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FOREWORD

This program is conducted by General Dynamics, Fort Worth Division,
with George Washington University, (Dr. J. N. Yang) and Modern Analysis
Inc. (Dr. M. Shinozuka) as associate investigators. This program is
being conducted in three phases with a total duration of 50 months.

This report was prepared under Air Force Contract F33615-77-C-3123,
"Durability Methods Development". The program is sponsored by the Air
Force Wright Aeronautical Laboratories, Flight Dynamics Laboratory,
Wright-Patterson Air Force Base, Ohio, with James L. Rudd as the Air
Force Project Engineer. Dr. B. G. W. Yee of the General Dynamics'

Materials Research Laboratory is the Program Manager and Dr. S. D.
Manning is the Principal Investigator. This is Phase I of a three phase
program.

A durability analysis methodology has been developed under Phase I
for satisfying the Air Force's durability design requirements for advanced
metallic airframes. This effort is documented in five separate volumes:

Volume I - Durability Methods Development - Phase I Summary

Volume II - Durability Analysis: State-of-the-Art Assessment

Volume III - Structural Durability Survey: State-of-the-Art
Assessment

Volume IV - Initial Quality Representation

Volume V - Durability Analysis Methodology Development

The Phase I effort is summarized in Volume I. This report (Volume
V) documents in detail the durability analysis concepts and procedures
developed under Phase I.

iii
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DEFINITION OF TERMS

1. Deterministic Crack Growth - Crack growth parameters are treated as

deterministic values resulting in a single value prediction for crack
length.

2. Durability - "The ability of the airframe to resist cracking (includ-

ing stress corrosion and hydrogen induced cracking), corrosion, thermal
degradation, delamination, wear, and the effects of foreign object
damage for a specified period of time" [1].

3. Durability Analysis - An analysis for quantifying the extent of struc-
tural damage as a function of service hours used for ensuring compliance

with the Air Force t s durability design requirements for advanced metallic

airframes.

4. Economic Life - "... occurrence of widespread damage which is uneconom-
ical to repair and, if not repaired, could cause functional problems
affecting operational readiness" [1].

5. Economic Life Criteria - Analytical guidelines for quantifying economic

life.

6. Economic Repair Limit - Maximum damage size that can be economically
repaired (e.g., repair 0.030"-.050" radial crack in fastener holes by
reaming hole to next size).

7. Equivalent Initial Flaw Size (EIFS) - A hypothetical crack assumed to
exist in the structure prior to service. It characterizes the equiva-
lent effect of actual initial flaws in a structure detail. Values are
usually determined by back extrapolating fractographic results.

8. Initial Quality - "A measure of the condition of the airframe relative
to flaws, defects, or other discrepancies in the basic materials as
introduced during manufacture of the airframe" [1].

9. Probability of Crack Exceedance - Refers to the probability of exceeding
a specified crack size at a given service time. It can be determined
from the statistical distribution of crack sizes and it is the funda-

mental quantity for predicting economic life.

10. Time-To-Crack-Initiation (TTCI) - The time or service hours required to
initiate a specified (observable) crack size in a structural detail.

xv



SECTION I

INTRODUCTION

Current U. S. Air Force structural integrity and durability design
specifications [1-3] require that airframe components be designed such
that the economic life be analytically predicted. The conventional
fatigue analysis, while capable of estimating design life, does not lend
itself to predicting the economic life, nor is it capable of providing
a definition of economic life. In predicting the economic life, the entire
crack population should be taken into account, and hence the statistical
approach is essential. Literature describing the current practice re-
garding crack growth damage accumulation with applications to structural
safety, durability, damage tolerance, and reliability is available[4-9]
In particular, the durability and the economic life requirements have been
reviewed in detail in Ref. 9.

The cost of maintenance, including the costs of inspection, repair,
rework, replacement, down time, etc., for aircraft structures, in order
to fulfill the requirements of safety, durability, danage tolerance and
reliability, is of practical importance. It is well-known that after a
certain service life, referred to as the economic life, either the cost
of maintenance or the number of cracks exceeding the economical repair
crack size increases so rapidly that the durability requirement cannot
be satisfied. In an attempt to demonstrate statistically the existence
of the economic life quantitatively, an exploratory investigation was
made to estimate the service cracks and maintenance cost [103. In
Ref. 10, however, restrictive limitations were imposed, for simplicity,
in the exploratory studies.

In this volume, an analytical durability methodology that is capable
of quantitatively predicting the economic life of advanced metallic air-
craft structures has been developed. The methodology is based on sound
analytical and statistical approaches. It accounts for various service
conditions, such as any type of initial fatigue quality, crack growth
damage accumulation, loading spectra, material/structural properties,
usage change, inspection and repair maintenance, etc. Hence, the method-
ology presented herein is general enough for practical applications. The
formulation allows for the determination of the economic life using either
one of the following two criteria; (i) a rapid increase of the number of
crack damages exceeding the economic repair crack size, and (ii) rapid
increase of the maintenance cost. The economic repair crack size ae is

1



defined as the crack size below which the least expensive repair procedure
can be used, such as remaing the fastener holes to the next hole size. The

size ae is usually between 0.03" and 0.05" depending on the location and
the fastener hole size.

The durability critical component may also be subjected to a sched-
uled (nonperiodic) inspection and repair maintenance procedure as shown
in Fig. (1), in which a component without a maintenance procedure is a
special case. Within the framework of the first criterion of the economic
life, the percentage (or numbers) of cracks exceeding ae is obtained as a
function of the service time. The percentage of cracks exceeding ae for
both cases, with or without a scheduled maintenance, is schematically
shown in Fig. (2). For the second criterion of the economic life, the
average cost of maintenance, including the cost of inspection and repair,
has been formulated as a function of service time, thus permitting a
determination of the economic life.

The analytical methodology is demonstrated herein by a numerical
example. A durability critical component of a fighter aircraft under
scheduled inspection and repair maintenance procedures has been considered
to demonstrate the methodology developed herein. The number of cracks in
the component exceeding the economic repair crack size with any probabil-

ity and confidence levels is obtained as a function of service time. It
is shown numerically that the number of cracks exceeding the economic
repair crack size (with any probability and confidence levels) increases
rapidly after a certain service time, thus determining the possible eco-
nomic life of the durability critical component. While the inspection
and repair maintenance procedures have a significant impact on the safety
and reliability of aircraft structures [e.g., 11-17], its effect on the
economic life of a component is shown to be limited.

1ST SERVICE 2ND SERVICE 3RD SERVICE 4TH SERVICE
INTERVAL INTERVAL INTERVAL INTERVAL

T0O =0T, T2  T3  T

TT 2 -4--T3 T4-- T5
1ST 2ND 3RD 4TH

INSPECTION INSPECTION INSPECTION INSPECTION
AND REPAIR AND REPAIR AND REPAIR AND REPAIR

Figure 1 Inspection and Repair Maintenance Schedule
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SECTION II

TECHNICAL OVERVIEW

An important input parameter to the durability analysis is the
initial fatigue quality of the critical parts of the aircraft struc-

tures. For engineering analysis and design purposes, the initial
fatigue quality has been characterized by either the time to crack ini-
tiation (TTCI) or the equivalent initial flaw size (EIFS), and attempts
have been made in the literature [6, 18-35] to characterize the statis-
tical distributions of both using available laboratory or field data.

The time to crack initiation is defined as the time at which a vis-
ible crack size ao, say 0.03", occurs. In the present development of
the durability analysis methodology, the input initial quality is chosen

to be the time to crack initiation (TTCI). The reasons are:(i) the
crack size a 0 at crack initiation is physically observable, and (ii)
test data can be obtained from the coupon specimens and the full-scale
components, including the test data of fractography.

The time to crack initiation, however, is a function of so many
variables that if any one variable changes, such as loading spectra or
stress level, test data may have to be generated again, since the func-
tional relation between TTCI and other influencing variables is not
available to date. This situation becomes particularly critical in the
present durability analysis where the crack growth damage at each loca-

tion of the entire durability component has to be estimated. Since the
maximum stress level of the loading spectra may vary from one location
to another, it may not be economically practical to conduct laboratory
tests for TTCI for all maximum stress levels which may occur at all the

fastener holes.

As a result, the input data of TTCI, which is statistically charac-
terized by the three-parameter Weibull distribution [20, 21],is converted
(transformed) through backward extrapolation herein by use of a crack
propagation law to determine the statistical distribution of the "equi-
valent" initial flaw size [20,21,36] expediently. Such an approach is
motivated by the expedient necessity stated above. Various questions
associated with such an approach will be justified later, except to
emphasize that the equivalent initial flaw sizes thus obtained for one
type of particular aircraft cannot necessarily be used for other types
of aircraft with completely different mission characteristics. Note
that the statistical distribution of the equivalent initial flaw size
derived from the three-parameter Weibull distribution of TTCI is consis-
tent with the physical fatigue wear-out process of metals [20,21,36].

5



It is, therefore, very important to emphasize that the durability analysis
methodology developed herein does not distinguish the time to crack ini-
tiation approach from that of the equivalent initial flaw size approach.
This is because both approaches are interrelated . Again, it should be
noted that one set of the equivalent initial flaw size data obtained
from one type of aircraft cannot necessarily be used for other types of
aircraft with different mission characteristics.

The entire population of the equivalent initial flaw size, as speci-
fied by its statistical distribution derived from TTCI data,is then sub-
jected to service loading spectra consisting of possibly various different
missions. The crack growth damage accumulation under spectrum loading is
computed using a general crack growth master curve which can be obtained
either by a general computer code or by any crack growth model or experi-
mental results, including those of fractography. It should be men-
tioned that the crack growth damage calculation approach recently proposed
by Gallagher [37-39] can also be used conveniently.

Thus, the statistical distribution of crack sizes at any service

time T can be obtained from that of the equivalent initial flaw size

distribution through the transformation of the crack growth damage

accumulation master curve. Then, the percentage of cracks exceeding

the economic repair crack size ae with certain probability and con-

fidence levels can be computed as shown in Fig. (2).

A maintenance program can be implemented in service where inspections
and repairs are performed at scheduled intervals. The statistical uncer-
tainties of the NDI procedure in crack detection has been accounted for.
When a cracked detail is detected and repaired, its fatigue strength is
assumed to be renewed in the sense that its crack size distribution is
identical to that of the equivalent initial flaw size prior to service,
and its crack propagation characteristic remains unchanged, i.e., neglec-
ting the possible effects of cold-work and others. The crack growth
damage accumulation of the repaired details, referred to as the renewal
details, has also been taken into account.

During inspection, however, some cracked details may not be detected
depending on the resolution capability of a particular NDI procedure
employed. When a crack is missed during inspection, it continues to
grow until the next inspection, at which time it will have a higher prob-
ability of being detected. However, the probability of failure of the
component increases. The reliability of the entire durability critical
component in any service interval has been formulated analytically.

As a result, the statistical distribution of crack sizes is shifted
and changed continuously in service due to crack propagation. It is also
subjected to truncation and modification after each inspection and repair.

6



The statistical distribution of crack sizes at any service time is
derived, and the number of cracked details exceeding any crack size

with certain probability and confidence levels are obtained as a func-

tion of service time.

Finally, the average number of cracks detected and repaired during
each maintenance is obtained and the average cost of maintenance is

formulated as a function of the service life.
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SECTION III

STATISTICAL CHARACTERIZATION OF INITIAL FATIGUE QUALITY

One of the most important factors affecting the durability and
fatigue life of a structural component is the initial fatigue quality.
The initial fatigue quality of a component depends on such variables as
material properties, drilling techniques, welding qualities, manufac-
turing processes, assembling of structures, etc. To characterize the
initial fatigue quality as a function of various influencing variables
is a major undertaking. Nevertheless, for analysis and design purposes,
the initial fatigue quality can be characterized by either the time to
crack initiation (TTCI) or the equivalent initial flaw size (EIFS).

The time to fatigue crack initiation can be defined as the time at
which a visible crack size a 0 , say 0.03", occurs. For practical engi-
neering purposes, attempts have been made to characterize the statis-
tical distribution of time to fatigue crack initiation for applications
to fatigue analysis and design of aircraft structures [22-34].

The advantages of the time to crack initiation (TTCI) approach are,
(i) the crack size at crack initiation is physically observable, (ii)

test data can be obtained from coupon specimens and full scale com-
ponents directly, and(iii) linear fracture mechanics for fatigue crack
propagation can be applied after crack initiation. Hence, the fatigue
process of metals has been traditionally divided into three stages:

(a) fatigue crack initiation, (b) fatigue crack propagation (stable
crack propagation), and (c) fatigue fracture (unstable crack propagation).

The disadvantage, however, is that it is a function of several
variables, such as stress level, loading spectra, manufacturing processes,
etc. Thus, if any one of the influencing variables changes, e.g., stress
level or loading spectra, test data may have to be generated again, since
the functional relation between TTCI and these influencing variables has
not been established to date. This situation becomes especially criti-
cal in the durability analysis of aircraft structures where the crack
growth damage at each location of the critical component has to be esti-
mated. Since the maximum stress level of the loading spectrum may vary
from one location to another, it is economically impractical to conduct
laboratory tests for TTCI for each maximum stress level.
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Another characterization of the initial fatigue quality is the
initial flaw size existing in the structure prior to service [6,18,19,35].
Detectable flaws or defects do exist in the components prior to service
[16,10]. However, most of the "initial flaws" existing in the structure
are not detectable by any NDI technique. Thus, the initial flaw size is
usually obtained from the results of laboratory fatigue tests. When
detectable flaws are observed during fatigue tests, they are extrapolated
backwards using a suitable crack propagation law to estimate their "equi-
valent" initial flaw size (EIFS) [6,18,19,35]. The backward extrapola-
tion has to be validated using fractographic results. This approach implies

that the entire fatigue process is essentially subcritical flaw growth.
Test data of the equivalent initial flaw size thus obtained have been
available, and their distributions have been characterized by the four-
parameter Johnson distribution [6,10,18,19,35].

The advantage of this approach is that, once the initial flaw size
distribution is established, the fatigue crack propagation under various

service loading spectra can be predicted analytically without further
experimental tests. Furthermore, the equivalent initial flaw size

approach can be used to study the effect of various factors, such as
drilling techniques, manufacturing processes, etc., on the fastener hole
quality [35].

The input initial fatigue quality to the durability analysis method-
ology developed herein is the time to crack initiation, because of the
advantages stated above and because of the familiarity of practicing
engineers. TTCI data should be obtained from the test results under
design loading spectra. Since TTCI is a function of several variables,
in particular the stress level in the loading spectra, and since the
stress level varies from one region of the durability critical component
to another, it may be economically impractical to generate test results
of TTCI for each stress level. This is critical to the durability anal-

ysis in which the entire crack population in the whole component should
be taken into account.

As a result, the input TTCI data under the design loading spectra
with one maximum stress level is used in the analysis. Then, the TTCI
data is proposed to be fitted by the three-parameter Weibull distribution
[20,21]. The statistical distribution of the equivalent initial flaw
size is derived from the three-parameter Weibull distribution of TTCI

and the durability analysis is started from the statistical distribu-
tion of the EIFS. This expedient approach simplifies significantly the
durability analysis procedures [20] as will be discussed later along

with the justification of such an approach.
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Since the Weibull distribution for TTCI represents the wear-out

fatigue process, the derived new distribution for the equivalent initial

flaw size bears the physical notion of the wear-out fatigue process.
Methods of estimating the distribution parameters and confidence levels
will be described. Finally, test results of TTCI and EIFS are presented
to demonstrate the validity of the proposed distribution. It will be
shown that the derived distribution fits the EIFS data better than any

other distribution function.

3.1 Time to Crack Initiation (TTCI)

Traditionally, the lognormal distribution has been used to describe

the statistical distribution of the time to fatigue crack initiation
(TTCI) [22-23]. However, the failure rate (or risk function) associated
with the lognormal distribution initially increases and then eventually
decreases. This is inconsistent with the fatigue wear-out model. From
a physical standpoint, it is generally agreed that metal fatigue is a

wear-out process. For example, the longer a specimen has survived
fatigue testing, the probability of specimen failure increases. Thus,
the fatigue life failure rate should increase monotonically. If the
failure rate of the fatigue life is a positive power function of the ser-
vice time, then it can be derived mathematically that the distribution

function of the time to crack initiation is Weibull, i.e.,

F (t) = P[T<t] = I - e , t > 0 (1)

in which T is a random variable indicating the time to crack initiation,

a is the shape parameter and ý is the scale parameter. In Eq. (1),
F (t) = P[T!t] is the probability that the time to crack initiation T isT
smaller than or equal to a value t.

The Weibull distribution given by Eq. (1) has been used to describe

the time to crack initiation [24-34], and methods of estimating the param-
eters a and ý from test data are available [26-27].

Observations of extensive specimen test data indicate that a is
fairly constant for a particular material and it is not sensitive to

specimen geometry, testing method, specimen size, etc. Compilation of
coupon test data indicates that a = 4.0 may be appropriate for aluminum
[27]. Moreover, attempts have been made to apply the Weibull distribu-
tion for the time to crack initiation to available service data for var-
ious types of aircraft, for instance C-130, C-141, F4, etc. [30-34].

An improvement in predicting the time to service crack initiation has
also been made by taking into account the statistical variability of

service loads [34].
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The lower bound of the two-parameter Weibull distribution given
by Eq. (1) is zero. The lower bound, in effect, depends on the defi-
nition of the crack size a 0 at crack initiation. As a result, the fol-
lowing three-parameter Weibull distribution should be used for gener-

ality [20],

F (t) = P[T<t] = 1 - exp {- (2) )
T

in which 6 is the lower bound of TTCI. The lower bound 6 increases as
the defined crack size a 0 at crack initiation increases.

3.2 Fatigue Crack Propagation in Small Crack Size Region

As mentioned previously, the equivalent initial flaw sizes(EIFS)
arenot observable by any NDI technique. They are obtained from detec-
table crack sizes observed during fatigue tests by backward extrapola-
tion. Such an extrapolation must be verified using fractographic
results. A significant contribution to the prediction of crack growth
damage under complex flight loading has been made recently by Gallagher
who indicates that the crack growth rate under flight-by-flight loading
spectra can be written as follows [37-39)

da -G(
dt = G(Kmax) (3)

in which t represents the flight (or flight hour or miniblock of spectra),
G and X are parameters depending on such factors as loading spectra,
material and structural properties, etc.

In Eq. (3), K is the root mean square of the maximum stress
intensity factor, max

max =\max/••a 4
2

where a is the mean square of the maximum stress in the flight spectra
max

and i(a) can be expressed in terms of the stress intensity factor coeffi-
cient ý(a), as

12



4(a) = W(a)j (5)

The stress intensity factor coefficient ý(a) depends on the crack
size, the specimen width, the crack geometry (e.g., through-the-thick-
ness crack, part-through crack, corner crack), etc. In general,
ý(a) can be approximated by a power series of the crack size a as

CO m
4(a) = E n. a (6)

i=l1

In the region of small crack size, i.e., smaller than the crack
size a 0 at crack initiation, a good approximation can be obtained by

taking the first term only, i.e.,

m1
ý(a) n n1 a (7)

Substituting Eqs. (4) and (7) into Eq. (3) , one obtains

da(t)

dt Qa t (8)

The advantage of the miniblock approach proposed by Gallagher
[37-39] is that the crack growth damage can be computed by performing
the flight-by-flight integration rather than the cycle-by-cycle inte-
gration, thus reducing a significant amount of computer time.

While the validity of the miniblock approach has been verified
[37-39], Eq. (8) needs to be verified using physical observations.

If plots are obtained of log da/dt versus log a for all specimens
tested in a data set, then a curve fitting technique can be used to find

the best-fitting straight line through the data points. A least squares
technique is sufficient and by minimizing the least squares error,
"composite" values of b and Q, the slope and intercept of the line, respec-

tively, can be determined for the data set as a whole. Typical plots
of test data and Eq. (8) demonstrate good agreement as shown in Figs.
(3) and (4). The relation given by Eq. (8) eventually becomes invalid

when the crack size becomes large as will be discussed later.
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By back extrapolation from the observed TTCI values using Eq. (8)
and these composite Q & b values, the EIFS distribution can be found.
Although this distribution cannot be verified by direct physical observ-
ation , when grown out to some time t again using Eq. (8) , the predicted
distribution of crack sizes at this time t compares very closely with the

observed distribution. This suggests that the crack growth model is
valid and that the composite Q and b values obtained represent an aver-

age growing crack sufficiently well. These findings are detailed in
Section 3.5.

3.3 Statistical Distribution of EIFS

Let a(T) be the crack size at T flight hours, where T is the time
to crack initiation, and a(0) be the initial crack size (at t=0) prior
to service. It is obvious that a(T)=a 0 is the crack size at crack initia-
tion. Integration of Eq. (8) from t=0 to t=T yields the relation
between the initial flaw size a(0) and a 0 ,

a0

EIFS = a(0) =0()

in which

c = b - 1 (10)

The statistical distribution of time to crack initiation T, is
given by Eq. (2) . Thus, the statistical distribution of the initial
flaw size, a(0), can be derived from Eq. (2) through the transforma-
tion of Eq. (9) as follows:

F a(x) =X =~() P c[ ]]a(o)X Pa(0)<x = [(l+a° cQT)I/c -

= P a~§xc(l+a~cQT)] = P T> (xICao1 (11)

=1 - 1{< (x-c-a-c))CQ 0

Substituting Eq. (.2) into Eq. (11) , one obtains the distribution
function F a(o)(x) of the initial crack size as follows
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S x -a0 -cQs

Fa () = exp c- Q ; x<x (12)a (0)12)

= 1; x>x
-u

where x is the upper bound of the initial crack size.
U

u

x. (a 0c +CQE: )l/c (13)

Such a transformation is schematically shown in Fig. (5).

The EIFS cumulative distribution, Fa(0) (x),Eq. (12), cannot be

verified directly from fractographic results. However, the cumulative
distribution, F a(t)(x), of the crack size a(t) at any service time t

where crack sizes are observable from fractographic results can be
derived from F a()(x). A verification of F a(t) (x) then gives an indirect

verification of Fa(0) (x). Fa(t) (x) is verified using actual fractog-
raphy in Section 3.5.

The cumulative distribution of crack sizes at any service time t,
F a(t (x), is described by Eqs. (14) and (15) (See Appendix for

derivation),

SI FY1 't) -aoc-cQE ' 0<Yl()x

Fa(t) (x) exp L-a cQ Q Ly(t)<x (14)

- 1 ; Y1 (t)>x

where,

Yll+) 1/c (15)[l+xCcQt]

3.4 Estimation of Parameters and Confidence Level

The three parameters, ct, ý, and c, appearing in Eq. (2) should be
determined from test results of time to crack initiation. The curve
fitting procedure along with the least square method can be employed to
estimate a, a, and E as follows.
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First, a value is assumed for the location parameter E. Then,
Eq. (2) is transformed into the following

kn[-kn(l-F (t))] = akn(t-e)-clkný (16)

T

Let
Z = kn[-kn(l-F T(t))]

Y = kn(t-e) (17)

U = -aWnB

Then, Eq. (16) -reduces to a straight line in the (Y,Z) plane,

referred to as the probability paper,

Z = aY + U (18)

Test data of time to crack initiation can be plotted on the proba-

bility paper, and ct and ý are estimated using the least square fit.

Another value of E is then assumed and the same procedure is repeated
to estimate another set of a and ý. The final values of a, ý, and 6 are

chosen to minimize the corresponding mean square error between the test
data and the fitted distribution.

For given a and c, the y confidence level for ý, denoted by PV, is

given by [27]

= [L K2n (2n)] (19)
2n y

in which n is the total number of test data points and K2(2n) is the y-

fractile of the chi-square variate with 2n degrees of freedom. Eq. (19)

would be exact if the estimate of ý were obtained using the maximum-
likelihood method.

3.5 Test Results And Correlation

Test results from the "Fastener Hole Quality" program [35] will be

used to verify the EIFS distribution, Eq. (12) . Test results for two

types of Aluminum (7475-T7351) specimens subjected to a F-16 fighter 400-hour

19



block spectrum with a maximum gross stress of 34 ksi are used: (1) WPF
(no load transfer) and (2) XWPF (15% load transfer). Specimen details
are shown in Fig. (6) . Observed TTCI's at a crack size of 0.03" along
with crack sizes at two different times for WPF and XWPF data sets
are presented in Tables 1 and 2, respectively.

The WPF (38) data set (Table 1) includes five specimens with only
one fractographic observation/specimen (i.e., one crack size and one
TTCI). Crack sizes and TTCI's were computed for these five WPF specimens
(Table 1) using Eq. (8) and the crack growth model constants, Q and
b (Table 3), based on the WPF (33) data set. The WPF (33) data set
includes all specimens in Table 1 with observed TTCI's and applicable
crack sizes. Both data sets, WPF (38) and WPF (33), are used later.

The EIFS cumulative distribution will be validated as follows:
First, it will be shown that the three-parameter Weibull distribution
fits the observed TTCI results for a0=0.03". Second, the theoretical
cumulative EIFS distribution will be compared against ranked EIFS pre-
dictions (t=0). Third, the predicted cumulative crack size distributions
for two different times and two different specimens will be compared
against the corresponding ranked crack sizes observed.

Weibull best fit plots for WPF (38), WPF(33), and XWPF data sets
are shown in Figs. (7) through (9) , respectively. The three-parameter
Weibull distribution fits the observed TTCI results well. Parameter
values used are summarized in Table 3.

The values of cc, • and c from the test results of TTCI (Tables 1
and 2) and the values of b and Q based on crack growth fractography data
(Figs.(3) and (4)), can now be used to examine the correlation between
the observed and the theoretically predicted results.

EIFS values are computed for three data sets, WPF (38), WPF (33)
and XWPF, using the TTCI results of Tables 1 and 2 and Eq. (9) Results
are ranked and plotted in Figs. (10)through (12) as circles. Predicted
cumulative distribution curves, represented by Eq. (12) , are plotted
in Figs.(10) through (12)- . Furthermore, observed crack sizes at two
times, presented in Tables 1 and 2, are also ranked and plotted in Figs.

(10) through (12) and compared with the predicted cumulative distribution
represented by Eq. (14) for WPF (38), WPF (33), and XWPF data sets. The
correlation between the observed and the predicted results is excellent.
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Table 1 Observed Test Results For WPF Data Set

SPECIMEN WPF (38tf
NO. TTCI (2 a(t = 9200 Hrs) 8(t = 14800 Hrs)

(H 0 U RS) (inch) (inch)

WPF -11 6563 0.0617 0.2570
- 7 9312 0.0287 0.3557
-16 10629 0.0229 0.0582
-21 10892 0.0205 0.0654
- 9 11357 0.0185 0.0570
- 6 11637 0.0142 0.0687
- 8 12053 0.0143 0.0548
-18 13379 0.0118 0.0387
-23 13544 0.0118 0.0379
-32 13762 0.0099 0.0372
-14 13773 0.0112 0.0357
-17* (13783) (0.0087) (0.0392)
-25 13939 0.0082 0.0360
-35 14098 0.0072 0.0354
-13 14123 0.0082 0.0348
-12 14149 0.0064 0.0361
-19 14252 0.0073 0.0332
-22 14350 0.0082 0.0329
-10 14400 0.0082 0.0322
-34 14436 0.0080 0.0322
-29 15499 0.0056 0.0259
-24 15600 0.0049 0.0252
-33 15798 0.0038 0.0225
-20 16128 0.0034 0.0217
-40 16141 0,0047 0.0215
-31 17109 0.0058 0.0185
-37 17134 0.0039 0,0172
-39 17185 0.0048 0.0170
-38 17507 0.0052 0.0162
-36 17620 0.0032 0.0151
-26 17639 0.0037 0.0148
-30 18066 0.0037 0.0128
-27 18357 0.0028 0.0121
-41* (18069) (0.0022) (0.0105)
-28 19154 0.0031 0.0099
-43* (20140) 0.0015 0.0071
-15* (20449) (0.0013) (0.0065)
-42* (23767) (0.0005) (0.0026)

NOTES

( Ref. Fig. 6
0 For ao = 0.03"
(1)WPF(38) = total WPF data set
* Single observation/specimen (i.e., single data point: ai, ti)

ai = crack size

ti = time

(xxx) = Value derived from single observation using Eq. 8 and results in
Table 3 for WPF(33)
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Table 2 Observed Test Results For XWPF Data Set

XWPF (Ref. 35)SPECIMEN ,__ ,,,, ...

NTTCI) a(t - 7200 Hrs) a(t - 10800 Irs)

(HOURS) (Inch) (Inch)

XWPF-36 6106 0.0392 0.0814
-38 6147 0.0418 0.0922
-18 7457 0.0264 0.0943
- 9 7545 0.0248 0.0940
- 7 7721 0.0211 0.1098
- 3 8425 0.0186 0.0910

-34 8528 0.0153 0.0753
-31 8636 0.0195 0.0525

-29 8908 0.0206 0.0429
-15 8968 0.0140 0.0582
- 8 9078 0.0168 0.0487
-22 9085 0.0131 0.0575
- 1 9316 0 .0195 0.0386

- 2 9973 0.0111 0.0402
-11 10253 0.0067 0.0363
-12 10457 0.0081 0.0333
-16 10908 0.0088 0.0288
-24 11045 0.0120 0.0281
-19 11051 0.0049 0.0271
-30 11071 0.0052 0.0257
- 5 11370 0.0087 0.0264
-23 11493 0.0042 0.0201
-14 11564 0.0022 0.0110
-28 11571 0.0047 0.0213
-17 11698 0.0063 0.0223
-27 11708 0.0058 0.0210
-37 11920 0.0048 0.0215
-33 12051 0.0071 0.0203
-13 12062 0.0045 0.0174
- 6 12118 0.0061 0.0208
-21 12302 0.0060 0.0191
P25 12389 0.007n 0.0193
-26 12505 0.0040 0.0140
-35 12629 0.0045 0.0169
- 4 12655 0.0041 0.0136

-10 13339 0.0030 0.0100
-20 16008 0.0007 0.0034

NOTES: J Ref. Fig. 6

a0 = 0.03"
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Table 3 Model Parameters Based On Observed Test Results

_ _ _ Specimen
Parameter WPF(38) WPF(33) XWPF(37)

b 0.9703 0.9703 0.9620
c -0.0297 -0.0297 -0.0380
Q 0.0002381 0.0002381 0.000309
0 4.863 4.9174 5.499
S14,957 15,936 11,193

P 14,240 15,102 10,694
E 1,312 0 0
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Other statistical distributions, such as the normal, lognormal, We!-
bull, Pearson, and Johnsonhave been used to fit the test results [36]. The

Kolmogorov-Smirnov test for goodness of fit indicates the presented

theoretical distribution, Eq. (12) , referred to as the Weibull-

compatible distribution, fits the test results best.

The predicted cumulative distribution of crack sizes F (x) tracks
a (t)

observed crack sizes very well (Figs.(10) through (12)) . The EIFS dis-

tribution at t=O is not only compatible with the observed TTCI results,

but it is also statistically compatible with the observed crack size dis-

tributions. Although EIFS cracks are not observable, the above approach

provides an indirect verification of the proposed EIFS distribution,

Eq. (12).

3.6 Conclusions

A physically meaningful EIFS distribution has been suggested herein.

The distribution is derived from the three-parameter Weibull distribution

that is used for the distribution of time to crack initiation. Since

the Weibull distribution satisfies the condition of the fatigue wear-out
process [24-27], the EIFS distribution suggested herein bears the physi-

cal meaning of the fatigue wear-out process. It is shown that the cor-

relation between the predicted crack size distribution at time t, extrapo-

lated from the EIFS distribution, and the observed crack sizes at time t

is excellent.
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SECTION IV

CRACK GROWTH DAMAGE ACCUMULATION

After the statistical distribution of the equivalent initial flaw size is
established from the test results of TTCI described previously, the entire
population of the EIFS is subjected to crack propagation in service. Because
of the crack geometry, the effect of loading sequence (e.g., retardation and
acceleration), and many other factors, the crack growth rate equation given
by Eq. (8) does not hold for the entire region of the crack size. As a
result, crack growth predictions must be carried out numerically by use of a
cycle-by-cycle integration approach using a general computer program. This
program must account for all the variables influencing the crack growth behav-
ior such as crack geometry, load sequence effect, and many others. The crack
size a(t 2) at t2 flight hours can be expressed in terms of a(t 1 ), where tl:t2
as follows, [e.g., Ref. 6]

a(t 2 ) = a(t 1) + Z Aa(ta ) (20)

in which Aa(t.) is the crack growth increment per flight hour at t. where

t 1it ` 2 *

Thus, the crack growth damage a(t) as a function of the service time t
is determined from the general computer program starting from a crack size much
smaller than the EIFS. Such an analytical crack growth curve is referred to as

the "master curve".

Two master curves for the fastener holes of 7475-T7351 aluminum specimens with
no load transfer and Winslow drilled with proper drilling techniques under a
fighter spectrum are presented in Fig. (13). Curves 1 and 2 are associated
with different maximum stress levels amax in the fighter spectrum as shown in
the figure. Furthermore, Fig. (14) indicates two master curves for the same

fastener hole conditions and the same maximum stress levels except with a 15%
load transfer. Both Figs. (13) and (14) are established using the general.
crack growth damage accumulation computer code developed by General Dynamics.

The crack growth rates corresponding to Figs. (13) and (14) are presented
in Figs. (15) and (16) respectively. It is observed from these figures that in the small
crack size region the crack growth rate vs. the crack size in log scale is
practically a straight line, indicating the validity of Eq.(8).
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It follows from the particular case of Eq. 8 and Eqs.(A-l) and(A-2) from the
Appendix that the relationship between the crack sizes a(t ) and a(t 2 ) at tI and
t 2  does not depend on tI and t 2 but only on t 2 -tI. This relationship is not
valid for the general case within one flight of a particular mission, because
of the crack size and the load sequence effect. Thus,within one flight of a
particular mission, the relationship between a(tI) and a(t 2 ) represented by
Eq. (20) depends on both tI and t 2 . Since, however, the design loading
spectra in one lifetime consists of many repeated missions and flights, it is
reasonable to assume that the relationship between a(t 1 ) and a(t 2 ) depends only
on the time difference t 2-tI of the service time. Such an expedient approxima-
tion appears to be acceptable and it simplifies the computational procedures

of the durability analysis tremendously. As a result, only a crack growth
master curve for each maximum stress level in the loading spectra is sufficient
for the estimation of the crack growth damage accumulation in the durability
analysis.

Thus for the purpose of mathematical derivation, the analytical master curve
a(t) in the ith stress region can be symbolically represented by the following
equation in terms of t2-t1

a(t 1 1 = W[a(t 2 ), t 2 -tI] (21)

in which W is a general function representing the master curve. Eq. (21) indi-
cates that for a given value of crack size a(t 2) at t , one can determine the crack
size a(t ) at tI from the master curve as depicted in Fig. (17). Eq. (21) will
be used in the mathematical development of the durability analysis for predicting
the crack growth damage accumulation of the crack population. It will serve,
mathematically, as the transfer function for transferring the statistical dis-
tributions of the crack population from one service time to another, as will be
described later.

It should be emphasized that in the present analysis, any general crack growth
damage accumulation package and method [6,7,37-47] can be used to obtain the master
curve. It appears that the miniblock approach proposed by Gallagher [37-39] using
the flight-by-flight integration technique is most efficient for the present pur-
pose. Furthermore, the master curve varies from one stress region to another in
the entire durability critical component. Hence, an appropriate master curve
should be used for a particular stress region.
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SECTION V

CRACK EXC EE DAN C E AND MAINTENANCE COST

A durability critical component is divided into m stress regions. The maxi-
mum stress level in each stress region at every location or detail (e.g., fastener

hole) is approximately the same, whereas the maximum stress level varies from one
stress region to another. A wing panelof aF-16 fighter aircraft, which is iden-
tified as a durability critical component, is shown in Fig. (18). The lower
skin of the wing panel is divided into three stress regions where the maximum
applied stresses (limit) to each region under the fighter spectrum are
24.3 ksi, 27.0 and 28.3 as shown in Fig. (19).

Let N. be the total number of details in the ith stress region. For instance,
the total number of fastener holes in each region of Fig. (19) is, respectively,
59, 335 and 1220. If the maximum stress level varies from one location to another,
then N.=1.

:1

In the ith stress region, let N(i,T) represent the total number of details
having a crack size exceeding x1 at any service time T. It is obvious that N(i,T)
is a statistical (random) variable, since the initial flaw size is a statistical
variable. It is mentioned that each detail such as the fastener hole may have
multiple cracks. In this report, the crack of a detail refers to the largest crack,
and hence, each detail has one crack (the largest one). As a result, the term
"crack" is interchangeable with "detail".

It is reasonable to assume that the crack growth at each detail is not influ-
enced by the cracks in its neighboring details and that the crack damage accumula-
tion of each detail is statistically independent. Then, the statistical distri-
bution of N(i,T) can be shown to follow the Binomial distribution

P[N(iT) = n] = (ni)pn(iT) [-P(i,T 1 (.22)

in which P[N(ij) = n] denotes the probability that the total number of details
having a crack size exceeding x in the ith stress region, N(i,T), is equal to n,
and p(i,T) is the probability tiat a detail in the ith stress region will have a
crack size greater than x1 at the service time T. In Eq. (22),(Nis the combi-
nation of n out of N., i.e., nI

(N\ N N!I r(N .+1)
n n!(Ni-n)! . (n+l)r(Ni-n+l) (23)
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LEGEND: APPROXIMATE NUMBER OF FASTENERS PER STRESS RANGE

27.0-28.3 ksi Limit (59 Holes)
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Figure 19 Stress Zoning for Durability Component Wing-Lower Skin
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in which F(.) is the gamma function.
2

The average value, N(i,T), and the variance, a (iT), of N(i,T) (the total
N'

number of details in ith stress region having a crack size greater than xI at

any service time T) can be obtained from Eq. (22) as follows

U(i,T) = E nP[N(i,T) = n] (i,T) (24)

2 O ~2 -2aN (i,T) = E n P[N(iT) = n] N (i,T)n=0

= Nip(i,T) [1-P (i T] 
(25)

If N* denotes the total number of details in the entire durability critical

component and L(T) indicates the total number of details in the entire component

having a crack size greater than x at the service time T, then it is obvious that

M

N* Z N. (26)i=1

L(T) = Z N(iT)(27)
J=1

2
Thus, the average value, L (T), and the variance a (T), of L(T) are obtained,

respectively,

i~l (28)

o (T) = £ oN(i,T) (8

2 M 2
OL(T) E N (29)

i=1
-- 2

in which N(i,T) and a (i,T) are given by Eqs. (24) and (25)
N
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The total number of details in the entire component, L(T), having a crack
size larger than x1 at the service time T is a statistical variable. It follows
from Eq. (27) that L(T) is the sum of independent Binomial variables, Eq. (22).

When the number of details in each stress region, N., is large, the Binomial

distribution given by Eq. (22) can be approximated by t~e Normal distribution,

in which case, the statistical distribution of L(T) is also Normal with the mean
and the variance given by Eqs. (28) and (29) The approximation by the Normal
distribution does simplify the computational effort.

The component may undergo a scheduled inspection and repair maintenance pro-
cedure at T$ T , T ... in service with service intervals , 2, T3 ... as

1' 2' 3 2T
shown in Figure (1). It is assumed that the cracked details detected during
inspection will be repaired. Let g.(x)dx be the probability of detecting (or
repairing) a crack in the size ranga (x,x + dx) at the jth inspection. Then the
average maintenance cost, consisting of the cost of inspections and repairs, in
the service interval (0,T I+), denoted byC(I), is

Z(I) = C1 N*I + Z f C 2(xgj(x)dx (30)
j=1 (

in which C = cost of inspecting one detail, I = total numbers of scheduled inspec-1
tions, C 2(x) = cost of repairing one cracked detail having a crack size x, and
N* is the total number of details in the entire component, Eq. (26).

The cost of repairing a crack, C 2(x), depends on the crack size x. For the
crack size smaller than 0.03", it is only necessary to ream the fastener hole to
the next hole size and hence the cost of repair, C 2(x), is identical for all
x•0.03". For the crack size greater than 0.03", a regular retrofit procedure may
be needed. For even larger cracks, a patching replacement of the entire component
may be necessary which is much more expensive. Therefore, the cost of repairing
a crack size x, C 2(x), is in general an increasing function of the crack size x
Likewise C 2(x) may also be a discontinuous function of x as described above [Ref. 10].

The probability of detecting a crack size g.(x)dx in the size range (x,x+dx)
depends on the resolution capability of a particular NDI technique used at the jth
inspection as well as the statistical distribution of the crack size at T.. It is

observed from Eqs. (22)-(.30) that the estimation of the crack exceedance and the
maintenance cost depends on p(i,T) and g.(x). These two quantities, along with the

structural reliability, will be derived in the next section.
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SECTION VI

D E R I V A T I 0 N F 0 R p(i,t) A N D g.(x)

Even under well-controlled laboratory conditions, the detection of a given
crack size is a statistical variable and it should be specified statistically.
Let F (x) be the probability of detecting a crack size x and F*(x)=l-F (x) be

D D D
the probability of missing it. Clearly, both F (x) and F*(x) depend on the

D D
crack size x and the resolution capability of a particular NDE procudure [e.g.,
Refs. 48,49]. Various functional forms for FD (x) have been suggested [11,16].

6.1 WITHOUT INSPECTION AND REPAIR MAINTENANCE

Without scheduled inspection and repair maintenance, the probability p(i,T)

that the crack size a(T) of a detail in the ith stress region will exceed a value
x at the service time T is given by

p(i,t) = P[a(T)>xl] 1 - Fa(T) (x) (31)

Since a(T) is related to the initial crack size a(O) through Eq. (21) in
which t 1=0, t 2 T, i.e.,

a(O) = W[a(T),T] (32)

Eq. (31) becomes

p ~i,T) = P[a(0)>W(x 1 ,r)] = [a(0)_ (.0

or

p(i,r) = 1 - Fa(O)[Yi(T)l (33)

in which F (x) is the distribution function of the equivalent initial flaw size
given by Eq. (12) and argument yl(T) is related to xI as

y = W(x,1 r) (34)
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The value of y1 (T) given by Eq. (34) is obtained from the master curve for
a given value of x1 as shown in Fig. (20).

Thus p(i,T) is obtained by substituting Eq. (12) into Eq. (33) as

follows:

c(W)_ a C_c-Q C
p(i,T) = 1 - exp[ C( - 0; aoc('C) j j (35)

= 0 yl (-) >XU

in which x is given by Eq. (13). Note that p(i,T) is a function of the crack
usize x when Eq. (34) is substituted into Eq. (.35).

For a special case in which the crack growth rate in the ith stress region
b.follows Eq. (8) , i.e., da(t)/dt = Q.ai(t), the master curve can be written,

after integration, as follows 1

a (0)I 7a= W[a(t),t]a(O) = i + a i(t)cQt 1 (36)

where c.=b -1. Hence y1 (T) appearing in Eq. (35) can be expressed using Eq. (36)

in the following:

yl = (T) W[xIT, ]

[i + PILJC.I1I/JI (37)

6.2 SCHEDULED INSPECTION AND REPAIR MAINTENANCE

When the durability critical component is subjected to a scheduled inspection
and repair maintenance at T1 , T2, T3 , ... with service intervals T1 , T2 , T 3 , ... as
shown in Fig. (1) , the solution for p(i,T) is more involved. In the first
service interval, the entire population of the initial flaws is propagated follow-
ing the master curve as shown in Fig. (2 ). During the first inspection and repair
performed at t=T 1 , some of the cracked details will be detected and repaired. The
crack size of the repaired details, referred to as the renewal details, is assumed
to have the same distribution as that of the EIFS given by Eq. (12). In other
words, the possible cold-work effect and others are neglected. Thus, after each
inspection and repair maintenance, a new population (renewal details) is introduced
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with certain probability depending on the crack size distribution prior to inspec-
tion as well as the detection probability F (x) of a particular NDI procedure.
Furthermore, the statistical distribution oY the crack size of those undetected
details is modified and truncated by the F*(x), i.e., the probability of nondetec-
tion. D

Consequently, the distribution of the crack size of the entire population
is continuously shifted and changed (to the large value) in service due to fatigue
crack propagation. The distribution is also subjected to truncation and modifi-
cation after each inspection and repair maintenance. Likewise, since an additional
new population is introduced after each inspection and repair maintenance, the
statistical distribution of the crack size after the jth inspection and repair
maintenance will consist of j+l different populations as shown in Fig. (21).

Referring to Figure (21), f a(T.)(x) is the probability density of all cracks

at T just before the jth inspection and repair (see Fig. (1)). F (x) is the
probability of being able to detect (and repair) cracks of size x. When these
two are multiplied, the product represents the density of all cracks which are
found and repaired. The area,G(j), under the curve represents the percentage of
repaired holes that will have a probability density of cracks corresponding to that
of the EIFS, denoted by f a(O(x). Cracks which are missed stay at the same length;
that is, they will not be repaired. This portion is shown as fa(T)(x) then mul-
tiplied by F*(x) where FB(x)=l-FD(x) is the probability of missing a crack size x.
After repair,the probability density of cracks, fa(T +)(x), is composed of the sum

f (x) F*(x), J
of the undetected cracks, a(Tx) D and repaired cracks f a()(x)G(j).

The inspection and repair procedure can be input into the analysis at any time
desired. Thus, the effect of different inspection or repair procedures or intervals
can be ascertained.

As a result, a new population is introduced after each inspection and repair
maintenance. The variation of the probability density of the flaw size in service
due to crack propagation and maintenance procedures is displayed in Fig. (21).

Let f a(o)(x) be the probability density function of the EIFS,a(O). Since

the probability density function is the derivative of the distribution function,
one has

dFa (8x)

a (0) - dx

in which the distribution function F (x) of a(O) is given by Eq. (12).
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Substitution of Eq. (12) into Eq. (38) leads to the expression for the
probability density function of the equivalent initial flaw size

-C-i

Sa( 

) 
(x) -a- 

(39
I- c - -C -_a0 C Q(

The probability p(i,T) that the crack size of a detail in the ith stress region
at any service time T=T +t will exceed a value xl, see Fig. for j
is given by '

p(i,T) =C fa(T.+t)(X)dx (40)

in which f a(T+t)(x) is the probability density function of the crack size a(T.+t),
3

and t is any value smaller than or equal to T j+l= T j+-T for j=0,1,2,..., i.e.,

t1-Tj -Tj. Hence, a(To+t) is the crack size at any service time T.+t in the j+lth

service interval (see Fig. (1)).

The probability density function, f (x), of the crack size a(T.+t), ata(T1 +t) j

any service time T=T.+t(j=0,1,2,...) is derived in the Appendix for both the specialJ

case and the general use. The results are given in the following;

6.2.1 In The First Service Interval, j=0

In the first service interval, p(i,T) is identical to that given by Eqs. (34)

and (35). The transformation of the density functions with the relationship
a(O)=W [ a(t),t ] can be found

f a (x) = A 1 (t;j) = fa(O) [yl(t)If(t) (41)
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in which

YJ(t = W(x1t)

t dW(x,t) r[ddxt] x • (42)
""--)dx = d Ld )

where the crack size, y1 (t), and the corresponding crack growth rate, dy 1 (t)/dt

(slope), are obtained from the crack growth master curve as shown in Fig. (22 (a)).

The crack growth rate, dx/dt, when the crack size is x, is also obtained from the

master curve, Fig.(22 (a)).

6.2.2 After the First Service Interval, j=l,2,...

fa(T +t) (x) • Aj+l(t;J) + E G(j-k+l) Ak(t;j)

(k-i

A t;j 1 F t; (44)

Ak t_) D TIF[Ymtj) fa (0) [Yk (t; j)]ik (t; j) (4

k=2,3,. .. , j+1

Ym(t i) YiLt + j_ W , t + n ]
It n=j 2T n=j-m+2

(45)

I (t;j) = [.dy (t;j)1 = dYm(t; j)t
m dx I dx dx X]

in which T is the nth service interval as shown in Fig. (1).
n

The crack size, Ym (t;j), and the crack growth rates (slopes), dym(t;j)/dt

and dx/dt, appearing in Eqs. (43)-(45) are determined from the crack growth
master curve as shown in Fig. (22). The analytical expressions of these quanti-

ties for a special case are given in the Appendix. Furthermore, G(j) (j=1,2,...)

appearing in Eq. (43) represents the probability of detecting a crack of any size

at the jth inspection,

G(j) = f .(x) dx (46)

053
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in which g.(x)dx is the probability of detecting a crack in the size range

(x,x+dx) at the jth inspection T

9j W)- fa(T (X)FD(X) (47)

Where T0=0 and f a(T (x) = fa(T Jl+T3.) (x) is the probability density function of

the crack size a(T.) at T. prior to the jth inspection, given by Eq. (43).
3 3

The probability of detecting (or repairing) a crack in the size range
(zlz 2) at the jth inspection, i.e., T.(j=1,2,...) flight hours, denoted by

q (zl,z2 ), follows from Eq. (47) as
j 1

qj(zL1 z 2) = gj(xWdx (48)
z I

and the probability of detecting a crack size greater than z1 at Tj, denoted by
q.(zl',), is therefore

qj(z 1 ,c.) = f g j(xWdx (49)z1

which is referred to as the crack exceedance for the repaired cracks at the jth
maintenance. It is obvious from Eq. (49) that

gj(x) = -dqj(xco)/dx (50)
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S E C T I 0 N V I I

STRUCTURAL RELIABILITY,

CRACK DETECTION AND REPAIR

The probability of detecting a crack in the size range (x,x+dx) at the jth
inspection is given by Eq. (47) which depends on the detection probability F (x)
of a particular NDI technique. Various NDI procedures can be used for crack

detection, such as visual inspection, liquid penetrant inspection, ultrasonic inspec-

tion, radiographic inspection, etc. The detection probabilities FD (x) under well-

controlled laboratory conditions as a function of the crack size x have been avail-

able for various NDI techniques [e.g., Refs. 48-49]. The experimental results have

been used as a basis to characterize the functional form of FD (x) for the purpose

of engineering analyses [Refs. 11,14,16,17]. One functional form was proposed
[Refs. 11,14].

FD(x) = 0 for x<a 1

= (for a <x<a (51)

(a -a 1 ) 1 - -2

-1 ifor a2<x

in which a1 is a crack size below which the crack cannot be detected and a2 is a
crack size beyond which the crack can be detected with certainty. Values-a, a2 and
m should be determined to best fit the experimental results of a partidular NDI pro-

cedure. Equation (51) has been used [e.g., Refs. 11,13,14,15] for engineering
analyses.

Another functional form for the crack detection probability FD (x) was proposed
in Ref. 16 as follows:

FDX) = 0 for xca

C [ - e -f(x al)] a 
(52)
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in which a1 has the same meaning as that in Eq. (51) and c1 is a value slightly

less than unity to allow for a small probability of missing a big crack during

inspection. Again, the parameter values of a1 c1 and E1 should be chosen to best

fit the experimental results.

Sufficient information on the effectiveness of field inspection is not avail-

able for a characterization of F (x). However, Eqs. (51) and (52) can be usedD

with larger values of a1 , a 2 , and c1 should the field data become available. It

is the general consensus that the effectiveness of the field inspection is much
lower than that under laboratory conditions.

If a denotes the critical crack size associated with the maximum design load

Px then the failure of a detail (such as a fastener hole) occurs when its crack
:xx

size exceeds a . Without a scheduled inspection and repair maintenance, the prob-cr
ability of failure of one detail in the ith stress region of the component within

the service interval (0,T), denoted by P (0,T), follows from Eq. (31) as1

Pi (0,T) = P[a(T)>a cr = 1 - F a(-(a cr) (53)

Following the similar derivation for Eqs. (33) and (34) P.(0,T) can be

shown as 
1

Pi(0,T) = 1 - F a (0)Ycr(T)] (54)

in which F a(0(x) is the distribution function of the equivalent initial flaw size

represented by Eq. (12), and ycr (T) is related to acr through Eq. (21) as

Ycr () = W(acrT)

For a given value of the critical crack size a , y (T) is obtained fromcr cr

Eq. (55) using the crack growth master curve as shown in Fig. (20).

The probability of the survival of all the N details in the ith stress region

of the component in the service interval (0,T)is

jN 
*

( ( 0 , -( 5 6 )
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Hence the probability of survival of the entire durability critical com-

ponent consisting of m stress regions in the service interval (0,T) denoted by

R(T), is

R(r)= m [ Pi(OT)]i
R(=) i= l (57)

and .the probability of failure of the entire component in (0,T) is

m N.
Pf(T) = 1 - R(T) = 1 - i[I-Pi(oT)] (

i 1 (58)

Under the scheduled inspection and repair maintenance as shown in Fig. (1),

the probability of failure of a detail in the ith stress region within the jth

service interval (Tj_I,T ) is given by

Pi(Tj-1 1 Tj f/ , for j=1,2,.;. (59)

• cr (T

in which f (x) = f (x) is the probability density function of thea (T.) a (T _+'rj)

crack size a(T ) prior to the jth inspection as derived in Eq. (43). The prob-

ability that a detail in the ith stress region will survive j service intervals

(0,T.) is
J

ii F - i(TplRTL
t=1 (60)

in which To=O. The probability that the ith stress region consisting of N.0 1

details, will survive in the service interval (0,T.) is

9(61)
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Consequently, the probability of survival of the entire durability critical
component which consists of m stress regions in the service interval (0,T.) is

J

mRi

19iJ[I-P(Tj~lDTk)J (62)

and the probability of failure of the durability critical component in (0,T.) is

f Pi= fT t ±)]'} (63)
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SECTION VIII

DEMONSTRATION OF METHODOLOGY

In order to demonstrate the applicability of the durability analysis
methodology developed herein, the economic life of a hypothetical durability

critical component of a fighter aircraft is considered for simplicity. A
scheduled inspection and repair maintenance procedure is also considered
and its effect on the economic life of the component is examined. The
component consists of only one stress region having 100 identical fastener

holes where the maximum stress level of the fighter spectrum for each
fastener hole is amax = 34 ksi. Cracks are assumed to occur at the fastener
holes only. The fastener holes of the component is assumed to be identical
to those of the WPF data set presented in Table 1, page 22.

Test data of TTCI at 0.03 inches for WPF and XWPF data sets were pre-
sented in Tables 1 and 2, respectively, and summarized in Table 4. The
three-parameter Weibull distribution, Eq. (2), was used to best fit the
experimental data as shown in Figs. (8) and (9). The parameter values of
a, f, F and y for y=95% confidence level are presented in Tables 3 and 5.
The crack growth master curves and the associated crack growth rates obtained

using the CGR computer code for crack growth damage accumulation were pre-
sented in Figs. (13) to (16). The corresponding b and Q values in the small
crack size range are given in Table 5.

With the aid of Eq. (9), the backward extrapolations have been carried
out to obtain the corresponding equivalent initial flaw sizes from the test
data of times to crack initiation. The results are presented in Table 4

and plotted in Figs. (23) and (24) as circles. Also plotted in Figs. (23)
and (24) as a solid curve and a dashed curve are the theoretically-derived
distributions for the equivalent initial flaw size given by Eq. (12). The
solid and dashed curves are for ý and ýy for y= 95% confidence level, respec-

tively.

Considering the theoretical EIFS distribution represented by the solid
curve of Fig. (23) and the crack growth master curve represented by curve 1
of Fig. (13), we can demonstrate the crack damage statistics in service and
the economical life of the hypothetical component using the analytical
methodology developed in the previous sections.
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Table 4 TTCI AND EIFS FOR WPF AND XWPF DATA SETS

WPF XWPF

TTCI EIFS TTCI EIFS

(Flight Hours) (Mils) (Flight Hours) (Mils)

6560 3.281 6111 0.903

9310 1.656 6140 0.893

10631 1.232 7432 0.566

10888 1.165 7535 0.547

11348 1.057 7723 0.514

11630 0.997 8422 0.412

12051 0.914 8528 0.399

13373 0.704 8611 0.389

13540 0.682 8905 0.357

13753 0.655 8967 0.350

13765 0.653 9074 0.339

13783 0.651 9080 0.339

13936 0.633 9312 0.317

14106 0.613 9955 0.265

14124 0.611 10244 0.245

14129 0.610 10452 0.231

14256 0.596 10894 0.206

14347 0.586 11030 0.199

14400 0.580 11035 0.199

14433 0.577 11036 0.199

15492 0.477 11326 0.185

15600 0.468 11418 0.181

15807 0.451 11472 0.178

16079 0.430 11557 0.175

16087 0.429 11695 0.169

16719 0.386 11700 0.169

16741 0.384 11710 0.168

16752 0.384 11907 0.160

16979 0.369 12042 0.155

17043 0.365 12114 0.153

17056 0.365 12303 0.146

17396 0.345 12387 0.143

17556 0.336 12500 0.139

18139 0.305 12623 0.136

18696 0.279 12660 0.134

20140 0.224 13325 0.1.16

20449 0.214 16004 0.067

23767 0.134
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Without inspection and repair maintenance procedures, the probability p(i,T),

that a detail will have a crack size larger than x at any service time T is com-1 L *

puted from Eq. (35) . The average percentage of details L(T)/N , see Eqs. (26)

and (28) , having a crack size larger than x1 is plotted in Figure (25) as a

function of service time T in flight hours. In Figure (25) , the ordinate L(T)/N*,

denoted by the average percentage of crack exceedance, is the average number of

details, while the abscissa is the crack size x . For instance, at 8,000 flight

hours, the average percentage of fastener holes having a crack size exceeding 0.03"

and 0.05" are 2% and 0.8%, respectively. As expected, the average percentage of

crack exceedance, L(T)/N*, increases as the service time T increases. Curves in

Figure (25) are referred to as the average crack exceedance curves.

Table 5 Model Parameters Used for Methodology

Demonstration for EIFS

WPF * XWPF *

b 1.2165 1.26

Q 0.9247 x 10-3 0.2328 x 10-2

CL 4.8634 5.6995

_ 14,957 hours 11,372

__ _ 1,312 0

j 14,240 10,864

"No load transfer

15% load transfer
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As discussed in Section V, the number of details having a crack size exceed-
ing x1 at any service time T is a statistical variable following the Binomial dis-

tribution represented by Eq. (22). When the number of details (fastener holes)
is large, the Binomial distribution of Eq. (22) can be approximated by the normal
distribution with the mean and the variance given by Eqs. (24) and (25), respec-

tively. As a result, Figure (25), represents an approximation of the percentage
of fastener holes having a crack size exceeding xI (an abscissa) with 50%
probability.

From the standpoint of the durability requirement and the economic life cri-
teria, the central measure of the crack exceedance, i.e., exceedance with 50%
probability, as shown in Figure (25), may not be conservative enough, although
it provides information for estimating the average repair cost as will be described
later. Hence, it is desirable to compute the number (or percentage) of details
having a crack size exceeding x at any service time T with certain probability,
in particular the low probability of exceedance. This objective can be accom-
plished using either the Binomial distribution given by Eq. (22) or the normal
distribution for approximation.

For simplicity in presenting the numerical results, the service time of
T=8000 flight hours is considered. The percentage of cracks, L(T)/N*, Eqs. (26)
and (28) , exceeding the crack size x1 .(abscissa) is plotted in Figure (26) for
various exceedance probabilities. For instance, at T=8,000 flight hours, the prob-
ability is 0.1 that 3.764% of the total cracks will exceed the crack size 0.03" as
indicated by an open circle. Similarly, the probabilities are 0.5 and 0.8, respec-
tively, that 2% and 0.803% of the total cracks will exceed 0.03" (see open circles).
It is further observed from Figure (26) that the probabilities are 0.1, 0.5 and
0.8, respectively, that 1.97%, 0.8% and 0.06% of the total cracks will exceed 0.05"
as shown by the solid circles. Figure (26) indicates that as the probability of
exceedance decreases, the percentage of cracks exceeding a'certain crack size x1
increases as expected.

The numerical results presented in Figures (25) and (26) for the crack
exceedance with certain probability does not account for the confidence level,
since the value of ý representing the characteristic time to crack initiation is
used in the analyses (see Table 5). When a confidence level y is further consid-
ered, then ýy should be used. The value of y for y=95% confidence level given
in Table 5 is now used in the analyses. Numerical results are presented in
Figures (27) and (28) which correspond to a 95% confidence level. For instance,
it is observed from Figure (28) that at 8,000 flight hours, the probability is
0.1 that 4.51% of the total cracks will exceed 0.03" with 95% confidence level as
indicated by a circle. In other words, at 8,000 flight hours, 4.51% of the total
cracks will exceed 0.03" with 0.1 probability and 95% confidence.
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A comparison between Figs. (25) and (27) indicates that the average per-
centage of cracks exceeding any given crack size x1 increases when a higher con-

fidence level is considered. Further comparison between Figs. (26) and (28)

shows that the percentage of cracks exceeding any given crack size x1 with any
given probability increases as a higher level of confidence is taken into acrrount

The economic repair crack size, ae, is arhitrarily defined as the max-

imum crack size below which the least expensive repair procedure can be used

i.e., reaming the fastener hole to the next hole size. For the above defini-

tion, ae is usually between 0.03" and 0.05" depending on the location and the

fastener hole size. If 0.03" is used as the economic repair crack size, then

the average percentage of details having a crack exceeding ae=0.03" is plotted

as a function of the service time as shown by Curve 1 of Figure (29). This

curve, in fact, can be constructed from Figure (25) by drawing a vertical line

passing through 0.03". The average percentage of cracks exceeding ae is also
the percentage of cracks exceeding ae with 0.5 probability. Hence, Curve 1 is
referred to as the exceedance curve for the economic repair crack size a. withe
probability 0.5. The exceedance curves for the economic repair crack size with

probability 5% and 10%, respectively, are also computed and plotted in Figure
(29) as dashed curves. It is observed from the figure that Curve 1 increases

rapidly after 8,000 flight hours. If 5% of the cracked details exceeding .0.03"
with probability 50% is considered as an economical limit, then the possible
economic life is observed to be 9,400 flight hours.

When the economic repair crack size a is 0.05", one can construct in a similar
fashion the exceedance curvewith probabilities 50% (Curve 1), 10% (dashed curve)

and 5% (dashed curve) as shown in Figure (30). The possible economic life in this
case is found to be 10,500 flight hours if 5% of the cracks exceeding 0.05" with
probability 50% is considered as an economic limit.

In the same manner, one can aiso construct the exceedance curves for the

economic repair crack size a =0.03" with probabilities0O.5 (solid curve), 0.1e
(dashed curve) and 0.05 (dashed curve) as a function of service life when a con-

fidence level of y=95% is taken into account. The results are displayed in Figure
(31)..

In order to demonstrate the effect of inspection and repair maintenance pro-

cedures on the economic life, an NDI procedure having a high resolution capability
is assumed. The functional form for the detection probability FD (x) given by Eq.

(51) is used with al=0.01", a =20.1" and m0.5. Such a detection probability F (X)

is plotted in Figure (32) as function of the crack size x

The cost formulation for the economic life criteria as represented by Eq. (30)
is based on the average (expected) maintenance cost, including the average costs
of inspection and repair. Since the average cost of repair is related to the average
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number of detected cracks in various size ranges, g.(x)dx, the effect of the
maintenance procedures on the economic life will be investigated on the basis

of the average crack exceedance curve (i.e., with 50% exceedance probability)

as shown by Curve 1 of Figures (29) and (30) with 50% confidence level.

For the case where a =0.03", Figure (29) , the first inspection and repaire
is performed at TI=9500 flight hours. The resulting average exceedance curve

(with 50% probability) is obtained by use of Eqs. (43) to (45) and plotted
in Figure {29) as Curve 2. Owing to the repair procedures, there is a sudden
drop from A to @ (i.e., Curve 1 to Curve 2) at T1 as indicated in Figure

(29) . According to Curve 2 of Figure (29) , the possible economic life (5%
allowable exceedance over a with 50% probability as defined previously) is now

extended to 11,000 flight hours.

If the second inspection and repair is further performed at T2=11,000 flight

hours, then the resulting average exceedance curve is computed using Eqs. (43)

to (45) and plotted in Figure (29). as Curve 3. The economic life is thus

extended to 12,000 flight hours. In a similar manner, additional inspections and

repair maintenance procedures are performed, respectively, at T 3=12,000 and T 4=

13,000 flight hours. The resulting average crack exceedance curves are plotted

in Figure (29) as Curves 4 and 5, respectively. It is observed from Figure (29)
that there is a sudden drop of the average percentage of crack exceedance at each

inspection and repair maintenance, which is exactly the average percentage of

cracks repaired (or detected) during each maintenance.

Thus, if the durability critical component is subjected to a scheduled inspec-
tion and repair maintenance procedure at T 1 , T , T , and T , then the average crack

exceedance curve will follow Curve 1 up to A• and then follows the path
Curve 5.

For the case where the economic repair crack size is 0.05", the inspection

and repair maintenance procedures are performed at T 1=0,500, T 2=12,500, T 3=

14,000 and T 4=15,250 flight hours, respectively. The resulting average crack

exceedance curves are presented in Figure (30). If, for instance, the inspec-
tion and repair maintenance are performed at T1 and T2 only, then the resulting

average crack exceedance curve will follow Curve 1 up to and then follows
the path O---.---.. --- Curve 3.

The average percentage of details having a crack size larger than z which

are repaired at TV, denoted by q (z, -)(see Eq. (49)), is plotted in Figure (33)

for j=1,2,3, and 4 for the case where a =0.03". Curves in Figure (33) aree

referred to as the average exceedance curves for the repaired cracks. For instance,

one percent of the details having a crack size larger than 0.1" is expected to be

repaired at T1=9,500 flight hours as indicated by a circle on Curve 1 of Figure
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(33) . The exceedance curves depicted in Figure (33) indicate, on the aver-
age, the number of details as well as their corresponding crack size to be
repaired during each inspection and repair maintenance. These curves contain
the information needed for the computation of the average repair cost repre-
sented by Eq. (30) , since g.(x)=-dq.(x,-)/dx, see Eq. (50).

JJ

It is observed from Figures (29) and (30) that the effect of inspection
and repair maintenance procedures on the economic life is small even using a

high resolution NDI procedure. It is found that for other NDI techniques with
poor detection capability, the effect is practically minimal. The reasons are
given as follows: (i) To extend the economic life, the NDI procedure should be
able to detect with high probability the crack size below the economic repair
crack size 0.03" in order to prevent cracks from propagating beyond ae. Currente
NDI techniques may not achieve such a capability with a comparable cost, and (ii)

As soon as the crack exceedance curve over a starts to increase rapidly [see
e

Figures (29) and (30) the majority of the crack population is already in the
vicinity of a , and hence a significant extension of the economic life impliese
an extensive repair such that the cost of repair may be uneconomical.
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SECTION IX

CONCLUSIONS AND DISCUSSIONS

A durability analysis methodology for aircraft structures has been devel-

oped. The durability analysis is based on the statistical approach which allows
for the determination of a possible economic life using one of the following
criteria: (i) the percentage of crack population exceeding the economic repair
crack size with certain probability and confident levels, (ii) the ratio of the
cost of maintenance, including the costs of inspection and repair, to the initial
cost. Although the inspection and repair maintenance procedures have a signifi-
cant impact on the reliability and safety of aircraft structures, its effect in
extending the economic life is shown to be limited.

In the present durability analysis, the input initial fatigue quality can
either be the time to crack initiation (TTCI) or the equivalent initial flaw

size (EIFS). The three-parameter Weibull distribution is used for the statisti-
cal distribution of the TTCI. The statistical distribution, which is derived
from that of the TTCI using a particular crack propagation law, is suggested
for the distribution of the EIFS. Such a derived distribution possesses the
physical meaning for the fatigue wear-out process and it is shown to fit the
EIFS better than other distributions.

The CGR computer code is used to calculate the master curve (crack growth
damage) in each stress region of the entire durability critical component in ser-
vice. The binomial distribution is used to compute the statistical distribution
of the number of fastener holes having a crack in any size range. The crack
exceedance with certain probability and confidence is then estimated as a func-
tion of the service time. The relaibility of the durability critical component
in service is also obtained. A scheduled (nonperiodic) inspection and repair
maintenance procedure is considered, in which the statistical uncertainty of the
NDI procedure and crack growth damage of the repaired details are taken into
account. The average cost of maintenance, including the costs of inspection and
repair, is then formulated as a function of service time.

While the second criterion for determining the possible economic life has
been formulated and relevant statistics, such as the crack exceedance for the
repaired cracks, have been obtained, it is not demonstrated numerically. This is
due to a lack of realistic information of the field inspection cost as well as
the cost of repairing one crack in a certain size range. It appears that the
first criterion of the economic life may be more appropriate at the preliminary
design stage for the durability requirements.
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Although the present approach and formulation are demonstrated using the
example of fastener holes, they are applicable to cracks which occur at radii
or shear webs with holes, as long as the crack growth master curve is given or
computed.

There are circumstances where the usage or missions of aircraft may deviate
significantly at certain service time of its design life. Such a usage change
can easily be taken care of in the present durability analysis. For instance,
when the usage change occurs at t flight hours, then the new crack growth masterc
curve, which corresponds to the new usage, should be used in the analysis after

t and all the analysis procedures remain the same.c

Although the reliability of the durability critical component has been formu-
lated within the framework of the durability analysis, it is not demonstrated
numerically. It will be investigated in the Phase II effort whether the relia-

bility problem is important in the durability requirement.

In the present approach, the crack growth master curve under spectrum loading
is considered deterministic, i.e., the statistical variability of crack growth
parameters is neglected. This may be a reasonable approximation, since the statis-
tical variability of the crack growth parameters is smaller than that of the equiva-
lent initial flaw size, and hence the statistical variability of the crack exceed-
ance curves (or economic life) is essentially due to that of the EIFS. Such an
approximation simplifies the entire analysis tremendously. The effect of the sta-
tistical variability of the crack growth damage on the economic life of aircraft

structures will be investigated in the Phase II effort.

It should be emphasized that the statistical variability of the crack growth
damage is important and should be accounted for in the damage tolerant analysis.
In the damage tolerant analysis, the initial flaw size is specified and, hence,

the statistical uncertainty in structural life prediction is essentially con-

tributed to by the uncertainty of the crack growth damage when the service loads
are idealized as spectrum loadings.
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APPENDIX

DERIVATION OF PROBABILITY

D E N S I T Y F U N C T I O N fa(T.+t) (x)
3

(A) SPECIAL CASE

In order to facilitate the derivation, the crack growth rate equation repre-
sented by Eq. (8) will first be used for simplicity. Eq. (8) will only serve

as a convenient vehicle to explain the mathematical derivation. The general
results without the limitation of Eq. (8) will be described later.

Integration of Eq. (8) from tI to t 2 yields

a a(t 2 )
a(tl) = [1 + aC (t 2 )cQ(t 2-tl)]I/ = W[a(t 21,t 2 -tlJ (A-l)

or

a~t 2) = a(t1 ) W-1 [a(tl t2 _tl) (A-2)
i h t = - ac(t1)CQ(t2-tl1 W

in which tl~t2' W [.J is the inversed function of W [.] and

c=b-1 (A-3)

For tI =0 and t2 =t, Eqs. (A-l)and(A-2)reduce to

a(0) a art) = W[a(t),tJ
[1 + aC(t)cQtjl/c

(A-4)

a(t)= a(O) W _[a(O),,tj
[1 - aC(O)cQtj/L[C0
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where a(O) is the equivalent initial flaw size.

Eqs.(A-l) to(A-4)will serve as the transfer functions to transform the dis-
tribution function of the EIFS into that of the flaw size at any service time.

It should be mentioned that the values of Q and b (or c=b-l) vary from
one stress region to another. However, the values of Q and b (or c=b-l) appear-
ing in the distribution of EIFS are obtained from one data set of coupon specimens
under the same loading spectra but at a particular maximum stress level. As a
result, Q and c appearing in this appendix should be written as Q. and c. except1 1i
Eqs. (A-7) and (A-8). Because of simplicity in notation, the subscript i has been
dropped and they should not be confused with Q and c for the EIFS.

(1) First Service Interval (0,T )

In the first service interval, the entire initial crack population is sub-
jected to propagation following Eq.(A-4).

Let F a(t)(x) and f a(t)(x) be the cumulative distribution function and the

probability density function, respectively, of the crack size a(t) at t flight
hours in the first service interval. Then both F a(t(x) and f a(t)(x) can be

derived from those of the initial flaw size F a()(x) and f a()(x), respectively,

through the transformation of Eq. (A-4) as follows:

F a Q)(x) = P [a (t) <x] = P[a(0)<yl(t)] Fa(O) [Yl(t)]

or

F a (x) = Fa(0) [Y(t) ] (A-5)

in which y1 (t) is a value of a(O) corresponding to a value x of a(t). They are
related through Eq. (A-4) by replacing a(O) and a(t), respectively, by yW(t) and
X.

[i + -CcQt]1/C W(x,t) (A-6)

Substituting Eq. (12) into Eq. (A-5), one obtains
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F a(t)(X) exp -O Y 1 (t)<_xu (A-7)
t) ( = Y (t) >XuO

in which yl(t) is a function of x given by Eq. (A-6) and x is given by Eq. (13).
U

The probability that the crack size, in the ith stress region at ¶=t ser-
vice hours, will exceed x1 is given by

p(i,r.T) = 1 - Fa(T) (X1 )

_______ _______ 
(A- 8

1 1 (A8
=1-exp-L Co j.yl(T)<_xu(-8

= 0 iyl ( -r) >'xu

in which Eq. (A-7) has been used and y1 (T) is related to x1 through Eq. (A-4)
as

= (T) tx (A-9)

[1 + XICQT] • w'C

As expected, p(i,T) obtained in Eq. (A-8) is identical to that derived in
the text in which no inspection and repair maintenance is scheduled.

The transformation of the probability density function from f 0)(x) to
f a(t)(x) can be found in any text book on probability and statistics,

fa(t) = fa(0) [Yl(t)](t) t) (A-10)

in which y (t) = W(x,t) is related to x through Eq. (A-6) and

Sdy(t) dW(x, t) 1

dx dx + (A-I)

11+X cot] +

where Eq. (A-6) has been used.
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At the end of the first service interval, i.e., t = T= TV the probability
density function of the crack size a(T ) given by Eq. (A-10) becomes

fa(T) (x) = fa(0) [y1 (TI )]JI{(T) (A-12)

in which it follows from Eqs. (A-6) and (A-11) that

y (T1) _ x i/c = W(XXTI

[l+xCcOT,1

1 dW(x,r 1) (A-13)

11 +Q1. dx+ x CQl CO •I

The component is then subjected to inspections. The probability, g1 (x)dx,
of detecting a crack in the size range (x,x+dx) at t=T =TI is therefore

g(X) dx = FDX) fa(T I (x) dx (A-14)

in which f a(Tl(x) is given by Eq. (A-12) and FD (x) is the probability of detect-

ing a crack size x.

The probability of detecting a crack in the size range z1 and z2 during the
first inspection, denoted by q1 (zlz 2) is

1' 2

qg ((Z1 ' 2  dx = f FD(X) fa (T) (x) dx (A-15)zI z1

and the probability of detecting a crack of any size at TV, indicated by G(l), is

G(1) = ql(0,) = 1g(x) dx = FD(X) fa(T (x)dx (A-16)
0 01
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(2) Second Service Interval (TV,T )

It is assumed that when a crack is detected, it is repaired. Thus, after
the first inspection and repair performed at Ti , the details (fastener holes)
consist of two different populations; (1) the population where cracks have been
detected and repaired, referred to as the renewal details, and (ii) the popula-
tion where the cracks have not been detected and hence details have not been
repaired. It is further assumed that the crack size distribution of the renewal
details is identical to that of the equivalent initial flaw size a(O). Conse-
quently, the probability density function of the crack size a(TI) right after

the first inspection and repair, denoted by f a(xT)(x), consists of two parts

1

f W =x) G(lMfa(0)(X) + F*(X) f (x) (A-!7)
aC(T+)a) D aC(T)

in which

F*(x) W1 - FDx) (A-18)
D D

is the probability of missing a crack size x during inspection, and G(l) and
fa(T )(X) are given by Eqs. (A-16) and (A-12), respectively.

It is obvious that the first term in Eq. (A-17) represents the contribution
from the renewal (repaired) population with probability G(l), while the second
term is contributed by the old population (which survives the inspection with
probability F*(x)).

D

Substitution of Eq. (A-13) into Eq. (A-12) and then into Eq. (A-17) yields
the following expression for fa(T+)(W.

1

fa T W)(X) G(M)f Wx) + F*(x)fa r X 1/
a T+ aCO) D a(O) 1L(1+xCcQl ) +1

(A-19)

In the second service interval (T ,T 2), the two different crack populations
given by Eq. (A-19) are subjected to propagation in service. Let the probability
density function of the crack size a(T) at any service time T =T +t in (TT 2) be
denoted by f a(T+t)(x). Then, fa(Tl+t) (x) can be obtained from f a (x)

1 1 1
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given by Eq. (A-19) through the transformation of Eq. (A-I) with t2=Tl+t,

tl=TI [T=1 T1 , see Fig. (1)] , i.e.,

aCT1) a(Tl+t)=aT a() I=t I/c = WWaT 1+Qt,'t] (A-20)

[l+aC(Tl+t) cQt]

Following the same procedures described above by: (i) replacing the argument

of x in Eq. (A-19) by y (t) = W(x,t) [Eq. (A-6)] and (ii) multiplying Eq. (A-19)
by J (t), one obtains tie following expression for f _ (x),1 a(Tl+t)

fa(T +t) (x) = G1(1)fa( 0 )[Yl(t)]Jl(t)
1 ~(A- 21)

+ F•[YI(t)]fa(0) [yI(TI+t) ]J 2 (Tl+t)J 1 (t)

in which it can be shown that

y 1 (T I+t) = W(X, TI+t) - [7 -x
l+xCcQ (T I+ t)]Ic

(A-22)

J2 (T +t) = dyI(TI+t) = F+x cQt C

dx L1+xCcQ(t+TiJ

At the end of the second service interval, i.e., T 2=TI+T2 (or t=T 2), the

probability density function of the crack size a(T 2) follows from Eq. (A-21) as

fa(T2) (x) = G(1) fa(0) [Y1(T 2 )]Jl(T 2 )aT (+(A- 23)

+ F•[YI(T 2 )]fa(0) [Y 1(¶I+ 2 )]J 2 (TI+T2 )J1 (T 2 )

The probability of detecting a crack in the size range (x,x+dx) at T29
denoted by g 2 (x)dx,is
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g2 (x) dx = FD(X) f a(T 2) W (A-24)

in which f a(T2) (x) is given by Eq. (A-23). The probability of detecting a

crack size between z1 and z2 is

q 2 (Z1  Z2 ) = g 2 (x) dx = FD1 W faT (x) dx (A-25)
zI z1

and the probability of detecting a crack of any size during the second inspec-
tion performed at T2 is

G(2) = q 2 (0, ) F DWf (xWdx (A-26)
0 (T2)

(3) Third Service Interval (T2 T 3)

The probability density function of the crack size a(T+) right after the
2

second inspection and repair consists of an additional contribution from the
renewal (repaired) population with probability G(2) (i.e., produced by the
second inspection and repair),

f 2 = G(2) fa() (x) + P (X)f(T) (x) (A-27)

in which f (T)(x) is given by Eq. (A-23).

Substitution of Eq. (A-23) into Eq. (A-27) yields

fa(T) (x) = G(2)f ( 0 )(x) + G(1)F*(X)fa(0) [Yl(T 2 ]Jl(T 2 )
(A-28)

+ F(X)F[YI(T 2 )]fa(0)[Y(T+ (T+T

The crack size a(T2+t) at any service time V2 +t(t< T ) in the third service
interval is related to the crack size a(22) through Eq. (A-1) in which tl=T2 , t2 =

T+,i.e.,

a(T 2) = = W[a(Tt] (A-29)
[21+aC (T 2 +t) cQt] i/C 2+t)
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The probability density function of a(T 2 +t), denoted by fa(T 2+t)(x) is

22obtained from fa(T+)(x) through the transformation of Eq. (A-29) employing the

same procedures described above by: (i) substituting Eqs. (A-22) with t=T2 into
Eq. (A-28), (ii) replacing x in Eq. (A-28) by y (t)=W(x,t) given by Eq. (A-6)

and (iii) multiplying Eq. (A-28) by J (t); with the results

f (x) = G( 2 ) fa() [y (t)IJ,(t) + G(1)FD[YI(t)]f(0)

(T+(T2 +t)]*[,(

[Y 1 (½2+t) ]J 2 (2+t)J!(t) + FD[Yl(t) ]FD[Yl(r 2 +t)]

fa(O) [Yj(TI+T2 +t)]]J 2 (Tl+T 2 +t) J 2 (T 2 +t)Jl(t) (A-30)

in which it can be shown that

- +1r+xCcQ (T2 +t) c

=I1-4-xC CQ (TI+T 2+t)] Af.

and y 1 (T +T 2+t) is given by Eq. (A-22) in which the argument Tl+t is replaced

by T+T 2+t.

At the end of the third service interval T 3=T 2+T3, i.e., t= 3, Eq. (A-30)

becomes

fa(T3 ) (x) = G(2)f( 0 ) [yI(T 3 )]JI(T 3 ) + G(1)F*EYI(T 3 )]fa(0)

[Yj (T2+.T3 ]J(12+T3)JI(T3) + F*[Yl(T3 ]F*[YI(T2+T]

fa(O) [Yl(Ti+T2 +T23 )]J 2 (TI+2+T23 ) J 2 (T 2 +T3 ) Jl (T3 )

(A-32)

The probability of detecting a crack in the size range (x,x+dx) at the
third inspection is

g 3 (x) dx = FD(x) fa (T 3 ) (x) dx (A-33)

and the probability of detecting a crack of any size at the third inspection is

G(3) =f g 3 (x) dx = F D(x) fa(T3 (x) dx (A-34)
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in which f (x) is given by Eq. (A-32).a(T3 )

(4) jth Service Interval (T j,T j+)

In a similar fashion, the general expressions for the probability density

function of the crack size a(T*+t) in the jth service interval where iT j+l-Tj

(j_>l) can be shown as

fa(T.+t)(x Aj+l(t;J) + I G(j+l-k)Ak(t;j) for j=1,2,...
k=1 (A-35)

in which _ _,

A ~ ~~ ~ ~ ITJ y( ~ ~ 11m (t; j) (A-36)

Yl(t;j) = Yl(t) =x I/c = W(x't)

(1+x cQt)

Ym t ) = Yl F T =x
yM(t;j It + n=j-m+2 n] l+xCcQ t +Xn=j-m+2C n]fi (A-37)

W[x, t + E
n=j-m+2 n]

Jl(t;j) Jl(t) - dy1 (t) = 1
dx 11xct]•+

J2 (t~j[ = lcx~clt l

11
a +1++1

Jm(t;j) +x cot. cmt
J14XCCQ (t+ T.) (A-38)

+1
j -C

Jtj)= 1+x CQ It + nIT]Z; m=33 T n]

1+X CQjIt + n=j Zr+ 2 TI J/
* Term Equal to 1.0 for k = 1
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It can be easily shown from Eq. (A-38) that

k
Ik(t;j) = I J m(t;j) = i

jn=1 r ~+1
I~x~cQ + X T(A-39)

( [ n=j-k+2

II(t;j) = Jl(t;j)

Consequently, Eq. (A-36) can be simplified as
A, (t;j) = fa(o) Yl (t;j)] (t;j)

Ak(t;j) = ao Y t1  (I;j) a(0) [Yk(t; j) I Iktj) I

in which I k(t;j) is given by Eq. (A-39) and ym (t,j) is given by Eq. (A-37).

(B) GENERAL CASE

For the general situation, the crack growth rate represented by Eq. (8)
may not be applicable because of the crack geometry and other factors, especially
in the large crack size regime. As a result, a general crack growth computer pro-
gram, such as CGR, should be used to generate the crack growth master curve. Then,
the crack growth damage accumulation can be expressed by Eqs. (4-1) or (4-2) (also
see Eqs. (A-l) and (A-2), i.e.,

"a(tI) = W[a(t 2 ), t 2 -t 1  (A-41)

or

"a(t 2 ) = W 1 [a(tI), t 2 -t 1 1 (A-42)

in which t 2_tI.

For tl=0 and t2=t, Eqs. (A-41) and (A-42) becomes

a(0) = W[a(t), t] (A-43)

a(t) = W l[a(0), t] (A-44)
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Now, Eqs. (A-41) to (A-44) will serve as the transfer functions to transform
the statistical distribution of the initial flaw size a(0) into that of the flaw
size at any service time.

(1) In the First Service Interval (0,T )

Following the same derivations presented in Eqs. (A-5) to (A-9), one can easily
show that p(i,T) is given by Eq. (35) or Eqs. (A-8) and (A-9) in which

YI(T) = W(xI,T) (A-45)

The probability density function f (x) of the crack size at t flight hoursa(t)
is obtained from f (x) of the EIFS through the transformation of Eq. (A-43)(seea (0)
Eq. (A-10))as

fa (x) = fa (0 ) [Y1 (t)1I1 (t) (A-46)

in which f (x) is given by Eq. (39) anda (0)

Y 1 (t) = WNx,t)

I(t) = dW(x, 0 dWO(,t) /X (A-47)

1dx Idtf ]/[gd I

Note that Eqs. (A-46) and (A-47) are identical to Eqs. (41) and (42) , respec-
tively.

(2) In the j+l th Service Interval (T, T J+)

Using the transfer functions given by Eqs. (A-41) to (A-44) instead of Eqs.
(A-l) to (A-4) (for the special case) and following exactly the same procedure
derived above for the special case, one can show that the probability density func-
tion fa(T.+t) (x) of the crack size a(T.+t) at the service time T j+t in the j+l th

service interval is given by Eqs. (43) to (47) in the text.
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The solutions given by Eqs. (43) to (47) can also be obtained without going
through the derivation described above using the following rationale.

Referring to Fig. (21), the probability density function at T.+t flight hours
in the j+l th service interval consists of j different populations. This is because
an additional new population is introduced after each inspection and repair. The
first term of Eq. (43)

I j,
A t) = 11 F* [Y (t;jD] f [y+(t; D I Ij (tdj (A-48)

is the contribution from the original population starting at the zero service time.
The term f a(o)Yj+l(t;j)]Ij+l (t;j) is the probability density function of the flaw

size a(T,+t) directly obtained from that of a(O) through the transformation of Eq.J

(A-43) in which t is replaced by T.+t. However, the original population is subjected
to j times of inspections and repairs. Only the fraction of this population which is

not detected during each inspection has a contribution to the density function of
a(T.+t). The probability (or fraction) of not being detected during j times of inspec-

tions is given byf j *, in which a crack size x at the m th inspection cor-

'11 m D m(t;j)]

responds to a crack size ym(t;j) prior to service (see Eq. (45)).

The last term of Eq.(43)for k=j, i.e., G(1)A.(t;j) represents the contribution
J

from the new population introduced after the first repair performed at T (see Fig.(1))
with probability G(l). Similarly, the second term of Eq. (43) for k=l

G(j)A 1 (t;i) (A-49)

represents the contribution from the new population introduced after the j th repair
performed at T . The fraction of cracked details repaired at T. is G(j). In Eq.J J
(A-49), A (t;j) is given by Eqs. (41) and (42) which indicates the density func-

tion of the crack size at T.+t when its crack size at T. is a(O) (cracks repaired at
J J

T.). A (t;j) is obtained from the probability density function of a(O) through the
J 1

transformation of Eq. (A-41) with tl=T and t 2=T +t, i.e.,

aCT.) = W[a(Tj+t), t] (A-50)
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