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I. INTRODUCTION

A. Mass Detonability.

Amunition items are assigned to various hazard classes, based on the
level of risk considered acceptable for stipulated exposures. The maximum
amount of explosives permitted at any location is determined by the pre-
vailing distance from that location to other explosives. United Nations
Organization (UNO) Crass 1, Division 1 is composed of "mass detonating" am-
munition and explosives. A "mass detonation" is defined as the "virtually
instantaneous explosion of a mass of explosives when only a small portion
is subjected to fire, severe concussion or impact, the impulse of an ini-
tiating agent, or to the effect of a considerable discharge of energy from
without" (1). The majority of large caliber ammunition, e.g., 155 mm, 175
mm, 8" separate loading projectiles and general purpose bombs, are classified
as mass detonating, and the constraints of mode of storage and transpor-
tation imposed to provide adequate safety create a significant economic and
operational burden (2). By use of appropriate packaging or shielding (3)
or by use of different storage configurations (4), the round-to-round prop-
agation tendency can be reduced significantly with concommitant reduction
in the tendency for mass detonation. -The purpose of this effort was to de-
termine, as a function of the munition array, how much the tendency for
round-to-round propagation need be reduced to control explosion size and

" prevent mass detonation.

() B. Round to Round Propagation.

Numerous experiments have been performed with various types of am-
- munition to ascertain the nature of round to round propagation (5-8). Of

special interest to this effort, it was found that a straightforward
criterion for round to round propagation could be developed; if a munition,
in a regular array, subjected to the blast/fragment field of a detonating
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neighbor munition itself "detonated." then the blast/fragment field it gen-
erated would cause the next munition in the array to detonate, also, and
propagation could continue within the array (91. If. however, the munition
subjected to the donor blast/fragment field reacted with sutcetonation vio-
lence, the process would extinguish. No dependence upon the number of nearest
neighbor munitions wi:hin the array was found; testing could be performed with
a linear array (indeed, an array with one dono. and one acceptor) and the
results could be applied to two dimensional quadratic or hexagonal arrays.
Apparently, the confinement provided by multiple nearest (second nearest, etc.)
neighbors does not appreciably affect the ability of one munition to cause
another munition to detonate. In the development of a model of propagation of
detonation between munitions, one can thus apply a quantal response criterion,
and treat the interaction probabilities between munition pairs as independent
(10).

C. Model Development.

Consider a large, two dimensional array of munitions. (See Figure 1, show-
ing a storage array for 155 mm separate loading projectiles. Here, the array
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Figure 1. Storage array for 1SS mm separate loading projectiles. Each box

represents a pallet of 8 rounds. Codes
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is three dimensional, but little loss in generality occurs as a result of con-
sidering the two dimensional case.* Of interest is the size of the explosion
(i.e., the number of participating munitionsl resulting from the detonation
of a single munition. Since the munitions are nearly equidistant, the array
can be represented by an infinite regular lattice, the vertices of which
represent individual munitions sites. Bec-luse of translational symmetry, a
chosen site is typical of the rest, and tht origin can be chosen arbitrarily.
Interest then centers upon the cluster of sites, containing the origin,
and representing the number of munitions which participate in the explosion.
Three assumptions are made:

1. Propagation of detonation occurs only through nearest neighbor inter-
actions. Experimental evidence has been obtained in support of this. The
nearest neighbor munitions effectively shield next nearest neighbors from
direct fragment attack.

2. The interaction probabilities (i.e., the probability that one round
will detonate another) are independent.

3. The process of propagation of detonation is Markovian. Only the
last state of the process (whether or not one set of rounds under consider-
ation detonated) is relevant in determining whether or not the next set of
nearest neighbors will detonate. Experimental results generally support this
assumption. However, in the limit of high packing densities, large munitions,
thin munition walls, and deformation sensitive explosives, it is expected
that this assumption would break down.

Let p be the interaction probability, i.e., the probability that detonation
of one round will cause detonation of its nearest neighbor. Experimentally,
p can be measured by observing results of a large number of repetitions of an
experiment involving a donor and an acceptor round, separated by a spacing
identical to that in the array of interest, and noting the fraction of
acceptor rounds which "detonate," according to the criterion discussed in the
introduction. Clearly, q = 1 - p is the probability that the interaction is
too weak to cause a round to detonate, given the detonation of the donor. In
a quadratic lattice (for example), the donor or source has four nearest neigh-
bors, which comprise members of the first generation. (By definition, the
source will be considered the zeroth generation.) The nearest neighbors of
the munitions which detonated in the first generation comprise potential
members of the second generation. The possible configurations for the zeroth
through the first generation are shown in Figure 2. Note that the number of
configurations for a given number of the first generation detonations is rep-
resented by the coefficients of the terms of the expansion:

4 4 3 2 2 3 4
(p q) p + 4p q + 6p q 4pq +4.q
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Figure 2. Simple quadriatic lattice showing all possible configurations for
dlusters containing the source munition (x) and possible members of the first
generation. The bonds indicate an interaction has occurred. Undetonated
rounds are suppressed in 2b.

The individual terms on the right hand side of this expression represent
the probabilities of a given number of these neighbors being detonated. De-
noting the expected or mean number of neighbors detonated by E(S) one has

E(S) = 4.p4 + 3.(4p q) + 2.(6p2 q 
2) + l.(4pq3  + O.q4

E(S) = 4p.

and S(p) = 1 + E(s) = 1 + 4p.

This is to be expected because of assumption 2.

In Figures 2 and 3, the bonds indicate that a munition has detonated. In
principle, this procedure of direct enumeration can be continued through r
generations, where r is arbitrarily large. In practice, direct enumeration
is difficult because of the extremely rapid growth in the total number of
clusters. An additional complication arises in the situation of interest
here, in that there is the physical constraint that we not detonate the same
round twice. In enumeration beyond the first generation, one must exclude
forbidden configurations (See Figure 31. The mean explosion size S(p) is then
equivalent to the mean number of bonds associated with clusters containing
the source munition. Thus, in general, we can write
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Figure 3. Some configurational members of the second generation. The
configurations shown in parentheses are physically unrealizable, as they
correspond to situations where the same round is caused to detonate twice.
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n

3(p)- anp
n=O

where the infinite cluster is excluded.

The description provided above of an explosion in a munizions array
is a special case of a "bond" percolation problem (11, 12). It differs from
the general case in that closed loops, as shown in Figure 3, are prohibited.
Traditionally, the subject of percolation theory has been divided into two
types of problems, the "bond" problem and the "site" problem (13). In the
bond problem, each pair of neighboring lattice sites has probability p of
being connected, independently of all other such pairs. In the site problem,
each site has a probability p of being in state A and a probability q 1 1 - p
of being in state B. A site is contained within a multi-site cluster if there
is at least one nearest neighbor in the same state. The site problem arises,
for example, in models of binary alloys (14), dilute ferromagnetic crystals
(15), and thermal conductivity of disordered two-phase materials (16). The
bond problem arises naturally in models of single phase dispersive flow of
a liquid through a porous medium (17), the propagation of a blight through
an orchard (18), or gelation of polymers (19). The site problem is not a
natural choice for modeling an explosion in stacked munitions, as the site
probabilities are not easily measured experimentally while interaction prob-
abilities (= bond probabilities) are, at least in principle, directly mea-
surable. However, it can be shown (20) that

p(S)(n/p) < P(b) (n/p)

where P(s)(n/p) refers to the probability of obtaining a cluster of size n,

given an interaction probability, p, for the site problem, and P(b)(n/p) is
the probability of getting a cluster of size n for the bond problem. Since

S(p) = Z n P(n/p),
n

S(s) (p) < S(b ) (p) and we can use the mean cluster
size, for the general site and bond problems, as lower and upper bounds,
respectively, for the specialized bond problem of interest here. Vyssotsky,
et al, has reported Monte Carlo estimates for the general bond problem in
two and three dimensions for several lattices (21). Frisch, et al, have re-
ported similar estimates for the general site problem (22). Plots of inter-
action probability versus cluster size for their site and bond results are
shown in Figure 4, for the simple cubic lattic.
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-Figure 4. Mean cluster size versus interaction probability for general
site and bond problems (21, 22) and specialized bond problem. Note that
proscription of closed loops does not significantly change bond cal-
culation results.

For infinite lattices, a percolation probability, P(p), can be defined as
the probability that an infinite number of sites will belong to the cluster
containing the source. Thus,

P(p) = lim Pn(p) ,
Tn-

where Pn (p) is the probability of obtaining clusters at least of size n.

A critical probability, pc, is defined as

PC = Supremum p/P(p) = 0

For p>pc, there exists a nonzero probability that there will be an infinite

cluster, i.e., that the detonation will propagate to an infinitely large
extent. For p<pc , the mean explosion size grows exponentially as pc and

diverges at PC. Critical probabilities have been estimated for common

lattices for site and bond problems by series expansion techniques and by
Monte Carlo methods (15). Some calculated values are shown in Table I.
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TABLE ;

CRITICAL PR,)BABILITIES F0,i CCV.r-i LATTICES

ONTE CARLO SERIES nETHOD

LATTICE pC(B) Pc (S) Pc (B) Pc(

HONEYCO 0.640 - 0.G88 0.79 0.6527 (EXACT) 0.700
KsaoME - 0.435 - 0.655 0.5'27 (EXACT)
SQUARE 0.493 0.498 0.581 0.569 0.5000 (EXACT) 9. 90
TRIANGULAR 0.341 0.349 0.493 0.486 0.3473 (EXACT) ,) S000 (EXACT)

DIAMOND 0.3S0 0.436 0.388 0.425
SIM LE Cugc 0.254 0.325 0.247 0.307
BODY CENTERED CUBIC - - 0.178 0.243
FACE CENTERED CUBiC 0.125 0.199 0.119 0.195
HEXAGONAL CLOSEST PACKED 0.124 0.204

REF. (15)

D. Monte Carlo Estimates.

The series expansion description described above provides useful in-
formation regarding mass detonation phenomena, but it does not have the
flexibility required, to address readily, certain additional issues. For
example, munitions rarely have isotropic interaction probabilities: design
features are usually such that nose-nose or base-base interactions are
enhanced or depressed vis a vis side-side interactions. Furthermore, experi-
ments have shown that simultaneous or near simultaneous detonation of col-
located munitions can generate an extremely lethal collimated blast/fragment
field with high probability of detonation of munitions within its path. Thus,
if a round causes two nearest neighbors to detonate simultaneously, the prob-
ability of detonation of the next nearest neighbor in common with these two
munitions is essentially unity. To address these problems and others, a
Monte Carlo model was developed (23). This model is capable of handling
both site and bond problems in one, two, and three dimensions. The com-
putation is started by setting up the computational lattice as specified by
the input. A site of the lattice, representing a munition round, is selected
at random. The selected round is considered to be detonated. If the input
specified that more than one round is initially detonated than a program
subroutine is called to select the remaining rounds of the initial reaction
set (ISET) from the nearest neighbors of the randomly selected site. An
array (IND) in this computational model keeps record of the status of each
round in the lattice. Thus. in a two dimensional bond problem, IND(i, j, 1)
a 1, if the reaction propagated to the round at (i. j, 1), IND(i, j, 1) - 0,
otherwise. At the beginning of a typical cycle of calculations, the bonds

.
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emanating from all sites at the reaction front are examined to see which
bonds block the reaction. This determination is achieved by using a random
number generator to generate a continuous random number, r, such that
0 > r > 1, and r has a uniform probability density distribution fr). The

sample space for r is partitioned into two even:s; (i) the event El, (r , p),

that the bond is unblocked and propagates the reaction to a neighboring
round, and (ii) the event, E2, (r > p), that the bond is blocked and does not

propagate the reaction to a neighbor. Because of the assumption that a
round can only be initiated by an immediate neighbor, the search process is
limited to the first generation neighbors of the reaction front. The newly
detonated rounds form the reaction front for the next cycle of calculations.
The location of the new reaction front at the end of each cycle is saved in
coordinate arrays. The calculation cycles are terminated when no new rounds
are detonated. This will complete a trial and a new trial is initiated up
to an input specified number of trails NTRIAL. At the end of each trial, the
total number of reacted rounds in the reaction cluster for the trial is
saved in an array, ND(j). At the end of the run, the mean reaction cluster
size, and its standard deviation are computed and printed.

Several values of the interaction probability can be computed in a single
run. The code has a number of options that can be either selected on input or
achieved with a change of a few cards. The code will print out the hierarchy
of the reaction branching process through the ammunition lattice if input
specified. It is also possible to treat the nonisotropic case of unequal
interaction probabilities px, Py" and pz. Another option treats the synergistic

case of collimated blast fragments, by making the interaction probability p = 1,
when two neighboring rounds detonate simultaneously.

The mean explosion size, for a simple cubic lattice, as determined by our
Monte Carlo calculations, is juxtaposed with the results of Vyssotsky, et al,
and Frisch, et al, in Figure 4. Our results are essentially identical to the
results of Vyssotsky, et al, for the general bond problem. Evidently, re-
stricting cluster configurations only to those which contain no closed loops
has little effect upon calculated mean cluster size, or estimates of critical
probabilities. Of special interest is the fact that the mean explosion size
remains very small for p < Pc" and it is reasonable to take pc as an upper

bound of an acceptable interaction probability, with prevention of mass deto-
nation the objective. As p+pr, mean explosion size grows very rapidly,

approaching infinity at the critical point.

Shown in Figure 5 is the mean cluster size with and without the synergistic
effect included, for the simple cubic lattice. Note that the synergistic
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figure S. Mean explosion size for two dimensional square lattice, with

and without synergistic effects.

effect lowers somewhat the probability required to get an explosion of any
given size, but does not radically change the results.

In Figure 6, mean explosion size is plotted versus the interaction prob-
ability in the x and y directions, with Pz fixed at various values. Note

that small values of Pz lead to greatly reduced explosion sizes. The roll-

over at the top of each curve is due to edge effects. Not shown in Figure 6
is the curve for P z fixed at unity. It would be to the left of the curve

for Pz = Px 2 P Y" Figure 7 shows calculations for the probability of getting

an explosion of at least n rounds, as a function of P, for P zconstant and

for Pz equal to a fixed fraction of p. As expected, the results for Pz equal

to a constant lie to the left of the results for P z equal to a fraction of

p. Holding P z constant simulates fixing the munition design and spacing

between rounds in the z direction. Letting P z vary with P x allows one to

account for variation in explosive sensitivity. as well.

Very high values of P z are representative of shaped charge warheads,

where the jet formed, when one round detonates, represents a very severe
threat to the opposite round in the next layer. Very low values of P Z are

representative of artillery munitions. such as 155 mm and 8"1 shell, where

.- 1
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-Figure 6. Mean explosion size Figure 7. Probability of getting an
versus interaction probability explosion of at least n munitions, as
for simple cubic lattice: effects a function of the interaction prob-
of anisotrophy. ability, for 3D cubic lattice: effects

of anisotrophy.

the interaction probabilities between noses and bases are expected to be
far weaker than the side-side interactions. The calculations show that this
anisotropy can greatly reduce explosion size, for large three dimensional
arrays. These calculations were used to design tests in which it was shown
that explosion size could indeed be controlled by exploiting orientational
effects. Thus, it was shown experimentally that 155 mm M107 shell (filled
with TNT or composition-B) will not propagate in base-base orientation when

separated by as little as 25 cm, for pallet sized units. As unit size was
increased above the standard 8 round pallet, larger spacings were required,

but it was shown that explosion did not propagate between units as large as
8 pallets (64 rounds, with approximately 15 pounds explosive per round)

oriented base to base, and nose to nose and separated by less than 60 cm
(2 feet). It follows from these results that it is advantageous to store
munitions in arrays such that the z-axis, with low interaction probabilities,
is the long axis of the array. For transportation on rail, for example,
artillery ammunition should be oriented nose-nose and base-base, with the
munition axes parallel to the train axis, in order to minimize explosion
size.

It might be expected that restricting the interaction probability to low
values in one direction essentially reduces the three dimensional problem to

the appropriate two dimensional problem. Thus, setting Pz = 0.01, for example.

for arrays with simple cubic symmetry would produce results nearly equivalent

'II
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Figure 8. Comparison of results for square lattice and the simple cubic
lattice, with Pz = 0.01. Note divergence of results at large cluster sizes.

to those for square arrays. In Figure 8, we show mean cluster size results
for the simple cubic lattice, with Pz = 0.01, and results for the two dimen-

sional square lattice. For small cluster sizes, the two problems are nearly
equivalent. However, as the critical point is approached, the mean cluster
size increases more rapidly for the three dimensional problem than for the
two dimensional case. This is because propagation in the z direction depends
not only on P , but on the number of sources, which depends on the size of

clusters in the two dimensional arrays. Of considerable practical importance,
it is noted that, as long as P is small, the same critical point criterion

can be used for both two and three dimensional arrays.

II. SUM4ARY AND CONCLUSIONS

The mass detonation problem has been formulated as a dynamic probablistic
process. equivalent to a specialized bond propagation problem in percolation
theory. A Monte Carlo model was constructed, with the flexibility of treating
both bond and site percolation problems, but subject to the constraint that

C'
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o munition be allowed to detonate more than once. This constraint is equiva-
lent to forbidding existence of closed loops in the cluster configurations,
..e., in graph theoretic terminology, trees are the on.v permissible con-
figurations. Calculations were made for two and three Jimensionai arrays.
Results of three dimensio:nal calculations were compared with Monte Carlo
calculations for the general site and bond problems. as reported in the litera-
ture. -The results of ourspecialized bond problem calculations are essentially
indistinguishable from those for the general bond problem, indicating that
the restriction of permissible configurations to trees has little influence
on the results. Of specl importa=e, it was found from plots of mean explo-
sion size versus interaction probability'that, as long .a the immediate neigh-
borhood of the critical region is avoided, the probability of achieving a mass
detonation remains small. Thus, the critical interaction probability can be
used to make estimates of the required munitions sensitivity to prevent mass
detonation. The synergistic effect associated with simultaneous detonation
of two rounds, causing near-unity probability of detonation of the next nearest
neighbor, was treated and found to have a noticeable, but not strong, effect
on the mean explosion size and critical probability.

Anisotropic interaction probabilities can exert a very strong influence
upon mean explosion size and probability of mass detonation. Thus, it was
found that setting the interaction probability in the z direction to a high
value - e.g., 0.8 -, as would be observed experimentally for stacked shaped
charge warheads, led to very large explosion sizes, even for relatively low
values of pxzp Y. Alternatively, it was found that low values of pz were

very effective in limiting explosion .size. This was verified experimentally
using 155 mm projectiles, and it was found that there are significant re-
ductions in mass detonability obtained by oriented artillery shell in nose-
nose and base-base configurations.
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