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METHODS FOR EVALUATTING GUN-POi'NTTlG ANGLE BRRORS AND
MTSS DISTANCE PARAMETERS FOR AN AIR DEFENSE GUN SYSTEM ()]
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PART 1. Coordinate frames, system and instrumentation data; gun angles. N\
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COORDTINATTZATION. '"he basic reference frame used to coordinatigze F‘
target position and resolve gun-pointing Airection into agimuth and
elevation components every .1 second is an (east, north, gravity verti-
cal up) system centered in the vehicle at the point C on the turret
axis at the ground height of the gun trunnion, F(C/x “j ’}) .
Government trackers at known range -coordinates acquire target position
in their own frames. For a stationary pass, each vehicle sits on a
prescribed pad, its turret axis apnroximately over a point on the pad
with known range coordinates. These sets of coordinates, together with
the trunnion height, permit the conversion from tracker frame coor-
dinates to reference coordina%es, which are further subject to a low-
i pass Adigital filter M1, See 5. 11. ¥Por a moving vehicle pass, in addi-
tion vehicle position is provided by a government tracker (also fil- )

tered), and F(C/X, 4.3) becomes a moving frame.

' All velocity-related parameters are computed solely from target
' coordinates available every .1 second in *+he reference frame. Target

velocity components l)'(,}",'x') are aassocinted +o each target posi-
: tion vector (x,y,z) by differentiation of a moving fitted
= polynomial arc. The so-called level plane is spanned by ( ,'X ’y- H
; target azimuth op in the level plane has vertex C, initial ray direc-
tion , with a positive clockwise (viewed from above) sense of rotation
to its terminal side; target ﬂevation Er has vertex C, and initial
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ray in the level plane. So tane(p = X/} , tan ET" .Z-/‘/xﬂ-ryl ’
* and time Aifferentiation yields +he Aangular rates °‘T s €7 in terms
of x,y,%.
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The computation of the components of the range rate and range-angular
velocity resolution of target velocity runs as follows. Set
= (%YyZ) and = (X,Y,Z) : for a non-zero vector Of let

Ol denote its length and N° the unit vector in the direction
ot & . Resolving <% into two components, one along the range vec-
tor A  and the other perpendicular to 4  in the plane spanned by

€L, get (3= mz[(c.o)@.'. @x({}xe)J (k) - On the other

hand, from a standard elementary mechanics set-up, get ¢=r eﬂ +r 9§ ’
vhere 7°=({€ll ’ 3 is that vector in the plane spanned bdy
O, € 1leading ¢ by 90°, and e is the angular velocity of the
range vector. Indeed, (X) shows that the coefficient of
A0 = €-0/li€]|, precisely the time derivative 7 of the range. From

the definition of F , it follows that §= :7m(x‘)'-xj') f’exlol(Q]‘,?
as (| €x(ox @ =u€ll|Ox el , f= s9m (%y-x9) X,
~ ra

GUN AZIMUTH & BLEVATION ANGLES. To obtain gun-pointing direction
errors and miss distance results, it is necessary to resolve real-time
gun-pointing direction into azimuth and elevation angles wrt the
reference frame. Usually this is just a matter of out-of-level compen-
sation. A representative situation for an air defense tank is discussed
here.

The turret frame F(C/ X7, #T; 91‘) is defined as followa:
T is the turret axis direction given by the gun vector direc-
tion at O turret elevation, :€1~ points in the direction of the trun-
nion to the right of T (looking down), Fr=XrX%Yr (turret
vertical up). The attitude of the turret frame wrt the veference frame
is determined only *o the extent of specifying turret pitch and roll

relative to the gravity vertical axis .
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SCHWARTZ

Gun agzimuth and elevation in the reference frame is computed using
the following data:

Pitch angle 9 , with typieal sign conventions + or - according
as the turret front moves up or down;

Roll angle ¢ , with typical sign conventions + or - according
as the right side moves up or down;

Gun resolver elevation E£4 off the turret plane;

Target angles wrt turret frame--- :

&4 = target agimuth wrt turret frame (lead traverse), with
typical sign conventions + or - according as the target
lies to the right or left of the gun elevation plane;

@T- target elevation off turret plane;

Target position in the reference frame.

The desired agimuth ‘5 and elevation 65 are computed in the
following 3 steps.

Step 1. Quadrant elevation Eﬁ (signed) from & ,8,¢
Attitude data: gyro pitch @ ,roll¢

.0 represents turret vertical
represents gravity vertical (on
Z; reference unit sphere)
Y‘t Ez represents nominal turret centerline
5 (gun pointing Airection at 0 turretel)
2 C

- ' Guf\ elevates in plane CZ‘Y‘

th 7 @ = dihedral angle between planes Z*C T;& ZC){
P * §In £ = Co5 .51 + SInEyCasheasp

Step 2. Lesd azimuth magnitude A from &g, &,6r, 6,9
ﬁ represents target direction
§ = target-gun angle in slant plane
From A_szqgu
(55 = Jingy Sin€a €05 £, CO5S LY CoS
From ATZG“ Er & A
o5 § = 3mExImE + o5 ExCas £5Cas)
& A (unsigned) is Aetermined
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SCHWARTZ

Step 3. . Tt remains only to determine on which side of the
vertical plane Z(CQ{ containing the gun direction the target lies. Let

the true vertical point Z have turret angles «* & . Note thata’

and @ have opposite signs.

Prom AV, Z0
sme’ = Cos@cosghy
(ose'Cos! == 5mY;
S| = tan&'tangd 5o
Cos¢' sma’/ = - cos@smg.
o CZ = ~cossmp Xy +5m8Y +<osbcosd Fr

—y el

CG X C V4 is a normal to the vertical plane containing the gun
direction pointing to the right of the plane (viewed from above). So
the target lies to the right or the left of this plane according as

E?'(EE"XC'Z‘) 20 » 0.

Since the turret coordinates of all vectors of the triple product
are known, the scalar can in fact be computed.
S de = AT FEA mdan according as the target lies to
the left or right of the vertical gun plane.

The attitude data may be available from bdoth on-board system and
governmsnt-supplied gyros. Target angular position in the turret frame
is available from the system's optic sight or track radar, subject to
tracking errors. A government-supplied tracker, PAMS, operating in the
NIR region, ies availadble for turret tracking with considerably reduced

( cking errors.

PART 1I. Ballistics; ideal gun-pointing direction, system gun-pointing
direccion arrors. - 7

BALLYSTICS. The equa*tions of motion of a projectile considered as a
particle acted on by an axial drag force, horisontal wind, gravity,
rotation of the earth, and subject to a Arift owing to aerodynamic for-
ces not deriving from axial drag or crosswind dsflection are developed
in (2], "hat Aevelopment is not repsated here, but a sumary of the
trajectory equations, the acquisition and use of metro, and the numeri-
cal integration method is aet down.
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The ballistic frame F(@/?, X :z ) vith generic coordinates (z‘lxér)
is defined thus: @ represent 'th" %tical projection of the attachment

of the gun to its elevating axis to gero MSL, = downrange direction,
i.e., vertical projection of the current gpd, a» gravity vertical up
dtroction.?g = crossrange direction, to the right of the current gpd.

Let t=current projectile time of flight,

(Z,X,Y)=vallistic coordinates of projectile at time t,

W, Wg =downrange, crossrange wind components at projectile
position (Z,X,Y) (data actually obtained as a function
of altitude above MSL),

=air density at (2,X,Y) (data source as for wind),
i{,aln)-dmg cosfficient expressed as function of current Mach
number ¥,

e-banistic coefficient,

€= eﬁkpxprojectile speed relative to air (retardation),

g =noffinal gravitational acceleration,
m-drift constant,

,Ay =coriolis terms,
‘/p-mzle velocity,
£ =gpd elevation angle off the level plane,
§ =MSL altitude of gun attachment,
£ =barrel length.

In the ballistic frame, the equations of motion of the projectile
read O

X= ‘E(X"Vx)*‘lﬂ.'

r = “EY""g °A|*
Z

= ~El2~wy ~axtcose)+ akcose +1 X +)3?,
with initial conditions X(0)=Scose , Y0)= s +Lshg , Z0)=0

X(0)=Vjcose ,Y10)= Vo S , 2(0)=0.
Por the situation here, the reference origin=the gun attachment; if
the gpd has azimuth & wrt the veference frame, the change of coordinates
relating ballistic and reference coordinates is given hy Z\ /[cx -s«0\(x

X|=| s« cxofy

Y/ \0 0 /lzss
Acquisition and use of metro data. All data is obtained and used as
function of altitude; details concerning uniis, conversion of tempera-
ture, pressure, and humidity to density are omitted.
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Surface metro. Here wind speed, windward, temperature, pressure,
and humidity are acquired at the surface near the time of testing. Wind
data is converted to ballistic coordinates in the current frame; ground
air temperature Iy and ground air density /25 are used to_convert the
temperature and density values that the ICA0 standard f21 assigns to
various altitudes to ICAO adjusted values dy additive scaling with
Ts and multiplicative with L5, respectively.

. Metro alofi. Por firing passes, winds aloft radiosonde metro is
i3 used when available. Here wind speed, windward, temperature, density
are obtained at prescribed altitudes Y( <Ym near the time of testing.
Wind components in the current baniatic {frame, temperature, and pres-
sure for a required altitude are obtained by linear interpolation on
altitude.

11 Rumerical integration of the trajectory equations. A numerical.’
4 solution of the trajectory equations is based on the following
rationale. let At = a prescribed small time increment; currently
Ot= .15ec. Consider the elapsed times of projectile flight
ti= (At i=0,,2, ... « DBallistic coordinates and their deriva-
tivas are conputod only at the discrete times t;; so known values of

the metro data associated to altitude
: $ detemine é{f,) and soa&,Y,'Z ef{;. The assumption that accelera-
{ tio remains constant throughout the interval [t; i:+at= ti4) permits
the immediate integration of x Y 2 there, yielding values of
2,2, X,X,Y,Y.t tisg+ The initial conditions start the procedure, and
¥ from what has just been said, the procedure can be continued until stop-
ped by some prescribed temination condition. Projectile position and
] velocity at non-discrete times are obtained by linear interpolation on
i time. Wote that at termination projectile time of flight, velocity com-
3 ponents are automatically availabdle.
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N Ballistic coefficients, drag coefficients, Arift constants, and
nominal mugzle velocities for the rounds used during testing are sup-
plied by the ballistics section. Actual mugzzle velocities during firing
may be obtained from a government-supplied muzzle velocity radar.
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IDEAL GUXN-POTNTING DIRECTTON.

An ideal intercept algorithm providing gpd azimuth and elevation wrt the
refereiice frame required to intercept any target on the flight path not
too nes~ the end is now explicated. Based on the capability of
generating the gpd required to intercept a stationary point target by a
point round with miss distance £ prescribed small tolerance, the premier
idea in intercepting a moving target by a projectile-firing weapon can
readily bde implemented: find the future position on the flight path
where the targsat time of flight from its present position matches the
projectile time of flight resulting from the gpd required to intercept
that future position. Currently, this algorithm produces dynamic gpd
resulting in [(target time of flight) - (projectile time-of-flight)]
< /0™ Sec and miss at intercept < .4 inch.

Stationary intercept algorithm. Given a stationary target with
reference coordinates ¥* = (x¥ y¥ p¥), it is required to generate gun aim’
angles in the reference frame producing a trajectory terminated at point
= (X)y, 8) according to the stop condition ground range of ﬁ A ground
range of 4%, satisfying the near intercept condition
(I) mn(ix¥=xi,ly¥~yl ,(2¥~21) = ¢ prescribed tolerance € . Currently,
€=.0/m Aim agimuth, elevation angles &},€;), /=0 !)2,.. are generated
auicouively as follov;. The initial angles are just Ho= X¥%eagimuth of
«€r, €g=elevation of ¢ uperelevation (provided by the statistics sec-
tion, based on a LS curve fit to trajectory angle of fall, as determined
by the ballistics of the round under standard conditions, vs slant
rangs). Tor the iteration, suppose that (&, &) vproduces a terminal
projectile position with reference coordinates 7= (%, Y ,%) . If the
coordinates satisfy (I) stop and deliver (y; £) as the required angles.
Otherwise, either (1)min (IY*<Xi{,!Y*-YI)2 € or (})Iz*-2,126 and the improv-
ing aim angles («js), £;4)) are obtained as follows. If (1) does not hold
take &y = & ; 1f (1) does hold, the agimuth & of Y differs enongh from
the azimuth a(' to make apazimuth correction to &} by simply adding the
miss asimuth A¥*- X to the old az - formally &jy is given by
Aip = X+ XV X mod 27,084 < 2. £ (2) does not hold, take Ey =&; if
(2) holds, likewise make an elevation correction to €;» by adding on the
miss elevation é— t y to obtain &4 , where t is the elevation of

Ri (& E* the el of 2¥).
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Dynanic intercept algorithm. Target position is available avery
At  second (currently At=.f). Given a present target position (in
reference coordinates) lej corresponding to a present discrete clock
time, it is required to intercept the future target flight path by
firing at the present instant. Target position 4§ /. ,V= 0,2, 3, ...,is
available VAEt sec ahead of the present instdnt; the future target
flight path - parametriged by target time of flight from the present
position - is taken to be the polygonal train joining
i QJ- ”‘Cj gee++, with constant velocity in the interior of the seg-
ment (4., 'H-M{ . S0 Byam €y A Cisvey = €rv) , 05251 ~on
(fjw, .”,,’ as target fime of flight VA +)dt. Let T, = projec-
£11¢ timd of flight to an tintercept of ‘@“ for a trajectory initiated at
the present instant (available from the static algorithm). Ideally we
would require the determination of ¥y so that Tya= (V$1) AL ; but this
is certainly not realistic numerically, so we relax the intercept condi-

tion to (D) 1Ty =~( y.,.;)Atl( small prescribed toleranced —— currently -

8= 10"¥%8ec

The rationale for the algorithm is based on the following considera-
tions. Suppose that 2 successive positions ‘fp 2 and 4¢p' 0£2<A¢pn the
same segment have been obtained admitting an undershoot a(pro,jec‘t:l e ar-
rives at location after target)Toa<lim)at ot e;o"g, , and an overshoot
(projectile arrives at location before target)Tpy >F#ldat at €ga, .
If either time of flight difference satisfies (D), stop and deliver the
aim angles (ag,s,-) of the trajectory as the so-called ideal angles produc-
ing the desired intercept. Otherwise, it is a reasonadle presumption to
expect an intercept somewhere between %Ia and ¢ )y Ve know that the
target time of flight to positions !

18 POt +[uly=A) A )t = (Bat +4,00)+ p[(0at +A.88) - (Fat +1:48E)],  where the
barycentric combination of the end-point times of flight is the same as
that giving the intermediate point's coordinates as a combination of the
end-point coordinates. Proceeding under the temporary assumption that
the projectile time of flight to an intermediate point is likewise the
same barycentric combination of end-point projectile times of flight,
get a unique solution /) 0<@<! , of the equation T, +M(Tga~Tpa)=
pat +040: ) Metletermining where target time of flight=projectile time of
flight under the tentative sassumption. Note that the alternating un-
der/overshoot conditions ensures 0<F<l 3+ the corresponding point on
(ev,a.,‘eﬁ.&) is ‘em,,whtre 2,=ﬂ'ﬂ,-h)+i\4 « Now drop the temporary as

sumption and regard 'Cg,,\, as a candidate intercept point. Comput};i

?m)l test the time of flight Adifference lFM,)dt -’l‘;,;, against condition
D).
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If (D) is satisfied, stop and deliver the aim angles (G, &) of the
trajectory yielding 'fg' ap A8 the ideal intercept angles. Té (D) is not
satisfied, we have an under-or overshoot at ‘Gp dg taking that one of
459';,,4!5;. with the opposite under/overshoot condition, we have
reproduceﬁ the initial state of affairs (with a smaller distance between
the points). Thus the rationale and the formal procedure for iterating.

It remains only to start the algorithm by finding two successive
discrete clock time target positions ?'49,@";4; exhibiting the alter-
nating under/overshoot condition. l‘his is done by computing all
'ty,o,vs(’,l,z,.u (projectile times of flight to the present and future
discrete target positions), and determining ¥2/ by the conditions
Tvo »vat for v=o,.... -1 ; TooSPot Clearly Tyo»val,v=0; if Tyo> Vot for all
V=20,,2,... no interception is possible, so this state of affairs is used as
the criterion for terminating ideal intercept angle calculation.
Gun-pointing angle errors. TIdeal intercept angles (&,€) and actual
gun angles g, &) wrt the reference frame as derived in Part I are com-
pared to yield signed errors aa follows. The signed elevation error is
Just £-E€; so positive if the gun actually points above the ideal eleva-
tion, negative if the gun points below. Azimuth error is signed so that
positive means the actual is leading the ideal, negative means a lag,
provided that the target flight path admits a determination of crossing.

PART IIT. Miss Distance and Related Parameters. <_

At discrete clock times separated by At sec (currently 4¢=.]) target
position in the reference frame is available to a maximum of A points
(currently N $1000: target flight time considered € 100 sec); so we have
N target coordinates Q,,-.. . é at clock times C,...,Cy , where (=i, +4¢.
Considar a projectile trajectory, with system gun angles (g, &) wrt the
reference frame, initiated at the clock time CJ'. Suppose that we have
continuous, rectifiable ares €/, &/, parametrized by elapsed time of
flignht t,08t</-jlot , reckoned from the present instant C;, represant-
ing target, projectile flight paths, respectively.. At elapsed time ¢,
the target-to-projectile miss vector is just ﬂ"t)=ﬁﬂ-€’(t). So theoreti-
cally, there is a smallest T, at which the miss Aistance {|M(¢)/[ as-
sumes its minimum value: = mm limi)l| =

(Tl ] ostem-jint
the minimum miss distance. TFurther assuming differentiability of both
arcs we can obtain target and projectile velocity at minimum miss time
T 'f 7Tm is an interior point (as aexpected), we also have

ﬁ”ﬂ“': mm=0: this leads

directly to the introduction of the so-called normal plane and a single
shot hit probability set-up in the normal plane.
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MINIMUM MTSS VECTOR. The construction of ‘CJ‘ , and the numerical
procedures used to obtain T, M(Tm), velocities follow. Tntroduce the
distinguished elapsed times t,=VOt,Ve0,...,n+/ . As before, ¢/ is taken
as the polygonal train joining 4,,...,4 with intervalwise parametriza-

' tion @/ (t, +ALt) = Bjey * A€ syei~ G/rv) 05251, 00 Brtvi] V=00 jVelocity at time
‘ y is Jjust the velocity 4, already numerically obtained, as
: described in Part T; for interior points J)., +2(€yy =,)4y)  velocity
~ ‘ is obtained by linear interpolation on the relative position barycenter
! A, if needed. From the numerical trajectory computations, projectile
position 2P, and velocity are available in reference coordinates at
: the discrete times ‘t,.. Juat as for the target flight path, the projec-
# tile trajectory is taken as the polygonal train joining
: Ty ?,,, parametrized as for the target flight path, with
velocity obtained at interior pointa of a segment %M?jm)“ for tar-

get velocity. 2 .
: is just a quadratic function of A,052€f  so the minimum value 7, and
i the point {x+Apdt of attainment where 4 assumes its minimum value over
the interval (f,,fss] are readily computed. The discrete minimigation
problem: find the smallest index J such that wiy= mun

. » is
.-0,"0-.. .’/-'

trivially solvable (by computer). So we have minimum miss time T, the
minimum miss vector fM4fTm) (in reference coordinates), and other required

values ¢/(Tp), RUT,), 14QAT N,
NORMAL FLANW. HTT PROBABTLITY.
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Let U= M(TJ)? As we have seen at the beginning, in *theory m(f,.)u=0-
The numerical procedures used do not strictly guarantee this; however,
for minimum miss distances {[MM(T.)I £30m , it has been observed +hat

" usually (M(Tw)- U] computes out €.0/m , invariablytiT.) U|<.Im for min-

imum miss distances »30m , the magnitude is unpredictable. We will
proceed assuming M/ T.) U =0. This simply says that at minimum miss the
projectile lies in the plane passing through the target perpendicular to
the relative velocity vector M (Tw)= 'f/f‘l'm)-‘é’{‘l'..), the so-called normal
plane. A two-dimensional coordinate frame F(¥/(%.)/v,"wr) 1in the normal
plane is introduced as follows. With wU=uX+u,%Y+43,

set O =(42+uf)"4 f’“zx+u.w in the free normal plane and
parallel to the ground,w= Xx~9)% generic coordinates, (v,w,) wrt this
frame are called normal coordinates, with v being regarded as a horigon-
tal or azimuth miss Aistance component, w as a vertical or elevation
component. The normal coordinates of the projectile at minimum miss are

(Vo, Wo) = (M T)- U MUTY- W),

To arrive at a set-up leading to a simple single shot hit probabil-
ity, we assume that random projectile location in +the normal plane has
random normal coordinates (V,W) following a bivariate norma) dis-
tribution where (1) the center of the distribution is taken as (Vi) ,
the computed normal coordinates of the projectile at minimum miss; (2)
the standard deviation$ Oy, Oy are normal axes distance dispersions
obtained from an average of normal axes mil dispersions derived by the
statistics section from PTINS & miss distance radar scorings - the target
range {[4¢/(Tm)| at minimum miss is required for the customary mils-to-
meters conversion.

A target region in the normal plane is obtained as follows. First
the target is mathematically represented as the region enclosed by an
ellipsoid in 3 space defined as follows: ‘

center= /%)
longitudinal axes in the direction 7/~ of target velocity
at miss, with semi-axis length a: 7 = /)2l ¥+n ’y-l-r,g.
traverse axis parallel to the ground, Airection
q- -GX""‘.'}. with semi-axis length b;

;w’bz@tcn‘l. axis directed “y 5:('7/";(1)0, with semi-axis length c.
The Aefinition of 4~ adequately accounts for target yaw and pitch, but
in the absence of any data the definition of amounts to assuming zero
roll. The ellipsoid is projected in the direction "L onto the normal
plane in accordance with the notion of presented area, resulting in a
target region given by the interior of an ellipse «v‘q-pvwﬂ‘w':.-l « The
straightforward but tedious calculations required to produce the coeffi-
cients ¢,p,‘r from the definition of the target ellipsoid are omitted.

-
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e abstractly, the desired single shot hit probability is just
,V.W+Yw1_<1}. Tf the covariance turns out negligihle, the
oduct term of the quadratic form in normal, independent random
8 can be removed by a rotation of axes, and the equivalent prab-
is evaluated by the well known Grubhs approximation rs1. i
e the double integral representing the probability is readily i
numerically. I
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