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Chapter I

INTRODUCTION

1.1 INTRODUCTION

A free-edge in a composite is the intersection of an interface

plane (between any two layers) and the free surface of the composite,

while a contact-edge is the intersection of an interface plane (between

any two layers) and the contact surface of the composite. The unusually

large and possibly infinte stress at the free-edge and the contact-edge

is one of the factors responsible for delamination when the composite is

subjected to external loading. Since more composites are now used in

space vehicles, it is important to analyze the nature of the stress

singularities at the free-edge and the contact-edge so that special

attention can be paid to the design of mechanical fastenings and joints.

The research reported here is part of the effort of the "predictive

response capability development" program.

There have been many investigators who analyzed the stress near the

free-edge [1-91. An analytical solution which is valid for the whole

composite is practically impossible to obtain. Several approximate

numerical solutions are available which show a good agreement between

each other for points away from the free-edge. For points near the

free-edge, numerical solutions are not capable of predicting an infinite

stress when it exists, and this is where the discrepancies between
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various approximate solutions occur. Wang and Choi [8] used an

eigenfunction expansion technique to determine the stress in the

interface. However, the completeness of the eigenfunction expansion is

an open question [101. In fact, the existence of the logarithmic

singularity discussed in this paper implies that the eigenfunction

6
expansion in terms of r powers may not be complete. It is doubtful

that the addition of (In r) terms would make the eigenfunction expansion

complete. As pointed out in [10, 11], singular terms of (in r)2 and

(in r)3 etc., may also exist.

For composites whose layers are isotropic elastic materials, use of

the biharmonic function, or the Airy stress function, seems to be the

universal approach in the analysis of the stress singularities. (See

[10, 12, 13], for example). There appears to be no universal approach

:n analysing the stress singularities in anisotropic elastic materials.

Lekhnitskii [14] introduced two stress functions to analyze general

anisotropic materials. His approach was used by Wang and Choi [8] to

study the thermal stresses at the interface in a layered composite.

Green and Zerna [15] employed a complex function representation for the

general solution. Their approach was used by Bogy [16] and Kuo and Bogy

[17] in conjunction with a generalized Mellin transform to analyze

stress singularities in an anisotropic wedge. In this paper we use the

approach which was originated by Stroh [18] and further developed by

Barnett and others [19-21] for studying the surface waves in anisotropic

elastic materials.
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While the nature of the singularity, be it k r or k(ln r), is

independent of the stacking sequence of the layers in the composite and

the complete boundary conditions, the unknown constant k in the

singular solution is not. This suggests that one might use a special

finite element at the free-edge or at the contact-edge (with regular

finite elements elsewhere) so that the exact nature of the singularity

is prescribed in the special element while the unknown constants

associated with this special element are determined by solving the

complete boundary value problem. If k so obtained happens to be zero

6.
at a particular free-edge or contact-edge, there is no r singularity

at that point. The purpose of this paper is to provide the exact nature

of the singularity at the free-edge and at the contact-edge.

In the following sections of Chapter I, the notation for the basic

equations (strain-displacement, stress-strain and equilibrium equations)

is explained, and expressions for the elasticity constants and elastic

compliances of materials orthotropic in the (xl, x2, x3 ) coordinate

system are given.

In Chapter II a free-edge problem which undergoes a two-dimensional

plane strain deformation is analyzed. The assumed expressions for

stress and displacement when applied to the boundary and continuity

conditions result in a system of linear homogeneous equations. The

eigenvalues 6 of this system, both real and complex are listed, and the

procedure used to find the complex values of 6 is explained. The

* 6existence of a singularity of k r for negative 6 is discussed.
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In Chapters III and IV the free-edge problem is analyzed for three-

dimensional deformation. In Chapter III it is established that the

superposition of the uniform extension term r3 on the two-dimensional

problem of Chapter II is a first order approximation to a three-

dimensional deformation. In Chapter IV it is shown that the addition of

the uniform extension term to the equations of Chapter II results in a

system of non-homogeneous linear equations. Two methods are then used

to solve for the assumed homogeneous stress. These solutions are valid

for (8/-0) and (0/90) composites. A modified method is then introduced

to solve for the non-homogeneous stress of the other (0/8')

combinations. The existence of the.k(ln r) singularity is discussed,

and the logarithmic stress intensity factor k is listed for various

combinations of (8/0'). Values of a.. which depend on the angle 0 inii

polar coordinates are also listed.

In Chapter V a contact problem is analyzed. The altered boundary

conditions lead to a new system of linear homogeneous equations for the

two-dimensional plane strain problem. The roots 6, both real and

complex, are listed and the existence of the singularity k r6 is

discussed. The three-dimensional deformation problem is then analyzed,

and a particular solution which is uniform in stress is found and listed

for some (0/8') combinations.

1.2 BASIC EQUATIONS

In a fixed rectangular coordinate system x., (i = 1, 2, 3), let

ui aij and eij be the displacement, stress, and strain, respectively.
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The strain-displacement, stress-strain and equilibrium equations may be

written as

E.. = /ax + au /axi)/2 (1.1)

oij =cijkZkI (1.2)

or

C ij S ijk2aki (1.3)

2a../ax. = (1.4)

where repeated indices imply summation, and

Cijk Ckgij Cjikf (1.5)

ijke = Sk9ij = Sjikk (1.6)

are the elasticity constants and the elastic compliances, respectively.

Due to the symmetric property of Eqs. (1.5, 1.6), one may rewrite

Eqs. (1.2, 1.3, 1.5, 1.6) as

aq Cqtt, Cqt =ctq (1.7)

q SqtOt' qt Stq (1.8)

where

a ill 02 022' 03 033 J (1.9)
a4 O232 05 O13' 06 = 12

£i = ill' £2 C 22' E 3 = 33

4 6(1.10)
4 = 2t 23' 5 2s 2 13' E6 2c 2 12
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The transformation between c ijkZ and Cqt are as follows

22 2

ij or k= 33 , q or t 3 (1.11)
23 4

31 5

12 L6

Since the transformation between a.. and a. is not identical

to that between ij and ci, in order to represent the transformation

between the subscripts of s ijk and s qt, Eq. (1.11) must be modified

as follows. If either q or t is larger than 3, sqt = 2sijkZ. If

both q and t are larger than 3, sqt = 4sijkl; [22] contains further

discussion about these transformations.

1.3 ORTHOTROPIC MATERIALS

For orthotropic materials with the (xI, x2, x3) axes of

symmetry, s.. are zero except [25, 261

Sl = l/El, s22 l/E2, s33 = l/E3 )

s44 = 1/G23 ' s55 = /G3 1, s66 1/G12

s12 = 21 -v 21/E 2  (1.12)

s13 s31 = -31/E 3

s23 = 32 = . v3 2/E3
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where El. E2) E3, G23' G31' G12 , V21' V31' and v32 are

the engineering constants. The relation between s.. and c.. may beij ij

found in [22, 25, 26].

Consider a laminated composite which consists of a finite number of

anisotropic elastic layers perfectly bonded at the interface, Fig. 1.

Each layer of the composite lies in a plane parallel to the (xi, x3 )

plane. A cross section of the composite is shown in Fig. 2. This

angle-ply graphite/epoxy laminated composite is assumed to be

orthotropic with respect to the (Xl' x2, x3 ) coordinate system.

The x3 -axis, which is the direction of the fibers (as shown in Fig.

3), makes an angle 6 with the x 3-axis. It will be assumed that

materials 1 and 2 in Fig. 2 are made of the same orthotropic material,

but that the orientation of the fibers is different; the angles 8 and 6'

vary between layers. Therefore, c.. and ;.. are the same for both
ij ij

materials, while c.., s.. may not be. The relation between c..

and 8.. may be found in [22]. The relations between s.. and s..iJ iJ 1J

may be obtained from the relations between c.. and c.. by replacing

c.. by s.. with the following exceptions. If either i or j is

larger than 3, replace 2cij by sij. If both i and j are larger than

3, replace 4c.i by s ij. The same rules apply in replacing c ij by

s... Therefore we have
Ij



S~C 1  c2s2 (2 13  4^55

cs4 +ss + ' ) + s 4

Sl= c Sl+l 2

12 12 32

4 4 ^ 22 +
s13 (c + s )S13 + c +s 11  s 3 3  s55)

[2  ^ ^^2 ^ ^

S15 =cs [c(2s13 + s55- 2S) - s (2s31 + s5 5  2s33)]

s22 = 22

2 ̂  2^s 23 =c s 23 + s s 21

S csg +s
25 23 21s25 =2cs( 23 - s2 1) (1.13)

4^ + ~ 2 2 4-
s33 c s33+cs (2s13 + s55) + s Sll

2 2

s 35 cs[-c (2^s31 + ;s55 - 2s 33) + s 2 ^ 13 +^ 5 122. 23)+ (2s13 + s 5 5 - 2Sll)]

2- 2^
S44 c s44 + s s66

46 44 66

2 55 13 33)
s =55 =s(c s + 4c s 21 3

s66 c 66 + s 44

where, for simplicity, the notation c =cosO, s sinO has been used.

All other terms of s.. are zero.Ij



x 
9

x 3 3

0

.Fig. 1 Geometry of an angle-ply laminated composite



10

material1

cij , e

material 2

Fig. 2 A free-edge between two adjacent layers (6/8')

I I

Fig. 3 Principal directions of an angle-ply laminate

. ..L ' I i , . . . . . . .



Chapter II

TWO DIMENSIONAL FREE-EDGE SINGULARITY ANALYSIS

2.1 FORMULATION OF THE MATRIX K

In order to study the stress at a free-edge of an interface of a

laminated composite, the origin of the (xl, x2, x3) axes is placed

at one of the free-edge points, as shown in Fig. 2. The (xl, x3)

plane is along the interface, while the (x2, x3) plane is the free-

edge surface. In this chapter, we assume that u. and hence e.. and1 ii

ij are independent of x3. Let

u. = o.f(Z) (2.1)1 1

0 ij T Tjdf(Z)/dZ (2.2)

Z = x + px2  (2.3)

where p, u. and T.. are constants, and f(Z) is a function of Z which

will be specified later. To determine the eigenvalue p and the

eigenvectors u. and T.. in Eqs. (2.1, 2.2, 2.3), these equations
1 1j

are substituted into Eqs. (1.1, 1.2, 1.4). The resulting equations for

P, Tij are, [22]

DikUk =0 (2.4a)

=ij 
=  ijkl + PCijk2)Uk (2.4b)

11
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where

D + P(R + R + p2T (2.4c)

and

Qik cilkl' Rik =  ilk2' Tik Ci2k2 (2.4d)

For a non-trivial solution of ui, it follows from Eq. (2.4a) that the

determinant of Dik must vanish. This results in a sextic equation for

p. Since the eigenvalues p are all non-real [22, 14, 181, there are

three pairs of complex conjugates for p and three pairs of associated

eigenvectors u.. For isotropic materials, all p's have the value + i

To analyze the singular nature of the stresses at the origin, the

function f(Z) is chosen to be

f/z) = Z ( + 6 /( + 6) (2.5)

where 6 is a constant. Equations (2.1, 2.2) for displacement and stress

can then be written as

1+6 - 1+6u. =  Z {ALUZ + B U Z }/(I + 6) (2.6)
L Li,L L L iL L

6 - -6Li = Z (ALTij,LZL + BL ij,L 2L (2.7)

where an overbar denotes the complex conjugate; AL  and BL are

complex constants, and the subscript L identifies the three pairs of

eigenvalues. Unless otherwise indicated, Z in Eqs. (2.6, 2.7) and in

the sequel, stands for summation over L from L = 1 to 3. Using the

polar coordinates (r, 0), Fig. 2, Z may be rewritten as [i1, 121

Z = x1 + px 2 = rC (2.8)

where

= coso + psino (2.9)

Equations (2.6, 2.7) can then be written as
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1+6 +6 -1+6
u. = r Z (AU i,L B i,L + 6) (2.10)

aij = r6 E (ALtij, LL 6 + BL Tij,LL 6) (2.11)

Similar equations may be written for the material with elasticity

constants c..' by adding a prime to all quantities except r, 0 and 6.Ii

We see from Eq. (2.11) that if the real part of 6 is negative, 0.. is

singular at r = 0. By applying the stress free boundary conditions

Ol = 5 = 06 = 0 (2.12)

at 0 = ±n/2 and the interface continuity conditions at * = 0

[Ul] = [u2] = [u3] = 0 (2.13a)

[021 = [04] = [06] = 0 (2.13b)

where (f] = f - V represents the difference in f values across the

interface, one obtains 12 linear homogeneous equations for AL, BL,

AL', BL which can be written as

K (6)q = 0 (2.14)

where K is a complex valued square matrix whose elements depend on 6,

and q is a column matrix whose elements are AL$ BLl AL', BLIP

(L = 1, 2, 3). If 6, which can be real of complex, is a root of the

determinant

11Kc(6) = 0 (2.15)

then a nontrivial solution exists for q, and hence for the stress and

displacement.

When the root 6 of Eq. (2.15) is real we may choose

BL =AL = (aL + ia'L)/2 (2.16)LA
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where aL and aL are real. Equations (2.10) and (2.11) then have the

real expressions

_1+6 1+6 1+6u + r E (aLReu i 1+6) + L Im(U i,LCL+ ))/(l + 6) (2.17)u1 =  a~(i,LL LL,

6 ,LL) 6
aij =r ( XaLRe(t ijLCL 6 + aLIm(' ij,LLa ) (2.18)

where Re and Im stand for real and imaginary, respectively. Equation

(2.14) is then replaced by

K(6)a 0 (2.19)

where is now a real valued square matrix and @ is a real column matrix

whose elements are aL, aL aL' and aL" (L = 1, 2, 3). The real

root 6 is then obtained from

11(6)1 = 0 (2.20)

Before we present a numerical procedure for finding a complex root

from Eq. (2.15), we point out that 6 = 0 is always a root of Eq. (2.15)

and Eq. (2.20). It should also be pointed out that the formulation here

tacitly assumed that the eigenvalues pL of the elasticity constants,

Eq. (2.4a) are distinct. For degenerate cases in which PL has a

multiple root, Eqs. (2.6, 2.7) have different expressions. The correct

expressions for Eqs. (2.6, 2.7) when PL has a multiple root were given

in [11] when f(Z) assumes the special form of Eq. (2.5) and in [23] when

f(Z) is arbitrary.

2.2 PROCEDURE TO FIND THE ROOTS OF IK C11

To find the roots 6 of Eq. (2.15), which may be complex, the

following method was used. Let

6 = $ + in (2.21)
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= u + iv (2.22)

The complex plane 6 is divided into square regions of prescribed size.

The nodal points of a typical square region have the coordinates

Ely 1I (I = 1, 2, 3, 4), as shown in Fig. 4. The value of !Kc 1 at

each node of the square is

Re(~JK)J6 = + i(2.23)

ve= IM(IIKII)15 = + il) (2.24)

If the square contains the curve u = 0, then either the value at one of

the nodes will be zero (in this case the curve intersects the node), or

the sign of u will change between at least one pair of adjacent nodes,

Fig 5. A possible exception to this is the case shown in Fig 6, which

may be overcome by initially selecting a small enough square. To test

if the line u = 0 is present, the computer program checks the nodal

values u for zero, and also checks for a change of sign. If either

of these conditions is satisfied, the program repeats the same procedure

to determine if the v = 0 curve exists in the square. When the program

determines that both curves are contained in the square, then the square

is divided into four smaller squares, each of which is analyzed in the

same way, and again subdivided if necessary, Fig. 5. A square which is

found to contain only one of the curves, or neither of the curves is

discarded. The procedure continues until either no squares remain, or

until the dimension of the square is smaller than a specified error

parameter. If this parameter is small enough, then the fact that the

two curves exist in the square, would suggest that they intersect, and

that a root exists inside that square. A flow chart of the subroutine

can be found in Fig. 7.
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It should be pointed out that for a very small square which

contains the root 6, IlK 11 can be quite large at the four nodes of the

square. For example, Table 1 lists the values of 6 and IIKcI( found by

-9
the above method with the dimension of the square being reduced to 10

5The values of IIK 11 at the four nodes are in the order of 10

2.3 THE ROOTS 6

Two different laminated composites are used for the numerical

calculations. Each layer of a composite is assumed to be made of the

same orthotropic material. The orientation of the axes of symmetry

A A
(xI, x2, x3 ), however, differs from layer to layer. The following

engineering constants for the layers in the two composites are taken

from [6, 24], respectively.

Composite W

(Typical high modulus graphite-epoxy, [6])

E 1 = E2 = 2.1 x 106 psi

E3 = 20 x 106 psi

(2.25)

G12 = G23 
G 31 = .85 

x 106 psi

V21 = "31 = 32 = 21
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Composite T

(T300/5208 graphite epoxy, [24])

E l = E2 = 1.54 x 106 psi

E3 = 22 x 106 psi

(2.26)

G = G G = .81 x 106 psi
12 23 31

V21 = v3 1 = v3 2 =28

Using Eq. (2.25) or Eq. (2.26), s.. is obtained from Eq. (1.12),

A

while c.. is computed from s.. using the relations derived in [25,

26]. sij, sij , cij and cij associated with various 8 and 0'

are then determined, from Eq. (1.13) and from equations similar to

(1.13), [22]. Equations (2.4) provide the eigenvalues PL' (L = 1, 2,

3) and the associated eigenvectors ui,L and T iL For Composite W,

all three eigenvalues pL are purely imaginary for any angle-ply 8,

1221, while for Composite T two of the three eigenvalues are complex for

161 less than 71.53770. By substituting Eqs. (2.10, 2.11) into the

stress free boundary conditions and the interface continuity conditions

Eqs. (2.12, 2.13), one obtains a system of 12 linear homogeneous

equations for the constants AL5 BL5 AL '' B L, Eq. (2.14). The

roots of the determinant of this system are found by the method

described in the previous section. An area bounded by (-1 < & < 3, 0 <

in < 3) was checked. The roots found for various (8/8') combinations are

listed in Tables 4 and 5. Double precision was used in the calculations

but we have rounded the roots in Tables 4 and 5 to four digits. Both
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complex and real roots were found. Since complex conjugates of these

values are also roots of IIK c , it was not necessary to search the i <

0 area.

Most interesting of these roots are the positive integer values of

6, which seem to consistently appear for all (8/0') combinations for

both composites. There appears to be a negative real root for 6, but

there are no other complex roots with a negative real part. Since the

negative 6 is the one contributing to the singular stress, we list in

Tables 2 and 3 the negative 6 for various combinations of (8/0') angles.

Also, we present in Figs. 8 and 9 the negative 6 for all possible

combinations of (8/8') angles. Curves of constant 6 are given only in

one quarter of the (8, 8') plane since the curves in the remaining three

quarters are a repetition of the curves shown. The negative 6 values

also appear to be simple roots of Eq. (2.20), and hence a of Eq. (2.19)

is unique up to a multiplicative constant, say k . By substituting a

of (2.19) into (2.18), we may write Eq. (2.18) as

a.. kr o.. (2.27)1j 13

where a.. depends on 0. It should be pointed out that if 6 < 0 is

6
is a double root of Eq. (2.15) one would have, besides the r singularity,

a singularity of the form r6 (In r), [11].

The analysis presented here provides the order of singularity 6

and a.. k , which may be identified with the stress intensity factor

if elements of a.. are normalized, can be determined only by solving13

the global boundary value problem. For instanceL one may use a finite

element scheme in which a special element, whose stress is given by Eq.
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(2.27), is introduced at the free-edge. If k associated with a free-

edge point happens to be zero after solving the global boundary value

problem, there is no singularity at that particular free-edge point.

Therefore, a singularity at the free-edge point in plane strain

deformation is not certain until the lobal problem is solved.

TABLE I

Values at the Nodes of a Square for Composite W, (60/-60)

Node tZ + iTn, = 6 u + ive = %cl i

1 2.94158674804 + 1.775502774707 i 204801.982842 + 47335.881916 i

2 2.94158674902 + 1.775502774707 i -64582.9527519 - 285394.704755 i

3 2.94158674902 + 1.775502774804 i 268147.7157535 - 554779.491707 i

4 2.94158674804 + 1.775502774804 i 537532.4431132 - 222048.858434 i
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TABLE 2

Negative Real Roots 6 for r6 Terms at the Free-Edge in Composite W

6
B

81=0 8' = 9o 8

0 °  --- 3.3388 x 10-2

150 -1.3528 x 10 - 4 -3.2814 x 10-2 -6.4322 x 10 "

300 -2.6286 x 10-3  -2.8682 x 10-2  -1.1658 x 10-2

450 -9.6461 x 10-3  -2.0575 x 10-2  -2.5575 x 10-2

600 -1.9866 x 10-2  -1.0519 x 10 2  -2.3346 x 10-2

750 -2.9388 x 10- 2 -2.6785 x 10- 3  -8.9444 x 10- 3

90 -3.3388 x i0-2
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TABLE 3

Negative Real Roots 6 for r6 Terms at the Free-Edge in Composite T

6
8

o' = 0 81 = 90 6' = -0

00°  ------ 5.4148 x 10-2

150 -5.5587 x 10 -5.2192 x 10-2 -2.5363 x 10-

-3 -22
300 -5.8892 x 10 -4.4295 x 10 -2.2505 x 102

450 -1.8423 x 102 -3.0453 x 102 -3.8593 x 102

600 -3.4756 x 10-2  -1.4602 x 10-2  -3.1271 x 10-2

750 -4.8646 x 10 2  -3.4296 x 10 3  -1.1217 x 10- 2

52goo -5.4148 x 10- - --- - -
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4' n14  F3 ' T3
4 3

1 2

I' E2 2' "2

Fig. 4 Typical square to be checked for rots.

u 0 v=0

u v uV
43

/1 I\

1 I 2

Fig. 5 Change of sign between adjacent nodes of a square.

+ + + +

4 + + +

Fig. 6 A square for which u 0 curve will not be detected.
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Chapter III

THREE-DIMENSIONAL DEFORMATION

3.1 INTRODUCTION

The analyses presented in Chapter II assumed that the displacement

ui, and hence the strain eij and the stress aij, are functions of

x I and x2 only. In other words, we assumed a two-dimensional plane

strain deformation. If the deformation is three-dimensional, u. would1

depend on x3 as well. Before we derive a first order approximation

for three-dimensional deformations, we point out that the analyses

presented in Chapter II remain valid for certain classes of

displacements which depend on x3 .

Firstly, we may superimpose the displacement given in Eq. (2.1) by

u. U. + w. .x. (3.1)1 1 13 3

where U. and w.. are constants and w.. is an antisymmetric matrix.
1 13 13

The displacement given by Eq. (3.1) represents a rigid body translation

and rotation, and hence contributes nothing to the strain and stress.

Thus, even though x3 is present in Eq. (3.1), the analyses in Chapter

II remain valid when Eq. (3.1) is superimposed on Eq. (2.1).

Secondly, we will show that the homogeneous strain produced by the

displacement field

28
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Ul = lX3 

u 2 2x3 (3.2)

u = 0

where c1 and c2 are constants can also be produced by the

formulation in Chapter II by letting 6 = 0. Indeed, when we put 6 = 0

in Eq. (2.6), u. is linear in xI and x2 , and hence ci are

constants. To insure that u. assume real values with 6 = 0, we let1

BL = AL, (L = 1, 2, 3). Since AL are complex, we have six real

arbitrary constants. By introducing another six real arbitrary

constants ai, bi, ci, (i = 1, 2), we may rewrite Eq. (2.6) for

6 = 0 as

u I  alx I + a2x 2

u 2 =blxl + b2x 2I (3.3)

u c x +c x
3 1 1 2x2

If ai, bi, ci are all non-zero, Eq. (3.3) provides all six strain

components except E 33 Now, consider the following special case of

Eq. (3.3):

uI = U2 = 0, U3 = 1 X1 + c2X2 (3.4)

It is not difficult to show that the strain obtained from Eq. (3.2) and

Eq. (3.4) is identical. Thus the deformation, Eq. (3.2), which depends

on x3 is a special case of the deformations considered in Chapter II.
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3.2 FIRST ORDER EXPANSION

Let the displacement u. near the origin in Fig. 2 be a function
1

of Xl, x2 and x3. For points near the x3 = 0 plane, we expand

u. in the following series
1

U. = u1(0)l + u ' (1)x + u' 3 + . .3 (3.5)

where u(k) , (k = 0, 1, 2, .) are functions of x and x2

only. The strain E.. is, by Eq. (1.1)

= (0) + u. (0))/2 + (u (I) + u (1) )X/2 +

+ (ui(1)6 3j + u(1) 63i)/ 2 + (Ui (2)63j + u (2)a3i)x3/2

+ • .(3.6)

where 6.. is the Kronecker delta. We assume that the displacementii

u. is continuous and bounded. Then u. (k ) are continuous and1 1

bounded. In Eq. (3.6), the only terms which may contribute to a

singularity in E.. must therefore come from the derivatives of

(k) (k) (k)u. k , i.e. from the terms u. 9 and u. f) We also

assume that the order of singularity 6 at x, x2 = 0, if it exists,

is continuous in x3. This means that the order of singularity of the

term uj(k) (k = 1, 2 . . .) cannot be stronger than the order of

(0)
the singularity of u.. ( Therefore, to the first order of

approximation as (x, x2 9 x3) (0, 0, 0) the strains are
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.= uj (
0 ) + u'. (0) )/2 + (ui()&3 j + u'(i)6 3 i)/2 (3.7)

The terms in the first parentheses provide singular (infinite) strains

while the terms in the second parantheses yield a finite value because

u. ) is continuous and bounded. Leti

(1)
u. c. + . (3.8)1 1

where ci, (i = 1, 2, 3) are constants and the dots represent terms

which vanish when (xl, x2 ) - (0, 0). Hence, to the first order of

approximation, we may write Eqs. (3.5) as

u1i = u'(0) 1 + ci3 "+(3.9)

The u.(0 ) term is the two-dimensional deformation and is identical
1

to the right band side of Eq. (2.1) while the cix 3 term is the first

order approximation. However, as we discussed in Eq. (3.2), the

deformation for u I = c1x3, u2 = c2x3 can be included in the

two-dimensional deformations. We may therefore omit c1 and c2

without loss of generality, and write Eq. (3.9) as

u. = u f(z) + C36 0 x 3 (3.10)

where e3 = c3 is the strain in the x3 - direction.

Thus, to the first order of approximation, the stress singularity

at a wedge corner in three-dimensional deformations can be analyzed by

considering the two-dimensional plane strain problem superimposed by a

uniform extension in the x 3-direction. In the next chapter,31
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Chapter IV, we will consider stress singularities at a free-edge point.

In Chapter V the singularities at a contact-edge point will be

discussed.

The seemingly innocent appearance of the uniform extension term, as

we will see later, makes the stress at the free-edge point inherently

singular for certain composites. Moreover, the singularity is

logarithmic.

I



Chapter IV

THREE-DIMENSIONAL FREE-EDGE SINGULARITY ANALYSIS

The problem studied here is the same as shown in Fig. 2 except that

now uniform extension E3 is added; thus making this problem a first

order approximation in three dimensions. We will first assume that a

homogeneous (uniform) stress solution exists for a specified E3" Two

methods will be used to analyze this problem. They give the same

solution for the cases of cross-ply and (8/-0) composites. For

composites which are neither cross-ply nor (8/-0), a uniform stress

solution due to the extension £3 does not exist. For these composites,

we find a solution in which (ln r) terms appear in the expressions for

stress and displacement. These will, of course, lead to singularities

6
at r = 0. Singularities of the type r (-1 < Re(6) < 0) found in

the analysis of the two dimensional plane strain problem, Chapter II,

may still exist, and should be superimposed on the solution obtained here.

4.1 HOMOGENEOUS STRESS SOLUTION: METHOD 1

In this section we assume that a homogeneous stress solution exists

due to a uniform extension in the x3 -direction. Hence the stress aij and

the strain E., are independent of x1 and x2 . By using the notations

discussed in Section 1.2 along with Eq. (1.8, 1.9, 1.10) one can obtain

For an exception see page 45

33
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the relations between the strain r.. and the stress a.. in the

following form

C3 s 11a 1+S 1 a 2+s 13a 3+ s 14a 4+S1 a 5+s 16a 6(4.2)

E3 S31 a1 +S32a2 +S33 a3 +S34a4 +S35 a5 +S36 a6(42

E5 S51a1 +S52 a2 +S53a3 +S54a4 +S55 a5 +S56 a6(43

where the expressions for £ 2) E4 and £ 6 are not needed in the

following analysis, and hence, are omitted here. Since the material is

symmetric with respect to the (xi, x 3) plane, [25, 26]

~14 ~16 ~24 ~26 ~34 ~36 ~54 ~56 (4)

By applying the above material symmetry properties, along with the

stress free boundary conditions at 0 = ±nr/2, Eq. (2.12), one obtains

C I s12 a2 + S 13 a3 (4.5)

E£3 = a + 32 a2 +s33 a3 (4.6)

E~ 5 52 a2 + S53 a3 (4.7)

Solving for a. from Eq. (4.6), and eliminating a03 in Eqs. (4.5,

4.7) we have

a03 = £ 315s33 - (S532 /s33 )a2 (4.8)

£i= £3S 13 /S33 + (S 12 - S 1 3 s 3 2 /s 3 3 )a2  (4.9)

9 5= £ 3 S 53 /S33 + (S 52 - s 5 3 s32 /S33 )a2  (4.10)

By setting

R= S13 /S33

R12 s12 - 513 S3 2 /s3 3
(4.11)

R5  S5 S3

R52 s52 - S 5 3 s3 2 /S 3 3
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Eq. (4.9) and Eq. (4.10) can be rewriten as

E1 1 3 + R12a2 (4.12)

C 5 R 5C3 + R52 2 (4.13)

The interface continuity conditions of Eq. (2.13a) at 0 = 0 are

equivalent to

[ [ = [C31 = feS] = 0 (4.14)

Using Eqs. (2.13b) and (4.14) Eqs. (4.12, 4.13) become, respectively,

[R1 2 ]o 2 + [RI] 3 = 0 (4.15)

[R52]02 + [R5JE3 = 0 (4.16)

For cross-ply composites, i.e. (0/90) composites, R5 = R5 = R 52

R 52' = 0 because we have assumed that material 1 is identical to material 2.

Hence Eq. (4.16) is automatically satisfied and Eq. (4.15) yields

02 = 3[R1 ]/[R 1 21 (4.17)

For (8/-8) composites, R12 = 12 and R1 =1  . Equation (4.15)

is automatically satisfied and Eq. (4.16) provides 02:

a2 = -r 3[R5]/[R 5 2] (4.18)

For other (8/8') combinations, Eqs. (4.15) and (4.16) contradict each

other. This indicates that the assumed homogeneous stress solution

due to a prescribed c3 extension does not exist for other (e/6') composites.

When a homogeneous solution exists, 02 is obtained from Eq. (4.17)

or (4.18), 03 is from Eq. (4.8), while 04 is arbitrary. If we

denote by 02 , P3 the values of 02 and 03 obtained from

For an exception see page 45
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Eqs. (4.17 or 4.18) and (4.8) we may write the homogeneous solution as

0 r0 0o 0
2= 3  0 2(P) + 0 1 (4.19)

0 3(P) 0

where a1 is an arbitrary constant. A similar equation applies to ij.

4.2 HOMOGENEOUS STRESS SOLUTION: METHOD 2

The preceeding approach fails to give a solution when Eqs. (4.15)

and (4.16) are incompatible. The following method, which is a modified

version of the method in Chapter II, provides a means to solve the cases

for which a homogeneous stress solution does not exist. However, we

will first apply the method to find the homogeneous stress solution when

it exists, and see if this method produces the same solution as in the

previous section.

To take into account the uniform extension in the x3 direction,

Eq. (2.1) is replaced by Eq. (3.10) so that

u. = uif(Z) + 6 i3£3x3 (4.20)

0.. = ij df(Z)/dZ + cij3 3E3  (4.21)

By Eqs. (1.1, 1.2) one obtains expressions for p, tij' Uk which are

the same as those for the two dimensiunal plane strain problem,

Eq. (2.4). Choosing f(Z) to have the form defined in Eq. (2.5), Eqs.

(4.20, 4.21) may be rewritten as

1+6 5- 1+6.
u I (ALUiLZL + BL iLZL /(i + 6) + r36 i 3 X3  (4.22)

6 - 6a E (AL Zij,LZL + B L T ij,L£ +LiijL LiL ij33 3 (4.23)
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where AL and BL are complex constants. Equations (4.22, 4.23)

differ from Eqs. (2.6, 2.7) in the last term. Since Eqs. (2.6, 2.7) can

be written in the form of Eqs. (2.17, 2.18) when 6 is real, we rewrite

Eqs. (4.22, 4.23) for real 6 as

1+61+1+
u1 r E (aLRe(Ui,L L + aLIM(Ui,L4L )}/(l + 6)

+ 6i 3 x3  (4.24)

6 6  6

a.. r E (aLRe(T + 6 I
Ij L ij)L L L i,

+ C..3C (4.25)
iJ33 3

where aL and a are real coefficients. By applying the stress free
L L

boundary conditions specified in Eq. (2.12) at = ±n/2, and the

interface continuity condition at 0 = 0, Eq. (2.13), one obtains 12

linear equations for a a L which can be written as

r6 K(6)ja = 3 (4.26)

where b is a column matrix whose elements consist of cij33 and

C' ij33. In the special case when E3 = 0, Eq. (4.26) reduces to

Eq. (2.19).

Since the right hand side of Eq. (4.26) is independent of r,

Eq. (4.26) holds only for 6 = 0:

K(0)a = e (4.27)

Assuming that (4.27) has a solution for a whose elements are aL) aL)

aLr, aLF' and substitute the results into Eqs. (4.24, 4.25) with 6 =

0 we obtain

u= I (aLRe(Ui,LZL) + aLIm(ui,LZL)) + e36i3x3  (4.28)

a I (aLRe( , + aLijL) + ci.3 3 £3  (4.29)aijL jL L i, j3
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where Eq. (2.8) has been used in obtaining Eq. (4.28). Equation (4.29)

shows that a.. is homogeneous.ii

As we pointed out in Section 2.1, the determinant of K(6) vanishes

for 6 = 0. Hence, a solution to Eq. (4.27) exists if and only if, [27]

zTb = 0 (4.30)

where IT is a left eigenvector of K(0):

TK(0) (4.31)

It turns out that there are two left eigenvectors of K(0).

Equation (4.30) then, must be satisfied for both Z. For the (0/90) and

(8/-B) composites, numerical solutions indicated that Eq. (4.30) holds,

and Eq. (4.27) has a particular solution E3s (p ) and two arbitrary

(1) (2)
solutions a and a (2  Hence

= a(P) + 2a.( )  + a2a(2) (4.32)

where al and a2 are arbitrary constants. Substitution of Eq. (4.32)

into Eqs. (4.28, 4.29) yields

u = C 3 ui(P) i (1) + 2ui (2) (4.33)

aij = 3aij + a ij(1) (4.34)

where

u, E a Re(u LZL) + L Im(u z + 6i3x3 (4.35a)

i (n) = ( aL(n)'Re(UiLZL) + aL(n) Im(ui,LZL) }, (n = 1, 2) (4.35b)

(P) I {aL (P)Re(T ) + (P)mij,L ) + (4.35c)
ijL ij,L L i+L (43

S ( (1) 1 (1)
oij =£aL1e(ij,L) aL(1Im( ijL) } 43d



The reason a.. (2) is absent in Eq. (4.34) is because-we have chosen
13]

a (I) and a (2 ) such that u. (2 ) is a rigid body rotation, and

hence o..(2) associated with u.(2) is zero.ii

Numerical solutions for the composites considered here show that

Eq. (4.34) is identical to Eq. (4.19) for (0/90) and (0/-0) composites.

When the composite is neither (0/90) nor (8/-6) Eq. (4.30) does not

hold, and there is no solution for a from Eq. (4.27). In the next

section we will treat this case by modifying the approach of this section.

4.3 LOGARITHMIC SINGULARITY

If no solution exists for Eq. (4.27) the assumption of uniform

stress due to a uniform extension c3 is appparently invalid. In such

a case, instead of using Eqs. (4.22, 4.23) we use the following solution:

a 1~+6 -- L+

= I [ALui,LZL + BLUiLZL ]/(l + 6)) + E36i3x3  (4.36)

a AT Z 6 -- B 6 (.7

ij )S L ij,L L L ij,L L ij33'3

where AL, BL are now functions of 6. It can be shown that Eqs.

(4.36, 4.37) satisfy Eqs. (1.1, 1.2, 1.4) with ui,L  and Tij,L given

by Eq. (2.4). Before we substitute Eqs. (4.36, 4.37) into the boundary

and interface conditions, we apply the equivalence between Eqs. (4.22,

4.23) and Eqs. (4.24, 4.25) to Eqs. (4.36, 4.37). The result is

a3 1+6 1a~ LL+6 L1L+6
u. {r I [ Re(ui ) + aIm(ui ,  )]/(1 + 6))

+ E36i3x 3  (4.38)

For an exception see page 45
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a.. r {a I [aLRe(tic 4) + Lim(t ijL ) - + 6(4.39)iL jLL L i,L L ) ]  ij33'3 (.9

where aL, aL are now functions of 6. Performing the differentiation,

we obtain

u 1r+6(I 1ar~i L + 6 )  a~ 1 L+6)
u r (+In r + 3196) 1 [R(u L +L + 4 (1 + 6)

+ E36 13x3  (4,40)

6 ,L L L6
a r (in r + 3/a6) I [aLRe(ti + I a

+ c ij33 3 (4.41)

Equations (4.40, 4.41) differ from Eqs. (4.24, 4.25) by a factor of

(in r + a/a6). If we apply Eqs. (4.40) and (4.41) to the free surface

conditions, Eq. (2.12) and the interface continuity conditions, Eq.

(2.13), we obtain 12 equations which can be written as (cf. Eq. (4.26))

6
r (in r + 3/36) (6) a(6) =3b (4.42)

where a, whose components are aL, aL) aL'' aL'' is now a function

of 6. This equation holds for arbitrary r if we let 6 = 0, and

K(0)a(O) = 9(4.43)

0 = 3b (4.44)

For simplicity, we write Eq. (4.43, 4.44) as

Ka = 0 (4.45)

(d /dS)a + K(da/d6) - e3P (4.46)

where it is understood that all quantities on the left hand side of

Eqs. (4.45, 4.46) are evaluated at 6 = 0. Equations (4.45, 4.46)

consist of 24 equations for g and da/d6. If a solution exists,

substitution of g and d#/d6 back into Eq. (4.41) with 6 = 0 provides the

desired solution.
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Before we discuss the solution of Eqs. (4.45, 4.46) in-the next

section, we write Eqs. (4.40) and (4.41) in full with 6 = 0:

ui = (in r)l [aLRe(u. Z ) + Z Im(ui ZL)J
L i,L L L i,L L

+ Z [aLRe(ui,LZL(InCL - 1)) + aLIm(Ui,LZL(lnCL M ))

+ (daL/d6)Re(ui,LZL) + (d3L/d6)Im(u, LZL)]+ 636i3x3  (4.47)

aij (In r) Z [aLRe(ij L) + aLIm(Tij,L)]

+ Z [aLRe( l ,Lln L) + aLIm( j,Lln4L)

+ (daL/d6)Re( ij,L) + (daL/d6 )Im(T ij,L) ] + c ij333 (4.48)

We see that a.. has a logarithmic singularity. Again, Eq. (2.8) has

been used in obtaining Eq. (4.47).

4.4 SOLUTION FOR STRESS AND DISPLACEMENT

The system of Equations (4.45, 4.46) has a unique solution for a

if, (see [10])

d NI jK/d6N A 0, N = n - m, (4.49)

where n and m are, respectively, the order and rank of K. For the

composites considered here, N = 2. However, it is rather difficult to

prove or disprove Eq. (4.49) analytically or numerically in view of the

fact that K is a 12 x 12 matrix. Instead, we regard Eqs. (4.45, 4.46)

as a system of 24 equations for a and da/d6, and solve the system

numerically. We find numerically that a is unique while da/d6 has a

particular solution and two arbitrary solutions.

Noting that N 2, one can see that K has two right eigenvectors

a( 1 ) and a(2 ) such that

Ka (n) = 0, (n = 1, 2) (4.50)
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If a is the unique solution of both Eqs. (4.45) and (4.46), it mu-t also

be a solution of Eq. (4.45), and hence a is proportional to a right

eigenvector. Without loss of generality, let a (I ) be the eigenvector

to which a is proportional, i.e.,

a = ke a (4.51)
-v 3-

where k is uniquely determined if a(1 ) is properly normalized. The

fact that da/d6 has two arbitrary solutions is obvious from Eq. (4.46)

because the coefficient of da/d6 is K which is singular of order 2. If

C3(da/ds)(P) is a particular solution of da/d6, we have

da/d6 = e3(da/d6)(P) + ala (I) + a2a(2) (4.52)

where al, a2 are arbitrary constants. With Eqs. (4.51, 4.52), Eqs.

(4.47, 4.48) can be rewritten as

u. = kc3 [(In r)u.
(1 ) + u' (0)] + 3ui

(p ) + a u (1) + a 2u(2) (4.53)

a.ir). + a. + (p) + (i) (4.54)
aij = kE3[(On r)1ij ij ] + C3 aij ( 1ij(

(1) (2) (1)where u' , u( , and a.. are identical to the ones defined

in Eqs. (4.35b, 4.35d), while

u'(P) = U (daL/d6) PRe(ui,LZL + da L/d6)(P)Im(Ui,LZL))

+ xi3x3  (4.55a)

u E (aL ReUi,LZL(InL L - 1)]

+ a L i,LZL( L 1) 1 (4.55b)

ai(P) I (da /d6(P)Re(i + (daL/d6)(P)Im(riL))
+ij L / 5ij,L) +

+ o iJ33 (4.55c)
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ai ( ) (a L Re( ij,LIn CL) + L (lIm(T ij,Lln 4L) (4.55d)

Again the reason a.. (2) is missing in Eq. (4.54) is due to the factii

that u. (2 ) is a rigid body rotation.1

Although the solution obtained here is for composites which are

neither (0/90) nor (0/-0), application of the present solution to (0/90)

or (9/-B) composites yields k = 0. Hence a = 0 by Eq. (4.51), and the

solution for da/d6 from Eq. (4.46) is identical to the solution for a in

(p)Eq. (4.27). It follows that (da/d6) of Eq. (4.52) is identical to

(p) (p) (p)a of Eq. (4.32), and that u. , a.. in Eqs. (4.55a, 4.55c)

and Eqs. (4.35a, 4.35c) are also identical. Thus, the solution obtained

in Eqs. (4.53, 4.54) reduces to that given in Eqs. (4.33, 4.34) when the

composite is (0/90) or (0/-6).

For composites which are neither (0/90) nor (8/-B), k 0. We

see from Eq. (4.54) that aij has a logarithmic singularity unless 3

= 0. Therefore, unless e3 happens to be zero in a three-dimensional

deformation, the stress is inherently singular for composites which are

neither (0/90) nor (B/-B). Moreover, the singularity is logarithmic.

Since the larger the value of k the stronger the logarithmic

singularity, k may be regarded as the "logarithmic stress intensity

* 6
factor". It should be pointed out that the singularity of k r , (6

< 0), as analyzed in Chapter II, may still exist for all composites.

However, the determination of the intensity factor k requires a

global solution while k in Eq. (4.54) does not.

For an exception see page 45
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If we replace the arbitrary constant ai by another arbitrary.

constant I defined by

a, = -ke3 ln 1  (4.56)

Eq. (4.54) can be rewritten as

a. '3 (k ln(r/) I () + ..(0)} (4.57)cij = 3 k  1nr ) cj1

where

o..(o) = ko.. () + a. (4.58)1J ii Uj

Thus 01 must have the same physical dimension as r. We see from Eqs.

(4.35c, 4.35d) that a.. (p ) and a..(I) are constants. For both

(1)
composites considered here, a.. has the form1]

a ij( 0 0 1 (4.59)

0 1 0

(0)On the other hand, we see from Eqs. (2.9, 4.55d) that a.. depends onIj

0, (Fig. 3). Hence a (0) and 6 ' (0) depend on 0. In Tables 6-9
ii ii

we list the logarithmic stress intensity factor k and .. (0) and ;..'(0)

on the interface (0 = 0), and on the free-edge surface (0 = ±900).

Notice that = = = 0 at 0 = 900 Similarly,

all ' ~12'= o13 =0 at 0 = -900 . Hence these components are not listed

in the tables. Also, since 022 = 022, U 2 1 = o21, 023 = 023 at

0 0, only a22(0), a21(0), (0) are listed. All 0.. in Tables 6-10

have the unit of 106 psi.
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For (0/90) or (8/-6) composites, k = 0, and Eq. (4.54) may be

rewritten as

0 ij a I a ij + C a (4.60)

where

0.. (p) (4.61)
1J 13

is now independent of 0. Referring to Eq. (4.19), we see that the only

non-zero components for aij are a22 and a 33 The numerical

calculations of a.. for (0/90) composites are included in Tables 6-9

ii

while that for (6/-6) composites are given in Table 10

We see from Table 6 that 22 for the (0/15) composite in

Table 6 is many times larger than 33 and 33 . In other words, the

tensile stress at the interface is many times larger than the applied

axial extensional stress. Notice however that C.. is not the
Ij

total stress. The total stress consists of a.. and a..(i) as well
Ij ij

as the k*r 6 and k(ln r) terms.

In Figs. 10 and 11 we present the logarithmic stress intensity

factor k for all possible combinations of (0/8'). The contour lines for

constant k values are given only in one quarter of the (8, 8') plane

since the contour lines in the remaining plane are a repetition of the

ones shown in the figures. As we pointed out earlier in the analysis,

Figs. 10 and 11 indicate that k = 0 occurs for (0/90) and (8/-B)

composites. Of course, k is also zero for (8/8) composites in which the

two materials are the same across the interface. However, we find an
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additional contour line for k = 0 in Figs. 10 and 11 which lies slightly

above the line 0' = 0. This is unexpected and was not obvious from the

analysis presented earlier.

In conclusion, it should be pointed out that the singular stress of

the type k r6 obtained in (2.27) should be added to (4.54) to obtain

the singularities at the free edge. Using (4.58), we may write the

stress singularity near the free edge in the form

oij k r6 ij + [k in r) + a 1 ] i (1) + E3 ij (4.62)

where 6 < 0, k , k, aI and a ij are constants while o.. and

o depend on 0. The analysis presented here provides every term

on the right of (4.62) except k and a 1 which have to be determined

by solving the complete boundary value problem.

Finally, it should also be pointed out that even though the layers

are assumed to be of the same orthotropic material for the numerical

calculations in this report, the theory presented here applies to any

anisotropic layered composite.
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TABLE 6

0.. of Eq. (4.58) for Composite W, (0/8')ii

8' 150 300 450 600 750 90

k 0.0022 0.0033 0.0042 0.0040 0.0025 f 0

ol1(O) 0.0221 0.0145 0.0102 0.0056 0.0016 0

11' (0) -0.0222 -0.0149 -0.0112 -0.0067 -0.0021 0

022(90) 190.43 29.599 8.0106 1.2162 -1.3911 -2.1000,

022(0) 190.45 29.613 8.0208 1.2218 -1.3895 -2.1000

022 (-90) 190.47 29.628 8.0310 1.2274 -1.3880 -2.1000i

033(90) 59.990 26.216 21.682 20.256 19.708 19.5591

033(0) 60.000 26.222 21.687 20.258 19.708 19.559

033(0) 35.132 7.1872 3.4312 2.2440 1.7848 1.6590!

033(-90) 35.137 7.1903 3.4340 2.2461 1.7856 1.65901
3(

23(90) 0 0 0 0 0 0

23(o •

023 (-90) 0.0003 0.0006 0.0007 0.0004 0 0

13(0) -0.0035 -0.0052 -0.0065 -0.0063 -0.0040 I 0

013 (0) 0.0034 0.0048 0.0059 0.0059 0.0039 0

012(0) 0.0140 0.0092 0.0065 0.0035 0.0010

_ _ _ _ _ _
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TABLE 7

0.. of Eq. (4.58) for Composite W, (90/8')ii

e' 0o  150 300 450 600 750

k 0 0.6874 0.5030 0.2954 0.1297 0.0239

011(0) 0 -0.3032 -1.0048 -1.3511 1 -1.1657 -0.4910

011(0) 0 0.2058 0.7794 1.1633 1.0875 0.4823

022(90) -2.1000 -4.5417 -4.9455 -4.2661 -3.3602 -2.4156

022(0) -2.1000 -4.6419 -5.2778 -4.7129 -3.7456 -2.5788

022 (-90) -2.1000 -4.7473 -5.6151 -5.1610 -4.1303 -2.7409

033(90) 1.6590 1.1463 1.0615 1.2041 1.3944 1.5925

033(0) 1.6590 1.1185 0.9695 1.0805 1.2877 1.5476

033'(0) 19.559 11.311 5.5014 2.9133 1.8095 1.5966

033 (-90) 19.559 7.8189 2.9701 1.7004 1.3932 1.5244

a23(90) 0 0 0 0 0

023(0) 0 0 0 0 0 0

023 (-90) 0 0.2870 0.3950 0.2754 0.1242 0.0222

013(0) 0 -1.0797 -0.7902 -0.4641 -0.2038 -0.3762

o13'(0) 0 1.6460 1.8195 1.3607 0.6910 0.1382

12(0) 0 -0.0942 -0.3122 -0.4197 -0.3621 -0.1525

I.L
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TABLE 8

0.. of Eq. (4.58) for Composite T, (0/8')i3

o' 150 300 450 600 750 90

k 0.0349 0.0610 0.0729 1 0.0658 0.0394 0

0ii(0) 0.2203 0.1919 0.1335 I 0.0695 0.0192 0

(0) -0.2218 -0.1990 -0.1467 -0.0817 -0.0238 0

022(90) 62.232 13.729 3.3929 0.0314 -1.2148 -1.5400

022(0) 67.452 13.921 3.5264 0.1009 -1.1956 -1.5400

a22 (-90) 67.672 14.115 3.6623 0.1729 -1.1753 -1.5400

033(90) 40.825 25.844 22.950 22.009 21.660 21.569

033(0) 40.948 25.952 23.025 22.048 21.671 21.569

33'(0) 22.241 6.0686 2.8463 1.7151 1.2441 1.1088

033 (-90) 22.260 6.0653 2.8494 1.7218 1.2474 1.1088

023(90) 0 0 0 0 0 0

023(0) 0 0 0 0 0 0

023 (-90) 0.0036 0.0115 0.0118 0.0062 0.0011 0

013(0) -0.0549 -0.0959 -0.1145 -0.1034 -0.0619 0

o13'(0) 0.0498 0.0893 0.1076 0.0997 0.0612 0

B12(0) 0.1444 0.1258 0.0875 0.0455 0.0126 0
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TABLE 9

0.. of Eq. (4.58) for Composite T, (90/0')

0' 00 150 300 450 60°  750

k 0 0.7217 0.5122 0.2993 0.1331 0.0252

1(0) 0 -0.4729 -1.2109 -1.5256 -1.2991 -0.5560

'(0) 0 0.3070 0.9159 1.3004 1.2090 0.5460

022(90) -1.5400 -2.3081 -2.1663 -1.5927 -0.8749 -0.0430

o22(0) -1.5400 -2.4380 -2.4991 -2.0120 -1.2320 -0.1958

22' (-90) -1.5400 -2.5715 j -2.8316 -2.4273 -1.5858 -0.3481

o33(90) 1.1088 0.8937 0.9334 1.0940 1.2950 1.5280

033(0) 1.1088 0.8481 0.8165 0.9467 1.1696 1.4743

33

033'(0) 21.569 12.089 5.7896 30108 1.8057 1.5557

033(-90) 21.569 7.9469 2.8828 1.6049 1.3092 1.4674
0 0

023(90) 0 0 0 0 0

023(0) 0 0 0 0 0 0

023(-90) 0 0.3258 0.4190 0.2847 0.1286 0.0237

013(0) 0 -1.1337 -0.8046 -0.4701 -0.2090 -0.0397

a13'(0) 0 1.7992 1.9660 1.4739 0.7590 0.1559

012(0) 0 -0.1349 -0.3455 -0.4353 -0.3707 -0.1586
12"

l- No
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TABLE 10

022 and 33 of Eq. (4.61) for (0/-0) Composites

0 150 30 °  450 600 750

022 22' 191.14 29.887 8.2424 1.4187 -1.2079

W 33 33 35.231 7,2214 3.4618 2.2766 1.8203

Composite 22 '22 71.464 16.660 5.9075 2.2697 0.8352

T a33 = 033 23.032 6.5434 3.3082 2.2137 1.7821
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Chapter V

A CONTACT PROBLEM IN COMPOSITES

5.1 TWO-DIMENSIONAL PROBLEM

In Fig. 2, the edge x, = 0 of the composite was assumed stress

free. If a rigid body is pressed against the face x I = 0, we would

have the deformation illustrated in Fig. 12. Assuming that the rigid

body is smooth and friction free, the boundary conditions on xI 
= 0

and near the origin are now given by

a12 0, a13 0

(5.1)
U1 = U + wx2 + .

where U and w are constants, and the dots stand for terms of order equal

2
to or higher than x2 2 The first two terms for u1 can be included

in a rigid body displacement as we discussed in Chapter III. Therefore,

for the purpose of finding the singularity at the origin, we may replace

Eq. (5.1) by

U1 = 05 = 06 = 0 (5.2)

The eigenvalues pL and the associated eigenvectors ui, Tij, as

well as the expressions for stress and displacement are the same as in

Chapter II, Eqs. (2.4-2.7). By applying the interface continuity

condition Eq. (2.13) at 0 = 0, and the new boundary conditions Eq. (5.2)

54
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at 0 = -,r/2 to Eqs. (2.10, 2.11), we obtain a new system of 12 linear

homogeneous equations for AL' BL) AL l, BL which can be written as

K qO= (5.3)

where the hat is used to distinguish this new matrix from the previous

K matrix, and q is again a column matrix whose elements are the

complex constants AL) BL) A , B '. If 6 is real then Eqs.

(2.17, 2.18) may be used. The system of equations obtained by applying

the boundary and interface continuity conditions to these equations is

Ka = 0 (5.4)

where K is a real matrix, and a is a column matrix whose elements are

the real constants aL, aL, aL' aL' For both systems, Eqs.

(5.3, 5.4), a nontrivial solution exists if IK I = 0. Equation (5.3)

is solved by the method described in section 2.2 for complex 6, while a

simpler and less time consuming method is used to find real 6 from Eq.

(5.4). Values found for 6 by both methods are listed in Tables 11-14.

The negative real values of 6, (-l < 6 < 0) lead to a stress singularity

at r = 0.

5.2 THREE-DIMENSIONAL PROBLEM

As we discussed in Chapter III, a three-dimensional deformation is,

to the first order of approximation, a uniform extension E3 in the

x 3-direction superimposed on the two-dimensional plane strain

deformation. Similar to the free-edge problem considered in Chapter IV,

we will first assume that a homogeneous stress solution exists due to a

uniform extensional strain e The problem will be analyzed by two
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methods. The first method enables us to see easily if a homogeneous

stress solution exists. The second method enables us to extend the

analysis, if necessary, to the case when a homogeneous stress solution

is impossible.

5.3 HOMOGENEOUS STRESS SOLUTION: METHOD I

The boundary condition uI = 0 on xI = 0 of Eq. (5.2) implies

that

auI/ ax2 = U'/ax2 = 0 (5.5)

along x, = 0. If the stress, and hence the strain, is homogeneous,

Eq. (5.5) also applies along x2 = 0. Now

£6 = (u 2/ax1)/2, E6' = (au2 /ax1 )/2 (5.6)

and since u2 is continuous along x2 = 0,

[C61 = 0 (5.7)

For a homogeneous stress solution therefore, Eq. (5.7) replaces the

condition u= 0 along x, = 0. Application of the material symmetry

properties of Eq. (4.4) and the boundary conditions of Eq. (5.2) to Eq.

(1.3) for El, E3, E, and £6 results in

£1 = Sll 1 + s12a2 + s13a3 (5.8)

E3 = s3 l 1 + s32 a2 + s33 3 (5.9)

C5 = s51a1 + s5 2a2 + s53a3 (5.10)

C6 s 64a4 (5.11)

Solving for a3 from Eq. (5.9), and eliminating a3 from the

remaining equations, Eqs. (5.8, 5.10) we have
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a3 E 3/s33 - (s3 1/s33 )a1 -(s32 /s33 )02  (5.12)

s11  s3 1s13/s33)01 + (512 " 532s1 3/s3 3) 2 + (s13/s3 3) 3  (5.13)

(s5 1 " s3 1s5 3/533) 1 + (s52 - s3 2 55 3/s3 3) 2 + (s5 3 /s33)c3  (5.14)

Let

R 1 = s13 /s33

R5 s5 3/s3 3

R11 = 11 s31513/s33

(5.15)
R12 = 12 - 13s32/s33

Rs 5 1 - 5 353 1/s3 3

R52 5 52 s 53s32/s33

If we apply the interface conditions Eqs.(5.7) and (4.14) to Eqs. (5.11,

5.13, 5.14), we obtain

[s 6 4 ]o 4 = 0 (5.16)

R - R 1 I + [R12 ]o2 = -JR1]E3  (5.17)

R 5 1o I - R5 1'ai + [R52 ]o2 = -[R5 1 3  (5.18)

Equation (5.16) indicates that if [s6 4] = 0, which is the case

for (0/90) composites, 04 is arbitrary. Otherwise 04 = 0. For the

composites considered here, s64 = s64 = 0 for any angle ply. Hence

04 is arbitrary here, and will be denoted by the arbitrary constant

Another arbitrary solution is obtained from solving Eqs. (5.17,

5.18). If we let 02 = a2' we may solve for al and a while

a3 and a 3  are determined from Eq. (5.12). The result can be

written in the following form:
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2 = 32 ( p ) + 1l (1) + a25(2) (5.19)

where

0 0 0 0 0

o ( p ) = 0 0 0 0 0 j

0 0 0 1 j

(5.20)

01(2) 0 0

a(2) 0 1 0

0 0 0(2)

and

1I(P) = -((RIIR 5 1 ' - (R5JRII')/(RIIR5 1 ' - R5 1RI,')

a1(2) = ([R12 ]R5 1' [R52 ]R1 1 )/(R 11R5 1' - R51 R 1 )

(5.21)

03(P) = -(1 - s3 1a1 (P)/s3 3

0(2) = (s3!a1(2) + s32)/s33

Similar expressions can be obtained for a'.
For (8/-0) composites, R1 = R= R 11  , R1 2  R12

1, R5  -R5
1,

SR = R' P)

R51 R -RI and R52 -R52' a and a1(2) in Eq. (5.21) are reduced to

aI(p) = -Rs./R51' 1 = -R5 2/R5 1  (5.22)

M o r e v e r , o~ 1 =Ro'( )  ( 2  =  ( 2

Moreover, a(p) = 0 '(p), a(2) = ;(2) and hence a = a'. In Tables 15 and 16

we list aI(P), a3 (P), 1(2), and a 3(2) for both composites of (8/-0) ply.
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' ~(P) = 1 (P) wh l
For (0/0') composites in Tables 17 and 18, while

a3(P) and aI (p ) are quite different. Tables 19 and 20 show

the results for (90/9') composites; in this case 03(2) is nearly

(2) (2) ,(2)
equal to 03 , while 01 and 01 are quite different.

Both 01(P) and 03(P) in Tables 15-20 have the unit of 106 psi.

For (0/90) composites, R51 = R5 1' = 0 and a1(2)a ()

of Eq. (5.21) do not exist. In fact R 52= R '= R R ' 0

also, and Eq. (5.18) is trivially satisfied. Equation (5.16) and (5.17)

then yield three arbitrary solutions. Letting 04 = al, 02 = a2

and a I I a3) the solution can be written as

q= E3 (p) + al(1) + a2
j (2) + a3a(3) (5.23)

(p) (1) (2)
where a(, ai, and o are identical to the ones defined in

(p)no2) which are replaced by

Eqs. (5.20, 5.21) except 01 and 1(2)

1 (p) = -[R1 ]/RII, a1(2) = -[R12 ]/RII (5.24)

and a(3 ) is

a (3) 0 0

(3))a() 0 0 0 (5.25)

L 0 0 03 (

where

a1(3) ,/R1  03) a (3) s /3 (5.26)1 R11 ill 3 - 1 s31/s33 (.
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For a', the components of a1(p ) , 01(2 ) and a '(3 ) are given by
(P) =(2) 

,= (3)
a1()= 0, 0 1 =0, a1 1

(5.27)

0 3 ( /) = 1/533" a(2)= -s32' /33 a s31 /s 33

In Table 21 we list the result for (0/90) composites. For the

composites considered here 0
(3 ) = a (3 )

It appears that Eqs. (5.17, 5.18) always have a solution unless one

of the following relations is satisfied:

0 R1 = R11 = [R12 ]  [R] (5.28)

0=R = R51 = [R 52 [R (5.29)

R11 /R5 1 = R11 ' /R51 ' = [R12 ]/[R 5 21 0 [RI]/[R 5 ] (5.30)

If anyone or more of the above three equations is satisfied, Eq. (5.17)

and/or (5.18) are inconsistent and a solultion does not exist. For the

composites considered here, none of Eqs. (5.28, 5.29, 5.30) are

satisfied for all possible combinations of (8/8') angles. Therefore, a

homogeneous stress solution always exists for a uniform extension E3'

5.4 HOMOGENEOUS STRESS SOLUTION: METHOD 2

Equations for stress and displacement are the same as Eqs. (4.28,

4.29). Upon applying the boundary conditions of Eq. (5.2) at 0 = ±%/2,

and the interface continuity conditions of Eq. (2.13) at * = 0, we

obtain the system of equations

ka = bE (5.31)
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which have a non-trivial solution if £Tb 0 where TK 0. For

the composites considered here ITb = 0 for all (8/6') ply, and the

numerical solutions agree with those obtained by method 1.
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TABLE 11

Negative Real Roots 6 for r Terms at the Contact-Edge in Composite W

6

8'= 0 = 90 8

150 -9.3671 x 10
-4  -4.6536 x 10-

4  -4.6679 x 10-
3

300 -1.2238 x 10-2  -6.0849 x 10-3  -6.8300 x 10- 2

450 -3.6434 x 10-2  -1.8759 x 10"2  -1.7190 x 10-1

600 -5.5918 x 10-2  -3.0693 x 10-2  -2.0388 x 10 "I

2 -21
750 -3.8771 x 10-  -2.3686 x 10-  -1.1389 x 10-1

TABLE 12

Negative Real Roots 6 for r6 Terms at the Contact-Edge in Composite T

8' = 0 81 = 90 8' = -8

150 -2.5704 x 10-3  -1.1110 x 10-3  -1.2894 x 10- 2

300 -1.9977 x 10-2 -8.6484 x 10-3  -1.0695 x 10-1

450 -5.0588 x 10 - 2 -2.3031 x 10 - 2  -2.2038 x 10"1

600 -7.1066 x 10- 2  -3.5292 x 10- 2  -2.3995 x 10-1

750 -4.6735 x 10 - 2  -2.6708 x 10 - 2 -1.3011 x 10-1

4q 0M.4--
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TABLE 13

* r6

Complex Roots 6 for r Terms at the Contact-Edge in Composite W

8 6 1 6 a 6
1 2 3 4

15/-15 -.005 .995 + .100 i 1.996 + .120 i 2.994 + .180 i

0/15 -.001 .999 + .055 i 2.0 + .053 i 2.998 + .099 i

90/15 -.001 .998 + .065 i 1.998 + .049 i

60/-60 -.204 .701 + .721 i 1.677 + .882 i 2.449 + 1.453 i

0/60 -.056 .896 + .413 i 2.007 + .359 i 2.567 + .919 i

90/60 -.037 .840 + .524 i 1.985 + .271 i 2.657 + 1.133 i

TABLE 14

* 65

Complex Roots 6 for r Terms at the Contact-Edge in Composite T

1 2 3 64

15/-15 -.013 .989 + .156 i 1.994 + .185 i 2.993 + .268 i

0/15 -.003 .997 + .081 i 1.999 + .081 i 2.997 + .150 i

90/15 1 -.001 1 .996 + .103 i 1.997 + .078 i

60/-60 -.240 .649 + .771 i 1.621 + .948 i 2.359 + 1.558 i

0/60 -.071 .887 + .436 i 2.030 + .363 i

90/60 -.035 j .803 + .575 i 1.987 + .274 i 2.572 + 1.246 i

zero and positive integers are also roots for 6
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TABLE 15

01(P), 3(P), o1(2), 03 (2) of Eqs. (5.21, 5.22) for Composite W, (8/-8)

150 300 450 600 75.0

(P) = ,I(P) -28.239 -5.8883 -1.7000 -0.2970 0.2543

(p)= 3 (P) -3.4539 0.8866 1.7000 1.9725 2.0795

(2) 1(2)
01 =) 1 0.1477 0.1970 0.2063 0.2093 0.2106

03(2) 3(2) 0.2024 0.2120 0.2137 0.2143 0.2146

TABLE 16

0 I(P), a3(P), 01(2), 03(2) of Eqs. (5.21, 5.22) for Composite T, (8/-8)

6 150 300 450 600 750

1) a -15.948 -4.4035 -1.6200 -0.6304 -0.2332

a 3(P) = 03 (P) 2.4089 1.7733 1.6200 1.5655 1.5436

a1(2) = C1F(2) 0.2232 0.2643 0.2742 0.2778 0.2792

03 (2) 1(2) 0.2886 0.2863 0.2858 0.2792 0.2855
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TABLE 17

(p) (p) (2) (2)
1 3P) 1 032 of Eq. (5.21) for Composite W, (0/0')

0' 150 300 450 600 750

Ol(P) -28.206 -5.8551 -1.6667 -0.2637 0.2877
1t

a ' ( p )  -28.239 -5.8883 -1.7000 -0.2970 0.2543

(P) 14.077 18.770 19.650 19.945 20.060
31

03 -3.4539 0.8866 I 1.7000 1.9725 2.0795

01(2) 0.1478 0.1971 0.2063 0.2094 0.2106

,(2)
01 0.1477 0.1970 0.2063 0.2093 0.2106

03(2 0.2410 0.2514 0.2533 0.2540 0.2542
03

03 (2) 0.2024 0.2120 0.2137 0.2143 0.2146
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TABLE 18

S3(P) 1(2) (2) of Eq. (5.21) for Composite T, (0/0')
01 , ,1

o' 150 300 450 600 750

a1(P) -15.565 -3.9220 -1.1149 -0.1169 0.2837

al'(P) -15.948 -4.4035 -1.6200 -0.6304 -0.2332

O3(P) 17.642 20.902 21.688 21.967 22.079

a3 ' p  2.4089 1.7733 1.6200 1.5655 1.5436

o1(2) 0.2245 0.2660 0.2760 0.2796 0.2810

(2)
01' 0.2232 0.2643 0.2742 0.2778 0.2792

(2) 0.3429 0.3545 0.3573 0.3583 0.3587

a3 (2) 0.2886 0.2863 0.2858 0.2856 0.2855
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TABLE 19

1P) 03(P) 1 3(2) 3 of Eq. (5.21) for Composite W, (90/8')

0' 150 300 450 600 750

(P) -272.41 -59.540 -19.650 -6.2877 -1.0366

1(P) -28.239 -5.8883 -1.7000 -0.2970 0.2543

(P) -3.9066 0.7872 1.6667 1.9614 2.0771

'(P) -3.4539 0.8866 1.7000 1.972,1 2.0795

o1(2) -.03907 0.0787 0.1667 0.1961 0.2077

,( 2 ) 0.1477 0.1970 0.2063 0.2093 0.2106

2 0.2014 0.2117 0.2137 0.2143 0.2146

03(2) 0.2024 0.2119 0.2137 0.2143 0.2146
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TABLE 20

1(P , a3 a1a(2) 3(2) of Eq. (5.21) for Composite T, (90/8')

8' 150 300 450 600 750

oI(p) -228.12 -61.789 -21.688 -7.4310 -1.7076

01 (p) -15.948 -4.4035 -1.6200 -0.6304 -0.2332

(P) -2.9311 0.3289 1.1149 1.3943 1.5065°3

03 ) 2.4089 1.7733 1.6200 1.5656 1.54363

1(2) -0.5329 0.0598 0.2027 0.2535 0.2739

o1 (2) 0.2232 0.2643 0.2742 0.2778 0.2791

03(2) 0.2695 0.2812 0.2840 0.2850 0.2854

3 (2) 0.2886 0.2863 0.2860 0.2856 0.2855
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TABLE 21

(p) (p) (2) (2) (3) (3)
10 1 3 01 3

of Eqs. (5.21, 5.24, 5.26) for Composites, (0/90)

(0/90) Composite 1 Composite 2

(p) 6
x1 ( 10 psi 0.3965 0.4032

,(p) 601 x 106psi 0 0

(P) x 106psi 20.083 22.113

*3'(P) x 106psi 2.1000 1.5400

a1(2) 0.1888 0.2618

1 (2)00
oi(2)

a3(2) 0.2497 0.3533

3(2) 0.2100 0.2800

(3)
01 0.1050 0.07001
01 (3) 1 1

03 (3 ) = 3(3) 0.0220 0.0196



70

material I/
~cij,o

i // ""material 2 --

*'. x

Fig. 12

A contact-edge between two adjacent layers (0/e')

MENOW".
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