¢nhanced, not inhibited.

pe T

I. The behavior of parametric inctability for ko = 0.00%
kD 1s shown in Figure 1.

it

As W becomes large with respect to kO (W > 10 kOZAe‘),
the wave is unstable to a modulational (OTS) instability.
The counter-streaming waves produced by these instabilities
will break up wavepackets into smaller packets.

We can estimate size of perturbation from dispersion

relation (Dwiqght Nicholson, Private Communication, January

1981)
N fuv W2 _k2E02
3 - 71_ l
iv - T ¢
W+ »—-2-9 - k2 - - o k2
. 2 L2 2 .
assuming |w | << K7, Imvil << k%, w = 1y (purely growing). The

growth rate is found to be

y) —
Y=o 2r302k"—k1 :




P FGURE

Behavior of l:incar paramctric instability of a monochromatic

wave with kK = 0.605 kD tyrowth rate contours 1n k-spacej.
- e -4
CASE A. Vg T 2x10 K
Y = l.().\.!O_)
max P
,()]A Q 4
\J >
l-\r) K, h

i CASE B. W - axie X,

Y
Mo




We conclude that this magnetic field will not strongly
affect collapse. 1t may have a stronger affect on
instability.

The modulational breakup is faster with a magnetic
field (because instability has cmaller bandwidth transverse
to the field?), and collapse is enhanced, for example, at

T = 72 (T = 1 corresponds to 1377 “pe_l)'




FIGURE 2

ELECTRIC FIELD AMPLITUDE IN K SPACE T' 6.00
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FIGURE 3

ELECTRIC FIELD IN RERL SPRCE AT 7= 6.00
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PLGURY 4

ELECTRIC FIELD IN REARL SPACE AT T= 60.00
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FIGURE 5

ELECTRIC FIELD IN REAL SPACE AT T= 72.00
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FIGURE 6

ELECTRIC FIELD IN RERL SPRCE AT T= 96.00
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FIGURE 7

ELECTRIC FIELD IN RERL SPARCE RT 7= 120.00
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FIGURE 8
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FIGURE 9

ELECTRIC FIELD IN REAL SPACE AT T= 36.00
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~2C7R.C FIELD IN RERL SPRCE RT 1= 48.00
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FIGURE 10
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F1GURE 11

ECECTRIC FIELD IN RERL SPRCE RT T= 60.00
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FIGURE 12

ELECTRIC FIELD IN RERL SPACE AT 1= 72.00
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FIGURE 13

ELECTRIC FIELD IN RERL SPRCE AT T= 96.00
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AD-AL17 862 COLORADO UNIV AT BOULDER F/6 20/9
PLASMA WAVE TURBULENCE AND PARTICLE HEATING CAUSED BY ELECTRON ==ETC(U)
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FIGURE 114

ELEETRIC FIELD AMPLITUDE IN K SPRCE T= 84.00
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FIGURE 15

ELECTRIC FIELD AMPLITUDE IN K SPRCE T=
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