GENERATION RATE OF MARINE AEROSOLS AS DETERMINED FROM A BOUNDARY LAYER MODEL

by

C. W. Fairall, K. L. Davidson,
and G. E. Schacher

May 1982

Technical Report

Approved for public release; distribution unlimited.

Prepared for: Naval Air Systems Command
AIR-370
Washington, DC 20360
The work reported herein was supported in part by the Naval Air Systems Command, AIR-370, Washington, DC 20360.

Reproduction of all or part of this report is authorized.

This report was prepared by:

C. W. Fairall
BDM Corporation Contract Employee

K. L. Davidson, Professor
Department of Meteorology

G. E. Schacher, Professor
Department of Physics

Reviewed by:

R. J. Renard, Professor
Chairman, Dept of Meteorology

Released by:

William M. Tolles
Dean of Research
Title: Generation Rate of Marine Aerosols as Determined from a Boundary Layer Model

Abstract:

The rate of generation of aerosols by bubbles bursting at the sea surface is not well known. Unfortunately, the rate is a very difficult parameter to measure. The rate can be inferred from a boundary layer model that includes determining evolutions of aerosol spectra from parameterizations of generation, transport and removal processes. Using
this technique, data from CEWCOM-78 have been analyzed to produce the aerosol surface flux volume spectrum from 0.8 to 15 μm radius at a wind speed of 9 m/sec. Using this flux spectrum and equilibrium aerosol spectra from JASIN, flux spectra are calculated for wind speeds from 6 to 18 m/sec.
TABLE OF CONTENTS

1. INTRODUCTION ... 6

2. AEROSOL SPECTRUM 8

3. FLUX SPECTRUM ANALYSIS 12

4. FLUX SPECTRUM AND WIND SPEED 18

5. NON-EQUILIBRIUM 20

REFERENCES ... 24

DISTRIBUTION LIST 25

Accession For
NTIS GRA&I
DTIC TAB
Unannounced
Justification

By
Distribution/
Availability Codes
Avail and/or
Dist Special

DTIC
COPY
REPRODUCED
2
LIST OF TABLES

I. CEMCOM-78 meteorological and aerosol data for the time period analyzed for this report. The aerosol volume spectral density dV/dr is given at each radius in μm. The height of the boundary layer was determined from an acoustic sounder

II. Equilibrium sea-salt aerosol-spectra in $\mu m^2/cm^3$ as a function of radius (μm) and wind speed (m/sec)

III. Surface sea-salt aerosol flux, $F_s(r)$, ($\mu m^2/cm^2/sec$) as a function of particle radius (μm) and wind speed (m/sec)

IV. The equilibrium time constant for aerosols at $S = 0.8$, $h = 400 m$ and $W_e = 0.4 cm/sec
LIST OF FIGURES

Figure

1 Ensemble average total aerosol volume spectra from JASIN. The number to the right of the spectrum is the wind speed category in m/sec

2 Time series of atmospheric 222Rn activity (solid line, Larsen, Yasemir and Bressan, 1979) and continental aerosol coefficient, A (dashed line)

3 Time series of the terms of Eqn (9) for 2 µm radius and 15 µm radius particles. The dashed line is the average contribution of the surface production term and should be the sum of the other three terms

4 The ensemble average surface flux spectrum, $F_s(r)$, for the CEMCOM-78 analysis period (average wind speed, 9 m/sec)

5 Ensemble average contribution of entrainment (W_e), Stokes fallout (W_s) and surface flux $W_F = F_s/V_s$ assuming a state of dynamic equilibrium

6 Ensemble average equilibrium sea salt volume spectra from JASIN. The number to the right of the spectrum is the wind speed category in m/sec

7 Ensemble average surface flux spectra deduced from Eqn (11) and Table II. The number to the right of the spectrum is the wind speed in m/sec

8 Changes in aerosol spectral density (dN_s/dt) versus changes in mixing volume (dh/dt). This graph illustrates the dominance of these terms in Eqn (9) for short time periods
1. **INTRODUCTION**

This is one of a series of reports dealing with modeling of the marine atmospheric boundary layer. The basics of the Naval Postgraduate School modeling approach are given in Fairall (1981). That report also describes the current status of modeling the pertinent physical processes. The utility of the model for tactical use and initial model validation are given in Davidson et al (1982). This report is in a somewhat different vein. The other reports deal with use of the model to describe or predict the evolution of boundary layer properties. Here we use the model "in reverse" to determine an important physical parameter, the rate of generation of marine aerosols.

There are two components to aerosols in the marine boundary layer: 1) continental (background) and 2) locally generated sea-spray droplets (Barnhardt and Streete, 1970). The sea-spray droplets are generated primarily by the bursting of bubbles at the sea surface (Blanchard and Woodcock, 1957). The bubbles are produced by biological activity, chemical reaction and breaking waves (whitecaps). Thus, the sea surface is a continuous source of sea-salt aerosols in the marine boundary layer. At wind speeds greater than about 3 meters per second, whitecaps are the primary contributor to the bursting bubbles. These surface produced aerosols can be characterized by a surface flux spectrum, $F_s(r)$, which represents the volume of aerosol per particle radius interval produced per square centimeter of ocean surface each second as a function of aerosol particle radius. This quantity is a function of wind speed.

The continuous production of sea-salt aerosols is balanced by several removal mechanisms. One obvious mechanism is the loss of particles as they fall back to the surface. This settling under gravity is called "Stokes fallout" and is characterized by the Stokes velocity. The particles are transported vertically by turbulence in the marine boundary layer and maintained at
a nearly uniform mixing ratio throughout the mixed layer. The growth of the height of the layer constitutes another loss mechanism called "entrainment" (Deardorff, 1976). The final loss mechanism is "rainout" which occurs when the particles become condensation nuclei in the formation of clouds.

Given the surface flux spectrum and a parameterization of the removal mechanisms, one could predict evolutions of the aerosol density spectrum (Fairall et al, 1982). Unfortunately, the surface flux spectrum is not known. However, we can reverse the process—that is, use parameterizations of the removal processes and evolutions of the aerosol spectrum—to obtain estimates of the surface flux spectrum. This paper describes the calculation of $F_s(r)$ from data taken by the NPS Environmental Physics Group during the Cooperative Experiment for West Coast Oceanography and Meteorology (CEWCOM-78) and the Joint Air-Sea Interaction Experiment (JASIN). Details about the experiments, equipment, measurements, and analysis are given by Fairall (1981).
2. **AEROSOL SPECTRUM**

The first step to analyzing the evolution of the aerosol spectrum is to remove those variations due to changes in the ambient relative humidity. This is done by transforming each spectrum to a reference relative humidity (RH = 80% or a saturation ratio \(S = 0.8 \)). We make the usual assumption that the particle radius at saturation \(S \) is given by (Fitzgerald, 1975)

\[
\frac{r}{r_s} = r \cdot g(S) \tag{1}
\]

where \(r \) is the radius at \(S = 0.8 \) and \(g(S) = 0.81 \exp\left[\frac{0.0668}{(1.058 - S)}\right] \). If we have a measured aerosol number density spectrum, \(n'(r_s) \), then the transformed spectrum at standard saturation, \(n(r) \), is:

\[
\frac{dn}{dr} = n(r) = n'(r \cdot g(S)) \cdot g(S) \tag{2}
\]

Since we prefer to work with the volume spectrum \(V(r) = \frac{4}{3} \pi r^3 n(r) \), the corresponding relationship is:

\[
\frac{dV}{dr} = V(r) = \frac{V'(r \cdot g(S))}{g^2(S)} \tag{3}
\]

We now must separate the measured spectrum into its two basic components:

1) The background continental aerosol of nonlocal origin, \(V_c \), which is present above and within the marine layer; and

2) The sea-salt aerosol locally generated at the sea surface, \(V_s \), which is well mixed throughout the marine layer (\(h \) is the height of the mixed layer). Thus, we assume:

\[
V(r) = V_c(r) + V_s(r) \quad Z < h \tag{4a}
\]

\[
V(r) = V_c(r) \quad Z > h \tag{4b}
\]

The continental aerosol component is represented with a Junge type distribution,

\[
V_c(r) = \frac{A}{r} \tag{5}
\]

where \(A \) is the continental coefficient. Since there is very little sea-salt volume production for \(r < 0.3 \ \mu m \), we can use the small size range of the
spectrum to calculate the continental coefficient \((A = r V(r))\). This is documented in Fig. 1 where ensemble averages of volume spectra indicated that \(V(r)\) is essentially independent of wind speed at \(r = 0.1 \, \mu m\). At low wind speeds, the \(r = 0.1 \, \mu m\) and \(r = 0.3 \, \mu m\) ensemble average spectra are described quite accurately by Eqn (5). The claim that \(A\) is an accurate index of continental influence is nicely validated by comparison with atmospheric Radon activity (Larsen et al, 1979) from CEMCOM-78 (Fig. 2). Thus, the locally generated sea-salt component can be calculated using:

\[
V_s(r) = V(r) - A/r
\]

(6)

The remainder of this report will deal exclusively with the volume spectra transformed to standard humidity, \(V_s(r)\). We write this as \(V_s\) to simplify the notation—with the understanding that \(V_s\) refers to the spectrum at RH = 80%, with radius, \(r\), an implied variable.

The evolution of the aerosol spectrum in the well mixed marine boundary is described by the following equation (Fairall et al, 1982),

\[
hdV_s/dt = F_s - (W_e + W_s) V_s
\]

(7)

(which is presented here without further discussion)

where \(W_e\) is the entrainment velocity and \(W_s\) is the Stokes velocity (Wu, 1979)

\[
W_s = 1.57 \times 10^{-2} (1 + 1.2(0.81/g(S))^3) r^2 g^2(S) \]

(8a)

\[
W_e = dh/dt - \bar{W}
\]

(8b)

where \(r\) is in \(\mu m\), \(W_s\) is in \(cm/sec\) and \(\bar{W}\) is the mean vertical air motion due to synoptic scale weather (subsidence). In Eqn (7) we have left out the cloud formation removal mechanism because it acts on a much longer time scale. One assumption implicit in Eqn (7) is that the convective mixing velocity, \(W_s\) (Kaimal et al, 1976), is much larger than \(W_s\). Since \(W_s\) is typically 1 m/sec while \(W_s\) is on the order of 0.1 m/sec for the largest particles \((r = 15 \, \mu m)\) considered here, the assumption is reasonable.
Figure 1. Ensemble average total aerosol volume spectra from JASIN. The number to the right of the spectrum is the wind speed category in m/sec.
Figure 2. Time series of atmospheric 222Rn activity (solid line, Larsen, Kasemir and Bressan, 1979) and continental aerosol coefficient, A (dashed line).
3. FLUX SPECTRUM ANALYSIS

The CENCOM-78 data have been used to evaluate the surface flux term of Eqn (7). Since the other terms of the expression were measured, one simply calculates \(F_s \) using a rearrangement of the terms. Thus the final expression for the flux calculation is,

\[
F_s = h \frac{dV_s}{dt} + (W_e + W_s)V_s
\]

(9)

A period was chosen from CENCOM-78 where all data were available, the synoptic conditions were fairly stable, the wind speed was reasonably constant and a good mixed layer was present (Table I). There was a slowly decreasing continental influence indicated by steady NW winds (A in Table I and Fig. 2).

Application of Eqn (9) requires a value for the entrainment velocity. If the subsidence velocity is known, then \(W_e \) can be calculated from \(\frac{dh}{dt} \) using Eqn (8b). Since it is difficult to obtain \(\tilde{W} \) to 0.1 cm/s accuracy, it was decided to estimate \(W_e \) empirically from the evolution of the mixed-layer temperature and water vapor density. This was accomplished by simulating the analysis period with a dynamic mixed-layer model. After initializing the model with the atmospheric parameters at the beginning of the period, the entrainment velocity was adjusted to yield best agreement with the temperature and water vapor density at the end of the period. The mean \(W_e \) for the period was 0.35 cm/s. This implies \(\tilde{W} = -0.3 \) cm/s for the first 8 hours and \(\tilde{W} = 0 \) for the last 12 hours.

The scatter and uncertainty of the aerosol and mixed layer depth measurements introduces certain trade-offs between averaging times and statistical validity. For short averaging times, the random scatter of the individual terms is considerable, leading to large variations in the time derivative terms. By increasing the averaging time to 4 hours, the \(F_s \) "signal-to-noise" becomes more reasonable. A time series of the individual terms of Eqn (9) is
TABLE I. CEWOCM-78 meteorological and aerosol data for the time period analyzed for this report. The aerosol volume spectra density \(dV/dr \) is given at each radius \(r \), in \(\mu m \). The height of the boundary layer was determined from an acoustic sounder.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>U (m/s)</th>
<th>RH (%)</th>
<th>h (m)</th>
<th>A</th>
<th>(r = .3)</th>
<th>(r = .8)</th>
<th>(r = 2)</th>
<th>(r = 5)</th>
<th>(r = 10)</th>
<th>(r = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/20</td>
<td>1130</td>
<td>7.4</td>
<td>89.4</td>
<td>420</td>
<td>7.8</td>
<td>15.1</td>
<td>12.5</td>
<td>9.79</td>
<td>2.26</td>
<td>0.801</td>
<td>0.437</td>
</tr>
<tr>
<td>5/20</td>
<td>1230</td>
<td>7.7</td>
<td>87.6</td>
<td>430</td>
<td>5.2</td>
<td>9.15</td>
<td>12.5</td>
<td>11.9</td>
<td>2.08</td>
<td>0.644</td>
<td>0.327</td>
</tr>
<tr>
<td>5/20</td>
<td>1330</td>
<td>8.2</td>
<td>86.4</td>
<td>430</td>
<td>4.5</td>
<td>8.39</td>
<td>11.9</td>
<td>12.2</td>
<td>2.91</td>
<td>1.11</td>
<td>0.628</td>
</tr>
<tr>
<td>5/20</td>
<td>1430</td>
<td>8.1</td>
<td>82.1</td>
<td>415</td>
<td>4.7</td>
<td>8.54</td>
<td>10.6</td>
<td>11.4</td>
<td>2.24</td>
<td>0.780</td>
<td>0.420</td>
</tr>
<tr>
<td>5/20</td>
<td>1530</td>
<td>8.3</td>
<td>80.9</td>
<td>437</td>
<td>4.0</td>
<td>7.96</td>
<td>12.0</td>
<td>11.2</td>
<td>1.26</td>
<td>0.296</td>
<td>0.127</td>
</tr>
<tr>
<td>5/20</td>
<td>1630</td>
<td>8.2</td>
<td>81.1</td>
<td>437</td>
<td>4.0</td>
<td>7.85</td>
<td>11.9</td>
<td>13.6</td>
<td>2.47</td>
<td>0.795</td>
<td>0.411</td>
</tr>
<tr>
<td>5/20</td>
<td>1730</td>
<td>9.0</td>
<td>82.5</td>
<td>443</td>
<td>3.6</td>
<td>7.26</td>
<td>12.9</td>
<td>13.4</td>
<td>2.55</td>
<td>0.854</td>
<td>0.455</td>
</tr>
<tr>
<td>5/20</td>
<td>1830</td>
<td>10.0</td>
<td>83.8</td>
<td>430</td>
<td>2.6</td>
<td>6.54</td>
<td>14.0</td>
<td>13.2</td>
<td>3.30</td>
<td>1.37</td>
<td>0.819</td>
</tr>
<tr>
<td>5/20</td>
<td>1930</td>
<td>10.3</td>
<td>84.3</td>
<td>420</td>
<td>2.4</td>
<td>6.07</td>
<td>13.8</td>
<td>13.2</td>
<td>3.71</td>
<td>1.73</td>
<td>1.11</td>
</tr>
<tr>
<td>5/20</td>
<td>2030</td>
<td>9.8</td>
<td>86.8</td>
<td>360</td>
<td>2.1</td>
<td>6.54</td>
<td>15.9</td>
<td>14.2</td>
<td>4.02</td>
<td>1.63</td>
<td>0.958</td>
</tr>
<tr>
<td>5/20</td>
<td>2130</td>
<td>10.1</td>
<td>87.7</td>
<td>377</td>
<td>1.9</td>
<td>6.07</td>
<td>14.9</td>
<td>13.2</td>
<td>3.34</td>
<td>1.22</td>
<td>0.678</td>
</tr>
<tr>
<td>5/20</td>
<td>2230</td>
<td>9.5</td>
<td>87.6</td>
<td>397</td>
<td>2.7</td>
<td>6.82</td>
<td>13.6</td>
<td>12.8</td>
<td>3.52</td>
<td>1.42</td>
<td>0.833</td>
</tr>
<tr>
<td>5/20</td>
<td>2330</td>
<td>9.2</td>
<td>87.6</td>
<td>400</td>
<td>2.7</td>
<td>6.15</td>
<td>12.9</td>
<td>12.7</td>
<td>3.46</td>
<td>1.46</td>
<td>0.891</td>
</tr>
<tr>
<td>5/21</td>
<td>00</td>
<td>9.6</td>
<td>87.3</td>
<td>420</td>
<td>3.0</td>
<td>6.14</td>
<td>13.1</td>
<td>11.8</td>
<td>2.58</td>
<td>0.993</td>
<td>0.569</td>
</tr>
<tr>
<td>5/21</td>
<td>130</td>
<td>9.2</td>
<td>88.3</td>
<td>490</td>
<td>2.0</td>
<td>5.69</td>
<td>13.5</td>
<td>12.9</td>
<td>3.33</td>
<td>1.26</td>
<td>0.710</td>
</tr>
<tr>
<td>5/21</td>
<td>230</td>
<td>8.3</td>
<td>87.4</td>
<td>520</td>
<td>1.7</td>
<td>5.29</td>
<td>13.3</td>
<td>13.4</td>
<td>3.44</td>
<td>1.39</td>
<td>0.818</td>
</tr>
<tr>
<td>5/21</td>
<td>330</td>
<td>8.2</td>
<td>86.1</td>
<td>560</td>
<td>2.7</td>
<td>6.11</td>
<td>11.8</td>
<td>10.9</td>
<td>2.18</td>
<td>0.731</td>
<td>0.390</td>
</tr>
<tr>
<td>5/21</td>
<td>430</td>
<td>8.5</td>
<td>83.1</td>
<td>597</td>
<td>2.2</td>
<td>5.55</td>
<td>11.6</td>
<td>9.71</td>
<td>1.78</td>
<td>0.659</td>
<td>0.369</td>
</tr>
<tr>
<td>5/21</td>
<td>530</td>
<td>8.2</td>
<td>81.3</td>
<td>620</td>
<td>2.0</td>
<td>5.33</td>
<td>10.9</td>
<td>9.75</td>
<td>1.85</td>
<td>0.732</td>
<td>0.431</td>
</tr>
<tr>
<td>5/21</td>
<td>630</td>
<td>7.9</td>
<td>79.7</td>
<td>680</td>
<td>1.8</td>
<td>5.01</td>
<td>11.1</td>
<td>10.7</td>
<td>1.96</td>
<td>0.678</td>
<td>0.365</td>
</tr>
</tbody>
</table>
shown in Fig. 3 for two different particle sizes. The average surface production flux spectrum is shown in Fig. 4. This flux spectrum applies to the average surface conditions for the entire 20 hour period (average wind speed was about 9 m/sec). The error bars represent the uncertainty in the mean estimate.

The relative contributions of entrainment, gravitational fallout and surface production are nicely illustrated by defining an equivalent surface production vertical velocity, \(W_F = F_s / V_s \) so that in equilibrium \((dV_s / dt = 0) \)

\[
W_F = W_e + W_s
\]

For the average conditions found in the analysis period, the entrainment and Stokes terms were roughly equal at a particle radius of 5 \(\mu m \) (Fig. 5).
Figure 3. Time series of the terms of Eqn (9) for 2 μm radius and 15 μm radius particles. The dashed line is the average contribution of the surface production term and should be the sum of the other three terms.
Figure 4. The ensemble average surface flux spectrum, $F(r)$, for the CEWCOM-78 analysis period (average wind speed, 9 m/sec).
Figure 5. Ensemble average contribution of entrainment (W_e), Stokes fallout (W_s) and surface flux $W_F = F_s/V_s$ assuming a state of dynamic equilibrium.
4. **FLUX SPECTRUM AND WIND SPEED**

Because of the reasonably constant wind speeds during the 20 hour CEWCOM-78 period, we were able to improve the statistical certainty for the \(F_s \) calculation by combining all the data from the period, assuming that the flux would be a reasonable representation for \(U = 9 \) m/sec wind speed. Thus, we now have the surface flux spectrum at a single wind speed. In order to estimate the flux at other wind speeds, we note that the right hand side of Eqn (10) is nearly independent of wind speed for equilibrium conditions. Therefore, the flux at one wind speed can be related to the flux at other wind speeds if the equilibrium volume spectra are known:

\[
F_s(U_1) = F_s(U_2) \frac{V_s(U_1)}{V_s(U_2)}
\]

We have available from JASIN a large set of ensemble averages of aerosol volume spectra at different wind speeds (Fig. 6 and Table II). It is a simple matter to apply this data to Eqn (11) using the CEWCOM-78 aerosol flux and equilibrium spectrum to generate the surface volume flux spectra as a function of wind speed (Fig. 7 and Table III). At a wind speed of 6.0 m/sec, the flux can be integrated in radius space to yield a total sea-salt dry mass production rate of 4.8 mg/m\(^2\)/day which compares well with the 4.4 mg/m\(^2\)/day estimated by Blanchard (1963) and 4.2 mg/m\(^2\)/day estimated by Kritz and Rancher (1980).
TABLE II. Equilibrium sea-salt aerosol spectra in $\mu m^2/cm^3$
as a function of radius (\(\mu m\)) and wind speed (m/sec).

<table>
<thead>
<tr>
<th>(r)</th>
<th>0.8</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.8</td>
<td>3.4</td>
<td>3</td>
<td>0.3</td>
<td>0.05</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>0.35</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>25</td>
<td>13</td>
<td>6.4</td>
<td>4.2</td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>24</td>
<td>33</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>18</td>
<td>28</td>
<td>35</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>9*</td>
<td>9</td>
<td>11</td>
<td>2</td>
<td>0.8</td>
<td>0.4</td>
</tr>
</tbody>
</table>

TABLE III. Surface sea-salt aerosol flux, \(F_r\) (\(\mu m^2/cm^2/sec\))
as a function of particle radius (\(\mu m\)) and wind speed (m/sec).

<table>
<thead>
<tr>
<th>(r)</th>
<th>0.8</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.3</td>
<td>1.1</td>
<td>2.5</td>
<td>1.0</td>
<td>0.33</td>
</tr>
<tr>
<td>9</td>
<td>4.5</td>
<td>3.1</td>
<td>4.2</td>
<td>3.3</td>
<td>2.3</td>
</tr>
<tr>
<td>11</td>
<td>8.2</td>
<td>7.7</td>
<td>11</td>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td>13</td>
<td>9.1</td>
<td>9.2</td>
<td>17</td>
<td>49</td>
<td>48</td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>10</td>
<td>19</td>
<td>72</td>
<td>140</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>11</td>
<td>24</td>
<td>92</td>
<td>180</td>
</tr>
<tr>
<td>9*</td>
<td>4.1</td>
<td>3.4</td>
<td>1.7</td>
<td>2.3</td>
<td>2.6</td>
</tr>
</tbody>
</table>

* CEWCOM-78 Analysis Period
5. NON-EQUILIBRIUM

For time periods of a few hours, the aerosol spectrum may not be in a state of dynamic equilibrium. If we rewrite Eqn (7) in the following form:

$$\frac{dV_s}{dt} + \frac{V_s}{\tau_p} = \frac{F_s}{h}$$

where the time constant, τ_p, is

$$\tau_p = \frac{h}{(W_e + W_s)}$$

then we see the analogy of aerosols and a capacitor charged by an applied "voltage", F_s, through a "resistance", $(W_e + W_s)^{-1}$. In this analogy, the "capacitance" is h.

The response time of the aerosol density is a strong function of particle radius because $W_s \sim r^2$. Values of τ_p for $S = 0.8$ and $h = 400$ m are given in Table IV.

<table>
<thead>
<tr>
<th>$r, \mu m$</th>
<th>0.5</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_p, hours</td>
<td>28</td>
<td>22</td>
<td>11</td>
<td>3.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

The boundary layer mixing time, τ_m, which represents the time required for changes in aerosol density to be evenly distributed throughout the marine layer is:

$$\tau_m = \frac{h}{W_e}$$

For the CEWCOM-78 analysis period ($h = 400$ m and $W_e = 0.6$ m/sec) we find $\tau_m = 0.16$ hours. Therefore, short term variations in mixing volume (dh/dt) will lead to changes in the aerosol density because the production response time is much slower than the mixing time. Thus, for time periods on the order of one hour, changes in the aerosol density (hV_s/dt) will be highly correlated with the mixing volume term ($V_s dh/dt$). This effect, which is particularly noticeable for smaller particles (see Fig. 3 and Table III), is shown in Fig. 8.
Figure 6. Ensemble average equilibrium sea salt volume spectra from JASIN. The number to the right of the spectrum is the wind speed category in m/sec.
Figure 7. Ensemble average surface flux spectra deduced from Eqn (11) and Table II. The number to the right of the spectrum is the wind speed in m/sec.
Figure 8. Changes in aerosol spectral density \(\frac{dV}{dt} \) versus changes in mixing volume \(-dh/dt\). This graph illustrates the dominance of these terms in Eqn (9) for short time periods.
REFERENCES

DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No.</th>
<th>Name and Address</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Defense Technical Information Center, Cameron Station, Alexandria, Virginia 22314</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Library, Code 0142, Naval Postgraduate School, Monterey, California 93940</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>Dean of Research, Code 012, Naval Postgraduate School, Monterey, California 93940</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>Professor J. Dyer, Code 61Dy, Naval Postgraduate School, Monterey, California 93940</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>Professor R. J. Renard, Code 63Rd, Naval Postgraduate School, Monterey, California 93940</td>
<td>1</td>
</tr>
<tr>
<td>6.</td>
<td>Professor C.N.K. Mooers, Code 68Mr, Naval Postgraduate School, Monterey, California 93940</td>
<td>1</td>
</tr>
<tr>
<td>7.</td>
<td>Professor K. L. Davidson, Code 63Ds, Naval Postgraduate School, Monterey, California 93940</td>
<td>10</td>
</tr>
<tr>
<td>8.</td>
<td>Professor G. E. Schacher, Code 61Sq, Naval Postgraduate School, Monterey, California 93940</td>
<td>10</td>
</tr>
<tr>
<td>9.</td>
<td>Asst Prof R. W. Garwood, Code 68Gd, Naval Postgraduate School, Monterey, California 93940</td>
<td>1</td>
</tr>
<tr>
<td>10.</td>
<td>Dr. C. W. Fairall, BDM Corporation, 1340 Munras Street, Monterey, California 93940</td>
<td>10</td>
</tr>
<tr>
<td>11.</td>
<td>Mr. Don Spiel, BDM Corporation, 1340 Munras Street, Monterey, California 93940</td>
<td>2</td>
</tr>
<tr>
<td>12.</td>
<td>Dr. A. Weinstein, Director of Research, Naval Environmental Prediction Research Facility, Monterey, California 93940</td>
<td>1</td>
</tr>
</tbody>
</table>

25
13. CAPT K. Van Sickle
Naval Environmental Prediction Research Facility
Monterey, California 93940

14. Dr. A. Goroch
Naval Environmental Prediction Research Facility
Monterey, California 93940

15. Dr. Paul Twitchell, Code 370C
Naval Air Systems Command
Washington, DC 20360

16. Dr. Alex Shlanta, Code 3173
Naval Weapons Center
China Lake, California 93555

17. Dr. Barry Katz, Code R42
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20362

18. Dr. J. H. Richter, Code 532
Naval Ocean Systems Center
San Diego, California 92152

19. Dr. Lothar Rahnke, Code 8320
Naval Research Laboratory
Washington, D.C. 20375

20. Mr. Herb Hitney, Code 532
Naval Ocean Systems Center
San Diego, California 92152

21. Mr. Herb Hughes, Code 532
Naval Ocean Systems Center
San Diego, California 92152

22. Mr. Stuart Gatham, Code 8320
Naval Research Laboratory
Washington, DC 20375

23. Commander, BMS-405
Naval Sea Systems Command
Washington, DC 20360

24. Dr. Steven Burke
Naval Environmental Prediction Research Facility
Monterey, California 93940

25. Mr. Sun Brand
Naval Environmental Prediction Research Facility
Monterey, California 93940
26. Mr. Paul Banas, Code 9220
 Naval Oceanographic Office
 NSIL Station, Mississippi 39522

27. Dr. Paul Moersdorf, Code 9220
 Naval Oceanographic Office
 NSIL Station, Mississippi 39522

28. LT Mark Schultz
 Naval Environmental Prediction Research Facility
 Monterey, California 93940

29. Mr. Ted Zuba, Code AIR-370
 Naval Air Systems Command
 Washington, DC 20360

30. Mr. Jay Rosenthal
 Geophysics Division
 Pacific Missile Range
 Point Mugu, California 93042

31. Dr. Michael J. Kraus
 AFGL/LYS
 Hanscom AFB, Massachusetts 01731

32. MAJ Bob Wright
 AWS/DOOE
 Scott AFB, Illinois 62225

33. MAJ Ed Kolczynski
 AWS/SYX
 Scott AFB, Illinois 62225

34. Joel S. Davis
 Defense Sciences Division
 Science Applications, Inc.
 1010 Woodman Drive, Suite 200
 Dayton, Ohio 45432

35. Mr. L. Biberman
 Institute for Defense Analysis
 400 Army Navy Drive
 Arlington, Virginia 22202

36. Dr. Richard Gomez
 DELAS-EO-MO
 Atmospheric Sciences Laboratory
 White Sands, New Mexico 88002

37. Dr. R. Penn
 Air Force Geophysics Laboratory
 Hanscom AFB, Massachusetts 02173
38. Mr. Glen Spaulding, MAT 72
Naval Material Command
Washington, DC 20362

39. CIR Thomas Callahan, Code N341
Naval Oceanography Command
NSTL Station, Mississippi 39529

40. CAPT Ronald Hughes, Commander
Naval Oceanography Command
NSTL Station, Mississippi 39529

41. CAPT Ernie Young, OP 952
Oceanographer of the Navy
Washington, DC 20360

42. Dr. Lowell Wilkens
Naval Weapons Center
China Lake, California 93553

43. Dr. B. Monahan
Department of Oceanography
University College
Galway, IRELAND

44. Mr. Walter Martin, Code 470
Office of Naval Research
800 N. Quincy Street, Rm 307
Arlington, Virginia 22217

45. Dr. Gloria Patton
Office of Naval Research
1030 E. Green Street
Pasadena, California 91106

46. Mr. Jim Hughes, Code 470
Office of Naval Research
800 N. Quincy Street
Arlington, Virginia 22217

47. Dr. Warren Denner
Science Applications, Inc.
2999 Monterey-Salinas Hwy
Monterey, California 93940

48. Mr. George Hanssen
Science Applications, Inc.
P.O. Box 1303
1710 Goodrich Drive
McLean, Virginia 22102
49. Dr. Lou Goodman, Code 481
 Office of Naval Research
 Physical Oceanography
 NSTL Station, Mississippi 39529

50. CIR S. G. Collan, Code 420B
 Office of Naval Research
 800 N. Quincy Street
 Arlington, Virginia 22217

51. Dr. John A. Cooney
 Dept of Physics and Atmospheric Science
 Drexel University
 Philadelphia, Pennsylvania 19104

52. Mr. Thomas Rappolt
 Energy Resources Company, Inc.
 3344 N. Torrey Pines Court
 La Jolla, California 92037

53. MAJ Gary G. Worley
 Air Force Engineering and Services Center
 Tyndall AFB, Florida 32403