DISTAMYCIN ANALOGS AS POTENTIAL ANTIMALARIALS. (U)
SEP 80 H RAPPOPORT

UNCLASSIFIED

END
Distamycin Analogs as Potential Antimalarials

Final Scientific Report

Henry Rapoport

September 1980

Supported by

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
Fort Detrick, Frederick, Maryland 21701

Contract No. DADA 17-73-C-3121

University of California
Berkeley, California 94720

DOD DISTRIBUTION STATEMENT

Approved for public release;
distribution unlimited

The findings in this report are not to be construed as
an official Department of the Army position unless so
designated by other authorized documents.
New synthetic procedures have been developed which resulted in efficient syntheses of the permethyl analogues of distamycin, an antiviral antibiotic. Methods were also developed for selective acylations among amine, amidine, and guanidine functionalities. None of the compounds synthesized were effective against malarial.
I. Narrative Summary

A synthesis has been developed of an analogue of distamycin A, a pyrrolic oligopeptide possessing antiviral and antibiotic activity, in which each of the three pyrrole rings is fully methylated. This structural modification results in pyrrole rings which are extraordinarily electron rich and required the development of a new synthetic approach to these polypyrrolic amides. The key reactions involved development of a general method for the synthesis of 3-aminopyrroles and for formation of an amide bond between a pyrrole-2-carboxylic acid and these 3-aminopyrroles. Since the acid is hindered, a poor electrophile, and acid sensitive, while the amine is unstable and a hindered, weak nucleophile, amide bond formation under the usual conditions was poor. A very efficient method, however, was developed involving the isolation of 1-hydroxybenzotriazole active ester prepared in situ from another active ester. Neither the mono-, di-, nor tripyrrolic permethyl analogues were effective antimalarials.

Since these compounds, and their relatives, contain both amino and amidino, or guanidino, functions, it was necessary to develop methods for unambiguous assignment of the site of acylation. This was done through a study of the ultraviolet absorption spectra of the acylated products. If the amidine or guanidine has been acylated, the product possesses a chromophore that is pH dependent, whereas if an amide was formed, the chromophore is independent of pH.

II. Bibliography

2-Trichloracetylpyrroles as Intermediates in the Preparation of 2,4-Disubstituted Pyrroles

Permethyl Analogue of the Pyrrolic Antibiotic Distamycin A

The Acylation of Dibasic Compounds Containing Amino-Amidine and Amino-Guanidine Functions

III. Personnel

W. Choy Technician
P. Barker graduate student; Ph.D. received 1/80
P. Gendler postdoctoral associate
B. Parkhill postdoctoral associate
C. Snyder postdoctoral associate
F. Schmidtchen postdoctoral associate
DISTRIBUTION LIST

5 copies
Director
Walter Reed Army Institute of Research
ATTN: SGRD-UWZ-C
Walter Reed Army Medical Center
Washington, DC 20012

4 copies
USAMRDC (SGRD-RMS)
Fort Detrick
Frederick, MD 21701

12 copies
Defense Technical Information Center (DTIC)
ATTN: DTIC-DDA
Cameron Station
Alexandria, VA 22314

1 copy
Dean
School of Medicine
Uniformed Services University of the Health Sciences
4301 Jones Bridge Road
Bethesda, MD 20014

1 copy
Commandant
Academy of Health Sciences, US Army
ATTN: AHS-CDM
Fort Sam Houston, TX 78234