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ABSTRACT

In determining policies for the acquisition and management of
repairable spares for the Space Shuttle, two objectives are paramount.
First is the optimization of some measure of system performance such as
the expected number of shutties launched on time per year. Second, since
the cost of a spares mix can run into the hundreds of millions of dollars,
we would like to minimize the cost of achieving a certain performance
level. Both requirements suggest a need for mathematical models of the
supply system.

The high cost, Tow demand rate items found on the shuttle are usually
controlled via an (s-1,s) inventory system. An (s-1,s) policy involves

sending an item to a repair depot immediately upon failure. Using an

assumed (s-1,s) repair policy, this thesis will examine ways of choosing

a spares mix according to three different mathematical models of system

performance..—Developed by Muckstadt [9], these models are specifically

adapted to ;i;\nggrating characteristics of the Space Shuttle. Features
of these modeis iﬁclude a nonstationary Poisson demand rate whose para-
meter depends upon the pre-launch maintenance scheduie and a variable
weight of backorders over the pre-launch cycle. Items are maintained at
predetermined points in time, and we expect more demands on the supply
of repairable spares for an item whenever it undergoes maintenance.

The interlaunch cycles are probabilistic replicas of one another and so
form a convenient time span over which to evaluate system performance.
Near the end of such cycles, the backorder cost increases sharply, and ¥
so the models allow for changing weights of their respective objective

functions.




Each model generates spares mixes at various budget levels, and
the performance of each mix is evaluated and compared with the performance
of more elementary models. The models used for comparison include the
one in use by NASA when our study was begun and a Lagrange multiplier
technique based on backorders. We use these models to demonstrate that
nonstationary demand rates are important only for long interlaunch
cycles and for short repair times.

Another issue in the minimization of delayed shuttles is the shipment
policy used by the serviceable spares supply system. Since the shuttles
will some day operate out of two geographically separated locations,
planners have the option of building spares facilities at one or both of
the sites. They must also decide whether to initiate a lateral resupply
capability in order to allow base to base shipments when desired. A
computer program based on the need and reluctance formulas proposed by
Miller [7] is implemented to investigate these questions. Without regard
to the costs of the various shipment policies, the results indicate
that the best performance is attained when both bases have spares facili-
ties and lateral resupply capability. The next best expected performance
comes from prepositioning spares facilities at both bases without the
lateral resupply option. Least desiréable is a system with only one fully

equipped base and lateral resupply capability.
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Introduction

The Space Shuttle, a space transportation system introduced in 1981,
presents planners with several unique features in the area of spare parts
provisioning for repairable items. Since the system is in some respects
very like an airplane, we might initially concern ourselves with adapting
the models used by military and civilian air operations. Common elements
of all these systems include a number of very expensive components with
low failure rates, a requirement that all components must be operating
in order to take off, and a certain penalty for any delay. Thus many
such systems employ what is known as an (s-1,s) inventory system, whereby
if the stock level s of any spare decreases by one unit, the failed unit
is immediately sent to a depot for repairs. Since the repair times are
not nearly as variable as the inter-failure times, repair times often
are fixed while failures are assumed to occur at a Poisson rate.

If the (s-1,s) policy is pursued for shuttle spares at a given launch
site, there will be two important departures from the typical methods of
setting spares levels. First, the simple or compound Poisson demand rate
for failures will be replaced with a nonstationary Poisson demand rate
reflecting higher failure rates at certain stages in the pre-launch
countdown. Since most models employ demand rates over repair time as
a measure of how many spares are needed, we must find some way of incor-
porating the time-dependent demand patterns into our model. Secondly,
the penaity for backorders will also depend upon time, due to the nature
of the pre-launch sequence. This is especially true near the launch date,
when delays may cause some very costly preparations to be extended or

reaccomplished.




A second critical option available to planners involves the projected
management of spares assets when more than one launch site is operating.
Since spares must be shipped to a storage location upon completion of
repair, a good shipment rule should account for the proximity to launch
at each site as well as the spares stock and expected demand at each site.
More important perhaps is the evaluation of the expected performance of
an initial investment in two stocking locations versus only one, and of
the option for a lateral resupply capability which would allow one site
to ship spares to another site when necessary.

The first problem, that of setting spares levels for repairable
items, is solved by developing analytical algorithms to optimize a per-
formance measure subject to budget constraints. Each base will be con-
sidered separately although extensions are easily made, and the depot
will be seen as having infinite capacity. These and other assumptions
will permit us to focus on a single inter-launch cycle and to analyze
both nonstationary demands over that cycle and increasing backorder
penalties near the launch date. We will present details of the models'
implementations and examine the patterns of spares mixes selected by each.
These patterns will be contrasted with two simpler algorithms for setting
spares levels. From this comparison we will show that as the cycle length
shortens, the nonstationarity in the demand rate may be ignored.

In addressing the decision of how best to design the spares trans-
portation and location system, we will consider two sites operating at
different launch rates, and employ a simulation to compare the performance
of the major types of shipment disciplines. We will continue to assume

nonstationary demand rates, although we will show that this assumption
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may be relaxed in certain cases. The simulation operates much as a continu-
ous review inventory policy would function in real time. The number of
spares in the entire system, however, is fixed, and so the simulation is
not directly capable of suggesting both a good spares mix and a correspond-
ing spares distribution system.

Some synthesis of the spares mix decisions and the transportation
and stocking location problem is appropriate. Suggestions as to practical
applications of the methods will be presented, as well as some insight

into how they might be used interactively as planning tools.
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% CHAPTER 1

The number of spares required for a given item used by the shuttle
depends largely upon the failure pattern it experiences and upon its
importance to the timely launch of the shuttle. We make the following
assumptions about the units in question and their operating environment:
;;; 1. Each item undergoes maintenance during one or more predetermined
periods prior to launch.

2. An (s-1,s) inventory policy is followed.

3. The numbers of failures for the different items are independent
and have a nonstationary Poisson distribution whose parameter

declines as new items are substituted for failed ones.

4. Each launch cycle is of fixed length and is a probabilistic

replica of all other cycles.
5. The repair facility has unlimited capacity: each item i has
fixed repair time T,i which includes transportation time
to and from the repair depot. ;1
6. An unfilled demand results in a backorder, and backorders are g
more critical late in the cycle. Backorders do not substantially E‘
increase the length of a Taunch cycle, however, i
7. Since resupply time between bases is small compared to repair time, 31

e a single location is examined.

L | These assumptions are discussed in detail in this chapter, and a
general outline of shuttle pre-launch operations is presented. A dis- 4

cussion of models previously developed for use in this problem environment

e e e el AR S i




is also included.

As a first step in the analysis of shuttle operations, let us con-
sider the maintenance cycle preceding the launch of an individual shuttle.
Two components of the space shuttle, the solid rocket boosters and the orb**-
er are designed to be reused many times. Beginning some time after the
shuttle returns from a space flight, a pre-launch cycle takes place during
which maintenance crews ready the shuttle for launch according to a
predetermined schedule. Detection of a failed component immediately
leads to a demand on the spare parts stock and to the initiation of
repair on the failed component. The number of failures experienced
during the cycle is directly related to the length of the flight just
completed, and the components' failure rates are expressed in terms of
failures per flying hour. We may assume that flights completed prior to
the most recent flight do not contribute substantially to failures in the
present cycle, because items are thoroughly tested and maintained before
each launch. Although those items which are replaced during a cycle have
a failure rate somewhat lower than those which have undergone a space
flight, the difference should be small and is not of great concern. !

The periods of increased maintenance activity are important in that

they are often accompanied by an increased number of failures, bringing

1

The "new item" failure rate can appear in another context. The shuttile

is composed of three main units; the orbiter, the external tanks. and

the solid rocket booster (SRB). Because the solid rocket boosters are com-
pletely overhauled before the launch cycle begins, and because a new exter-
nal tank is used for each launch, components of these two units have failure
rates independent of fiying time.




about higher demands on the stock of repairable spares. This is true for

several reasons. First, the item may have failed during flight or

earlier in the cycle but escaped detection (or remained inaccessible to
the crews) until the crews actually had contact with it. Second, many

of the tests performed to insure that an item is working properly place )
higher than usual stress upon the item and may contribute to a failure.
Lastly, there is the possibility that the test equipment is not working
properly and mistakenly indicates that the item is broken. This is
eqpivalent, from a spares standpoint, to an actual breakdown of the item,
because the item must be sent to the depot for tests. The shipment

and tésting time may take nearly as much time as a normal repair. The
increased failure rate during these maintenance periods has been shown

to be significant, so that it is necessary to treat the number of

demands at a given time as a random variable with a nonstationary Poisson
distribution. This is true regardless of whether the item was on the
shuttle during flight or was recently installed.

A random variable is said to have a nonstationary Poisson demand
rate if its failure rate varies as a function of time. Its distribution
is specified by the failure rate function Ao(t). Through it we determine
the failure rate over an interval of length At as follows:

t+at
A(t,t+at) = Ap(s) ds.
t

Since much of our analysis is in terms of expected demand during resupply,
we define A(i,j), the approximate lead time (resupply time) demand rate

for item i evaluated on day j, as follows:

- ; ‘ )
- ) oy .
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Figure 1.1 Failure Rates and Lead Time Demand Rates as a Function of Time.

;
A(i,]) = T A(t,tH1)
t=j-Ti+1

where Ti is the resupply time for item i. Figure 1.1 illustrates how

e bl

A(t,t+At) and A(i,j) depend upon the particular time interval being
examined, where m is the day on which maintenance is performed, and L

is the time between launches for a single shuttle. We will refer to the
sharp increase in demands on day m as a demand spike. ;

We will assume later that failure detection does not lengthen the

maintenance period devoted to other units of the same item type, and i

that the length of the maintenance cycle is always fixed at L, and cannot
be increased by item backorders. These assumptions enable us to assert

that each cycle is identical to every other cycle in demand patterns and




in length. Lastly, we assume that the cycles are continuously repeated,
so that the history of demands prior to a given cycle is identical in
probability to that of every other cycle.

A failed item entering repair is returned to the serviceable spares
stock upon completion of repair. The repair time T is a random variable
and is independent of the number of items already in repair. For our
purposes it is acceptable to assume that T is fixed, and so items are
returned to serviceable spares stock T time units after they are removed
from a shuttle. The maintenance crews will replace a failed unit as
quickly as possible, and if there are no spares on hand when a demand
occurs, a backorder results. There may be some time period d(t) during
which no penalty is incurred on such a backorder, but in general d(t)
is quite brief (or zero) due to precedence relationships in the mainten-
ance schedule.

While backorders on some days may carry only a small penalty, those
occurring on other days, especially just before a launch, may be signifi-
cantly more detrimental to shuttle operations. This is because prepara-
tions which are made just prior to launch are often more involved and
costly than earlier activities. These last-minute activities range from
temperature control of the liquid fuel to assembly of a launch control
team consisting of many specialists and technicians. They are generally
not part of the maintenance cycle as we have described it, but are rather
more closely linked to the operational activity of the shuttle. A delay
during this phase will be very expensive, even though it is not likely to
be long enough to violate our earlier assumption of a fixed cycle length.
Since cycles are expected to be on the order of a week or more, while

backorders (as will be seen later) last no more than a day, backorders




will probably not be the cause of prolonged launch delay. If w(t) is
the severity or weight of a backorder at time t, we can assume that w(t)

increases with time as shown in Figure 1.2.

W(t)

—T
ot
—
3

™

Figure 1.2 Severity of a backorder (w(t)).

After time L, we assume that the shuttle will be ready for launch. The
actual launch takes place at some time during a launch window, which is
limited by such factors as crew rest requirements for the astronauts, ice
accumulation on fuel tanks, weather conditions, and daylight availability

at both the launch and landing sites. If the countdown is interrupted
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and the launch window closes before the shuttle can launch, a minimum of
48 hours must elapse before the next launch attempt, resulting in another
setup and incurring a large penalty cost. This sort of postponement would
probably be due to a system failure, not a backordered spare. Thus our
assumptions about w(t) should be reasonable. In addition, since there is
only a small possibility of an item failure after all pre-launch mainten-
ance is completed, we may assume that a shuttle will make no more demands
on the supply system after time L. If a shuttie should experience a sig-
nificant ground delay after time L, its mission will be completed late,
but there is sufficient slack in the schedule to allow that shuttle's
next pre-launch maintenance to begin on time. Thus, variations in the
schedule due to backorders or any other problem do not disturb the pattern
of pre-launch maintenance cycles we have described. All demands for a
given shuttle take place during its maintenance cycle, and each cycle
is identical in probability to the next.

Current plans for the shuttle program call for one or more shutties
operating out of two launch sites. A shuttle will, in general, return
to the base from which it was launched, and so at each base the shuttles
will progress through pre-launch maintenance in a certain order. There
will be some overlap in the launch cycles, so that the demand distribution
for a given item on a given day is the sum of the demand rates for items
on the shuttles being maintained on that day. The number of demand spikes
experienced during any one period L is exactly equal to the number of
shuttles based at the launch site, assuming that items are maintained once
per cycle on each vehicle. The demand distribution for each item is still

M
nonstationary Poisson, but with a parameter Ao(t) = 7 Ai(t), where xi(t)
i=1
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is the demand rate of the ith

shuttle on day t. This superposition of
demand rates is illustrated in Figure 1.3 for a two-shuttle system with

no time between pre-launch cycles.

= = " one shuttle
two shuttles

o -y = -y jr v - -

o) T

e et e = . - emn eam mes e ae e ew e e

<+

/N

v

Figure 1.3 Superimposed failure rates for a two-shuttle system.

Here the length of the maintenance cycle is constant but the expected
number of demands per cycle is twice as great. Note that if we redefine
a launch cycle to be the time between any two launches, we experience

successive periods of length L/2 whose expected number of demands ‘

is equal to the expected number of demands for one shuttle over a cycle

of length L. If the time between launches is not fixed, we may not

redefine the cycle in this way, and so we find it convenient to assume

FRTY TR R
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that the time between launches is fixed.
It is useful to point out some similarities between the system des-
cribed above and a system in which there is only one shuttle launched

at twice the original rate. If the launch cycle is defined as the time

between launches of that shuttle, then we may generate the new demand
rate by considering the demand spike to occur at the same relative posi-
tion in the cycle (a proportional transformation) and then increasing the

demand rate on each day by the demand rate of a day in the original cycle

on which there was no spike. This will result in the cycle illustrated
l in Figure 1.4.
*1 rate Ao(t) - - -

K rate ZAO(t)

)
i
E | 4
-
3 t p— o — .--—.1
‘ 4 | 1 | i
,L,t Ap(t) I I | I
o 1 | ! | |
| | | |
4 | I | |
: | | | l
| | 1 ]
- - L e e e e e — - — ] L
— — * - — rd
«— L] > time
——Al)—>

Figure 1.4 Compressed demand in a one-shuttle system.

This pattern has some important similarities to the launch cycle shown in

Figure 1.3. Both cycles experience an equal number of expected backorders

o soaa/ RGN AT 4 2
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per cycle of length L/2, demand spikes of the same magnitude at equally
spaced intervals, and interlaunch cycles which are probabilistic replicas
of one another. In fact, the only important difference between the two
demand patterns is the change in the position of the demand spike within
the shortened cycle. Each time the cycle is compressed, the maintenance
day will move closer to the beginning of the cycle for the single shuttle,
whereas this will not be the case for many shuttles with overlapping
launch cycles. Since the weight of a backorder near the end of a cycle
is great, items with later maintenance dates will be relatively more
critical than items maintained earlier in the cycle. As the cycles
become shorter in the one shuttle case, certain items will consistently
become more important than others. This is not the case if there is

more than one shuttle operating: 1in that scenario an item's importance
will depend upon how many shuttles there are.

The multi-shuttie case is the more realistic of the two, but one
shuttle with an increasing launch rate is simpler to model, and was
sufficient for our analysis when the actual day of the demand spike was
unavailable. It also represents a worst case analysis, with certain
items becoming more and more important as cycles shortened. The results
of this effect will be discussed in greater detail later. Lastly, as we
will demonstrate, the effect of performing maintenance on one day in the
cycle diminishes as the launch cycle shortens. In other words, the dis-
tribution begins to approximate a stationary Poisson distribution, render-
ing the position of the demand spike extraneous to the spares determination
problem.

The above discussion of pre-launch maintenance operations may con-
veniently be translated into a single location model concerned with the

inter-launch maintenance for a single shuttle. If we allow the shuttle's
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launch rate to vary, we simulate the effect of changing the number of
shuttles when each has a constant launch rate. We are interested in
identifying a spares mix for serviceable items maintained during the
cycle. These stock levels should give the best system performance at a
given level of investment. We require a method of evaluating the expected
performance of the system which recognizes the special demand distribution
we have described and which allows for a changing backorders penalty over

time.

Review of the Literature

This problem is similar to one encountered in setting spares levels
for a variety of operations involving high cost, low demand items. Feeney
and Sherbrooke [5 ] developed models for systems experiencing compound
Poisson demand and developed measures of supply performance that could be
used to minimize backorders for a single item and arbitrary resupply
distribution. These same authors later optimized supply system per--
formance under budget 1imitations through use of Lagrange multipliers,
still for compound Poisson demand [4 ]. They obtained results when system
performance was in terms of proportion of demands filled by on-hand in-
ventory.

The model developed by NASA for its own use in spares provisioning
had a different objective. NASA's model computed stock levels so that
each item had at least a .95 probability of being filled by on-hand
inventory. It assumed stationary Poisson demand rates. The NASA model
contained no analysis of an item's contribution to system performance

relative to its cost [12].

-
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Mitchell [ 8 ] made changes in the NASA computer program so that it
implemented marginal analysis and then computed the overall probability
that demands would be met by the supply system using on-hand inventory.
By examining the results for a group of items selected from the shuttle's
avionics subsystems, he identified those items that accounted for the top '
80% of the group's spares costs. Mitchell's model did not consider the
nonstationarity we have discussed in demand patterns, nor did it account L
for an increased backorder penalty near the end of the cycle. Neither
the NASA model nor Mitchell's model recognized that.the distribution of
jtem failures is often independent of the number of flying hours in the

previous mission.

The Taunch cycle described here was fully developed by Muckstadt [9 ].
He defined criteria by which system performance could be evaluated and
described algorithms by which these objective functions could be optimized.
These criteria include, among others, the total weighted probability

that demands are filled with on-hand inventory, the total weighted

expected number of backorders, and the total weighted expected number of
backorder days. These algorithms employed marginal analysis or Lagrange
multiplier techniques to maximize system performance relative to the given
objective function over a range of budgets. The models had not yet been
implemented or compared with the methods of setting spares levels des-
cribed above, and so our objective here is to determine which spares
stocking model one should use in a given situation.

We now have a specific set of assumptions with which we can model the
spares stocking probiem. The models developed by Muckstadt seem to most
nearly approximate shuttle operations as we have described them. In

Chapter 2 we will continue to develop our statement of the problem and
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introduce the algorithms proposed by Muckstadt for determining an optimal

spares mix.
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CHAPTER 2

Given a set S = (51’52""’SN)’ where S5 represents the number of
spares of type i in the spares mix S, we are first faced with the question
of how to evaluate its expected performance.

The model in use by NASA gives the following rule: choose a spares
mix which sets the minimum probability that any one item's demand will
be met with on-hand inventory greater than or equal to a constant, denote?
by PCNST. That is, choose S as follows:

S
i
! P{R, = x} > PCNST, alls;eS
x=0

where Ri equals the demand over resupply time for an item, and is
assumed to be a Poisson-distributed random variable. PCNST may presumably
be varied to produce different sets S. Note that we have no way of
%yg1uat1ng system performance, except by stating the N values of

g PR = xh

x=0
If we also consider that each item i has a cost c., associated with

i
it, we may use a Lagrange multiplier technique which begins with the
product of each item's probability of sufficiency and attempts to
maximize this quantity for a given budget level. It chooses a spares mix

S which may be evaluated by using the following function:

S.

[
N

-

n
POSg = I ;

i

P{Ri = x}], alls. €S
1 0

where POSS is called the system probability of sufficiency.

17
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In this section we will present three different objective functions,
including total weighted probability of sufficiency, total expected
weighted backorders, and total expected weighted backorder-days. Each
of the three models will then treat only one of these measures of per-
formance, and hence we expect that they will result in different spares
mixes S.

For example, we may set stock levels for items A and B in Table 2.1
using the NASA model, the Lagrange multiplier technique, and the total
weighted probability of sufficiency model, which we will derive later.
Without detailing the actual computations, we present the resulting spares
mixes S = (sA,sB) iﬁ Table 2.2 when the spares budget is $1,300,000 and
the shuttles are launched every 35 days. We can see that the NASA model
makes a different choice of S than the other two. In this case the
Lagrangian technique and the weighted P0OS model give the same stock levels,

but as can be seen from Table 2.2, they give different objective function

values. For example, the Lagrange multiplier technique evaluates its ob-
jective function, POSS, at .621. 1In general, we will use the objective func-
tions presented in this chapter to evaluate the spares mixes given by all

other models.
Table 2.2 illustrates how different assumptions about the spares

system can lead to the use of a variety of models which can in turn give
different values of S1sS9s---5Sy to the decision maker. We now present
those assumptions which were used to derive the models developed here,
and explain why they are reasonable in the context of the system des-
cribed in Chapter 1. We will also discuss the formulations of the three
models, the algorithms used to solve them, and their computer implementa-
tions.

We will present three alternative mathematical formulations of the

serviceable spares mix problem. They relate to the first, second and

T L o AN B i M . S
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Table 2.1 Item Descriptions

Item Repair Time| Cost Daily Demand Rate | Maintenance Day
A 60 days $415,000 .0364 34
B 60 days $230,000 .0075 3

Table 2.2 Spares Mixes

Lagrange Weighted
Item NASA Multiplier POS
A 3 2 2
B 0o 2 2
Objective
function {| (.638, .628) .621 .529
value

fourth of five models discussed by Muckstadt, and we will keep our
terminology consistent with his by denoting them as models A, B and D,

1 Although the problems were initially formulated using

respectively.
both continuous and discrete objective functions, we will state them

as discrete models with the basic time period of one day. Model A seeks

to maximize the probability, weighted for each day in a vehicle's pre-launch
cycle, that no item will experience more demands during its resupply

time than there are spare parts. This is a weighted measure of the total

! Muckstadt also introduced a model to minimize the wieghted sum of

shortage incidents (model C) and a model to minimize the maximum 1
expected weighted delay days for any item (model E). Detailed dis- {
cussions of both appear in reference [9 ]. :
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probability of sufficiency. Model B's objective is to minimize the
expected weighted number of unit backorders for all items and each day
during a vehicle's maintenance cycle. Lastly, in model D we minimize
the expected weighted number of days a unit is backordered, totaled over
all items and all days in the vehicle's maintenance cycle.

In all three cases, the launch cycle may be assumed to last exactly
L days, with w(j) corresponding to the weight applied to the objective
function for the given model on day j (probability of sufficiency,
expected backorders, or expected backorder days). A1l models use the
constant C to represent the amount of investment available for serviceable
item spares.

The following information is required for each of the N items that

compete for the limited spares budget:

3
"

number of identical units of item i aboard one shuttle,

c. = total procurement cost for one unit of item i,

Ti = a constant resupply time for item i, including trans-
portation time,
v.(t) = failure rate (failures per day) for each unit of item i,

assuming one mission has occurred since its last main-
tenance period, evaluated at time t,
m, = day on which maintenance crews prepare all units of item

i for launch.
In all of models A, B, and D, the following assumptions apply:

1. The group of n; identical units of item type i may be considered

to be a single item whose failures have a nonstationary Poisson

distribution with parameter Ai(t) = nyvs(t).
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2. Successive cycles of varying length L are treated; there is no
overlap between cycles.

3. All items are due on the day they fail. This assumption serves
only to simplify computations. It may easily be relaxed within
the framework of the algorithms we present.

4. The failure distribution is not significantly different for
items on board the shuttle when it lands versus items replaced
during the launch cycle.

5. There is no slack time between a launch and the beginning of the
next maintenance cycle (i.e., flying time is assumed to be zero).

6. Since the days on which maintenance is performed on the items are
unknown, the values of m s which are identical throughout all
the models for a given cycle length L, were sampled from uniformly

distributed random variables over the range (0,L).

Assumption 1 follows from the fact that the n; units of item type i
have independent identically distributed nonstationary Poisson failure
distributions. So for every day j during the cycle, the sum of the n;
demand rates gives the demand rate for all units of type i. We showed in
Chapter 1 that there is a similarity between a system having decreasing
cycle length for one shuttle and one having an increasing number of
shuttles operating simultaneously, their demand distributions effectively
superimposed to give an overall demand distribution. Since we do not
actually know the day of scheduled maintenance for each item, we may choose
either of the two systems as a model, and we will take the first. This
has the result that given a cycle length of L days and maintenance day m.
for item i, a second cycle of length ol will schedule item i for mainten-

ance at around time am, (this is inexact due to the fact that am, may not
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be an integer).

The backorder penalty will begin immediately when an item is back-
ordered. This reflects the time-critical nature of shuttle operations
as well as our lack of complete information about the system and, conse-
quently, our preference for conservative analysis. Another area where
information is lacking is that of failure rates for newly installed
items. We have noted that our information on failures is tied to the
execution of one mission since the previous overhaul, and so the dis-
tribution of more than one failure in a given vehicle has a parameter
slightly lower than Ai(t). Table 2.3 shows the probability for various
numbers of failures over a 60-day lead time for an item having a failure
rate over the lead time of 0.3. This corresponds to the highest shuttle

activity rate and the highest item failure rate nyvs contained in the

data.

Table 2.3 Probabilities of f Failures

f "Used Part” "New Part"
0 .7408 .8607
1 .2222 .1291
2 .0333 .0097
3 .0033 .0004

= VY S R




v PR a bt B
b e d T r bt -

23

Next, suppose that an item fails and is replaced with a part having
a resupply time failure rate of .15. The individual terms for the
probability that 0, 1, 2, or 3 of these new items are demanded over the
entire 60-day lead time are also given in Table 2.3. But the "new" part
will only be "new" for the rest of the cycle during which it is installed;
since the cycle length is 8 days, this corresponds to a small fraction of
the total lead time. The analysis shows that the probabilities for '"new"
parts are different from those for "o1d" parts, but that as the number of
failures increases the magnitude of the difference drops off sharply. Thus
we will assume that the expected failure rate for a "new" item is little
different from that of a "used" item.

Assumption 5 states that slack time will be brief between the launch
and the next maintenance cycle; if an actual one-shuttle facility were
under study we would lengthen the launch cycle by the length of an
average flight and allow zero expected demand on those days. The last
assumption specifies our method of randomly assigning maintenance days.
We emphasize that the maintenance schedules are identical between models
for each cycle length and that if L' = al, then m% = am, for all 1.

For each of the items we consider, the models’ output consists of
a recommended integer value for the spares level Si» where there are N
item types in the system. If each spare for repairable item i costs <y
dollars, and the investment limit is C, then we have the following

constraints:
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We are not actually given the nonstationary distribution for Vi(t)’
but are instead given the failure (removal) rate per flight, r-
Arbitrarily choosing to place all of the demand on the item's maintenance

day m; leads to the following definition of vi(t):

{0 t # m,
v.(t) =
1 ri t=m,.

i
In our discussion of model D we will explain the variation of this dis-
tribution used in that model. Once vi(t) is known, it is easy to compute
xi(t) using assumption 1.

A1l three models also involve an expression for demands over a
resupply time beginning Ti'] days before day j. The lead time failure

rate A(i,j) was introduced in Chapter 1. Recall that:
» o j .

AME) = 1 ()

is an approximation of this failure rate. If we then wish to calculate

P[Ri(j)=k], the probability that there were k demands for item type i over

the interval [j-Ti+1,j], we may use the following equation:

SA,3) s sk
PIR; (§)=k] = & sATad)

Again, implicit in this equation is the assumption that all items of type i
("old" and "new") have indistinguishable failure distributions. It further

assumes the following:
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P[Ri(j) > "i+si] z 0

Model A

We might wish to maximize the sum of weighted probabilities of zero
backorders over all days in the cycle. The probability that an item
experiences no backorders is also known as probability of sufficiency.

This objective function is:

—

N
Mﬁpnﬁm=.ZMﬂi&ﬁ&U)i%l

System probability of sufficiency is a generally accepted measure of
supply system performance, and the above expression extends its definition

to cases of nonstationary demand over unevenly weighted cycles.

A solution procedure for this problem was discussed by Muckstadt [9 ].

As the objective function is nonseparable when there is more than one
day j with nonzero weight w(j), we cannot employ a Lagrange multiplier
technique. A workable method first computes an initial solution which
gives a very low investment level and a low value of A(s],...,sN). The
algorithm sequentially selects the spares whose contributions to the
objective function are greatest relative to their costs. The value of

A(s ,sN) is improved every time a spare is added to the mix. This

100

2We justify this notion because the items we analyze do have very low
failure rates, and because the higher an item's failure rate, the higher
1ts stock level. For A(i,j) = .3, a high rate for our analysis, and
=4, n; =2, P[Ry(§) = 7] = 3.2 x 107°. Thus we may avoid the
mechan1ca1 comp1ex1ty of using a truncated nonstationary Poisson dis-
tribution. To be strictly correct, the probability of more than s, +n1
demands should be exactly zero for the one-shuttle case.
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is basically a marginal analysis technique and yields good, if not
optimal, results for many applications.

The problem is formally stated in Figure 2.1 and a diagram outlining
the solution procedure appears in Figure 2.2. For additional information,

see Muckstadt's paper [ g9].

L N
Maximize § w(j)
3=1 i=]

N
subject to ) ;55 < C
=1 V-
S; > 0and integer, i = 1,...,N.

Figure 2.1 Problem Statement for Model A

Model B

In this model we are interested in minimizing the total expected
weighted number of backorders for all items throughout the launch cycle.
As before we will be evaluating the objective function for each day and
then summing across days and items, rather than trying to measure expected
backorders continuously through time. For a single item i, the expected

number of backorders on day j is given by the following:

€[B,(3)] = I (x-s,) P(R,(d) = x),

>S.
XS1

assuming that items incur a penalty from the first moment they are
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Compute s. = [min A(i,5)1;
J
for i = 1,...,N

L
A(syse-e58y) = J-Z]w(j) 1E]P[§i(j) < 5]

For i = 1,...,N compute

<: ) - A(i) = A(SI""’Si-]’Si+]’Si+]""’SN)
. . A(i)-A(sl,...,sN)

1 .
c'\

CE:}TV A, 3_{max(Ak), k=1,...,1}

?

Yes
IMAX = i
No
i=i+]
No

o}

Yes Figure 2.2 Flowchart

SIMAX = SimAx + 1 for Model A.
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backordered, where Ri(j) has the same meaning here as in Model A,

The problem is formally stated in Figure 2.3.

Model B
N L
Minimize J 7 w(i) [ (x-s;)*P[R,(j)=x]
91 391 x>s.

N.
subject to ) c¢.s. < C

Figure 2.3 Problem Statement for Model B

T WAk hre i < At e

Muckstadt [ 9] points out that this is a separable problem and rewrites
the objective function using a Lagrange multiplier 6. Thus, for each 1,
the object is to minimize the following for a given nonnegative 6:

L
Filsy) = [j21 "33 xzsi (x-5;) PIR;(3)=x] + ecisi]’

S; € {0,1,...}.
Since F. is convex in S; [9 ], we may minimize its value by taking first
differences, and identifying the smallest S: for which adding an additional

spare will cause Fi(si) to decrease. In other words, we are finding:

e —— et
4 25 L g
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min{si:Fi(si) - Fi(si+1) < 0}

L
min{s,: .Z] WO T (x=s5)P{R;(3)=x} + 6cys;)

= >S.,
J XS1

- (XZSi+](x-(si+1))P[Ri(j)=x] + 8¢5, + eci)] < 0}

L 55
min{s,: _Z] w(i)(1 - 20 P[Ri(j)=x]) f_eci}.
Jj= X=

Examining the above equation, we see that it involves the probability of

one or more backorders:3
55
1- T PIRy(3)=x].
x=0

This quantity provides some insight for choosing 6. Denote the maximum
acceptable probability of a backorder by (1-a). Then we must choose 6 so
that e-ci will always give an acceptable upper bound to the weighted
probability of a backorder. If k is the costliest spare, eck is the
greatest upper bound we will create, and we must insure that the following

holds:

L
Iow(i)e(1-0) = ec,.
J=1

The result is to choose 8 so that

L
I wii)(-a)
g = 3=

"

3ps before, we note that the probability of more than ni+s. backorders is
close to zero. When only one shuttie is involved, the actual probability
of more than "i+si backorders is exactly equal to zero.

st
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If we then allow 6 to decrease, the upper bounds will all decrease, and
we will need higher stock levels to bring down the weighted backorder
probabilities. The outcome of decreasing acceptable weighted backorder

probabilities is to increase spares costs. Muckstadt [ 9] proposed

computing spares levels for all items at decreasing levels of 8. This
will result in steadily increasing spares costs until we reach the desired
budget Tevel C. The successive values of 6 and the corresponding invest-

ment required are related in Figure 2.4.

Cost

T
i
!
i
|

Figure 2.4 Investment in Spares vs. Multiplier 6.

The algorithm used to implement the above ideas is shown in Figure 2.5.
Note that the original objective function for Model B is not directly 4

minimized. However, if any n is "close to" C, then the {si: (i=1,...,N)}




Wlie i i € et

—_— e - o —— . .

Select (1-a), the maximum
probability of a backorder

0 % wg J)(1-a)

84 =0, 1=1,...,N
5" oObm=1,...,8

DO FOR i = 1,..,,N

—+ DOFORm=1,...,B

& eo/z""“
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Figure 2.5 Flowchart
for Models B and D

S

8
tw,(3)(1 - PR.(j)=xN}<0cC. ?
zwy(3) X'ZO R (3)=xN}< o ¢,

°@‘°m+Fisi
No .
m> B?
No Yes
i > N?
Yes
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which relate to Cn will give a near-optimal solution. By changing the
increments of 6, we can generate any number of pairs (c,8). The algorithm

presented here produces B such pairs by setting em = eo/zm, m=1,...,B.

Model D

A third model considered by Muckstadt [9 ] involved minimizing the
total weighted expected backorder-days across the cycle. The expected
waiting time per backorder, which is just the length of time that a

shuttle is delayed on the average, may be expressed as E[Di(j)].

Here we assume that the length of a backorder is independent of the

number of backorders outstanding. This is in keeping with the earlier

assumptions of fixed resupply time and Tow expected numbers of backorders.
We now require an expression for the length of time which a backorder

lasts, E[Di(j)]. The following relationship holds in the case of

stationary Poisson demands:4

ElB, (4)]

EL0; ()] = ~
T t=j§T1.+l A; ()

First, we note that were we to use this approximation in Model D, there

is a possibility of having a resupply time demand rate equal to zero

should the interval (j-Ti+1,j) contain no demand spikes. In order to

avoid this situation, we may redefine the unit failure rate vi(t) as

follows:

4This equation follows from W = L/X where W is the waiting time for all
backorders, L is the number of backorders, and X is the arrival rate.

bbb o
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Ii t #m.
3L i
vi(t) =
E_r_i.-{-ﬁ. t=m
3 L i’

Thus the resupply time failure rate is less variable than in the case
when all demand is concentrated on one day in each cycle. We continue
to calculate this value as the sum of the daily failure rates over the
resupply time.

A second important observation regarding this approximation is that
it is independent of the stock level S5 and so may be included in the
constant term w(j) used in Model B. We define wi(j), the weighted number

of days that a backorder on day j of item i will wait, as follows:

w.(3) = ulJ) ,
- ) A(t)
i t=j-T1+]

where w(j) has the same meaning here as it did in Model B. Using wi(j)
instead of w(j) in Model B will give stock levels which minimize the
expected weighted backorder-days for all items.

An important change to Model B will be required when appropriate
values for 6 are sought, however. Since the sum of the weights may be

different for each item, em will now be given by the following:

L
(1-q).21wi(j)

— 4 J=
8 _ = m1n[ :l

We noted earlier that the approximation discussed above is generally

used only in cases where the demand distribution is stationary Poisson.
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In order to test the robustness of the equation when ki(t) varies over
time, a test was devised using a computer simulation. The simulation
will be discussed in detail later, but for now a simple description of
the system will suffice.

Figure 2.6 depicts the simulated system, consisting of two bases
with six and eight shuttles, and a single depot with a repair time of 60
days. Lateral resupply between bases is not permitted. There is one
unit aboard each shuttle with a failure rate r, = .0166, and turnaround
time is 50 days. Four days prior to each launch, the failure rate for
the items in all eleven shuttles increases for one day. This is a very
rapid activity rate which, as we will later discuss, detracts from the
effects of nonstationarity. However, computer run time is a limiting
factor, and so to observe many backorders it is necessary to have a high
activity rate. Seven spares are initially provided to each base, and

subsequent spares shipments from the depot are made on the basis of

greatest need. °

DEPOT V\\\\\\i

1) 6 shuttles 2) 5 shuttles

A] = .100 | 1 launch/8 days 1 launch/10 days Az = ,083

Figure 2.6 System Used for Simulation

SA quantitative definition of base need will be given in Chapter 4 and
is a function of the base's inventory position and of the time remain-
ing until the launch.
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In tabulating the results of the simulation, which ran for 500
“days", we first record the average number of shuttles grounded, L. Then,
on every day, we observe a value of the lead time demand rate multiplied
by the actual waiting time experienced by a backorder on that day (if
any). These values yield some average value over 500 days of AW. The
comparisons of the values of L and AW for an increasing nonstationarity
factor p are shown in Table 2.4 and are plotted in Figure 2.7. (p = 2.0 i

indicates that the demand rate doubled once before each launch.)

Table 2.4 Validation of Waiting Time Approximation

L = AW with Nonstationarity Factor p. }

p L ™

1.0 0 0

2.0 0 0

2.5 .022 .025

3.0 .048 062 ?
3.5 .082 .106

4.0 .126 .182

Note that as nonstationarity increases, backorders are overestimated to |
a greater and greater extent, at least in the simulation we performed.

We caution that the simulation parameters do not approximate the system

we describe here with any great degree of accuracy. The results of the 3

simulation do suggest, however, that as nonstationarity increases, the

LR N
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Figure 2.7 Comparison of actual backorders (L) and estimated
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approximation tends to overestimate expected backorders in this case.
Sherbrooke [11] notes that for simple Poisson demand with parameter
Ai and fixed resupply time Ti’ the probability distribution of waiting

time Di for item i, is given by the following relation:

(S.i']
7 oe x™m, d< T,
m=0
P[Di < d] =<
L 1 , d> T,

where x = Ai*(Ti-d). In the case of nonstationary Poisson demands, the
demand rate over time period [j-(Ti-d)+],j], would be required for all g:
values of d, between 0 and Ti’ for each day j and item i. Denoting this
value as A(i,j,d), we have the following expression for expected waiting
time;
T, s.-1 .
o= § 0 T CRMULITERT )l

The expression for expected backorder days over the cycle,

N L
E[D. (]
DAL LI

is a separable relation and is convex in (51’52""’Sm)‘ We now have two

approximations, and choose to implement the approximation introduced earlier

by Muckstadt. )
Using the approximation for expected waiting time given by Muckstadt,
we may write an objective function for Model D. The integer program for

Model D appears in Figure 2.8.
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3
3
b<
4 Model D
§ N oL "
§ Minimize ] ] w;(J) [ (x-s;)*P[R,(j)=x]
i=1 j=1 X>S
, N
i subject to } ;85 < C
: i=1

i he g

S5 > 0 and integer, i = 1,...,N.

Figure 2.8 Problem Statement for Model D

S e
i
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With the exception that w(j) is now replaced with wi(j) and that
& 6, is derived differentiy (as outlined above), the algorithm for Model B

. given in Figure 2.5 applies to Model D as well.

The Computer Models

The three models just described were each implemented using FORTRAN

programs on an IBM 370/168 computer running with VM operating system at
Cornell University. The programs each have essentially the same structure,

and were modifications of programs written earlier by Cogliano [2 ]J. The

program structure is shown in Figure 2.9.

Element (:) in Figure 2.9

represents the core of each program. Computer 1istings of these three

subroutines may be found in Appendix A.

NASA has provided failure and

cost data on items in the avionics subsystem [12]. These items are

reduced to those 24 that NASA computed as being the most expensive from
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INPUT STOCK ‘ CALCULATE A(4,j),
LEVELS FROM ( INPUT i1, N
ANOTHER'SOURCE | 5=
MAIN |
PROGRAM |
MODEL A, OUTPUT FROM MODEL
B, AND D AND COMPARISON WITH
OTHER SOURCE'S STOCK

LEVELS' PERFORMANCE

Figure 2.9 General Qutline of Computer Mode]sa

a spares standpoint. Together they represent 80% of the spares cost when
NASA's probability of sufficiency model is used and each item is computed
to a .95 probability of sufficiency (i.e., PCNST = .95).

Using the program that NASA had developed we generated stock
levels based on probability of sufficiency and compared them with the
solutions given by Models A, B, and D. With stock levels from the NASA
program as input, the programs for models A, B, and D computed their
expected performance using the objective function for each model. We
were thus able to establish a common measure for comparison purposes.

4 circled numbers indicate the order of operation.
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Similarly, another set of gtock levels was produced by a computer

program by use of a Lagrange multiplier technique to minimize backorders
when demand was assumed to be stationary and there was no increased back-
crder penalty [1 ]. These stock levels are also used as input for

models A, B, and D in order to evaluate the performance of Lagrangian
analysis with respect to the objective functions developed in this section.

Information concerning costs, failure rates, and resupply times are
not varied throughout the experimental procedure. In order to retain
comparability with the NASA model, we assume that two shuttles make
simultaneous demands on the supply system. (Note that this is the worst
case of a two-base system in which a common depot is used and the distance
between the bases is ignored, as no two shuttles could be launched
simultaneously from the same launch complex.) Shuttle planners feel
that a reasonable range of launch cycle lengths would include cycles of
4, 8, 16, 32, and 50 days, and so runs were performed for each of these
activity levels. The last important variable we have identified is the
weight of the launch day as compared with all other days in the cycle.

To reflect a possible increased backorder penalty on this day, we let
the weight be equal to either one, corresponding to an equal weighting,
or five, on the last day of every cycle.

Another key element for the three models involves the shape of the
failure rate function. If this rate is nonzero only on the maintenance
day for item i during a vehicle's launch cycle, the resulting nonstation-
arity will be as severe as possible. This is why we chose earlier to
define the failure rate function in this manner, except for Mode)l D,
which, for reasons discussed earlier, must experience some minimal failure
rate on every day during the cycle. We will now discuss the impact of

this assumption in some detail.
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We have the following values for xi(t):

0 otherwise.

InModel D, this equality is only an approximation. Therefore, the lead
time demand A(i,j) will be some multiple of Ler;. In Figure 2.10(a)
the lead time is slightly less than L, and so A(i,t]) is equal to 0.
At j = t2, however, we have A(i,tz) = L-ri. Similarly, for the longer

lead time T% in Figure 2.10(b) A(i,t]) = Ler; while A(i,tz) = 2(L-ri).

Since A(i,t]) and A(i,tz) can differ from one another by at most Ler,

no matter how t], t2 and Ti are chosen, we have the following inequality:

0< (.t ) 1,

k=1or 2,

A(i,tk) > 0.

It is easy to see that as Ti increases, the variation in lead time demand
represents a diminishing proportion of the constantly increasing values

of A(i,tk). As we will show later, however, as few as 2 or 3 demand
spikes during the lead time are enough to erase the effects of nonsta-
tionarity in the spares‘systems we examined. The argument may be for-
malized as follows: we recognize that Ti = nL + At where At <L and n > 0
and integer. It can easily be shown that the average value of A(i,j)

over the cycle has the following relationship to Ti:

-~

, ) o
LA Gt
L T, - nL + &t

Denoting this average ratio as Ui’ we see that:
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Figure 2.10 Variability in Lead-Time Demand

Further, if we define the variability of U, as follows:

L T,
i

L .
v(u;) = 1 .E](Ui - aliLdiye
j=
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we may also show that the following holds:

~

1im V(Ui) = 0.
N
Since the asymptotic properties of V will result from either fixing
Ti anddecreasing L or fixing L and increasing Ti’ we note that non-
stationarity will become less important (V(Ui) + 0) if either the
resupply time increases or the launch cycle becomes shorter. Ui can thus

be seen as a measure of nonstationarity with variability converging

to 0 as n gets large. We will see that as Ui becomes less

variable for all items i as a result of steadily decreasing L, the
resuits of Models A, B and D more closely approximate those of models
where stationarity is assumed. Finally, we note that these results
support our earlier claim that a single shuttle with steadily increasing
Taunch rate will require the same spares support as an increasing number
of shuttles. This is because both result in the same values for L which
will in turn produce equal values of Ui for efch item 1.

A sample table of the input data is given in Table 2.5. Computational
results are discussed in Chapter 3. The programs' output includes, for
a range of investment levels, the performance which the algorithm achieves
in terms of its objective function, as well as the spa?es mix it identi-
fies. The output may also include the value relative to the objective
function achieved by spares mixes supplied externally. The sources of

these stock levels are the NASA program and the marginal analysis program

discussed eariier.
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CHAPTER 3

Each model's performance is measured and evaluated by use of three
~ana1ytica1 approaches. The output of each program is first compared
with the NASA and Lagrange multiplier techniques discussed earlier.
Thus we may determine the effects of nonstationarity and weighted back-
orders with respect to these two baselines. If Models A, B, and D
provide the same levels of the objective function for less cost than
the other models, then we have effectively exploited our assumptions
about the system. Next, each model is analyzed to determine its behavior
in terms of the objective function as well as the spares mix when back-
order weights increase and inter-launch cycles lengthen. In this section,
we will refer to the cycle as the time between consecutive launches.
Finally, we contrast the spares mixes at comparable levels of investment
for each of the three models. In this manner we may draw inferences as
to the consequences to the spares mix of selecting one objective function
over another.
The computer codes for each of models A, B and D's main subroutines
appear in Appendix A. The subroutines not shown are essentially the
same for each model, and relate to input and output functions. A comment
in Model A's listing reveals the procedure used to determine lead-time
demand rates unique to Model D, and so the code for the computations of
lead-time demand rates is omitted from listings of the other two models.
In terms of their own objective functions, the models performed better
than, or as well as, both the NASA and the simple Lagrange multiplier
models. For cycle lengths of 4, 16, and 50 days, the results appear in
45
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graphical form in Figures 3.1-3.18. A table of values for a 35-day cycle
is given in Table 3.1 and sample output for each program appear in Tables
3.2, 3.3 and 3.4.

Table 3.1 Performance of Models for a 35-Day Cycle:

SPARES LAGRANGE SPARES 1HODEL A SPARES HASA
BUDGET POS(S) BUDGET POS(S) BUDGET POS(S)

4699440. 0.29019 9338780. 0.70345 G205780. 0.63102
5552240. 0.32797 10833780. 0.76034 1020378D0. 0.68576
66062u40. 0,43380 11637780. 0.80632 10870780. 0.72495
L $835740. 0.44005 12789580. 0.85227 11387780. 0.77347
u 8840880. 0.56348 13528580. 0.87660 12135780. 0.81561

: 9129880. 0.60244 14722580. 0.90753 12538580. 0.83192
: 11061780. 0.76431 15937830. 0.93465 17881083. 0.91871
t' 11838280. 0.79978 16808576. 0.95082 18797600. 0.95258

14952720. 0.89%9015 17882192. 0.96341 27862400. 0.99616
18801392. 0.97240
19915872. 0.98187
20911856. 0.98667
21668336. 0.98906
22825328. 0.99197

SPARES LAGRANGE SPARES NASA SPARES MODEL B
BUDGET E(BO) BUDGET E(BO) BUDGET E(BO)

3205780. 1.1561 BOTUUYO, 2.9783 :5
4699440, 2.5893 10203780. 0.9926 6835740, 1.7145

5552240. 2.2029 10870780. 0.8197 110617890, 0.6912
6606240. 1.8057 11387780. 0.6721 13703080. 0.3783
6835740. 1.7145 12135780, 0.5606 15632220. 0.2525
3840880. 1.1364 12538580. 0.5159 197659072. 0.0838
9129880. 1.0611  17881088. 0. 1808 22026784, 0.0463
110617890, 0.6912 18797600. 0. 1245 24727168, 0.0246
11838280. 0.5762 27862400. 0.0133 286380688. 0.0094
14952720, 0.317145

[N PR

SPARES LAGRAIGE SPARES MODEL D SPARES NaASA

BUDGET E(BO DAYS) BRUDGET E(BO DAYS) ®ypGET E(RO DAYS)

4699440, 9.8615 8279340. 2.9900 205780. . ;
5552240, 9.4755  10355640. 1.9000 1320?338. §.§§3§ :
6605240, 7.9368 13938180. 0.8187 10870780. 3.1798 !
6835740.  7.9070  18766480.  0.4379 11387780, 3. 014% |
3340880, 6.4390 20438992. 0. 1764 12135780. 2.0523 :
9129880.  6.2991  22748496.  0.0794 12538580, 3. ogos i
11061780, 3.7093  24005792. 0.0553  17881088. 0. 4438 5
11838280. 2.8763  26691936. 0.0276 18797600, 0.3556 !
14952720. 0.8821 2894990y, 0.0161 27862400, 0.03325

144155440, c.0 32819488, 0.0059 1
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SUMMARY OF TOTAL ASSETS AND THEIR DISTRIBUTION

SPARES PROBABILITY OF
ITEM STOCK LEVELS SUFFICIENCY

0.88443
0.96333
0.o4u74
0.96360
0.90250
0.95409
0.97313
0.97313
0.90274
0.98567
0.99214
1.00000
1.00000
0.99214
.95131
. 96900
. 99810
.99270
. 96926
. 9u857
.97814
. 98980
. 98325
. 99043

P R -

5
— ——
L S S S T G GNP
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n o
N -

n
w
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,
n
=

TOTAL SPARES INVESTMENT 9072640.00
SYSTEY POS 0.64623320

Table 3.2 Sample Output for Model A
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SUMMARY OF TOTAL STOCK LEVELS AND EXPECTED BACKORDERS

SPARES TOTAL EXPECTED

ITEM STOCK LEVELS AVERAGE SHORTAGES
1 8 0.10
2 8 0.07
3 y 0.13
y 2 0.24
5 3 0.14
6 3 0.32
7 2 0.15
8 2 0.15
9 3 0.09
10 3 0.12
1M 2 0.15
12 1 0.10
13 1 0.10
14 2 0.15
15 1 0.28
16 1 0. 11
17 1 0.45
18 2 0.02
19 2 0.19
20 ] 0.32
21 2 0. 11
22 3 0.07
23 1 0.04
24 2 0.03

TOTAL EXPECTED WEIGHTED BACKORDERS 0.0463

TOTAL SPARES INVESTMENT 22026784.0

Table 3.3 Sample Output for Model B
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SUMMARY OF TOTAL STOCK LEVELS AND EXPECTED BACKORDER DAYS
SPARES TOTAL EXPECTED

ITEMA STOCK LEVELS BACKORDER DAYS

1 by 0.05

2 y 0.04

3 2 0. 06

y 1 0.04

5 2 0.02

6 2 0.04

T 1 0.09

8 1 0.09

9 1 0.02
10 2 0.02
11 2 0.01
12 9 0.00
13 1 0.00
14 2 0.01
15 1 0.03
16 1 0.02
17 1 0.04
18 1 0.05
19 1 0.04
20 1 0.04
21 1 0.03
22 2 0.02
23 1 0.01
24 1 0.05

TOTAL EXPECTED WEIGHTED BACKORDER DAYS 0.818674

TOTAL SPARES INVESTMENT 13938180.0

Table 3.4 Sample Output for Model D
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Looking at Figure 3.1, we note that in a four-day cycle, Model A

does perceptibly better than both the simple Lagrangian technique and the
NASA probability of sufficiency model. For a given budget level, the
improvement over the Lagrangian method is about 1%, measured in terms of

weighted probability of sufficiency. when the weight increases from one

(an equal weighting) to five, we see in Figure 3.2 that little change in
the models' relative performance is evident. Moving to a 16-day cycle
in Figure 3.3, we see an increased differential in performance level,
to about 2%. This relfects the increased nonstationarity effects
inherent to a longer cycle. A similar increase is evident in Figures
3.5-3.6 when the launch days are increased to 50 days apart, leading to
a performance increase of about 2-4%. The curves for Model A are derived
by executing the algorithm presented in Chapter 2 and stopping every
time $1 million is added to the total spares cost. Since the data
points for the NASA program and the Lagrange multiplier technique are |
also discrete, due to the integer nature of the decision variables, it ﬂ
would be misleading to fit a curve through them. We are limited to
comparing points which are more or less adjacent to one another and
drawing inferences from their costs and performances relative to the
objective function. Thus one conclusion we may draw from the data is
that as the launch cycle for a single shuttle becomes shorter, the
effects of the nonstationarity we expressed in the formulation of Model A
are less pronounced.

Secondly, it appears that the backorder weight on the launch day

does not affect the choice of a spares mix as much as does the non-

stationary nature of lead-time demand. It should be the case, however,
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that if only certain items were given increased backorder weight and

if the increase lasted longer than one day, those items would necessarily

be stocked to a greater depth in a spares mix produced by Model A. Model A

would then be more responsive to weights than it is under the environment
we assumed for our experiment.

The output for Model B, assuming a four-day cycle and equal
weighting of the launch day, is shown in Figure 3.7. Here we see a
difference of about 2-4% between the performances of Model B and the
NASA model, but no apparent difference between it and the Lagrange
multiplier method. The same pattern is observed in Figure 3.8 for a
launch day weight of 5, only the performance of all the methods has
dropped. In fact, Model B actually chose the same stock levels as it
did for a Taunch weight of 1, suggesting that it is perhaps not possible
to increase system performance by modifying stock levels if a model
considers only the increased weight of the launch day relative to cost.
When the cycle length increases to 16 days, in Figures 3.9-3.10, we again
observe that Model B gives generally lower backorders than does the
NASA technique, but achieves close to the same performance as a
Lagrangian technique. Even where the cycle between the launches is 50
days, in Figures 3.11-3.12, we fail to distinguish an improvement over
the simple Lagrangian technique when we use Model B. Since the Lagrange
technique has a measure of backorders as its objective function, we would
expect that of the three models, the results of Model B should be most
closely approximated by the Lagrange multiplier method. Therefore, we
recognize that any improvement obtainable using Model B might not be

evident among the small number of spares we examined.
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Finally, in Figures 3.13-3.14, the expected waiting time over the
cycle is shown for Model D, the NASA model, and the Lagrangian model.
Even for the four-day evenly weighted launch cycle, there are signifi-
cant advantages to be gained by choosing one spares mix ovef another,

As much as a 50% reduction in expected waiting time for backorders will
accrue from using Model D to set the stock levels. Most of the reduction
seems to stem from a single item which has such a low lead time demand
that few spares would ever be in resupply and a long delay would result
were it ever backordered. This item is bypassed for low budget levels in
other models because of its low failure rate. As investment increases,
Model D and the other models begin returning about the same levels of
performance with respect to expected weighted backorder days. As was
noted in the analyses of Modelst and B, the introduction of longer
cycles has the result of both decreasing the required budget for all
levels of performance and incréasing the model's sensitivity to nonsta-
tionary demand rates which increase instability in expected lead-time
demand. The result is that in Figures 3.17-3.18 for a 50-day cycle

there can be as much as ‘a 70% reduction in expected weighted backorder-
days for low budget levels when Model b‘stock levels are employed.

We next turn to an analysis of how the various models allocate
spares as the budget limits increase while the cycle length is held
constant at 35 days. The launch day has five times the weight of other
days in the cycle. For each of the models we tried to find three spares
mixes priced at $10 mi1lion, $15 million, and $20 mi1lion, although some
of the budgets were lower or higher than others. Budgets which were

higher by $1 million could include from two to five more spares than
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more austere budgets, and so the fluctuations in performance with respect
to an objective function could appear to be greater than they actually
are. The budgets and performance levels are shown in Tables 3.5 and 3.6
respectively, while the item stock levels for each of the twelve spares
mixes are given in Table 3.7.

Close examination of Table 3.7 shows that of the Models A, B, and
D, Model B gives priority to the high-demand, low-cost items (1 and 2)
sooner than Model A or Model D. Model A tends to stock the moderate
demand, high cost items (7 and 8) sooner than either of the other two

models; but, as demand decreases slightly and cost rises, and lead time

shortens (items 12 and 13) the opposite effect is apparent. The lead time
proves to be an important factor for Model D as well, for as it lengthens,
as in the cases of items 15 and 16, Model D invests in the high cost,

low demand items more quickly. Conversely, for a short lead time (27

days for item 21) Model D buys less of an inexpensive, moderately demanded
item than either of the other two models.

The overall trends in stocking policy seem to be very similar for
Models A and B, whereas Model D seems to stock at least one item of each
type by the time it reaches budget level 2. This could be because it
overestimates backorders for the low demand items under the assumption
of nonstationary demand, as discussed earlier. Another intuitive result
is that Model B closely follows the stock levels set by the Lagrangian
model, because both are based on a measure of backorders due to lead-
time demand. The items used here evidently do not vary significantly
in terms of expected numbers of backorders, even when the demand has a
nonstationary Poisson distribution. By far, the most unusual spares mixes
are produced by Model D, which gives the same spares mixes as Model A

in any one budget only 57% of the time, and with Model B only 64% of




Table 3.5 Budgets Used for Comparison

Actual Spares Mix Cost, millions
Budget
Model A Model B Model D NASA Lagrange
1 10.1 11.1 10.3 10.2 11.1
2 15.4 15.6 14.0 12.5 15.0
3 20.4 19.8 20.4 18.8 ]

Table 3.6 Performance Relative to Models A, B, and D of Different

Spares Mixes

Spares Mix Expected Weighted Probability of Sufficiency
(a) { Computed By
Budget 1 Budget 2 Budget 3
Model A .719 .923 .985
NASA .685 .831 .952
Lagrange .764 .890 -
Spares Mix Expected Weighted Backorders
(b) { Computed By
Budget 1 Budget 2 Budget 3
Model B .691 .253 .084
*NASA .993 .516 .125
Lagrange .691 .315 -
Spares Mix Expected Weighted Backorder Days
(c) | Computed By
Budget 1 Budget 2 Budget 3
Model D 1.90 0.82 0.18
NASA 3.35 2.01 -
Lagrange 3.70 0.88 -
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Table 3.7 Stock Levels for Comparison
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the time. By contrast, models A and B returned the same stock levels
73% of the time.

The choice of an objective function and hence one of the models given
above has a major impact on the spares mix that one would purchase and
upon the performance that the serviceable spares system can provide
relative to any one measure. The final system performance cannot be
predicted, however, until the number of shuttles, their launch freguency,
and their maintenance schedules are known. Yet another important system
characteristic from a repairable spares perspective will be the presence
of two launch sites which will have different activity rates associated
with them. It will be important to know how the Taunch periods at the
two bases correspond to one another, because when the two time-dependent
demand distributions are combined, the basic period for the system will
depend upon their interactions. In some cases, the number of days to be
examined could be as much as one year; if, for example, Base A were to
Taunch every 4 weeks while Base B launched every 13 weeks. In the next
chapter, we examine the two base problem as it relates to the location

problem for spares, as well as its effect upon the choice of a spares mix.




CHAPTER 4

The choice of an optimal mix of serviceable spares is not entirely
separable from that of where the spares storage facilities should be
located. The most obvious interdependence is through the increased
number of backorders (and backorder-days) we would expect at bases where
no spares are permanently stocked. Alternatively, if facilities exist
to store spare parts at both bases, a model must recognize that only one
of the two bases will receive a given spare after it completes repair
at the depot. However, especially in the more likely case where lateral
(base to base) resupply is allowed, the increased transportation time
will only be on the order of a day or two, or only between two and five
percent of the transportation times we encountered in Models A, B, and D.
Even without a Tateral resupply capability, this means that if demand
is low, failures at each base will be rare enough to permit most repaired
units to be returned to the base at which they originally failed and
so each base may be treated as a single location.

While the choice of spares basing locations may not overly influence
the optimal number of each item to be procured, it could still have sig-
nificant impact on the real time efficiency of the system. In the event
that a backorder occurs, the expected waiting time could be significantly
altered by the existence of a spares facility at each base and/or lateral
resupply capabilities. The time-critical nature of shuttle operations
will probably resuit in the use of a real time inventory monitoring

system. Such a system could be used to track the inventory position of
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those spares which could adversely affect the launch date, and to direct
routine shipments from the depot to the bases as well as emergency or
precautionary shipments from one base to anothef. The number and
duration of backorders could thus be held to a minimum, but much depends
upon where the spares facilities are located and upon the conditions
which will permit or prevent a shipment. One interesting kind of spares
shipment would take place as the Taunch date for one of the bases
approaches. If no demands occur and the launch takes place, the shipment
will normally be returned to the sending base. Such a shipment will be
the result of what we will call a launch critical event.

Given the many interrelationships between the supply system, the
launch rates at the different bases, and the interbase shipment discipline,
it is extremely difficult to develop analytical models which would provide
some optimal level of fills or expected backorders. Miller [7] presents
a model which can be used as a real time decision-making mechanism for
repairable spares allocation. This model, which he terms Real Time Metric
(RTM), compares the need of each base with the reluctance of the depot
whenever a supply event such as an item failure or a repair completion
takes place. The RTM generates quantitative values for base
need and depot reluctance as functions of the state of the system. If
depot reluctance is smaller than at least one base's need, a spare is
shipped to the base with the greatest need.

This model is easily extended to incorporate a nonstationary demand
distribution and launch critical events. Miller's model has been pro-
grammed in FORTRAN on an IBM 370/168 at Cornell University as an experi-

mental simulation by Cogliano [2].

[
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Using this simulation as the basis for our model of the shuttle's

repairable spares supply system, we restate some of Miller's assumptions

and extend them as follows:

1.

The system consists of a depot and two bases. Any units removed
from the shuttle due to failure or suspected failure are sent

to the depot for repair.

A single item is examined.

Repair time is fixed. Transportation time from base to depot

is considered part of the repair time, and is fixed at td days
from the depot to a base and at tb days between bases. (These
assumptions are easily modified.)

The item experiences a nonstationary Poisson demand distribu-
tion with a demand spike m days before the launch at each

base.

There is a fixed number of spares.

The depot reluctance is zero; thus repaired units are shipped
immediately to the base with the greatest need.

Base need is a function only of its inventory position and the
length of time before its next scheduled launch.

Backorders are assumed not to prolong the launch cycle so that
the launches at a given base are evenly spaced, although

this assumption may be relaxed.

The launch rate at a base is directly proportional to the number

of shuttles at the base and does not change over the simulation

period.

bl
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Assumption 1 ascribes to the depot those functions carried out by
the contractor in the real system. NASA has no control over the contrac-
tor's operations, and, as discussed in Chapter 2, the shipment and testing
is so time-consuming that any removal must be treated as a demand on the
supply system. In Assumption 2, we 1imit the scope to one item, although

the simulation may easily be expanded. We may allow resupply times and

travel times to be exponential, but the fixed quantities are acceptable

as well. Next, although demand is assumed to be nonstationary, the
number of shuttles in the system is so high that the effects of nonsta-
tionarity become unimportant as we noted in Chapter 3. We use high demand
rates because otherwise it would be very expensive to run the simulation
long enough to collect significant observations of backorders.

Each of the fixed number of spares is either in stock, en route to or
from a base, or in depot repair. As Miller points out, the number in
repair is beyond our direct control, and so the model seeks to maximize q
the number which are in stock where the need is greatest, and places
1imits upon the number of shipments and hence the en route inventory.

In defining base need, we make use of the following definition of inven-

tory position (IP):
IP = # on-hand + # on order - # backordered.

We also would like to increase abase's need substantially if inventory

position is negative or if there is an impending launch at that base.

When a lateral resupply is considered, the need of the supplying base i

is computed and compared with the need of the potential recipient.




79

Lastly, we make some assumptions about the launch cycle. It is again

necessary to assume that the launch cycles are fixed in length, although
it is not unreasonable when considering many shuttles at a base to allow
some latitude in the launch date. The simulation is much more flexible
than the analytic models, and could easily be modified were this a crucial
assumption. The assumption of a fixed number of shuttles at a given base,
however, may be very important. It could be the case that a shuttle

will take off from one base and land at another, due to either landing
site weather conditions or an emergency landing. The subsequent change

in the launch pattern, although only temporary, could cause some

changes to supply system performance, especially if it is a rigid system
which stocks at only one location. The computer simulation could be
used to analyze these transient effects; however, that is not our

primary objective here.

In modeling the above system with a simulation, several events must
first be identified. The relevant events are listed in Table 4.1.
In addition to the actions which are produced automatically by these events,
there are several actions which may be produced by some events, depending
upon the state of the system; specifically, the relevant variable is
the base need. We now describe in some detail how that quantity is
calculated.

Miller defines base need to be a function of the expected backorders ;
over the travel time from the depot to the base. He approximates the ‘

discrete conditional distribution of expected backorders given the on hand ﬂ

inventory by a normal distribution. This technique is given in reference

[6]. Then the mean number of backorders is given by the following:




Table 4.1 Events To Be Simulated
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EVENT ACTION
1. Failure - decrement on hand inventory (-1)
- increment depot rapair inventory (+1) }
- schedule a repair completion
-~ compute new base need
- schedule another failure event
12. Repair - decrement depot inventory (-1)
completion - choose a destination for the repaired unit

- increment en route inventory to that base (+1)
(conditional event)
- compute new base need at destination

3. Arrival of a
spare at base

- decrement en route inventory to the base (-1)
- increment on hand inventory (+1)

4. Launch critical
(Beain/End)

- recompute base need at the base
- schedule next launch critical (Begin/End)

5. Maintenance

- reschedule the next failure event
(reflecting increased failure rate)
- schedule next maintenance date

¥B

where A is the demand rate over the travel time td.

i

= On hand + En route - Atd

of the number of backorders is given by the following:

2 .
GB = )t

4

Further, the variance

! If Mg is positive, it represents expected net inventory with no backorders.




81

s K10 il . e

Miller then makes a correction for the fact that the true distribution

is not continuous, as follows:

ﬁ*(vc"‘uB-GB) UB>0

ZOB B
Mg = ;
w2 .
20 (V op - ug - op) wg < 0

- where og = «ég is the standard deviation. The final step is the calcu-
lation of the mean of the backorders distribution, using the following
equation:

! 1
, L= 20 gL -(1/2)
P - E[B) = op * 5 ¢ - Opug 5 @

We are now able to define base need in a variety of circumstances. If

an item fails at a base, then we are concerned with the desirability of

o

immediately initiating a resupply to that base from the other base. How-
: ever, if the sending base's need will increase past that of the receiving
| base's during the time it would take to ship the part back and

forth, then the lateral shipment should not take place. In effect, we

are minimizing the maximum base need over a short time horizon. We ;

"
LN,

will thus carry out a shipment from base 1 to base 2 at time t if the

following holds:

L i

| Ng (t) > max [Ny (t)] ]
k| 2 tyt42t, 1 ,

where NB (t) is the need of base i at time t. The difference between this
i
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model and Miller's model is that we must now look forward in time towards

fluctuations in need which take place at predetermined times. The other

events for which similar comparisons are performed are summarized in

Table 4.2.

Table 4.2 Conditional Events for Shipments

EVENT CONDITION ACTION {
1. Failure
(base i) NB (t) > max [NB (s)] - decrement on-hand
i se(t,t+2tb) i inventory, base 1
- increment en route
; inventory, base i
' - compute new base
: needs
'2. Repair :
" completion max [NB (s)] ‘
se(t,t+tb+td) i :
!
> max [NB (s)] - ship to base i - ;
T ose(t,trt rty) T ;
E 3
3. Launch Same as for failure, Same as for failure, |
critical base i base i i
(base i) N

The overall computation of base need is derived only partly from the

expected number of backorders at the base.

Other important considerations

include the presence of backorders and the proximity to launch at the base.

In addition, at some maximum stock level, Ipmax’ the base has no need at

all. Thus we may define the need at base i at time t as follows:
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G if IP <0
NBi(t) = E[B]+nyi if 0 < IP < IPmax
0 if IP 3-Ipmax

where n is a constant representing the penalty for backorders as the
launch nears, and Y3 is a variable taking value 1 if a base is launch
critical and 0 otherwise. Thus base need might be represented graphically
as in Fig. 4.1. We note that expected backorders E[B] as well as ¥;

will depend not only on inventory position but also on the time period

over which NB (t) is evaluated.

j
The choice of the constant n must be made carefully, for a system

which ships back and forth with abandon can be just as inefficient as
one which ships only when a backorder occurs. The best value for n will

depend upon the activity rates at the bases, the expected backorders, the

nonstationarity of the demand distribution, and the number of spares in
the system. For our purposes it is acceptable to choose n by using trial
and error, but in any general use of the method, a more precise formulation

would be required. It could be that a good value for n is obtainable

in the same way that Miller calculates depot reluctance: as an expo-

nential function which decreases in the number of spares on hand at the
location in question.

The above model relates to the case where there are two stocking
locations for repairable spares, and there is an unlimited capacity for
lateral resupply between bases. In our analysis we consider three

separate cases. Case I allows shipments to either base upon repair
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completion, but does not allow lateral resupply. Case II allows ship-
ment to the second base only if its stock of spares is low and it is close
to the launch date at that base, so that limited lateral resupplies

are permitted. Lastly, Case IIl corresponds to the stiuation where two
bases, each with complete stocking facilities, are allowed to perform
lateral resupplies as often as is indicated by the comparison of base

needs.

The Computer Implementation

The model presented here was coded in FORTRAN and run on an IBM
370/168 at Cornell University with a VM operating system. Most of the
simulation structure is drawn from similar work done by Cogliano [2].
Significant changes include the addition of launch critical and mainten-
ance events, the extension of the time frame for evaluating expected
backorders, the introduction of nonstationary demand rates, and the change
in shipment discipiine to incorporate the three cases detailed above.

The simulation has an event-scheduling format, and is modularly
designed so that each subroutine relates to a specific event. The key
launch critical subroutine is given in Appendix B. The typical program
input is shown in Figure 4.2, with a flowcrart representation of the
simulation given in Figure 4.3. The item which was used for analysis is
like item 3 from the group of items we examined in Chapter 3. The item
experiences .300 failures per day on the average in the simulation whereas
the average failure rate for item 3 in models A, B, and D was .318. The
system is assumed to consist of seven shuttles at base 1 and five shuttles

at base 2. Since shuttle turn-around time is fifty days, there is a
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IP

Fig. 4.1 Base Need as a Function of Inventory Position.

seven day interlaunch cycle at base 1 compared with a ten day cycle at
base 2. There is one item on each shuttle, each with a failure rate of
1/40 per day if stationary demand is assumed, and a resupply time of

60 days. There are 25 spares in the system, 15 of which are initially
at base 1, and the remaining ten are at base 2. Depot to base travel
time is 1.0 days, while base to base travel time is 2.0 days. The
simulations were "warmed up" fpr a set period of time before a series of

daily observations were begun. The output, which reports the average

o e m— o




Figure 4.2 Input for Simulation

OEACH INPUT FORMAT IS EITHER 10I4 OR 10F4.0
ONUMBER OF BASES

NUMBER Og ITEM TYPES

NUMBER O; TYPE-1, TYPE-2, ... UNITS AT BASE 1
NUMBER Og TYPE-1, TYPE-2, ... SPARES AT BASE 1
NUMBER ég TYPE-1, TYPE-2, ... UNITS AT BASE 2

5
MUMBER OF TYPE-1, TYPE-2, ... SPARES AT BASE 2

NUMBER ég TYPE-1, TYPE-2, ... SPARES AT THE DEPOT
AVERAGE gIME-TO-FAILURE FOR TYPE-1, TYPE-2, ... ITEMS
AVERAGEugAggOREPAIR TIME FOR TYPE-1, TYPE-2,... ITEMS
AVERAGE gégor REPAIR TIME FOR THESE SAME ITEMS
PROBABIEgigogF A BASE REPAIR FOR TYPE-1, TYPE-2, ...
TRAVEL Tgég Fnomosgsa-1, BASE-2, ... TO DEPOT

TRAVEL TIME FROM DEPOT TO BASE-1, BASE-2, ...

AND FROM BASE 1 TO 2, 2 TO 1, ..., WITH LATERAL RESUPPLY
1,000 1.000 2.000 2.000

PROCESSING TIME FOR ORDERS FROM BASE-1, BASE-2, ...)

0.0 0.0
OLENGTH OF THE WARM~UP PERIOD
150. 000
TIME BETWEEN SUCCESSIVE OBSERVATIONS
1.000
NUMBER OF OBSERVATIONS TO TAKE (FORMAT 16)
500

ENTER 1 FOR AN ESTIMATION OF VARIANCES
0

ENTER 1 IF FAILURE TIMES ARE EXPONENTIAL
1
ZNTER 1 FOR A TRACE OF EVENTS
0
SEEDS FOR FAILURE TIME AND PLACE (2F10.0)
745623964, 235187469.
SEEDS FOR REPAIR TIME AND PLACE (2F10.0)
254768137. 647629632,
SEED FOR INITIAL CONDITIONS (F10.0)
545734621.
OBASE ORDERING POLICY:
(1) ORDER TO MATCH THE UNIT THAT FAILED
(2) ORDER TO REPLACE THE PART JUST INSTALLED
(3) ORDER TO REPLACE THE PART THAT FAILED
(0) DOES NOT APPLY; SHIP USING MEED & RELUCTANCE
0

.
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(_BEGIN )

INPUT DATA

Initialize number in
repair, completion times,
and time of first failure

Calculate Table of
Expected Backorders

Advance the Clock
to next event

What . . .
. event is if statistics event
"\\\ occurring
\\?
otherwise
IBASE ITEM LAUNCH REPAIR ITEM
LﬂBRIVAL FAILURE CRITICAL !| COMPLETION| | MAINTENANCE
Take action based Collect statistics;
on Tables 4.1 and 4.2 schedule new
statistics event
Time
No / Timit
—

Figure 4.3 Flowchart
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number of shuttles grounded, is discussed in the next section.

Simulation Results

Using the hypothetical item developed above, the computer simulation
is used to test the expected performance of supply systems under the three
cases we identified. Although the system's configuration and shipment
limitations are varied, the failure rates and random number seeds are
identical for all runs. This results in nearly identical patterns of
failures during each of the simulation trials.

Our primary results concern the case where there is no nonstationarity
in the demand distribution. As we are dealing with an activity rate of
one launch every 4.4 days, the results of Chapter 3 would suggest that
incorporating nonstationarity is unnecessary. The simulation output is
shown in Table 4.3 for the three cases defined earlier. We see that the
best performance is returned by a system allowing unlimited lateral
resupply. In addition, the output would suggest that in this case it is
preferable to have both basing lTocations stocked with spares than to stock
only one location. This fact is demonstrated by the 70% reduction in
backorders which Case I achieves relative to Case II. Table 4.4 gives
information on the performance of the three decision rules with respect
to the number of shuttles grounded during launch critical periods. It
is possible to achieve close to zero backorders if Case III is implemented.

Taken together, Tables 4.3 and 4.4 suggest than an optimal policy
in all respects might be the use of Case III. We note, however, that
even when the launch critical constant is zero, we will make close to
100 shipments of our hypothetical item in a 500-day time period. Thus
Case I might be a better choice if the cost of a lateral resupply capa-

bility is high.
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Table 4.3 Average Number of Shuttles Delayed

Launch critical Cases
constant, n 1 II I11
0 .066 .222 .008
.01 .066 .222 .014
.05 .066 .222 .012

Table 4.4 Average Number of Shuttles Delayed During Launch Critical Period

Launch critical Cases
constant, n I II 11l
0 .076 .208 0.0
.01 .076 .208 .004
.05 .076 .208 0.0

Table 4.5 Average Number of Shuttles Delayed with Nonstationary Demand

Launch critical Cases
constant, n I I1 I11
0 .400 .500 .398
.05 .400 .500 .386

Table 4.6 Average Number of Shuttles Delayed During Launch Critical

Period with Nonstationary Demand

Launch critical Cases
constant, n I 11 III
0.0 .002 .184 0
.05 .002 .176 0
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Nonstationarity in the lead time demand rates may easily be inte-
grated into the framework of Miller's RTM. Since the simulation kept
a current value of the next failure time, the demands in a given day
could effectively be doubled by simply combining the expected number of
demands for two days to produce the demand for a spike day. We chose
to do this on the day the shuttles become launch critical, but it could | |
occur on an arbitrary day or days in the launch cycle. With a failure
rate of 1/60 per day on non-peak days and 1/30 per day on spike days, we see
in Table 4.5 that Case III is able to completely avoid backarders for n=.05.

When we examine the performance of the three cases during the launch

critical period, in Table 4.6, we note that Case II's performance worsens
during the launch critical phase. This is due to the fact that we may
ship a spare to base 2 only rarely for lack of prepositioned spares
facilities at that location. Thus many backorders at location 2 will
last at least a day or two. In this case we note that increasing the
launch critical constant in Table 4.6 may remedy the situation for Case II.
It has no effect on either Case I or Case III. It is interesting to note
that the precautionary shipments which we allow in Case III are able to
eliminate all backorders during the launch critical phase. However, we
must caution that these data may only be considered as preliminary
results since they are based on single simulation runs of 500 days. Much
more investigation is necessary before we can actually identify a good
value for n in all cases and before we can state that Case III is always

superior to the other cases with the proper choice of n.

Once the desireability of lateral resupply capability and multiple
location spares prepositioning is determined for all items, decisions

as to the shipment discipline for the overall system may be made.
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This determination will have to depend upon the probable uti]i;ation
of the lateral resupply system relative to its cost. |
There is thus no single relationship that determines which basing
concept is best for all spares in the sense that it simultaneously mini-
mizes grounded shuttles on the average as well as during launch critical
periods. The launch critical constant as well as the shipment discipline
must be carefully chosen using the best information available about each
item. Methods such as those outlined in this chapter can be invaluable
in performing the necessary analysis and in implementing the results.
However, one might well attempt to formulate some combination of Models
A, B, and D with the simulation introduced above. It may be that for
the price of lateral resupply capability we could substantially enrich
the spares mix and surpass the performance of Case III. The objective
of such a formulation would be to minimize the combination of spares
investment with the expected ongoing costs of transportation and spares
facilities. In addition, the flexibility of a multi-base capability in

case of a real emergency merits additional consideration.
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CONCLUSION

The results of Models A, B, and D poiint out the potential differences
in spares mixes and performance levels which result from the choice of
any one model. They indicate that, at least for the items we considered,
nonstationary Poisson demand rates may not yield significantly different
spares mixes than stationary rates. As lead time demand variability
increases, however, nonstationarity could be an important factor in
setting spares levels.

The simulation results indicate that a good real time shipment
policy should respond to nonstationary demand rates and to launch critical
events. Further, systems with both lateral resupply and prepositioning
of assets at both bases seem to return the best performance. The final
judgments may not be made, however, until the cost of each of these

capabilities are included in the analysis.
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2 T=ALAE (1,Jd)

i BAC (1) =phC{I)+ELLL (1) *hoCL3% (1) /28800

INSERE (=1)

eCLE=EX

. 3TCun=Ce

3 I (IEL{I)eluwe () GC w277

L=LEX (4)

SIiLlr=0.

C cu K=1,u
5iCCKR=5TCCE+1T,

PX=FX*1/570CK

—




) /
103
£
i PCUM=PCUJ+EX
3 BAC (I) =EAC(I)=(1.-DCUM)/NDAY
2670 CCNIIKUE
279 CCW11INUE
C
C *%%%* CALCULATE ERGDUCT OF 1INDIVIDODAL ITEMS!?
-C ECS CN DaY J
c
EHAT=FCUM*EHAT
ELUS(I,J)=(PCUN+ (PX*T) /(STUCK+1.)) /PCUM
CLa{i,d)=CX
cun(I,d)=PCUX
ZC5{I)=PCUX
SLUETI= (1.=PCUM) *EDDE (1)
SEX(I)=SBX(I)+SHCBT
250 CORTiINUE ]
K4AT1 (J)=FHAT ¥
C
C #*%%% CALCULATE WEIGHIED PCS(S) CN LAY J
C
WECS=hk {J) *KdA1
C
C #%**% SUn wiplGHIEL BCS FCR ALl DAYS
C
A=WECS + &
if (CET10KeEQ.2) GO TO 281
285 DELNBAX=C.C
Lo 280 i=1,NITENS
d
C #%%%% CAICUIATE A(S1,5Z2pe0esS(I)41,0e.,51(1))
c .
EHATZ=hHAT1(J) *PLUS(I,J)
AZ (I)=hz (1) +RBAT 2*W (J)
1F (J.LT.NDAY) GO T0 2&5
C
C #*%x%% FILD iNDhOVEMENT OVIF CUKRENT A (<)
C
CEi=(AZ(1)-A) /BRCCST (1)
C
C *%%»% F.MNL HAx iMFRCVEMENT
C
iF (LEL.LTDELUAX) GU TC 2&S
1BES1=4
CELNAX=LEL
285 CCNTINUE
200U .CRTIGUE
vl CINILTLUE is
200 CONTINGE
IZ(sLAG.ZL.1) GC 1C 245
LC Z4v i=1,h177as
R CSHOET=0SLOT T 4L L (l)/n;dl
2489 ConhNiliiaL
24% Contllun
i¥ (CETICleiwex) GL 70 545
C




C #%%a3% ALDD EEST ITEM 1C SPAKRES COST IF < EUDGET

C
ICOST=CCST ¢+ BCOST (IBEST)
295 i (2C057.GI.EUDGIT) GL 10 530
CCST=1C0ST
&=A2 (IPRST)
LC 300 1=1,N1TEMS
A2 (I)=C.
300 COaTINUL
C
C *®%x¥x AUL EIST ITENM 10 SPARES HIX
C
LEX(IEEST)=1FEX (1BLST) + 1.
StcxI=C.
C
C *%%%x [LCCJAPUTE WwEIGLIED PCS(S) CON DAY J ICFE
c NEw 3TARKES LIX MWL EACKRORDEF PEROBABIIITIIES
.C FOR NEWLY ADDEL ITER
C

BC 525 J=1,KLAY
1=1EEST
CLL (1,d)=CUR(1,J)*ALAM(T,J) /F1CAT (LBx (1))
RHAT 1(J)=EHAT1(J) /CUHN (I,J)
CUK{I,J)=CUK(I,d)+CUR{I,J}
EAC(1)=EAC(I)~(1-CUK(I,J)) /HLAY
PCS (1)=CUK (1,d)
FHAT 1(J3) =RHAT 1(J) *CUM (I,J)
‘ PLUS(I,3)= (CUM(I,J)+CUR{i,J)*ALAY% (1,J)
* /FLOAT (LBX (I)+1)) /CUN (I1,J)
SHCR1=CUF (I,J)*EDLK (1) ¢SHCH1
500 CONTIRUE
SEX{I)=SEX{I)-SHCRI/HDAY
TSHORY=TSHCEI-SHOR1/NLDAY
CUMKI=KDAY-2+ (REIGHT*2.)

c
C *%%%% CALCULATE ECS(S)
C
SYSECS=a/lUcwi
FLAG=1.
c
C #%*%*% FI1AG PREVENTS FECALCULTION OF XEw PACKCEDEF
c FERCEASILITIES.
GC TO0 110
530 IF (SYSFCS.Gi..9%) GC TIC 54¢
c
C *%%%¢ ILCRENENT L[UDGET CEILING
C
1F(2UDGIT.GTI.1CCEIG) GC 1T 54C
IUCCEI=FUDNGET+10C0N0N,
LC 531 I=1,MI1EMS
ECEFECHEAC (D)
z31 ConoIati

o
C **xx» [3°r148Y CUGELTD
C




105

CALL CUTEUZ
K 3C TC 29%

: 545 CUMNI=NTAY-, +LFIGHI*Z
: SYSECS=A/CUNMT

-f 540 CCuTINUE

. DC E4E I=1,N11EMS

i EPC=EEC+RAC (I)

X 546 CONLIINUE

4 RETUSN
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SUEFJUUTINE TO IPPIEMENT ALGORIIHM ALL ZvALUAIE SFAELS
BIXES FCiL UOLEY 2
EY KALHLEEW CCMLEY, DECEMEER 19¢&1

(s NeNgNaNel

SUEKGUIINE EE

LA R R R I S R P PR S P R R S P S R S Y R P S s
THE FOL1OwIks VAFIABLES ARE UNIQUE Tu MULZL B

(B0 (M) =-=CU0KULATIVE WEIGHTEC PROBAELILITY CF A
SACHCOROIL FOF JTRERATICHN K

ALPhA=~nldX18JY ACCEPIABLE PROEABILIIY OF &
VACKOLDEL FCL AnY IIEM

RoErS=<NUNBEL CF ITERATIONS ULSIKzb

SAX=~8AXINUY ITEE CCSI .

CIMwI~~CUMULATIVE WEIGUTIS FCE EACKCEFDELS OXK ALL DAYS

COMFAn==1601Ca%755 SUBROUIINKE IS BEING USELD 20
EVALUATE EXTEENALLY GENERATED SCAELS NIX

LXBO(L,)=~ZXPECIED WEIGHTEC EACKCEDIRS C? 1TEN 1 AT
1TIEATION K

LSTCCR {1,M4)-=81CCK LEZVEL FCE ITEX I A1 JTEEATICH .

CC5TN (M) ==SEAFES MNiX CUS1 FOR ITERATICHN N

AERKREREEERX R REXKERE RS EE AR ER AR AR X REEREE RN TR R R R R E R RS R kX

[eNoNaNeoNoNeNsNeNasNeNakasReRe e Ra X2 Re Ra ke

ceorron BRI (160) 4FPCEST (100) ,

* w(1CC) ,sCCS1 (12C) ,RG (30,15) ,CEC{15),
*CCST (Z)

CCYXa0W FX,DJULLCAY,ALPHA,NREPS,EUDGET ,lAX,CUAdL,
*CrIiCHR,T10704L,CCHEAK,WEIGHT,BDE,NDAY, IS
CONMMON LRX(102),CU0KBC(20) ,EXEC (3C,20)

CCEEON 1L§N(]00,100) LSTOCK (30,20) ,€051I¥%(20)
cCayey uNITLSZ,NSHUDT,SEIRE(1CC) ,15T

REAL Fa,?CUs,1HETA,THETAN

DIXERSICH E(1C0)

C *%x%x FiNL S5AX CC31

1F (CPTI0N.HZ.3) GC TO 215
$ax=0,
TC 3uv I=1,UITE4S

1F (BCCST (i) +1E.KAX) GC 1IC Z5C
LAX=BECCST (4)

25C COJTilU&
LEITE(&O 305) (ALAY (I,J),3=1,40401)

325 CEAAL (15(/7F12.5))

300 ceMiludz

C ®xx%x 0T 50N oI wWwIIGHTIS

CUlivi=y.
DG 0T J=1,hBAld
CUoTI=CURRT ¢V (J)




e e

s s e
s

393 CONTInUT
315 CCMI1uUE
THEIA= (1.-ALFiia) *CUNKT/EAX
LC 355 %M=1,NhEES
CUMBG (MK) =0,
CCSTHM (MM) =0.
CRBO (%K) =0
355 CCORTINUE
D0 BIZ I=1,KITENS
CUESUY%=0.
S1GCR=C,
N=EFLFS
I} {(CCHERBLEC.T) N=1
LC 450 %=1,%

*kxx%x CUMPUZE MULTLPFL1ER FOR I1ZERATION b ARD CalTJlCAL
VAIUe FOF 11EVK I.

NnoOeon

THETAM=THETA/Z. ¥% (K=-1.)

8HS=CUART-THETAM*BCOST (i

I (STCCK.GTI.D) GC 10 3b
CULSUM=0.

)
u

*%x%x%x Syq FROEAEILTIES OF ZERC LEAD TINE DENANIS

OO0

LC 270 J=1,NDAY
T=ALAY (1,d)
E(J) =EXP (-T)

ECUM=E {J)
CUMSUN=CUMSUN+& (J) *FCUY
372 CCRIINUE
369 CCNTIKUE
IF (CCMEALK.EQ.V.) GO IO 350
Egs=C.
STCCK=LBX(I)-1.
GC 14 395
390 CONTINUE ?
IF (CUMSUN.GE.EHS) GC 1C 4c<% 3
3U5 cniMsiM=0,
STICCK=STCCEK+1,
¢ 378 J=1,NDay
T=ALAN({Z,J)
E(J)Y=EXP(-T)
ECUM=E (J)
IF(STCCR.EQ.0.) sC 1IC 277 1
ISTCCK=IR1 (STGCK)
DO 37¢€ £=1,ISTCCt
P(J)=E(J)*T/E1031 (k)
ECUN=E{J)+LZU.
37¢ CCYI1NUE
577 CCuUTINUL
C
C #%%% Sy, 4,.ivi%oo TrCLGIZIIITIIES CF wo:C LACHCILELS
C

CUNSUE=CUNLSDN+K (J) *EL T2




375 CCNTANUL

*¥*%%%% RzpP:zaT UNTI1 STCCK CAUSES FUNCTLICH 10 ECXCEED
CRI1ICAL VALUE,

anoan

1F (CCYPAK.EC.0.) GO TC 387
400 CCHTINUE
EXEC(1,%)=0.
LSTCCh (2,4) =STOCK
CCSTE (M) =CCSTH (M) +LSTOCK (1,4) *BECCST (1)

#¥¥%e® pVALUATL LEFLCTED KLIGETEL EACKCRLELS FCA

ZACH 1%te

s NaNeNg!

2 Lo 4060 J=1,NCBY
L

: ¢
<

SUk
P T0CK
B

[ [ I~ S < 4

£{dJd)
b

AK({1,0)

W KR n tn

-
, wbe STK=STh+ 1.
4 EE=EF*1/STK

. SUM=SUN+ (SIK-STOCK) *Pk

[ IF (¢§.1%.10-5) GG TO 465

GO TU U462z
465 CONTINUE
EXEC (1,M4)=EXBU (I,4) +% (J) *SUX
46C CCNTINUE

*x%*% FVALUATE CUMULATIVE Ei &T BC]

[aNeNg!

CBC (¥)=CBO (M) +EXEC(I,8)/CTONuZ
: 450 CGRIINUE
1 5CC COKT1HUE
CAll CUi
REIUEXN
ENL
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LA+

C
C SUBRCUTINL 10 INFLeKENT ALGCRITHE AND EVALUATE SEARES
C ¥IXES FCR MCLEL L[
C BY KATLLeEN CCLLIEY, DECEKEEF 1951
C
- | SUELOUTINE DD
B | C
,’ CREXLERX LB AR RKEELRAF A BT RERREREE KRR BE R R RGNS R RN K SR ER R RERE LR E KX
- C
‘f C THE FOLLOKING VAFRIAFLES ARk DEFINEC Ch KEITHER XUDsl
; c A NCS MODEYL Es
‘ C
C wBAF(1,Jd) -~4IIGhT If A BACKORLER DAY 1IXLS IXPECT:D
C WATITTING TINT ECT A EACKCHOZHE uds LAY J FOR ITEL
C I.
C CET (1)~-=~CUNUIATIVE WBAER({I,S3) FO& ALl LaYS rox ITEX 7.
. C
c*##*#*#*#*#*********#***#***t**#*#*t***#*##*##t#**#*v*#*#*t**
C .
CCHNON BDDE(10C; ,EDCESTI (1C89),
* ¥ (100) ,ECCST (100) ,BO(30,15) ,CBO({15),
*CCE4L {3)
CG¥MUON PX,CUFLAY,ALPLA,NREPS,BUDGET,MAY1,M2X,
*CP1IOK,101DlL ,LUrLEaR, WEIGHT , LUk, NLAY K5
COMNGL LBL (100),CUMBC(20) ,EXEC (30,20)
! CCEKOM ALAN(10C,100),LSTICCK(30,20) ,(CSTL(2D)
! CCKMON WITEMS,NSHUT,SPIKE(100) ,1IS5P,wEAR(30,100),CkT (3V)
! REAL FX,PCUFK,1HETA,TUETAN
LAiNENSION E(10C)
! C
, C
‘ IF (OrTIUL.LE.3) GC 1IC 315
C
C *%*%*x FIND 'SUM CF WEIGIIS
C

CUMW1=0.
C 350 J=1,wCAY
‘ CUMKT=CULWT+% (J)
350 CCOKT1KUE
LG 300 I=1,8TiThs

- C

. C **%x% CONFUTZ WEAL (1,d)

#§ C

3 CuT (1)=C.

£ LO 310 J=1,NCAY

E #*BAG (X,J)=k (J)*RLCRST (1) /24./ALAY (I,J)/CUIRT
; CwT(I1)=Cwi(L)+wBAK(1,J)

b 310 CCORTINUE

3 AE1TE2(%0,100) Cal({l),I,(nBAr (L,J),d=1,uD1Y)
o 102 FCREAT (21C0.C0,14,15(/7F13.9))

3 300 CCRTanUL

i C

THETA=10000uuul.

g 2C 110 1=1,3ITERS
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C #*#%% FIND NAXINUM TEETA FCR AIL ITiNs3
C
16E1AI= (1-ALEHA)*CW1T (1) /ECCST (I)
IF (THETA<GI.ThETAI) THETA=THETAZ
, 110  CONT1INUE
. WRITE(60,10%) THETA
\ 105 FORMAT (YIEETA= ',F10.6)
; 315 CCNTINUE
. oC 355 MM=1,NBREES
; CULRBC (MM)=0.
. CCSTiH (4, =0.
: CER(#4) =20
' 355 CCRIIHUE
IC 500 1=1,WiITEKS
4 CUMSUM=C.,
STCCK=0.
N=NKL23
IF (CCMEAF.EC.1) N=1
Lc 457 K=1,K
THETAM=THETA/Z. ¥* {¥~1.)
RhS=CKT (1) -THETAN®*ECOST (1)
I7 {3TCCr.GT.0) GO Z0 380
CUMSUX=0.
LC 37C J=1,NDAY

I SOV ey —y

*%x%%¥%x SUs4 PRCBARILIIIES CF ZERC CEMAWDS CVER 1Al TINE

NnoOe

T=ALANM (X,J)
E(J)=EXP(-T)

ECUX=I (J)
CUMSUN=CUNSUM+KBAK (I,J) *PCUX

C *x%%x% SU4 WIIGHTED FHOEABILITIES OF 0 LLAD 1INE DEKANLS
C
370 CONIINUE
383 CONTINCE
iF (CCHEARaECUa) GO TO 39U
rHE=C,
STCCK=LBX(i)~1.
‘ GC IC 395
390 CONTINUE
IF (CUKMSUM.GL.XHS) GC 1C 479

R R .

C
C **33xx CONTIINOL UCHIEISSE FULCTION EXCELDS CLITICAL VALULS
C

395 CIN¥STE=0.

5T0CK=STOCHK+1.
LG 375 J=1,KDAY
T=ALAY (I,3)
T(J)=EAF (=%)
ECUN=E (J)
I {STCCK.EL.C.) GC 1T 377
I5TCCE=1LT (STOCh)
LC 576 K=1,IsLclr
P (J) =P (J) *1/FLOAT (K)

ey e A i MBI s Y R

) { K - s i ) -




m

sCUM=E {J) +ECUr
376 CONTIANUE
377 CONTINUE
CUNSUM=CUMSUMN#+EBAR (1,J)*ECUY
378 CCRIINUE
IF (CCPPAR.E(.Ca) GO 10 380

C

C ¥x&*x FEPEAT UNTIL STICCK CAUSES FUNCIICN TO EXCEED CEITLiCAlL
C VALUL
C

b B - i RN o T e S 2

43 CONTINCUE

157CCH (1,M) =STOCK
| CCSTE (%) =CCSTE (%) +1STCCK (I ,M) *BCOST (1)
% LXEC (i,EB)=0.

= C ****% EVALUATE EXPECTEL WEIGHTED BACKCADER LAY5S FOL EACE LTEH
he c
| TC 460 J=1,NDAY *
3 SUx=0
STH=STLCK
] T=ALAY (I,Jd)
“a ER=2 (J) . !
1 4o S1K=STK+1. '
8.1 Ei=F#*T/STK
‘ SUK=SUN+ (STR~STCCK) *Ch
1F (PL.LT. 1E-8) GC TO 406&
sC IC 402

TR R

465 CGNIINUE
EXBEC(I,%)=EXEOQ(I,N)+¥WEAb(1,J)*SUd/NDAY
46U CCNTINUE
C .
C #%**% FVAIUATI CUNMULATIVL EXPECTIED wilGHT"ED BACARORDEER LAYS

: C
; % CUMEC (¥) =CUMEG (K) +EXBO (1,%)
2 CBC (¥)=CUMEC (&)
f | 459 CCET INUE

J; 53¢ CCRTILUE

: call ¢us

- 4 EETULE

: ENL

;‘

%
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SIBULATION FOK EASING STUDY FOR SHUTTLIE SPARES
BY KATHLEEN CCHNLEY, DECEMEES 1981

THE MAIN FROGRAS IS ALMOST ENTIBELY TAKEN PROM TIHE
BEFERENCE GIVEN BELOW. IT IS INCLUDED POR PURFOSES
OF VARIABLE CEFINITICON OXNLY.

NOTE:

SIMULATION OP A THBO-ECHBELON INVENTORY SYSTEM
BY JIN COGLI1IANO, NOVERBEE 1980

BEFERENCE:

EEEERESERRR RSN EBEARER LRSS RSN ISR FSESERFUSSB A SIS SRR S S S 00X

LIST OF GLOBAL VAERIAELES

ZPAEAY SYSTEN FABAMETERS
LHAX NOHBEB CF BASES
Inax NUMBEF OF ITEM TYFES

NURIIS(L,I) NO. CF UNITS CF TYFE-1 AT EASE-L

NSEABE(L,I) INITIAL NC. OF SPARE PaRTS OF TYPE-I AT LOCATION-1

AFAIL(L,I,J)AVG. TIME-TO-FAILORE FOE TYFE-1 PARTS INSTALLED IN
TYEFE-J UNITS AT BASE-L

ﬂﬂﬂﬂﬂﬂﬂﬂﬁnﬂﬂnﬂﬂﬂﬁﬂﬂﬂhﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂnﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

» ’—‘““"'h chaiiinane : N - -

AREP(1,I) AVG. EEFAIR TIME FCH TYPE~I PAETS REPAIRED AT LOCATIOB-L
PREP (1,1I) PRCB. OF A BASE REPAIR FOB TYPE~I PARTS FALLING AZ BASE-L
ABD(L) AVG. TRANSIT 1IME FFOM BASE-L IC THE DEPOT
ADE({L) AVG. TRANSIT TInr FROM 1ur puPCl 10 BASE-L
AQBD (L) BAVG. FRCCESSING TIME FPOE AN CBLCER FBOM BASE-1l
LDEPOI INDEX FOR THE DEPOY (ALWAYS ECUALS LMAX+¢1)
/STATE/ STATE VABIABLES -
NB(L,I) NO. OF TYPE-1I PARIS IN BEPAIR AT LOCATICN-1L
NS (L,1) NO. OF TYFE-I PARTIS IN SPARF STOCK AT LOCATION-L
NBD(L,I) NQ. OF TYEZ-1 PABIS IN TEANSIT FEOM BASE-1 I0 THE DEPOI
BDB(L,I) NO. OF TYPE-I PARIS IN TIRANSIT FROM THE DEECTI TC EASE-L
BU(L,1,d) NC. CF TYFE~I FAKTS INSTALLEL IN TYPE~J UNITS AT BASE-L
NG (L,1) NG. OF TYPE-1 UNITIS AT BASE-L GROUNDED FOE LACK OF FABTS
NGXX NG. GFOUNDED FOBR LACK OF FARTS OVER ALL UNITIS ANL EASES
/STATS/ STATISTICS: CUMULATIVE SUMS OF 1HE STATE VARIABLES
/CLOCKS/ SIBUIATICN 1IMING VABIABLES
CLCCK CUERENT TIME )
CS1AR1 LENGIH CF WARM-UP FEFRIOCD
CSTOP TINE T0 STOP SIMULATIUN
CINIES LENGTIH CF TIME BEIWEEN STATISTICS OBSERVATIONS
EOBS NUMEEF CF OBSEBRVATIONS 10 TAKE
/0FTI10K/ OFTIONAL FEATURES
IvaR 1 FOR VAKIANCE ESTIMAIION
1EXP 1 FOR EXPONENTIAL FAILURE TIMES (FASTER EXECUTION)
IIBACE 1 FOR 1BACE OF EVERIS
/POLICY, POLTICY SELIECIICN VARIABLES
IBORD " BASE CRDERING POLICY

A QR AT W RV - 7.
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€ IBINS1 BASE INSTALIATION ECLICY
'C  IXDSHIE DEFOT SHIPPING POLICY
{ o
C J/OBLERS/ DEFPOT BACK-ORDER LIST (ARRAY OF PORBWABRD-LINKED LISTS)
C JEVEN1S/ PUTURE EVERIS 1IST (HEAE~SCETEL)
C /SEELS/ RABRDO® NUMBER SEEDS (DOUBLZ PHEECISION FOE 1MSL)
'€ -/CUBREV/ CURBRENT EVENTI CODE AND ATIARIEUTES
-C /NBy/ NEED-BELUCTANCE VABIABLES
C /FILES/ INPUT AND OUIEUT FILE UNI1 NUMEERS
C
CESEIBISISRERLEBES SR SNBSS EENEEB RN L SESSABSFEUELERRSSESS XSS
c .
CONMMON /PARAN/ 1BAX, IMAX, NUNITS(S,5), NSPARE(6,5),
(3 AFAIL(S5,S,5), AREP(6,5), PREP(S5,5),
€ AED(S), ADE(S), ACRD(5), LLLPOT
CCHMNON /STATE/ NB(6,5), NS(6,5), HBD(S S), NDB(5,5), NU(5.,5,5),
4 NG {5,5), NGIXX
CCBHBOR /STATS/ SE(6,5), SS(6,5), SBD(S 5)., SDB(5,5), SU(5,5,5),
3 6 (5,5), SGIX, SSGXix,
& SSBR(6,5), SSs(6,5), SsBD(S,5), SSDB(5,5), ’ s
3 S50(5,5.5) s SSG(5,5)
CCMNON /CLOCKS/ CLOCK, CSTART, CST0OF, CINTEE, NOBS :
COMMON /OFIICK/ IVAR, IEXE, ITRACE l%
COMNON /PCLICY/ IEORD, IBINST, IDSHIP
COMNON /ORDEES/ IT1PRK (5,2) ,ITERT(5,2),10C(100), HXILOC(100) NXILF
COMMON /BVENTS/ NXTEV{10N0), TYwT (1000, IRFO(1000,4), NXTEIVYP, -
& FIIME, FEATE
CONMON /CURREV/ KODE, K1, K2, K3
CONMNON /NR/ BNMAX (S), LENBAX(S), EN{5,5),
5 BTIELE(5,5,21,21), DIABLE(21), BIMAX, NSMAX,
& ICB(5,8,4,4,4,49,4), 1080, IEMAX
CCHMMON /FILES/ JIN, JOUT
COBMON /LA1S/ £1,52
[ o
C
C sEeRs
C TBE BMAIN PROGRAM CONIEFOLS TRE EXRCUTICN OF TBE SIEULATION.
€ THERE AEE THREE PHASES:
C (1) READ TIHE INFUT PARAMETERS AND INITIALIZE THE STATE .VARIABLES.
(o {2) PROCESS THE EVENTS AS THEY OCCUR. ADVANCE TBE CLCCK, CCLLECT
[ o STATISTICS, AND CALlL A RCUIINE 1C CAERY OU1 THE DETAILS.
C (3) PBINT THE SUNMARY STATISTICS. ;
C s : |
C »od
JIN = 1 g
Jou1 = 2 : i
C . ]
C
CAll INPUT
CALL INII
CALL STAT (1)
C
10 CAll EVENT (T,KOLE,K1,K2,K3)
CICCK = 1 A
c 3
1

S e P aee cafdwes s R

- . g . . - . r'd
Gt e et e R R ;
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IF (KODE.EQ.1) CALL ABEIVE (K1,K2,K3)
XF (KODE.EC.6) CALL FAIL (K1,K2,K3)

$s&¢* LAUNCH CRITICAL EVENT

ann

1F (KODE.EQ.12) CALL LCRIT (K1,K2)

1P (KODE.EG.1S5) CALL CBDEF (K1,K2,K3)

IF (KODE.EC.18) CALL BEPAIR (K1,K2)

IF (KODE.EC.19) CALLI STAT (2)

IF (KODE.NE.19.0B.CLOCR.LI.CSTOP-CINTEF/2) GOTO 10

CALL STAT (3)

(]

‘ST0P
BED

$%¢s% COMPUTER CODE FOR ALL BUTI THE LAUNCE CRITICAL
SUBFOUTINE IS OMITIED--BOWEVER, TO RUN THE PROGEAHN,
ALL 1HE EVENIS BUST CORRESECEL T0 SUEEOUTINES

onthOAD

CERR LS L X5 2SR XX SR L LRV S LK ER XSS LRV EBE LS SR ISR SL 2 $ 88528

C .

o 1AUNCH CRITICAL AND BONSTATIONARY DEMAND SUBROUTIRE:

C

CESESAR2 2P LEREXLLLNR LI B REEN R AR SE* O+ R A E PRI R ESERR ISR $ 428

C

SOBRBOUTINE LCEIT (L,K)

Cc

CONNON /CLOCKS/ CLOCK, CSTART, CS10P, CINTER, NOBS

COMBON /EVENTIS, WXTEV (1000), TIME(1C00), INPO(1000,4), RXTEVF,
FIIME, FRATE

CCHMOE ,PARAB/ 13AX, INMAX, NUNITS(5,5), NSPABRE(6,5),
AFAIL(5,5,5), AREP(6,5), PREP(5,5),

’ ABD(5), ADE(S), AQED({5), LCEPOT

CCHMMON /STAIE/ NR(6,5), NS(€,5), NBD(5,5), NDB(5,5), NU(5,5.5).
NG {5,5), NGXX

CCHNON /POLICY/ IBOBRD, IBINST, IDSHIP

couscM /CUBREV/ KODE,K1,K2,K3 -

o oM o

#se3# K IS 1 RHEN LAUNCH CEITICAL, RESET TC 0 UPON LAUNCH,
AND IS 2 WHEN LAUNCH CBITICAL IS APPEOACHING

#&s¢+ CETERNINE BASE T0 BASE TRAVEL TIME

aonnnaNn

1l=1+2

RS1=ADB(LL) * 2

IF (ACB(L) .GT.BST) RST=ADB(l)
IF{K.EQ.1) GO TI0 100

s%%es CUERY USERAFCR NONSTATIONARIIY IN CENARD RATE

N0 0

I? (TFLAG.GT.0) GC TO11
WRITE(7,9)
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S FCONAT ("TikES3? E3,.CV)
REAL (6, 10) T1NES
1C FCEXAT (F3.C)
11 TELAG=1.
c
IE(sakC.2) GO IC 30
c
C *xx%¢ I} IAUNCK IS TCLAY (K=0), LCUBLE
C TH: CEMANLC SATE FCF TODAY OKLY
C
FTIINE=FTINE-TIKES
IF(ET1aE.1%.0) rOIKR=C,
c
C *##%* SCHEDULZ AMCALEDI LAUNCH CERITICAL
C
1=3C/NUKIT3(L,I6AK) - KST
LISEIE=L
CALL SCHED{1,12,1,1,0)
C

C #*x%%% SCHlpULL ANCTIHEF LAUNCEH CEITICAL AEFECACLING

72=1-ADE (L1)
IF (T2.6L.C) GG TC Z%
WRITEZ (3CUT,20)

20 FCHPYAT ('LAUNCRES T1C0 CLUSE FOE LAJ:iiaAl TESUIPLY!?)
SICE
25 CCNTINUE

CAIl SCHLD(l1c,1<¢,1,2,7)
C
C *%%**% I: 1AUNCa CsIQiJICAL AEFRCACHING,PCSSIFLY SCUEDULL
C SHIEFXERT TC Tdt BASE

C
30 DC 50 1i=1,14AA
1sSHIp=1
na=1
CALl LSEIF{ISHIL,ISEIE,JCEL)
CAll DACT (LShIF,ISulf,JdCRI)
sC CCNTINUL
¥3=0
GC 7T 492
C
C *%x%%% IT CrsSenTlY IAUNCH CFITICAL, SCEXLUILER
C B LAUNCE (F=0) 1w RST Z1EE CNI1ls
C
100 T= :S1
CALL SCiisC (3412,1,0,7)
C
G4l CETLIY
IxT




