<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
<th>HTI-R-79-137</th>
<th>DNA-5194D</th>
<th>NL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MINICOMPUTER ASSISTED
REPROGRAMMING SYSTEM (MARS)

Horizons Technology, Inc.
7830 Clairemont Mesa Boulevard
San Diego, California 92111

15 December 1979

In-House Report for Period 15 November 1977—15 November 1979

CONTRACT No. DNA 001-78-C-0025

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMSS CODE B310078464 P99QAXDA00212 H2590D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, D. C. 20305

JUL 13 1982
Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: STTI, WASHINGTON, D.C. 20305, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH TO BE DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.
This report describes the work being done on the Minicomputer Assisted Reprogramming System (MARS). MARS provides hand held calculator software development tools, simulators, software translators and code optimizers for the Texas Instruments Model 59 calculator and the Hewlett Packard Models 67 and 97. This report describes two years of software development on these topics and the design of a curve fitting assistance and graphics package also used in the development of calculator software.
Conversion Factors for U.S. Customary to Metric (SI) Units of Measurement

<table>
<thead>
<tr>
<th>To Convert From</th>
<th>To</th>
<th>Multiply By</th>
</tr>
</thead>
<tbody>
<tr>
<td>angstrom</td>
<td>meters (m)</td>
<td>1.000 000 X E -10</td>
</tr>
<tr>
<td>atmosphere (normal)</td>
<td>kilo pascal (kPa)</td>
<td>1.013 25 X E +2</td>
</tr>
<tr>
<td>bar</td>
<td>kilo pascal (kPa)</td>
<td>1.000 000 X E +2</td>
</tr>
<tr>
<td>barn</td>
<td>meter² (m²)</td>
<td>1.000 000 X E -10</td>
</tr>
<tr>
<td>British thermal unit (thermochemical)</td>
<td>joule (J)</td>
<td>1.054 350 X E +3</td>
</tr>
<tr>
<td>calorie (thermochemical)</td>
<td>joule (J)</td>
<td>4.184 000</td>
</tr>
<tr>
<td>cal (thermochemical)/cm²</td>
<td>mega joule/m² (MJ/m²)</td>
<td>4.184 000 X E -2</td>
</tr>
<tr>
<td>curie</td>
<td>giga becquerel (GBq)</td>
<td>3.700 000 X E +1</td>
</tr>
<tr>
<td>degree (angle)</td>
<td>radian (rad)</td>
<td>1.745 329 X E -2</td>
</tr>
<tr>
<td>degree Fahrenheit</td>
<td>degree kelvin (K)</td>
<td>1.800 000 X E -19</td>
</tr>
<tr>
<td>electron volt</td>
<td>joule (J)</td>
<td>1.000 000 X E -7</td>
</tr>
<tr>
<td>erg</td>
<td>joule (J)</td>
<td>1.000 000 X E -7</td>
</tr>
<tr>
<td>erg/second</td>
<td>watt (W)</td>
<td>3.048 000 X E -1</td>
</tr>
<tr>
<td>foot</td>
<td>meter (m)</td>
<td>1.000 000 X E -2</td>
</tr>
<tr>
<td>foot-pound-force</td>
<td>joule (J)</td>
<td>1.355 818</td>
</tr>
<tr>
<td>gallon (U.S. liquid)</td>
<td>meter³ (m³)</td>
<td>3.785 412 X E -3</td>
</tr>
<tr>
<td>inch</td>
<td>meter (m)</td>
<td>2.540 000 X E -2</td>
</tr>
<tr>
<td>jerk</td>
<td>joule (J)</td>
<td>1.000 000 X E +9</td>
</tr>
<tr>
<td>joule/kilogram (J/kg) (radiation dose absorbed)</td>
<td>Gray (Gy)**</td>
<td>1.000 000</td>
</tr>
<tr>
<td>kiloton</td>
<td>terajoules</td>
<td>4.183</td>
</tr>
<tr>
<td>kip (1000 lbf)</td>
<td>newton (N)</td>
<td>4.448 222 X E +3</td>
</tr>
<tr>
<td>kip/inch² (ksi)</td>
<td>kilo pascal (kPa)</td>
<td>6.894 757 X E +3</td>
</tr>
<tr>
<td>ktap</td>
<td>newton-second/m² (N·s/m²)</td>
<td>1.000 000 X E +2</td>
</tr>
<tr>
<td>micron</td>
<td>meter (m)</td>
<td>1.000 000 X E -6</td>
</tr>
<tr>
<td>mil</td>
<td>meter (m)</td>
<td>2.540 000 X E -5</td>
</tr>
<tr>
<td>mile (international)</td>
<td>meter (m)</td>
<td>1.609 344 X E +3</td>
</tr>
<tr>
<td>ounce</td>
<td>kilogram (kg)</td>
<td>2.834 952 X E -2</td>
</tr>
<tr>
<td>pound-force (lbfavoirdupois)</td>
<td>newton (N)</td>
<td>4.448 222</td>
</tr>
<tr>
<td>pound-force inch</td>
<td>newton-meter (N·m)</td>
<td>1.129 898 X E -1</td>
</tr>
<tr>
<td>pound-force/foot²</td>
<td>kilo pascal (kPa)</td>
<td>1.751 262 X E +2</td>
</tr>
<tr>
<td>pound-force/inch² (psi)</td>
<td>kilo pascal (kPa)</td>
<td>4.788 026 X E -2</td>
</tr>
<tr>
<td>pound-mass (lbmavoirdupois)</td>
<td>kilogram (kg)</td>
<td>6.894 757</td>
</tr>
<tr>
<td>pound-mass/foot³ (moment of inertia)</td>
<td>kilogram-meter² (kg·m²)</td>
<td>4.535 926 X E -1</td>
</tr>
<tr>
<td>red (radiation dose absorbed)</td>
<td>Gray (Gy)**</td>
<td>1.000 000 X E +1</td>
</tr>
<tr>
<td>roentgen</td>
<td>coulomb/kilogram (C/kg)</td>
<td>2.579 760 X E +4</td>
</tr>
<tr>
<td>shake</td>
<td>second (s)</td>
<td>1.000 000 X E -8</td>
</tr>
<tr>
<td>slug</td>
<td>kilogram (kg)</td>
<td>1.459 390 X E +1</td>
</tr>
<tr>
<td>torr (mm Hg, O° C)</td>
<td>kilo pascal (kPa)</td>
<td>1.333 22 X E -1</td>
</tr>
</tbody>
</table>

*The becquerel (Bq) is the SI unit of radioactivity; 1 Bq = 1 event/s.

**The Gray (Gy) is the SI unit of absorbed radiation.

A more complete listing of conversions may be found in "Metric Practice Guide E 300-74," American Society for Testing and Materials.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conversion Factors</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>List of Figures</td>
<td>2</td>
</tr>
<tr>
<td>I.</td>
<td>Introduction and Summary</td>
<td>3</td>
</tr>
<tr>
<td>II.</td>
<td>Hardware and Software</td>
<td>5</td>
</tr>
<tr>
<td>III.</td>
<td>Technical Approach</td>
<td>7</td>
</tr>
<tr>
<td>III-A.</td>
<td>MARS Language Processing Modules</td>
<td>7</td>
</tr>
<tr>
<td>III-B.</td>
<td>MARS Data Processing and Algorithms Development Modules</td>
<td>14</td>
</tr>
<tr>
<td>III-C</td>
<td>Program Development, Verification and Support Modules</td>
<td>17</td>
</tr>
<tr>
<td>IV.</td>
<td>Sample Run of the Curvefitting Package, Including Use of DAM4, DERM, Fitter, and HP7225 Programs</td>
<td>20</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

Figure 1.	MARS CAPABILITIES ORGANIZED BY FUNCTIONAL AREAS	8
Figure 2.	Point-to-Point Translation Approach	10
Figure 3.	Intermediate Language Translation Approach	11
Figure 4.	Duration of Positive Overpressure and Dynamic Pressure Phases for a 1 kt Free Air Burst in a Standard Sea Level Atmosphere	23
Figure 5.	POSITIVE PHASE DURATION, OVERPRESSURE	35
Figure 6.	Duration of Positive Overpressure and Dynamic Pressure Phases for a 1 kt Free Air Burst in a Standard Sea Level Atmosphere	42
Figure 7.	POS. PHASE FIT, OVERPRESSURE	43
I. INTRODUCTION AND SUMMARY

The Department of Defense (DoD) is well aware of the high costs of "scientific" software. The trend of increasing software costs is well established, and for most computer systems the software accounts for 50-90% of the total system cost. In the case of hand-held calculators, the situation is even more extreme as the hardware costs are usually well under $500 and software costs may reach into the tens of thousands of dollars per program. As with most computers, these programs are machine dependent, that is, they will only run on the machine for which they were designed. The rapid developments in the semiconductor industry has created a situation where new calculators are being introduced every 1-3 years. It is desirable to keep these programs running on the current state-of-the-art machines, both from the standpoint of decreased execution time, but also parts, service and technical support from the manufacturer. Because these programs are machine dependent, a substantial amount of code conversion is required to keep these programs operational on the most current machines. This conversion, if done by hand, is costly, error prone and time consuming.

The Minicomputer Assisted Reprogramming System (MARS) was conceived in 1977 to address this problem. MARS provides a hedge against rising software costs and early program obsolescence by providing machine assisted software translation of calculator programs to the new calculator languages rather than a complete recoding of the program. In addition to helping lower the costs of implementing existing programs on new machines, MARS can provide a quicker turn-around time than recoding and provides a means to pool software resources for currently available calculators. Prior to the second year of funding, the MARS concept was reviewed in light of total DNA software requirements. The results of this review revealed that the scope of the project should be broadened to include both general and specific software
support tools. As with standard computer software development efforts, software tools are one way to help control costs, decrease development time and insure a quality product.

Prior to the MARS project, no development or support tools for calculator software were available. We undertook the design and development of these tools to assist the calculator programmers in their day-to-day tasks. These tools include an automated "time-space" tradeoff code optimizer, TI-59 and Constant Read Only Memory (CROM) simulator, an algorithm development facility that consists of a sophisticated curve fitting package and support routines and a graphics package that provides for curve fit verification and assists in program verification.
II. HARDWARE AND SOFTWARE

Early during the first year of funding of MARS all of the available options for providing computational services were reviewed. This included a survey of timesharing services and a study of available low-cost minicomputer based systems. Acquisition of a minicomputer was proposed. The reasons included higher system availability, hands-on management of off-line storage, the ability to interface additional peripherals, and if the requirements for the handling of classified data arose, physical accountability of the computer data. Appropriate candidate computer systems were reviewed, bids solicited and a system was chosen. The MARS translation system is based on the Digital Equipment Corp. PDP11T03. The 11T03 system, as ordered, consists of the LSI-11 CPU; KEV-11 bootstrap and diagnostic ROM; 56 kb of MOS RAM; 2 RK05 disk drives and controller organized as one removable disk and one fixed disk in three logical platters for a total of 7.5 Mb of storage on-line; 2 DLV-11 asynchronous serial interfaces; one VT-52 CRT/keyboard and one LS-120 printer/keyboard.

During the second year of funding additional hardware was added to the 11T03 to provide graphics input and output capability. This hardware consists of a Summagraphics BP-11 "Bitpad" digitizing tablet, cursor, power supply and RS232 interface; a DLV-11F single channel RS232 interface; Hewlett Packard 7225A X-Y plotter and IBV-11A IEEE-488 interface. The 11T03 system with peripherals has functioned normally and has proven to be quite reliable.

All MARS software is written and designed for interaction with DEC's RT-11 operating system. Version 3-02 is used by MARS and provides all functions normally associated with operating systems including overlay capability and disk file management. From the outset of the MARS project the requirements for portability and maintainability of the applications software have
been undefined. As a consequence, all routines, with a few exceptions, have been coded using DEC's version of ANSI standard Fortran IV for portability, readability and maintainability.

Initial MARS software development was done using DEC's Fortran IV V2.04, but the discovery of several compiler "bugs" and shortcomings has forced us to upgrade to version 2.1. In addition to Fortran, the MARS algorithm verification facility uses DEC's single user BASIC version 1. All MARS files are written in the Standard RT-11 file format and, where appropriate, are written using ASCII code for human readability.
MARS was originally conceived as a language translation aid to help provide a hedge against the obsolescence of calculator based scientific software. As the system design progressed and more experience was gained in the processing of calculator software, it became obvious that the original concept could, and should, be expanded to provide automated support in other areas of the calculator software development task. During the second year of funding, additional features were incorporated into the existing software system. As can be seen by Figure 1, the MARS system currently consists of three functional areas: the Language Processing aids; Data Processing and Algorithm development aids; and Program Development, Verification and Support aids. A description of the purpose, implementation and a brief functional description of each of the component modules follows. Appendices A-1 through C-4 contain listings of these modules and a more complete description of the operation of the module as program comments. Where appropriate, examples will be included in this section of the report to demonstrate critical technical points.

III-A. MARS Language Processing Modules

This group of Fortran IV modules comprises the bulk of the implementation of the original MARS concept. The basic idea was to provide an expedient, machine assisted method for making existing calculator programs executable on newer or more sophisticated calculators. At the outset of the project, only two manufacturers, Hewlett Packard (HP) and Texas Instruments (TI), were producing hand-held personal programmable calculators (HHPPC) with enough capabilities for DNA's software tasks. Our studies revealed vast, fundamental differences in the programming and operation of these two classes of machines. Furthermore, it was not clear whether other manufacturers might market models with the necessary capabilities. As a consequence, it became
MARS CAPABILITIES ORGANIZED BY FUNCTIONAL AREAS

Figure 1.
apparent that our solution to the language translation problem would have to be general purpose in nature and very expandable. Additional system design parameters were gained through the insight that if one were to implement a single purpose "point-to-point" translator to provide the ability to go from machine A to machine B, and there exist N machines, then the number of translator modules required increases as $N^2 - N$ (Figure 2). However, if one could design a general purpose intermediate language, all translations could be made through this language and the number of translator modules only increases as $2N$ (Figure 3). During the analysis phase of MARS, HP and TI were each releasing new machines on a two-year design cycle, one year out of phase with each other. The result was that a new, more powerful machine was being released each year from alternating manufacturers. This situation, coupled with the fact that each manufacturer had two machines in the field, pointed strongly to the intermediate language solution being the best. As an additional benefit to this solution, the intermediate language provides a convenient storage mechanism for translated programs and provides the ability to modify and optimize the program in its intermediate form. Furthermore, this solution provides for unlimited future expansion in terms of the number of source and target machines that can be handled.

Several existing languages were considered as candidates for the intermediate language. All were discarded due to data formatting problems and overall complexity of the finished program. We, instead, opted to design our own intermediate language. Our prime design considerations were human readability, simplicity and ease of translation. The completed design of SIMPLE (for Special Interpretative Mathematical Programming Language Experiment) contains constructs for all calculator based mathematical operators, addressing modes, and transfers of address. The most complex expression allowed in SIMPLE is of the form "A = B + C". Expressions that are more complex are decomposed by parsing until they are in this elementary form. The main advantage of this form is that it promotes human readability and facilitates machine
Number of Modules = $4^2 - 4 = 12$

Point-to-Point Translation Approach

Figure 2.
Intermediate Language Translation Approach

Figure 3.

Number of Modules = 2 × 4 = 8
manipulations of expressions. Generally speaking, the translation process requires two steps to complete a source to target translation. Step one is to translate from the source code syntax into a form compatible with the syntax of SIMPLE. The second step is to translate from SIMPLE to a form acceptable to the target machine. This arrangement provides for stand-alone operation of each translation module. All processing modules communicate with each other via disk files using the standard MARS file format. Since each module is designed for stand-alone operation, and no two modules are core resident simultaneously, an unlimited number of modules can be added between any two processing end points. This concept insures expandability to any desired degree, and will help protect the system from obsolescence.

The language processing portion of MARS has been divided into four modules. The modules provide the ability to move source code to and from the SIMPLE language. The modules provide the capability to translate from HP67/97 code to SIMPLE (HP67/97 decompiler); from TI59 code to an intermediate in-line TI59 code (TI preprocessor); from TI59 in-line code to SIMPLE (TI59 decompiler); and from SIMPLE to TI59 (TI59 recompiler). Due to the radically different methods of problem representation of the two manufacturers, i.e., RPN vs. AOS, large difficulties in the translation process have been encountered. Both systems perform problem evaluation in an interpretive manner using stack oriented processing for expression parsing and the actual numerical evaluation. In the HP case, the stack processing is an integral part of the machine and actively manipulated by the programmer. All operators are executed as they are encountered and operate on data that resides in the stack at the time the operator is encountered in the program. For the TI machines, stacks also exist, but are implicit in the operation of the machine. Because the AOS representation of the task is not immediately executable by the machine, a large amount of parsing must be done to allow evaluation of the expression. This parsing revolves around the use of two stacks, one for data and one for pending operations (in AOS not all operators are executed as they are encountered.) The
problem centers around the fact that both machines allow transfers of address at any place in the code -- even within the middle of equations or expressions. Although this is a very powerful tool when used properly, it presents a formidable task for the language translators. The evaluation of any expression is determined by the "data" in the stack(s), and since the translators must perform a partial evaluation, the translation process is determined, or at least affected, by the data in the stack(s). The problem is further compounded by the fact that TI allows transfers of address with pending data and operators. The straight-forward solution is obvious but results in an unacceptably large translated program. This method calls for the evaluation of each alternate course of program flow in the code, taking into account the possible changes in the values in the stack(s). Each alternate course (branch, jump, subroutine call or reset) requires evaluation all the way to the completion of the program. The result is that a relatively straight-forward input code is transformed into a huge "tree" with a "branch" "growing" to the end of the program at each alternate course of action. For the HP67/97 the problem has been solved in an expeditious manner. It involves five complete "translations" and a substantial amount of code compaction, including both local and global variable minimizations. With the exception of testing all possible code sequences, the HP67/97 decompiler is complete. Furthermore, our tests show that for many code sequences, the translated code is optimal (i.e., no unnecessary steps). The TI59 language processors are near complete. With the exception of extensive testing, the TI59 decompiler is complete. However, this presupposes the existence of in-line code. This conversion to in-line code is the responsibility of the preprocessor. Most of the services required of the preprocessor, i.e., input editing constant and digit manipulation and subroutine expansion, are available. However, due to the extreme complexity of the "pending op" problem, this feature is unavailable. Furthermore, since the need to translate large numbers of TI59 codes to other machines has not yet occurred, this task has been deferred and resources
have been redirected to other more pressing problems. See Appendix A2 and A3 for more details on the TI59 preprocessor and decompiler.

The last segment of the language processing modules is the TI59 recompiler. The recompiler takes as input the intermediate language representation of the program and converts it to a form acceptable to the TI59. The recompiler attempts to exploit all the capabilities of the TI59 and performs an "inverse parsing" function in that it recreates statements with parentheses under the precedence constraints of the TI59. The output of the recompiler is an unoptimized, linear program sequence that is executable but inefficient. This module is complete, except for two argument numerical functions and indirect transfers of address. It is felt that these problems are best resolved by human assistance, since complete automation of these functions would be excessively expensive. The recompiler has been tested for elementary code sequences required for validation of the algorithm. Due to the excessive amount of time required to synthesize test programs, evaluate the source and output for validity and efficiency, it is recommended that further work on this phase be deferred until such time as "production" translation programs become available. This method will save the cost of test program synthesis and provide a more realistic basis for validation.

III-B. MARS Data Processing and Algorithm Development Modules

During the second year of funding, the scope of the MARS project was expanded to include NWE programming aids. More specifically, the four modules that comprise this functional group combine to provide the NWE programmer with a comprehensive set of tools to assist him in numerical modeling of nuclear phenomenology. Many of the tasks encountered by the NWE staff entail the representation of empirically and theoretically produced data in a form that will fit in the HHPPC. More often than not, this
results in the approximation of sets of graphs and tables of numbers by a family of equations. This task is collectively referred to as "curve fitting". Manual fitting of large amounts of data is costly and error prone. Therefore, we have undertaken, and completed, the development of a group of programs to assist the NWE staff in their curve fitting efforts. The process of fitting curves can be functionally divided into four parts. The first task is acquisition of data from the curve to be fit. To do this acquisition manually requires the use of a backlit table, high resolution graph paper and lots of patience. We have resolved this problem with the use of an electronic digitizing tablet and necessary computer interface circuitry and software. The tablet provides an 11" x 11" active area with 2200 points resolvable in each direction resulting in a resolution of .0005". Coordinate information, as specified by the operator using a stylus or cross-haired cursor, is transformed to a four digit ASCII absolute tablet coordinate (ATC) and transmitted to the 11T03 via an RS232 interface. Since without scaling information the ATC data is useless, we have combined several management functions into one module for data acquisition. This module, DAM4, for Data Acquisition Module version four, is an interactive Fortran IV program that provides a variety of services. It allows for calibration of the tablet, compensation for translation, rotation and scaling of the graph using a sophisticated multi-point, least squares coordinate transformation, and provides for the entering of axis label information and data file management including multiple curves per file. The result of a session using DAM4 is a formatted ASCII disk file containing the coordinate data for points selected by the user. This data file is passed on to the next link in the processing chain -- DERM.

DERM stands for Data Edit and Review Module, and is an interactive program that does as the name implies. DERM uses the output file from DAM4 as input and provides the user with
the ability to quickly review the digitized data for smoothness and accuracy, perform single and double argument immediate transformations on the data, insert, delete and change data points, list data on the printer and produce "quick" plots of the data for visual evaluation. Furthermore, DERM has the capability to provide for the linking and unlinking of related data files and allows for data inversion on families of graphical data in either single or multi-file format. As its output DERM produces a data file with corrected points that is passed on to the Fitter module.

The fitter module is the crux of the data processing package in that this module is responsible for the actual curve fitting. Unlike earlier attempts at an automated curve fitter, we have kept the human "in the loop" to insure a reasonable choice of base function and resultant coefficients. The actual task of fitting numerical data is distributed over five submodules. The first submodule is responsible for disk file input/output and provides the user with dynamic editing capabilities as well as immediate data transforms and scratch pad management functions. Submodule two is the actual curvefitting routines. Submodule three is the function form definition module. The user has the ability to choose any of 60 "prepackaged" base function forms as well as any one of five user defined forms. The functional form choices include polynomial, logarithmic, normal distribution, inverse cumulative normal distribution and Legendre polynomials. Submodule four is the function evaluation module. In addition to being able to evaluate the fitting function given the function form, this submodule gives the user the ability to choose coefficient initial values, search intervals and starting values. Additionally, the search routine can be constrained according to user specified criterion, like mean square error or maximum error. It also allows evaluation of the function at user-defined initial values and intervals, and can store these values for use by the plot module. The fifth submodule is a data smoother.
This allows the user to represent the given data using cubic spline techniques to provide for function evaluation at periodic intervals of the independent variables. This, then, provides an ordered, periodic sampled data base for the fitter submodule.

The final module in the Data Processing package is the Plot module. This module allows the user to produce high quality plots, including alphanumerical and axis data, on the HP7225A X-Y plotter. The plot module uses as input files produced by DAM4, DERM, Fitter or the user and generates plots of the ordered data on 8½" x 11" paper. The plot module attempts to use the parameters contained with the data file to define all the "particulars" of the plot -- like size, orientation, axis scaling, etc. The user has the ability to override the defaults at any time. This module allows linear, logarithmic or user-defined axes in both X and Y directions, variable length and size of axis and plot labels, automatic or manual axis value numbering, horizontal or vertical orientation, variable finished plot size and the ability to plot multiple curves and/or multiple files of data on the same plot. Additionally, the module has the ability to plot on pre-ruled graph paper by using the reverse communication link to the 11T03 for graph orientation data. A complete sample run of the Data Processing modules is contained in Section IV of this report.

III-C. Program Development, Verification and Support Modules

The four modules in this group provide general program development support. The first module is the TI59 optimizer. This module, as its name implies, allows programs written for the TI59 to be optimized according to known operational parameters of the calculator. Designed originally as a post-processor for the TI59 Recompiler, this module uses as input a disk file generated as output of the recompiler or prepared with the RT-11 editor EDIT or TECO, or human-entered keyboard data. The optimizer exploits known idiosyncracies of the operation of the TI59
to perform an "execution-time program size" tradeoff. This
time-space optimization technique evaluates the tradeoffs be-
tween fast execution of in-line code versus the slower execution
of more compact subroutinized code. Based on operator input
parameters, subroutines are formed out of repeated keystroke
sequences, literal digit strings are formed into register based
constants where the literal digits are replaced by a register
recall, and subroutines are organized in the calculator's memory
space according to length, calling frequency and overhead. The
resultant code executes as fast as possible for a given program
size. This module is complete.

To provide for verification of translated programs and
assistance in the design of Constant Read Only Memories (CROM)
for the TI59, a full function simulator has been developed.
This module is, in actuality, a software development aid in ad-
dition to a verification scheme and consists of a keyboard moni-
tor, multi-mode debugger, main memory simulator and CROM memory
simulator. The simulator provides all the computational abilities
of the TI59 plus single step execution, trace mode, text editing
including "block move" instructions, a CROM paging scheme and
formatted disk input/output including the processing of manually
entered CROM images. This module is operational, however, several
enhancements may be desired to improve its operator interface and
usefulness.

To provide an automated basis for SIMPLE program verifi-
cation, and provide production translation capabilities should
the need arise, we have developed the capability to translate
from SIMPLE to RT-11 single user BASIC. Although not intended
as a true MARS language processor, this module is easily enhanc-
able to that state. Input to the program is a MARS language pro-
cessor format disk file containing SIMPLE code. A file of this
type is produced by any of the language decompilers. The output
of the processor is a disk file that conforms to that which is
expected by the RT-11 BASIC interpreter. This module is complete
and the implications of its function are obvious. As new genera-
tions of HHPPC's are developed it is most likely that many will use BASIC rather than a keystroke based language. We now have the capability to perform the necessary language translations when the need arises.

The last module in this group is a magnetic card writing aid. The hand-printing of small quantities of custom cards has always been a problem. The space allotted for labeling is small so hand-lettered labels become virtually unreadable. This program uses the HP7225A plotter and digitizing sight, in conjunction with the CRT to provide a quick and convenient method of labeling small quantities of magnetic cards. This module is complete.
IV. SAMPLE RUN OF THE CURVEFITTING PACKAGE, INCLUDING USE OF DAM4, DERM, FITTER, AND HP7225 PROGRAMS
This example demonstrates the use of the programs in the curvefitting and plotting package. A source draft from the DNA EM-1 effects manual is digitized, the units are transformed, a functional form is fitted to the data, and the resultant fit is plotted against the original for verification.

Each step in this example illustrates the capabilities of a different program in the package, and also defines a particular task in the data fitting process. The text of this example combines actual output from the programs with an explanation of the results and of the task itself. In the program output, the user's responses to the program's requests have been underlined so that they may be distinguished from the program materia
STEP 1.

The graphical data is digitized and a data file produced by DAM4 (the Data Acquisition Module.)

The data to be fitted is taken from the DNA/EM-1 effects manual (see Fig. 4), giving the duration for the positive phase in free-air overpressure as a function of distance from the explosion. To convert the graphical data into numeric data to be used by the other programs, DAM4 is used in conjunction with a digitizing tablet.

The object of DAM4 is to produce a disk file containing digitized data and relevant parameters, including axes labels, axes types (e.g., for example, logarithmic scales), minimum and maximum data values, and the names of other associated data files. Excerpts from the working session with DAM4 show how this is accomplished:

PLEASE ENTER OUTPUT FILENAME: DURFP.0DF

PLEASE ENTER GRAPH NAME WITH 64 CHAR LIMIT: DURATION OF POSITIVE PHASE, OVERPRESSURE & DYN PRESSURE

(FOR POLAR PLOTS RADIUS IS X, ANGLE IS Y)
(LOGRTH MEANS LOGARITHMIC, USERDF MEANS USER DEFINED)

SELECT DESIRED GRAPH TYPE....

....FROM FOLLOWING MENU FOR X-Y PLOT

000 LINEAR IN X, LINEAR IN Y
010 LINEAR IN X, LOGRTH IN Y
020 LINEAR IN X, USERDF IN Y
100 LOGRTH IN X, LINEAR IN Y
110 LOGRTH IN X, LOGRTH IN Y
120 LOGRTH IN X, USERDF IN Y
200 USERDF IN X, LINEAR IN Y
210 USERDF IN X, LOGRTH IN Y
220 USERDF IN X, USERDF IN Y

....FOLLOWING MENU FOR POLAR PLOT

301 POLAR PLOT WITH ANGLE IN RADIANS
311 POLAR PLOT WITH ANGLE IN DEGREES

PLEASE ENTER THE GRAPH TYPE (3 DIGITS AS SHOWN): 100
Duration of Positive Overpressure and Dynamic Pressure Phases for a 1 kt Free Air Burst in a Standard Sea Level Atmosphere

Figure 4.
WE NEED MINIMUM AND MAXIMUM VALUES IN X AND Y FOR THE GRAPH AS A WHOLE; PLEASE ENTER THESE AS REAL NUMBERS (WITH EXPLICIT DECIMAL POINT)

ENTER XMIN: 100.
ENTER XMAX: 10000.

ENTER YMIN: 0.
ENTER YMAX: .5

LABEL FOR X AXIS?
64 CHAR LIMIT: DISTANCE (FT)

LABEL FOR Y AXIS?
64 CHAR LIMIT: POS. PHASE DURATION (SEC)

WILL A NEXT DATA FILE BE ASSOCIATED WITH THIS FILE?
IF YES, ENTER ITS NAME, ELSE ENTER CARRIAGE RETURN ONLY

FILENAME IS: (carriage return)

WAS THERE A LAST DATA FILE ASSOCIATED WITH THIS FILE?
IF YES, ENTER ITS NAME, ELSE ENTER CARRIAGE RETURN ONLY

FILENAME IS: (carriage return)

In order to translate the internal coordinates of the digitizing tablet into those of the graph, an algorithm is used which orients and scales the tablet’s output, based on the designated coordinates of at least three points on the tablet. (Three points will determine the axes uniquely; more than three can be used in an averaging scheme to allow for human imprecision and for nonlinearities and skewed axes in the graphs themselves.)

HOW MANY INDIVIDUAL CURVES WILL BE ON THIS GRAPH: 2

TO CALIBRATE THE BIT PAD WE WILL NEED 3 OR MORE WIDELY SEPARATED POINTS. HOW MANY SUCH POINTS SHALL WE USE: 4

AFTER EACH POINT IS ENTERED YOU MUST TELL ME THE DESIRED X AND Y VALUES FOR THE POINT.

DIGITIZE A POINT

INPUT VALUES FOR X AND Y: 110...02

DIGITIZE A POINT
INPUT VALUES FOR X AND Y: 110.46

DIGITIZE A POINT

INPUT VALUES FOR X AND Y: 9200.02

DIGITIZE A POINT

INPUT VALUES FOR X AND Y: 9200.46

Now the data values are digitized directly, assigning a weight to each point:

EACH CURVE MIGHT POSSIBLY REQUIRE SEVERAL PARAMETERS FOR SUBSEQUENT PROCESSING BY OTHER PROGRAMS. THE PRESENT PROGRAM WILL ACCEPT WHATEVER YOU INPUT...

THE SUGGESTED FORM IS ONE OR MORE NUMERICAL FIELDS EACH ENDING WITH A COMMA WITH ANY DESIRED CHARACTERS FOLLOWING THE RIGHTMOST (OR ONLY) COMMA...,

PLEASE ENTER DATA CONTROL FIELD FOR THIS CURVE WITH 64 CHAR LIMIT: 1, (OVERPRESSURE)

YOU MAY NOW INPUT POINTS FROM THE DIGITIZER. AFTER EACH POINT YOU WILL BE ASKED FOR A WEIGHTING FACTOR. IF YOU ARE MERELY TESTING OR WISH TO DISCARD THE POINT, YOU SHOULD GIVE A WEIGHT OF ZERO. MOST USUALLY THE WEIGHT WILL BE ONE. A NEGATIVE WEIGHT WILL BE ACCEPTED AS A SIGNAL TO EITHER RECALIBRATE (WEIGHT=-1) OR TO END THIS PARTICULAR CURVE (WEIGHT=-2) (WITHIN THE SAME FAMILY).

A CARRIAGE RETURN ALONE GIVES A WEIGHT OF ONE.

SELECT POINT ON DIGITIZER

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>103.89</td>
<td>0.16981</td>
<td>:1</td>
</tr>
</tbody>
</table>

TO DISK

SELECT POINT ON DIGITIZER

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>117.68</td>
<td>0.16761</td>
<td>:1</td>
</tr>
</tbody>
</table>

TO DISK

.
The procedure is repeated for the second curve (dynamic pressure). After the last point has been digitized, DAM4 writes the completed file of data points in a standard format for use by the other programs.

SELECT POINT ON DIGITIZER
X IS 8987.1 Y IS 0.36950
WEIGHT? 1
TO DISK

SELECT POINT ON DIGITIZER
X IS 654.17 Y IS -0.40655 (garbage)
WEIGHT? -2
LAST POINT DISCARDED, *** END OF CURVE SIGNAL ***

The resultant disk file:

FILE: DURPP.IDF DATE: 30-NOV-79 16:04
NAME: POSITIVE PHASE DURATION, OVERPRESSURE & DYN PRESSURE
TYPE: 100
X(MIN, MAX): 1.0000000E+02, 1.0000000E+04
Y(MIN, MAX): 0.0000000E-01, 5.0000000E-01
X LABEL: DISTANCE (FT)
Y LABEL: POS. PHASE DURATION (SEC)
NEXT FILE:
LAST FILE:
SOC 1. (OVERPRESSURE)

<table>
<thead>
<tr>
<th>Pressure (Pa)</th>
<th>Value</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0389166E+02</td>
<td>1.6980615E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.1767580E+02</td>
<td>1.6761231E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.3443927E+02</td>
<td>1.6539657E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.5292946E+02</td>
<td>1.6225377E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.7395361E+02</td>
<td>1.5629689E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.9534042E+02</td>
<td>1.5224892E-01</td>
<td>1.</td>
</tr>
<tr>
<td>2.2219490E+02</td>
<td>1.4629205E-01</td>
<td>1.</td>
</tr>
<tr>
<td>2.6044104E+02</td>
<td>1.3650638E-01</td>
<td>1.</td>
</tr>
<tr>
<td>2.9878143E+02</td>
<td>1.2677549E-01</td>
<td>1.</td>
</tr>
<tr>
<td>3.3549152E+02</td>
<td>1.1897544E-01</td>
<td>1.</td>
</tr>
<tr>
<td>3.9502335E+02</td>
<td>1.2137309E-01</td>
<td>1.</td>
</tr>
<tr>
<td>4.533554E+02</td>
<td>1.3040265E-01</td>
<td>1.</td>
</tr>
<tr>
<td>5.2027411E+02</td>
<td>1.4130626E-01</td>
<td>1.</td>
</tr>
<tr>
<td>6.1280017E+02</td>
<td>1.6157833E-01</td>
<td>1.</td>
</tr>
<tr>
<td>7.2178143E+02</td>
<td>1.8174841E-01</td>
<td>1.</td>
</tr>
<tr>
<td>8.4649774E+02</td>
<td>2.0197943E-01</td>
<td>1.</td>
</tr>
<tr>
<td>9.7579288E+02</td>
<td>2.1756418E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.1642219E+03</td>
<td>2.3868941E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.4192300E+03</td>
<td>2.5882182E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.6643999E+03</td>
<td>2.7717680E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.9434152E+03</td>
<td>2.9179066E-01</td>
<td>1.</td>
</tr>
<tr>
<td>2.3185316E+03</td>
<td>3.0728772E-01</td>
<td>1.</td>
</tr>
<tr>
<td>2.8140056E+03</td>
<td>3.2274100E-01</td>
<td>1.</td>
</tr>
<tr>
<td>3.4594993E+03</td>
<td>3.3534732E-01</td>
<td>1.</td>
</tr>
<tr>
<td>4.4018110E+03</td>
<td>3.4786597E-01</td>
<td>1.</td>
</tr>
<tr>
<td>5.5764814E+03</td>
<td>3.5781505E-01</td>
<td>1.</td>
</tr>
<tr>
<td>6.6231509E+03</td>
<td>3.6370933E-01</td>
<td>1.</td>
</tr>
<tr>
<td>7.6986499E+03</td>
<td>3.6707789E-01</td>
<td>1.</td>
</tr>
<tr>
<td>8.9871709E+03</td>
<td>3.6949745E-01</td>
<td>1.</td>
</tr>
</tbody>
</table>

SOC 2. (DYNAMIC PRESSURE)

<table>
<thead>
<tr>
<th>Pressure (Pa)</th>
<th>Value</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0389166E+02</td>
<td>3.7898505E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.2546711E+02</td>
<td>3.7757584E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.4963704E+02</td>
<td>3.7618852E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.7922218E+02</td>
<td>3.7197620E-01</td>
<td>1.</td>
</tr>
<tr>
<td>2.0450964E+02</td>
<td>3.6692446E-01</td>
<td>1.</td>
</tr>
<tr>
<td>2.5265778E+02</td>
<td>3.5140106E-01</td>
<td>1.</td>
</tr>
<tr>
<td>2.9992636E+02</td>
<td>3.3032829E-01</td>
<td>1.</td>
</tr>
<tr>
<td>3.6216669E+02</td>
<td>3.0264145E-01</td>
<td>1.</td>
</tr>
<tr>
<td>4.3739233E+02</td>
<td>2.8339887E-01</td>
<td>1.</td>
</tr>
<tr>
<td>5.0608652E+02</td>
<td>2.7083200E-01</td>
<td>1.</td>
</tr>
<tr>
<td>5.8067072E+02</td>
<td>2.6860529E-01</td>
<td>1.</td>
</tr>
<tr>
<td>6.7789386E+02</td>
<td>2.7383891E-01</td>
<td>1.</td>
</tr>
<tr>
<td>8.2979028E+02</td>
<td>2.8458017E-01</td>
<td>1.</td>
</tr>
<tr>
<td>9.7718799E+02</td>
<td>2.9541999E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.2814858E+03</td>
<td>3.1442809E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.7096489E+03</td>
<td>3.3245435E-01</td>
<td>1.</td>
</tr>
<tr>
<td>2.0660352E+03</td>
<td>3.4604251E-01</td>
<td>1.</td>
</tr>
<tr>
<td>2.5841709E+03</td>
<td>3.6235708E-01</td>
<td>1.</td>
</tr>
<tr>
<td>3.2320801E+03</td>
<td>3.7585759E-01</td>
<td>1.</td>
</tr>
<tr>
<td>4.1302988E+03</td>
<td>3.9024132E-01</td>
<td>1.</td>
</tr>
<tr>
<td>5.2552368E+03</td>
<td>4.0182194E-01</td>
<td>1.</td>
</tr>
<tr>
<td>Value</td>
<td>Value</td>
<td>Count</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>6.5159072E+03</td>
<td>4.0971622E-01</td>
<td>1</td>
</tr>
<tr>
<td>7.7386191E+03</td>
<td>4.1396800E-01</td>
<td>1</td>
</tr>
<tr>
<td>9.6358232E+03</td>
<td>4.1903728E-01</td>
<td>1</td>
</tr>
</tbody>
</table>

EOC
EOF
STEP 2.

The digitized data is reviewed and modified using program DERM (the Data Edit and Review Module).

DERM reads the file and allows inspection of the data and file parameters:

DERM version 2 is ready. Type ? for information.

>READ DURFP.1DF

Z 1.00000
Z 2.00000
53 points in data buffer.

>HEADER

FILE : DURFP.1DF
DATE : 30-NOV-79
TIME : 16:04
NAME : POSITIVE PHASE DURATION, OVERPRESSURE & DYN PRESSURE
TYPE : CARTESIAN

XLABEL : DISTANCE (FT)
XAXIS : LOGARITHMIC
XMIN : 1.00E+02
XMAX : 1.00E+04

YLABEL : POS. PHASE DURATION (SEC)
YAXIS : LINEAR
YMIN : 0.00E-01
YMAX : 5.00E-01

NEXT :
LAST :

>LIST

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>103.892</td>
<td>0.169806</td>
<td>1.00000</td>
</tr>
<tr>
<td>2</td>
<td>117.676</td>
<td>0.167612</td>
<td>1.00000</td>
</tr>
<tr>
<td>3</td>
<td>134.439</td>
<td>0.165397</td>
<td>1.00000</td>
</tr>
<tr>
<td>4</td>
<td>152.929</td>
<td>0.162254</td>
<td>1.00000</td>
</tr>
<tr>
<td>5</td>
<td>173.954</td>
<td>0.156297</td>
<td>1.00000</td>
</tr>
<tr>
<td>6</td>
<td>195.340</td>
<td>0.152249</td>
<td>1.00000</td>
</tr>
<tr>
<td>7</td>
<td>222.195</td>
<td>0.146292</td>
<td>1.00000</td>
</tr>
<tr>
<td>8</td>
<td>260.441</td>
<td>0.136506</td>
<td>1.00000</td>
</tr>
<tr>
<td>9</td>
<td>298.781</td>
<td>0.126775</td>
<td>1.00000</td>
</tr>
<tr>
<td>10</td>
<td>335.492</td>
<td>0.118975</td>
<td>1.00000</td>
</tr>
<tr>
<td>11</td>
<td>395.023</td>
<td>0.121373</td>
<td>1.00000</td>
</tr>
<tr>
<td>12</td>
<td>453.336</td>
<td>0.130403</td>
<td>1.00000</td>
</tr>
</tbody>
</table>
We will discard the second curve (dynamic pressure) for now, and convert the distance (X) from feet to meters:

> DELETE 30-
> MULT .3048 X
The header is changed accordingly, and the modified data is given the new filename DURPF.2DF:

>XLABEL DISTANCE (M)
>XMIN 30.
>XMAX 3000.
>FILE DURPF.2DF
>NAME POSITIVE PHASE DURATION, OVERPRESSURE
>HEADER
FILE : DURPF.2DF
DATE : 30-NOV-79
TIME : 16:04
NAME : POSITIVE PHASE DURATION, OVERPRESSURE
Finally, the modified data, which is ready to be fit, is written into a disk file of the standard format:

```
>WRITE
Z  1.00000
29 Points written.
>BYE
```

The resulting file is:

```
FILE: DURFP.2DF  DATE: 30-NOV-79 16:04
NAME: POSITIVE PHASE DURATION, OVERPRESSURE
TYPE: 100
X(MIN MAX): 3.000000E+01, 3.000000E+03
Y(MIN MAX): 0.000000E-01, 5.000000E-01
X LABEL: DISTANCE (M)
Y LABEL: POS. PHASE DURATION (SEC)
NEXT FILE:
LAST FILE:
```

```
SOF
SOI  1.00000
3.166618E+01, 1.698062E-01, 1.
3.586758E+01, 1.676123E-01, 1.
4.097709E+01, 1.653966E-01, 1.
4.661290E+01, 1.622538E-01, 1.
5.302106E+01, 1.562969E-01, 1.
5.953976E+01, 1.522489E-01, 1.
6.772501E+01, 1.462920E-01, 1.
7.938243E+01, 1.365064E-01, 1.
9.106858E+01, 1.267755E-01, 1.
```

32
<table>
<thead>
<tr>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.022578E+02</td>
<td>1.089754E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.204031E+02</td>
<td>1.213731E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.381767E+02</td>
<td>1.304027E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.585795E+02</td>
<td>1.413063E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.867815E+02</td>
<td>1.615283E-01</td>
<td>1.</td>
</tr>
<tr>
<td>2.199990E+02</td>
<td>1.817484E-01</td>
<td>1.</td>
</tr>
<tr>
<td>2.580125E+02</td>
<td>2.019794E-01</td>
<td>1.</td>
</tr>
<tr>
<td>2.974114E+02</td>
<td>2.175642E-01</td>
<td>1.</td>
</tr>
<tr>
<td>3.548549E+02</td>
<td>2.386894E-01</td>
<td>1.</td>
</tr>
<tr>
<td>4.325813E+02</td>
<td>2.588218E-01</td>
<td>1.</td>
</tr>
<tr>
<td>5.073091E+02</td>
<td>2.771768E-01</td>
<td>1.</td>
</tr>
<tr>
<td>5.923530E+02</td>
<td>2.917907E-01</td>
<td>1.</td>
</tr>
<tr>
<td>7.06682E+02</td>
<td>3.078877E-01</td>
<td>1.</td>
</tr>
<tr>
<td>8.577089E+02</td>
<td>3.227410E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.054455E+03</td>
<td>3.353473E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.341672E+03</td>
<td>3.478660E-01</td>
<td>1.</td>
</tr>
<tr>
<td>1.699712E+03</td>
<td>3.575815E-01</td>
<td>1.</td>
</tr>
<tr>
<td>2.018736E+03</td>
<td>3.637094E-01</td>
<td>1.</td>
</tr>
<tr>
<td>2.346548E+03</td>
<td>3.670779E-01</td>
<td>1.</td>
</tr>
<tr>
<td>2.739290E+03</td>
<td>3.694974E-01</td>
<td>1.</td>
</tr>
</tbody>
</table>
STEP 3.

The data is examined and a functional form chosen for the fit. Then program FITTER is used to obtain the coefficients for which that function best approximates the given data.

Fig. 5 shows a plot of the data from data file DURPP2DF. (This figure was produced by the program HP7225.)

A functional form which suggests itself is

$$Y = \frac{a}{(X/b) + 1} + \frac{d}{(X/g)^h + 1}$$

where $Y =$ positive phase duration in seconds

$X =$ distance from burst in meters.

The term $a / [(X/b)^c + 1]$ governs the limit of small X ($X \ll b, g$) and defines the left side of the graph; likewise the term

$d / [(X/g)^{-h} + 1]$ governs the limit of large X ($X \gg b, g$) and defines the right side of the graph. (See Fig. 5.)

A linearization of parameters technique is used to determine the coefficients $a, b, c, d, s,$ and h. This method requires initial estimates for the values of the coefficients, which we may set by examining the asymptotic behavior of the function.

For $X \ll b, g$, Y tends to $a = .17$ seconds (see Figs. 4 or 5)

For $X \gg b, g$, Y tends to $d = .375$ seconds

When $X = b$, $Y = a/2$ (neglecting the second term in the function) which we estimate to occur at $X = b = 400$ ft = 122 meters.

When $X = g$, $Y = d/2$ (neglecting the first term in the function) which we estimate to occur at $X = g = 800$ ft = 244 meters.

Finally, as initial guesses for coefficients c and h we choose 1.
Now program FITTER is used to optimize these coefficients. First, the functional form to be used, which is rather specialized, is set up in a FORTRAN subroutine to be called by the main program. This subroutine will be used for each of the two terms in the function.

FUNCTION USER3(I,X)
! USER3.PPD
C
C USER-DEFINED ROUTINE FOR POS. PHASE DURATION FIT
C
DOUBLE PRECISION PI
REAL COEFF(4,13,10),DATA(2,4,101),SCRTCH(3,2,15)
INTEGER FUNCT(4,14),INFO(10)
BYTE CLEAR(7),CHAR(4),JUNK
REAL EXT(6)
C
COMMON/ALL/COEFF,DATA,SCRTCH,FUNCT,INFO,CLEAR,CHAR,JUNK,PI,ZPOINT
COMMON/USER/EXT
C
DATA EXT(3)/*PPD*/
C
F(X) = A / ((X/B)^C + 1)
C
USER3=COEFF(1,I,1)/((X/COEFF(1,I,2))**COEFF(1,I,3) + 1.)
C
RETURN
END

The procedure used to optimize the coefficients is an iterative one which requires that some of the coefficients be held fixed while the other are allowed to vary. If at first the coefficients a, b, d, and s are fixed and c and h are optimized, we get the following results from the FITTER:

<table>
<thead>
<tr>
<th>iteration</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>s</th>
<th>h</th>
<th>RMS relative erro</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.17</td>
<td>122</td>
<td>1,000</td>
<td>.375</td>
<td>244.</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>.17</td>
<td>122</td>
<td>3.319</td>
<td>.375</td>
<td>244.</td>
<td>2.199</td>
<td>.1313</td>
</tr>
<tr>
<td>2</td>
<td>.17</td>
<td>122</td>
<td>3.022</td>
<td>.375</td>
<td>244.</td>
<td>2.155</td>
<td>.1307</td>
</tr>
<tr>
<td>3</td>
<td>.17</td>
<td>122</td>
<td>2.830</td>
<td>.375</td>
<td>244.</td>
<td>2.125</td>
<td>.1309</td>
</tr>
<tr>
<td>4</td>
<td>.17</td>
<td>122</td>
<td>2.935</td>
<td>.375</td>
<td>244.</td>
<td>2.137</td>
<td>.1315</td>
</tr>
<tr>
<td>5</td>
<td>.17</td>
<td>122</td>
<td>2.879</td>
<td>.375</td>
<td>244.</td>
<td>2.130</td>
<td>.1315</td>
</tr>
</tbody>
</table>

Now, fixing the values of c and h as they have stabilized, and
allowing a, b, d, and s to vary:

<table>
<thead>
<tr>
<th>iteration</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>s</th>
<th>h</th>
<th>RMS relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.1641</td>
<td>104.4</td>
<td>2.879</td>
<td>0.3565</td>
<td>253.1</td>
<td>2.130</td>
<td>0.0421</td>
</tr>
<tr>
<td>7</td>
<td>0.1675</td>
<td>101.6</td>
<td>2.879</td>
<td>0.3564</td>
<td>253.2</td>
<td>2.130</td>
<td>0.0409</td>
</tr>
<tr>
<td>8</td>
<td>0.1679</td>
<td>101.2</td>
<td>2.879</td>
<td>0.3564</td>
<td>252.8</td>
<td>2.130</td>
<td>0.0407</td>
</tr>
<tr>
<td>9</td>
<td>0.1679</td>
<td>101.1</td>
<td>2.879</td>
<td>0.3563</td>
<td>252.7</td>
<td>2.130</td>
<td>0.0406</td>
</tr>
</tbody>
</table>

Finally, c and h are again allowed to vary, to achieve the optimum values:

<table>
<thead>
<tr>
<th>iteration</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>s</th>
<th>h</th>
<th>RMS relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.1641</td>
<td>104.4</td>
<td>2.552</td>
<td>0.3565</td>
<td>253.1</td>
<td>1.978</td>
<td>0.0415</td>
</tr>
<tr>
<td>11</td>
<td>0.1641</td>
<td>104.4</td>
<td>2.594</td>
<td>0.3565</td>
<td>253.1</td>
<td>1.991</td>
<td>0.0406</td>
</tr>
<tr>
<td>12</td>
<td>0.1641</td>
<td>104.4</td>
<td>2.590</td>
<td>0.3565</td>
<td>253.1</td>
<td>1.990</td>
<td>0.0406</td>
</tr>
</tbody>
</table>

with stable values. Program FITTER gives the point-by-point error analysis:

<table>
<thead>
<tr>
<th>I</th>
<th>X</th>
<th>Y</th>
<th>F</th>
<th>F-Y</th>
<th>(F-Y)/Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.16662E+01</td>
<td>1.69806E-01</td>
<td>1.65635E-01</td>
<td>-4.17146E-03</td>
<td>-2.45660E-02</td>
</tr>
<tr>
<td>2</td>
<td>3.58676E+01</td>
<td>1.67612E-01</td>
<td>1.64364E-01</td>
<td>-3.24813E-03</td>
<td>-1.93788E-02</td>
</tr>
<tr>
<td>3</td>
<td>4.09771E+01</td>
<td>1.65397E-01</td>
<td>1.62452E-01</td>
<td>-2.94496E-03</td>
<td>-1.78055E-02</td>
</tr>
<tr>
<td>4</td>
<td>4.66129E+01</td>
<td>1.62254E-01</td>
<td>1.59921E-01</td>
<td>-2.33309E-03</td>
<td>-1.43793E-02</td>
</tr>
<tr>
<td>5</td>
<td>5.30211E+01</td>
<td>1.56297E-01</td>
<td>1.56612E-01</td>
<td>3.15145E-04</td>
<td>2.01632E-03</td>
</tr>
<tr>
<td>6</td>
<td>5.95398E+01</td>
<td>1.52249E-01</td>
<td>1.52937E-01</td>
<td>6.87972E-04</td>
<td>4.51873E-03</td>
</tr>
<tr>
<td>7</td>
<td>6.77250E+01</td>
<td>1.46292E-01</td>
<td>1.48172E-01</td>
<td>1.88008E-03</td>
<td>1.28516E-02</td>
</tr>
<tr>
<td>8</td>
<td>7.93824E+01</td>
<td>1.35056E-01</td>
<td>1.41775E-01</td>
<td>5.26822E-03</td>
<td>3.85932E-02</td>
</tr>
<tr>
<td>9</td>
<td>9.10686E+01</td>
<td>1.26776E-01</td>
<td>1.36586E-01</td>
<td>9.81008E-03</td>
<td>7.3815E-02</td>
</tr>
<tr>
<td>10</td>
<td>1.02258E+02</td>
<td>1.18975E-01</td>
<td>1.33253E-01</td>
<td>1.42777E-02</td>
<td>1.20005E-01</td>
</tr>
<tr>
<td>11</td>
<td>1.20403E+02</td>
<td>1.21373E-01</td>
<td>1.31606E-01</td>
<td>1.02327E-02</td>
<td>8.43075E-02</td>
</tr>
<tr>
<td>12</td>
<td>1.38177E+02</td>
<td>1.30403E-01</td>
<td>1.34130E-01</td>
<td>3.72693E-03</td>
<td>2.85802E-02</td>
</tr>
<tr>
<td>13</td>
<td>1.58579E+02</td>
<td>1.41308E-01</td>
<td>1.40914E-01</td>
<td>3.94389E-04</td>
<td>2.79098E-03</td>
</tr>
<tr>
<td>14</td>
<td>1.86781E+02</td>
<td>1.61528E-01</td>
<td>1.54592E-01</td>
<td>6.93622E-03</td>
<td>4.29412E-02</td>
</tr>
<tr>
<td>15</td>
<td>2.19999E+02</td>
<td>1.81748E-01</td>
<td>1.73536E-01</td>
<td>8.21321E-03</td>
<td>4.51851E-02</td>
</tr>
<tr>
<td>16</td>
<td>2.58012E+02</td>
<td>2.01979E-01</td>
<td>1.95495E-01</td>
<td>6.48487E-03</td>
<td>3.21066E-02</td>
</tr>
<tr>
<td>17</td>
<td>2.97411E+02</td>
<td>2.17564E-01</td>
<td>2.16856E-01</td>
<td>1.07932E-03</td>
<td>4.96909E-03</td>
</tr>
<tr>
<td>18</td>
<td>3.54855E+02</td>
<td>2.38689E-01</td>
<td>2.42435E-01</td>
<td>3.74570E-03</td>
<td>1.54929E-02</td>
</tr>
<tr>
<td>19</td>
<td>4.32581E+02</td>
<td>2.58822E-01</td>
<td>2.69128E-01</td>
<td>1.03061E-02</td>
<td>3.98192E-02</td>
</tr>
<tr>
<td>20</td>
<td>5.07309E+02</td>
<td>2.77177E-01</td>
<td>2.87652E-01</td>
<td>1.04756E-02</td>
<td>3.77939E-02</td>
</tr>
<tr>
<td>21</td>
<td>5.92353E+02</td>
<td>2.91791E-01</td>
<td>3.02795E-01</td>
<td>1.10040E-02</td>
<td>3.77120E-02</td>
</tr>
<tr>
<td>22</td>
<td>7.06688E+02</td>
<td>3.07288E-01</td>
<td>3.16665E-01</td>
<td>9.37760E-03</td>
<td>3.05173E-02</td>
</tr>
</tbody>
</table>
ERROR IS: 4.06593E-02 RMS REL ERROR

Since this equation will be used in a calculator program with limited
space available, it is important to minimize the number of significant
digits required in the coefficients. The FITTER allows us to round the
values of the coefficients, and examine the resulting errors.

\[
a \quad b \quad c \quad d \quad s \quad h
\]
\[
.17 \quad 100. \quad 2.6 \quad .36 \quad 260. \quad -2.
\]

with the errors:

<table>
<thead>
<tr>
<th>I</th>
<th>X</th>
<th>Y</th>
<th>F</th>
<th>F-Y</th>
<th>(F-Y)/Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.16662E+01</td>
<td>1.69806E-01</td>
<td>1.67121E-01</td>
<td>2.68531E-03</td>
<td>-1.58140E-02</td>
</tr>
<tr>
<td>2</td>
<td>3.58676E+01</td>
<td>1.67612E-01</td>
<td>1.65670E-01</td>
<td>1.94208E-03</td>
<td>-1.15828E-02</td>
</tr>
<tr>
<td>3</td>
<td>4.09771E+01</td>
<td>1.65397E-01</td>
<td>1.63508E-01</td>
<td>1.88828E-03</td>
<td>-1.14167E-02</td>
</tr>
<tr>
<td>4</td>
<td>4.66129E+01</td>
<td>1.62254E-01</td>
<td>1.60698E-01</td>
<td>1.58489E-03</td>
<td>9.76795E-03</td>
</tr>
<tr>
<td>5</td>
<td>5.30211E+01</td>
<td>1.56297E-01</td>
<td>1.56977E-01</td>
<td>6.79880E-04</td>
<td>4.34993E-03</td>
</tr>
<tr>
<td>6</td>
<td>5.95398E+01</td>
<td>1.52249E-01</td>
<td>1.52889E-01</td>
<td>6.40094E-04</td>
<td>4.20426E-03</td>
</tr>
<tr>
<td>7</td>
<td>6.77250E+01</td>
<td>1.46292E-01</td>
<td>1.47598E-01</td>
<td>1.30381E-03</td>
<td>8.91236E-03</td>
</tr>
<tr>
<td>8</td>
<td>7.93824E+01</td>
<td>1.36506E-01</td>
<td>1.40471E-01</td>
<td>3.96480E-03</td>
<td>2.90448E-02</td>
</tr>
<tr>
<td>9</td>
<td>9.10686E+01</td>
<td>1.26776E-01</td>
<td>1.34627E-01</td>
<td>7.85197E-03</td>
<td>6.19360E-03</td>
</tr>
<tr>
<td>10</td>
<td>1.02258E+02</td>
<td>1.18975E-01</td>
<td>1.30760E-01</td>
<td>1.17846E-02</td>
<td>9.90511E-02</td>
</tr>
<tr>
<td>11</td>
<td>1.20403E+02</td>
<td>1.21373E-01</td>
<td>1.28442E-01</td>
<td>7.06901E-03</td>
<td>5.82420E-02</td>
</tr>
<tr>
<td>12</td>
<td>1.38177E+02</td>
<td>1.30403E-01</td>
<td>1.30519E-01</td>
<td>1.16229E-04</td>
<td>8.91309E-04</td>
</tr>
<tr>
<td>13</td>
<td>1.58579E+02</td>
<td>1.41308E-01</td>
<td>1.36966E-01</td>
<td>4.31384E-04</td>
<td>3.05137E-02</td>
</tr>
<tr>
<td>14</td>
<td>1.86781E+02</td>
<td>1.61528E-01</td>
<td>1.50528E-01</td>
<td>1.10002E-02</td>
<td>6.81009E-02</td>
</tr>
<tr>
<td>15</td>
<td>2.19999E+02</td>
<td>1.81748E-01</td>
<td>1.69595E-01</td>
<td>1.21530E-02</td>
<td>6.68672E-02</td>
</tr>
<tr>
<td>16</td>
<td>2.58012E+02</td>
<td>2.01979E-01</td>
<td>1.91464E-01</td>
<td>1.00337E-02</td>
<td>4.96771E-02</td>
</tr>
<tr>
<td>17</td>
<td>2.97411E+02</td>
<td>2.17564E-01</td>
<td>2.13492E-01</td>
<td>4.07198E-03</td>
<td>1.87162E-02</td>
</tr>
<tr>
<td>18</td>
<td>3.54855E+02</td>
<td>2.38689E-01</td>
<td>2.40333E-01</td>
<td>1.64548E-03</td>
<td>6.89379E-03</td>
</tr>
<tr>
<td>19</td>
<td>4.32581E+02</td>
<td>2.58822E-01</td>
<td>2.68153E-01</td>
<td>9.33143E-03</td>
<td>3.60535E-02</td>
</tr>
<tr>
<td>20</td>
<td>5.07309E+02</td>
<td>2.77177E-01</td>
<td>2.87568E-01</td>
<td>1.03917E-02</td>
<td>3.74512E-02</td>
</tr>
<tr>
<td>21</td>
<td>5.92353E+02</td>
<td>2.91791E-01</td>
<td>3.03497E-01</td>
<td>1.17064E-02</td>
<td>4.01150E-02</td>
</tr>
<tr>
<td>22</td>
<td>7.06688E+02</td>
<td>3.07288E-01</td>
<td>3.18127E-01</td>
<td>1.08339E-02</td>
<td>3.52728E-02</td>
</tr>
<tr>
<td>23</td>
<td>8.57709E+02</td>
<td>3.22741E-01</td>
<td>3.30338E-01</td>
<td>7.59670E-03</td>
<td>2.35381E-02</td>
</tr>
<tr>
<td>24</td>
<td>1.05446E+03</td>
<td>3.35347E-01</td>
<td>3.39738E-01</td>
<td>4.39104E-03</td>
<td>1.30940E-02</td>
</tr>
<tr>
<td>25</td>
<td>1.34167E+03</td>
<td>3.47866E-01</td>
<td>3.47169E-01</td>
<td>6.97374E-04</td>
<td>2.00437E-03</td>
</tr>
<tr>
<td>26</td>
<td>1.69971E+03</td>
<td>3.57581E-01</td>
<td>3.51876E-01</td>
<td>5.79056E-03</td>
<td>1.59546E-02</td>
</tr>
<tr>
<td>27</td>
<td>2.01874E+03</td>
<td>3.63709E-01</td>
<td>3.54195E-01</td>
<td>9.51481E-03</td>
<td>2.61605E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>28</td>
<td>2.34655E+03</td>
<td>3.67078E-01</td>
<td>3.55680E-01</td>
<td>-1.13975E-02</td>
<td>-3.10493E-02</td>
</tr>
<tr>
<td>29</td>
<td>2.73929E+03</td>
<td>3.69497E-01</td>
<td>3.56817E-01</td>
<td>-1.26806E-02</td>
<td>-3.43184E-02</td>
</tr>
</tbody>
</table>

ERROR IS: 3.75476E-02 **RMS REL ERROR**

which are generally acceptable.
STEP 4.

A plot of the fitting function is made against the original graph to visually verify the fit.

Using programs FITTER and DERM, a data file containing the values of our fitting function over the range of the source graph was created:

FILE:DATA1DF DATE:05-DEC-79 13:55
NAME:POS. PHASE FIT, OVERPRESSURE
TYPE:100
X(MIN,MAX): 1.000000E+02, 1.000000E+04
Y(MIN,MAX): 0.000000E-01, 5.000000E-01
X LABEL:DISTANCE (FT)
Y LABEL:POS. PHASE DURATION (SEC)
NEXT FILE:
LAST FILE:

SOC
SOC 0.000000

1.000000E+02, 1.674751E-01, 1,
1.047615E+02, 1.670384E-01, 1,
1.097498E+02, 1.665415E-01, 1,
1.149756E+02, 1.659782E-01, 1,
1.204502E+02, 1.653418E-01, 1,
1.261855E+02, 1.646254E-01, 1,
1.321939E+02, 1.638220E-01, 1,
1.384883E+02, 1.629248E-01, 1,
1.450825E+02, 1.619272E-01, 1,

.
.
.

6.579140E+03, 3.541182E-01, 1,
6.892408E+03, 3.546310E-01, 1,
7.220593E+03, 3.550998E-01, 1,
7.564404E+03, 3.555282E-01, 1,
7.924587E+03, 3.559196E-01, 1,
8.301918E+03, 3.562773E-01, 1,
8.697218E+03, 3.566038E-01, 1,
9.111340E+03, 3.569020E-01, 1,
9.545179E+03, 3.571743E-01, 1,
9.999677E+03, 3.574228E-01, 1,

EOC
EOF

The plotter program HP7225 scales and orients the axes for the plot.
In accordance with the data file parameters and additional user input:

ENTER PLOT FILE NAME: DATA.1DF

OPTIONS ? ?
The following options are available:
- SYM: Symbol PLOT MODE
- ROT: 90 degree PLOT ROTATION
- LINE: CONTINUOUS LINE MODE
- AXES: CHANGE AXES TYPES
- SIZE: CHANGE GRAPH SIZE
- MIN: CHANGE GRAPH MIN OR MAX
- MAX: CHANGE GRAPH MIN OR MAX
- INFO: DISPLAYS PROGRAM USER INFORMATION
- SET: SET GRAPH AXES FRAME LIMITS

OPTIONS? ROT

OPTIONS? SET

Please position pen for graph lower left corner
Hit 'RETURN' OR 'ENTER' WHEN POSITIONED

Pen position:
X = 4626
Y = 7000

Please position pen for graph upper right corner
Hit 'RETURN' OR 'ENTER' WHEN POSITIONED

Pen position:
X = 7346
Y = 1520

The curve itself is now plotted, with a dotted line:

OPTIONS?
(carriage return)
READY FOR CURVE #1? L
(indicates a request for line type)
ENTER LINE TYPE 0 THROUGH 6.
FOR CONTINUOUS LINE, JUST HIT A CARRIAGE RETURN
LINE TYPE? ===> 0

The curve is then plotted, and the result is fig. 6. A comparison of the original digitized data with the final fit may also be made, with the result of fig. 7 (the solid line represents the fitting function, while the dots are individual digitization points). We have arrived at a fairly accurate fit, with pleasingly short coefficients.
Duration of Positive Overpressure and Dynamic Pressure Phases for a 1 kt Free Air Burst in a Standard Sea Level Atmosphere

Figure 6
DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

U.S. Documents Officer
AFSOUTH
ATTN: U.S. Documents Officer

Armed Forces Staff College
ATTN: Ref & Tech Svcs Br

Assistant Secretary of Defense
Program Analysis & Evaluation
ATTN: Regional Programs

Command & Control Technical Center
ATTN: C-312

Commander-in-Chief, Atlantic
ATTN: J-5/J-3

Commander-in-Chief, Pacific
ATTN: J-32

Defense Intelligence Agency
ATTN: RTS-2C
ATTN: DB-6

Defense Nuclear Agency
ATTN: NADO
ATTN: TITL
ATTN: STSP
ATTN: STRA
ATTN: NADO, A. Hughes
ATTN: SPAS, D. Rubera
ATTN: RAEV, D. Kadel

Defense Technical Information Center
12 cy ATTN: DD

Field Command

Defense Nuclear Agency
ATTN: FCPRL, J. McDaniel
ATTN: FCTT, J. Souders
ATTN: FCTT, W. Summa

Field Command
Defense Nuclear Agency
Livermore Branch
ATTN: FCPRL

Intelligence Center, Pacific
ATTN: I-3

Interservice Nuclear Weapons School
ATTN: TTV

Joint Chiefs of Staff
ATTN: J-5 Nuclear Div/Strategy Div
ATTN: SAGA/SFD
ATTN: SAGA/GPF

Joint Strat Tgt Planning Staff
ATTN: JLP
ATTN: JLA

DEPARTMENT OF DEFENSE (Continued)

National Security Agency
ATTN: F. Newton

NATO School (Shape)
ATTN: U.S. Documents Officer

Net Assessment
Office of the Secretary of Defense
ATTN: C. Pease

U.S. European Command
ATTN: J-3
ATTN: J-5

U.S. National Military Representative
SHAPE
ATTN: U.S. Doc Ofc for NACTY

DEPARTMENT OF THE ARMY

Deputy Chief of Staff for Ops & Plans
Department of the Army
ATTN: MONA-SAL
ATTN: DAMO-NCN

Deputy Chief of Staff for Rsch Dev & Acq
Department of the Army
ATTN: DAMA

Harry Diamond Labs
Department of the Army
ATTN: DELHD-NW-P
ATTN: DELHD-TA-L

U.S. Army Aviation Center
ATTN: ATZG-D-M, CPT Savage

U.S. Army Ballistic Research Labs
ATTN: DRDAR-BLT Effects Analysis Br
ATTN: DRDAR-BL
ATTN: DRDAR-TSB-S
ATTN: DRDAR-BLB

U.S. Army Chemical School
ATTN: ATZN-CM-CS

U.S. Army Comb Arms Combat Dev Acty
ATTN: ATZL-CAD-LN

U.S. Army Concepts Analysis Agency
ATTN: CSSA-ADL

U.S. Army Electronic Proving Ground
ATTN: STEEP-PA-I

Commander-In-Chief
U.S. Army Europe & Seventh Army
ATTN: AEAGC
ATTN: AEAGE

U.S. Army FA Msl Sys Eval Gp
ATTN: Gunnery Dept
DEPARTMENT OF THE ARMY (Continued)

U.S. Army Materiel Dev & Readiness Cmpd
ATTN: DRCOE-D

U.S. Army Materiel Sys Analysis Actvy
ATTN: DRXS-S
ATTN: DRXS-DS

U.S. Army Nuclear & Chemical Agency
ATTN: MDNA-WE, R. Ebright
ATTN: Library for MDA-N-SAL
ATTN: DAMO-NCN

U.S. Army TRADOC Sys Analysis Actvy
ATTN: ATAA-TAC

U.S. Army Training & Doctrine Actvy
ATTN: Library

U.S. Army Training & Doctrine Cmpd
ATTN: ATCD-AO
ATTN: Code 2627
ATTN: Code 1240
ATTN: Code 6707, K. Whitney

U.S. Military Academy
ATTN: Document Library

V Corps
Department of the Army
ATTN: G-3
ATTN: FSE

VII Corps
Department of the Army
ATTN: FSE
ATTN: G-3

DEPARTMENT OF THE NAVY

Attack Squadron
Naval Air Station
ATTN: Commander

David Taylor Naval Ship R&D Ctr
ATTN: Code 174

Fleet Anti-Submarine Training Ctr
Department of the Navy
ATTN: Code 96

Fleet Intelligence Center Pacific
Department of the Navy
ATTN: Commander

Fleet Intelligence Ctr Europe & Atlantic
Department of the Navy
ATTN: Library

Marine Corps Dev & Education Command
Department of the Navy
ATTN: Commander

DEPARTMENT OF THE NAVY (Continued)

Naval Material Command
ATTN: PM-23
ATTN: MAT OBT-22

Naval Ocean Systems Center
ATTN: Code 4471
ATTN: Code 163
ATTN: Code 6241

Naval Postgraduate School
ATTN: Code 1424, Library

Naval Research Lab
ATTN: Code 2627
ATTN: Code 1240
ATTN: Code 6707, K. Whitney

Naval Sea Systems Command
ATTN: SEA-643
ATTN: SEA-J22

Naval Surface Force, Atlantic
ATTN: Commander

Naval Surface Force, Pacific
ATTN: Commander

Naval Surface Weapons Center
ATTN: Code F31, R. Sanford
ATTN: Code F30, K. Enkenhus
ATTN: Code K-41

Naval Surface Weapons Center
ATTN: Code K-32

Naval War College
ATTN: Center for Wargaming
ATTN: Code E-11, Tech Service

Naval Weapons Center
ATTN: Code 32607
ATTN: Code 3917

Naval Weapons Evaluation Facility
ATTN: Tech Director

Nuclear Weapons Tng Group Pacific
Naval Air Station North Island
ATTN: Code 32

Nuclear Weapons Tng Group, Atlantic
ATTN: Code 22

Office of Naval Research
ATTN: Code 713
ATTN: Tech Information Svcs

Office of the Chief of Naval Operations
ATTN: OP 953
ATTN: NOP 981
ATTN: NOP 65
ATTN: NOP 96
DEPARTMENT OF ENERGY CONTRACTORS (Continued)

Los Alamos National Lab
ATTN: MS 670, J. Hopkins
ATTN: MS 670, R. Seldon
ATTN: MS 670, J. McQueen
ATTN: R. Seldon
ATTN: MS 940, A. Charmatz
ATTN: Reports Library
ATTN: Sandoval/Chapin/Lyons/Best/Dowler
ATTN: MS 634, T. Dowler

Lovelace Biomedical & Environmental Rsch Inst, Inc
ATTN: D. Richmond

Sandia National Labs
Livermore Lab
ATTN: 8324, J. Strauve
ATTN: J. Wirth
ATTN: M. Norris

Sandia National Lab
ATTN: 5613, R. Stratton
ATTN: A. Chabai
ATTN: C. Mehl
ATTN: 3141
ATTN: J. Plimpton

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Effects Technology, Inc
ATTN: M. Rosen

Ford Aerospace & Communications Corp
ATTN: K. Attinger

General Electric Co
ATTN: J. Hannabach

General Research Corp
ATTN: B. Gragg

Horizons Technology, Inc
ATTN: A. Bernath
ATTN: R. Kruger
ATTN: J. Shaibly
4 cy ATTN: W. Radly
4 cy ATTN: W. Simmons

Hudson Institute, Inc
ATTN: N. Kahn

IIT Research Institute
ATTN: Documents Library

Institute for Defense Analyses
ATTN: J. Grote
ATTN: Classified Library

IRT Corp
ATTN: N. Rudie

JAYCOR
ATTN: R. Stahl

JAYCOR
ATTN: R. Sullivan

JAYCOR
ATTN: R. Schaefer

Johns Hopkins University
ATTN: F. Dreisford

Kaman Avidyne
ATTN: N. Hobbs

Kaman Sciences Corp
ATTN: D. Setz
ATTN: F. Shelton
ATTN: F. Rich

Kaman Tempo
ATTN: DASIC

KTECH Corp
ATTN: D. Keller

Commander
66th MI Group
2 cy ATTN: T. Greene
DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Lockheed Missiles & Space Co, Inc
ATTN: R. Walz
ATTN: J. Fortun

Martin Marietta Corp
ATTN: F. Marion

Martin Marietta Corp
ATTN: J. Donathan

Maxwell Labs, Inc
ATTN: J. Rauch
ATTN: W. Clark

McDonnell Douglas Corp
ATTN: L. Cohen
ATTN: D. Newlander

Mission Research Corp
ATTN: J. Gilbert
ATTN: J. Raymond

Mission Research Corp
ATTN: V. Van Lint

Pacific-Sierra Research Corp
ATTN: H. Brode

PDA Engineering
ATTN: P. Gilliam

Physical Sciences, Inc
ATTN: P. Spence

Physics International Co
ATTN: P. Spangler
ATTN: J. Shea

R & D Associates
ATTN: S. Borjon
ATTN: R. Port
ATTN: A. Field
ATTN: W. Graham
ATTN: C. Rogers
ATTN: P. Haas
ATTN: A. Lynn
ATTN: P. Rausch
ATTN: E. Carson

Rockwell International Corp
ATTN: G. Messenger

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Santa Fe Corp
ATTN: D. Paolucci

Science & Engng Associates, Inc
ATTN: J. Cramer

Science Applications, Inc
ATTN: L. Nesseler
ATTN: W. Yengst
ATTN: Document Control
ATTN: J. Warner
ATTN: M. Drake

Science Applications, Inc
ATTN: J. Foster
ATTN: W. Layson
ATTN: B. Bennett
ATTN: R. Craver
ATTN: Doc Control

Science Applications, Inc
ATTN: D. Kaul

SRI International
ATTN: D. Curran
ATTN: P. Doan

SRI International
ATTN: J. Scholz
ATTN: J. Sloss

System Planning Corp
ATTN: W. Robertson

Systems, Science & Software, Inc
ATTN: K. Pyatt
ATTN: C. Dismukes

T.N. Dupuy Associates, Inc
ATTN: T. Dupuy

Tetra Tech, Inc
ATTN: F. Bothwell

TRW Electronics & Defense Sector
ATTN: M. King
ATTN: W. Polich

TRW Electronics & Defense Sector
ATTN: R. Burnett
ATTN: D. Scally
ATTN: N. Lipner
ATTN: D. Clement