Immunological Cross-Reactivity in the Absence of DNA Homology Between Pseudomonas Toxin A and Diphtheria Toxin

JERALD C. SADOFF,1* GREGORY A. BUCK,2 BARBARA H. IGLEWSKI,3 MICHAEL J. BJORN,3 AND NEAL B. GROMAN2

Department of Bacterial Diseases, Walter Reed Army Institute of Research, Washington, DC 20012,1
Department of Microbiology and Immunology, University of Washington, Seattle, Washington 98195;2 and
Department of Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201.3

Received 28 September 1981/Accepted 25 March 1982

The immunodominant determinant of Pseudomonas toxin A was shown to cross-react with a normally inaccessible determinant in fragment A of diphtheria toxin. Trypsin-treated diphtheria toxin and fragment A of diphtheria toxin inhibited binding of toxin A antibody to whole toxin A, whereas whole diphtheria toxin did not inhibit this reaction. However, even at the lowest stringency no hybridization was detected between diphtheria tox probe and Pseudomonas aeruginosa DNA.

Pseudomonas aeruginosa toxin A and diphtheria toxin both inhibit eucaryotic protein synthesis by catalyzing the NAD-dependent ADP-ribosylation of EF2 (7, 13). The ADP-ribosyl transferase activities of these two toxins are remarkably similar if not identical (5, 13, 14). Fragment A of diphtheria toxin and a 26,000 to 27,000-dalton, enzymatically active fragment from toxin A have similar Michaelis constants (K,M’s) for NAD and EF-2 (8 and 15 μM, respectively) and similar inhibition constants (Klic’s) for a variety of analogs. In addition, the ADP-ribosyl transferase reaction catalyzed by fragment A of diphtheria toxin can be reversed by toxin A or its enzymatically active fragment or vice versa (5, 14). These data suggest at least partial homology between these two toxins. Demonstration of immunological cross-reactivity between toxin A and diphtheria toxin would support this contention, but this has not been possible by immunodiffusion analysis (16), enzyme neutralization (13), or cross-neutralization of tissue culture cytotoxicity (18).

We have examined the possibility of homology between toxin A and diphtheria toxin by utilizing a very sensitive solid-phase radioimmunoassay inhibition system (SPRIA inhibition) and DNA-DNA hybridization with DNA from β-tox+ corynebacteriophage (3) and the toxin A+ P aeruginosa strain PA103. Cross-reactivity was demonstrated by using the SPRIA inhibition system. However, even at the lowest stringency no hybridization was detected between diphtheria tox probe and P. aeruginosa DNA.

MATERIALS AND METHODS

Toxin A was purified as previously described (15). Diphtheria toxin was obtained from Connaught Medical Research Laboratories, Toronto, Ontario, and further purified as previously described (22). Diphtheria toxin was treated with trypsin and dithiothreitol (DTT) as described by Collier and Kandel (8). Fragment A of diphtheria toxin was purified essentially as described by Collier and Kandel (8). Fragment B of diphtheria toxin was purified by the method of Papenheimer et al. (20). Rabbits were hyperimmunized with toxin A (15), diphtheria toxoid, fragment A of diphtheria toxin, and partially purified fragment B of diphtheria toxin as previously described (17, 22). Phosphate-buffered saline for radioimmunoassay was Dulbecco phosphate-buffered saline (GIBCO Laboratories, Grand Island, N.Y.). The “filler” diluent contained 10% (vol/vol) fetal calf serum, 0.2% sodium azide, and 0.02% phenol red as described by Zollinger et al. (23).

SPRIA Inhibition. The SPRIA inhibition was performed essentially as described by Zollinger and Mandrell (24). Each rabbit serum was first tested for antibody levels by SPRIA against toxin A or diphtheria toxin in round-bottom microtiter plates (Cooke Laboratory Products, Inc., Alexandria, Va.) as described by Zollinger et al. (23). Plates were sensitized with 25 μl of a 50-μg/ml solution of toxin. Goat antirabbit immunoglobulin, obtained from Antibodies Inc., Davis, Calif. and labeled by the lactoperoxidase method to a known specific activity (23), was utilized as the secondary antibody. An estimate of the nanograms of antibody per milliliter in each serum specific for toxin A and diphtheria toxin was thereby determined. The sera were diluted in filler diluent to approximately 100 ng of specific antibody per ml. This dilution of serum resulted in 20 to 30% of the maximum or plateau level of 125I bound.
Best Available Copy
Inhibition mixtures consisting of 50 μl of diluted antiserum (~100 ng/ml) and 50 μl of inhibitory antigens at various concentrations were placed in the wells of a separate polystyrene microtiter plate and allowed to react at 37°C for 1 h. Control wells contained filler only (background) and filler plus serum (no inhibitor). After incubation, duplicate 25-μl samples were placed in the toxin-coated wells of the flexible microtiter plate. Binding was allowed to proceed overnight at room temperature, after which the liquid was aspirated and the wells were washed once with filler and five times with phosphate-buffered saline. 125I-labeled goat anti-rabbit immunoglobulin (25 μl) was then placed in each well. Double-strength 125I-labeled goat anti-rabbit immunoglobulin was added to two control wells which did not contain inhibitor to ensure saturation binding to the antitoxin antibody. After incubation, aspiration, and washing, the wells were cut into tubes and counted. Percent inhibition was calculated according to the formula of Zollinger and Mandrell (24): Percent inhibition = 100 - [(mean cpm bound with inhibitor + background) - (mean cpm bound without inhibitor)] × 100. Inhibition experiments were performed three separate times with similar results. Figure 1 is a representative experiment. Values between 50 and 100% inhibition were found to be specific and reproducible in the toxin-antitoxin inhibition system. Zollinger and Mandrell found that background or nonspecific inhibition varied from 0 to 40% depending on the sera they used (24).

RPHA. Reversed passive hemagglutination assay (RPHA) was performed as described by Holmes et al. (10), using immunosorbent-purified, sheep antitoxin A antibody-sensitized, formalized sheep erythrocytes (1). The RPHA endpoint represented the smallest quantity of the material tested that caused complete agglutination of sensitized SRBC. Controls as described by Holmes et al. (10) were included in all assays.

DNA/DNA hybridization. DNAs of tox+ corynebacteriophage β-1r-3, a heat-inducible mutant of β-convertase phage and of Corynebacterium diphtheriae strain C7 (1), were isolated as recently described (2). P. aeruginosa DNA was isolated from cells grown at 37°C with aeration to a concentration of approximately 106 cells per ml in the Trypticase soy-yeast extract medium. The cells were pelleted by centrifugation (10 min, 8,000 × g), resuspended in 1/10 of their original volume in 5 mM Tris-5 mM disodium EDTA (pH 7.5), equilibrated to 65°C, and lysed by the addition of sodium dodecyl sulfate (0.5% final concentration). The released DNA was sheared and isolated as described for C. diphtheriae DNA. The released DNAs were digested to completion with the appropriate restriction endonuclease (SalI and BamHI). Each DNA was electrophoresed for 14 h at 50 V on a 0.5% horizontal agarose gel, and blotted to nitrocellulose filters as described (3). However, the incubation temperature for hybridization was lowered to 65°C, and the prehybridization and hybridization conditions were changed from 2 × 105 SSC (1 × SSC is 0.15 M NaCl) 6.015 M sodium citrate, pH 7.0) to achieve different stringency conditions (12). The filters were washed as described except that the wash temperature was 65°C. The first six washes were at 10× SSC, and the final washes were at (i) 0.4× SSC, high stringency; (ii) 2× SSC, intermediate stringency, and (iii) 10× SSC, low stringency. The specific activity of the probe was 32 × 106 cpm/μg of DNA, which equaled 10 to 20 ng of DNA per ml of hybridization fluid.

Enzyme assay and neutralization by antibody. Enzyme neutralization assays were performed by incubating toxin A (100 ng; treated with urea and DTT) or fragment A of diphtheria toxin in 10 μl of 5% normal rabbit serum with an equal volume of immune serum for 10 min at 37°C as previously described (9, 13). The ADP-ribose transferase activities of toxin A and fragment A of diphtheria toxin were then measured as described previously (13, 15).

RESULTS AND DISCUSSION

The ability of toxin A, diphtheria toxin, diphtheria toxin treated with trypsin and DTT, and fragment A of diphtheria toxin to inhibit the reaction between rabbit antitoxin A (50 ng/ml, final concentration) and toxin A is shown in Fig. 1. At final concentrations of 128 μg/ml trypsin-DTT-treated diphtheria toxin inhibited 90% of the toxin A-antitoxin A binding, fragment A of diphtheria toxin inhibited 84% of the reaction, and diphtheria toxin only inhibited between 20 and 30% of the binding. The inhibition seen with diphtheria toxin was probably nonspecific since inhibition did not increase with increasing concentrations of inhibitor. Trypsin alone as a control gave background levels of less than 20% inhibition (data not shown). In the range of inhibitor concentrations yielding 50 to 100% inhibition, trypsin-DTT-treated diphtheria toxin was as potent an inhibitor as toxin A itself (Fig. 1). Toxin A was a more potent inhibitor than trypsin-DTT-treated diphtheria toxin or fragment A of diphtheria toxin at lower inhibitor concentrations. Concentrations of toxin A as low as 32 ng/ml produced 40% inhibition, and concentrations in the range of 1 to 16 ng/ml produced 20 to 30% inhibition. In contrast, concentrations as high as 2,000 ng of trypsin-DTT-treated diphtheria toxin, or fragment A of diphtheria toxin, per ml produced only 20 to 30% inhibition.

Toxin A and diphtheria toxin therefore share an antigenic determinant which is highly accessible in toxin A but is readily accessible in diphtheria toxin only after the molecule is treated with trypsin and reducing agent. This determinant is probably located in the A portion of the diphtheria toxin molecule, as evidenced by the ability of purified fragment A of diphtheria toxin to inhibit the reaction to the same degree as trypsin-DTT-treated diphtheria toxin (Fig. 1).

It would be tempting to assume that the cross-reactive determinant was located in the enzyme-active site of fragment A of diphtheria toxin since the two toxins have such similar ADP-ribosyl transferase activities. The rabbit antisemur we used to demonstrate the cross-reactive determinant was able to neutralize toxin A enzyme.
TABLE I. Inability of toxin A to inhibit SPRIA reactions between diphtheria toxin and sera raised against diphtheria toxin antigens

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Antibody against</th>
<th>% Inhibition by antigena</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT</td>
<td>DT</td>
<td>92</td>
</tr>
<tr>
<td>DT</td>
<td>DT-A</td>
<td>89</td>
</tr>
<tr>
<td>DT</td>
<td>DT-B</td>
<td>77</td>
</tr>
<tr>
<td>Toxin A</td>
<td>Toxin A</td>
<td>14</td>
</tr>
<tr>
<td>DT</td>
<td>DT Tryp-DTT</td>
<td>95</td>
</tr>
<tr>
<td>DT</td>
<td>DT Tryp-DTT</td>
<td>98</td>
</tr>
<tr>
<td>Toxin A</td>
<td>Toxin A</td>
<td>93</td>
</tr>
</tbody>
</table>

*SPRIA inhibition was performed as described in the text. Antibodies were at 50 ng/ml, final concentration. Antibodies were obtained by immunization of rabbits with diphtheria toxoid (D toxoid), fragment A of diphtheria toxin (DT-A), or fragment B of diphtheria toxin (DT-B).

Percent inhibition of the antigen-antibody reaction. Inhibiting antigens were at a final concentration of 50 μg/ml. DT, Diphtheria toxin; DT Tryp-DTT, trypsin- and DTT-treated diphtheria toxin.

SPRIA inhibition of rabbit antitoxin A (50 ng/ml, final concentration) binding to toxin A, utilizing various concentrations (final) of either toxin A (■), diphtheria toxin (□), diphtheria toxin treated with trypsin and DTT (△), or fragment A of diphtheria toxin (●) as inhibitors.

FIG. 1. SPRIA inhibition of rabbit antitoxin A (50 ng/ml, final concentration) binding to toxin A, utilizing various concentrations (final) of either toxin A (■), diphtheria toxin (□), diphtheria toxin treated with trypsin and DTT (△), or fragment A of diphtheria toxin (●) as inhibitors.

mantic activity but was unable to neutralize the enzyme activity of fragment A of diphtheria toxin (data not shown). This finding is consistent with those of Iglewski and Kabat (13), who were unable to neutralize the enzyme activity of fragment A of diphtheria toxin with pony sera which neutralized toxin A enzyme activity. If the cross-reactive determinant is in the enzyme-active site of fragment A of diphtheria toxin, lack of enzyme neutralization by antibody against this site could be explained if the antibody had lower affinity for the cross-reactive determinant when located in fragment A of diphtheria toxin than when located in toxin A. This hypothesis is consistent with the ability of toxin A to inhibit the SPRIA at much lower concentrations than fragment A of diphtheria toxin.

Alternatively, the cross-reactive determinant may be located in a noncatalytic site. Rittenberg et al. (22) have previously suggested the existence of at least two independent antigenic re-
TABLE 2. Immunological cross-reactivity between toxin A and diphtheria toxin and fragment A of diphtheria toxin, by RPHA.

<table>
<thead>
<tr>
<th>Antigen</th>
<th>RPHA endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxin A</td>
<td>0.1</td>
</tr>
<tr>
<td>Diphtheria toxin</td>
<td>25.0</td>
</tr>
<tr>
<td>Fragment A of diphtheria toxin</td>
<td>10.0</td>
</tr>
</tbody>
</table>

"The RPHA endpoint represented the smallest quantity of the material tested that caused complete agglutination of sheep erythrocytes sensitized with immunoabsorbent-purified sheep antitoxin A antibody.

Toxin is not the cross-reactive determinant we are describing.

Despite the limited accessibility of the common determinant on diphtheria toxin, direct binding between immunoabsorbent-purified, sheep antitoxin A antibody and diphtheria toxin could be demonstrated by an RPHA capable of detecting 0.1 ng of toxin A (Table 2). A 25-ng sample of diphtheria toxin caused agglutination of the antitoxin A-sensitized sheep erythrocytes in this system, and 10 ng of fragment A of diphtheria toxin caused agglutination.

The cross-reactive determinant demonstrated between toxin A and diphtheria toxin by inhibition and direct binding experiments suggested there may be at least partial homology between the genes for these polypeptides. To define the extent of this homology, we attempted to hybridize DNA from tox + corynebacteriophage to whole-cell DNA from P. aeruginosa PA103. A BamH I restriction endonuclease fragment (3.9 kilobases; 2.6 x 10^6 daltons) of β corynebacteriophage recently identified as carrying the tox gene (3) was hybridized to nitrocellulose filter blots of Sal I restriction endonuclease-digested whole-cell DNA from PA103. As a positive control, P. aeruginosa DNA and BamH I-digested whole bacteriophage β DNA were mixed in amounts yielding approximate equality in the number of their genomes. To calculate the amount of DNA needed for this, the molecular mass of P. aeruginosa chromosome was taken as 2.1 x 10^9 daltons (21), and that for β phage was taken as 2.3 x 10^8 daltons (4). A negative control employing C. diphtheriae nonlysogenic C7(−) whole-cell DNA digested with BamH I was also run. The stringency requirements for the DNA/DNA hybridizations were varied such that the degree of base pair mismatch allowed in stable duplexed DNA ranged from 10 to 15% at high stringency to 20 to 25% at intermediate stringency and 30 to 35% at low stringency. Stringencies were calculated according to the formula given by Howley et al. (12).

The results (Fig. 2) showed that even at the lowest stringency, no hybridization was detected between the diphtheria tox probe and strain PA103 DNA. In the positive control, only the fragment previously identified as the tox-bearing fragment of phage DNA hybridized to the probe. This result also demonstrated that the techniques employed could detect a sequence homologous to tox if it were present at an equivalent of one copy per bacterial genome copy. The negative control with C7(−) DNA in which no hybridization was seen showed that the probe contained only phage DNA. Similar results (data not shown) were obtained with DNA from P. aeruginosa PA01, a second toxin A-producing strain. From these data we conclude that there is no measurable homology between the tox gene of C. diphtheriae and the DNA of toxin A-producing P. aeruginosa.

The results of the hybridization studies indicate that despite an identity in mode of action and evidence for cross-antigenic reactivity, the genes for diphtheria toxin and toxin A of P. aeruginosa are quite distinct in their nucleotide sequences. By way of comparison, DNA homology has recently been demonstrated between the LT-A and LT-B fragments of Escherichia coli LT toxin and the A and B fragments of cholera toxin (19). Homology was detected under conditions in which a mismatch of base pairs of greater than 20% was allowed for LT-A, and 36% was allowed for LT-B. Both A and B...
fragments of E. coli LT toxin and cholera toxin show antigenic cross-reactivity (6), and both toxins share an affinity for similar cell receptors (11).

Two interpretations can be given to our results. The first is that genes for diphtheria toxin and toxin A evolved independently, but that adaptation to a similar substrate resulted in enzymes which share a limited but antigenically active amino acid sequence. Alternatively, the genes for these toxins may have had a common ancestry, but over time lost significant homology. The former interpretation seems most likely, given the fact that homology would have been detected under conditions in which an average of one out of every three base pairs were mismatched. Amino acid sequencing of the toxins or nucleotide sequencing of their genes will be required before a definitive interpretation of these results is possible.

ACKNOWLEDGMENTS
This research was supported in part by Public Health Service grants AI1-4671 and AI1-10492 from the National Institute of Allergy and Infectious Diseases.

LITERATURE CITED
IMMUNOLOGICAL CROSS REACTIVITY IN THE ABSENCE OF DNA HOMOLOGY BETWEEN PSEUDOMONAS TOXIN A AND DIPHTHERIA TOXIN

AUTHOR(S)
Jerald C. Sadoff, Gregori A. Bush, Barbara H. Iglewski, Michael J. Bjorn and Neal B. Groman

PERFORMING ORGANIZATION NAME AND ADDRESS
Div of Communicable Disease & Immunology
Walter Reed Army Institute of Research
Washington, DC 20012

CONTROLLING OFFICE NAME AND ADDRESS
U.S. Army Medical Research & Development Command
Fort Detrick, Frederick, MD 21701

NO. OF PAGES
No. 21

DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

SUPPLEMENTARY NOTES

KEY WORDS
immunodominant, Pseudomonas, trypsin, diphtheria

ABSTRACT
The immunodominant determinant of Pseudomonas toxin A was shown to strongly cross react with a normally inaccessible determinant in the A fragment of Diphteria toxin. Trypsin treated Diphteria toxin and A fragment of Diphteria toxin inhibited binding of toxin A antibody to whole toxin A while whole Diphteria toxin did not inhibit this reaction. However, even at the lowest stringency no hybridization was detected between diphtheria tox probe and Pseudomonas aeruginosa DNA.