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I. INTRODUCTION

Just after World War II Dr. R. Beuwkes [1] of Watertown Arsenal
introduced the senior author to-khe theory of elastic stresses in thick-
walled cylinders and the technology of shell-pushing tests The research
at Watertown Arsenal culminated in the publication of the Thick Walled
Cylinder Handbook [2], a monument to skill in analysis and computations on
a desk calculator. <Investigation of non-metallic rotating bands at BRL led
to renewed interest in this area. We found that we were unable to inter-
polate in the tables cited above due to their limited accuracy; moreover
the value of Poisson's ratio used in the computations was not appropriate
for modern gun steels. An independent investigation was initiated, using
residue theory in place of Fourier series [3 ;5]. Since the eigenvalues
were complex, we required a subroutine for Bessel functions of integral
order and complex argument. The required subroutine was developed at BRL.
A Gauss continued fraction was used to reduce round off errors inherent in
series calculations [6,J71-- A code giving accurate stresses on the outside
of the gun tube was developed [.&}, This code was used to calculate
strains in a highly instrumented gun tube. The appropriate value of
Poisson's ratio and Young's modulus was obtained from the Benet Laboratory.
Agreement between theory and measurement was good at low velocities, but
systematic deviations were observed at high velocities. This result was
forecast in an early paper by G.S. Taylor [10], who us a dynamic version
of the Winkler theory for thin-walled tubes, but his resu ts were
apparently ignored by the Army. A program based on scalar nd vector wave
functions was initiated at BRL. The computations are diffic-ult except for
torsion, which we discuss below. The theoretical work shows that the

equilibrium stress distribution is obtained when the velocity of travelapproaches zero in the limit, as one would expect on physical grounds.
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Recently we have resolved difficulties in calculating stresses near a
discontinuity of loading on the inner surface of the cylinder. A method of
calculating elastic stresses in thin-walled cylinders was also derived, so
we are able to use the same mathematical formulation for wall ratios
ranging from .01 to 5. Both of these problems required asymptotic methods
and involved large values of the complex transform variable in the analysis.

II. NUMERICAL DIFFICULTIES

Formulation of boundary value problems for the infinite hollow
cylinder has followed traditional lines and is not exceptionally difficult.
Real problems arise in the numerical evaluation of Fourier integrals and
the generation of Bessel functions of the second kind due to the integer
arithmetic of the digital computer and its limited exponent range. Memory
requirements and execution time are relatively modest for the class of
problems under consideration. We have considered four types of error in
the course of programming and numerical analysis.

Round off error is persistent and insidious. It is very severe in the
evaluation of Fourier integrals by quadratures along the real axis and was
the principle reason why the calculus of residues was used in preference.
It occurred in acute form in calculating Bessel functions of the second
kind. This difficulty motivated our develo.mient of the subroutine cited
above. In this paper we discuss round off error occurring in the manipu-
lation of asymptotic series. Round off error is also a principle concern
in generating special functions by recursion formulas, where it arises in
connection with stability criteria.

A continued fraction obviously can be used only for values of the
variable and parameter for which division by zero will not occur. We
finally are able to prove that division by zero would not occur in the
portion of the subroutine using Gauss continued fractions. Theorems of
Bucholz [11] and Hurwitz [12] were required in the proof [13]. The
analysis is closely related to Hurwitz stability theory.

Serious truncation error has occurred only in evaluating residue
series for the inner radius at points very close to the discontinuity of
loading. Only recently have we found a method for improving the conver-
gence of the residue series.

III. STRESSES NEAR A DISCONTINUITY OF LOADING FOR AXIALLY SYMI4ETIC STRESSES

For brevity we consider only axial stresses produced by a step
function of pressure or shear applied to the inner cylindrical surface. EJ
The analysis of tangential stresses is similar. We superimpose a constant
stress and a discontinuity stress to obtain the step function. For
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pressure loading, we have

Tr: =0, a 0r O r = a and (1a)

Trz = 0 Cr =0 r = ) G0' z>0, r a, (Ib)

respectively, and for shear loading

a = 0, arz = 0 p r = a (2a)

C 0, T -- T0 , Z<0; T = TO, z>0, r a (2b)rz rrz rz

In both cases

r 0, rz 0, r =b. (3)

The solutions corresponding to (la) and (2a) can be obtained by elementary
methods and will not be considered here. The discontinuous stresses in
(Ib) and (2b) are represented by Cauchy discontinuous factors to
facilitate solution by separation of variables.

The stresses are derived from Love's stress function [14] in the form

0c = [AI 0 (sr) + BKo(sr) + Csrll(sr) 
+ DsrK,(sr)]cos(sz) (4)

for pressure loading and

0s = [AI 0 (sr) + BK0 (sr) + CsrII(sr) + DsrK 1(sr)]sin(sz) (S)

for shear loading. If the boundary conditions are homogeneous, we obtain
four homogenous linear equations which are satisfied only if the determi-
nant of the coefficients is equal to zero. In the case of shear loading,
we obtain from Eq. (1) and a number of intermediate calculations the
characteristic equation

c 0 (6)
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where

SI o(P) Ko(P) a 1l1 (p) cIKI(p)

I (p) -K1 (p) PIo(P) -pKo(P)

(S) - (7)
1 0 (q) K0 (q) 81 1(q) B1K1 (q)

I (q) -A (q) qIo(q) -qKo(q)

and

p = sa, = [p + (2 - 2v)/p], q = sb, BI = [q + (2 - 2v)/q]. (8)

The shear loading leads to the characteristic equation

A s(S) =0 (9)

where

s (s) = - AC(S) (10)

and obviously has the same characteristic roots.

The characteristic roots in the first quadrant of the complex s plane
have the approximate value

s = tn/(b-a) (11)

where

tn  loge [(2n-l)n] + i (n- )n, n>l (12)

The approximate values of sn obtained from Eq. (11) are improved by Newton's
method in the complex plane. It should be observed that all the determi-
nants occurring in the analysis are analytic functions of s even though
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logarithms occur in the series for the modified Bessel function of the
second kind.

We find that

az= _ (A 1 /Ac)sin(sz)ds/s (13)

0

is the solution corresponding to pressure loading, Eq. (lb), and

= - - (A /As)cos(sz)ds/s (14)

0

is the solution to the shear problem, Eq. (2b). The determinants A1 and A2
are given by

0 0 -21o(q) - 8211 (q) 2Ko(q) + 62KI(q)

I1 (p) -K1 (p) PIo(P) -pKo(P)

1 0 (q) K0 (q) 81 1 (q) 81KI (q) (15)

Ii(q) -K (q) qIo(q) -qKo(q)

Io(P) Ko(P) 2I0 (p) + Pll(P) -2K0 (p) + PKl(p)

II(P)/P -KI(p)/p 3 1 (P) - a2I(p) -3K(p) - K(P

A2 1 0 (q) K0 (q) 1 1 1 (q) 81K1 (q)

11 (q) -K1 (q) qIo(q) -qK 0 (q) 16)

where

a2 = (2-2v)/p, a2 = (2-2v)/q (17)
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We obtain asymptotic approximations of the integrands by using
Wronskian relations connecting 10(x), I (x), K0 (x), and Kl(x), where x = p

or x = q, and the leading terms of the Hankel asymptotic expansions [15].
The leading terms are

e1 12. 32
Ii(x) e ] (18)

K2"x 2!(8x) 0

1 (x) ' 13 1 2. 3 - (19)
(2rx) L !8x 2!(8x) 2

Trx - -x 128 12.3 2 1
0 2)n e - * +2 (20)

0L 18 2 ! (8x)7]

K x i e- 1-3 1'--3-5 (21
I x1!8x -2!(8x) 2J(1

We find

A1/(sA = s/(s+so), A2/(Ss) = - s/(S+So) (22)

where

so = (7-8v) (b-a)/4ab (23)

On combining Eqs. (13), (14), and (22) we find the resulting integrals can
be expressed in terms of sine and cosine integrals [16]. The approximation
for small z follows from the fact that large values of the transform
variable s correspond to small values of the argument z, according to the
usual theory of Fourier integrals. Let y be Euler's Constant in this
context and let z0 = 1/s0 be a characteristic length. Then, when z is
positive and very small, we have approximately

Oz  = 0  (24)

for pressure loading and
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TO0S - [y + log(Z/Z)] (25)
rz IT e lo 0z

for shear loading. We represent the logarithm by an integral of Fourier
type [17, 181. We subtract these dominant terms from the integrals given
in Eqs. [131 and [14]. We obtain

a 0 + 1 a, - A (s) ds (26)
C

To f ia2cos (szo) s

rz = - °Ige(zl:0) 0 sc (s)

(27)

01 A ( 2- As )(2cos(sz)-2cos(szo0 ds
+~ ~ fs a(sT

The integrals in Eqs. (26) and (27) are more rapidly convergent than the
original integrals in Eqs. (13) and (14) and will lead to more rapidly
convergent residue series when the limits of integration are taken between
- - and -. The integrals must be re-written in exponential form as
illustrated in the torsion problem to insure convergence of the contour
integrals.

VI. ELASTIC STRESSES IN THIN WALLED CYLINDERS

We observe from Eqs. (11) and (12) that the eigenvalues of high order
for a thin-walled cylinder become very large in absolute value. Exponen-
tial over-run then occurs when we use the Hankel asymptotic series to
evaluate the various determinants. Moreover, when we use Laplace's
reduction of the determinant in Eq. (7), we find expressions like
p[l 2 (p)-I 2 (p) and p[K0

2(p)-K 2(p)] occur, together with similar express-
iont involving q. When these expressions are evaluated by means of the
Hankel asymptotic expansions, the leading terms are cancelled by subtrac-
tion, leading to increasingly severe round off error as the wall ratio
approaches one. To overcome these difficulties, we obtained asymptotic
expansions of these expressions in which the subtraction occurs algebrai-
cally rather than numerically. The exponentials were also combined
algebraically, thus eliminating exponential over run for the range of wall
ratios of interest. 5-
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Let [19]

w = AwI + Bw2 + Cw3, (28)

where

w I =,[PI0 2(p)-pI1 2(p)] (29)

w2 = [pIo(p)K 0(p) p1l(p)Kl(p)] (30)

w= [pK 0 2(p)-pK1 2(p))I/, (31)

Then w satisfies the following differential equation.

p + 2 pw'' - (4p +p)w' + w=O (32)

We find

= 2 a n p-n (33)
0

where the odd numbered coefficients are zero, a0 = ia 2 = and

3 2

an=(n - Sn2 + 7n-3)/(4nan-2) (34)

for n>2 and even.

We let wI = e2  p W 3 = e -2p 3  Then

p3w (6 3  22)w + (8p3 82-2W

," + 2p )w 1 ', + 2)wl' (8p -2p+l) wI = 0 (35)

with a similar equation for w3. We find

3-i
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W =Z bn p-n (36)
1

where b, = 1, b 2 = 1/8, and

(8n-8) bn = (6n 2-14n+6) bn_1 - (n 3Sn2+7n)bn- 2, n>2 (37)

The function w3 was treated in a similar manner. These formulas were
programmed. We obtained S00 eigenvalues for a series of wall ratios
ranging from .01 through 5, and the corresponding stresses at the outside
radius, where the residue series is rapidly convergent.

V. STRESSES DUE TO AN ACCELERATING LOAD

We outline a method of analysis based on superposition, an eigenvalue
expansion, interchange in the order of integration, and the evaluation of
a complicated infinite integral. Justification for the various steps is
omitted for brevity, but will be presented elsewhere in due course.

We assume the outside cylindrical surface is free of stress, but the
inner boundary is subject to a discontinuous moving load.

Tre =0, r = b (39)

Tr6 To Fo(Zt) (39)

where

Fo(z,t) = , z>T(t) (40a)

= - , z<T(t) (40b)

and T(t) is the travel. We assume the velocity is subsonic, that is,
t(t)<c 2 where c2 is the velocity of the shear wave in steel. In order to
use separation of variables we assume

1

Jll II
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1 sin[so(:,t)]ds (41)
Fo(Z't) = s

0

where

8(z,t) = z - T(t) (42)

We assume a solution of the form

T re = F0 (zt) [R0 (r) - Q QR(q nr)] + ZQnR(q n r)F n(z ' t) (43)
11

where

2 4 4 244Ro(r)=[a (b4-r )]/[r (b -a 4 )] (44)

and

R(qn r) = A(q n ) [I(qnr)K2(qnb) -K(qnr)Y2(qnb)] (45)

The eigenfunction expansion

R0 (r) = E Qn R(q nr) (46)
1

can be obtained either by the theory of residues or the theory of
orthogonal functions. We have used both methods to determine the Fourier
coefficients Qn and the results agree. The qn are eigenvalues obtained
from the characteristic equation R(q,a) = 0, and are purely imaginary since
the problem is formulated in terms of modified Bessel functions.

We assume



ELDER, WALBERT, ZIMMERMAN

Fn (ZIt) = j s ds (4-)
0

where

W (s, :,t)=. (s,t)sin(sz) -Hn (st)cos(sz) (48)

On combining these reklts and substituting the value of Tre thus obtained
in the differential equation

2 2
ra 1 r 4T r8 r@ r6

--- " + 2 + 2 2(49)3r' r2  r z c2  at2

we obtain two ordinary linear inhomogeneous differential equations for a
Gn(s,t) and Hn(st). We solve by Duhamels integral and evaluate Wn(Szt).
Duhamel's integral will appear inside the integral in Eq. (48). We
interchange the order of integration. We obtain on letting a=t-t 1,

(:,t) t f sin[a/s2_ qn2]sin~sdsdt1

0 0 c2 s s-qr

where B - T(t1) in the above equation. We differentiate the inner
integral partially with respect to a, evaluate the resulting inner integral
by means of a known formula,* and integrate with respect to 5 to regain the
original function Fn(z,t). We obtain

t a

Fn(z,t) = n c2 Pn2 f f 0Pn ct2 -8 2 (z,tl) d~dtl 1
0 0

2 2
Where Pn = - qn , and is real and positive. Thus we have two quadratures
followed by a summation. In practice, the order summation and quadratures
should be interchanged to reduce round off error.

*Reference 17, page 472, paragraph 3.876, Eq. (1)

A_1
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We can readily obtain the response to a step function, then a square
wave by superposition and translation. An additional convolution will
account for variable torque, which must be obtained from the dynamics of
the shell.

VI. DISCUSSION AND CONCLUSIONS

We have suggested methods of improving the accuracy of calculations
based on classical analysis without using multiple precision calculations,
and which are thus suitable for a group in engineering or applied mechanics.
We have obtained formulas for stationary loads, loads moving with constant
velocity, and, in the case of torsion, loads moving with arbitrary
acceleration. The method presented here for solving the acceleration
problem has not been found in the literature and therefore requires careful
justification. Additional analysis and considerable programming are
required to obtain codes for calculating the stresses and strains. Only
then will the results be useful in interpreting strains obtained with
instrumented gun tubes. The work is continuing with the time and resources
available.
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