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PREFACE
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Base, Ohio. 1

This effort was conducted during the period of January
1981 through December 198l1. The author, Mr., Russell R. Cervay, 1
would like to extend special recognition to Mr. Donald W. 5
Woleslagle and Mr. Richard Marton of the University of Dayton '
for the painstaking care and diligent attention they demon- o
strated in generating the fatigue crack growth test data ; J
presented herein. ‘ 1

This report was submitited by the author in March 1982.
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SECTION I
INTRODUCTION

A gsimple empirically based mathematical model for constant
amplitude loading fatigue crack growth rate (FCGR) test data
is very useful for predicting the crack growth rate for a
particular material at a condition where test data are non-
existent, In this manner the necessity for generating data
at a particular unexamined test condition is circumvented.
There are several models already in existence that vary in
their degree of complexity and their degree of success in pre-
dicting test data results. Reference 1 discusses a simple
empirical model for the shift in the linear region of room
temperature FCGR data for aluminum alloy 7010-T773651 with a
change in load ratio, R~ratio (minimum load/maximum load).

The linear data reglion of FCGR test data is depicted in
Figure 1. The model was based on the Paris equation:

da/dn = CAK™ (1)

where da/dn is the crack extension per load cycle, termed the
fatigue crack growth rate, AK is the stress intensity range, and
C and m are material dependent constants. The Paris equation

is applicable to the linear data region only (assuming the log-
stress intensity range, log-AK, is plotted versus the log-

crack growth rate); the threshold and rapid growth rate regions
are not considered in this expression (Figure 1). The Reference 1
model represents the log-Paris coefficient, log-C, as linearly
related to the changing R-ratio at room temperature, assuming

a fixed exponent. See FPigure 2 . The model was successful

at accurately predicting the best fit straight line to the
linear data region prior to the generation of the data.

This program expands the model developed in Reference 1
to account for variation of the test temperature., To accom=
plish this, three issues will be addressed. At elevated
temperatures does there still exist a linear relationship
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between the R~ratio and the log-Paris coefficient? If so, is
there a trend in the lines' slopes with a change in test
temperature? Lastly, with the R-ratio held constant can a
simple mathematical relationship be defined to accommodate the

shift in the data's linear region with a change in test

L

temperature?
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SECTION II
TEST PROGRAM AND SPECIMENS

The test mater.al was aluminum alloy 2024, half inch
(12.7 mm) thick, bare, rolled plate. It was produced by the
Aluminum Company of America. The material was provided in
the T351 condition which is a solution heat treatment followed
by cold working and natural aging. The results of a chemical
constituent analysis is presented as follows.

Chemical Constituent Composition

Cu Mg Mn Fe Si _Ti Al

4.3 1.5 0.58 0.20 0.16 <0.03 Balance

Tenslle specimens were machined from the test plate and
triplicate tensile tests were performed at the four test
temperature of interest: 72°, 200°, 300°, and 400°F (22°,
93°, 149°, and 204°C, respectively). The specimens were
machined in accord with Figure 3. All tensile specimens were
fabricated with the loading direction parallel to the plate's
longitudinal grain direction. All of these tests were con-
ducted in compliance with the applicable ASTM test standard,
E-8, "Tensile Testing of Metallic Materials."

Two to six constant amplitude loading FCGR tests were
completed at each of 20 different test conditions. The test
conditions were the combination of five different R-ratios:
0.01, 0.1, 0.3, 0.5, and 0.6, and the four different test tem-
peratures: 72°, 200°, 300°, and 400°F (22°, 93°, 149°, and
204°C, respectively). All of the FCGR tests were conducted in
accord with ASTM test procedure LE647-78, "Constant-Load-Amplitude
Fatigue Crack Growth Rates Above 1078 nm/cycle." Also, all of
these PCGR tests: (1) were conducted in a laboratory air en-~
vironment, (2) used a loading frequency equal to 20 Hz, and
(3) used the CT specimen shown in Figure 4 with L~T grain
orientation.
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Only the linear reyion of the crack growth rate data
as represented on a log-stress intensity range versus
log-crack growth rate pair of axes was considered in
this effort; the threshold and rapid crack growth rate region
immediately preceding failure were not considered and are
not presented herein. The maximum and minimum crack growth
rates that were used to define the linear region for each of
the 20 test conditions are listed in Table 1l; these limits
represent conservative subjective judgements; generally., the
linear region extends beyond these limits.

For the first 23 tests completed, which represent each
R-ratio in combination with either a 72°F (22°C) or 200°F
(93°C) test temperature, the Paris exponent and coefficient
were allowed to freely vary when calculating the best fitting
linear equation to these individual specimen's data sets.

The average value exponent of these 23 individual specimen data
sets was 3.36 with the maximum value of 3.50 and a minimum value
of 3.27 or a range of plus or minus 4 percent. Subsequently

in calculating the best fitting equation to the 20 multi-
specimen data sets the Paris exponent was fixed equal to

m=3.36, and only the Paris coefficient, C, was allowed to

freely vary.

Following the calculation of the best fitting Qquation
to each of the 20 data sets in accord with the above described
procedure a mathematical model of the shift in the Paris
coefficient for a change in R-ratio and/or test temperature
was formulated. The formulated mathematical model was used
to predict the best fitting equation to a test case set of
data prior to the generation of the test case data. The test
case wasg arbitrarily selected to be 250°F (121°C)
at a load ratio of 0.35.
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SECTION III
RESULTS AND DISCUSSION

Tensile test results are presented in Table 2. The
materlal is a moderate strength and ductile aluminum alloy/
heat treatment. For the temperature rise from room temperature
to 400°F (204°C) the average ultimate strength decreases
27.0 percent, whereas, the average yield strength only decreases
10.5 percent. For the same temperature rise there is little
change in the percent elongation at failure, however, there is
a large increase in the percent reduction of area.

The linear reyion FCGR test results are presented in
Appendix A in Figures A.l through A.20. Generally, the linear
region shifts down and to the left with an increase in R-ratio
and for this material changes very little with an increase in
temperature. The best fitting equation that was calculated
for each data set with the exponent fixed equal to m=3,36 is
also listed on each of the 20 figures. From this point on in
the discussion of modeling the FCGR data with the Paris equation,
the stress intensity range, AK, is in KS8Iv/In, the crack growth
rate, da/dn, i3 in in./cycle and the temperature is in degrees
Fahrenheit (°F).

Table 3 lists the logarithm of the Paris coefficient,
log-C, for all 20 test conditions of interest. Figure 5 presents
a plot of the loading ratio versus the log-Paris coefficient.
Here if the points for a load ratio equal to 0.0l are excluded
the load ratio versus log-Paris coefficient can fairly well be
represented as a straight line, as was done in Reference 1. This
is true not only of the room temperature tests but is equally
applicable to the elevated temperature data. The lowest load
ratio Paris coefficients do not coordinate well with the
coefficient associated with larger R-ratios. Similarly, in
Reference 1 the Paris coefficient of some data for load ratios
less than or equal to zero was not linearly related to those
coefficients for the same material generated at higher R~ratios.

10
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TABLE 2

ALUMINUM ALLOY 2024-T7351 TENSILE TEST RESULTS

Test Ultimate 0.2% Yield Elongation in 0.5 in. Reduction
Temparature Strength Strength (12,7 mm) G.L. of Area
oF (°C) KSI (Mpa) |KSI (MPa) (%) (%)
72 (22) 66.1(455.7y 150.4(347.5) 27.6 24.8

66.2(456.4) |50.8(350.3) 26.3 21.7
65.3(450.2) 153.2(366.8) 23.6 25 .5

Avg. 65.9(454.1) [51.5(354.9) 25.8 24.0
200 (93) 62.2(428.9) |49.4(340.6) 23.3 26.1
62.4(4230.2) |49.1(338.5) 26.9 28.7

62.9(433.7) |49.3(339.9) 26.7 25.
Avg. 62.5(430.9) 149.3(339.7) 25.6 26.8
300 (149) 56,1(386.8) |45.9(316.5) 27 .0 31.8
55.7(384.0) |47.5(327.5) 30.0 34.8
56.9(392.3) 146.3(319.2) 29.3 33.0
Avg. 56.2(387.7) |46.6(321.1) 28.8 33.2
400 (204) 47.5(327.5) |45.8(315.8) 22.1 42.0
47.7(328.9) | 45.7(315.1) 23.8 43.0
40.2(339.2) |46.7(322.0) 23.0 44.0
Avy. 48.1(331.9) | 46.1(317.6) 23.0 43.0

11
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TABLE 3
LOG-PARIS COEFFICIENT FOR Al2024-T351

? ﬂ-a" s ©

Tast ]
Temperature Re 0.0l 0.1 0.3 0.5 0.6 E
op (°c)
72 (22) -8.613  ~-B8.447  -8,350  -8.277  -8.231 o
200 (93) -8.565  -B.409  ~8.336  -B.257  -B,212 l 4
’ 1
300 (149) -8.500 -8.402 -5.323  =-8.257 -8.178 t
400 (204)  =B.513  -8.356  =8,275  -8.205  -B8.145 ' }
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In general, there is very little shift in the data points
in going from the 72°F (22°C) to the 400°F (204°C) data.
This is a very desirable material characteristic but presants
a hurdle in this effort to characterize a material's reaponse
to a change in temperature.

i Gl e G

i

In Flgure 5 if lines were drawn through the data points
for each temperature, excluding all of the log-Paris coefficients
for an R-ratio equal to 0.0l1, the slopes of the four lines (not
shown) would be 0.417, 0.392, 0.424, and 0.418 for the four
test temperatures: 72°F (22°C), 200°F (93°C), 300°F (149°C), '
, and 400°F (204°C), respectively. Since (1) there is no trend
| in the slopes, and (2) the slope for 72°F (22°C) and 400°F (204°C),
the minimum and maximum test temperatures, are practically
| identical, the slope was assumed tc be constant over the tem- i
i: perature range and is approximately equal to the average of '
y the four values b = 0.413. Assuming the slope of the line
remains constant will accommodate considerable simplification
of the mathumatical model for the FCGR test data since

log-C = constant + BeR

is equally applicable for any temperature. Also the Paris
exponent, m, is assumed to be constant, m=3,36, over the entire
R-ratio, temperature, and crack growth rate range (Table 1)
included in this program, which represents another convenient
simplification.

Figure 6 presents the log-Paris coefficients listed
‘ in Table 3 along with the temperatures. For all five R-ratios
% there is very little change in crack growth data (Figures A.4
' to A.20) or in log«C with an increase in temperature, Here
again it can be seen that all of the log-C values assoclated
with a loading ratio equal to 0.0l plot disproportionately low.

A linear relationship can guite adequately represent the
change in log~C with test temperature for all five of the R-ratios.
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{ If the best fit lines (not shown) were drawn for each R-ratio,

(| the slope of each line would be: 0.00031, 0.00026, 0.,00021,

a 0.00019, and 0.00027 for loading ratios equal to 0.01, 0.1, 0.3,
0.5, and 0.6, respectively (since the plot for an R-ratio equal
. to 0.01 is disproportionally low these log-coefficients data

n; points will again be disregarded). The average slope for the

' four lines asgssociated with the R-ratios larger than 0.01 is
d=0,00023. This average slope is represented as only an
approximate value for the change in log-C with a change in
temperature, Assuming the slope of the lines remains constant
represents another convenient simplification of the mathematical
model for the FCGR data. Consequently,

log-.C * constant + d-T
ig equally applicable over the R-ratio range from 0.l to 0.6.

It has been assumed that the trivariant data (R~ratio,
test temperature, and log=C) can be graphically represented by
a series of parallel stralight lines. Reference 2 presents
a least sguares method for calculating the coefficients for
trivariant linearly related data in the general form

rve

z = ag + ayjx + agy (2) 1

for a given set of n data points where

Nj - Nj ]
az =

[n Ixi-(Ixy) 21 [n Syi~(Cyd)I=in Exgyi-(xp) (By) 1% (3)

where
Ny = [n Exf-(Ix;) 21 [n Zyjzg-(Iyy) (Zzy)) (4)
No = [n Z-x3y3=(Zxy) (Lyi))ln Ixyzi-(Txg) (Lz4)] (5)
16

N ‘. LT . . ib‘..u o




[n Ixqy2zi-(Tx4) (Zz4)] - azln Ixiyi-(Ixj) (Iyi)]
a, = p) 2 (6)
n Ixy - (Lxy)

Lzy - ajzlyy =~ arixy

and ag = a (7)

for i=1,2,3...n

For this particular application

x = R=-ratio = R
y = Test temperature (°F) = T
and 2z = log-C,

Since the data for an R-ratio equal to 0.0l appears
to be disproportionately low, only the 16 data points (n=16) for
R-ratios greater than or equal to 0.1 were used as input to the
above esgquations. The results of the calculations were

ao = -85503
a; = 0.412
and ap = 0,00023

or log € = -8.503 + 0.412R + 0.000237 (8)

The two coefficlents calculated in this manner are
practically identical to the average values for the lines'
slopes (Figures 3 and 4) presented as approximations earlier.
Taking the antilogarithm of equation (8) yields a general
expression for the Paris coefficient, C,

lo(—8.503+0.4J.2R+0.00023T)

C = (9)

Therefore, by substituting equation (9) and the average
exponent, m=3.36, into equation (1) the final mathematical
model for the test material is:

gg = 10("8:503+0.412R+0.00023T) 5, 3.36 ),
for 72° < T < 400°F and 0.1 < R < 0.6,
17
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A test case to verify the general Paris expression (l0) was
arbitrarily selected at an R-ratio equal to 0.35 and a test
temperature of 250°F (12.°C). Putting the values of these two
parameters into equation (10) a predictive equation for the
data is obtained:

da lO(-8.503+0.412~0.35+0.00023-250)AK3.36

dn

da _ ,.(-B.302),.3.36

4 .10 AK (11)
g-% = 4.99 « 10722336 £or R=0.35 and T=250°F (121°C)

Two specinmens were tested for the test case. Test results
are presented in Figure 7 along with the best fitting line
calculated with the exponent fixed equal to 3, 36. {The best
fitting equaticn calculated for this same data set with both
the exponent and coefficient free to vary has the same exponent,
3.36, and a coefficient equal to 4,.76:10"° rather than
4.75-10—9.) Also presented in Figure 7 is the predictive
equation (ll). The two lines overlap. They were started and
ended at different stress intensity ranges to facilitate visual
detection cf two different lines as opposed to one broad line.
Agreement between the predictive and best fitting equation for
the test cuse data set is excellent.
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Figure 7. R=0.35, 250°F (121°C) FCGR Test Results.
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SECTION 1V
CONCLUSIONS

The following conclusions are applicable for the test

conditions used throughout this report; i.e., 72°F (22°C) <
Temperature < 400°F (204°C), 0.1 < R~ratio < 0.6, and a loading
frequency equal to 20 Hz.

1.

The log-Paris coefficient can be modeled as a linear
relationship of the R-ratio and the test temperature
assuming all other test parameters remain constant.

In a log-stress intensity range versus the log-crack
growth rate plot the linear region shifts down and to
the left with increasing R-ratio.

For a constant loading frequency and load ratio
there is very little acceleration in the crack growth
rate in aluminum alloy 2024-T351 with an increase in
test temperature.

The crack growth model derived herein netted a good
fitting predictive equation to the linear region of a
test case data set.
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Figure A.1l. R=0.01, 72°F (22°C) FCGR Test Results.
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Figure A.2. R=0.1l, 72°F (22°C) FCGR Test Results.
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Figure A.3. R=0.3, 72°F (22°C) FCGR Test Results. b
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Figure A.4. R=0.5, 72°F (22°C) FCGR Test Results.
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Figure A.5. R=0.6, 72°F (22°C) FCGR Test Results.
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Figure A.6. R=0.0l1, 200°F (93°C) FCGR Test Results.
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Figure A.7. R=0.1, 200°F (93°C) FCGR Test Results.
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Figure A.8. R=0,3, 200°F (93°C) FCGR Test Results.
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Figure A.9. R=0.5, 200°F (93°C) FCGR Test Results.
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Figure A.l10. R=0.6, 200°F (93°C) FCGR Test Results.,
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Figure A.l11. R=0,01, 300°F (149°C) FCGR Test Results.
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Figure A.12. R=0.1, 300°F (149°C) FCGR Test Results.
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Figure A.13, R=0.3, 300°F (149°C) FCGR Test Results. 1
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Figure A.14. R=0.5, 300°F (149°C) FCGR Test Results.
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Figure A.15. R=0.6, 300°F (149°C) FCGR Test Results.

37 ‘




(MPa eqrt (m)] i

e 189
{
9 Al 2824-T831
1074 +
3 e "
hone L
= !
B ]
- — 108
. u
¢ 1
=) [ §
h 3 o/s o
§ : 5 o
H a 10-5 Jt ' '
| $ C 4 |
g - 3 :
A 3 .
- ~ H
3 f »
¢ o S o
{
o L}
L i
-§ = -0 3.36“
- da/dne 3.87¢10 "AK v
6 - R @. 01 - 30 o
" Temp= 428.8 Deg. F
fregq.™ 20.2 Hs
- Tast envirornmant= |
lab atr i
Ortonbattor L-T) '
lﬂ-7 ) . N lr | { 1 4111 ‘
1 10 189

etrase intaneity range, dalta K, [(KSI eqrtlin.)]

Figure A.16. R=0.01, 400°F (204°C) FCGR Test Results. l
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Figure A.18. R=0,3, 400°F (204°C) FCGR Test Results.
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Figure A.19. R=0.5, 400°F (204°C) FCGR Test Results.
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Figure A.20. R=0.6, 400°F (204°C) FCGR Test Results.
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