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EXPLICIT DIFFERENCE SCHEMES FOR WAVE
PROPAGATION AND IMPACT PROBLEMS*

Joseph E. Flaherty
Department of Mathematical Sciences
Rensselaer Polytechnic Inatitute
Troy, NY 12181

and

U.S. Army Armament Research and Development Command
Large Caliber Weapon Systems Laboratory
Benet Weapons Laboratory
Watervliet, NY 12189

ABSTRACT. Explicit finite difference and finite element schemes are
constructed to solve wave propagation, shock, and impact problems. The
schemes rely on exponential functions and the solution of linearized Riemann
problems in order to reduce the effects of numerical dispersion and diffusion.
The relationship of the new schemes to existing explicit schemes 1is analyzed
and numerical results and comparisons are presented for several examples.

I. INTRODUCTION. Exponentially fitted and/or weighted finite difference
[9,11), finite element [3,9,10], and collocation [5] schemes have become
popular and effective methods of solving steady convection-diffusion problems.
They avoid the spurious mesh osclllations that are found near boundary and
shock layers when centered schemes are used at high cell Reynolds or Peclet
numbers and they reduce the effects of numerical diffusion that are associated
with classical upwind difference schemes.

We seek to extend exponential methods to transient problems and as a

first step we consider one-dimensional scalar initial value problems of the
form

ug + f(u)x = €uxx , tD>0 , x| <=
u(x,0) = u(x) , |x] <= (1)

where 0 € € <{ 1 is either a real or an artificial viscosity parameter and the
x and t subscripts denote partial differentiation.

Our primary motivation for studying exponential schemes is a desire to
develop improved numerical methods for elastic-plastic impact problems in
rolids and blast problems in gases.

*This research was partially sponsored by the U.S. Alr Force Office of
Scientific Research, Air Force Systems Command, USAF, under Grant Number
AFOSR 80-0192. The United States Government is authorized to reproduce and

distribute reprints for government purposes notwithstanding any copyright
notation thereon,
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In this paper, we confine our attention to explicit difference
approximations of (1) having the forn

1
Utly - goy - 5 M+ £%-1/2) (0 = £1y-)) + (1 = 20541 /2) (g4 - £09))
+“(n° 200y + U%444) >0 3] < =
P 3 *+1) » @ ’

Wy = (3t , |3l <= (2)

where Ax and At denote the uniform spatial and temporal grid spacings,
respectively, U“j is the numerical approximation of u(jax,nAt),

fnj - f(Unj) s A= At/Ax (3,4)

and zﬂj+1/2 are upwind weighting factors.

Many popular difference schemes have the form of (2) and some of these
are discussed and compared in Section II. We also introduce an exponential
scheme that is based on determining £74y1)/; so that U%y is the exact solution
of the linearized steady equation

Cuy = Euxy (5)

when ¢ = £f'(u) is a constant, We call this method the linearized steady
exponential (LSE) method and it is the simplest extension of the exponentially
fitted and weighted schemes [3,9,10,11] to transient problems. The scheme
gives improved accuracy for steady shock problems, but offers little improve-
ment over classical upwind differencing for moving shock problems.

In Section III we develop an exponential scheme that is based on the
exact solution of a linearized transient equation (1) that is subject to
piecewise constant initial data, i.e., a linearized Riemann problem fcr (1).
We call this method the linearized transient exponential (LTE) method and,
like other methods based on the solutions of Riemann problems [1,2,4,6,8,13,
15,16), 4t sharply resolves boundary and shock layers without added diffusion
or spurious oscillations. As € + 0 the LTE method becomes formally equivalent
to Roe's method [15,16) for hyperbolic systems of conservation laws. van Leer
[17] has noted that Roe's method treats an expansion fan as a so called
“expansion shock™ (cf. Figure 6) and, unfortunately, our LTE method also has
this disturbing property even when € is nonzero, but small,

In Section IV we present some preliminary results for vector systems of
equations and in Section V we discuss our results and indicate some directions

for future work,

I1. THE LINEARIZED STEADY EXPONENTIAL (LSE) METHOD. The LSE method 1s
obtained from (2) by selecting £, k = j11/2, as

£y = coth pN/2 - 2/p%y (6)
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vwhere py 1s the cell Reynolds number Ml RO N

Ax SPi+1/2 + ¢%-1/2
Yy - ;- (--- 5 ) )

and
¢ty = £'(0%) (8)

As previously noted, the LSE method will give a pointwise exact steady state
solution of (1) when ¢y 1s a constant. This or similar schemes have been
used by several investigators [3,9,10,11] for steady singularly-perturbed
problems and herein we try to apply it to transient problems.

We first consider a linear stability analysis of the difference scheme
(2) by letting f(u) = cu where ¢ is a constant, We also let p and z denote
the constant values of p%y and z%, respectively, a denote the Courant number

a = cAt/Ax (9)
and B denote the dissipation parameter
B = a(z + 2/p) (10)
In this case, equation (2) can be written as
1 1
U“‘HJ = Unj - -2- °(Unj+1 = Unj..l) + 5 B(Unj.ﬂ = ZUnJ + Unj..l) (1)

Several popular difference schemes have the form of (11) for different
values of B (or z) and some of these are listed in Table 1. All of these
schemes are first order accurate in time, except the Lax-Wendroff scheme which
is second order.

A von Neumann analysis (cf, Richtmyer and Morton [14)) shows that
equation (11) is stable in the region a€ < 8, 0 < 8 < 1, This region is shown
shaded for a » 0 in Figure 1. Curves corresponding to the methods in Table 1
are also shown. We see that the LSE method slightly improves upon the
stability and accuracy properties of upwind differencing and that centered
differencing and the Lax-Friedrichs scheme are outside of the stability region
for most values of a and 8.

Example 1: We compare the methods in Table ] on the constant coefficient
initial-boundary value problem

U + Uy = c\lxx » t>0 " 0<(x<1
u(x,0) =0 , 0<x<(1
u(0,t) = 1 , u(l,t) =0 (12)

The exact solution of this problem features a shock layer that moves from x =
0 to x = ] with unit speed and then approaches the steady state solution
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1 - .—(l-x)/c

u(!ot) v (13)
1 -ele

as t<+ -,
The maximum error at steady state

n;xlu(jﬂx,nAt) = U“j' , ne+e (14)

coﬁputed by the Lax-Wendroff, upwind, LSE, and Lax-Friedrichs schemes are
shown in Table 2 for Ax = 1/20, p = 6, a = 0,375, 0.75 and Ax = 1/20, p = 500,
a = 0.475, 0.95%,

The centered difference scheme produced overflows for both p = 6 and
500, so no results could be listed for it. The Lax-Friedrichs scheme only
overflowed for p = 6. The LSE scheme gives the exact steady state solution
for this example and the small errors reported in Table 2 are due to the
combined effects of roundoff and our failure to reach the exact steady state.

These results are very encouraging; however, when we examine the LSE
solution during the transient phase of the solution the situation is quite
different (cf. Figure 2). The LSE solution is overly diffusive and the
computed solution is not much better than that obtained by upwind
differencing. This observation was also noted by Gresho and Lee [7] about
methods that are similar to the LSE method.

1I1. THE LINEARIZED TRANSIENT EXPONENTIAL (LTE) METHOD. We would like
to improve upon the results of the LSE method for transient problems and,
thus, we consider developing a method having the form of (2) that gives a
pointwise exact solution of (1) when f(u) = cu and ¢ i{s a constant. Since we
are primarily interested in obtaining good resolution near shock and boundary
layers we choose to solve (1) subject to Riemann initial data. To be
specific, for each j and n we compute U“+lj as the exact solution of the

initial value problem.

Ug +cug = Eugy , t>mit , |x|] <= ,
u, , x< (J-1+8)ax
u(x,nét) = (15)
uwp ., x> (§-1+8)Ax

where uj, and up are constants, § 1s a constant on {0,1) to be deteruined, and
we assume that ¢ > 0. We shall present results for ¢ ¢ 0 later.

The exact solution of (15) at x = jAx and t = (p+l)At is

| 1
u(jéx,nbt) = ug - ;(ug-u]_)erfc ;‘,—5(1-6-0) (16)

%A1l numerical results were obtained in double precision on an IBM 4341
computer at the Benet Weapons Laboratory.
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whereas the solution of equstion (2) at this point {is
1
Un'HJ ®= ug - ; a(l + ‘nj-l/2 + 2/p)(up-up) (17)
The two solutions will be the same provided that
o [ = = 3= axts - 4= (1-0<a) (18)
£04. = -] -« -+~ erfc -¢/- (1-8-a
-1 p a 2Va
In this paper, we simplify (18 by assuming that p/a >> 1 and approxi-

mating the complementary error functiion by 2H(é+o-1), where H is a Heaviside
/2 1s not determined by this procedure, we specify

function., Also, since 204,
: it according to equation 26; vith coth p/2 approximated by unity. Thus, we
] have
3 2 1 2
z“j_l/z =) - ; + 2[; H(&+a~-1) -~ 1) , lnj+1/2 -] - ; (19a)

When ¢ € 0 we choose
[ 2 2 1
z“j_l/z = -] - ; . sz""l/Z - -] - ;'0' 2[; H(8~a-1) + 1] (19b)

E It remains to specify 6. One possibility is to choose it to be a random
variable uniformly distributed on [0,1), in which case equations (2) and (19)
would yield a linearized random choice scheme [1,2]. A second possibility is
to always select § = 1/2 which would give a Godunov [6] type scheme. The

f third possibility is similar to a scheme suggested by Roe [15] and is the one

| that we have been using. We begin by selecting § = 0; however, any value of

E §e(0,1) will do. After each time step we add the magnitude of the Courant
number |a| to & and obtain a new value of §. We continue this process until §

exceeds unity, in which case we replace & by 8-]. The procedure has to be
modified slightly when a 18 not a constant and we shall indicate how this is
done shortly; however, 1f a 18 a rational number of the form p/q and € = 0
then equations (2) and (19) have the advantage of giving the pointwise exact
solution of the linearized Riemann problem every q time steps.

We refer to the scheme consisting of equations (2) and (19) and the above
choice of § as the linearized transient exponential (LTE) method and we begin
by applying it to the following linear Riemann problem.

Example 2:
? U tug =€y , tD0 , [x| (e (20)
1 , x<€0
u(x,0) =
0 , x>0
f In this example, the initial discontinuity becomes a shock layer which travels
y

with unit speed in the positive x direction while widening as t increases.

We have computed the solution of this problem by the LTE method with Ax =

5 1/20, p = 500, and a = 0.75, 0.95. PFor this value of p and for times less
r than order 1/e, the shock layer is well contained within one mesh subinterval
F
1
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and we have plotted the locations of the ends of this subinterval along with
the exact position of the center of the shock layer in Figures 3 and 4 for a =
0.75 and 0.95, respectively. We see that the shock layer is tracked exactly
on the average and that we obtain the pointwise exact solution every 4 and 20
time steps when a = 0.75 and 0.95, respectively.

For nonlinear scalar problems we stil) use equations (2) and (19);

however, we now use local values of the Courant and Reynolds numbers based on
a local shock speed. Thus, on each subinterval we calculate

an-l/z ) lnj-l/zAt/Ax . D“J..l/z - s“j-l/zAx/c (21a,b)
vhere 874_) /7 18 a local shock speed which we choose as
o0y-1/2 = (£74 - £94.1) /(07 - U%y)) (22)

Equations (21) are used in equations (19) to calculate 2“5-112 and we proceed
as in the linear case. After each time step we add

(ﬂjinlﬁ“j-llzl + ﬂjaxlc“j-llzl)/Z
to § and obtain a new value of 8. Once § exceeds unity we again replace it by
6-10

Equation (22) gives the exact shock speed whenever UR; and U%4.., satisfy
the Rankine-Hugoniot jump conditions (cf. e.g. Whitham [181 and equation
(27)). An alternate definition of s"y.)/7 that is easier to use
computationally, but only gives the correct shock speed when £ 1s at most a

quadratic function of u is
1
an_l/z - ; [£* (Unj) + f'(UnJ-l)] N (23)
Example 3: We consider a Riemann problem for Burgers' equation
1
Ut+5(uz)x-‘\ln » t>0 » I!I<. »
u , x<0
u(x,0) = (24)
up , x>0
The exact solution of this problem can be obtained by the Hopf-Cole transfor-

mation and is given in, e.g., Whitham [18]. Herein, it suffices to give
seynptotic formulas which are valid for t/e >> 1. Thus, when uf > ug ve have

1 1 up = uR
u(x,t) ~ ;(uL + ug) - E(uL - ug) tanh (-;E-‘-)(! - St) (259)

where
1
S= E (uL + up) (25b)
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and when up, < ug we have
u, , x/t <y
u(x,t) ~ | x/t , up € x/t < uy (26)
ug , ug < x/t

Equation (25) represents a shock layer moving in the positive x direction with
speed S and equation (26) represents an expansion fan.

We calculated solutions with € = 10‘“. Ax = 1/20, and A = 0,95 by the LSE
and LTE methods for a shock problem with uj, = 1, ug = 0 and an expansion
problem with uj, = -], ug = -1/2. In Figure 5 we compare the exact shock
position with those calculated by the LSE and LTE methods. We define the
shock position for the numerical methods as the point where the solution is
(ug, - ug)/2 when linear interpolation is used to compute solution values
between mesh points. In Pigures 6a and 6b we plot the exact LSE and LTE
solutions at t = 0.95 for the shock problem and at t = 0,38 for the expansion
problem, respectively. The LTE method again confines the shock layer to one
subinterval and gives the correct shock speed and position on the average.
The LSE method is overly diffusive and is giving the correct shock speed, but
the position 1s wrong by about Ax/2.

The situation is quite different for the expansion fan, The LSE method
is still overly diffusive; however, the LTE method is representing the
expansion fan as a shock. This phenomenon also occurs with Roe's scheme for
hyperbolic systems (cf., Roe [16] and van Leer [17])) and it must be remedied if
these schemes are to be useful on expansion problems.

IV. SYSTEMS OF EQUATIONS. In principle the LTE method consisting of
equation (2), (19), and (21) may be directly extended to vector systems of
the form (1) once we have selected a shock speed sh -1/2+ When € = 0 the
exact shock speed S is determined by the Rankine-Hugoniot condition

(ug - up)s = £(up) - £(uy) (27)
where up and yj, are the values of u(x,t) on opposite sides of the shock. When
¢ 1s norzero but srull we would like the numerical shock speed s® 4-1/2 = S
whenever the numerical solution g“j - qnj satisfies (29).

In a recent paper Harten and Lax [8] suggested selecting
$04-1/2 = &(£0y = £74_))/0(U%y - U%y.) (28a)
where l(y) is the linear functional
2w) = [V'(U%y) - V' (UTy_))]w (28b)
and V(u) 1s an entropy function. They show that this choice gives unique

physiczlly admissible numerical solutions of their random choice finite
difference methods.
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Roe [16) suggests an alternate method of calculating s%.)/; that is
based on the eigenvalut of a matrix approximating the Jacobian Oflau.

We have not tried either of these alternatives, but instead use the very
simple prescription
(1% - Py-1 TRy - £24-)

(% - 18- 7Yy - g%y-p)

%-1/2 = (29)

Equation (29) gives the exact shock speed whenever U“ and U0 satisfy the
Rankine-Hugoniot conditions (27), but it may fail to give a2 p{ysically
accaptable solution.

Example 4: We solve the following impact problem for the linear wave
equation

ueg w0 , wr=-vuyyg=0, t>0 , |x|<"

1 , x<0 ‘
ul(xpo) =0 , UZ(X’O) = (30)
-1 , x>0

Here uj(x,t) and up(x,t) represent the strain and velocity in two elastic rods
that impact each other with unit speeds at x = t = O,

We calculated the solution of this problem by the LSE and LTE methods and
by the EPIC-2 code [12]. The latter is a two~dimensional finite element code
for elastic-plastic impact problems. Our results for u; at t = 0.95 obtained
with Ax = 1/10 and A = 0.95 are shown in Figure 7. The LSE and LTE solutions
are typical of our results on previous examples. The LTE method again calcu-
lates the correct shock position and speed with no diffusion or oscillations.
The LSE solution is overly diffusive, although less so than the EPIC-2 solu-

tion.

V. DISCUSSION OF RESULTS. The LTE method appears to be a very promising
scheme for shock problems. It is simpler to apply than methods based on the
exact solution of Riemann problems [1,2] and does not suffer from the effects
of artificial diffusion or spurious osciilations. However, our results are
very preliminary and there sre still many questions to be answered and many
problems to be overcome. The performance of the LTE method in regions of
expansion must be improved, van Leer [17] has suggested incorporating
expansion fans in the approximate Riemann solution of Roe's method [16], and
this approach should work for our LTE methou as well. Another possibility is
to base the difference scheme (2) on the exact solution of (1) when f is a
quadratic function cf u. The solution of this problem does contain expansion
waves; however, extending this method to systems of equations would be
considerably more diificult than extending the LTE method.

Both the LSE and LTE methods are first order accurate iu time when the
solution is smooth. van Leer [17] has developed a two-step procedure that can
be used to extend these methods to second order accuracy and we plan to
experiment with it shortly,
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There is also the possibility of developing implicit exponentially fitted

and weighted schemes, which would be desirable when approaching a steady state
and which may improve the phase characteristice of the LSE method (cf, Gresho

and Lee [7]).

Finally, we note that the LSE and LTE methods can be extended to higher

dimensions by using operator splitting techniques. However, this may
introduce some numerical diffusion.

i.

2.
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TABLE 1. VALUES OF s AND # FOR DIFFERENCE METHODS
THAT HAVE THE FORM OF EQUATION (11)

Method z g = a(eg + 2/p)
Centered 0 2a/p
Lax~Wendrof f .a a? + 2a/p
Upwind sgn(p) a(sgn(p) + 2/p)

Linearized steady
exponential (LSE)

Lax-Friedrichs

coth(p/2) - 2/p

1/a

acoth(p/2)

1+ 2a/p

TABLE 2, MAXIMUM ERROR AT STEADY STATE FOR EXAMPLE 1.
AN * INDICATES THAT THE COMPUTED SOLUTION
PRODUCED AN OVERFLOW.

p=6 p = 500
Method
a= 0,375 0.75 a= 0,475 0.95
L‘x-wendrOff 2.9 B-1 1.6 E-3 3.5 E-] 2.3 BE=2
Upwind 2.0 E-2 2,0 E-2 2.0 E-3 2.0 E-3

Linearized steady
exponential (LSE)

Lax-Friedrichs

205 E'la 205 E-l‘

8.5 E-s 201 E-lz

306 E-l 208 E’Z

—— e ——
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Figure 1. Region of linear stability for equation (11) and curves of 8 vs. a
for the centered difference (C), Lax-Wendroff (LW), upwind
difference (U), linearized steady exponential (LSE), and
Lax~-Friedrichs (LF) methods.
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Pigure 2. Comparison of exact and LSE solutions of Example 1 at t = 0,475,
Calculations were performed with Ax = 1/20, a = 0.95, and p = 500.
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FPigure 3.

Exact shock layer position and the location of the subinterval
containing the shock layer calculated by the LTE method for Example

2 with 4x = 1/20, a = 0.75, and p = 500.
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Figure 4. Exact shock layer position and the location of the sudbinterval
containing the shock layer calculated by the LTE method for Example
2 with 4x = 1/20, a = 0,95, and p = 500.
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Figure 5. Exact shock layer position and those calculated by the LSE and LTE
methods for Example 3 with € = 10~", Ax = 1/20, and a = 0.95.
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Figure 6.

01 04 05 06

Exact, LSE, and LTE solutions of Example 3 with ¢ = 10~%, Ax =
1/20, and a = 0.95. In (a) we show the solution at t = 0.95 of a
shock problem with u;, = 1, ug = 0, and in (b) we show the solution
at t = 0.38 of an expansion problem with up = =], ug = ~1/2.
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FPigure 7. Comparison of exact, LSE, LTE, and EPIC-2 solutions for u) of
Example 4 at t = 0,95 with Ax = 0,1 and At = 0.095.
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