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INTRODUCTION

The objective of this work was to see how the mechanical properties of
propellant grains could relate to the erratic and unsafe functioning of multiple-
grain gun propellant charges.

Continuing efforts to understand the causes of abnormal propellant
performance occurring during the ignition and combustion phases of the interior
ballistic cycle have implicated grain fracture as a potential mechanism for
abnormal burning (refs 1 through 5). The prevailing hypothesis is that
propellant grains in various stages of burning are accelerated and are impacted
against the confines of the gun chamber. This produces grain fracture that can
result in sudden and significant increased burning surfaces and increased gas
evolution (pressurization) rates. This hypothesis formed the basis for this work
and accordingly localized the test conditions of temperature and strain rate used
to those associated with the military use of propellants, and further to those
most contributing to grain breakup. The loading conditions employed are tempera-
tures at or above the lower limit of terrestial temperatures of military
interest, approximately -60*C, and a rate having times to failure of 2 to 10
milliseconds, and consistent with rise times observed in pressurization curves of
gun firing records (ref 6).

The emphases in this program were to identify loading conditions which could
produce brittle propellant grain behavior, to illustrate the effects of such
brittleness on grain failure and on propellant burning and performance, and to
suggest parameters indicative of the brittleness and mechanical breakup to be
expected of the propellant grains during gun firing.

EXPERIMENTAL

Mechanical Tests

The fast rate testing was performed in a pneumatic/hydraulic type loading
system developed for this installation in 1961 by Hesse-Eastern. A sketch of the
apparatus is shown in figure 1 and its operation is as follows. The system is
pressurized and maintained in a "ready" state by an equilibration of pressures
above (N2 gas) and below (H 0 liquid) the movable crosshead-linked piston, the
puncturing of a polyester diaphragm suddenly vents the restraining pressurized
liquid and allows the pressurized gas to expand rapidly, driving the movable
crosshead toward the stationary crosshead; spacers are used to stop the moving
crosshead at various distances from the stationary crosshead. A strain rate of
approximately 10 second-1 , or a loading rate with millisecond rise times,
hereafter referred to as the fast rate, is obtained.

Test temperatures for the fast rate were obtained using Optron temperature
regulating equipment. A temperature chamber was designed to fit within the
confines of the load column (fig. 2a); the temperature variation during a 1 hour
sample conditioning was 30C.
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The load and the change in crosshead separation at the fast strain rate were
measured using a load cell and a differential transformer (LVDT), respectively.

The LVTDT coils were mounted on the stationary crosshead and the LVDT core on the
movable crosshead. A photograph of the load column showing the LVDT and the

temperature chamber is given in figure 2b. The transducers signals versus time

were inputted to a dual beam scope and photographed. Typical load-time (lower)
and displacement-time (upper) traces are shown in figure 3.

Data reduction was performed in a film reader system that magnified the
oscilloscope photographs, and used an x-y cross wire setup for reading and

digitizing the traces. This data was then inputted into a computer program to

produce stress-strain data and plots.

Closed Bomb Tests

Closed bomb tests are used to assure that the burning and pressure-time

characteristics of successive propellant compare with an established standard of
the same formulation (MIL-STD-286B, Method 801.1).

The bomb is instrumented to record the rate of pressure buildup versus pres-
sure. Comparison of the test propellant data with that of the standard provides
relative performance information from measurements of the relative quickness and

relative force.

Thermal Analysis

Measurements of linear expansion coefficients and heat capacities for glass
transition studies were made using the Dupont 900 Thermal Analysis System with
the 940 Thermomechanical Analyzer (TMA) and Differential Scanning Calorimeter
(DSC) cell base modules, respectively; the coolant used was liquid nitrogen.

The TMA measurements were made on samples 0.635 cm long and 0.635 cm in
diameter. The y-axis sensitivity was 6.5 x i0 - 4 cm probe displacement per cm of
chart, and the heating rate used was 0.2*C per minute.

The DSC measurements were made on chopped or granulated samples. The heat

flow rate range was 5 millicalories per second, and the scan rate used was 1.25 K

per minute.

Propellants Studied

The compositions of the triple base propellants studied are given in table
1. These propellants are essentially two-phase composites consisting of a

crystalline monopropellant, of either nitroguanidine or RDX (cyclonite),

*2
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dispersed in a plastic monopropellant binder of approximately a 1:1 ratio of
nitroglycerin plasticizer and nitrocellulose polymer.

The cylindrically-shaped propellant grains were solvent extruded. The
niLtroguanidine base propellant grains were "glazed" and multiperforated and were
approximately 2.86 cm long with a diameter of 1.27 cm. Test samples were
machined to 1.27 cm lengths for a length-to-diameter ratio of I, with ends flat
and parallel and as normal to the grain axis as possible; the grains were
warped. The RDX base propellant was an experimental formulation produced here;
it was unglazed and unperforated. Test samples made from strands were machined
to 1.27 cm lengths and 1.27 cm diameters with the ends flat and parallel, and
normal to the grain axis.

The ends of each propellant sample were coated with graphite at the start of
the test. The sample was positioned within the fast rate machine load column,
conditioned for approximately I hour at the test temperature, and tested in fast
rate compression.

RESULTS AND DISCUSSION

The effect of different ambient temperatures on the fast rate mechanical
behavior of the propellants is seen in the corresponding changes in their stress-
strain properties. In general, the elastic moduli and the compressive strengths
increase as the temperature decreases and the strains to fracture decrease. The
stress-strain curves for the nitroguanidine and RDX base propellants are shown in
figures 4 and 5. Photographs of the deformed and fractured samples are presented
in figures 6 and 7. Deformation at room temperature shows obvious plastic,
barrelling-type failure. Exaggerated compression at fast rate and room tempera-
ture of the RDX propellant to 50%, and of the nitroguanidine propellant to 80% of
their original lengths (deformation times of approximately 50 and 80 milli-
seconds, respectively) showed grain cohesion with distortion, large fissures, and
unpropagated surface cracks.

These data identify the stress-strain curves with the actual mechanical
failure exhibited by the propellant samples. Changes in the fast rate mechanical
failure of the propellants, from nonfragmenting to fragmenting, occur at approxi-
mately -15*C for the nitroguanidine base propellant and -300C for the RDX base
propellant formulation; corresponding strains at fracture are less than two
percent. It is important to note that these transition temperatures are
meaningful only at this fast strain rate. These data show that these propellants
in thermal equilibrium at temperatures less than approximately -30*C deformed at
a rate of 10 second - 1 (time to fracture - 4 milliseconds) will exhibit multiple-
breakup and significantly change the propellant burning designs. Faster strain
rates at -30*C or lower temperatures at a strain rate 10 second-  will result ingreater grain breakup and greater changes in propellant burning characteristics.

The effect of the relative amounts of propellant breakup, produced in the
fast rate compression tests at temperatures of 20*C and at -45*C, on the burning

3



characteristics of the propellant grains was examined using the instrumented
closed bomb technique. Undeformed propellant grains were burned in the closed
bomb to serve as standards for comparison and illustrate the rate of pressure
buildup, dP/dt versus pressure, P curve typically expected. Closed bomb
techniques have been employed successfully for screening triple base gun
propellant lots for safe and unsafe ballistic use (ref 2). Increases in relative
quickness greater than 15% were classified and shown to be unsafe. The closed
bomb dP/dt-P curves for the nitroguanidine and the RDX base propellant are shown
in figures 8 and 9. These show increases in the relative quickness, considerably
greater than the 15% used for unsafe propellant lot classification, and changes
in the pressure at which the maximum rate of pressure buildup occurs; no signifi-
cant change in the peak pressure was observed. It is implicit here that the
corresponding mechanical behavior and grain failure produced aL temperatures
above -45°C would result in lesser changes in burning characteristics and that
those produced below -450 C should result in greater changes in burning
characteristics.

It is necessary at this point to mention that aging may be an important
factor affecting the propellant properties in such a way that brittle mechanical
behavior and breakup occur under less severe loading conditions of temperature
and strain rate. Table 2 lists increases in compressive strength and
corresponding changes in the strain-at-fracture observed after a I year period in
samples of the same propellant lots. It must be noted, however, that the samples
were not stored under controlled conditions during this period, and even though
this effect was also independently reported by another investigator (ref 7), more
systematic and careful studies are necessary to substantiate these incidental
observations.

The temperature at which the amorphousness of a polymer or a polymer system
changes from a more flexible, rubbery state to a more rigid, glassy state is
called the glass transition temperature (identifiable as a ductile-to-brittle
transition temperature). During the transition, significant changes in thermal
expansion coefficient, viscosity, elastic modulus, etc., can be measured. The
addition of a plasticizer, generally, a low molecular weight organic material, to
the polymer suppresses the temperature at which the transition takes place. The
effect of differing amounts of such a material on the glass transition
temperature of nitrocellulose is reproduced in figure 10; note that the
plasticizer is tricresyl phosphate and not nitroglycerin.

If a plasticized polymer system, such as the nitroglycerin-nitrocellulose
propellant system is chemically and physically stable, and is insensitive to
conditions that could alter the plasticizer concentration, then the glass

* ,transition temperature could be the most important characteristic parameter of
the system. The mechanical properties for the system could then be evaluated in
terms of plasticizer content (ref 8), typically illustrated in figure 11, and the

generation of similar data at strain rates associated with the interior
ballistics cycle would make the mechanical behavior of the propellant more
predictable.
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Thermal mechanical analysis was performed on both the RDX and the
nitroguanidine base propellant to determine if this technique could be used to
measure glass transition temperatures in these propellants. The glass transition
temperature, Tg, might then be used as an index of the propellant's stability and
provide a means of following aging and degradation processes. It could then be
useful in predicting premature brittle failure under otherwise routinely safe
loading conditions. A curve of the axial expansion as a function of temperature
for the RDX propellant is presented in figure 12 showing the glass transition
temperature for the RDX base propellant at approximately -57*C. A glass
transition is suggested in the same temperature range for the nitroguanidine base
propellant, but was not as obvious. The use of differential scanning calorimetry
to measure heat capacity and determine glass transition temperatures essentially
confirmed the above, that is, a change in heat capacity for the RDX base
propellant was found at approximately -57*C, but was not apparent for the
nitroguanidine base propellant.

These glass transition temperatures, at -57°C, correlate with temperatures
at which the fast rate mechanical breakups of these propellants exhibit advanced
degrees of brittleness, figures 6 and 7; the failures occur within the Hookean
portions of their stress-strain curves, figures 4 and 5.

These results are preliminary but suggest that the use of glass transition
measurements in propellant characterization can have useful merit.

CONCLUSIONS

1. Nitroguanidine and RDX base gun propellant grains exhibit brittle
stress-strain behavior and fragmentation-type grain failure at ambient
temperatures of -15°C and -30°C, respectively, when deformed at a strain rate of
10 inches/inch/ second.

2. The effect of fragmentation-type grain failure on closed bomb, dP/dt
versus P, curves show:

a. Ballistically unsafe increases in relative quickness.

b. Shifting of the maximum dP/dt to lower pressures, particularly for

the multi-perforated grains (burning changing from progressive to degressive).

c. Negligible change in the maximum pressure developed.

3. Changes in propellant mechanical properties, such as increases in
strength and decreases in strain-to-failure, observed at the end of a I year
period, suggest a time-dependent embrittlement for the nitroguanidine
propellant. Although the effect of aging requires systematic verification, the
implication that resulting brittle propellant behavior and fragmentation-type

grain failure would occur under less severe loading conditions or conditions
initially regarded to be normal and safe should be considered.
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4. The glass transition temperatures for the nitroguanidine and the RDX
propellants tested were observed at approximately -57"C; these temperatures,
coincidentally, correspond to those producing linear brittle stress-strain
behavior at the fast rate.

5. Glass transition temperature measurements may be useful for characteriz-
ing propellant behavior and grain failure, as well as monitoring tLime-dependent
changes taking place within the propellant.
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Table 1. Gun propellants studied

Composition in weight percent

M30A2 N6260

Nitrocellulose 27.40 29.3

(% nitrogen) (12.57) (12.0)

Nitroglycerin 22.52 22.7

Nitroguanidine 45.77 5.0

RDX (Class E) -- 36.5

Ethyl centralite 1.48 1.5

Dioctyl phthalate 5.0

Potassium nitrate 2.83

Graphite 0.12
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Table 2. Aging effects noted in the fast rate mechanical properties of
nitroguanidine propellant tested at the beginning and end
of a I year period*

Propellant Temperature Mechanical properties June 1977 June 1978

RAD 69711 Room temperature Compressive strength (MPa) 53.8 86.9
Strain-at-failure () 5.3 2.4

-450C Compressive strength (MPa) 202.2 248.4

Strain-at-failure (M) 6.6 0.5

RAD 69713 Room temperature Compressive strength (MPa) 62.1 87.6
Strain-at-failure () 4.9 2.0

-450C Compressive strength (MPa) 211.8 218.7
Strain-at-failure (M) 4.4 0.9

*Data verification needed under more controlled conditions
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Figure 3. Typical oscilloscope records of fast rate mechanical testing of gun
propellant samples (lower trace - load, upper trace - deflection)
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Figure 4. Effect of temperature on nitroguanidine propellant stress-strain curves
(times to failure between 5 to 3 milliseconds)
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Figure 6. Fast rate compressive failure features of nitroguanidine propellant
samples
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Figure 7. Fast rate compressive failure features of RDX propellant samples
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Figure 8. Closed bomb traces of typical (undeformed) nitroguanidine propellant

grains and of mechanical-failed nitroguanidine propellant samples
(failure produced at -45*C at the fast rate)
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