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Chapter I

INTRODUCTION

1.1 INTRODUCTION

A free-edge in a composite is the intersection of an interface
plane (between any two layers) and the free surface of the composite,
while a contact-edge is the intersection of an interface plane (between
any two layers) and the contact surface of the composite. The unusually
large and possibly infinte stress at the free~-edge and the contact-edge
is one of the factors responsible for delamination when the composite is
subjected to external loading. Since more composites are now used in
space vehicles, it is important to analyze the nature of the stress
singularities at the free-edge and the contact-edge so that special
attention can be paid to the design of mechanical fastenings and joints.
The research reported here is part of the effort of the "predictive
response capability development” program.

There have been many investigators who analyzed the stress near the
free-edge [1-9]. An analytical solution which is valid for the whole
composite is practically impossible to obtain. Several approximate
numerical solutions are available which show a good agreement between
each other for points away from the free-edge. For points near the
free-edge, numerical solutions are not capable.of predicting an infinite

stress when it exists, and this is where the discrepancies between




W

various approximate solutions occur. Wang and Choi [8] used an
eigenfunction expansion technique to determine the stress in the
interface. However, the completeness of the eigenfunction expansion is
an open question [10]. In fact, the existence of the logarithmic

singularity discussed in this paper implies that the eigenfunction

expansion in terms of r6 powers may not be complete. It is doubtful

that the addition of (ln r) terms would make the eigenfunction expansion
complete. As pointed out in {10, 11], singular terms of (ln r)2 and

(1ln r)3 etc., may also exist.

For composites whose layers are isotropic elastic materials, use of
the biharmonic function, or the Airy stress function, seems to be the
universal approach in the analysis of the stress singularities. (See
[10, 12, 13], for example). There appears to be no universal approach
in analysing the stress singularities in anisotropic elastic materials.
Lekhnitskii [14] introduced two stress functions to analyze general
anisotropic materials. His approach was used by Wang and Choi [8] to
study the thermal stresses at the interface in a layered composite.
Green and Zerna [15] employed a complex function representation for the
general solution. Their approach was used by Bogy [16] and Kuc and Bogy
[{17]) in conjunction with a generalized Mellin transform to analyze
stress singularities in an anisotropic wedge. In this paper we use the
approach which was originated by Stroh [18] and further developed by
Barnett and others [19-21] for studying the surface waves in anisotropic

elastic materials.




*
While the nature of the singularity, be it k r5 or k(Iln r), is

independent of the stacking sequence of the layers in the composite and

the complete boundary conditions, the unknown constant k* in the
singular solution is not. This suggests that one might use a special
finite element at the free-edge or at the contact-edge (with regular
finite elements elsewhere) so that the exact nature of the singularity
is prescribed in the special element while the unknown constants

associated with this special element are determined by solving the
complete boundary value problem. If kK so obtained happens to be zero

at a particular free-edge or contact-edge, there is no r5 singularity
at that point. The purpose of this paper is to provide the exact nature
of the singularity at the free-edge and at the contact-edge.

In the following sections of Chapter I, the notation for the basic
equations (strain-displacement, stress-strain and equilibrium equations)
is explained, and expressions for the elasticity constants and elastic

~ A
compliances of materials orthotropic in the (xl, X x3) coordinate

2’
system are given.

In Chapter Il a free-edge problem which undergoes a two-dimensional
plane strain deformation is analyzedj The assumed expressions for
stress and displacement when applied to the boundary and continuity
conditions result in a system of linear homogeneous equations. The

eigenvalues 8 of this system, both real and complex are listed, and the

procedure used to find the complex values of § is explained. The

e

. . . * 8 ) : .
existence of a singularity of k r for negative 8§ is discussed.




In Chapters IIl and IV the free-edge problem is analyzed for three-
dimensional deformation. In Chapter III it is established that the

superposition of the uniform extension term €4 on the two-dimensional

problem of Chapter Il is a first order approximation to a three-
dimensional deformation. In Chapter IV it is shown that the addition of
the uniform extension term to the equations of Chapter II results in a
system of non-homogeneous linear equations. Two methods are then used
to solve for the assumed homogeneous stress. These solutions are valid
for (8/-8) and (0/90) composites. A modified method is then introduced
to solve for the non-homogeneous stress of the other (8/6')
combinations. The existence of the k(ln r) singularity is discussed,
and the logarithmic stress intensity factor k is listed for various

combinations of (8/8'). Values of Uij which depend on the angle ¢ in

polar coordinates are also listed.

In Chapter V a contact problem is analyzed. The altered boundary
conditions lead to a new system of linear homogeneous equations for the
two-dimensional plane strain problem. The roots 8, both real and

wle
complex, are listed and the existence of the singularity k r6 is

discussed. The three-dimensiocnal deformation problem is then analyzed,
and a particular solution which is uniform in stress is found and listed

for some (B8/8') combinations.

1.2 BASIC EQUATIONS

In a fixed rectangular coordinate system xi, (i =1, 2, 3), let

u., Uij and cij be the displacement, stress, and strain, respectively.




The strain-displacement, stress-strain and equilibrium equations may be

- written as

T —

et

are the elasticity constants and the elastic compliances, respectively.

= + !
Eij (aui/axj auj/axi)/Z (1.1 é
;‘ oij = cijkltkl (1.2)

i
i

é or i

1 :

' ®i3 T Sijke’ke (1.3) {

H 9

! i

30, ./3x, =0 1.4 !

; 13/ 3% (1.4) 1

] where repeated indices imply summation, and 1

= = j

: Cijke ~ keij - Cjike (1.3) ;

{

H Sijke T Skeij T Sjike (1.6) ]

; {

i

q

1

Due to the symmetric property of Eqs. (1.5, 1.6), one may rewrite

Egqs. (1.2, 1.3, 1.5, 1.6) as

oq = cqttt’ cqt = ctq .7
sq = sqtut, sqt = stq (1.8)
where
91 % %10 92 F 9% 93 % 933
(1.9)
9 = 93 9% %3 % =%,
1 T F110 By T By B3 T Egg |
€, = 2853,  E5 = 2815, B = 28y, R |




The transformation between c,, and ¢ are as follows
ijke qt

11
22
ij or kg = 33 , qort=
23
31
12 L

(1.11)

WS W

Since the transformation between oij and o, is not identical
to that between Eij and P in order to represent the transformation

between the subscripts of Si' and s Eq. (1.11) must be modified

jk& qt’
as follows. 1If either q or t is larger than 3, sqt = zsijkz' If
both q and t are larger than 3, sqt = Asijkl; [22] contains further
discussion about these transformations.
1.3 ORTHOTROPIC MATERIALS
For orthotropic materials with the (xl, x2, x3) axes of

symmetry, sij are zero except [25, 26]

S13 = VEps sy = VE,, 855 = 1/E,, ]

S4e = 1/Gp35 555 = 1G53, Sge = /Gy

S1p TS, % - v21/E2 > (1.12)

S13 T 831 % 7 vay/Ej

S23 T 533 T 7 vap/Ey )




G and v are

31> G120 Va1 Vape 32

where El, EZ’ E3, G23,

the engineering constants. The relation between sij and cij may be

found in [22, 25, 26].
Consider a laminated composite which consists of a finite number of
anisotropic elastic layers perfectly bonded at the interface, Fig. 1.

Each layer of the composite lies in a plane parallel to the (xl, x3)

plane. A cross section of the composite is shown in Fig. 2. This
angle-ply graphite/epoxy laminated composite is assumed to be

orthotropic with respect to the (21, xz, §3) coordinate system.
The ﬁs-axis, which is the direction of the fibers (as shown in Fig.

3), makes an angle 8 with the x3-axis. It will be assumed that

materials 1 and 2 in Fig. 2 are made of the same orthotropic material,
but that the orientation of the fibers is different; the angles 8 and 8'

vary between layers. Therefore, eij and gij are the same for both
materials, while cij’ sij may not be. The relation between Cij

and eij may be found in [22]. The relations between s, . and gij

may be obtained from the relations between cij and éij by replacing

cij by sij with the following exceptions. If either i or j is

larger than 3, replace 2cij by sij' If both i and j are larger than

3, replace Acij by sij' The same rules apply in replacing eij by

A

s, ..
1]

Therefore we have




it

- 25, + 8§

where, for simplicity, the notation ¢

All other terms of sij

o

sin® has been used.




Fig. 1 Geometry of an angle-ply laminated composite

o~ ‘m" .
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r . _‘\/—)
material 1
T
c.. , 8
$ 1)
'---xl
material 2
c!., 8'
1]

Fig. 2 A free-edge between two adjacent layers (6/8')

Fig. 3 Principal directions of an angle-ply laminate
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Chapter II

TWO DIMENSIONAL FREE-EDGE SINGULARITY ANALYSIS

2.1 FORMULATION OF THE MATRIX K

In order to study the stress at a free-edge of an interface of a

laminated composite, the origin of the (xl, Xy, x3) axes is placed
at one of the free-edge points, as shown in Fig. 2. The (xl, x3)

plane is along the interface, while the (xz, x3) plane is the free-

edge surface. In this chapter, we assume that u, and hence eij and

oij are independent of Xg. Let
u, = uif(Z) (2.1)
cij = tijdf(Z)/dZ (2.2)
Z=x, +px, (2.3)

where p, Ui and Tij are constants, and f(Z) is a function of Z which

will be specified later. To determine the eigenvalue p and the

eigenvectors ui and Tij in Eqs. (2.1, 2.2, 2.3), these equations

are substituted into Egs. (1.1, 1.2, 1.4). The resulting equations for

P, Vs Tij are, [22]
Dikuk =0 (2.4a)

T3 - Cijr1 T Peik2) VK (2.4D)

11




w-
1]

12
where
D, =Q + PR, +R ) +pT, (2.4c)
and
Ui = Ci11r Rix = Ciikee Tik = Si2k2 (2.4d)
For a non-trivial solution of vy it follows from Eq. (2.4a) that the
determinant of Dik must vanish. This results in a sextic equation for
p. Since the eigenvalues p are all non-real [22, 14, 18], there are
three pairs of complex conjugates for p and three pairs of associated
eigenvectors v,. For isotropic materials, all p's have the value +1i .
To analyze the singular nature of the stresses at the origin, the
function f(Z) is chosen to be
£y =28 80+ 8 (2.5)

where § is a constant. Equations (2.1, 2.2) for displacement and stress
can then be written as

v, 2 W L s 2.0+ 8 (2.6)

u; = EA{apy, 2 Vi, LoL

i L

o..= £ (A, .2.° 8

ij Ltij,0f * Brtiy i} (2.7)

where an overbar denotes the complex conjugate; AL and BL are

complex constants, and the subscript L identifies the three pairs of
eigenvalues. Unless otherwise indicated, I in Eqs. (2.6, 2.7) and in
the sequel, stands for summation over L from L = 1 to 3. Using the
polar coordinates (r, ¢), Fig. 2, Z may be rewritten as |11, 12}

2= x1 + px2 = rg (2.8)

wiere

14 cos¢ + psing (2.9)

Equations (2.6, 2.7) can then be written as

) . il el Loy
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_ 146 1+6 ~ = 146
u, =r z {ALUi,LCL +Bu, g8 /(1 + 8) (2.10)

,L ’

(2.11)

5 5
6..=r1r L {ALTi',

ij h| LCL + B

- &
L%ij,0%1 )
Similar equations may be written for the material with elasticity

constants cij' by adding a prime to all quantitijes except r, ¢ and §. 1

We see from Eq. (2.11) that if the real part of § is negative, oij is

singular at r = 0. By applying the stress free boundary conditions

g, =0o. =0, =0 (2.12)

at ¢ = ¥1/2 and the interface continuity conditions at ¢ = 0

[9;] = [u,] = (4] =0 (2.13a)

1]
o

[o,] = [0,] = [o,] (2.13b)

where [f] = f - f' represents the difference in f values across the

interface, one obtains 12 linear homogeneous equations for AL, BL,
AL', BL' which can be written as
gc(ﬁ)s =0 (2.14)

where Sc is a complex valued square matrix whose elements depend on §,

and q is a column matrix whose elements are AL’ BL’ A B

] 1]
L®"L”
(L=1, 2, 3). 1f 6, which can be real of complex, is a root of the

determinant

Ik (&) =0 (2.15)
then a nontrivial solution exists for 95 and hence for the stress and
displacement.

When the root § of Eq. (2.15) is real we may choose

BL = AL = (aL + iaL)/Z (2.16)




where aL and 5L are real. Equations (2.10) and (2.11) then have the

real expressions

_ 148
u, = r z {aLRe(Ui,LC

1+6 ~
+
1 ) a

1+6
Im(ui’LCL )Y/ (1 + 8) (2.17)

L L

_ 6
oij =r I {aLRe(tij’

LCLG) + ELIm(Tij,LCLG)} (2.18)
where Re and Im stand for real and imaginary, respectively. Equation
(2.14) is then replaced by

K(8)a = 0 (2.19)

where K is now a real valued square matrix and g is a real column matrix

whose elements are a and 2,', (L=1, 2, 3). The real

A 8
root § is then obtained from
Ik =0 (2.20)
Before we present a numerical procedure for finding a complex root
from Eq. (2.15), we point out that § = 0 is always a root of Eq. (2.15)

and Eq. (2.20). It should also be pointed out that the formulation here

tacitly assumed that the eigenvalues Py, of the elasticity constants,
Eq. (2.4a) are distinct. For degenerate cases in which Py, has a

multiple root, Eqs. (2.6, 2.7) have different expressions. The correct

expressions for Egs. (2.6, 2.7) when Py, has a multiple root were given

in [11] when £f(Z) assumes the special form of Eq. (2.5) and in (23] when

f(Z) is arbitrary.

2.2  PROCEDURE TO FIND THE ROOTS OF HECU

To find the roots § of Eq. (2.15), which may be complex, the

following method was used. Let

§ =% + in (2.21)

14
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ugcu =u + iv (2.22)

The complex plane & is divided into square regions of prescribed size.
The nodal points of a typical square region have the coordinates

Ez, n, (e =1, 2, 3, 4), as shown in Fig. 4. The value of chu at

each node of the square is

u, = Re(JK DIy _ g, + in, (2.23)

<
]

o = ImCIR D 1g _ (2.24)

g, * in,
" If the square contains the curve u = 0, then either the value at one of
the nodes will be zero (in this case the curve intersects the node), or
the sign of u will change between at least one pair of adjacent nodes,
Fig 5. A possible exception to this is the case shown in Fig 6, which
may be ovefcome by initially selecting a small enough square. To test

if the line u = 0 is present, the computer program checks the nodal

values u, for zero, and also checks for a change of sign. If either

of these conditions is satisfied, the program repeats the same procedure
to determine if the v = 0 curve exists in the square. When the program
determines that both curves are contained in the square, then the square
is divided into four smaller squares, each of which is analyzed in the
same way, and again subdivided if necessary, Fig. 5. A square which is
found to contain only one of the curves, or neither of the curves is
discarded. The procedure continues until either no squares remain, or
until the dimension of the square is smaller than a specified error
parameter. If this parameter is small enough, then the fact that the
two curves exist in the square, would suggest that they intersect, and

that a root exists inside that square. A flow chart of the subroutine

can be found in Fig. 7.
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It should be pointed out that for a very small square which
contains the root §, HECH can be quite large at the four nodes of the
square. For example, Table 1 lists the values of 6§ and chﬂ found by
the above method with the dimension of the square being reduced to 10-9.
The values of chﬂ at the four nodes are in the order of 10°.

2.3 THE ROOTS §

Two different laminated composites are used for the numerical
calculations. Each layer of a composite is assumed to be made of the
same orthotropic material. The orientation of the axes of symmetry
(;1, X,s 23), however, differs from layer to layer. The following
engineering constants for the layers in the two composites are taken
from [6, 24], respectively.

Composite W

(Typical high modulus graphite-epoxy, [6])
= = 6 .
E, =E, = 2.1 x 10° psi )
6 .
ES = 20 x 10" psi
P (2.25)
6

G12 = G23 = G31 = .85 x 10" psi
Vo1 = Vi, = Vi, = .21
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Composite T
(T300/5208 graphite epoxy, [24])
= E 54 x 10° psi ‘
El =E, = 1. x 1 psi
E, =22 x 106 si
3 P \
(2.26)
= - - 6 ,
G12 = G23 = G31 = .81 x 10" psi
Vou = Vi = Vi, = .28 )
Using Eq. (2.25) or Eq. (2.26), Qij is obtained from Eq. (1.12),

A
while cij is computed from gij using the relations derived in [25,
26]. s.., s..', cij and Cij' associated with various 8 and 8’

are then determined, from Eq. (1.13) and from equations similar to

(1.13), {22). Equations (2.4) provide the eigenvalues P> (L=1, 2,

3) and the associated eigenvectors Ui and T

5L For Composite W,

e

all three eigenvalues p; are purely imaginary for any angle-ply 0,

[22], while for Composite T two of the three eigenvalues are complex for
8] less than 71.5377°. By substituting Eqs. (2.10, 2.11) into the
stress free boundary conditions and the interface continuity conditions

Egqs. (2.12, 2.13), one obtains a system of 12 linear homogeneous

equatioas for the constants A B A

L» By L', BL', Eq. (2.14). The

roots of the determinant of this system are found by the method

described in the previous section. An area bounded by (-1 < § < 3, 0 < ]

n < 3) was checked. The roots found for various (8/8') combinations are
listed in Tables 4 and 5. Double precision was used in the calculations

but we have rounded the roots in Tables 4 and 5 to four digits. Both
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complex and real roots were found. Since complex conjugates of these

values are also roots of HKCH, it was not necessary to search the n <

0 area.

Most interesting of these roots are the positive integer values of
8, which seem to consistently appear for all (8/8') combinations for
both composites. There appears to be a negative real root for &8, but
there are no other complex roots with a negative real part. Since the
negative § is the one contributing to the singular stress, we list in
Tables 2 and 3 the negative 8§ for various combinations of (8/8'") angles.
Also, we present in Figs. 8 and 9 the negative § for all possible
combinations of (6/6') angles. Curves of constant § are given only in
one quarter of the (8, 8') plane since the curves in the remaining three
quarters are a repetition of the curves shown. The negative § values

also appear to be simple roots of Eq. (2.20), and hence a of Eq. (2.19)

&
is unique up to a multiplicative constant, say k . By substituting a
of (2.19) into (2.18), we may write Eq. (2.18) as

=kl (2.27)

*
where oij: depends on ¢. It should be pointed out that if 6§ < 0 is

is a double root of Eq. (2.15) one would have, besides the r6 singularity,

a singularity of the form ra(ln r), [11]. t

The analysis presented here provides the order of singularity §

g oo
%<

and Uij .k, which may be identified with the stress intensity factor

*
if elements of oij are normalized, can be determined only by solving

the global boundary value protlem. For instance, one may use a finite '

element scheme in which a special element, whose stress is given by Eq.
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!
|
(2.27), is introduced at the free-edge. If k* associated with a free-
edge point happens to be zero after solving the global boundary value
problem, there is no singularity at that particular free-edge point.
Therefore, a singularity at the free-edge point in plane strain
deformation is not certain until the global problem is solved.
TABLE 1
Values at the Nodes of a Square for Composite W, (60/-60)
Node g, +in, =8 u, + iv, = K |
1 2.94158674804 + 1.775502774707 i 204801.982842 + 47335.881916 i
2 2.94158674902 + 1.775502774707 i -64582.9527519 - 285394.704755 i
3 2.94158674902 + 1.775502774804 i 268147.7157535 - 554779.491707 i
4 2.94158674804 + 1.775502774804 i 537532.4431132 - 222048.858434 i
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TABLE 2

Negative Real Roots § for r6 Terms at the Free-Edge in Composite W

; !
9 1
8' =0 8' = 90° 8' = -8 .
-2 1‘
o -3.3388 x 10 © | = .--e--
) "0 ’2 '4
15 -1.3528 x 10 -3.2814 x 10 -6.4322 x 10
o '3 '2 '2
30 -2.6286 x 10 -2.8682 x 10 -1.1658 x 10
o -3 -2 '2
&5 -9.6461 x 10 -2.0575 x 10 -2.5575 x 10
o -2 -2 -2
60 -1.9866 x 10 -1.0519 x 10 -2.3346 x 10
° -2 -3 -3
75 ~2.9388 x 10 -2.6785 x 10 -8.9444 x 10
° -2
90 ~3.3388 x 10 © |  =mesee | -e-ee-
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TABLE 3

Negative Real Roots § for r6 Terms at the Free-Edge in Composite T

5
8
8' =0 8' = 90° 8' = -8
(I -5.4148 x 1072 | -eee--
! 15° | -5.5587 x 107 | -5.2192 x 1072 | -2.5363 x 107>
é 30° -5.8892 x 107> -4.4295 x 1072 -2.2505 x 1072
:
é 45° -1.8423 x 1072 -3.0453 x 1072 -3.8593 x 1072
"
i 60° 3.4756 -2 -2 -2
i -3. x 10 -1.4602 x 10 -3.1271 x 10
1
{ 75° | -4.8646 x 1072 -3.4296 x 107> -1.1217 x 1072
-2

90° | -5.4148 x 10°° |  -e-eem | aeeee-

oI e B e e

1




10) €3001 OSTB 91B S12323UT aATITSO0d pue 0193Z

T oENTTT + 69172 189' + L16°1 102" + 276" 110°- 09/06

659" + LvL'1 801" + 600°T | 0Z0°- 09/0

T GGL'T + TW6°C T 9T + 6%1°¢ €L + 78771 1L + 1¢8° €20’ - 09-/09
T 8SLTT + SEB'C 889° + 099'1 (ge* + 1101 | €€0°- $1/06

T oET + T66° 580" + S66°1 £20° + 666° 000"~ S1/0

T 192° + 196°¢C 181 + %i6°1 0" + L66° 100° - §1-/61

*9 "9 f9 ‘9 ‘e (,8/0)

y JT9VL

M @231sodwo) ut 28pg-2914 3yl Ie swad], @u 103 ¢ xs300y xa1dwo)




@ 10J S31o01 osSTe dae S12823ul 9AarjTsod pue o3z

T eRT°1 + 82L°¢C T 8€L" + 0%6°1 T et + 126° 18471 s10°- 09/06
T €0L® + 9TL°T €20°1 v€0"- 09/0

T 908°T + 0%6°¢C T 9ee°1T + £60°C T L18° + 0S¥°1 T yie" + (8L° 1€0°- 09-/09
¥ 618°1 + 9%¥8°C T 699° + 089°1 T 2.6 + SOvT1 £58° A iy S1/06
T %61° + ¥86°C T SET" + 686°1 T %%0° + (667 100" - S1/0

T 78" + £EL6°C T %62 + 9961 T 6L0° + 066° €00°- ST-/ST

59 "9 £9 9 '9 (,6/6)

1 @2311sodwo) ur adpz-9ai1y ¥yl e SuUII] @H 103 @ xS300Y x37dwo)

S 319Vl

N—; - . A D B Arin T




24

E» M £ys Ny

Fig. 4 Typical square to be checked for roots.

u=20
v=20
o\ Py
41 : | 3
p-{: —_——
L -

Fig. 5 Change of sign between adjacent nodes of a square.
+ 4+ + o+
u , Vv u, Vv
u=20 -_.T
o
+ 4+ + o+
u, Vv u ., v

Fig. 6 A square for which u = 0 curve will not be detected.
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Chapter III

THREE~DIMENSIONAL DEFORMATION

3.1 INTRODUCTION
The analyses presented in Chapter II assumed that the displacement

u., and hence the strain Eij and the stress oij’ are functions of

x1 and X, only. In other words, we assumed a two-dimensional plane
strain deformation. If the deformation is three-dimensional, u, would

depend on X, as well. Before we derive a first order approximation

PSRN

for three-dimensional deformations, we point out that the analyses
presented in Chapter II remain valid for certain classes of

displacements which depend on Xg. H

Firstly, we may superimpose the displacement given in Eq. (2.1) by

u, = U, + w,.x, (3.1)
i i ij 3

where Ui and wij are constants and wij is an antisymmetric matrix.

The displacement given by Eq. (3.1) represents a rigid body translation
and rotation, and hence contributes nothing to the strain and stress.

Thus, even though X4 is present in Eq. (3.1), the analyses in Chapter 5

II remain valid when Eq. (3.1) is superimposed on Eq. (2.1).

Secondly, we will show that the homogeneous strain produced by the

displacement field
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u, = C, Xq (3.2)
u3 =0 |

where <y and ¢, are constants can also be produced by the

formulation in Chapter II by letting § = 0. Indeed, when we put § =0

in Eq. (2.6), u, is linear in x

1 and Xgs and hence sij are

constants. To insure that v, assume real values with § = 0, we let

BL = AL’ (L=1, 2, 3). Since AL are complex, we have six real
arbitrary constants. By introducing another six real arbitrary

constants a., bi’ o (i =1, 2), we may rewrite Eq. (2.6) for

8§ =0 as

u1 = alx1 + azx2

o
]

2 blx1 + bzx2 (3.3)

=
"

+
3 - ¢1%1 T e%

Ifa, b,, c, are all non-zero, Eq. (3.3) provides all six strain

components except € Now, consider the following special case of

33°
Eq. (3.3):

u, =u, =0, u, = ¢ 1%y + X, (3.4)

It is not difficult to show that the strain obtained from Eq. (3.2) and
Eq. (3.4) is identical. Thus the deformation, Eq. (3.2), which depends

on x, is a special case of the deformations considered in Chapter II.

3
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3.2 TFIRST ORDER EXPANSION

Let the displacement u, near the origin in Fig. 2 be a function

of x x, and x,. For points near the x

1 % 3 = 0 plane, we expand

3

u, in the following series

+ ui(z)x32/2 + . .. (3.5)

)

where u, , =0,1, 2, . . .) are functions of x, and x

1 2

only. The strain Eij is, by Eq. (1.1)

0, , (©
ij i,] j,i

(1) (1)

+ u,

2y 3

)x3/2 + .
(1) (1) (2) (2)
+ (ui 63j + uj 63i)/2 + (ui 63j + uj 63i)x3/2

+ ... (3.6)

where 6ij is the Kronecker delta. We assume that the displacement

, , k ,
ui is continuous and bounded. Then ui( ) are continuous and

bounded. In Eq. (3.6), the only terms which may contribute to a

singularity in sij must therefore come from the derivatives of

ui(k), i.e. from the terms u,

.(k) and u, .(k).

3 ’

We also

assume that the order of singularity 6§ at X, =X, = 0, if it exists,

is continuous in Xq. This means that the order of singularity of the
term ui j(k), (k =1, 2 . . .) cannot be stronger than the order of
b
(0)

the singularity of uij Therefore, to the first order of

approximation as (xl, Xy x3) + (0, 0, 0) the strains are
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e = (ui’j(o) +‘uj’i(°))/2 + (ui(1)63j " uj(l)GBi)/Z (3.7)
The terms in the first parentheses provide singular (infinite) strains
while the terms in the second parantheses yield a finite value because
ui(l) is continuous and bounded. Let
ui(l) =c, S (3.8)
where ci, (i =1, 2, 3) are constants and the dots represent terms
which vanish when (xl, x2) 2> (0, 0). Hence, to the first order of
approximation, we may write Egs. (3.5) as
u, = ui(o) + cix3 + ... (3.9)
The ui(o) term is the two-dimensional deformation and is identical
to the right hand side of Eq. (2.1) while the X3 term is the first
order approximation. However, as we discussed in Eq. (3.2), the
deformation for u; T CXg, U, = c,X5 can be included in the
two-dimensional deformations. We may therefore omit ¢y and <,y
without loss of generality, and write Eq. (3.9) as
u, = Uif(z) + 536i3x3 (3.10)
where £y = ¢4 is the strain in the Xq" direction.

Thus, to the first order of approximation, the stress singularity
at a wedge corner in three-dimensional deformations can be analyzed by
considering the two-dimensional plane strain problem superimposed by a

uniform extension in the x3-direction. In the next chapter,
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Chapter 1V, we will consider stress singularities at a free-edge point.
In Chapter V the singularities at a contact-edge point will be
discussed.

The seemingly innocent appearance of the uniform extension term, as
we will see later, makes the stress at the free-edge point inherently
singular for certain composites. Moreover, the singularity is

logarithmic.




Chapter IV
THREE-DIMENSIONAL FREE-EDGE SINGULARITY ANALYSIS
The problem studied here is the same as shown in Fig. 2 except that

now uniform extension €4 is added; thus making this problem a first

order approximation in three dimensions. We will first assume that a
homogeneous {uniform) stress solution exists for a specified €4 Two
methods will be used to analyze this problem. They give the same

solution for the cases of cross-ply and (8/-8) composites. For

composites which are neither cross-ply nor (8/-8), a uniform stress

*
solution due to the extension g4 does not exist. For these composites,

we find a solution in which (ln r) terms appear in the expressions for

stress and displacement. These will, of course, lead to singularities

at r = 0. Singularities of the type rs (-1 < Re(6) < 0) found in
the analysis of the two dimensional plane strain problem, Chapter II,

may still exist, and should be superimposed on the solution obtained here.

4.1  HOMOGENEQUS STRESS SOLUTION: METHOD 1

In this section we assume that a homogeneous stress solution exists

due to a uniform extension in the x3-direction. Hence the stress oij and

the strain tij are independent of Xy and X, By using the notations

discussed in Section 1.2 along with Eq. (1.8, 1.9, 1.10) one can obtain

For an exception see page 45

33
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the relations between the strain si. and the stress oij in the
following form

€] = 5119 * 51295 *S13%; 51,9, * S15% * S16% (4.1)
€5 = 5310 * S350, * 53305 ¥ 53,0, * S3505 F S3¢% (4.2)
g5 T 8¢,0, + 55202 + 55303 + ssaoa + SSSOS + 85606 (4.3)
where the expressions for €y £, and £, are not needed in the
following analysis, and hence, are omitted here. Since the material is
symmetric with respect to the (xl, x3) plane, [25, 26]
S16 = 516 =S4 T S26 T 536 < 536~ S54 - 556 - O (4.4)
By applying the above material symmetry properties, along with the
stress free boundary conditions at ¢ = *m/2, Eq. (2.12), one obtains
€, T 5199, + $13%3 (4.5)
£ = S309, + 53303 (4.6)
£ = 35202 + 55303 4.7
Solving for o, from Eq. (4.6), and eliminating Oq in Eqs. (4.5,
4.7) we have
Oy = £3/535 = (535/533)9, (4.8)
) T €38 3/833 + (515 7 5)3535/833)9, (4.9
E5 = E3853/S33 + (S5y 7 553535/533)9, (4.10)
By setting
Ry = 513/833
Riz ¥ 512 7 513532533
> (4.11)
Rg = s53/533
Rsp = S5p ™ S53532/%33 J
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Eq. (4.9) and Eq. (4.10) can be rewriten as
g, = Rle3 + R12°2 (4.12)
€ = R5s3 + R52°2 (4.13)
The interface continuity conditions of Eq. (2.13a) at ¢ = 0 are
equivalent to
[e,] = [e5] = [eg]1 =0 (4.14)
Using Eqs. (2.13b) and (4.14) Eqs. (4.12, 4.13) become, respectively,
[R12]°2 + [RI]:3 =0 (4.15)
[R52102 + [Rsls3 =0 (4.16)
For cross-ply composites, i.e. (0/90) composites, R5 = RS' = R52 =
RSZ, = 0 because we have assumed that material 1 is identical to material 2.
Hence Eq. (4.16) is automatically satisfied and Eq. (4.15) yields
o, = -23[R1]/[R12] (4.17)
For (8/-8) composites, R12 = Rlz1 and R, = Rl'. Equation (4.15)
is automatically satisfied and Eq. (4.16) provides Oyt
g, = -ss[Rs]/[Rszl (4.18)

For other (8/8') combinations, Egs. (4.15) and (4.16) contradict each

%
other. This indicates that the assumed homogeneous stress solution

due to a prescribed €4 extension does not exist for other (6/6') composites.

When a homogeneous solution exists, o, is obtained from Eq. (4.17)

2

or (4.18), Oy is from Eq. (4.8), while o, is arbitrary. If we

(p) o (® the values of 0. and o, obtained from

denote by oS, » Oy 2 3

%
For an exception see page 45

o , e
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Eqs. (4.17 or 4.18) and (4.8) we may write the homogeneous solution as

0 0 0 0 0
o..=¢€.]0 o. (P g + a |0 0 1 (4.19)
ij 3 2 1
0 0 03(9) 0 1 0

where e, is an arbitrary constant. A similar equation applies to ci,'.

4.2  HOMOGENEOUS STRESS SOLUTION: METHOD 2

The preceeding approach fails to give a solution when Egqs. (4.15)
and (4.16) are incompatible. The following method, which is a modified
version of the method in Chapter II, provides a means to solve the cases
for which a homogeneous stress solution does not exist. However, we
will first apply the method to find the homogeneous stress solution when
it exists, and see if this method produces the same solution as in the
previous section.

To take into account the uniform extension in the x. direction,

3
Eq. (2.1) is replaced by Eq. (3.10) so that
ui = uif(Z) + 6i3e3x3 (4.20)
oij = tijdf(Z)/dZ + cij3353 (4.21)

By Eqs. (1.1, 1.2) one obtains expressions for p, tij’ v, which are

the same as those for the two dimensiunal plane strain problem,
Eq. (2.4). Choosing f(Z) to have the form defined in Eq. (2.5), Egs.
(4.20, 4.21) may be rewritten as

- 1+6 =~ T 146
u, = I (ALUi,LZL + BLui,LZL /(1 + &) + s3ai3x (4.22)

i 3

8 - - 6
BLtij,LzL } o+ Cij33:3 (4.23)

cij = I {ALt

13,12, ¢
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where AL and BL are complex constants., Equatjons (4.22, 4.23)

"differ from Eqs. (2.6, 2.7) in the last term. Since Eqs. (2.6, 2.7) can
be written in the form of Eqs. (2.17, 2.18) when 8 is real, we rewrite

Eqs. (4.22, 4.23) for real § as

_ 148 1+8 ~ 1+6
u, =r b {aLRe(Ui,LCL ) + aLIm(Ui,LCL Y}/ (1 + &) i
+ t36i3x3 (4.24) 1
_ .6 5 ~ 5
oij =r I {aLRe(Iij,LCL ) + aLIm(Tij,LCL )}
+ cij3353 (4.25) i

where ap and EL are real coefficients, By applying the stress free i

boundary conditions specified in Eq. (2.12) at ¢ = *w/2, and the i

interface continuity condition at ¢ = 0, Eq. (2.13), one obtains 12 i

linear equations for a., a , a. ', 3. ' which can be written as
L’ L L L
6 =
r K(8)a = £.b (4.26)

where E is a column matrix whose elements consist of cij33 and

c In the special case when £, = 0, Eq. (4.26) reduces to

i333° 3
Eq. (2.19).
Since the right hand side of Eq. (4.26) is independent of r,
Eq. (4.26) holds only for § = 0: i
K(0)a = e32 (4.27) ?

Assuming that (4.27) has a solution for a whose elements are aL, ;L’

1]

4y

, ;i” and substitute the results into Egqs. (4.24, 4.25) with 6§ =
0 we obtain
i

u, = I {8LRe(°i,LZL) + aLIm(Ui,LZL)) + t36i3x3 (4.28)

.. = I (aLRe(Tij,L) + aLIm(tij’L)} + (4.29)

1)

€i1333%3




where Eq. (2.8) has been used in obtaining Eq. (4.28). Equation (4.29)

shows that oij is homogeneous.

As we pointed out in Section 2.1, the determinant of K(8) vanishes

for §

0. Hence, a solution to Eq. (4.27) exists if and only if, [27]
£'b=0 (4.30)
where &T is a left eigenvector of K(0):

£°K(0) =0 (4.31)
It turns out that there are two left eigenvectors of K(0).
Equation (4.30) then, must be satisfied for both §. For the (0/90) and

(8/-98) composites, numerical solutions indicated that Eq. (4.30) holds,

and Eq. (4.27) has a particular solution 53§(p) and two arbitrary
solutions 5(1) and 9(2). Hence
= (p) (1) (2)
a=e,a + @,8 + a,a (4.32)

where @, and a, are arbitrary constants. Substitution of Eq. (4.32)

into Eqs. (4.28, 4.29) yields
(p)

(1) (2)

u, = equ. + a,u, + a,u, (4.33)
oy = ‘3°ij(p) + uloij(l) (4.34)

where
u, P = g {aL(p)Re(ui’LZL) + EL(p)Im(ui,LZL)} + 8 x, (4.35a)
ui(“) = 3 {aL(n)ke(ui’LZL) + EL(n)Im(Ui’LZL)}, (n=1, 2) (4.35b)
°1j(p) = 1 (aL(p)Re(rij’L) + EL(p)Im(tij’L)} *¢iias (4.35¢)
Oij(l) = 1 (aL(l)Re(tij’L) + EL(I)Im(tij,L)} (4.35d)




(2)

The reason Oij is absent in Eq. (4.34) is because we have chosen

(1)

e ana o@ (2)

such that u, is a rigid body rotation, and

(2) (2)

hence oij is zero.

associated with u,

Numerical solutions for the composites considered here show that
Eq. (4.34) is identical to Eq. (4.19) for (0/90) and (6/-8) composites.

When the composite is neither (0/90) nor (8/-8) Eq. (4.30) does not

hold, and there is no solution for a from Eq. (4.27).d In the next

section we will treat this case by modifying the approach of this section.

4.3  LOGARITHMIC SINGULARITY

If no solution exists for Eq. (4.27) the assumption of uniform

stress due to a uniform extension €4 is appparently invalid. In such

a case, instead of using Eqs. (4.22, 4.23) we use the following solution:

_ 9 1+5 - = 146 '
wo= g R A, 20+ BT T ) +e g, (4.36)
o =-a-(Z[Ar 28 +BT.. 2% v, . (4.37)
ij = 18 L', L'ij,LoL 133353 :

where AL’ BL are now functions of §. It can be shown that Egs.

(4.36, 4.37) satisfy Eqs. (1.1, 1.2, 1.4) with Ui,L and Tij,L given

by Eq. (2.4). Before we substitute Egqs. (4.36, 4.37) into the boundary
and interface conditions, we apply the equivalence between Eqs. (4.22,

4.23) and Eqs. (4.24, 4.25) to Eqs. (4.36, 4.37). The result is

_d 148 1+6 ~ 1+6
u; —-aa{t I [aLRe(vi’LCL ) + aLIm(ui,LCL Y1/(1 + 8))
+ :3Gi3x3 (4.38)

*
For an exception see page 45
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0., =2 {res I [a,Re(t 4 6) + a Im(r 4 6)1-} +c e (4.39)
ij = 3% L ij,L°L L ij,L’L ij33°3
where ay, EL are now functions of 6. Performing the differentiation,
we obtain
_ 148 1+§ ~ 1+§
u, =r (In r + 3/36) 2 [aLRe(Ui’LCL ) + aLIm(ui,LCL )1/(1 + 8)
+ 536i3x3 (4.40)
., = rG(ln r+ 23/38) L [a Re(x 4 5) + a_ Im(t 4 6)]
ij L ij,L°L L ij,L°L
+ Cij3383 (4.41)
Equations (4.40, &4.41) differ from Eqs. (4.24, 4.25) by a factor of
(ln r + 3/38). 1If we apply Eqs. (4.40) and (4.41) to the free surface
conditions, Eq. (2.12) and the interface continuity conditions, Eq.
(2.13), we obtain 12 equations which can be written as (cf. Eq. (4.26))
ra(ln r + 3/36) K(6) a(d) = 539 (4.42)
~ ' I | . .
where a, whose components are ay, aL, aL » 4, is now a function
of §. This equation holds for arbitrary r if we let § = 0, and
K(0)a(0) = 0 (4.43)
)
35 (K(6)a(®) 115 o 4 = €4b (4.44)
For simplicity, we write Eq. (4.43, 4.44) as
Ka =0 (4.45)
(dK/dé)a + K(da/dé) = 539 (4.46)

where it is understood that all quantities on the left hand side of

Eqs. (4.45, 4.46) are evalu;ted at § = 0. Equations (4.45, 4.46)
consist of 24 equations for g and da/d6. If a solution exists,
substitution of g and da/dé back into Eq. (4.41) with § = 0 provides the

desired solution.

PP S




41
i
Before we discuss the solution of Eqs. (4.45, 4.46) in ‘the next |
section, we write Eqs. (4.40) and (4.41) in full with 6§ = 0: :
u, = (ln r)X [aLRe(Ui,LZL) + aLIm(Ui,LZL)] i
~ .
+ £ [aLRe(“i,LZL(lncL - 1)) + aLIm(vi,LZL(lnCL ~ 1)) j
+ (daL/da)Re(Ui,LzL) + (daL/dé)Im(Ui.LzL)]+ 536i3x3 (4.47) g
o;;= Unr) L [aLRe(rij,L) + aLIm(tij’L)] }
+ I [aLRe(tij,LlncL) + aLIm(rij’LlncL)
+ (daL/dG)Re(Tij,L) + (daL/dG)Im(tij’L)] + cij33s3 (4.48)
We see that oij has a logarithmic singularity. Again, Eq. (2.8) has
been used in obtaining Eq. (4.47).
4.4  SOLUTION FOR STRESS AND DISPLACEMENT
The system of Equations (4.45, &4.46) has a unique solution for a
if, (see [10}])
aVixt/asN # 0, N=n - m, (4.49)
where n and m are, respectively, the order and rank of K. For the
composites considered here, N = 2. However, it is rather difficult to
prove or disprove Eq. (4.49) analytically or numerically in view of the
fact that K is a 12 x 12 matrix. Instead, we regard Egs. (4.45, 4.46)
as a system of 24 equations for a and da/d8, and solve the system
numerically. We find numerically that a is unique while ds/dé has a
i particular solution and two arbitrary solutions.
|
' Noting that N = 2, one can see that K has two right eigenvectors
gfl) and 2}2) such that
ka™ =90, (=1, 2 (4.50)
t
]
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If 8 is the unique solution of both Eqs. (4.45) and (4.46), it mu.t also

be a solution of Eq. (4.45), and hence a is proportional to a right

eigenvector. Without loss of generality, let 3(1) be the eigenvector
to which a is proportional, i.e.,

(1)

a = ke._a (4.51)
~

3~

(1)

where k is uniquely determined if g is properly normalized. The
fact that dg/d& has two arbitrary solutions is obvious from Eq. (4.46)

because the coefficient of qQ/dG is 5 which is singular of order 2. If

83(ds/d6)(p) is a particular solution of qQ/dﬁ, we have

da/ds = 53(qs/d6)(p) + “11(1) + “22(2) (4.52)

where a;, a, are arbitrary constants. With Egs. (4.51, 4.52), Egs.

(4.47, 4.48) can be rewritten as

u, = kt3[(1n r)ui(l) + ui(¢)] + :3ui(p) + alui(l) + azui(z) (4.53)
= (1) (¢) (p) (1)
oij = ka3[(1n r)oij + oij ] + €5 aij + ulcij (&4.54)
(1) (2) (1)

where u, » Uy , and .. are identical te the ones defined

in Egs. (4.35b, 4.35d), while

ui(p) = 3 ((daL/dG)(p)Re(ui,LZL) + ( dgi/dﬁ)(p)lm(ui’LZL)}
+8,.x, (4.55a)
ui(°) = 3 {aL(l)Re[ui,LZL(lncL - 1]
+ 2 DOmpo, z.tn ¢, - D] (4.55b
L i, 1%L L -33b)
(p) _ (p) ~ (p)
oij = 3 {(daL/dG) Re(‘ij,L) + (daL/dB) Im(tij,L)}

+ cij33 (4.55¢)

R

it il

a

aak
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s () _

(1) ~ (1) :
i ) {aL Re(tij’Lln CL) + ar Im(rij’Lln CL)) (4.55d)

(2)

Again the reason o is missing in Eq. (4.54) is due to the fact

(2)

that u, is a rigid body rotation.

Although the solution obtained here is for composites which are
neither (0/90) nor (8/-8), application of the present solution to (0/90)
or (8/-8) composites yields k = 0. Hence a = Q by Eq. (4.51), and the

solution for dg/dé from Eq. (4.46) is identical to the solution for a in
Eq. (4.27). It follows that (dg/dé)(p) of Eq. (4.52) is identical to

a'®) of Eq. (4.32), and that ui(p), oij(P) in Eqgs. (4.55a, 4.55¢)

and Egqs. (4.35a, 4.35c¢) are also identical. Thus, the solution obtained
in Eqs. (4.53, 4.54) reduces to that given in Eqs. (4.33, 4.34) when the
composite is (0/90) or (8/-6).

For composites which are neither (0/90) nor (8/-8), k # 0_.1 We

see from Eq. (4.54) that aij has a logarithmic singularity unless €,

= 0. Therefore, unless £y happens to be zero in a three-dimensional
deformation, the stress is inherently singular for composites which are

neither (0/90) nor (8/-9).1 Moreover, the singularity is logarithmic.
Since the larger the value of k the stronger the logarithmic

singularity, k may be regarded as the "logarithmic stress intensity

ata

factor”. It should be pointed out that the singularity of k"ré, (8

< 0), as analyzed in Chapter II, may still exist for all composites.

("

However, the determination of the intensity factor k requires a

global solution while k in Eq. (4.54) does not.

For an exception see page 45
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If we replace the arbitrary constant @, by another arbitrary,
{
constant 61 defined by
@, = -k£31n Bl (4.56) 1
Eq. (4.54) can be rewritten as
.. = e,k In(z/8) o, . P + 5. (s} (4.57)
ij 3 1 ij ij )
where
~ (¢) (p)
= + .
oij(¢) koij oij (4.58)
Thus Bl must have the same physical dimension as r. We see from Egs.
(p) (1)
(4.35¢c, 4.35d) that cij and aij are constants. For both
composites considered here, cij(l) has the form
0o 0 O
g, (1 o o0 1 (6.59)
1]
0 1 0

On the other hand, we see from Eqs. (2.9, 4.55d) that oij(¢) depends on
¢, (Fig. 3). Hence 3ij(¢) and Eij'(¢) depend on ¢. In Tables 6-9
we list the logarithmic stress intensity factor k and Bij(¢) and Bij'(¢)
on the interface (¢ = 0), and on the free-edge surface (¢ = +90°).

Notice that ol1 = 012 = 013

0 at ¢ = 90°. Similarly,

~ L ~
011 012 013 0 at ¢

-90°. Hence these components are not listed

! ..' =0 ''=735,., at

in the tables. Also, since 022 = 022, 21 021, 023 = 23

¢ = 0, only 022(0), 021(0), 023(0) are listed. All Uij in Tables 6-10

have the unit of 106 psi.
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For (0/90) or (8/-6) composites, k = 0, and Eq. (4.54) may be
rewritten as ]
= (1) ~
i 305 + €395 (4.60)
where
5. =0 WP (4.61) {
1] 1)
]
is now independent of ¢. Referring to Eq. (4.19), we see that the only
~ ~ ~ .
non-zero components for Uij are 0,, and Ogq- The numerical
calculations of gij for (0/90) composites are included in Tables 6-9
while that for (8/-8) composites are given in Table 10
We see from Table 6  that 3;2 for the (0/15) composite in
Table 6 is many times larger than 333 and 333'. In other words, the 1

tensile stress at the interface is many times larger than the applied

~
axial extensional stress. Notice however that dij is not the
. ~ (1)
total stress. The total stress consists of oi' and Oij as well

as the k*r5 and k(ln r) terms.

In Figs. 10 and 11 we present the logarithmic stress intensity
factor k for all possible combinations of (6/8'). The contour lines for
constant k values are given only in one quarter of the (8, 8') plane
since the contour lines in the remaining plane are a repetition of the
ones shown in the figures. As we pointed ocut earlier in the analysis,

Figs. 10 and 11 indicate that k = 0 occurs for (0/90) and (8/-9)

composites. Of course, k is also zero for (8/8) composites in which the

two materials are the same across the interface. However, we find an




46

additional contour line for k = 0 in Figs. 10 and 11 which lies slightly
above the line 8' = 0. This is unexpected and was not obvious from the
analysis presented earlier.

In conclusion, it should be pointed out that the singular stress of

%
the type k r6 obtained in (2.27) should be added to (4.54) to obtain {
the singularities at the free edge. Using (4.58), we may write the i
stress singularity near the free edge in the form

_ * § o (1) ~
oij =kr oij + [k%(ln r) + alloij + E3°ij (4.62)

% *®
where 8§ < 0, k , k, @, and oij(l) are constants while oij and

;ij depend on ¢. The analysis presented here provides every term

on the right of (4.62) except kK and @y which have to be determined

by solving the complete boundary value problem.
Finally, it should also be pointed out that even though the layers
are assumed to be of the same orthotropic material for the numerical

calculations in this report, the theory presented here applies to any

anisotropic layered composite.
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TABLE 6
Eij of Eq. (4.58) for Composite W, (0/6')
8’ 15° 30° 45° 60° 75° 90°
k 0.0022 0.0033 0.0042 0.0040 0.0025 0
511(0) 0.0221 0.0145 0.0102 0.0056 0.0016 % 0
611'(0) -0.0222 -0.0149 -0.0112 -0.0067 -0.0021 0
}
822(90) 190.43 29.599 8.0106 1.2162 -1.3911 - -2.1000
g,,(0) 190.45 29.613 8.0208 1.2218 | -1.3895 -2.1000
622'(-90) 190.47 29.628 8.0310 1.2274 -1.3880 -2.1000%
633(90) 59.990 26.216 21.682 20.256 19.708 19.559i
G,44(0) 60.000 26.222 21.687 ! 20.258 19.708 19.559I
633‘(0) 35.132 7.1872 3.4312 2.2440 1.7848 1.6590é
o
G4 (-90) 35.137 7.1903 3.4340 2.2461 1.7856 f 1.6590!
; ;
623(90) 0 0 0 0 0 ! 0 ;
d,5(0) 0 0 0 0 i 0 5 o
523'(-90) 0.0003 0.0006 0.0007 0.0004 | 0 | 0
S SR SRR S 4
5,5(0) ~-0.0035 -0.0052 -0.0065 -0.0063 -0.0040 0
613'(0) 0.0034 0.0048 0.0059 0.0059 0.0039 0
GIZEB;“N | 6.6140 0.0092 0.0065 0.0035 0.0010 0
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TABLE 7
Sij of Eq. (4.58) for Composite W, (90/8")
' 0° 15° 30° 45° 60° 75°
k 0 0.6874 0.5030 0.2954 | 0.1297 0.0239
d,,00) 0 -0.3032 -1.0048 -1.3511 -1.1657 | -0.4910
511‘(0) 0 0.2058 0.7794 1.1633 g 1.0875 | 0.4823
622(90) -2.1000 -4.5417 -4.9455 -4.2661 ? -3.3602 -2.4156
522(0) -2.1000 -4.6419 -5.2778 | -4.7129 L -3.7456 E -2.5788
: ‘ I
622'(-90) -2.1000 -4.7473 -5.6151 -5.1610 | -4.1303 | -2.7409 |
633(90) 1.6590 1.1463 1.0615 1.2041 E 1.3944 1.5925 |
833(0) 1.6590 1.1185 0.9695 1.0805 1.2877 1.5476
G55 (0) 19.559 11.311 5.5014 2.9133 1.8095 | 1.5966
533'(-90) 19.559 7.8189 2.9701 1.7004 1.3932 1.5244
3,,(90) 0 0 0 0 0 0
823(0) 0 0 0 0 0 0
623'(-90) . 0 0.2870 0.3950 0.2754 0.1242 0.0222
813(0) 0 -1.0797 -0.7902 -0.4641 -0.2038 -0.3762
613'(0) 0 1.6460 1.8195 1.3607 0.6910 0.1382 i
3,,(0) 0 -0.0942 -0.3122 -0.4197 | -0.3621 -0.1525
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TABLE 8
Bij of Eq. (4.58) for Composite T, (0/8')

8' 15° 30° ' 45° 60° 75° 50°

k i, 0.0349 0.0610 0.0729 0.0658 0.0394 0
611(0) 0.2203 0.1919 | 0.1335 | 0.0695 0.0192 0
611’(0) i -0.2218 ; -0.1990 ; -0.1467 -0.0817 -0.0238 0
522(90) ! 62.232 T 13.729 ; 3.3929 0.0314 -1.2148 -1.5400
622(0) 67.452 13.921 ; 3.5264 i 0.1009 -1.1956 -1.5400
5,,' (-90) 67.672 14.115 1 3.6623 | 0.1729 -1.1753 -1.5400
833(90) 40.825 25.844 , 22.950 | 22.009 21.660 21.569
633(0) 40.948 25.952 | 23.025 22.048 21.671 21.569
633'(0) 22.241 6.0686 2.8463 1.7151 | 1.2441 1.1088
354" (-90) 22.260 6.0653 2.8494 1.7218 { 1.2474 1.1088
823(90) 0 0 0 0 0 0
823(0) 0 0 0 0 0 0
823'(-90) 0.0036 0.0115 0.0118 0.0062 0.0011 0
613(0) -0.0549 -0.0959 -0.1145 -0.1034 -0.0619 0
613'(0) 0.0498 0.0893 0.1076 0.0997 0.0612 0
3,,(0) 0.1444 0.1258 0.0875 0.0455 0.0126 0
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TABLE 9
aij of Eq. (4.58) for Composite T, (90/6')
8’ 0° 15° 30° 45° 60° 75°
k 0 0.7217 0.5122 0.2993 ! 0.1331 0.0252
811(0) 0 -0.4729 -1.2109 -1.5256 ! -1.2991 -0.5560
|

811'(0) 0 0.3070 0.9159 1.3004 é 1.2090 0.5460
§,,(90) -1.5400 -2.3081 i -2.1663 -1.5927 | -0.8749 -0.0430
522(0) -1.5400 -2.4380 % -2.4991 -2.0120 -1.2320 -0.1958
622'(-90) -1.5400 -2.5715 i -2.8316 -2.4273 -1.5858 -0.3481
833(90) 1.1088 0.8937 | 0.9334 1.0940 1.2950 1.5280
] 833(0) 1.1088 0.8481 0.8165 0.9467 1.1696 1.4743
g 633'(0) E 21.569 12.089 5.7896 3.0108 1.8057 1.5557
! 633'(-90) % 21.569 7.9469 2.8828 1.6049 1.3092 1.4674

523(90) ? 0 0 0 0 0 0

623(0) E 0 0 : 0 0 0 0
623'(-90) ; 0 0.3258 é 0.4190 0.2847 0.1286 0.0237
G,4(0) 0 -1.1337 ! -0.8046 -0.4701 | -0.2090 f -0.0397
613'(0) ; 0 1.7992 ' 1.9660 1.4739 é 0.759%0 0.1559
612(0) 0 -0.1349 : -0.3455 -0.4353 } -0.3707 -0.1586

[

™




TABLE 10

522 and 533 of Eq. (4.61) for (8/-8) Composites

) 15° 30° 45° 60° 75°
Composite 522 = 822' 191.14 29.887 8.2424 1.4187 -1.2079 ;
W g,, =0.." 35.231 7.2214 3.4618 2.2766 1.8203 i
33 33 !
Composite 622 = 622' 71.464 16.660 5.9075 2.2697 0.8352 l
T 833 = 633' 23.032 6.5434 3.3082 2.2137 1.7821

F/




Fig. 10 k of the k(ln r) singularity at the free-edge
for composite W




Fig. 11 k of the k(ln r) singularity at the free-edge
for composite T




Chapter V

A CONTACT PROBLEM IN COMPOSITES

5.1 TWO-DIMENSIONAL PROBLEM

In Fig. 2, the edge X, = 0 of the composite was assumed stress

free. If a rigid body is pressed against the face x, = 0, we would

1
have the deformation illustrated in Fig. 12. Assuming that the rigid

body is smooth and friction free, the boundary conditions on x) = 0

and near the origin are now given by

012 =0 G130

(5.1)

u1 =U + wx2 + .

where U and w are constants, and the dots stand for terms of order equal

to or higher than x22. The first two terms for u, can be included

1

in a rigid body displacement as we discussed in Chapter III. Therefore,
for the purpose of finding the singularity at the origin, we may replace
Eq. (5.1) by

u, =0, =0_ =0 (5.2)
The eigenvalues Py, and the associated eigenvectors Vs Tij’ as

well as the expressions for stress and displacement are the same as in
Chapter II, Eqs. (2.4-2.7). By applying the interface continuity

condition Eq. (2.13) at ¢ = 0, and the new boundary conditions Eq. (5.2)

54
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at ¢ = *n/2 to Eqs. (2.10, 2.11), we obtain a new system of 12 linear
homogeneous equations for AL’ By, AL', BL' which can be written as

‘ ﬁq=0 (5.3)

~C~ ~
where the hat is used to distinguish this new matrix from the previous

K matrix, and q is again a column matrix whose elements are the
~c 2

B,'. If § is real then Egs.

complex constants AL’ B, AL’, L

(2.17, 2.18) may be used. The system of equations obtained by applying

the boundary and interface continuity conditions to these equations is

~

| Ka = 9 (54)

~~

n .
where K is a real matrix, and a is a column matrix whose elements are

the real constants aL, ;L’ aL', a For both systems, Egs.

t
L .

(5.3, 5.4), a nontrivial solution exists if chu = 0. Equation (5.3)

is solved by the method described in section 2.2 for complex 8, while a

simpler and less time consuming method is used to find real 8 from Eq.

(5.4). Values found for § by both methods are listed in Tables 11-14.

The negative real values of §, (-1 < 6§ < 0) lead to a stress singularity

at r = 0.

5.2 THREE-DIMENSIONAL PROBLEM

As we discussed in Chapter III, a three-dimensional deformation is,

to the first order of approximation, a uniform extension £q in the

x3-direction superimposed on the two-dimensional plane strain

deformation. Similar to the free-edge problem considered in Chapter IV,
we will first assume that a homogeneous stress solution exists due to a

uniform extensional strain £s- The problem will be analyzed by two
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methods. The first method enables us to see easily if a homogeneous
stress solution exists. The second method enables us to extend the

analysis, if necessary, to the case when a homogeneous stress solution

is impossible.

5.3 HOMOGENEQUS STRESS SOLUTION: METHOD 1

The boundary condition u1 =0 on x1 = 0 of Eq. (5.2) implies
that
= ' =
aul/ax2 8u1 /ax2 0 (5.5)
along Xy = 0. If the stress, and hence the strain, is homogeneous,
Eq. (5.5) also applies along x, = 0. Now
-— t = L]
£ = (auz/axl)/z, €6 (au2 /axl)/Z (5.6)
and since u, is continuous along X, = 0,
[56] =0 (5.7)

For a homogeneous stress solution therefore, Eq. (5.7) replaces the

condition u; = 0 along X, = 0. Application of the material symmetry

properties of Eq. (4.4) and the boundary conditions of Eq. (5.2) to Eq.

(1.3) for :1, €3 zs, and €, results in

6
el = suo1 + 51202 + 51303 (5.8)
e3 = s3101 + 53202 + 53303 (5.9)
€5 T 5519 * 5529, * 5539, (5.10)
€6 = Seu9, (5.11)

Solving for 04 from Eq. (5.9), and eliminating o from the

3

remaining equations, Eqs. (5.8, 5.10) we have
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O3 = £3/533 = (53)/333)9; ~(s3,/533)9, (5.12)
| 81 5 (511 7 531513783309 + (Syp 7 S55813/833)9, * (5157533085 (5.13)
| €5 = (551 = S31553/333)91 * (S5 = $3,553/553)0, * (s54/s550e5 (5.14)
Let
Ry = 513/833 ;
Rg = S53/S34 1
1
Riy =511 7 5315137533
i f (5.15)
Riz =812 7 513532/533

Rgy = 851 7 S53539/S33

Rgp = S5y = S53535/533

r

If we apply the interface conditions Egqs.(5.7) and (4.14) to Egs. (5.11,

5.13, 5.14), we obtain

[s“]c4 =0 (5.16)
\J t - o

Ruo1 R11 9 + [R12]°2 = [Rl]s3 (5.17)
t t = -

R51°1 R51 % + [R52]°2 = [Rs]s3 (5.18)

Equation (5.16) indicates that if [564] = 0, which is the case

for (0/90) composites, 9, is arbitrary. Otherwise 9, = 0. For the

composites considered here, Ses = 564' = 0 for any angle ply. Hence

9, is arbitrary here, and will be denoted by the arbitrary constant

Another arbitrary solution is obtained from solving Egs. (5.17,

5.18). If we let g, = a,, we may solve for oy and ol', while

03 and 03' are determined from Eq. (5.12). The result can be

written in the following form:




PRI (5.19)

g = E50 1 2°
where
r - r .
°1(p) 0 0 0 0 0
P =10 o o oD =10 o0 1
(p)
0] 0 o 0 1 0
- 3 L J
(5.20)
B -
o] (2 0 0
1
0(2) = 0 1 0
(2)
0] 0 ag
. 3 -
and
0. ® = _((R,JR.," - [R.IR,.')/(R,.R..' = Re.R..') |
1 1°7°51 57711 11751 51711
0.9 = C([R,IR.," = [Re IRy ")/(R, Rey' = Re,R.. ")
1 12°°°51 527711 1151 5111
> (5.21)
) _ _/q . (p)
O3 = t(1 -850 )8y
2y _ _ (2)
O3 " = 753,07 ¥ 535)/85, §
Similar expressions can be obtained for g'.
. - [} - [} = 1 = - t
For (8/-6) composites, R1 = R1 s R11 = R11 , R12 .R12 , RS R5 .
- - ' = - ' (p) (2) .
R51 R51 and RSZ R52 - 9 and % in Fq. (5.21) are reduced to
(P) _ . (2) _ .
01 RS/RSI’ 01 RS%/RSI (5.22)
Moreover, g(p) = g'(p), 9(2) = g'(z) and hence ¢ = ¢'. In Tables 15 and 16
we list al(p), 03(p), 01(2), and 03(2) for both composites of (8/-8) ply.

"y




(®) _ 4 (P

1 1 while

For (0/8') composites in Tables 17 and 18, o

(p) ()

a

3 and 03

are quite different. Tables 19 and 20 show

(2)

the results for (90/8') composites; in this case o4

is nearly

1 (2)
3

(2) (2)

and o, '

equal to o 1

, while 01 are quite different.

(p) and ¢ (P) in Tables 15-20 have the unit of 106 psi.

Both 01 3

. S v 2) _ (»
For (0/90) composites, RSl R51 = 0 and 9, , O

i = f o= = ' =
of Eq. (5.21) do not exist. In fact R52 = R52 R5 R5 0

also, and Eq. (5.18) is trivially satisfied. Equation (5.16) and

then yield three arbitrary solutions. Letting Op = 85 0, = @,
and 01' = aj, the solution can be written as
= (p) (1) (2) (3)
g = t3g + alg + uzg + a3g
where g(p), g(l), and 3(2) are identical to the ones defined in
(p) (2) .
Egs. (5.20, 5.21) except 9 and 9 which are replaced by
(p) _ _ 2y _ _
° RyV/Ryp> 01 7 = (Rl Ry,
and 2(3) is
~
g (3 0 0
1 ]
|
i ;
¢ ="o 0 0 ;
)
I
0 0 5,3 ;
- 3 .J
where
o (3) (3 _0(3)

= ' =
1 TRy /Ry 9 1 S31/533
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(5.17)

(5.23)

(5.24)

(5.25)

(5.26)
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For o', the components of g'(p), g'(z) and g'(3) are given by
v(p) = 1 (2) - 1(3) -
°1 o, °1 0, °1 1
(5.27)
|(p) - [} .(2) = - 1 ' 1(3) = - [ 1
93 =1/s33, 9 32 /833 0 93 S31 /33

In Table 21 we list the result for (0/90) composites. For the

composites considered here ¢

~

(3) o 40 (3)

It appears that Eqs. (5.17, 5.18) always have a solution unless one

of the following relations is satisfied:

0=R, =R "= (R,]*#I[R] (5.28)
0 =Ry, =Rg,' = [Rg,) # [Rg] (5.29)
Ry1/Rsy = Ryy'/Rgy" = [Rp1/[Rg)] # [Ry1/(Rs] (5.30)

If anyone or more of the above three equations is satisfied, Eq. (5.17)
and/or (5.18) are inconsistent and a solultion does not exist. For the
composites considered here, none of Eqs. (5.28, 5.29, 5.30) are

satisfied for all possible combinations of (8/8') angles. Therefore, a
homogeneous stress solution always exists for a uniform extension ¢

3"

5.4  HOMOGENEOUS STRESS SOLUTION: METHOD 2

Equations for stress and displacement are the same as Egs. (4.28,
4.29). Upon applying the boundary conditions of Eq. (5.2) at ¢ = *7/2,
and the interface continuity conditions of Eq. (2.13) at ¢ = 0, we

obtain the system of equations

o>

a = be,

(5.31)

¢




P OB s 75 0 141 -~

SRR

,g

which have a non-trivial solution if ng = 0, where ng = 0. For

the composites considered here ng = 0 for all (8/8') ply, and the

numerical solurions agree with those obtained by method 1.
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TABLE 11

Negative Real Roots § for r6 Terms at the Contact-Edge in Composite W

)
8
8' =0 8' = 90° 8' = -8 1
. -4 -4 -3 :
15 -9.3671 x 10 -4.6536 x 10 -4.6679 x 10 :
° -2 -3 -2
30 -1.2238 x 10 -6.0849 x 10 -6.8300 x 10
° -2 -2 -1
45 -3.6434 x 10 -1.8759 x 10 -1.7190 x 10
o '2 '2 . '1
60 -5.5918 x 10 -3.0693 x 10 -2.0388 'x 10
o ‘2 ‘2 "1
75 -3.8771 x 10 -2.3686 x 10 -1.1389 x 10 1
|
TABLE 12

Negative Real Roots § for r5 Terms at the Contact-Edge in Composite T

5
8 |
8' =0 8' = 90° 8' = -9 i
° -3 -3 -2 L
15 -2.5704 x 10 -1.1110 x 10 ~-1.2894 x 10
° -2 -3 -1
30 -1.9977 x 10 -8.6484 x 10 -1.0695 x 10
° -2 -2 -1
45 -5.0588 x 10 -2.3031 x 10 -2.2038 x 10
° -2 -2 -1
60 ~-7.1066 x 10 -3.5292 x 10 -2.3995 x 10
° -2 -2 -1 )
75 -4.6735 x 10 -2.6708 x 10 -1.3011 x 10 i




* 5
Complex Roots § for r

TABLE 13

Terms at the

Contact-Edge in Composite W

8 61 62 53 64
15/-15 -.005 .995 + .100 i 1.996 + .120 1 2.994 + .180
0/15 -.001 ! .999 + ,055 i 2.0 + .053 {1 2.998 + .099
| 90/15 -.001 | .998 + .065 i 1.998 + .049 i
;‘ 60/-60 -.204 i .701 + 721 i 1.677 + .882 i 2.449 + 1.453
z“ 0/60 -.056 .896 + 413 i 2.007 + .359 i1 2.567 + .919
g 90/60 -.037 .840 + .524 i - 1.985 + .271 i 2.657 + 1.133
: TABLE 14
* 5

Complex Roots & for r

Terms at the

Contact-Edge

in Composite T

0 } 5, 5, 5, 5,
15/-15 ! ~.013 .989 + .156 i 1.994 + ,185 i 2.993 + .268
0/15 ! ~.003 .997 + .081 i 1.999 + .081 i 2.997 + .150
90/15 ; ~.001 .996 + .103 i 1.997 + .078 i
60/-60 | -.240 649 + 771 i 1.621 + .948 i 2.359 + 1.558
0/60 -.071 .887 + .436 i 2.030 + .363 1
90/60 -.035 .803 + .575 i 1.987 + .274 4 2.572 + 1.246

%
zero and positive integers are

also roots for §
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TABLE 15
°1(p)’ o3(p), 01(2), 03(2) of Egs. (5.21, 5.22) for Composite W, (8/-8)
8 15° 30° 45° 60° 75.°
°1(p) = ol'(p) -28.239 -5.8883 -1.7000 -0.2970 0.2543
03(p) = 03'(9) -3.4539 0.8866 1.7000 1.9725 2.0795
01(2) = 01.(2) 0.1477 0.1970 0.2063 0.2093 0.2106
o, %) = 03'(2) 0.2024 0.2120 0.2137 0.2143 0.2146
TABLE 16
al(p), 03(p), 01(2), 03(2) of Eqs. (5.21, 5.22) for Composite T, (8/-8)
8 15° 30° 45° 60° 75°
“1(p) = al'(p) -15.948 -4.4035 -1.6200 -0.6304 -0.2332
o, P = 03'(p) 2.4089 1.7733 1.6200 1.5655 1.5436
0,B) =0 @ 0.2232 0.2643 0.2742 0.2778 0.2792
0, = 03'(2) 0.2886 0.2863 0.2858 0.2792 0.2855
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TABLE 17
ol(p) () 01(2) 3(2) of Eq. (5.21) for Composite W, (0/6')
8' 15° 30° 45° 60° 75°
ol(p) -28.206 | -5.8551 -1.6667 -0.2637 0.2877
1
ol'(P) -28.239  -5.8883 -1.7000 -0.2970 0.2543
i
°3(p) 14.077 . 18.770 | 19.650 19.945 20.060
f i
03'(p) -3.4539 | 0.8866 | 1.7000 1.9725 2.0795
01(2) 0.1478  0.1971 | 0.2063 0.2094 0.2106
| |
f |
ol'(z) 0.1477 | 0.1970 | 0.2063 0.2093 0.2106
03(2) 0.2410 | 0.2514 0.2533 0.2540 0.2542
i
03'(2) 0.2024 0.2120 0.2137 0.2143 0.2146
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i TABLE 18
ol(P), o, P, 01(2) 3(2) of Eq. (5.21) for Composite T, (0/8')
8’ 15° 30° 45° 60° 75°
o, (P) -15.565 -3.9220 -1.1149 -0.1169 0.2837
01'(p) -15.948 -4.4035 -1.6200 -0.6304 -0.2332
o, P 17.642 20.902 21.688 21.967 22.079
03'(p) 2.4089 1.7733 1.6200 1.5655 1.5436
01(2) 0.2245 0.2660 0.2760 0.2796 0.2810
0,' 0.2232 0.2643 0.2742 0.2778 0.2792
03(2) 0.3429 0.3545 0.3573 0.3583 0.3587
o, ¥ 0.2886 0.2863 0.2858 0.2856 0.2855

-7 et WIS




®), 4 @) 03(2) of Eq. (5.21) for Composite W, (90/8')
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TABLE 20
°1(p)’ o, (P), 01(2) (2) ¢ Eq. (5.21) for Composite T, (90/8')
8' 15° 30° 45° 60° 75°
°1(p) -228.12 -61.789 -21.688 ~7.4310 -1.7076
ol'(p) -15.948 ~4.4035 | -1.6200 -0.6304 -0.2332
03(p) -2.9311 0.3289 A 1.1149 1.3943 1.5065
03'(P) 2.4089 1.7733 1.6200 1.5656 1.5436
01(2) -0.5329 0.0598 0.2027 0.2535 0.2739
01.(2) 0.2232 0.2643 0.2742 0.2778 0.2791
03(2) 0.2695 0.2812 0.2840 0.2850 0.2854
03'(2) 0.2886 0.2863 0.2860 0.2856 0.2855




TABLE 21

(p) () (2) (2) (3) (3)
% 3 1 % 29 "9
of Eqs. (5.21, 5.24, 5.26) for Composites, (0/90)

s O » @

(0/90) Composite 1 Composite 2
ol(P) x 10%si 0.3965 0.4032
cl‘(p) x 10%psi 0 0
o, P x 10%si 20.083 22.113
03'(p) x 10%psi 2.1000 1.5400
01(2) 0.1888 0.2618
01'(2) 0 0
03(2) 0.2497 0.3533
03'(2) 0.2100 0.2800
01(3) 0.1050 0.0700
al'(3) 1 1
0, = 03'(3) 0.0220 0.0196
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material 1

cij’ 6 ‘

Fig. 12

A contact-edge between two adjacent layers (6/8')
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