DYNAMIC CHARACTERIZATION OF INTERCRITICALLY ROLLED HIGH-HARDNESS STEEL

MORRIS AZRIN, ALBERT A. ANCTIL, and ERIC B. KULA
METALS RESEARCH DIVISION

June 1982

Approved for public release; distribution unlimited.

ARMY MATERIALS AND MECHANICS RESEARCH CENTER
Watertown, Massachusetts 02172
The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Mention of any trade names or manufacturers in this report shall not be construed as advertising nor as an official endorsement or approval of such products or companies by the United States Government.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed.
Do not return it to the originator.
Dynamic Characterization of Intercritically Rolled High-Hardness Steel

Author(s): Morris Azrin, Albert A. Anctil, and Eric B. Kula

Contract or Grant Number(s):

Performing Organization Name and Address:

Army Materials and Mechanics Research Center
Watertown, Massachusetts 02172
DRXMR-MM

Controlling Office Name and Address:

U.S. Army Materiel Development and Readiness Command, Alexandria, Virginia 22333

Report Date: June 1982

Number of Pages: 11

Distribution Statement: Approved for public release; distribution unlimited.

Supplementary Notes:

Key Words:

- Dynamic properties
- High strength steels
- Armor
- Fracture toughness
- Heat treatment

Abstract:

(See reverse side)
Two compositions of intercritically rolled homogeneous steel armor were evaluated by quasi-static and dynamic tests. Cross-rolling just below the intercritical temperature resulted in improved fracture toughness at the high-hardness levels (55 and 58 HRC). Taylor cylinder ballistic impact tests indicated a dynamic stress more than double the quasi-static yield stress. The use of this test for evaluating potential high-hardness armor material is discussed.
INTRODUCTION

Higher hardness in armor plate generally leads to improved ballistic performance. The limiting factor at high-hardness levels is gross plate shattering, which rapidly reduces the ballistic limit. This limitation has led to the use of dual-hard armor with a high-hardness front plate and relatively ductile metallurgically roll-bonded rear plate. The high processing costs of dual-hard armor, however, have led to their replacement by specially processed rolled homogeneous steel armor.

Recently, a comprehensive study was undertaken by the U.S. Steel Corp. to develop steel compositions and processing techniques to attain high-hardness armor with adequate shatter resistance. For the quench-and-tempered steels it became apparent that the optimum rolling temperature was slightly below the ferrite-austenite \(A_\text{3} \) transformation temperature. The interest in intercritical* (IC) rolling was based on earlier work on IC heat treatments that produced increased strength and fracture toughness, along with reduced back spalling during ballistic impact. The resultant microstructure of reduced banding, microstructural refinement, and finely dispersed \(\alpha \) (ferrite) and \(\alpha' \) (martensite) regions is desirable in terms of ballistic performance.

A natural extension of IC heat treatments is the use of IC rolling to further refine the microstructure. This is possible since the low temperatures used essentially prevent recrystallization. The two hypoeutectoid steels (Table 1) that are the subject of this study were obtained from the U.S. Steel Corp. The transformation and processing temperatures are shown in Table 2. A number of microstructural features are a direct result of IC rolling. Intercritical holding time is also a factor since a high-carbon austenite results from the \(\alpha \)-phase rejection of carbon. The finely dispersed \(\alpha \)-regions are refined during IC rolling, producing a layered microstructure of ferrite and austenite. On quenching, after IC rolling, \(\alpha' \) forms in the austenite and the resulting retained austenite and banded \(\alpha+\alpha' \) would be expected to provide improved longitudinal fracture toughness. This microstructure can be undesirable, however, in armor applications where failure by delamination is strongly influenced by microstructural layering. On the other hand, refining the microstructure by thermomechanical treatments should result in spalling resistance at least equivalent to that of conventionally processed rolled homogeneous armor. Crystallographic preferred orientations produced in the austenite at high temperatures are not destroyed on quenching. The high carbon \(\gamma \) (austenite) transforms to high carbon \(\alpha' \).

*The intercritical region is the two-phase \(\alpha+\gamma \) region bounded by \(A_1 \) and \(A_3 \).

Quenching from below A_3 reduces the amount of retained γ. These factors are known to influence strength, toughness, and the resultant penetration resistance.1-3 Carson et al.2 found that quench-and-tempered IC rolled homogeneous armor plate had improved ballistic performance without plate shattering.

<table>
<thead>
<tr>
<th>Chemical Composition, Weight Percent*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>0.39C</td>
</tr>
<tr>
<td>0.47C</td>
</tr>
</tbody>
</table>

*Material obtained from U.S. Steel Corp. in the processed condition.

<table>
<thead>
<tr>
<th>Transformation and Processing Temperatures*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>0.39C</td>
</tr>
<tr>
<td>0.47C</td>
</tr>
</tbody>
</table>

*Calculated values (Ref. 2).

The two compositions in Table 1 were studied to determine the dynamic characteristics important to armor applications. In addition to tensile and fracture toughness testing, Taylor projectile impact tests were also conducted.9,10 Material characterization requires that test conditions be relevant to those encountered in service. This is particularly true for armor applications where strain rates above 10^4 sec$^{-1}$ are encountered. The Taylor impact test relates the length change of an impacted flat-end projectile to a dynamic flow stress. The test procedure is relatively simple. The projectile is fired at a right angle to a rigid, thick target. Low impact velocities are used to prevent fracture. Contrary to expectations, the measured Taylor stress of moderate strength materials is nearly independent of projectile impact velocity.10-13 These expectations are based on tension and compression results in the 10^{-4} to 10^3 sec$^{-1}$ strain rate range. However, a collection of tension and compression results by Soohoo et al.14 show the strain rate dependence of yield strength, though significant at low- and intermediate-strength levels, becomes negligible at the high strength levels.

Measurement of the impact velocity and deformed projectile length permit calculation of the Taylor dynamic flow stress Δ_0 from the equation:

\[\frac{L_f}{L_0} = \exp \left[-\frac{\rho V^2}{2Y^2} \right], \]

1. \(L_f \) = final projectile length,
2. \(L_0 \) = original projectile length,
3. \(\rho \) = density, and
4. \(V \) = impact velocity.

In Equation 1, \(Y \) represents an "average" flow stress that a cylindrical rod experiences as it decelerates and deforms into a mushroom-shaped rod. The length measurement is made after the impacted end of the projectile undergoes gross deformation with negligible, if any, deformation at the opposite end of the projectile. Therefore, \(Y \) represents neither a yield stress nor ultimate stress (i.e., stress at maximum load).

Tests by Taylor\(^9\) and others,\(^10-13,15\) were performed using low strength materials. In all cases, \(Y \) was higher than the quasistatic value. More recently, Papirno et al.\(^16\) applied the Taylor test to high-strength 4340 steel and found that the dynamic stress was almost double the static compression yield stress.

MATERIALS

The rolled homogeneous armor steels tested (Table 1) were received in the IC rolled-and-tempered condition. The higher carbon alloy is a standard armor steel (0.50C-1.1Ni-0.75Cr-0.50Mo) modified with 0.2 percent vanadium. Although the alloys were intercritically cross-rolled with a final rolling ratio of one-to-one, there was still microstructural evidence of a "rolling direction." All mechanical test specimens were oriented with reference to the apparent longitudinal direction of the 5/8-inch-thick plates.

Figure 1 shows the heavily banded structure for both alloys. Areas (dark) of dense carbide precipitation are also evident. At higher magnification, the 0.47C alloy has a finer lath martensite packet size. Rolling conditions and quench rates produced no noticeable difference in microstructure at the surface and midsection planes (Figure 2). The 0.47C alloy has a finer grain structure with carbides strung out along prior austenite grain boundaries. The bands appear as patches when viewed normal to the plate (Figure 2).

EXPERIMENTAL PROCEDURES

Selected room temperature tests were performed to complement those reported by the U.S. Steel Corp. Research Laboratory.\(^2,3\) Static tension tests were performed parallel to the plate rolling direction. Computerized instrumented Charpy testing equipment was used to obtain the dynamic fracture toughness data. Charpy impact and dynamic fracture toughness tests were performed in the LT and TL directions.

Taylor impact projectiles, 0.218-inch diameter and 0.436-inch long, were machined from a 5/8-inch plate with the specimen axis in the short transverse and longitudinal directions. The projectiles were fired from a 0.218-inch-diameter smooth bore light gas gun at a thick hardened-steel plate. Precautions were taken to ensure normal impact and accurate final length (L_f) measurements.* Velocities were measured with a pair of silver-coated paper screens located close to the target.

![Magnification 100X](image1)

![Magnification 1000X](image2)

(a)

Figure 1. Photomicrographs of the plane normal to the rolling direction (a) for the 0.47C and (b) for the 0.39C homogeneous intercritically rolled steel armor. Picral etch.

*PAPIRNO, et al.16 clearly demonstrated that for high-strength materials, where length shortening is small, the uncertainty in L_f can result in a significant error in the calculated Taylor stress.
Figure 2. Photomicrographs of the plane parallel to the rolling direction (a) outer surface plane (b) plane at midthickness of homogeneous intercritically rolled homogeneous armor. Picral etch. Mag. 100X.
RESULTS AND DISCUSSION

The 0.47C steel, as expected, had higher hardness and static strength levels (Tables 2 and 3), lower ductility (Table 3), and lower Charpy impact energy (Table 4). The lack of orientation effects for both steels are a result of cross-rolling. The Charpy energy levels are slightly higher than other high strength steels. Apparently, at these moderate strain rates, IC rolling and the structural refinement are beneficial. Similar results are found for the dynamic fracture toughness specimens (Table 5). Again, fracture toughness is lower at the higher strength level, orientation plays no significant role, and values reported are higher than for comparable high strength steels.

Table 3. LONGITUDINAL TENSILE PROPERTIES

<table>
<thead>
<tr>
<th>Material</th>
<th>0.2% YS (ksi)</th>
<th>UTS (ksi)</th>
<th>TFS (ksi)</th>
<th>Elon. (%)</th>
<th>RA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.39C</td>
<td>226</td>
<td>320</td>
<td>409</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>226</td>
<td>317</td>
<td>392</td>
<td>0.09</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>317</td>
<td>401</td>
<td>0.09</td>
<td>11</td>
</tr>
<tr>
<td>0.47C</td>
<td>266</td>
<td>351</td>
<td>411</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>275</td>
<td>353</td>
<td>415</td>
<td>0.08</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>355</td>
<td>420</td>
<td>0.07</td>
<td>7</td>
</tr>
</tbody>
</table>

TFS - True Fracture Stress
n - Strain Hardening Exponent

Table 4. CHARPY IMPACT ENERGY

<table>
<thead>
<tr>
<th>Material</th>
<th>Orientation</th>
<th>Energy ft-lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.39C</td>
<td>LT</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>LT</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td>TL</td>
<td>15.5</td>
</tr>
<tr>
<td></td>
<td>TL</td>
<td>17.8</td>
</tr>
<tr>
<td>0.47C</td>
<td>LT</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>LT</td>
<td>12.1</td>
</tr>
<tr>
<td></td>
<td>TL</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>TL</td>
<td>11.2</td>
</tr>
</tbody>
</table>

Table 5. DYNAMIC FRACTURE TOUGHNESS

<table>
<thead>
<tr>
<th>Material</th>
<th>Orientation</th>
<th>K_10 (ksi\cdot\text{in.}^{-\frac{1}{2}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.39C</td>
<td>LT</td>
<td>62.3</td>
</tr>
<tr>
<td></td>
<td>TL</td>
<td>73.2</td>
</tr>
<tr>
<td>0.47C</td>
<td>LT</td>
<td>53.1</td>
</tr>
<tr>
<td></td>
<td>TL</td>
<td>52.6</td>
</tr>
</tbody>
</table>

Two compositions of intercritically rolled homogenous steel armor were evaluated by quasi-static and dynamic tests. Cross-rolling just below the intercritical temperature resulted in improved fracture toughness at the high-hardness levels (55 and 58 HRC). Taylor cylinder ballistic impact tests indicated a dynamic stress more than double the quasi-static yield stress. The use of this test for evaluating potential high-hardness armor material is discussed.
Table 6 lists the cylinder impact test results along with specimen orientations. There is a lower and upper velocity limit that can be used for these tests. The higher velocities produced excessive deformation resulting in specimen fracture along a 45° shear plane (Figure 3). This observation is consistent with the reported cone-shaped fracture observed in cylinder impact tests of high strength 4340 steel. At lower velocities (not shown in Table 6) length shortening was insignificant. The impact data suitable for Taylor model calculations are shown with an asterisk. The harder, higher carbon alloy has the higher dynamic Taylor stress Y^0 while both steels show no strong orientation effect. The Y^0 is more than double the static 0.2 percent yield stress.

Table 6. CYLINDRICAL IMPACT DATA

<table>
<thead>
<tr>
<th>Material</th>
<th>Orientation</th>
<th>Velocity (ft/sec)</th>
<th>Original Length L_0 (in.)</th>
<th>Final Length L_f (in.)</th>
<th>L_f/L_0</th>
<th>Y^0 (ksi)</th>
<th>Impact Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.39C</td>
<td>Short Transverse</td>
<td>640</td>
<td>0.440</td>
<td>0.424</td>
<td>0.963</td>
<td>578</td>
<td>Shear Cracking - No separation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>697*</td>
<td>0.441</td>
<td>0.422</td>
<td>0.956</td>
<td>578</td>
<td>Deformation - No cracking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>706</td>
<td>0.441</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Shear Fracture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>730</td>
<td>0.439</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Shear Fracture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>735</td>
<td>0.441</td>
<td>0.418</td>
<td>0.947</td>
<td></td>
<td>Shear Cracking - No separation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>776</td>
<td>0.442</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Shear Fracture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>820</td>
<td>0.440</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Shear Fracture</td>
</tr>
<tr>
<td></td>
<td>Longitudinal</td>
<td>630</td>
<td>0.440</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Shear Fracture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>635</td>
<td>0.440</td>
<td>0.425</td>
<td>0.966</td>
<td></td>
<td>Shear Cracking - No separation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>653</td>
<td>0.441</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Shear Fracture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>654</td>
<td>0.441</td>
<td>0.423</td>
<td>0.959</td>
<td></td>
<td>Shear Cracking - No separation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>657</td>
<td>0.441</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Shear Fracture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>658</td>
<td>0.442</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Shear Fracture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>658*</td>
<td>0.442</td>
<td>0.425</td>
<td>0.962</td>
<td>578</td>
<td>Deformation - No cracking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>672</td>
<td>0.441</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Shear Fracture</td>
</tr>
<tr>
<td></td>
<td>Longitudinal</td>
<td>607*</td>
<td>0.440</td>
<td>0.427</td>
<td>0.969</td>
<td>724</td>
<td>Deformation - No cracking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>607</td>
<td>0.441</td>
<td>0.429</td>
<td>0.973</td>
<td></td>
<td>Deformation - Crack initiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>609</td>
<td>0.441</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Shear Fracture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>611</td>
<td>0.441</td>
<td>0.430</td>
<td>0.974</td>
<td></td>
<td>Deformation - Crack initiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>616</td>
<td>0.439</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Shear Fracture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>645*</td>
<td>0.441</td>
<td>0.428</td>
<td>0.970</td>
<td>728</td>
<td>Deformation - No cracking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>650</td>
<td>0.438</td>
<td>0.424</td>
<td>0.968</td>
<td></td>
<td>Shear Cracking - No separation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>650</td>
<td>0.440</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Shear Fracture</td>
</tr>
</tbody>
</table>

*Data used in Taylor Calculation
The quasi-static yield, Charpy impact, and Taylor impact results are summarized in Figure 4 and compared with published data for quenched-and-tempered AISI 4340 steel.16,19-25 The Y^0 band16 represents two L/D ratios, the L/D = 2 ratio generally having higher values than L/D = 4. The most significant observation is the high value of Y^0 for the IC rolled material. At the high-hardness level Y^0 for the 4340 steel is double the quasi-static tensile yield strength. This ratio is approximately 2-1/2 for the IC rolled material. The reason for the superior performance of the intercritically rolled material is not known.

The experimental simplicity and ease of calculations make the Taylor test desirable for evaluating potential armor materials. A high dynamic Taylor stress (actually an approximate average flow stress) would give some guidance in the search for increasing hardness and impact resistance. Unfortunately, no studies have been reported relating armor performance and the calculated Y^0. In addition, there is only a small body of literature comparing quasi-static and Taylor impact tests for low-strength materials. Only recently have results been reported for high-strength alloys.16 Based on experimental and theoretical analysis, Papirno et al.16 concluded that Equation 1 is nonconservative when applied to high strength steels. Also included in that paper is a discussion of the experimental sophistication necessary for the Taylor test.

![Figure 3. Cylindrical fracture plane.](image-url)

20 Allegheny Ludlum Steel Corp., Extrusion Laboratory. Mechanical Test Results on Various Extruded Materials. January 1956.
Figure 4. Taylor stress, tensile yield stress, and Charpy impact energy of quenched-and-tempered AISI 4340 steel (shaded areas, Ref. 16, 19-25) and intercritically rolled steel.

CONCLUSIONS

1. Intercritically rolled homogeneous armor steel has higher strength and toughness than armor processed by a conventional quench-and-temper treatment.

2. The dynamic Taylor flow stress Y_0, obtained from the cylinder impact test, is more than double the quasi-static tensile yield strength of the two steels tested.

3. The relatively simple Taylor impact test is a potential method of evaluating candidate armor materials.

ACKNOWLEDGMENTS

The authors thank Dr. Gregory B. Olson and John Mescall for helpful discussions during the preparation of this report.
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Office of the Under Secretary of Defense for Research and Engineering, The Pentagon, Washington, DC 20301</td>
</tr>
<tr>
<td>12</td>
<td>Commander, Defense Technical Information Center, Cameron Station, Building 5, 5010 Duke Street, Alexandria, VA 22314</td>
</tr>
<tr>
<td>1</td>
<td>Metals and Ceramics Information Center, Battelle Columbus Laboratories, 505 King Avenue, Columbus, OH 43201</td>
</tr>
<tr>
<td>1</td>
<td>Deputy Chief of Staff, Research, Development, and Acquisition, Headquarters, Department of the Army, Washington, DC 20310</td>
</tr>
<tr>
<td>1</td>
<td>Commander, Army Research Office, P.O. Box 12211, Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>1</td>
<td>Commander, U.S. Army Materiel Development and Readiness Command, 5001 Eisenhower Avenue, Alexandria, VA 22333</td>
</tr>
<tr>
<td>1</td>
<td>Deputy Chief of Staff, Research, Development, and Acquisition, Headquarters, Department of the Army, Washington, DC 20310</td>
</tr>
<tr>
<td>1</td>
<td>Commander, Army Research Office, P.O. Box 12211, Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>1</td>
<td>Commander, U.S. Army Materiel Development and Readiness Command, 5001 Eisenhower Avenue, Alexandria, VA 22333</td>
</tr>
<tr>
<td>1</td>
<td>U.S. Army Materiel Systems Analysis Activity, Aberdeen Proving Ground, MD 21005</td>
</tr>
<tr>
<td>1</td>
<td>Director, U.S. Army Missile Command, Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>2</td>
<td>Director, U.S. Army Armament Research and Development Command, Dover, NJ 07801</td>
</tr>
<tr>
<td>1</td>
<td>Director, U.S. Army Tank-Automotive Command, Warren, MI 48090</td>
</tr>
<tr>
<td>1</td>
<td>Director, U.S. Army Foreign Science and Technology Center, 220 7th Street, N.E., Charlottesville, VA 22901</td>
</tr>
<tr>
<td>1</td>
<td>Director, Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, VA 23604</td>
</tr>
</tbody>
</table>
U.S. Army Aviation Training Library, Fort Rucker, AL 36360
1 ATTN: Building 5906--5907

Commander, U.S. Army Aviation Research and Development Command,
4300 Goodfellow Boulevard, St. Louis, MO 63120
1 ATTN: DRDAV-ECX
1 DRDAV-EX, Mr. R. Lewis
1 DRDAV-EQ, Mr. Crawford
1 DRCPM-AAH-TM, Mr. R. Hubbard
1 DRDAV-DS, Mr. W. McClane

Naval Research Laboratory, Washington, DC 20375
1 ATTN: Dr. J. M. Krafft - Code 5830
1 Code 2627

Chief of Naval Research, Arlington, VA 22217
1 ATTN: Code 471

Director, Structural Mechanics Research, Office of Naval Research,
800 North Quincy Street, Arlington, VA 22203
1 ATTN: Dr. N. Perrone

Commander, U.S. Air Force Wright Aeronautical Laboratories,
Wright-Patterson Air Force Base, OH 45433
2 ATTN: AFWAL/MLSE, E. Morrissey
1 AFWAL/MLC
1 AFWAL/MLLP, D. M. Forney, Jr.
1 AFWAL/MLBC, Mr. Stanley Schulman
1 AFWAL/MLXE, A. Olevitch

National Aeronautics and Space Administration, Washington, DC 20546
1 ATTN: Mr. B. G. Achhammer
1 Mr. G. C. Deutsch - Code RW

National Aeronautics and Space Administration, Marshall Space Flight
Center, Huntsville, AL 35812
1 ATTN: R. J. Schwinghammer, EH01, Dir, M&P Lab
1 Mr. W. A. Wilson, EH41, Bldg. 4612

Chief of Naval Operations, Washington, DC 20350
1 ATTN: OP-987, Director

Aeronautical Systems Division (AFSC), Wright-Patterson Air Force Base,
OH 45433
1 ATTN: ASD/ENFEF, D. C. Wight
1 ASD/ENFTV, D. J. Wallick
1 ASD/XRHD, G. B. Bennett

Air Force Armament Laboratory, Eglin Air Force Base, FL 32542
1 ATTN: AFATL/DLYA, V. D. Thornton
Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, OH 45433
ATTN: AFFDL/FES, C. W. Ducker
ATTN: AFFDL/FES, J. Hodges
ATTN: AFFDL/TST, Library

Air Force Test and Evaluation Center, Kirtland Air Force Base, NM 87115
ATTN: AFTEC-JT

Armament Development and Test Center, Eglin Air Force Base, FL 32542
ATTN: ADTC/TS

NASA - Ames Research Center, Mail Stop 223-6, Moffett Field, CA 94035
ATTN: SC, J. Parker

NASA - Ames Research Center, Army Air Mobility Research and Development Laboratory, Mail Stop 207-5, Moffett Field, CA 94035
ATTN: SAVDL-AS-X, F. H. Immen

NASA - Johnson Spacecraft Center, Houston, TX 77058
ATTN: JM6
ATTN: ES-5

Naval Air Development Center, Warminster, PA 18974
ATTN: Code 063

Naval Air System Command, Department of the Navy, Washington, DC 20360
ATTN: AIR-03PAF
ATTN: AIR-5203
ATTN: AIR-5204J
ATTN: AIR-530313

Naval Material Command, Washington, DC 20360
ATTN: MAT-0331

Naval Post Graduate School Monterey, CA 93948
ATTN: Code 57BP, R. E. Ball

Naval Surface Weapons Center, Dahlgren Laboratory, Dahlgren, VA 22448
ATTN: Code G-54, Mr. J. Hall
ATTN: Code G-54, Mr. E. Rowe

Naval Weapons Center, China Lake, CA 93555
ATTN: Code 40701
ATTN: Code 408

Commander, Rock Island Arsenal, Rock Island, IL 61299
ATTN: DRSAR-PPV

Georgia Institute of Technology, School of Mechanical Engineering, Atlanta, GA 30332
ATTN: Dr. J. T. Berry
United States Steel Corporation, Research Laboratory, Monroeville, PA 15146
1 ATTN: Dr. Hsun Hu

Brown University, Division of Engineering, Providence, RI 02912
1 ATTN: Prof. J. Duffy

SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025
1 ATTN: Dr. D. Shockey

Director, Army Materials and Mechanics Research Center, Watertown, MA 02172
2 ATTN: DRXMR-PL
3 Authors