Interactions of Axisymmetric and Non-Axisymmetric Disturbances in the Flow between Concentric Rotating Cylinders: Bifurcations near Multiple Eigenvalues

R. C. ui Prima
J. Sijbrand

Rensselaer Polytechnic Institute
Troy, NY

U. S. Army Research Office
P. O. Box 12211
Research Triangle Park, NC 27709

Submitted for announcement only.

Interactions of Axisymmetric and Non-Axisymmetric Disturbances in the Flow between Concentric Rotating Cylinders: Bifurcations near Multiple Eigenvalues

R. C. ui Prima
J. Sijbrand

Rensselaer Polytechnic Institute
Troy, NY

U. S. Army Research Office
P. O. Box 12211
Research Triangle Park, NC 27709

Submitted for announcement only.

Interactions of Axisymmetric and Non-Axisymmetric Disturbances in the Flow between Concentric Rotating Cylinders: Bifurcations near Multiple Eigenvalues

R. C. ui Prima
J. Sijbrand

Rensselaer Polytechnic Institute
Troy, NY

U. S. Army Research Office
P. O. Box 12211
Research Triangle Park, NC 27709

Submitted for announcement only.
Interactions of Axisymmetric and Non-Axisymmetric Disturbances in the Flow between Concentric Rotating Cylinders: Bifurcations near Multiple Eigenvalues

R.C. Di Prima and J. Sijbrand

Rensselaer Polytechnic Institute, Troy, N.Y., U.S.A.
University of Utrecht, Netherlands

We consider the instability of Couette flow between rotating concentric cylinders of infinite length. Let R_1, R_2 and n_1, n_2 denote the radii and angular velocities of the inner and outer cylinders, respectively; and let $n = R_1/R_2$ and $\nu = R_2/n_1$. We also introduce the Taylor number $T = -\lambda \nu^{-1} \beta/(\nu^2)$ with $\lambda = (n^2 R_2^2 - n^2 R_1^2)/(R_2^2 - R_1^2)$.

It is known from the linear stability analysis of Krueger, Gross, and DiPrima (1966) for n near one that (i) for $\nu = 0$ and increasing T, Couette flow first becomes unstable to an axisymmetric disturbance at $T = T_c(\nu = 0, n)$, (ii) in the absence of an axisymmetric disturbance Couette flow would become unstable to a non-axisymmetric disturbance at a value of T just slightly greater than T_c, and (iii) at ν sufficiently negative the critical value of T occurs for a non-axisymmetric disturbance. Thus, for fixed n near one there are parameter values (ν_1, T_1) for which axisymmetric and non-axisymmetric disturbances are simultaneously critical for Couette flow. We wish to study the bifurcation problem in the neighborhood of (ν_1, T_1), where we note that instability to an axisymmetric disturbance gives a steady bifurcation while instability to a non-axisymmetric disturbance gives a Hopf bifurcation.

In order to develop a mathematically tractable problem, we assume that the axial wavenumber of the axisymmetric and non-axisymmetric disturbances are the same, and we choose the wavenumber to be that corresponding to critical conditions for an axisymmetric disturbance. We let λ denote the dimensionless axial wavenumber (scaled with respect to $R_2 - R_1$) and m denote the number of waves in the azimuthal direction. Dr. Peter Eagles has carried out the necessary calculations for $n = 0.95$ to determine the points (ν_1, T_1) for

This research was partially supported by the Army Research Office and the Fluid Mechanics Branch of the Office of Naval Research, and by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

* Present address: Koninklijke/Shell Laboratorium, Amsterdam

simultaneous instability to an axisymmetric disturbance \((\lambda,0)\) and a non-axisymmetric disturbance \((\lambda,m)\) with the results given in the Table.

<table>
<thead>
<tr>
<th>m</th>
<th>(-0.73976)</th>
<th>11,973.87</th>
<th>3.482</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-0.75123</td>
<td>12,319.01</td>
<td>3.507</td>
</tr>
<tr>
<td>4</td>
<td>-0.80284</td>
<td>14,015.01</td>
<td>3.628</td>
</tr>
</tbody>
</table>

Thus, for example, for \(\eta = 0.95\) and \(\nu = -0.73976\), Couette flow is simultaneously unstable to an axisymmetric disturbance with wavenumbers \((3.482,0)\) and a non-axisymmetric disturbance with wavenumbers \((3.482,1)\). We also note that at \((\nu_1, T_1)\) there are 6 critical modes with axial \((Z)\) and azimuthal \((\theta)\) dependence as follows: \(\cos \lambda Z, \sin \lambda Z, \exp (2i\theta) \cos \lambda Z\) and \(\exp (2i\theta) \sin \lambda Z\).

The first step in the bifurcation analysis is to represent the components of the disturbance by

\[
A_c u_c(r) \cos \lambda Z + A_s u_s(r) \sin \lambda Z +
B_c v_c(r) \exp (im\theta) \cos \lambda Z + B_s v_s(r) \exp (im\theta) \sin \lambda Z +
\]

Here the functions \(u_c, u_s, v_c, v_s\) denote the radial dependence of the respective modes. The quantities \(A_c, A_s, B_c, B_s\) are scalar functions of time with \(A_c, A_s\) varying in the real numbers and \(B_c, B_s\) in the complex domain. The residual component \(\nu\) is orthogonal to the six critical modes.

We are now able to reduce the nonlinear partial differential equation to a finite-dimensional center manifold of dimension six; this reduction is performed by expressing \(\nu\) in terms of the coefficients \(A_c, A_s, B_c, B_s\). The nonlinear ordinary differential equations for these coefficients describe the 'flow' in the center manifold and are similar to those derived by Davey, DiPrima and Stuart (1968) for the case \(\nu = 0\).

We give particular attention to the interaction of the three modes \(\cos \lambda Z\) and \(\exp (2i\theta) \sin \lambda Z\), which can give rise to Taylor-vortex and wavy-vortex flows which are often observed in experiments. So we put \(A_s = B_c = 0\) and we obtain the following equations where terms of the order \(\nu\) have been omitted:
The scalar quantities a_j are real and the b_j are complex numbers. In the sequel we shall denote by b_{jr} and b_{ji} the real and imaginary parts of b_j. After performing the transformation $A_c = x$, $B_s = y \exp i(b_{0} + \phi)$ the equation for ϕ uncouples from those for x and y and we obtain

\[
\frac{dx}{dt} = a_{0}x + a_{1}x^{3} + a_{5}xy^{2} + a_{7}x^{5} + a_{9}x^{3}y^{2} + a_{11}xy^{4},
\]

\[
\frac{dy}{dt} = b_{0}y + b_{1}y^{3} + b_{4}x^{2}y + b_{6}x^{2}y + b_{8}x^{5} + b_{10}x^{3}y^{2} + b_{12}y^{4}.\]

(3)

The coefficients a_j and b_{jr} depend on u and T, while $a_{0}(u_1, T_1) = b_{0r}(u_1, T_1) = 0$. It is now possible to study changes in the phase plane as a function of the two parameters $u-u_1$ and $T-T_1$. It is natural first to analyze system (3) with the fifth order terms left out. Keener (1976) and Langford and Iooss (1980) consider pairs of coupled ordinary differential equations with the same cubic nonlinearities as (3) by taking a_1, a_5, b_4, b_{0r} fixed and varying a_0 and b_{0r}. The nature of the changes in the phase plane depends of course on the specific values of the 3rd order coefficients and the cubic systems of o.d.e.'s can be classified accordingly.

While the investigations by Keener and Langford-Iooss were carried out for arbitrary nonvanishing values of the 3rd order coefficients, it turns out that in the problem which is presently under discussion some of these coefficients are very small and change sign for values of u, T very close to u_1, T_1. For example, if we let u take values close to u_1 and compute $T = T_c(u, n = 0.95, \lambda = 3.482, a = 0)$ then $a_1(u, T)$ is indeed very close to $u_1 = -0.739$. For this reason the analysis of (3) has to be taken to fifth order and the dependence of a_1, a_5, b_4, b_{0r} on u and T has to be taken into account up to first order in $u-u_1$ and $T-T_1$.

The numerical evaluation of the very complicated expressions for the fifth order coefficients have been carried out by Dr. Eagles and the analysis of the changes in the phase plane is in progress.
The full system of six amplitude equations is also studied, but only at cubic order in the amplitudes. For this case there does not appear to be a transformation that will reduce the order of the system.

For the case $\mu = 0$, we have noted that the axisymmetric and non-axisymmetric modes are not simultaneously unstable. However, it is possible to embed this problem in a larger class of mathematical problems which we can analyze using the techniques of center manifold theory. In this way we present a rational basis (though admittedly complicated) for the analysis of the successive bifurcations from Couette flow to Taylor-vortex flow and then to wavy-vortex flow for increasing T with $\mu = 0$ as first studied by Davey, DiPrima, and Stuart (1968).

References

