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I. INTRODUCTION

The in-flight characteristics of an artillery shell are of major
importance to the shell designer, ballistician and ultimately the artillery
field commander whose mission is deployment of timely and accurate fire
power. The aerodynamic properties of artillery shell, such as pitching moment
and Magnus moment are c¢ritical to the stability of shell which in turn signi-
ficantly affect accuracy and time of flight. The capability to determine the
aerodynamics of shell is required over a wide range of flight regimes since,
depending on initial launch velocities, artillery shell are subject to
subsonic, transonic, and supersonic flight. Projectile aerodynamics over
these various flight regimes have been found, in some cases, to change by an
order of magnitude. The solution techniques utilized must therefore be
capahle of computing these changes.

A concentrated theoretical and experimental research program has been
ongoing at BRL in order to develop the predictive capabilities required for
determining projectile aerodynamics. Supersonic computations using combined
inviscid flow field and boundary layer techniques have been developed by
Sturek !, et al., for cone-cylinder and ogive-cylinder configqurations. Recent
results have been obtained in supersonic flow over a typical boattailed pro-
jectile by Schiff and Sturek? using modern computational techniques for
solving the thin-layer Navier-Stokes equations.

Inviscid transonic computational results have been obtained by
Rek1is3, et al., for a secant-ogive-cylinder-boattail shape. The inviscid
techniques give fair results for pitch plane aerodynamic coefficients at small
angle of attack. The ability to compute the Magnus effect, however, relies on
an accurate computation of the viscous houndary layer. Techniques which have
been applied in supersonic flow for combining inviscid and boundary layer
methods have not been fully established for transonic flow. These methods,
which have shown good results for ogive-cylinders in supersonic flow at low
angle of attack, are not accurate, however, in modeling the severe flow
expansion in the vicinity of surface discontinuities such as those that occur
at the cylinder-boattail junction.

1. Sturek, W. B., et al., "Corputations of Magnus Effecte for a Yawed,
Spinning Body of Revolution ' AIAA Jourmal, Vol. 16, No. ?, July 1978, pp.
687-692.

2. Schiff, L. B., and Sturek, W. B., "Numerical Simulation of Steady
Supereonie Flow Over Come Ogive-Cylinder-Boattail Body," AIAA Paper
No. 80-0066, 14-16 January 1980.

3. Reklis, R. P., Sturek, W. B., and Batiley, F. L., "Computation of Transonic
Flow Past Projectilee at Angle of Attack," U.S. Army Ballistic Research
Laboratory, ARRADCOM, Technical Report ARBRL-TR-02139, February 1979.

AD A069106.
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The solution of the thin-layer Navier-Stokes equations, which allows for
the simultaneous computation of the inviscid and viscous regions, eliminates
the need for matching two different solutions. Additionally, since all three
momentum equations are retained, the ability to compute in regions of
separated flow is achieved. This paper describes the governing three-
dimensional thin-layer Navier-Stokes equations used for computing flow over
projectile shapes at angle of attack. Secondly, the generalized axisymmetric
formulation used for computations at a = 0° will be described. A description
of the numerical algorithm and results will follow. Computational results and
limited experimental data will be presented for a secant-ogive-cylinder-
boattail projectile shape (SOCBT) at a« = 0°. Additional computations have
heen obtained for the same projectile shape at a = 2°. Computational results
will also be shown for a ring airfoil shape thus demonstrating the general
geometry capability of the present numerical scheme.

II. GOVERNING EQUATIONS
The general three-dimensional thin-layer Navier-Stokes equations, used
for all cases where a > 0°, are described in Section IIA. The thin-layer
generalized axisymmetric equations, which are a special case in the 3-D
equations, are described in Section IIB.

A. Three-Dimensional Equations

The transformed three-dimensional thin-layer Navier-Stokes equations in
non-dimensional and strong conservation law form are written as"

3.q+ 3 E+aF+3G=Relos (1)

where general coordinate

£ = E(x,y,Z,t) longitudinal coordinate

n = n(x,y,z,t) - circumferential coordinate
¢ = ¢(x,¥,z,t) - near Normal coordinate
=t - time

4. Pulliam, T. H., and Steger, Jd. L., "On Implicit Finite-Difference
Simulations of Three-Dimensional Flow," AIAA Jourmal, Vol. 18, No. 2,
February 1980, pp. 159-167.
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The velocities in the £,n,z coordinates are

. e o — .

U= €+ Ut 6V + g 1
V= +nu-+ v+ onW (2)
W=

;t + cxu + cyv + gzw

represent the contravariant velocity components.

¥

-
:
i

The Cartesian velocity components (u,v,w) are retained as the dependent
variables and are nondimensionalized with respect to a_ (the free stream speed

of sound). The local pressure is determined using the relation

p=(v-1le - .50 + 2+ w)] (3)

where vy is the ratio of specific heats, density (p), is referenced to P, and

total energy (e) to p_ a_ 2. The additional parameters are (x) the coefficient

of thermal conductivity, (u) the dynamic viscosity, (Re) the Reynolds number,
(Pr) the Prandt}l number, and (A) which through the Stokes hypothesis
is (-2/3)u.

The metric teris of Equation (1) are defined from

R A ) % = J(zgyg - yizé)
éy = J(znx; - xnzc) ny = J(xgzC - x;zg)
&2 ° J(Xnyg - ynxg) Ny = J(yEX; - Xéyé)
(4)
Gy = J(ygzn - zgyn) € = = X &, - yTﬁy - 78,
Sy = J(xnzg - xgzn) e T Xy T Yy 2,
g, = J0xgy = yexy) Cp = - Xiby T Y8y - 2.8,
and
-1
U E XY X Y2t XY T - XY 2o - XYz - XYz,
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The “thin-layer" approximation*”7 used here requires that all body sur-
faces be mapped onto ¢ = constant planes and Re >> 1. £Essentially, all the
% viscous (second derivative) terms in the coordinate directions (here taken as
‘ £ and n) along the body surface are neglected while terms in the ¢ or the near
normal direction to the body are retained. This approximation is used
{ because, due to computer speed and storage limitations, fine grid spacing can

Y

only be provided in one coordinate direction (usually taken as the near normal
direction) and the grid spacing available in the other two directions is
usually too coarse to resolve the viscous terms. For the type of problems
currently under investigation, i.e., projectiles at low angles of attack, with
no strong cross-flow separation, these approximations are considered valid.

B. Generalized Axisymmetric Equations.

The thin-layer generalized-axisymmetric equations are obtained from the
three-dimensional equations by making use of two restrictions: (1) all body
geometries are of an axisymmetric type; (2) the state variables and the
1 contravariant velocities do not vary in the circumferential direction. In

what follows, the anﬁ term of Eq. (1) will be reduced to the source term of
the generalized axisymmetric equations.

A sketch of a typical axisymmetric body is shown in Figure la. In order
to determine the circumferential variation of typical flow and geometric
parameters, we first establish correspondence between the inertial Cartesian
coordinates (x,y,z) (to which the dependent variables are referenced), the
natural inertial cylindrical coordinates (x,$,R),and the transformed variables
(¢,n,z). The choice of the independent variables &, n, ¢ is restricted, as
shown in Figure lc, insofar as n must vary as ¢, i.e., ¢ = Cn (where C is a
constant). From the views shown in Figure 1, the relationship between the
coordinate systems are observed to be

5. Nietubica, . J., Pulliam, T. H., and Steger, J. L., 'Numerical Solution
of the Azimuthal-Invariant Thin-Layer Navier-Stokes Equations ' U.S. Army
Ballistie Research Laboratory, ARRADCOM, Te~hniecal Report ARBRL-TR-02227,
March 1980. AD A085716.

6. Steger, J. L., "Implicit Finite Difference Simulation of Flow About
Arbitrary Geometries with Application to Airfoils," AIAA Paper No. 77-665,
June 1977.

?. Baldwin, B. S., and Lomax, H., "Thin Layer Approximation and Algebraic
Model for Separated Turbulent Flows," AIAA Paper No. 78-257, January 1978.
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$ = Cn
x = x{(£,6,1)
y = R(&,¢,1)sing
z = R(£,g,T)coS¢
where ¢ = ¢(1) and the Cartesian and cylindrical coordinates are related in
the usual way. Note that x and R are general functions of only €, ¢, and .
Evaluating the metric terms given the above assumptions and substituting

. in Equation (1) the resulting unsteady thin-layer generalized axisymmetric
equation® can be written as

~ ~ ~ ~ _ -1 ~
9.9+ agE + aCG + H = Re BCS (6)
where
_ 0 -
0
~ _ _1 .
H= 97", VIR (U-6,) + R (W-¢,)] (7)
-pVRo (V-ny) - p/(Re)
L 0 -

is the resultant source term which has replaced BnF of Equation (1).

Equation (6) contains only two spatial derivatives but does retain all
three momentum equations thus allowing a degree c¢f generality over the
standard axisymmetric equations. In particular, the circumferential velocity
is not assumed to be zero allowing then computations for spinning projectiles
or swirl flow to be accomplished.

The numerical algorithm used for both Equations (1) and (6) is a fully
implicit, approximately factored finite difference scheme as analyzed by Beam
and Warming®. Additional details of the numerical method, algorithm, and
boundary conditions for each formulation can be found in References 4 and 5,
respectively.

8. Beam, R., and Warming, R. F., "An Implicit Factored Scheme for the
Compressible Navier-Stokes Equations," AIAA Paper No. 77-645, June 1977.




ITI. RESULTS

A series of computations has been obtained for a 3 caliber secant-ogive
nose, 2 caliber cylinder, and 1 caliber, 7° boattail shape. The generalized
axisymmetric formulation was used for all cases where a = 0° and the 3-D
Navier-Stokes Pulliam-Steger code was used for « > 0°. The results are
presented in the form of contour plots, surface pressure distrihution, and
velocity profiles. Computations have been performed for a ring airfoil shape,
the results of which show an interesting shock pattern being developed as a
function of Mach number.

A. Secant-Ogive-Cylinder-Boattail, « = 0°,

A computational finite difference mesh of 78 longitudinal points by 50
normal points was used for these calculations. Grid points were clustered in
the vicinity of the body surface discontinuities, which exist at the oqive-
cylinder and cylinder-boattail junction; The grid points in the normal
direction were exponentially stretched away from the surface with approxi-
mately 25 points located within the houndary layer. The Reynolds number for
all cases was 0.72 x 10% based on body diameter and free stream velocity. The
initial computation was for a free stream condition of Mach = 0.8, Additional
runs were made by incrementing the free stream Mach number and using the
previous converged solution as a starting condition. The results are first
shown in the form of Mach contours in Fiqure 2. The regions of subsonic and
supersonic flow are identified and the coalescence of the Mach lines to the
right of the supersonic region represents the position of the shock.
Initially at M_ = 0.8 (Figure 2a), only a small disturbance is felt in the

free stream. As the Mach number is increased to 0.92 (Figure 2b), shocks are
seen to occur on the cylinder and boattail. With a further increase in Mach
number, the regions of supersonic flow have grown and the shocks have moved
well downstream. A further increase in the free stream condition to M_ = 1.1

(Figure 2f) shows the beginning of a bow shock at the nose and expansion fans
are evident at the surface discontinuities.

A more critical look at the computational results is shown in Figure 3
where the surface pressure coefficient, Cp, is shown as a function of axial

position. The computational results are indicated by a solid line and the
circles are experimental data obtained by Kayser®. Overall the comparisons
show generally good agreement, however, some discrepancy is apparent near the
expansions (decrease in Cp) and shocks (sharp increase in Cp) which indicates

the need for additional mesh points in these areas. Additionally, the
changing nature of the pressure distributions indicate that the varying shock

9. Kayser, L. D., and Whiton, F., "Surface Pressure Measuremente on a
Boattailed Projectile Shape at Transonic Speeds,' BRL-MR to be published.
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structure has been predicted quite well. An accurate computation of the
pressure distribution is important since the integration of surface pressures
is a major contributor in determining the aerodynamic coefficients. This is
especially apparent in the transonic flight regime where the magnitude of the
coefficients can change by as much as 100%. For the series of computations
obtained from M_ = 0.8 through M_ = 1.1, the surface pressures were integrated

to determine the aerodynamic wave drag. The results are shown in Figure 4
together with the available experimental data. Excellent agreement is shown
for both the drag rise and magnitude of the wave drag in the critical Mach
number regime.

The dynamic stability of shell is one area of concern when designing new
shell or modifying existing ones. The Magnus moment, which affects the
dynamic stability, is a viscous phenomenon occurring at a > 0°. Therefore an
accurate representation of the viscous portion of the flow field is crucial to
computing the Magnus moment. As an initial examination of the boundary layer
in transonic flow, with its associated shock interaction, computations were
performed at M_ = 0.97, Rep = 2.6 x 10® and @ = 0° for a similar projectile

shape. A comparison of the computational velocity profiles with experimental
data obtained by Danberg!® is shown in Figure 5. The results are shown for
three axial stations in the vicinity of the boattail (X/D = 5.3). The pro-
files compare very well at X/D = 5.05 and 5.61, which are stations approxi-
mately .3 in front of and behind the boattail corner. The profile at X/D =
5.36, which is in an area of severe expansion, is also considered quite
good. The adequate resolution of the boundary layer which in this case
includes a region of shock boundary layer interaction is very encouraging for
future work in computing the Magnus effect.

B. Secant-0give-Cylinder-Boattail, a = 2°,

A new finite difference mesh consisting of 60 longitudinal points, 28
normal points, and 20 points in the circumferential direction was designed for
computations at angle of attack. Clustering of the longitudinal points was
maintained in the vicinity of the expansion similar to the « = 0° cases. The
computed leeward and windward pressure distributions are shown in Figure 6.
The pressure on the ogive-nose is seen to be higher on the windward side, thus
generating a positive or upward force on the projectile. The boattail region,
however shows a reversal with the higher pressure now occurring on the leeward
ray thus causing a negative or downward force. This resulting couple about
the center of gravity is the main contributor to the critical aerodynamic
behavior in the transonic regime. This effect can additionally be seen in the
Mach contours of Figure 7. The asymmetry in the flow field is apparent

10. Danberg, J., Wind tunnel data, to be published as a University of
Delaware Report (Private communications).

14

e A—— e i il




BTN YRy

between the wind and lee side and more importantly the boattail shock is seen
to be further aft on the wind side.

Velocity distributions obtained from the 3-D computations are shown in
Figure 8 for three axial stations. The roll angle is located at the top of
each profile with ¢ = 0° and 180° corresponding to the lee and wind side,
respectively. There are no experimental data for this case, however, the
profiles do show a smooth variation with roll angle and become more full as
the lee side is approached. Additionally, looking at the 4 = 0° plane for the
three axial stations, the velocity is seen to increase near the boattail
?orner (X/? = 5.0) where the flow is expanding and then decrease on boattail

X/D = 5.6).

C. Hollow Projectile, u = 0°,

Of current interest in shell design is the utilization of hollow projec-
tiles which have the characteristic of "flat" trajectories. A shape of this
type, known as the ring airfoil, has been type classified and is currently
used as an anti-riot device. In order to demonstrate the capability to
compute flows about hollow projectile shapes of current Army interest, the
generalized axisymmetric Navier-Stokes code was used for computations of a
ring airfoil shape at a = 0°. A cross section of the actual shape is shown at
the bottom of the CD plot of Figure 9a. Inviscid results are presented in

Figures 9a, b, c, and d for M_= 0.4, 0.7, 0.8, and 0.9. In all cases the

pressure distribution is plotted for the internal and external surfaces using
a solid line and dashed line, respectively.

The critical pressure coefficient, Cp*, is the value of the pressure

coefficient at sonic velocity. The flow velocity in regions with pressure
greater than Cp* is subsonic and in regions where the pressure is less than

Cp*

areater than Cp* indicating the flow over both the internal and external

the flow is supersonic. For M_= 0.4 (Figure 9a), all values of Cp are

surfaces is subsonic. However, as the Mach number is increased to 0.7, the
upper surface is shown to develop supersonic flow and a shock wave while the
internal flow remains subsonic. Increasing the Mach number still further
to M, = 0.8, the shock waves are now seen to exist on both the external and

internal surfaces. A final solution at M, = 0.9 shows that the shock wave has
moved to the trailing edge indicating supersonic flow over most of the
internal and external surfaces.

IV. SUMMARY

An implicit, finite difference technique has heen used to solve the thin-
layer Navier-Stokes equations. The three dimensional and generalized axisym-~
metric equations have heen presented. Solutions are obtained for a secant
ogive hoattail and hollow projectile shape.

15
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Comparisons of experimental and computed pressure distributions were
obtained from Mach = 0.94 to 1.1. The comparisons indicated excellent agree-
ment throughout the entire Mach number range. The movement of the shock
position corresponding to changes in the free stream condition can be clearly
seen from the Mach number contour plots.

The Navier-Stokes computations, which implicitly model the viscous and
inviscid flow field, indicate excellent agreement with experimental velocity
profile data for the o« = 0 case. This result is very encouraging since
accurate prediction of the turbulent boundary layer development is critical to
the determination of the Magnus force.

Results have been obtained for a projectile shape at « = 2.0, Mach =
0.96. The general features of the flow field have been obtained. The Mach
number contour plot shows the asymmetric shock pattern which exists on the
boattail and pressure plots of wind versus lee side indicate the correct
trends. A comparison of these results to experimental surface pressure and
velocity profile data are required, however, to assess the accuracy of the
three dimensional computations.

The general capability to compute internal flows has been demonstrated by
solving the inviscid flow field about a ring airfoil projectile. Computations
were obtained for Mach = 0.4 to 0.9. A significant change in the flow field
has been found to occur throughout this regime. The Mach contours presented
indicate regions of both subsonic flow and mixed subsonic/supersonic flow.

The results presented here provide a significant measure of confidence in

using these new computational techniques for calculating projectile flow
fields.
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Figure 2b. Mach contours for SOCBT, a = 0°, M = 0.92

18




8 CONTOUR RANGE 0.9 <M < 1.0
CONTOUR INTERVAL &M = 005
s—-
¥/D 4—
2
i,
i 2— "
‘4
‘ 0 T T T l
-2 0 2 4 6 8

X0
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LIST OF SYMBOLS

| a - speed of sound
% C - proportional constant (see Equation 5)
Co - pressure coefficient, (p-p_)/ 1p pwau?
S < - specific heat (at constant pressure)
E Cr - cord lenqgth (see Fiqure 9)
g‘ D - body diameter (57.15mm)
E e - total energy per unit volume/p_ a2 ‘
y é,f,:,ﬁ,g,a - flux vector of transformed Navier-Stokes equations %
J - transformation Jacobian
M - Mach number
P - pressure/pmui
Pr - Prandtl number, u_ Cp/Km
R - body radius
Rep - Reynolds number p DU_/u_
Re - Reynolds number, Rep/M,_
t - physical time
U,V,Ww - Cartesian velocity components/a_
u,v,W - Contravariant veloncity components/a_
X,Y,2 - physical Cartesian coordinates
o - anqle of attack
Y - ratio of specific heats
K - coefficient of thermal conductivity
i - coefficient of viscosity




£,n,C

P

T

¢

Superscript:

*

Subscript:

@

LIST OF SYMBOLS
(Continued)

transformation coordinates

radial directions
density/p
transformed time
circumferential angle

critical value

free stream conditions

a0

in

axial, circumferential

and
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