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ABSTRACT

In determining policies for the acquisition and management of

repairable snares for the Space Shuttle, two objectives are paramount.

First is the optimization of some measure of system performance such as

the expected number of shuttles launched on time per year. Second, since

the cost of a spares mix can run into the hundreds of millions of dollars,

we would like to minimize the cost of achieving a certain performance

level. Both requirements suggest a need for mathematical models of the

supply system.

The high cost, low demand rate items found on the shuttle are usually

controlled via an (s-l,s) inventory system. An (s-l,s) policy involves

sending an item to a repair depot immediately upon failure. Using an

assumed (s-l,s) repair policy, this thesis will examine ways of choosing

a spares mix according to three different mathematical models of system

performance. Developed by Muckstadt [9], these models are specifically

adapted to the erating characteristics of the Space Shuttle. Features

of these models include a nonstationary Poisson demand rate whose para-

meter depends upon the pre-launch maintenance schedule and a variable

weight of backorders over the pre-launch cycle. Items are maintained at

predetermined points in time, and we expect more demands on the supply

of repairable spares for an item whenever it undergoes maintenance.

The interlaunch cycles are probabilistic replicas of one another and so

form a convenient time span over which to evaluate system performance.

Near the end of such cycles, the backorder cost increases sharply, and

so the models allow for changing weights of their respective objective

functions.



Each model generates spares mixes at various budget levels, and

the performance of each mix is evaluated and compared with the performance

of more elementary models. The models used for comparison include the

one in use by NASA when our study was begun and a Lagrange multiplier

technique based on backorders. We use these models to demonstrate that

nonstationary demand rates are important only for long interlaunch

*. cycles and for short repair times.

Another issue in the minimization of delayed shuttles is the shipment

policy used by the serviceable spares supply system. Since the shuttles

will some day operate out of two geographically separated locations,

planners have the option of building spares facilities at one or both of

the sites. They must also decide whether to initiate a lateral resupply

capability in order to allow base to base shipments when desired. A

computer program based on the need and reluctance formulas proposed by

Miller [7] is implemented to investigate these questions. Without regard

to the costs of the various shipment policies, the results indicate

that the best performance is attained when both bases have spares facili-

ties and lateral resupply capability. The next best expected performance

comes from prepositioning spares facilities at both bases without the

lateral resupply option. Least desirAable is a system with only one fully

equipped base and lateral resupply capability.
Acce....ion 7or

NTIS (1 &

DTIC T'B .

JUst:; 2 1 t ion : -
JLII*

By-

Distr ibut i on/

Availability Codes

Dist Special c

,-



I I m i I nniilU

ANALYSIS OF REPAIRABLE SPARE PARTS

STOCKAGE POLICIES FOR THE SPACE SHUTTLE

A Thesis

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment for the Degree of

*. Master of Science

by

Kathleen Marie Conley

January 1982

.1

.'4. . . - _ . /: , , , - : .. , _ .,. . . . . .. . . . =~ ~ ' . . . . .



Biographical 
Sketch

The author was born 
On She

attended elementary and secondary schools

In 1976, upon graduating from high school 
in

she accepted an appointment to 
the United States Air Force

Academy. While there, she majored in operations 
research, humanities and

management, and received the Bachelor 
of Science Degree in May, 1980.

Honors upon graduation included 
the Outstanding Cadet in Operations

,Research and the title of Distinguished 
Graduate. As a Second Lieutenant

in the United States Air Force, 
she began work in September 

1980 toward

the Master of Science degree 
in operations research at Cornell 

University.

Iii

!4



'1
*4

Dedication

To my family.

I.

* I f

U.?

.1
-4

.4 iii

-U.. ~



Acknowledgements

My sincere appreciation goes to Professor John A. Muckstadt and

Lt. Col. Jon Reynolds for their continued interest and participation in

this effort. I would also like to thank Jim Cogliano for contributing

some of the thought processes and computer methodologies used in my

research.

I would like to thank Ronny Aboudi, Nancy Levine, and others whose,

support began long before the eleventh hour. Additional thanks go to

all those who helped me deal with the computer.

Lastly, I wish to acknowledge the support of Cornell's Graduate

School Fellowship Program and of the United States Air Force for making

possible my pursuit of graduate studies at Cornell.

iv



Table of Contents

Page

Introduction .. .. ...... ...... ...... ..... 1

Chapter 1. .. .. ....... ..... ....... ...... 4

Chapter 2 .. .. .... ...... ...... ...... ... 17

Model A. .. .... ...... ...... ........ 25

Model B. .. .... ...... ...... ........ 26

Model 0. .. .... ...... ...... ........ 31

.1The Computer Models. .. ..... ...... ....... 38

Chapter 3. .. .. ...... ...... ...... ...... 45

Chapter 4 .. .. .... ...... ...... ...... ... 75

The Computer Implementation .. .. ...... ....... 84

Simulation Results .. .. .... ...... ........ 88

Conclusion. .. ..... ...... ...... ........ 92

Bibliography. .. .... ...... ....... ....... 93

Appendix A. .. .... ...... ...... ...... ... 94

Appendix B .. .. ....... ...... ..... ..... 112

*1v

VFAt



" ' '......... . ..... . ........... . ..... . .. . .. . .. . ...... o .

LIST OF TABLES

Table Page

2.1 Item Descriptions ...... ..................... .... 19

2.2 Spares Mixes ....... ........................ ... 19

2.3 Probabilities of f Failures .... ................ ... 22

2.4 Validation of Waiting Time Approximation L = AW with

Nonstationarity Factor p ..... .................. ... 35

2.5 Input Data ....... ......................... ... 44

3.1 Performance of Models in a 35-Day Cycle ..... .......... 46

3.2 Sample Output for Model A .... ................. .... 47

3.3 Sample Output for Model B ..... .. ................. 48

3.4 Sample Output for Model D .... ................. .... 49

3.5 Budgets Used for Comparison ..... .. ................ 72

3.6 Performance Relative to Models A, B, and D of

Different Spares Mixes ...... ... ... ... .... 72

3.7 Stock Levels for Comparison ..... .. ................ 73

4.1 Events to be Simulated .... ................... .... 80

4.2 Conditional Events for Shipments ...... .............. 82

4.3 Average Number of Shuttles Delayed ............... .... 89

4.4 Average Number of Shuttles Delayed During Launch Critical

Period ...... .. ........................... ... 89

4.5 Average Number of Shuttles Delayed with Nonstationary

Demand ...... .. ........................... ... 89

4.6 Average Number of Shuttles Delayed During Launch Critical

Period with Nonstationary Demand ...... .............. 89

vi

1 - . . .I I - - il I Hi ! ] -.. ,. . . .. . . .. . . . . -



LIST OF ILLUSTRATIONS

Figure Page

1.1 Failure Rates and Lead Time Demand Rates as a

Function of Time ...... ... ..................... 7

1.2 Severity of a Backorder (w(t)) .... ... .............. 9

1.3 Superimposed Failure Rates for a Two-Shuttle System . . .. 11

1.4 Compressed Demand in a One-Shuttle System .... ......... 12

2.1 Problem Statement for Model A .... .............. ... 26

2.2 Flowchart for Model A .... ................... .... 27

2.3 Problem Statement for Model B ...... ............... 28

2.4 Investment in Spares vs. Multiplier e .............. 30

2.5 Flowchart for Models B and D .... ............... ... 31

2.6 System Used for Simulation .... ................ ... 34

2.7 Comparison of Actual Backorders () vs. Estimated (-W)

Using Simulation ...... ..................... ... 36

2.8 Problem Statement for Model D ... ............... .... 38

2.9 General Outline of Computer Models ... ............ ... 39

2.10 Variability in Lead-Time Demand ...... .............. 42

3.1 Spares Mix Comparison for Four Day Unweighted Cycle -

Model A ....... .... .......................... 51

3.2 Spares Mix Comparison for Four Day Weighted Cycle -

Model A ...... ... .. .......................... 52

3.3 Spares Mix Comparison for Sixteen Day Unweighted Cycle -

Model A ....... .... .......................... 53

3.4 Spares Mix Comparison for Sixteen Day Weighted Cycle -

Model A ....... .... .......................... 54

vii



Figure Page

3.5 Spares Mix Comparison for Fifty Day Unweighted Cycle -

Model A ........ .......................... ... 55

3.6 Spares Mix Comparison for Fifty Day Weighted Cycle -

Model A ........ .......................... ... 56

3.7 Spares Mix Comparison for Four Day Unweighted Cycle -

Model B ........ .......................... ... 58

3.8 Spares Mix Comparison for Four Day Weighted Cycle -

Model B ........ .......................... ... 59

3.9 Spares Mix Comparison For Sixteen Day Unweighted Cycle -

Model B ....... .......................... ... 60

3.10 Spares Mix Comparison for Sixteen Day Weighted Cycle -

Model B ........ .......................... ... 61

3.11 Spares Mix Comparison for Fifty Day Unweighted Cycle -

Model B ........ .......................... ... 62

3.12 Spares Mix Comparison for Fifty Day Weighted Cycle -

Model B ........ .......................... ... 63

3.13 Spares Mix Comparison for Four Day Unweighted Cycle -

Model D ........ .......................... ... 65

3.14 Spares Mix Comparison for Four Day Weighted Cycle -

Model D . ...... ... ... ... ... ... .... 66

3.15 Spares Mix Comparison for Sixteen Day Unweighted Cycle -

Model D ........ .......................... ... 67

3.16 Spares Mix Comparison for Sixteen Day Weighted Cycle-

Model D ........ .......................... ... 68

viii



Figure Page

3.17 Spares Mix Comparison for Fifty Day Unweighted Cycle -

3. Model D . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.18 Spares Mix Comparison for Fifty Day Weighted Cycle -

Model D ....... .......................... .. 70

4.1 Base Need as a Function of Inventory Position ... ....... 85

4.2 Input for Simulation ........ ................... 86

4.3 Flowchart for Simulation .... ................. .... 87

ix

ix.



Introduction

The Space Shuttle, a space transportation system introduced in 1981,

presents planners with several unique features in the area of spare parts

provisioning for repairable items. Since the system is in some respects

very like an airplane, we might initially concern ourselves with adapting

the models used by military and civilian air operations. Common elements

of all these systems include a number of very expensive components with

low failure rates, a requirement that all components must be operating

in order to take off, and a certain penalty for any delay. Thus many

such systems employ what is known as an (s-l,s) inventory system, whereby

if the stock level s of any spare decreases by one unit, the failed unit

is immediately sent to a depot for repairs. Since the repair times are

not nearly as variable as the inter-failure times, repair times often

are fixed while failures are assumed to occur at a Poisson rate.

If the (s-l,s) policy is pursued for shuttle spares at a given launch

site, there will be two important departures from the typical methods of

setting spares levels. First, the simple or compound Poisson demand rate

for failures will be replaced with a nonstationary Poisson demand rate

reflecting higher failure rates at certain stages in the pre-launch

countdown. Since most models employ demand rates over repair time as

a measure of how many spares are needed, we must find some way of incor-

porating the time-dependent demand patterns into our model. Secondly,

the penalty for backorders will also depend upon time, due to the nature

of the pre-launch sequence. This is especially true near the launch date,

when delays may cause some very costly preparations to be extended or

reaccomplished.

:1 1
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A second critical option available to planners involves the projected

management of spares assets when more than one launch site is operating.

Since spares must be shipped to a storage location upon completion of

repair, a good shipment rule should account for the proximity to launch

at each site as well as the spares stock and expected demand at each site.

More important perhaps is the evaluation of the expected performance of

an initial investment in two stocking locations versus only one, and of

the option for a lateral resupply capability which would allow one site

to ship spares to another site when necessary.

The first problem, that of setting spares levels for repairable

items, is solved by developing analytical algorithms to optimize a per-

formance measure subject to budget constraints. Each base will be con-

sidered separately although extensions are easily made, and the depot

will be seen as having infinite capacity. These and other assumptions

will permit us to focus on a single inter-launch cycle and to analyze

both nonstationary demands over that cycle and increasing backorder

penalties near the launch date. We will present details of the models'

implementations and examine the patterns of spares mixes selected by each.

These patterns will be contrasted with two simpler algorithms for setting

spares levels. From this comparison we will show that as the cycle length

shortens, the nonstationarity in the demand rate may be ignored.

In addressing the decision of how best to design the spares trans-

portation and location system, we will consider two sites operating at

different launch rates, and employ a simulation to compare the performance

of the major types of shipment disciplines. We will continue to assume

nonstationary demand rates, although we will show that this assumption
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may be relaxed in certain cases. The simulation operates much as a continu-

ous review inventory policy would function in real time. The number of

spares in the entire system, however, is fixed, and so the simulation is

not directly capable of suggesting both a good spares mix and a correspond-

ing spares distribution system.

Some synthesis of the spares mix decisions and the transportation

and stocking location problem is appropriate. Suggestions as to practical

applications of the methods will be presented, as well as some insight

into how they might be used interactively as planning tools.

L '
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CHAPTER I

The number of spares required for a given item used by the shuttle

depends largely upon the failure pattern it experiences and upon its

importance to the timely launch of the shuttle. We make the following

assumptions about the units in question and their operating environment:

1. Each item undergoes maintenance during one or more predetermined

periods prior to launch.

2. An (s-l,s) inventory policy is followed.

3. The numbers of failures for the different items are independent

and have a nonstationary Poisson distribution whose parameter

declines as new items are substituted for failed ones.

4. Each launch cycle is of fixed length and is a probabilistic

replica of all other cycles.

5. The repair facility has unlimited capacity: each item i has

fixed repair time Ti which includes transportation time

to and from the repair depot.

6. An unfilled demand results in a backorder, and backorders are

more critical late in the cycle. Backorders do not substantially

increase the length of a launch cycle, however.

7. Since resupply time between bases is small compared to repair time,

a single location is examined.

These assumptions are discussed in detail in this chapter, and a

general outline of shuttle pre-launch operations is presented. A dis-

cussion of models previously developed for use in this problem environment

4
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is also included.

As a first step in the analysis of shuttle operations, let us con-

sider the maintenance cycle preceding the launch of an individual shuttle.

Two components of the space shuttle, the solid rocket boosters and the orb -

er are designed to be reused many times. Beginning some time after the

shuttle returns from a space flight, a pre-launch cycle takes place during

which maintenance crews ready the shuttle for launch according to a

predetermined schedule. Detection of a failed component immediately

leads to a demand on the spare parts stock and to the initiation of

repair on the failed component. The number of failures experienced

during the cycle is directly related to the length of the flight just

completed, and the components' failure rates are expressed in terms of

failures per flying hour. We may assume that flights completed prior to

the most recent flight do not contribute substantially to failures in the

present cycle, because items are thoroughly tested and maintained before

each launch. Although those items which are replaced during a cycle have

a failure rate somewhat lower than those which have undergone a space

flight, the difference should be small and is not of great concern.1

The periods of increased maintenance activity are important in that

they are often accompanied by an increased number of failures, bringing

1 The "new item" failure rate can appear in another context. The shuttle

is composed of three main units; the orbiter, the external tanks, and
the solid rocket booster (SRB). Because the solid rocket boosters are com-
pletely overhauled before the launch cycle begins, and because a new exter-
nal tank is used for each launch, components of these two units have failure
rates independent of flying time.

L
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about higher demands on the stock of repairable spares. This is true for

several reasons. First, the item may have failed during flight or

earlier in the cycle but escaped detection (or remained inaccessible to

the crews) until the crews actually had contact with it. Second, many

of the tests performed to insure that an item is working properly place

higher than usual stress upon the item and may contribute to a failure.

Lastly, there is the possibility that the test equipment is not working

properly and mistakenly indicates that the item is broken. This is

equivalent, from a spares standpoint, to an actual breakdown of the item,

because the item must be sent to the depot for tests. The shipment

and testing time may take nearly as much time as a normal repair. The

increased failure rate during these maintenance periods has been shown

to be significant, so that it is necessary to treat the number of

demands at a given time as a random variable with a nonstationary Poisson

*distribution. This is true regardless of whether the item was on the

- . shuttle during flight or was recently installed.

A random variable is said to have a nonstationary Poisson demand

rate if its failure rate varies as a function of time. Its distribution

is specified by the failure rate function Xo (t). Through it we determine

the failure rate over an interval of length At as follows:

t+At

x(t,t+At) = f X0(s) ds.
t

Since much of our analysis is in terms of expected demand during resupply,

we define A(ij), the approximate lead time (resupply time) demand rate

for item i evaluated on day j, as follows:
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(a)

X(tt+At)

M mtime

(b)

A(i ,j)

4--m -time
( - T.

Figure 1.1 Failure Rates and Lead Time Demand Rates as a Function of Time.

i

A(i,j) x(t,t+l)
t=j-Ti+l

where Ti is the resupply time for item i. Figure 1.1 illustrates how

X(t,t+At) and A(ij) depend upon the particular time interval being

examined, where m is the day on which maintenance is performed, and L

is the time between launches for a single shuttle. We will refer to the

sharp increase in demands on day m as a demand spike.

We will assume later that failure detection does not lengthen the

maintenance period devoted to other units of the same item type, and

that the length of the maintenance cycle is always fixed at L, and cannot

be increased by item backorders. These assumptions enable us to assert

that each cycle is identical to every other cycle in demand patterns and
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in length. Lastly, we assume that the cycles are continuously repeated,

so that the history of demands prior to a given cycle is identical in

probability to that of every other cycle.

A failed item entering repair is returned to the serviceable spares

stock upon completion of repair. The repair time T is a random variable

and is independent of the number of items already in repair. For our

purposes it is acceptable to assume that T is fixed, and so items are

returned to serviceable spares stock T time units after they are removed

from a shuttle. The maintenance crews will replace a failed unit as

quickly as possible, and if there are no spares on hand when a demand

occurs, a backorder results. There may be some time period d(t) during

which no penalty is incurred on such a backorder, but in general d(t)

is quite brief (or zero) due to precedence relationships in the mainten-

ance schedule.

While backorders on some days may carry only a small penalty, those

occurring on other days, especially just before a launch, may be signifi-

cantly more detrimental to shuttle operations. This is because prepara-

tions which are made just prior to launch are often more involved and

costly than earlier activities. These last-minute activities range from

temperature control of the liquid fuel to assembly of a launch control

team consisting of many specialists and technicians. They are generally

not part of the maintenance cycle as we have described it, but are rather

more closely linked to the operational activity of the shuttle. A delay

during this phase will be very expensive, even though it is not likely to

be long enough to violate our earlier assumption of a fixed cycle length.

Since cycles are expected to be on the order of a week or more, while

backorders (as will be seen later) last no more than a day, backorders
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will probably not be the cause of prolonged launch delay. If w(t) is

the severity or weight of a backorder at time t, we can assume that w(t)

increases with time as shown in Figure 1.2.

-. 4.

W(t)

L time

Figure 1.2 Severity of a backorder (w(t)).

After time L, we assume that the shuttle will be ready for launch. The

actual launch takes place at some time during a launch window, which is

limited by such factors as crew rest requirements for the astronauts, ice

accumulation on fuel tanks, weather conditions, and daylight availability

at both the launch and landing sites. If the countdown is interrupted

_____________________________ _______________________
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and the launch window closes before the shuttle can launch, a minimum of

48 hours must elapse before the next launch attempt, resulting in another

setup and incurring a large penalty cost. This sort of postponement would

probably be due to a system failure, not a backordered spare. Thus our

assumptions about w(t) should be reasonable. In addition, since there is

only a small possibility of an item failure after all pre-launch mainten-

ance is completed, we may assume that a shuttle will make no more demands

on the supply system after time L. If a shuttle should experience a sig-

nificant ground delay after time L, its mission will be completed late,

but there is sufficient slack in the schedule to allow that shuttle's

next pre-launch maintenance to begin on time. Thus, variations in the

schedule due to backorders or any other problem do not disturb the pattern

of pre-launch maintenance cycles we have described. All demands for a

given shuttle take place during its maintenance cycle, and each cycle

is identical in probability to the next.

Current plans for the shuttle program call for one or more shuttles

operating out of two launch sites. A shuttle will, in general, return

to the base from which it was launched, and so at each base the shuttles

will progress through pre-launch maintenance in a certain order. There

will be some overlap in the launch cycles, so that the demand distribution

for a given item on a given day is the sum of the demand rates for items

on the shuttles being maintained on that day. The number of demand spikes

experienced during any one period L is exactly equal to the number of

shuttles based at the launch site, assuming that items are maintained once

per cycle on each vehicle. The demand distribution for each item is still
M

nonstationary Poisson, but with a parameter X (t) = i(t), where xi(t)
i~x()~weel ~t

*1/



is the demand rate of the ith shuttle on day t. This superposition of

demand rates is illustrated in Figure 1.3 for a two-shuttle system with

no time between pre-launch cycles.

- - - one shuttle

- two shuttles

X o(t)

F1i

Ll1  ) time

Figure 1.3 Superimposed failure rates for a two-shuttle system.

Here the length of the maintenance cycle is constant but the expected

number of demands per cycle is twice as great. Note that if we redefine

a launch cycle to be the time between any two launches, we experience

successive periods of length L/2 whose expected number of demands

is equal to the expected number of demands for one shuttle over a cycle

of length L. If the time between launches is not fixed, we may not

redefine the cycle in this way, and so we find it convenient to assume
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that the time between launches is fixed.

It is useful to point out some similarities between the system des-

cribed above and a system in which there is only one shuttle launched

at twice the original rate. If the launch cycle is defined as the time

between launches of that shuttle, then we may generate the new demand

rate by considering the demand spike to occur at the same relative posi-

tion in the cycle (a proportional transformation) and then increasing the

demand rate on each day by the demand rate of a day in the original cycle

on which there was no spike. This will result in the cycle illustrated

in Figure 1.4.

rate Xo(t)
rate 2X (t)

0I

I I I
I ~I

I I I L
S I I I "

L _time

. L~2

Figure 1.4 Compressed demand in a one-shuttle system.

This pattern has some important similarities to the launch cycle shown in

Figure 1.3. Both cycles experience an equal number of expected backorders

|l I I - a t Ii . .. .. II M
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per cycle of length L/2, demand spikes of the same magnitude at equally

spaced intervals, and interlaunch cycles which are probabilistic replicas

of one another. In fact, the only important difference between the two

demand patterns is the change in the position of the demand spike within

the shortened cycle. Each time the cycle is compressed, the maintenance

day will move closer to the beginning of the cycle for the single shuttle,

whereas this will not be the case for many shuttles with overlapping

launch cycles. Since the weight of a backorder near the end of a cycle

is great, items with later maintenance dates will be relatively more

critical than items maintained earlier in the cycle. As the cycles

become shorter in the one shuttle case, certain items will consistently

become more important than others. This is not the case if there is

more than one shuttle operating: in that scenario an item's importance

will depend upon how many shuttles there are.

The multi-shuttle case is the more realistic of the two, but one

shuttle with an increasing launch rate is simpler to model, and was

sufficient for our analysis when the actual day of the demand spike was

unavailable. It also represents a worst case analysis, with certain

items becoming more and more important as cycles shortened. The results

of this effect will be discussed in greater detail later. Lastly, as we

will demonstrate, the effect of performing maintenance on one day in the

cycle diminishes as the launch cycle shortens. In other words, the dis-

tribution begins to approximate a stationary Poisson distribution, render-

ing the position of the demand spike extraneous to the spares determination

problem.

The above discussion of pre-launch maintenance operations may con-

veniently be translated into a single location model concerned with the

inter-launch maintenance for a single shuttle. If we allow the shuttle's

4

I ._ . . , ... . . .. ,, .'" 
'
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4l launch rate to vary, we simulate the effect of changing the number of

shuttles when each has a constant launch rate. We are interested in

identifying a spares mix for serviceable items maintained during the

cycle. These stock levels should give the best system performance at a

given level of investment. We require a method of evaluating the expected

performance of the system which recognizes the special demDand distribution

we have described and which allows for a changing backorders penalty over

time.

Review of the Literature

This problem is similar to one encountered in setting spares levels

for a variety of operations involving high cost, low demand items. Feeney

and Sherbrooke [5 ] developed models for systems experiencing compound

Poisson demand and developed measures of supply performance that could be

used to minimize backorders for a single item and arbitrary resupply

distribution. These same authors later optimized supply system per--

formance under budget limitations through use of Lagrange multipliers,

still for compound Poisson demand [4 ]. They obtained results when system

performance was in terms of proportion of demands filled by on-hand in-

ventory.

The model developed by NASA for its own use in spares provisioning

ji had a different objective. NASA's model computed stock levels so that

.4 each item had at least a .95 probability of being filled by on-hand

Y1 inventory. It assumed stationary Poisson demand rates. The NASA model

contained no analysis of an item's contribution to system performance

relative to its cost [12 .
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Mitchell [8] made changes in the NASA computer program so that it

implemented marginal analysis and then computed the overall probability

that demands would be met by the supply system using on-hand inventory.

By examining the results for a group of items selected from the shuttle's

avionics subsystems, he identified those items that accounted for the top

80% of the group's spares costs. Mitchell's model did not consider the

nonstationarity we have discussed in demand patterns, nor did it account

for an increased backorder penalty near the end of the cycle. Neither

the NASA model nor Mitchell's model recognized that the distribution of

item failures is often independent of the number of flying hours in the

previous mission.

The launch cycle described here was fully developed by Muckstadt [9 ].

He defined criteria by which system performance could be evaluated and

described algorithms by which these objective functions could be optimized.

These criteria include, among others, the total weighted probability

that demands are filled with on-hand inventory, the total weighted

expected number of backorders, and the total weighted expected number of

backorder days. These algorithms employed marginal analysis or Lagrange

multiplier techniques to maximize system performance relative to the given

objective function over a range of budgets. The models had not yet been

implemented or compared with the methods of setting spares levels des-

cribed above, and so our objective here is to determine which spares

stocking model one should use in a given situation.

We now have a specific set of assumptions with which we can model the

spares stocking problem. The models developed by Muckstadt seem to most

nearly approximate shuttle operations as we have described them. In

Chapter 2 we will continue to develop our statement of the problem and

I
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introduce the algorithms proposed by Muckstadt for determining an optimal

spares mix.

II

A L



I

CHAPTER 2

Given a set S = S where si represents the number of

spares of type i in the spares mix S, we are first faced with the question

of how to evaluate its expected performance.

The model in use by NASA gives the following rule: choose a spares

mix which sets the minimum probability that any one item's demand will

be met with on-hand inventory greater than or equal to a constant, denoted

by PCNST. That is, choose S as follows:

si

I P{R i = x} > PCNST, all si  S
x=O

where R. equals the demand over resupply time for an item, and is

assumed to be a Poisson-distributed random variable. PCNST may presumably

be varied to produce different sets S. Note that we have no way of

evaluating system performance, except by stating the N values of
S.

P{Ri = x}.
x=O

If we also consider that each item i has a cost ci associated with

it, we may use a Lagrange multiplier technique which begins with the

product of each item's probability of sufficiency and attempts to

maximize this quantity for a given budget level. It chooses a spares mix

S which may be evaluated by using the following function:

5.
n i

POS s = I Z P{R. = x)], all si e S

where POS s is called the system probability of sufficiency.

17
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In this section we will present three different objective functions,

including total weighted probability of sufficiency, total expected

weighted backorders, and total expected weighted backorder-days. Each

of the three models will then treat only one of these measures of per-

formance, and hence we expect that they will result in different spares

mixes S.

For example, we may set stock levels for items A and B in Table 2.1

using the NASA model, the Lagrange multiplier technique, and the total

weighted probability of sufficiency model, which we will derive later.

Without detailing the actual computations, we present the resulting spares

mixes S = (sAS B ) in Table 2.2 when the spares budget is $1,300,000 and

the shuttles are launched every 35 days. We can see that the NASA model

makes a different choice of S than the other two. In this case the

Lagrangian technique and the weighted POS model give the same stock levels,

but as can be seen from Table 2.2, they give different objective function

values. For example, the Lagrange multiplier technique evaluates its ob-

jective function, POS, at .621. In general, we will use the objective func-

tions presented in this chapter to evaluate the spares mixes given by all

other models.

Table 2.2 illustrates how different assumptions about the spares

system can lead to the use of a variety of models which can in turn give

different values of SlS29.' sN to the decision maker. We now present

those assumptions which were used to derive the models developed here,

and explain why they are reasonable in the context of the system des-

cribed in Chapter 1. We will also discuss the formulations of the three

models, the algorithms used to solve them, and their computer implementa-

tions.
We will present three alternative mathematical formulations of the

serviceable spares mix problem. They relate to the first, second and
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Table 2.1 Item Descriptions

Item Repair Time Cost Daily Demand Rate Maintenance Day

A 60 days $415,000 .0364 34

a 60 days $230,000 .0075 3

Table 2.2 Spares Mixes

Item NASA Lagrange Weighted
._ Multiplier POS

A 3 2 2

8 0 2 2

Objective
function (.638, .628) .621 .529
value _

fourth of five models discussed by Muckstadt, and we will keep our

terminology consistent with his by denoting them as models A, B and D,

respectively.1  Although the problems were initially formulated using

both continuous and discrete objective functions, we will state them

as discrete models with the basic time period of one day. Model A seeks

to maximize the probability, weighted for each day in a vehicle's pre-launch

cycle, that no item will experience more demands during its resupply

time than there are spare parts. This is a weighted measure of the total

1 Muckstadt also introduced a model to minimize the wieghted sum of

shortage incidents (model C) and a model to minimize the maximum
expected weighted delay days for any item (model E). Detailed dis-
cussions of both appear in reference [9 ].
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probability of sufficiency. Model B's objective is to minimize the

expected weighted number of unit backorders for all items and each day

during a vehicle's maintenance cycle. Lastly, in model D we minimize

the expected weighted number of days a unit is backordered, totaled over

all items and all days in the vehicle's maintenance cycle.

In all three cases, the launch cycle may be assumed to last exactly

L days, with w(j) corresponding to the weight applied to the objective

function for the given model on day j (probability of sufficiency,

expected backorders, or expected backorder days). All models use the

constant C to represent the amount of investment available for serviceable

item spares.

The following information is required for each of the N items that

compete for the limited spares budget:

ni = number of identical units of item i aboard one shuttle,

ci = total procurement cost for one unit of item i,

Ti = a constant resupply time for item i, including trans-

portation time,

vi(t) = failure rate (failures per day) for each unit of item i,

assuming one mission has occurred since its last main-

tenance period, evaluated at time t,

mi = day on which maintenance crews prepare all units of item

i for launch.

In all of models A, B, and D, the following assumptions apply:

1. The group of ni identical units of item type i may be considered

to be a single item whose failures have a nonstationary Poisson

distribution with parameter Xi(t) = nivi(t).
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2. Successive cycles of varying length L are treated; there is no

overlap between cycles.

3. All items are due on the day they fail. This assumption serves

only to simplify computations. It may easily be relaxed within

the framework of the algorithms we present.

4. The failure distribution is not significantly different for

items on board the shuttle when it lands versus items replaced

during the launch cycle.

5. There is no slack time between a launch and the beginning of the

next maintenance cycle (i.e., flying time is assumed to be zero).

6. Since the days on which maintenance is performed on the items are

unknown, the values of mi. which are identical throughout all

the models for a given cycle length L, were sampled from uniformly

distributed random variables over the range (0,L).

Assumption 1 follows from the fact that the n units of item type i

* have independent identically distributed nonstationary Poisson failure

distributions. So for every day j during the cycle, the sum of the ni

demand rates gives the demand rate for all units of type i. We showed in

Chapter 1 that there is a similarity between a system having decreasing

cycle length for one shuttle and one having an increasing number of

shuttles operating simultaneously, their demand distributions effectively

superimposed to give an overall demand distribution. Since we do not

actually know the day of scheduled maintenance for each item, we may choose

either of the two systems as a model, and we will take the first. This

has the result that given a cycle length of L days and maintenance day mi1

for item i, a second cycle of length aL will schedule item i for mainten-

ance at around time omi (this is inexact due to the fact that ami may not
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be an integer).

The backorder penalty will begin immediately when an item is back-

ordered. This reflects the time-critical nature of shuttle operations

as well as our lack of complete information about the system and, conse-

quently, our preference for conservative analysis. Another area where

information is lacking is that of failure rates for newly installed

items. We have noted that our information on failures is tied to the

execution of one mission since the previous overhaul, and so the dis-

tribution of more than one failure in a given vehicle has a parameter

slightly lower than Xi(t). Table 2.3 shows the probability for various

numbers of failures over a 60-day lead time for an item having a failure

rate over the lead time of 0.3. This corresponds to the highest shuttle

activity rate and the highest item failure rate niV i contained in the

data.

Table 2.3 Probabilities of f Failures

f "Used Part" "New Part"

0 .7408 .8607

1 .2222 .1291

2 .0333 .0097

3 .0033 .0004
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Next, suppose that an item fails and is replaced with a part having

a resupply time failure rate of .15. The individual terms for the

probability that 0, 1, 2, or 3 of these new items are demanded over the

entire 60-day lead time are also given in Table 2.3. But the "new" part

will only be "new" for the rest of the cycle during which it is installed;

since the cycle length is 8 days, this corresponds to a small fraction of

the total lead time. The analysis shows that the probabilities for "new"

parts are different from those for "old" parts, but that as the number of

failures increases the magnitude of the difference drops off sharply. Thus

we will assume that the expected failure rate for a "new" item is little

different from that of a "used" item.

Assumption 5 states that slack time will be brief between the launch

and the next maintenance cycle; if an actual one-shuttle facility were

under study we would lengthen the launch cycle by the length of an

average flight and allow zero expected demand on those days. The last

assumption specifies our method of randomly assigning maintenance days.

We emphasize that the maintenance schedules are identical between models

for each cycle length and that if L' = cxL, then m! = am. for all i.S1 1

For each of the items we consider, the models' output consists of

a recommended integer value for the spares level si , where there are N

item types in the system. If each spare for repairable item i costs c

dollars, and the investment limit is C, then we have the following

constraints:

N
I cis. < C

s i e {O,l,...} i =*1 1
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We are not actually given the nonstationary distribution for vi(t),

but are instead given the failure (removal) rate per flight, ri.

Arbitrarily choosing to place all of the demand on the item's maintenance

day mi leads to the following definition of vi(t):

r0 t m mi
vi(t) =

ri  t =m i

In our discussion of model D we will explain the variation of this dis-

tribution used in that model. Once vi(t) is known, it is easy to compute

Xi(t) using assumption 1.

All three models also involve an expression for demands over a

resupply time beginning Ti-l days before day j. The lead time failure

rate A(ij) was introduced in Chapter 1. Recall that:

J
A(i,j) = i(J)

t=j-Ti+l

is an approximation of this failure rate. If we then wish to calculate

P[Ri(j)=k], the probability that there were k demands for item type i over

the interval [j-Ti+l,j], we may use the following equation:

P[R(j)=k] = e 
k! A(ij k

Again, implicit in this equation is the assumption that all items of type i

("old" and "new") have indistinguishable failure distributions. It further

assumes the following:

-1 A {
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P[Ri(j) > ni+s i] . 2

Model A

We might wish to maximize the sum of weighted probabilities of zero

backorders over all days in the cycle. The probability that an item

experiences no backorders is also known as probability of sufficiency.

This objective function is:

L N
A(sl,..,sN= I w(j) H P[R i(j) < si.

j=l i=l -

System probability of sufficiency is a generally accepted measure of

supply system performance, and the above expression extends its definition

to cases of nonstationary demand over unevenly weighted cycles.

A solution procedure for this problem was discussed by Muckstadt [9 ]

As the objective function is nonseparable when there is more than one

day j with nonzero weight w(j), we cannot employ a Lagrange multiplier

technique. A workable method first computes an initial solution which

gives a very low investment level and a low value of A(sl,...,SN). The

algorithm sequentially selects the spares whose contributions to the

objective function are greatest relative to their costs. The value of

A(sl ...,sN) is improved every time a spare is added to the mix. This

2 We justify this notion because the items we analyze do have very low
failure rates, and because the higher an item's failure rate, the higher

its stock level. For A(i,j) = .3, a high rate for our analysis, and
si = 4, ni = 2, P[Ri(j) = 7] = 3.2 x l0- . Thus we may avoid the
mechanical complexity of using a truncated nonstationary Poisson dis-

tribution. To be strictly correct, the probability of more than si+ni
demands should be exactly zero for the one-shuttle case.

- - ~ -- '

1 • .. . . t k
L

_. . . . .. .. . ., _: IJ4
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]i is basically a marginal analysis technique and yields good, if not

optimal, results for many applications.

The problem is formally stated in Figure 2.1 and a diagram outlining

the solution procedure appears in Figure 2.2. For additional information,

see Muckstadt's paper [9].

L N
Maximize I w(j) R P[Ri(j) < si]

j=l i=l

N
subject to cis i < C

si > Oand integer, i 1 N.

Figure 2.1 Problem Statement for Model A

Model B

In this model we are interested in minimizing the total expected

weighted number of backorders for all items throughout the launch cycle.

As before we will be evaluating the objective function for each day and

then summing across days and items, rather than trying to measure expected

backorders continuously through time. For a single item i, the expected

number of backorders on day j is given by the following:

E[Bi(j)] = (x-si) P(Ri(j) = x),x>s 1

assuming that items incur a penalty from the first moment they are
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Compute s. rmin A(i,j)1;
1

for i =1,... ,N

LN
A(sls...,s N) I w(j) 11 P[Aiij) < SOJ

For i 1 ,...,N compute

2 rA(i) =A(sl,...,si_1  i,s+ ,.1***,SN)

Yes

IMX



28

backordered, where Ri(j) has the same meaning here as in Model A.

The problem is formally stated in Figure 2.3.

Model B

N L
Minimize I I w(j) I (x-si)*P[Ri(J)=x1

i=l j=l x>s i

N.
subject to Z cis i 

< C
i=l

s. e {O~l,...}, i =l,.,

Figure 2.3 Problem Statement for Model B

Muckstadt [ 9 ] points out that this is a separable problem and rewrites

the objective function using a Lagrange multiplier e. Thus, for each i,

the object is to minimize the following for a given nonnegative e:

L
Fi(si) = wi(j) Z (x-si) P[Ri(J)=x] + Ocis i1 j= x>s i

~1 s. e {0,I,.. .1.

Since F. is convex in si [9 ], we may minimize its value by taking first

differences, and identifying the smallest s. for which adding an additionali 1

spare will cause Fi(s i) to decrease. In other words, we are finding:

1



29

min{si:Fi(s i) - Fi(si+l) < 0}

• ' L

= min{s: w(j)[( (x-si)P{Ri(J)=x} + eci si)
j=l x>s i

- ( [ (x-(si+l))P[Ri(J)=x] + Ocis i + Oci)] < 0}
, x>si.+l

L si
min{si: I w(j)(l - I P[Ri(J)=x]) < eci}.

j=l x=O

Examining the above equation, we see that it involves the probability of

one or more backorders: 3

S.
*1

1 - P[Ri (j )=x].
x=O

This quantity provides some insight for choosing e. Denote the maximum

acceptable probability of a backorder by (l-cL). Then we must choose e so

that -ci will always give an acceptable upper bound to the weighted

probability of a backorder. If k is the costliest spare, Ock is the

greatest upper bound we will create, and we must insure that the following

holds:

L
S(-a) = eck.

The result is to choose 0 so that

L

6.= j=l
ck

3 As before, we note that the probability of more than n.+s. backorders is
close to zero. When only one shuttle is involved, thelactual probability
of more than ni+s i backorders is exactly equal to zero.

.
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If we then allow e to decrease, the upper bounds will all decrease, and

we will need higher stock levels to bring down the weighted backorder

probabilities. The outcome of decreasing acceptable weighted backorder

probabilities is to increase spares costs. Muckstadt [9 ] proposed

computing spares levels for all items at decreasing levels of e. This

will result in steadily increasing spares costs until we reach the desired

budget level C. The successive values of e and the corresponding invest-

ment required are related in Figure 2.4.

Cost

0e

Figure 2.4 Investment in Spares vs. Multiplier 0.

The algorithm used to implement the above ideas is shown in Figure 2.5.

Note that the original objective function for Model B is not directly

minimized. However, if any cm is "close to" C, then the {si: (i=l,...,N)}

AL
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Select (1-ct), the maximum1
probability of a backorde1

II
D1 FOR,1 *,...,N

Figure 2.5 Flowchart

for Models B and D

Yes

y-e-4s
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which relate to cm will give a near-optimal solution. By changing the

increments of e, we can generate any number of pairs (c,6). The algorithm

presented here produces B such pairs by setting em = eo/2m
, m = 1,...,B.

0

Model D

A third model considered by Muckstadt [9 ] involved minimizing the

total weighted expected backorder-days across the cycle. The expected

waiting time per backorder, which is just the length of time that a

shuttle is delayed on the average, may be expressed as E[Di(j)].

Here we assume that the length of a backorder is independent of the
number of backorders outstanding. This is in keeping with the earlier

assumptions of fixed resupply time and low expected numbers of backorders.

We now require an expression for the length of time which a backorder

lasts, E[Di(j)]. The following relationship holds in the case of
4

stationary Poisson demands:

E[B i(J)]

E[Di(j)] =
T X i ( t )

i t=j-Ti+l1

First, we note that were we to use this approximation in Model D, there

is a possibility of having a resupply time demand rate equal to zero
should the interval (j-Ti+l,j) contain no demand spikes. In order to

avoid this situation, we may redefine the unit failure rate vi(t) as

follows:

4 This equation follows from W = L/X where W is the waiting time for all
backorders, L is the number of backorders, and X is the arrival rate.

. t
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r.
t~m

v1 +) t=mi •

Thus the resupply time failure rate is less variable than in the case

when all demand is concentrated on one day in each cycle. We continue

to calculate this value as the sum of the daily failure rates over the

resupply time.

A second important observation regarding this approximation is that

it is independent of the stock level s. and so may be included in the

constant termn w(j) used in Model B. We define wi(J), the weighted number

of days that a backorder on day j of item i will wait, as follows:

S x(t)

i t=j- +l

where w(j) has the same meaning here as it did in Model B. Using wi(J)

instead of w(j) in Model B will give stock levels which minimize the

expected weighted backorder-days for all items.

An important change to Model B will be required when appropriate

values for m are sought, however. Since the sum of the weights may be

different for each item, em will now be given by the following:

L(1-c) Z wi (j)

em : mini 4=1~ ].

i c~-Ti +

We noted earlier that the approximation discussed above is generally

used only in cases where the demand distribution is stationary Poisson.

expeted eighed ackoder-aysfor ll iems
An imotn chnet oe ilb eurdwe prpit
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In order to test the robustness of the equation when Xi(t) varies over

time, a test was devised using a computer simulation. The simulation

will be discussed in detail later, but for now a simple description of

the system will suffice.

Figure 2.6 depicts the simulated system, consisting of two bases

with six and eight shuttles, and a single depot with a repair time of 60

days. Lateral resupply between bases is not permitted. There is one

unit aboard each shuttle with a failure rate ri = .0166, and turnaround

time is 50 days. Four days prior to each launch, the failure rate for

the items in all eleven shuttles increases for one day. This is a very

rapid activity rate which, as we will later discuss, detracts from the

effects of nonstationarity. However, computer run time is a limiting

factor, and so to observe many backorders it is necessary to have a high

activity rate. Seven spares are initially provided to each base, and

subsequent spares shipments from the depot are made on the basis of

greatest need. 5

DEPOT

1) 6 shuttles 2) 5 shuttles

= .100 1 launch/8 days 1 launch/lO days X2 = .083

Figure 2.6 System Used for Simulation

5 A quantitative definition of base need will be given in Chapter 4 and
is a function of the base's inventory position and of the time remain-
ing until the launch.
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In tabulating the results of the simulation, which ran for 500

"days", we first record the average number of shuttles grounded, L. Then,

on every day, we observe a value of the lead time demand rate multiplied

by the actual waiting time experienced by a backorder on that day (if

any). These values yield some average value over 500 days of AW. The

comparisons of the values of C and A7W for an increasing nonstationarity

factor p are shown in Table 2.4 and are plotted in Figure 2.7. (p = 2.0

indicates that the demand rate doubled once before each launch.)

Table 2.4 Validation of Waiting Time Approximation

L = AiW with Nonstationarity Factor p.

p T

1.0 0 0

2.0 0 0

2.5 .022 .025

3.0 .048 .062

3.5 .082 .106

4.0 .126 .182

Note that as nonstationarity increases, backorders are overestimated to

a greater and greater extent, at least in the simulation we performed.

We caution that the simulation parameters do not approximate the system

we describe here with any great degree of accuracy. The results of the

simulation do suggest, however, that as nonstationarity increases, the

2i
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.20

.16

L =AW

.1 (theoretical)

.12

1 .08"

.06-

.04

.02,

0)

AW

Figure 2.7 Comparison of actual backorders (L) and estimated

(TW) using simulation.
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approximation tends to overestimate expected backorders in this case.

Sherbrooke [11] notes that for simple Poisson demand with parameter

Xi and fixed resupply time Ti. the probability distribution of waiting

time D for item i, is given by the following relation:

si-l
e-x m /m!, d < Ti

m=O
P[D. < d] =

1 , d>T i

where x = xi*(Ti-d). In the case of nonstationary Poisson demands, the

demand rate over time period [j-(Ti-d)+l,j], would be required for all

values of d, between 0 and Ti, for each day j and item i. Denoting this

value as A(i,j,d), we have the following expression for expected waiting

time;

1i  i-I e-A(i~j,d))(~~~)k

E[Di(J)] = ) (- Z k!
d=l k=O

The expression for expected backorder days over the cycle,

N L
i E[Di(j)]

is a separable relation and is convex in (Sl,S 2,...,Sm. We now have two

approximations, and choose to implement the approximation introduced earlier

by Muckstadt.

Using the approximation for expected waiting time given by Muckstadt,

we may write an objective function for Model D. The integer program for

Model D appears in Figure 2.8.
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Model D

N L
Minimize Z Z wi(j) (x-si)*P[Ri(j)=x]

=1 j=l x>s i

N
subject to cis i < C

si > 0 and integer, i = 1,...,N.

Figure 2.8 Problem Statement for Model D

With the exception that w(j) is now replaced with wi(j) and that
1

em is derived differently (as outlined above), the algorithm for Model B

given in Figure 2.5 applies to Model D as well.

The Computer Models

The three models just described were each implemented using FORTRAN

programs on an IBM 370/168 computer running with VM operating system at

Cornell University. The programs each have essentially the same structure,

and were modifications of programs written earlier by Cogliano [2 ]. The

program structure is shown in Figure 2.9. Element ( in Figure 2.9

represents the core of each program. Computer listings of these three

subroutines may be found in Appendix A. NASA has provided failure and

cost data on items in the avionics subsystem [12]. These items are

reduced to those 24 that NASA computed as being the most expensive from
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INPUT STOCK CALCULATE A(i,j),
LEVELS FROM INU i = 1,...,N
ANOTHER SOURCE -j= 1,...,L

PROGRAM

0I
MODEL A, OUTPUT FROM MODEL
B, AND D AND COMPARISON WITH

OTHER SOURCE'SSTOCK I
LEVELS' PERFRAC

a

Figure 2.9 General Outline of Computer Models

a spares standpoint. Together they represent 80% of the spares cost when

NASA's probability of sufficiency model is used and each item is computed

to a .95 probability of sufficiency (i.e., PCNST = .95).

Using the program that NASA had developed we generated stock

levels based on probability of sufficiency and compared them with the

solutions given by Models A, B, and D. With stock levels from the NASA

4 program as input, the programs for models A, B, and D computed their

expected performance using the objective function for each model. We

were thus able to establish a common measure for comparison purposes.

a Circled numbers indicate the order of operation.

km.i
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Similarly, another set of stock levels was produced by a computer

program by use of a Lagrange multiplier technique to minimize backorders

when demand was assumed to be stationary and there was no increased back-

crder penalty [1 ]. These stock levels are also used as input for

models A, B, and D in order to evaluate the performance of Lagrangian

analysis with respect to the objective functions developed in this section.

Information concerning costs, failure rates, and resupply times are

not varied throughout the experimental procedure. In order to retain

comparability with the NASA model, we assume that two shuttles make

simultaneous demands on the supply system. (Note that this is the worst

case of a two-base system in which a common depot is used and the distance

between the bases is ignored, as no two shuttles could be launched

simultaneously from the same launch complex.) Shuttle planners feel

that a reasonable range of launch cycle lengths would include cycles of

4, 8, 16, 32, and 50 days, and so runs were performed for each of these

activity levels. The last important variable we have identified is the

weight of the launch day as compared with all other days in the cycle.

To reflect a possible increased backorder penalty on this day, we let

the weight be equal to either one, corresponding to an equal weighting,

or five, on the last day of every cycle.

Another key element for the three models involves the shape of the

failure rate function. If this rate is nonzero only on the maintenance

day for item i during a vehicle's launch cycle, the resulting nonstation-

arity will be as severe as possible. This is why we chose earlier to

define the failure rate function in this manner, except for Model D,

which, for reasons discussed earlier, must experience some minimal failure

rate on every day during the cycle. We will now discuss the impact of

this assumption in some detail.

------- [-



41
44

We have the following values for Xi(t):

~L-r t =m.
i 1

[ ' ~ ~~~Xi(t) :I'i t:m

0 otherwise.

In Model D, this equality is only an approximation. Therefore, the lead

time demand A(ij) will be some multiple of L-ri. In Figure 2.10(a)

the lead time is slightly less than L, and so A(i,tI) is equal to 0.

At j = t2, however, we have A(i,t 2) = L-ri. Similarly, for the longer

lead time Tt in Figure 2.10(b) A(i,t 1 ) = L-ri while A(i,t 2) = 2(L-ri).

Since A(i,tl) and A(it 2 ) can differ from one another by at most L.ri

no matter how tl , t2 and Ti are chosen, we have the following inequality:

IA(i,t l) - A(i,t 2 )1
0< A(ilt < 1, k=lor2," I - A~i~tk)  - ''

A(i,tk) > 0.

It is easy to see that as Ti increases, the variation in lead time demand

represents a diminishing proportion of the constantly increasing values

of A(i,tk). As we will show later, however, as few as 2 or 3 demand

spikes during the lead time ar enough to erase the effects of nonsta-

tionarity in the spares systems we examined. The argument may be for-

malized as follows: we recognize that Ti  nL + At where At < L and n > 0

and integer. It can easily be shown that the average value of A(i,j)

over the cycle has the following relationship to T.:

IL

Ljl A(i,j) = ri(At(n+l)+(LAt)n)

Ti  nL + At

Denoting this average ratio as Ui , we see that:

L4
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(a)

(b)

rl- n. t 2 time

Figure 2.10 Variability in Lead-Time Demand

U r.

Further, if we define the variability 
of Ui as follows:

v(U) - (U ~ 2

1
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we may also show that the following holds:

lim V(Ui) : 0.

Since the asymptotic properties of V will result from either fixing

Ti anddecreasing L or fixing L and increasing Ti, we note that non-

stationarity will become less important (V(Ui) - 0) if either the

resupply time increases or the launch cycle becomes shorter. Ui can thus

be seen as a measure of nonstationarity with variability converging

to 0 as n gets large. We will see that as U i becomes less

variable for all items i as a result of steadily decreasing L, the

results of Models A, B and D more closely approximate those of models

where stationarity is assumed. Finally, we note that these results

support our earlier claim that a single shuttle with steadily increasing

launch rate will require the same spares support as an increasing number

of shuttles. This is because both result in the same values for L which

will in turn produce equal values of Ui for eaIch item i.

A sample table of the input data is given in Table 2.5. Computational

results are discussed in Chapter 3. The programs' output includes, for

a range of investment levels, the performance which the algorithm achieves

in terms of its objective function, as well as the spares mix it identi-

fies. The output may also include the value relative to the objective

function achieved by spares mixes supplied externally. The sources of

these stock levels are the NASA program and the marginal analysis program

discussed earlier. F:
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CHAPTER 3

Each model's performance is measured and evaluated by use of three

analytical approaches. The output of each program is first compared

with the NASA and Lagrange multiplier techniques discussed earlier.

Thus we may determine the effects of nonstationarity and weighted back-

orders with respect to these two baselines. If Models A, B, and D

provide the same levels of the objective function for less cost than

the other models, then we have effectively exploited our assumptions

about the system. Next, each model is analyzed to determine its behavior

in terms of the objective function as well as the spares mix when back-

order weights increase and inter-launch cycles lengthen. In this section,

we will refer to the cycle as the time between consecutive launches.

Finally, we contrast the spares mixes at comparable levels of investment

for each of the three models. In this manner we may draw inferences as

to the consequences to the spares mix of selecting one objective function

over another.

The computer codes for each of models A, B and D's main subroutines

appear in Appendix A. The subroutines not shown are essentially the

same for each model, and relate to input and output functions. A comment

in Model A's listing reveals the procedure used to determine lead-time

demand rates unique to Model D, and so the code for the computations of

lead-time demand rates is omitted from listings of the other two models.

In terms of their own objective functions, the models performed better

than, or as well as, both the NASA and the simple Lagrange multiplier

models. For cycle lengths of 4, 16, and 50 days, the results appear in

45
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graphical form in Figures 3.1-3.18. A table of values for a 35-day cycle

is given in Table 3.1 and sample output for each program appear in Tables

3.2, 3.3 and 3.4.

Table 3.1 Performance of Models for a 35-Day Cycle:
SPARES LAGRANGE SPARES MODEL A SPARES NASA
BUDGET POS(S) BUDGET POS(S) BUDGET POS(S)

4699440. 0.29019 9938780. 0.70345 9205780. 0.631025552240. 0.32797 10833780. 0.76034 10203780. 0.68576
6606240. 0.43380 11637780. 0.80632 10870780. 0.72495
5835740. 0.44005 12789580. 0.85227 11387780. 0.77347
8840880. 0.56348 13528580. 0.87660 12135780. 0.81561
9129880. 0.60244 14722580. 0.90753 12538580. 0.83192
11061780. 0.76431 15937830. 0.93465 17881088. 0.91871
11838280. 0.79978 16808576. 0.95082 18797600. 0.95258
14952720. 0.89015 17882192. 0.96341 27862400. 0.9961618801392. 0.97240

19915872. 0.98187
20911856. 0.98667
21668336. 0.98906
22825328. 0.99197

SPARES LAGRANGE SPARES NASA SPARES MODEL B
BUDGET E(BO) BUDGET E(BO) BUDGET E(BO)

9205780. 1.1561 4074440. 2.97834699440. 2.5893 10203780. 0.9926 6835740. 1.7145
5552240. 2.2029 10870780. 0.8197 11061780. 0.6912
6606240. 1.8057 11387780. 0.6721 13703080. 0.37836835740. 1.7145 12135780. 0.5606 15632220. 0.25253840880. 1.1364 12538580. 0.5159 19765072. 0.08389129880. 1.0611 17881088. o.1808 22026784. 0.0463
11061780. 0.6912 18797600. 0.1245 24727168. 0.0246
11838280. 0.5762 27862400. 0.0133 28638688. 0.0094
14952720. 0.3145

SPARES LAGRANGE SPARES ',!ODEL D SPARES NASA
BUDGET E(BO DAYS) BUDGET E(BO DAYS) BUDGET E(BO DAYS)
4699440. 9.8615 8279340. 2.9900 9205780. 4.99675552240. 9.4755 10355640. 1.9000 10203780. 3.3543
6606240. 7.9368 13938180. 0.8187 10870780. 3.1798
6935740. 7.9070 16766480. 0.4379 11387780. 3.01458840880. 6.4390 20438992. 0.1764 12135780. 2.0523

* i 9129880. 6.2991 22748496. 0.0794 12538580. 2.0052
11061780. 3.7093 24005792. 0.0553 17881088. 0. 43F11838280. 2.8763 26691936. 0.0276 18797600. 0.3555

-,, 14952720. 0.8821 28949904. 0.0161 27862400. 0.0335
144155440. 0.0 32819488. 0.0050

I -J"
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SUMMARY OF TOTAL ASSETS AND THEIR DISTRIBUTION

- SPARES PROBABILITY OFITE! STOCK LEVELS SUFFICIENCY

1 4 0.88443
2 3 0.96333
3 2 0. 94474
4 1 0.96360
5 1 0.90250
6 1 0.95409
7 1 0.97313
8 1 0.97313
9 1 0.90274

10 2 0.98567
11 1 0.99214
12 0 1.00000
13 0 1. 00000
14 1 0.99214
15 0 0.95131
16 0 0.96900
17 1 0.99810
18 1 0.99270
19 0.96926
2r 0.94857
21 1 0.97814
22 2 0.98930
23 0 0.98325
24 1 0.99043

TOTAL SPARES INVESTMENT 9072640.00

SYSTE!,M POS 0.64623320

Table 3.2 Sample Output for Model A

-iam
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SUMMARY OF TOTAL STOCK LEVELS AND EXPECTED BACKORDERS

SPARES TOTAL EXPECTED
ITEM STOCK LEVELS AVERAGE SHORTAGES

1 8 0.10
2 8 0.07
3 4 0.13
4 2 0.24
5 3 0.14
6 3 0.32
7 2 0.15
8 2 0.15
9 3 0.09

10 3 0.12
11 2 0.15
12 1 0.10
13 1 0.10
14 2 0.15
15 1 0.28
16 1 0.11
17 1 0.415
18 2 0.02
19 2 0.19
20 1 0.32
21 2 0.11
22 3 0.07
23 1 0. 04
24 2 0.03

TOTAL EXPECTED WEIGHTED BACKORDERS 0.0463
TOTAL SPARES INVESTMENT 22026784.0

Table 3.3 Sample Output for Model B
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SUMMARY OF TOTAL STOCK LEVELS AND EXPECTED BACKORDER DAYS

SPARES TOTAL EXPECTED
ITEM STOCK LEVELS BACKORDER DAYS

1 4 0.05
2 4 0.04
3 2 0.06
4 1 0.04

5 2 0.02
6 2 0. 04
7 1 0.09
8 1 0.09
9 1 0.02

10 2 0.02
11 2 0.01
12 1 0.00
13 1 0.00
14 2 0.01
15 1 0.03
16 1 0.02
17 1 0.04
18 1 0.05
19 1 0.04
20 1 0.04
21 1 0.03
22 2 0.02
23 1 0.01
24 1 0.05

TOTAL EXPECTED WEIGHTED BACKORDER DAYS 0.818674
TOTAL SPARES INVESTMENT 13938180.0

Table 3.4 Sample Output for Model D
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Looking at Figure 3.1, we note that in a four-day cycle, Model A

does perceptibly better than both the simple Lagrangian technique and the

NASA probability of sufficiency model. For a given budget level, the

improvement over the Lagrangian method is about 1%, measured in terms of

weighted probability of sufficiency. When the weight increases from one

(an equal weighting) to five, we see in Figure 3.2 that little change in

the models' relative performance is evident. Moving to a 16-day cycle

in Figure 3.3, we see an increased differential in performance level,

to about 2%. This relfects the increased nonstationarity effects

inherent to a longer cycle. A similar increase is evident in Figures

3.5-3.6 when the launch days are increased to 50 days apart, leading to

a performance increase of about 2-4%. The curves for Model A are derived

by executing the algorithm presented in Chapter 2 and stopping every

time $1 million is added to the total spares cost. Since the data

points for the NASA program and the Lagrange multiplier technique are

also discrete, due to the integer nature of the decision variables, it

would be misleading to fit a curve through them. We are limited to

comparing points which are more or less adjacent to one another and

drawing inferences from their costs and performances relative to the

objective function. Thus one conclusion we may draw from the data is

that as the launch cycle for a single shuttle becomes shorter, the

effects of the nonstationarity we expressed in the formulation of Model A

are less pronounced.

Secondly, it appears that the backorder weight on the launch day

does not affect the choice of a spares mix as much as does the non-

stationary nature of lead-time demand. It should be the case, however,

I.
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that if only certain items were given increased backorder weight and

if the increase lasted longer than one day, those items would necessarily

be stocked to a greater depth in a spares mix produced by Model A. Model A

would then be more responsive to weights than it is under the environment

we assumed for our experiment.

The output for Model B, assuming a four-day cycle and equal

weighting of the launch day, is shown in Figure 3.7. Here we see a

difference of about 2-4% between the performances of Model B and the

NASA model, but no apparent difference between it and the Lagrange

multiplier method. The same pattern is observed in Figure 3.8 for a

launch day weight of 5, only the performance of all the methods has

dropped. In fact, Model B actually chose the same stock levels as it

did for a launch weight of 1, suggesting that it is perhaps not possible

to increase system performance by modifying stock levels if a model

considers only the increased weight of the launch day relative to cost.

When the cycle length increases to 16 days, in Figures 3.9-3.10, we again

observe that Model B gives generally lower backorders than does the

NASA technique, but achieves close to the same performance as a

Lagrangian technique. Even where the cycle between the launches is 50

days, in Figures 3.11-3.12, we fail to distinguish an improvement over

the simple Lagrangian technique when we use Model B. Since the Lagrange

technique has a measure of backorders as its objective function, we would

expect that of the three models, the results of Model B should be most

closely approximated by the Lagrange multiplier method. Therefore, we

recognize that any improvement obtainable using Model B might not be

evident among the small number of spares we exanined.

I!
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Finally, in Figures 3.13-3.14, the expected waiting time over the

cycle is shown for Model D, the NASA model, and the Lagrangian model.

. Even for the four-day evenly weighted launch cycle, there are signifi-

cant advantages to be gained by choosing one spares mix over another.

* jAs much as a 50% reduction in expected waiting time for backorders will

accrue from using Model D to set the stock levels. Most of the reduction

seems to stem from a single item which has such a low lead time demand

that few spares would ever be in resupply and a long delay would result

" were it ever backordered. This item is bypassed for low budget levels in

other models because of its low failure rate. As investment increases,

Model D and the other models begin returning about the same levels of

performance with respect to expected weighted backorder days. As was

noted in the analyses of Models A and B, the introduction of longer

cycles has the result of both decreasing the required budget for all

levels of performance and increasing the model's sensitivity to nonsta-

tionary demand rates which increase instability in expected lead-time

demand. The result is that in Figures 3.17-3.18 for a 50-day cycle

there can be as much as a 70% reduction in expected weighted backorder-

days for low budget levels when Model D stock levels are employed.

We next turn to an analysis of how the various models allocate

spares as the budget limits increase while the cycle length is held

constant at 35 days. The launch day has five times the weight of other

days in the cycle. For each of the models we tried to find three spares

mixes priced at $10 million, $15 million, and $20 million, although some

of the budgets were lower or higher than others. Budgets which were

higher by $1 million could include from two to five more spares than

* |
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more austere budgets, and so the fluctuations in performance with respect

to an objective function could appear to be greater than they actually

are. The budgets and performance levels are shown in Tables 3.5 and 3.6

respectively, while the item stock levels for each of the twelve spares

mixes are given in Table 3.7.

Close examination of Table 3.7 shows that of the Models A, B, and

D, Model B gives priority to the high-demand, low-cost items (I and 2)

sooner than Model A or Model D. Model A tends to stock the moderate

demand, high cost items (7 and 8) sooner than either of the other two

models; but, as demand decreases slightly and cost rises, and lead time

shortens (items 12 and 13) the opposite effect is apparent. The lead time

proves to be an important factor for Model D as well, for as it lengthens,

as in the cases of items 15 and 16, Model D invests in the high cost,

low demand items more quickly. Conversely, for a short lead time (27

days for item 21) Model D buys less of an inexpensive, moderately demanded

item than either of the other two models.

The overall trends in stocking policy seem to be very similar for

Models A and B, whereas Model D seems to stock at least one item of each

type by the time it reaches budget level 2. This could be because it

overestimates backorders for the low demand items under the assumption

of nonstationary demand, as discussed earlier. Another intuitive result

is that Model B closely follows the stock levels set by the Lagrangian

model, because both are based on a measure of backorders due to lead-

time demand. The items used here evidently do not vary significantly

in terms of expected numbers of backorders, even when the demand has a

nonstationary Poisson distribution. By far, the most unusual spares mixes

are produced by Model D, which gives the same spares mixes as Model A

in any one budget only 57% of the time, and with Model B only 64% of

.. . . . .. -. . ... , .. -... .
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Table 3.5 Budgets Used for Comparison

Actual Spares Mix Cost, millions
Budget

Model A Model B Model D NASA Lagrange

1 10.1 11.1 10.3 10.2 11.1

2 15.4 15.6 14.0 12.5 15.0

3 20.4 19.8 20.4 18.8 -

Table 3.6 Performance Relative to Models A, B, and D of Different

Spares Mixes

Spares Mix Expected Weighted Probability of Sufficiency
(a) Computed By

Budget 1 Budget 2 Budget 3

Model A .719 .923 .985
NASA .685 .831 .952
Lagrange .764 .890 -

Spares Mix Expected Weighted Backorders
(b) Computed By

Budget 1 Budget 2 Budget 3

Model B .691 .253 .084
"NASA .993 .616 .125
Lagrange .691 .315 -

Spares Mix Expected Weighted Backorder Days
(c) Computed By

Budget 1 Budget 2 Budget 3

Model D 1.90 0.82 0.18
NASA 3.35 2.01
Lagrange 3.70 0.88
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Table 3.7 Stock Levels for Comparison

SOURCE Model A Model B Model D NASA Lagrange

BUDGET 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

ITEM

1 4 6 7 5 7 7 3 4 5 4 5 6 5 6
2 4 4 6 5 6 7 3 4 5 4 5 6 5 6
3 2 3 4 2 3 3 2 2 3 2 3 3 2 3
4 1 22 1 1 2 1 1 2 1 1 2 1 1
5 1 2 3 2 2 3 1 2 2 1 2 3 2 2
6 2 2 3 2 3 3 1 2 3 2 2 3 2 3
7 1 1 2 1 1 2 1 1 2 1 1 2 1 1
8 1 2 2 1 1 2 1 1 2 1 1 2 1 1
9 1 2 3 1 2 2 0 1 1 1 1 2 1 1

10 2 3 3 2 2 3 2 2 3 1 2 2 2 2
11 1 1 2 1 2 2 1 2 2 1 1 2 1 2
12 0 0 0 0 0 1000 00
13 0 0 0 0 0 1 0 11 001 0014 1 1 2 1 2 2 12 2 2 1 2
15 0 1 1 0 11 1 1 2 1ll l 0 l
16 0 1 1 0 1 1 1 1 1 0 1 1 0 1
17 1 1 1 1 1 1 1 1 2 1 1 1 1 1
18 1 1 2 1 1 1 1 1 2 1 1 1 1 1
19 1 2 3 1 2 2 1 1 2 1 1 2 1 2
20 1 1 1 1 1 1 1 1 2 1 1 1 1
21 1 2 2 1 2 2 1 1 2 1 1 2 1 2
22 2 2 3 2 2 3 2 2 3 1 2 2 2 2
23 0 1 1 0 1 1 1 1 1 0 0 1 0 1
24 1 1 2 1 1 1 1 1 2 l 1 1 11

*1.i
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the time. By contrast, models A and B returned the same stock levels

73% of the time.

The choice of an objective function and hence one of the models given

above has a major impact on the spares mix that one would purchase and

upon the performance that the serviceable spares system can provide

relative to any one measure. The final system performance cannot be

predicted, however, until the number of shuttles, their launch frequency,

and their maintenance schedules are known. Yet another important system

characteristic from a repairable spares perspective will be the presence

of two launch sites which will have different activity rates associated

with them. It will be important to know how the launch periods at the

two bases correspond to one another, because when the two time-dependent

demand distributions are combined, the basic period for the system will

depend upon their interactions. In some cases, the number of days to be

examined could be as much as one year; if, for example, Base A were to

launch every 4 weeks while Base B launched every 13 weeks. In the next

chapter, we examine the two base problem as it relates to the location

problem for spares, as well as its effect upon the choice of a spares mix.

.2t



CHAPTER 4

The choice of an optimal mix of serviceable spares is not entirely

separable from that of where the spares storage facilities should be

located. The most obvious interdependence is through the increased

number of backorders (and backorder-days) we would expect at bases where

no spares are permanently stocked. Alternatively, if facilities exist

to store spare parts at both bases, a model must recognize that only one

of the two bases will receive a given spare after it completes repair

at the depot. However, especially in the more likely case where lateral

(base to base) resupply is allowed, the increased transportation time

will only be on the order of a day or two, or only between two and five

percent of the transportation times we encountered in Models A, B, and D.

Even without a lateral resupply capability, this means that if demand

is low, failures at each base will be rare enough to permit most repaired

units to be returned to the base at which they originally failed and

so each base may be treated as a single location.

While the choice of spares basing locations may not overly influence

the optimal number of each item to be procured, it could still have sig-

nificant impact on the real time efficiency of the system. In the event

that a backorder occurs, the expected waiting time could be significantly

altered by the existence of a spares facility at each base and/or lateral

resupply capabilities. The time-critical nature of shuttle operations

will probably result in the use of a real time inventory monitoring

system. Such a system could be used to track the inventory position of

75
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those spares which could adversely affect the launch date, and to direct

routine shipments from the depot to the bases as'well as emergency or

precautionary shipments from one base to another. The number and

duration of backorders could thus be held to a minimum, but much depends

upon where the spares facilities are located and upon the conditions

which will permit or prevent a shipment. One interesting kind of spares

shipment would take place as the launch date for one of the bases

approaches. If no demands occur and the launch takes place, the shipment

will normally be returned to the sending base. Such a shipment will be

the result of what we will call a launch critical event.

Given the many interrelationships between the supply system, the

launch rates at the different bases, and the interbase shipment discipline,

it is extremely difficult to develop analytical models which would provide

some optimal level of fills or expected backorders. Miller [7] presents

a model which can be used as a real time decision-making mechanism for

repairable spares allocation. This model, which he terms Real Time Metric

(RTM), compares the need of each base with the reluctance of the depot

whenever a supply event such as an item failure or a repair completion

takes place. The RTM generates quantitative values for base

need and depot reluctance as functions of the state of the system. If

depot reluctance is smaller than at least one base's need, a spare is

shipped to the base with the greatest need.

This model is easily extended to incorporate a nonstationary demand

distribution and launch critical events. Miller's model has been pro-

grammed in FORTRAN on an IBM 370/168 at Cornell University as an experi-
ml[

metlsiuain yCgiao[]



77

Using this simulation as the basis for our model of the shuttle's

repairable spares supply system, we restate some of Miller's assumptions

and extend them as follows:

1. The system consists of a depot and two bases. Any units removed

from the shuttle due to failure or suspected failure are sent

to the depot for repair.

2. A single item is examined.

3. Repair time is fixed. Transportation time from base to depot

is considered part of the repair time, and is fixed at td days

from the depot to a base and at tb days between bases. (These

assumptions are easily modified.)

4. The item experiences a nonstationary Poisson demand distribu-

tion with a demand spike mb days before the launch at each

base.

5. There is a fixed number of spares.

6. The depot reluctance is zero; thus repaired units are shipped

immediately to the base with the greatest need.

7. Base need is a function only of its inventory position and the

length of time before its next scheduled launch.

8. Backorders are assumed not to prolong the launch cycle so that

the launches at a given base are evenly spaced, although

this assumption may be relaxed.

9. The launch rate at a base is directly proportional to the-number

of shuttles at the base and does not change over the simulation

period. r
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Assumption 1 ascribes to the depot those functions carried out by

the contractor in the real system. NASA has no control over the contrac-

tor's operations, and, as discussed in Chapter 2, the shipment and testing

is so time-consuming that any removal must be treated as a demand on the

supply system. In Assumption 2, we limit the scope to one item, although

the simulation may easily be expanded. We may allow resupply times and

travel times to be exponential, but the fixed quantities are acceptable

as well. Next, although demand is assumed to be nonstationary, the

number of shuttles in the system is so high that the effects of nonsta-

tionarity become unimportant as we noted in Chapter 3. We use high demand

rates because otherwise it would be very expensive to run the simulation

long enough to collect significant observations of backorders.

Each of the fixed number of spares is either in stock, en route to or

from a base, or in depot repair. As Miller points out, the number in

repair is beyond our direct control, and so the model seeks to maximize

the number which are in stock where the need is greatest, and places

limits upon the number of shipments and hence the en route inventory.

In defining base need, we make use of the following definition of inven-

tory position (IP):

IP = # on-hand + # on order - # backordered.

We also would like to increase abase's need substantially if inventory

position is negative or if there is an impending launch at that base.

When a lateral resupply is considered, the need of the supplying base

is computed and compared with the need of the potential recipient.
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Lastly, we make some assumptions about the launch cycle. It is again

necessary to assume that the launch cycles are fixed in length, although

it is not unreasonable when considering many shuttles at a base to allow

some latitude in the launch date. The simulation is much more flexible

than the analytic models, and could easily be modified were this a crucial

assumption. The assumption of a fixed number of shuttles at a given base,

however, may be very important. It could be the case that a shuttle

will take off from one base and land at another, due to either landing

site weather conditions or an emergency landing. The subsequent change

in the launch pattern, although only temporary, could cause some

changes to supply system performance, especially if it is a rigid system

which stocks at only one location. The computer simulation could be

used to analyze these transient effects; however, that is not our

primary objective here.

In modeling the above system with a simulation, several events must

first be identified. The relevant events are listed in Table 4.1.

In addition to the actions which are produced automatically by these events,

there are several actions which may be produced by some events, depending

upon the state of the system; specifically, the relevant variable is

the base need. We now describe in some detail how that quantity is

calculated.

Miller defines base need to be a function of the expected backorders

over the travel time from the depot to the base. He approximates the

discrete conditional distribution of expected backorders given the on hand

inventory by a normal distribution. This technique is given in reference

[6]. Then the mean number of backorders is given by the following:
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Table 4.1 Events To Be Simulated

EVENT ACTION

1. Failure - decrement on hand inventory (-l)
- increment depot rapair inventory (+I)

- schedule a repair completion

- compute new base need

- schedule another failure event

12. Repair - decrement depot inventory (-1)

completion - choose a destination for the repaired unit

- increment en route inventory to that base (+l)

(conditional event)

- compute new base need at destination

3. Arrival of a - decrement en route inventory to the base (-1)

spare at base - increment on hand inventory (+1)

4. Launch critical - recompute base need at the base

(Begin/End) - schedule next launch critical (Begin/End)

5. Maintenance - reschedule the next failure event

(reflecting increased failure rate)

- schedule next maintenance date

PB = On hand + En 
route - Atd 1

where X is the demand rate over the travel time td. Further, the variance

of the number of backorders is given by the following:

02=B Atd.

If UB is positive,it represents expected net inventory with no backorders.

* - -
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Miller then makes a correction for the fact that the true distribution

is not continuous, as follows:

2a + ( 'o + B ad1B > 0
2B
N .- (/a 7 iB aB) P

where aB =V/ is the standard deviation. The final step is the calcu-B

lation of the mean of the backorders distribution, using the following

equation:

1 _ /2(jj 2) I - (1/2)w 2

E[B] =a B • -- BBf Tre m

2rr e -00 2 dL

We are now able to define base need in a variety of circumstances. If

an item fails at a base, then we are concerned with the desirability of

immediately initiating a resupply to that base from the other base. How-

ever, if the sending base's need will increase past that of the receiving

base's during the time it would take to ship the part back and

forth, then the lateral shipment should not take place. In effect, we

are minimizing the maximum base need over a short time horizon. We

will thus carry out a shipment from base I to base 2 at time t if the

following holds:

NB (t) > max [NB (t)]
2 t,t+2tb 1

where NB.(t) is the need of base i at time t. The difference between this

.. ..*, . ,
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model and Miller's model is that we must now look forward in time towards

fluctuations in need which take place at predetermined times. The other

events for which similar comparisons are performed are summarized in

Table 4.2.

Table 4.2 Conditional Events for Shipments

EVENT CONDITION ACTION

1. Failure
(base i) NB (t) > max [NB (s)] - decrement on-hand

i se(t,t+2tb) i inventory, base i

- increment en route
inventory, base i

- compute new base
needs

!2. Repair
completion max [NBi(s)]

se(t,t+tb+td) '

> max [NB(S)] -ship to base i
se(t,t+tb+td) T

3. Launch Same as for failure, Same as for failure,
critical base i base i
(base i)

The overall computation of base need is derived only partly from the

expected number of backorders at the base. Other important considerations

include the presence of backorders and the proximity to launch at the base.

In addition, at some maximum stock level, IPmax' the base has no need at

all. Thus we may define the need at base i at time t as follows:

- " -- " III I ~. . . . . . . . . . ......III III.. .......II - 11II "- ;' : .... *-1- -
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00 if IP < 0
N {B(t) E[B+nyi if 0 < IP < IPmax

if IP > IP max

where n is a constant representing the penalty for backorders as the

launch nears, and yi is a variable taking value 1 if a base is launch

critical and 0 otherwise. Thus base need might be represented graphically

as in Fig. 4.1. We note that expected backorders E[B] as well as Yi

will depend not only on inventory position but also on the time period

over which N (t) is evaluated.
NBi

The choice of the constant n must be made carefully, for a system

which ships back and forth with abandon can be just as inefficient as

one which ships only when a backorder occurs. The best value for n will

depend upon the activity rates at the bases, the expected backorders, the

nonstationarity of the demand distribution, and the number of spares in

the system. For our purposes it is acceptable to choose n by using trial

and error, but in any general use of the method, a more precise formulation

would be required. It could be that a good value for n is obtainable

in the same way that Miller calculates depot reluctance: as an expo-

nential function which decreases in the number of spares on hand at the

location in question.

The above model relates to the case where there are two stocking

locations for repairable spares, and there is an unlimited capacity for

lateral resupply between bases. In our analysis we consider three

separate cases. Case I allows shipments to either base upon repair

.b w"
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completion, but does not allow lateral resupply. Case II allows ship-

ment to the second base only if its stock of spares is low and it is close

to the launch date at that base, so that limited lateral resupplies

are permitted. Lastly, Case III corresponds to the stiuation where two

bases, each with complete stocking facilities, are allowed to perform

lateral resupplies as often as is indicated by the comparison of base

needs.

The Computer Implementation

The model presented here was coded in FORTRAN and run on an IBM

370/168 at Cornell University with a VM operating system. Most of the

simulation structure is drawn from similar work done by Cogliano [2].

Significant changes include the addition of launch critical and mainten-

ance events, the extension of the time frame for evaluating expected

backorders, the introduction of nonstationary demand rates, and the change

in shipment discipline to incorporate the three cases detailed above.

The simulation has an event-scheduling format, and is modularly

designed so that each subroutine relates to a specific event. The key

launch critical subroutine is given in Appendix B. The typical program

input is shown in Figure 4.2, with a flowcart representation of the

simulation given in Figure 4.3. The item which was used for analysis is

like item 3 from the group of items we examined in Chapter 3. The item

experiences .300 failures per day on the average in the simulation whereas

the average failure rate for item 3 in models A, B, and D was .318. The

system is assumed to consist of seven shuttles at base 1 and five shuttles

at base 2. Since shuttle turn-around time is fifty days, there is a

- I

• I II. . ' t --= - _,,_ I
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II
IPLO

N B
\Y

y'=0

IP IPmax

Fig. 4.1 Base Need as a Function of Inventory Position.

seven day interlaunch cycle at base 1 compared with a ten day cycle at

base 2. There is one item on each shuttle, each with a failure rate of

1/40 per day if stationary demand is assumed, and a resupply time of

60 days. There are 25 spares in the system, 15 of which are initially

at base 1, and the remaining ten are at base 2. Depot to base travel

time is 1.0 days, while base to base travel time is 2.0 days. The

simulations were "warmed up" for a set period of time before a series of

daily observations were begun. The output, which reports the average
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Figure 4.2 Input for Simulation

OEACH INPUT FORMAT IS EITHER 1014 OR IOF4.0

ONIUMBER OF BASES
2

NUMBER OF ITEM TYPES
1

NUMBER OF TYPE-i, TYPE-2, ... UNITS AT BASE 1
7

NUMBER OF TYPE-i, TYPE-2, ... SPARES AT BASE 1
15

NUMBER OF TYPE-i, TYPE-2, ... UNITS AT BASE 2
5

NUMBER OF TYPE-i, TYPE-2, ... SPARES AT BASE 2
10

NUMBER OF TYPE-i, TYPE-2, ... SPARES AT THE DEPOT
0

AVERAGE TIME-TO-FAILURE FOR TYPE-i, TYPE-2, ... ITEMS
40. 000

AVERAGE BASE REPAIR TIME FOR TYPE-i, TYPE-2,... ITEMS
0.0

AVERAGE DEPOT REPAIR TIME FOR THESE SAME ITEMS
60. 000

PROBABILITY OF A BASE REPAIR FOR TYPE-i, TYPE-2,
0.0

TRAVEL TIME FROM BASE-i, BASE-2, ... TO DEPOT
0.0 0.0

TRAVEL TIME FROM DEPOT TO BASE-i, BASE-2,
AND FROM BASE 1 TO 2, 2 TO 1, ... , WITH LATERAL RESUPPLY

1.000 1.000 2.000 2.000
PROCESSING TIME FOR ORDERS FROM BASE-i, BASE-2, ... )

0.0 0.0
OLENGTH OF THE WARM-UP PERIOD

150.000
TIME BETWEEN SUCCESSIVE OBSERVATIONS

i. 000
NUMBER OF OBSERVATIONS TO TAKE (FORMAT 16)

500
ENTER 1 FOR AN ESTIMATION OF VARIANCES

0
ENTER 1 IF FAILURE TIMES ARE EXPONENTIAL

1
ENTER 1 FOR A TRACE OF EVENTS

0
SEEDS FOR FAILURE TIME AND PLACE (2FI0.0)

745623964. 235187469.
SEEDS FOR REPAIR TIME AND PLACE (2F10.0)

254768137. 647629632.
SEED FOR INITIAL CONDITIONS (F1O.0)

545734621.
OBASE ORDERING POLICY:

(1) ORDER TO MATCH THE UNIT THAT FAILED
(2) ORDER TO REPLACE THE PART JUST INSTALLED
(3) ORDER TO REPLACE THE PART THAT FAILED
(0) DOES NOT APPLY; SHIP USING NEED & RELUCTANCE
0
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BEGIN-)

Initialize number in Caclt Taleo
repair, completion times, Expclte Backorersf
and time of first failureExetdBcres

Advance the Clock 4
to next event

What if statistics event

Sotheise

otews

[BASE IITEM LAUNCH REPAIR ITEM
ARRIVAL I FAILURE CRITICAL COMPLETION MAINTENANCE

STake action based Collect statistics;
on tTables 4.1 and 4.2 {schedule new

J statistics event

No Time
Timite Figure 4.3 Flowchart,, xceeded/ for simulation.

ii ~ ~Yes " /

_J~~ ~ rn Output....° ]
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number of shuttles grounded, is discussed in the next section.

Simulation Results

Using the hypothetical item developed above, the computer simulation

is used to test the expected performance of supply systems under the three

cases we identified. Although the system's configuration and shipment

limitations are varied, the failure rates and random number seeds are

identical for all runs. This results in nearly identical patterns of

failures during each of the simulation trials.

Our primary results concern the case where there is no nonstationarity

in the demand distribution. As we are dealing with an activity rate of

one launch every 4.4 days, the results of Chapter 3 would suggest that

incorporating nonstationarity is unnecessary. The simulation output is

shown in Table 4.3 for the three cases defined earlier. We see that the

best performance is returned by a system allowing unlimited lateral

resupply. In addition, the output would suggest that in this case it is

preferable to have both basing locations stocked with spares than to stock

only one location. This fact is demonstrated by the 70% reduction in

backorders which Case I achieves relative to Case II. Table 4.4 gives

information on the performance of the three decision rules with respect

to the number of shuttles grounded during launch critical periods. It

is possible to achieve close to zero backorders if Case III is implemented.

Taken together, Tables 4.3 and 4.4 suggest than an optimal policy

in all respects might be the use of Case III. We note, however, that

even when the launch critical constant is zero, we will make close to

100 shipments of our hypothetical item in a 500-day time period. Thus

Case I might be a better choice if the cost of a lateral resupply capa-

bility is high.
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Table 4.3 Average Number of Shuttles Delayed

Launch critical Cases
constant, n I II III

0 .066 .222 .008
.01 .066 .222 .014
.05 .066 .222 .012

Table 4.4 Average Number of Shuttles Delayed During Launch Critical Period

Launch critical Cases
constant, r I II III

0 .076 .208 0.0
.01 .076 .208 .004
.05 .076 .208 0.0

Table 4.5 Average Number of Shuttles Delayed with Nonstationary Demand

Launch critical Cases
constant, n I II III

0 .400 .500 .398
.05 .400 .500 .386

Table 4.6 Average Number of Shuttles Delayed During Launch Critical
Period with Nonstationary Demand

Launch critical Cases
constant, n I II III

0.0 .002 .184 0
.05 .002 .176 0
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]Nonstationarity in the lead time demand rates may easily be inte-
grated into the framework of Miller's RTM. Since the simulation kept

a current value of the next failure time, the demands in a given day

* could effectively be doubled by simply combining the expected number of

• demands for two days to produce the demand for a spike day. We chose

to do this on the day the shuttles become launch critical, but it could

occur on an arbitrary day or days in the launch cycle. With a failure

rate of 1/60 per day on non-peak days and 1/30 per day on spike days, we see

in Table 4.5 that Case III is able to completely avoid backorders for n=.05.

When we examine the performance of the three cases during the launch

critical period, in Table 4.6, we note that Case II's performance worsens

during the launch critical phase. This is due to the fact that we may

ship a spare to base 2 only rarely for lack of prepositioned spares

facilities at that location. Thus many backorders at location 2 will

last at least a day or two. In this case we note that increasing the

launch critical constant in Table 4.6 may remedy the situation for Case II.

It has no effect on either Case I or Case III. It is interesting to note

that the precautionary shipments which we allow in Case III are able to

eliminate all backorders during the launch critical phase. However, we

must caution that these data may only be considered as preliminary

results since they are based on single simulation runs of 500 days. Much

more investigation is necessary before we can actually identify a good

value for n in all cases and before we can state that Case III is always

superior to the other cases with the proper choice of n.

Once the desireability of lateral resupply capability and multiple

location spares prepositioning is determined for all items, decisions

as to the shipment discipline for the overall system may be made.

E I,- lawn-
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This determination will have to depend upon the probable utilization

of the lateral resupply system relative to its cost.

There is thus no single relationship that determines which basing

concept is best for all spares in the sense that it simultaneously mini-

mizes grounded shuttles on the average as well as during launch critical

periods. The launch critical constant as well as the shipment discipline

must be carefully chosen using the best information available about each

item. Methods such as those outlined in this chapter can be invaluable

in performing the necessary analysis and in implementing the results.

However, one might well attempt to formulate some combination of Models

A, B, and D with the simulation introduced above. It may be that for

the price of lateral resupply capability we could substantially enrich

the spares mix and surpass the performance of Case III. The objective

of such a formulation would be to minimize the combination of spares

investment with the expected ongoing costs of transportation and spares

facilities. In addition, the flexibility of a multi-base capability in

case of a real emergency merits additional consideration.

. ...



CONCLUSION

The results of Models A, B, and D poi1 t out the potential differences

in spares mixes and performance levels which result from the choice of

any one model. They indicate that, at least for the items we considered,

nonstationary Poisson demand rates may not yield significantly different

spares mixes than stationary rates. As lead time demand variability

increases, however, nonstationarity could be an important factor in

setting spares levels.

The simulation results indicate that a good real time shipment

policy should respond to nonstationary demand rates and to launch critical

events. Further, systems with both lateral resupply and prepositioning

of assets at both bases seem to return the best performance. The final

judgments may not be made, however, until the cost of each of these

capabilities are included in the analysis.

92
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C GF FA*lCL.. LCEU LAU r.i f 5 $A

c I 1~)-i . '6. .1 E Q fL A E LEI .7. * : - J,
c 's.i-'. i... r EL t~.L~ 14 A ~ ":E 5 .I..' 'C

C~ La~E. C )
L _H C, IJ 1
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c ~r (J) ONIAE 0' VALUE +1lFI DFM-41S Sllr L 01; DAY J--

C iSP--EA'i Of ~S LtUlCil (ASSULEL =!.'EAX-/2)

C*

CCLMOtN BDLE (1EC) ,SEX (10n,) ELDCB3- (1CLA.%I-DA (1030)
* (10O),.?CCSI(lUU),SHOE2,EAC(1CU),

CQ: :; LJILLAY, LULU'fT,T'5lil,'OUDLrG,

C : >1 Z.-;CU'IICN
C

cAll 2NPUI:
CALL (CCL,
CAll AAi
CALL GL:UI

*1N C

C ::iS S1.C U~L~ 72I~~E N--~ LiAD£ : .Ii*j i

C ilL Co ALL LAYS EUF~lN' IUL CYCL.E OF 11:N~li NDAYl

c

i, ~(1cc) cc"-q(10o:),5iiclT,EL-L(lc:),

*0Z Cl, CT :;,'E EP< ,kEIGPI ,EEC, SYSP L ,EAl N~
CCM~rAIEx (1::

CwCEMi' ALA.'- .G, 10G)

T1 C 71S

E . Eu i LA

CL



DO 53 JJ=1,1;DAY 

9

J=J+ 1.
If (ISK.(GE.J)GO IC 6
I3iL=1SL +IEAY/2.

1 E1 J
7 If (1LA.GE.C) GO IC 8

!A=I A+hLAY

CC'NINVUE
A=0.

A=A4EFIFE(KK)
1C CN0'1 NUi

C
C !N MLLE~L C,
C At~(ii, J)=A* (DDEB*hADAY)/3 + *Z/-*'.

C

1F (ILJ-#ZI.S-,1NL)GC 7C 45

1 I h IL

C

C

C AN AFE172VIATHEZ VErSION 01 TiIE INPUT SUERCULL:;E IS Sht-. %

C

C

iJ ~ ~ ~ ~ ~ ~ ~ ~ ~ r *L2~U D. 1),SXlO),DC' ST (10? L ;:,12A (11~

_ A ~ Y I %.;I _ _jC,
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C "" Uhh~ (1) IS -46,L QUANTITYX CE ITLM I Ef V~iiICLE

C E.LaD IN INFUI LA IA

BEAD (5,602) EUrl~fl,NDAY
ii h A (5 ,bCe) "' S . S F
P i ; (5,603) E UE LAY ,AL FU1A

4iEAD (5,6r4) PFk,EIGVI

60 i CiF c Ai (2 10.4 11. C)

E. 3 f C i%1'A"I (.2 -:1 .2J
604. FC F! AT (116,flC.2)

110C ElG= PUiDG- +s.5 CCO OC 0

DC 1,b C ccs B () B.CRB: (I ,ELD. (I) ,QUAN~ (1)

C ~ CGBI'..EI SSUI BI FOE FAILUE S P7 hLUZ% GDO(UND !1ML
C **" L1Giiq SIiE FEE IELIGIPI IS 96.0 IiCUES

I~hL () LOE 1) 96 C*~i *QUAL' (I /(thiAY/2)
£10 CCNT12NUT.-

Do til J=1,LA
S FP-LI"E (J) =
1% jJ).

61 c iCE, NA~FDE I~IH 1N 3.UC~~~
-II E

DC L17i=, z

£17 CC,1 1I i U2
C

L NE
C

C A

-, CuD Z 11 E~l S U; sEuE , G UI F0 i A 1,; Ci

C U A 7 i
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c

COr2!I01 BDEE((100),5EX(100),EDCSI'J),LA~IBDA(100),

C*k. , AL A (100) 1 C
cc o N hi Da -,E h5u a E tla 1C) 1C5DG

k> 1, Z L ,

4 ECG. (1ii /3X, I CS --X, EEO',5X, 1NlnLi'

-,AiCE ,Ai (ii)

CAII AA
CALL OUIEt2I

!Ilh(L,5) SYSPCS*L:EC,CCST

2C 1cp= 1.

El i 1;

SERCUTi~ GTU
Cci1 

I
C

C :6Ei GIUn SUFbCU:J-N-- IS NGI iNCLULi,. -~r I.ii ED
C G-1i1\1v2rD Gi JLVLUAl iDf, TEIS EUBEGUI4;LE CUIPUTS lhH Ir~1EL
C Z' CLE 1LV3'LS, 11;E VALUE CF FCS(I) Gl 1H LAil DAY lll IFL
C cyci1- lci A.-1r 1, ,0:T 11,1 EXPECILD P CAi cs (3-)
C (rF aThE ;SSOCIclhi, EiriMl%

C

L W l , LL G ,".I -,~ D

CC~.:L: Lbs x C)
CO/~.u. I *~A'(C1)



100

WFI!I(6,5) SYSECS
5 FCkAl VPC S(i)~ 15F.4)

EEC=O.

44



C SUBbOU7114F 16 lYPlEifEI1 A1GCITIHNA~ E'VALUA2 '

C 5FAFIS MIXIS FCF M~OLEL A
C BY IKA'iiL_-Li~ CCNlEY, BCE[1EF~ 1961

c

c L3D--SZilD FGi Lhi O) NUbLiB GNELATVJC.
LC ".
C OFiA_!&FCL)JC2 !L.ViDAL lilt;Sl ELS~) C"; ONI _"A

- . EC Ci&2 1I'STOCi{ LFVill IRCrEASES i3i +1.
CSI~&d)~~A 1 D PCS FOBI~ TB2 .1 12l.'S STOLE~

C LEVEL iNCEEASES BY +1.
c B~EAT 1 J) -- HAT CN LAY .J
L. PCS- iiIGtiT.E VALUE OF iRIAT FOR O E DAY
C A--SUL CF i EIGHIEB POS(5) OVEF ALL NLAY LAY5
C ZEL-NC'EMIENIAL 1INCRiEASE lN A FOP ON CEGFL
C L -i 7 O0 11~ iE k.
C I~-A;:U VALUE Of DZL
C C Ul, ,J) -- 1 NJIVID UAl r RC TABILII Y F 1 S(1) LE!IM AN 1;S
C CVEI Th IFAE TIME f0f DAY J.
c C U,1 (I , J --S5U M C F fiCb A E~l 1ES CF <=S (1) 1; YjA,.;S

C OVEE~ lkiE LEAL TINE FOE DAY J LEIL
C EX--VA.iUL CF CUikIN I ) FO.E ChFE LAY AVE Ci1--
C I'CU1h--VALUE OF CUNS(IJ) FCF O.'.F DAY A1hD CiNL ITEM

LC . NfUN E D U1.(10 6) , S X (10 0) , RDCR ST ( 10 0) , IA M DA (103),
k. (1C) ,BCCS-A (100) *SHGBT,EAC (1OC),

*CCS'2.,FCZ(100)
CO~%DUz.DAY , EULGEi1 ISHCE1 IOCBIG ,

LCUFL-E 12tC.LSIOI BA',ImPOS DEL D--LY AY, A .)E- I, DLl-,AX

LC UEE ~B~.~: FX,PCUn
-CC 'j6 0i. /S ALi/ ' AY (3O)

C
4 ; = 12 3 4 57LC

.1c
A '~C

cC
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A2 (I) 2
CCSTL=C05 +bCOST (I) *LEX (I)
11 (B~B.)GC 7C 52

C *****EANDCZLY JDLaE1~dI1E ?MA1IN2BA1CE DAY FCii ITLM I

L=GGU2lFL, (flSL.D)
.ISP=INI (ii* (NDiAY/2. -1) +.5) +1
!Mr:AY (11) =JSP

S211 E FEEZ) 10

52 c liNU
PCs (1) =0.

LAC (1)=.
50 CcN 'I .N I, u

TSH mix.

EECZ=0.

EcC 10.="NTM

LEX (;1) =LA1MELA (1)
C(,S 7CL.Sl +t 13C0SS (.1) *.LiX (1)

105 CO)UINUf
IIAG=C.

C ***** EhI~ AIG6,d'Ii1VlLVAIUAI1CI*

C ***FLu LaLii -'!Lk, Cli D~AY 0 CO"L-UTF A T CL
C

~ z cI * .~.C) GO 3C .. 7-

SI LL C' F

1C -'cu i;=1,LA

:£lx=2,'iCCE+

IXP~/~jf
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PC iiL=PC UM1+£ X
BAC (I) =EAC (I) - (.-PCUti) /NDAY

26C ccMNIUE
273 ci0u

C ***** CALCULA:E PBODUCI OF INDCIVIDUAL I1EMt'S
.C PUS ON DitY J

PLUS (I,J)= (PCtJM+ (PX*'T) / ~~i .)/PCU!M

:: R()=PCJM

!i X (I) =SD (.) + 5H C ET
25 0 CONILN U f

* f!JAEI1 {(J) =F hAT
C

C **CALCUTA:E i-UGHID PCS(S) Ch~ LAY ~J

C

C ** * U.n iLI(,'lLL iPCS FCIR ALl DlAYS

Ai=1:CS + A

if (CPIONI.Q.2) GO TO 281
6 5 !)IMAX=C.C

DO 260 7L=1,NrITES

C ***** CALCUIATE A~,~..SI4,.,~)

LhA 2LHA11I(J) *PLUS (1,J)
A (I) ' ll; (1) + FFdAs 2* (3)

It (J.U.NDAY) GO 10 2b~5

C I-ALLE IMND %VLMN. OVV"ZF CUliREE24 A(--:)

7---l (Ac' (1) -A) /BCOST (1)

C T-lK.NL 'IAXL -&BlCVlhENT

A-1 (Llt.L-.LEL,lAZ) GO 7IC

£ EL ,AX =LEl
2 5 t iI:.U E

Z 1 C aIZI 1. U-,

1. (L A G .2 G C 'IC 4 5

241j c (I:.i
24 CC, j

ICl ;:.6C

t 1*
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C ***ALD BES! 12En2 20 SPARELS C032 IF < EUDGET
C

7C0S2.CCST # -uCST(1BEST)
295 lic (-C0521.Gl.UDGZ7) GC~ 20 530

LOST=ICOS7
A=A2(IPFES)
LC 300 1=1,Nd2EINS

A2 (I)=C.
300 CiiTliUL

C
C ***** AtL BEST 171t 20 SPAIPES 0~11

liX (IES) =iEY. (1BES1) 1.
S E C _R.

C
C ***** ELiCOAPUJIE ;kllGL21D PCS(S) CIN DAY J !Cl
C Niv SPARES ILIX IhL BACKORDEF PROBABI'1121ES

C 10 NE1ULY ADDEL ISEE
C

Do SOO J=1 ,iV r

ECak (1,) =LOB 1.1,J *A AM-C1 (1,)) /FUAl LI

BbA7 1 (3)=F AT l (J) /CUM~ (1,J)

PLUS (I j)= (CUM (1,J) +CUE (1,) *&AA" (1,J)
*/ILOAT (LBX (1)+1) )/CUM~ (1,J)

SR0Zl=CUBF (1,J)*EDLE (I) +SHiCE4
500 CGN2liUl

CUMTA7=NDA!-2+ (W.IGflT*2.)
C
C ***CA1CULA1i irciss)
C

FIAG1l.

C '*' 11AG PEIVEIKS i'BCALCUL210VI OF ~~C'1Dt

GC '10 110)
530 if (SYSFCS.Gl.., ) GC TC 540

C
C *** 1iCIEEN7 I UZGI' CEILIl G

11 (LDI.G'1.1CCE1G) Gc IC 54C

1 F FI C * A C G()

C

C



CALL CUIPU'

5G 9

SYsPC5A/CU~i2
540 CC "1 U E

iG 54E1=,NllM

546 CC L E0+PI N (I)

R l .; 1
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C
C SUEFOU1.LNE TO 1I'PI EMENT ALGOlIIjH' AitL EVAIDAII SPAErS
C toUXES 1'CL I-OluEJ zi
C El KAliLE~i CChiLEY, DECEKBEi% i9e1
C

SUFL~UU1INE FE
C

C
C THE IULIOhnIN VAIA!9LES "IRE Uli'QUE 'Lu MO10zl B
c
C Cd IM~)-CiU..iV .E131UFi PROBAEi:LITY C1 h
c Fc~~.~~1OF llrA'IiCY f.
C ALPhA--giXlhU ' ACCEPTABLE EBOBABIL12Y OF A
C ilCEKOiDEID k~fI AN~Y 11E1M
C I -MLTE CE IERAIOJNS IIRLD
c .AAX--MAIUU M E. CCSI
C CJM2.lT-CUMUlAWI'VE k E1GiiS FOE LACKCFDEIS ON ALL DAIS.
C U'F-i1iZ SUBPOU1UNE IS BEING~ US3ED 20
C E*V.ALUATE EXTM-!*.ALlY GEL~ELATED SrAELS MIX

C iTXB( (L,:-)--7EXPECSED KkEIGHTELE ACKUiJES CF 1ITZ." I Al
C 171E.-AIIN 1.
C ISTCCKi, )--S1CCE 11EEL FCF IT111 I AT 1EAlI:GN
C CLOSTM(N)--S AI;1 M~IX CUST FOE IT-EEA1ICN M
C

i(10C) LsCCS-1 (10C) EGic(30 ,15) CI:C (15)
*CCST (2-)

CG!.IA)! l'X, DJELDAY YALPHA, N PS , BDE , E AX, CUWi:,,

CO~rLI LE5X 1) CDC(20) EXEC (3C,2?')
M%;! '%LAM ( 10,10) LSTOCK (3,20) C0--2Y5(.2)

C F** INZ .-JAtX C-0.31L
C

iF 'P 2N.;~: 2)GL- TO 215

1;C J.~.v I= 1 , Z;IE lis
1.1 (13CCE2 (1~) .IlE. M~AX) GC IC 2Z5S

5 c co "Ii f: uL

303 5 G Fi A 15(/7 k 1 Z 5
300 C C N 11 J~

CC:

L - 6,l CUNr 3
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3S25 CG NII !JL
315 c c Nzi i u E

LC 355 MM=1,Nk EPS

CCSTMI (MM2) =0.
CL!O (mt;) =0

455 CCNIINUE

cutSUNi=o.

EC45

C**V- CUMPtJ2L MUUT.PLIEE FOR~ IIEPA LI01' 11 Al.D CiI1ICAt.
c VAlt FOF Il2Jl 1.

1. (SICClK.G7.0) GO 20 3b6i

C ***SUDA IROFAEILIIES OF ZIflO LEAD lltiE DEtNAN)S

DO 2170 J=1,NDAY

P (3) =EXP (-T)
ECUM=E ~J)
CUylSUM=CUImSUm+i (J) *FuJ~

37C C710
360J Cob;2AINUE

If (CCM1AI.E,,.U.) GO IC0 390

S-2CCK=LBX (1) -1.
GC 2L 395

390 CGN71NUE
IF (CLUMStYi.GE.idiS) GC IG 4401

3 9 C TI MS UM= 0.
SICCF=STGCF+l.
LC 375 J=1,NLAY

I =A LA M (I ,0)
I (J) =EXP (--&)
FCUM=F (3)
IF(STOCK.EQ.0.) jC -IC 37

ISICCK=IN ± (STGC1)
Do 376 L±=l,ISTLCir

PCUtlp (J) +EC-Li..
376 .C cr-l21NUf
-)77LC ,+IINUi

C -1,;-~ 17l :(L'. -12:L C F I C. I. cC L L, 3

CU.'ASUMCUSuki+ (J) 4TcIjl,
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375 CCNIINUL
C
C ***** F7EP-;AT UNT11 STCCK CAUSES FUNCTICN 70 ECXCEED
C CELI2ICA! VALUE.
C

IF (CCYPAf,.BQ.0.) GO ICG~
400 c c 111;U I

LSICCi% (2 4) =STOCK(
CGS2-' (M1)=CCS~lf (M~)+LSTOCK (1, A) *BCOS7 (LI)

C
C JL-' VAIUA- !2 LXE-LC'ILD IWLI~hIiEL BALCELEMLS kCi
C AjI.
C

Do 4160 J=1,NLAY

1= A. "IA M (.1 , J)

SUMSJ!+ (SlK-STOCK) *PI'
I~(i~.~.15)GC TO '465

GO TO 4b2
465 LCNIINJL

46C CCNIUtE
C

***** EVALUATEi CUMUIAIIVE Eli;7BC

450 CONTINUE
5 CC C C F. a NU E

CALL CUI
i~ E I U r~N

z r
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C
c 50LUIL~ 10 -lLi:FE~ AIGCbIhb kANU EVALUATE SiPAIEZ
C MlXES FCR MGEI L
c BY YAa2UL.EX CCI.IiIY, DECEfIEEF 1961
C

SUBOU'IIiJE DD)
c

C
C iiE ILOUlNG VAPIAPLES5 ALE~ DkFIIL2; 1CiA LEITBIIE l,'UL.I
C A NO; M1oiE!. f:
C
C .. ALiJ)-A~i A BACKOREE? DAY 'U-L XPE.C'LD
c -AI:Ti:.:i ~l lr7r A EA'-C'oi AY J 10 i£u:. L
C .
c c K I 1) 1-Cv z.A21 BE I.BfL (I.3j) 10 % AIL L LI s i L I E T.
C

c
CC!MiON BDDP (100i FDCEiS'I (1093),

* i(100) ,ECCSI(100) ,BO(30,15) ,CBO(15),
*C t (3)
CG~hUN PX, £WBLAY ,ALPhA,NI PS,I1DGE 1,MAX1 ,MAX,

CO~'Oi: LB~;,-(10) CUrBC(20) EXECO(30,20)
CCh?1Ot, ALAY,(lCC,1CO),LSICCiK(30,2Q),LCSTL(2OD)
CCIEIO hITEM1S,NSiiU',SP.IKE(100) ,ISP,i.Bai, (30,100) ,C'i (3J)

L..LriNSION r-(10C)

IF (OIt.~.)GC IC 315

C **'*** BiNV *SUtM Oi EIGIIS

DO 35U j1l,! LAY

350 CCNTI.. VE
JiG -i"

C
C *4**'* CCnP'-' hBLA(1,J)

C i"! (1) = C.

1;0 310 3= I.NiAy

r. EV1 Ci3 AI (1CE1411/F3.

C
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C ***FINDi M'AXIMUM Tlz-ESA FCrh AIL iMJS

IF (TiiETA.Gi.iiTAI) 7IE'lA=THE1A:
110 CONIIlNUE

WI,1TE--(60, 105) THETEA

315 CON~TINUE
jC 355r M?~1,VEP3

C!Th30 (i 0.

355 CCN'iIidYE
LC 5JU 1=1,k-i-LEF;S

cum~sum=C.

LO 45C ?I=l,1
TJETAM=lHETA/. ** (12-1.)
ihS=C~l (1) -7HiETA1',*i CCSl (1)
li 1370ZCI.GT.0) GO T0 360

LC 37C 0=1,VDAI

C S** U-J PR03AL11IILES CF ZEBC Li11ANDS GVEfL ILAL TIM~h
C

T=ALAflI(l,Jj
P (J) =EXP (-T)
lCum~r (J)
CUISUM=CUMSUM2+WBAR~(I ,J)*PCUt

C ***** SUA Wi-7GHTED PbOBABIL rIBS OF 0 LLAD TJLML DEMANL~S

370 CONIINUE
362, CONUNE

iE (CCN-FAb.EQ..) GO 7I0 39U

GG 7IC -395
390 CONTI1NUE

IF (CUMSU-l.GL.:~iHS) GC O 104
C
C ***** C(414IIT1UL L]UIESE F01%C IION EXCELDS CIICAL VALU,.S
C
395 CJ~t10

L0 375 0d1,NDAY
I=ALAM (1,0J)
P~ (J) =EXE

G.: (3)37

uc 376~~1L~~



37b CO NT IN UE
377 CONTINUE

J75 CCN:iNUE
IfE (CCPAEB.L,Q.C.) Go 20 380O

C
C B** EPEAT UNTIL SICCK CAUSE5 FUNCTZIJN TO EXCEED CBI7T'CA1

Cc; 2A t (m) CCS t: (mi) + 4ST CR (1, , ) * PCoST (I)

C EALUTEEXPICIEL WEIGHTED BACi~bCw'Ee L'AYS FOBl EA~th I-LEM
C

:;G 460 J=1,NDAY
sUt=O

I =5~j (SIR-SICCK)*Eb
If (PL. LT.11-8) GO TO 465

GC IC 462

465 CG1i1NU_'

460CCN71LiUE
C
C ***** EX'A1UJATZ CUnUIL.'.1'1VL EXIKECIED iL1G:ED BAC&RdiDEE LAYS

CU C()CMB(,+fXBlQ(1,Y,)

CB !)=Ic



APPENDIX B -SIMULATION PROGRAM

111



cV
1 C

C SIBULATION FOR EASING STUD! FOR SHUTTLE SPARES
C B KAITBLEEN CCNILET, DECEMERS 1981

~C
C NOTE: THE RAIN PROGRAM IS ALMOST ENTIRELY TAKEN FROM THE
C REFERENCE GIVEN BELOW. 1! IS INCLUDED FOR PURPOSES
C OF VARIABLE DEEINZIION ONLY.
C
C REFERENCE: SIMULATION OF A TWO-ECHELON INVENTORY SYSTEM
C BY JIM COGLIANO, NOVEMBER 1980
C

C
C LIST OF GLOBAL VARIABLES
C
C /PARAB/ SYSTEM PAEAETERS
C LlA! NUMBER C BASES
C IMAX NUMBER Of ITEM TYPES
C NUNITS(L,I) NO. Of UNITS CF TY'E-I AT EASE-I
C NSEARE(L,I) INITIAL NO. OF SPARE PARTS OF TYPE-I AT LOCATION-i
C AFAILL,WJ)AVG. 1IME-TO-FAILURE POE TYPE-I PARTS INSTALLED IN
C TYPE-J UNITS AT BASE-L
C AREP(l,I) AVG. REPAIR TIME FCE TYPE-I PARTS REPAIRED AT LOCATION-L
C PEEP(L,I) PROB. OF A BASE REPAIR FOB TYPE-I PARTS FAILING AT BASE-L
C ABD(L) AVG. TRANSIT TIME PROM DASi-L TC THE DEPOT
C ADE(L) AVG. IPAN IT TIfmt S i"ROB "±uL uiC'i T0 BASE-L
C AOBD(L) AVG. ERCCESSING TIBE FOB AN CEDER PROM BASE-1
C IDEPOT INDEX FOR THE DEPOT (ALWAYS EQUALS LBAXl)
C
C /STATE/ STATE VARIABLES
C NB(L,I) NO. OF TYPE-I PARTS IN REPAIR AT LOCATION-L
C NS(L,I) NO. OF TYPE-I PARTS IN SPAPE STOCK AT LOCA7ION-L
C NBD(L,I) NO. OF T7YEE- PARTS IN TEANSIT FROM BASE-L TO THE DEPOT
C NDB(L,1) NO. OF TYPE-I PARTS IN TRANSIT FROM THE DEPOT T'O EASE-L
C BU(L,I,J) NO. CP TYEE-I PARTS INSTALLED IN TYPE-J UNITS AT EASE-L
C NGILI) NO. Of TYPE-1 UNITS AT BkSE-L GROUNDED FOE LACK OF PARTS
C NGXX NO. GROUNDED FOR LACK OF rARTS OVER Al UNITS AND BASES

C /STATS/ STATISTICS: CUMULATIVE SUBS Of IBE STATE VARIABLES
C
C /ClOCxs/ SIBUIATICN TIMING VARIABLES
C CLOCK CURRENT TIME
C C.2ART LENGTH oF WARN-UP FERZOD
C CSToP TIME TO STOP SIMULATION
C CINIEs LENGTH CF TIME BETEEN STATISTCS OBSEBVATIONS
C NOES NUMERE OF OBSERVATIONS To TAKE
C*1 C /OPTIOE/ OPTIONAL FEATURES

C IVAR 1 FOR VAhIANCE ESTIBATION
C IEIP 1 FOR EXPONENTIAL FAILURE TIMES (FASTER EXECUTION)
C 1IRACE 1 F02 TRACE Of EVENTS

C /POLICY/ POLICY SELECTION VARIABLES
C IBORD BASE ORDERING POLICY

...1 _ _ , _ . _, , , , . _ ., _ ....- ' - , . -, .,
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C jIliNl BS INSTALLIATION ECLICY OURLKDLSS
* C XDSIFl DIEOT SHIPPING POLICY

C /SEEDS/ AUDOHN UMBER SEEDS (DO;UHLZ riECISION POE INSL)
C-/CUBREV/ CURREN% EVENT CODE AND ATtIBIUTES
-C /WE/ NELD-BELUCTANCE VARIABLES
C /FILES/ INPUT AND OUIFUT fILE UNII NMBERS
C

C
COMMON /PARAM/ tHAX, IMAX, NUNIIS15,S), NSPARE(6,5),

& IFAIL (5,5, 5) AEEP(6,5), PBEP(5,5),
6 AED(5), aDf(5), AOFD15), IDE:POT

COMMNi /STATE/ NE(6,5), NS(6,5), NBD(5,5), NDB(5,5), MU1(5,55),
a IG(5,5), NGXX
COMMON /STATS/ SB(6,5), SS(6,5), SBb(5,5). SDE(5,5), SU(5,5,5),

6 SG(5,5), SGXX, SSGXX,
a SSB(6,5), SSS(6,5), SSBD(5,5), SSDB(5,5)0'

CSSG (5.5,5), SSG (5, 5)
COMMON /CLOCKIS/ CLOCK, CSIART, CSTOP, CINTER, DOBS
COMMON /OETIOy' IVAR, IEYF, 17BACE
COMMON /PCLICY/ lEORD, IBINS., IDSBlP
COMMON /ORDERS/ ITPRH (5,2) .ITEtT (5,2),LOC (100) ,NXULOC(100) ,NXTLF
CCmnmfl /EVENTS/ NXTEV(1nofl), T'I'1O1?Q,. INFO(IOOO,4), NITIEY

C MTIME, FRATI
*COMMNi /CURRIV/ KODE, Ki. K2, K3
* COMMON /Nl/ ENSAX15), LENEAX(5), ED15,5), IUX

6 ~BIAELE(5,5,21,21), DTADlE(21), NIMA, SAX,
& ICBI5,8,4,4,l,4,Z),IDfiAX, IEMAX

CC8EOH /PILLS/ J11, 30111
COMMON /LAIS/ S1.S2

C
C

C IH AN 1G1C1SISTEEXCTC Of THE. SICUJ.ATIOU.
C THESE ABE THREE PHASES:
C (1) READ THE INFU7 PARAMETERS AND INITIALIZE THE STATE .VAIIIABLES.

( 2) PROCESS THE EVENTS AS THEY OCCUR. ADVANCE THE CLCCK, CCLLECT
C STATISTICS, AND CALL A SCUIINE IC CABBY OU2 THE DETAILS.

C 13) PRINT THE SUMMARY STATISTICS.
C **

C
313=
JODI 2

C
C

CALL INPUT
CALL uNiI
CALL STAT (1)

C
10 CALL EVENT (T.KOCEK1,K2,K3)

CLCK

- c



115

It (KODE.EQ.1) CALL A&UIVE (Kl,K2,K3)
It IKODE.EG.6) CALL FAIL IR1.K2,K3)

c
C ***LAUNCH CRITICAL EVENT
C

IFI (ODE.EQ.12) CALL LCBIT (K1,K2)
It (KODE.Eg.15) CALL CBDES (Kl,K2,K3)
If (KODE.EG.le) CALL REPAIR (K1.K2)
IF (KODE.EC.19) CALL STAT (2)
IF (KODE..NE. 19.daE.CLOC.LT.CS2OP-CINTE1/2) GOTO 10

CALL STAT (3)

AI BID

j C ** COBPaTER COD! FOR ALI BUT THE LAUNCH CRITICAL
C SUBSOUTINE IS OBITTED-MOWEVER, TO RUb THE PROGEAN,
C ALL ISE EVEN7S BUST CORRESECIE TO SUEEOUIINES
C

C LAUNCH CRITICAL AND MONSTATIOWAB! DEMAND SUBROUTINE:
C

C
SUBROUTINE LCEIT ILK)

C
CORSON /CLOCKS/ CLOCK, CSTABT, CSIOP, CINTER, NODS
CORSON /EVENTS/ NX 'TEV(1000), TIME41COO), INFO(1000,4), NiX2EYF,

6 7TIRE, PRATE
CORSON /PABIH/ III. XIIIX, NUNITS(5,5), NSPARE(6,5),

C AFIL(5,5,5), AREP(6,5), PREP(5,5),
6 ARD (5) , ADE (5), AORE 15) , LDEPOT

CCMON /STATE/ 11(6,5), 11(65), NBD(5,5), NDB(5,5), MU(55,5),
C NG(5,5), NGXX

-CORSON /POLICY/ IBORD, IBINST, IDSHLP
CORSO!N /CURREV/ IODE,l1,K2'K3

C K** IS 1 UHEN LAUNCH CRITIC:l, RESET TC 0 UPON LAUNCH,
C AND IS 2 VUEN LAUNCH CRITICAL IS APPROACHING
C
C ***** CETERSINI BASE TO BASE TRAVEL TIME
C

LL=L1.2
BSTA=ADB(LL) 0 2
II (ACE (L) .GT. 1ST) RST=ADB (L)

II(K.LQ.1) GO TO 100

C ***** CUED! USEE VCR NONSTATIONAB17Y IN DESAND RATE

IP(TFLAG.GT.0) GO 2011
UNITE (7,Si)
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9~ ~ ~(ia~(2~ F3. -1)
REAL (6 ,10) IS

1iC FCFM'lA(3. C)
1 1 2IiAG1.
C

I1(h.hQ.2) GO IC 30
c
C ***** It IAUNCh IS TCZrAY (h0=) , CCOBLI-
c 7Iii LEMIANE iAIE FCF TODAY OIhLY
C

C **** - CiDUIZ AIhCC~iZi LAUN~CH CE111ICAl
C

C ***** SCiiLLtJLZ ANiC'IiEF LAUNCH CibIIICAL AEPBCALIIG
C

72=1-AD.C (LI)
If (12.GL.C) GO -.0 2S,

,20 FCFv(LAUCfiES 100 CIUSE FOE LAlL.-UU. rFSUfPlY')

25 CC37INUE

C~l

C ***** li IAJNCai CEi11ICAL APPCCiN,PO 3.:lY SCiIEiAJLZ
C 5kIP!EN TO TriE BlASE

30 DC 50 1=1,:MAX

I EIPl SiLIHtIiIPCI)

LAI!. CACl (LSbIF,II±i,JCblD)
5C COWI NL

C *** I ~~L AUNC-H CFITICA1, SCI:LjlJF
C A lIWJiNCi (F=0) 11,; BST lti~ UllNI2S

liJO 1 S

99C z


