A META-ANALYSIS OF THE CORRELATES OF ROLE CONFLICT AND AMBIGUITY

MAY 82 C D FISHER, R J GITELSON

UNCLASSIFIED TR-ONR-7
Organizational Behavior Research
Department of Management
Department of Psychology
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
A Meta-Analysis of the Correlates of Role Conflict and Ambiguity

Cynthia D. Fisher
and
Richard J. Gitelson

TR-ONR-7

May 1982
Technical Reports in this Series

TR-3 J. B. Shaw and C. H. Goretsky. The Reliability and Factor Structure of the Items of the Job Activity Preference Questionnaire (JAPQ) and the Job Behavior Experience Questionnaire (JBEQ). January, 1982. ADA

TR-4 C. D. Fisher and Jeff A. Weekley. Socialization in Work Organizations. February, 1982. ADA 113574

Co-Principal Investigators:
William H. Mobley (713)845-4713
Cynthia D. Fisher (713)845-3037
James B. Shaw (713)845-2554
Richard Woodman (713)845-2310
A META-ANALYSIS OF THE CORRELATES OF ROLE CONFLICT AND AMBIGUITY

Cynthia D. Fisher and Richard J. Gitelson

College of Business Administration
Texas A&M University
College Station, TX 77843

Organizational Effectiveness Research Programs
Office of Naval Research (Code 442)
Arlington, VA 22217

Role conflict, role ambiguity, role stress, role clarity, meta-analysis

The correlational literature concerning the relationships of role conflict and ambiguity to numerous hypothesized antecedents and consequences is still somewhat unclear after a decade of research. Schmidt-Hunter meta-analysis procedures were applied to the results of 43 past studies in an effort to draw valid conclusions about the magnitude and direction of these relationships in the population. For some correlates, apparently inconsistent research results could be ascribed largely to statistical (continued)
20. (continued)

artifacts. For other correlates, it seems that moderator research is needed to explain conflicting results across samples.
In the last twelve years, there has been a great deal of correlational research on the relationships between perceived role ambiguity and role conflict and a host of hypothesized antecedents (such as tenure, formalization, boundary spanning) and consequences (such as job satisfaction, performance, tension, propensity to leave the job, etc.). We located 43 studies, largely in the published literature, which dealt with this topic. Despite all this research, definitive conclusions about these relationships are hard to reach, as results have often seemed inconsistent from study to study (see Van Sell, Brief, and Schuler, 1981, for a review). In most cases, these "inconsistent" results consist of some significant correlations of the same sign, and others which are nonsignificant or zero. Only rarely have significant positive relationships been reported in some studies and significant negative relationships found in other studies of the same variables. However, the true magnitude of the various relationships is still unclear.

In response to these inconsistent results, researchers have begun to search for moderator variables to explain why observed relationships vary across studies. Moderators which have been tested include need for achievement (Abdel-Halim, 1980; Johnson and Stinson, 1975), locus of control (Abdel-Halim, 1980; Organ and Greene, 1974), job scope (Abdel-Halim, 1978, 1980, 1981), need for role clarity (Lyons, 1971; Stead and Scamell, 1980; Ivancevich and Donnelly, 1974), tenure (Brief, Aldag, Van Sell, Melone, 1979), higher order need strength (Beehr, Walsh, and Taber, 1976; Brief and Aldag, 1976), and organizational/occupational level (Schuler, 1975; Berkowitz, 1980; Morris, Steers, and Koch, 1979; Szilagyi, 1977; Szilagyi, Sims, and Keller, 1976). The results of moderator studies have also been
conflicting and inconclusive, and consequently have added little to our understanding.

Recently, a set of methods has become available which allows quantitative cumulation of results across studies, and facilitates the reaching of accurate conclusions based on many past studies of the same phenomenon. These methods are collectively called meta-analysis. Glass (1976) coined this phrase and developed some useful procedures, and others (Rosenthal, 1978, 1979; Cooper, 1979) have subsequently enlarged on them. Schmidt, Hunter, and their colleagues (Hunter, Schmidt, and Jackson, Note 1; Schmidt and Hunter, 1977; Schmidt, Hunter, Pearlman, and Shane, 1979) have developed some additional procedures for cumulating evidence across studies. The various developers of meta-analysis suggest that some form of meta-analysis be applied in virtually all literature reviews, to facilitate the drawing of more correct inferences across studies. Cooper and Rosenthal (1980, p. 442) state, “Because literature reviews have such great gate-keeping potential, it is crucial that we apply standard, replicable, and rigorous criteria to them... the traditional method of literary review has been criticized because of a lack of just such quality control... statistical procedures have been suggested as an alternative...”

Meta-analysis methods are rapidly increasing in use in education and psychology, but are just beginning to be applied in the area of organizational behavior (c.f. Schwab, Olian-Gottlieb, and Heneman, 1979; Strube and Garcia, 1981). The exception is Schmidt and his colleagues, who originally developed their meta-analysis methods specifically to assess the validity generalizability of employee selection tests. In the area of role conflict and ambiguity and their
correlates, meta-analysis can readily be applied to the literature with the expectation that it will substantially clarify our interpretation of past results.

Meta-analysis

There are many methods available for cumulating results across studies (c.f. Hunter et al., Note 1; Rosenthal, 1978). Some rely simply on counting the number of studies displaying significance and comparing to the number which are nonsignificant. A somewhat more complex procedure is to add significance levels across studies. However, this method gives no estimate of effect size, and does not consider the joint role of effect size and sample size in determining significance. Still more sophisticated methods involve cumulating effect sizes. Schmidt, Hunter, and their colleagues have developed such a method specifically for use with correlational data. Their methods has the added advantage of recognizing and correcting for some of the artifactual and methodological problems affecting the observed results of the studies to be combined. Schmidt-Hunter methods will be used in this paper, and are explained more fully below.

Schmidt-Hunter meta-analysis is based on the idea that much of the variation in results across samples or studies is due to statistical artifacts and methodological problems rather than to truly substantive differences in underlying population correlations. The former include sampling error due to differences in sample size, differential reliability and construct validity of measures across samples, differential restriction in range across samples, and errors in data coding, keypunching, and analysis. Their method involves first calculating the mean correlation across studies. In arriving at
this mean, individual correlations are weighted by sample size, so that results of large samples are more heavily weighted than results of small samples. The rationale for this procedure is that correlations from large samples are more reliable (have a smaller confidence interval), and are likely to better represent the true population value than are correlations from small samples. The frequency-weighted mean correlation (\bar{r}) is considered the best estimate of the population correlation, if existing instruments were actually used to measure the population. For example, we found that the mean correlation between job involvement and role ambiguity was -.26, based on the results of eight studies with 1,354 total subjects.

Once the observed \bar{r} is obtained, the total variance of sample correlations around this value is calculated. (In a traditional literature review, a large variance would be interpreted to mean that one or more moderator variables are needed.) The variance attributable to artifacts is then calculated (see Hunter, et al., Note 1, for formulas) and subtracted from the total variance. As noted above, variance due to artifacts comes from several sources. One source is variance expected due to sample sizes. This is easy to compute, but obtaining figures for variance due to other sources such as differential unreliability or restriction in range is often impossible since many authors fail to report the necessary information. Quantitative data on the construct validity or similarity of factor structures of different measures of the same construct is virtually never available, and it is obviously not feasible to calculate variance due to coding and analysis errors. Thus, variance due to artifacts is always a conservative estimate. When variance due to artifacts is subtracted from total variance, the
remaining unexplained variance is often very small, indicating that apparently "inconsistent" results across studies are not truly inconsistent, but occur only because of statistical artifacts. In such cases, moderators are not needed (assuming that the studies meta-analyzed included some high and low on any potential moderators), and moderators which appear to "work" probably do so largely because of chance.

In this study, meta-analysis is applied to the results of 43 studies of the relationships between role conflict and ambiguity and 18 of their correlates. The intent is to 1) produce mean correlations to provide a more accurate picture of the magnitude of various relationships, and 2) to discover whether apparently inconsistent results across studies are due largely to artifacts, or whether moderators may be necessary to identify subpopulations with different true correlation values.

METHOD

Correlational studies of the correlates of conflict and ambiguity were identified by means of both manual and computer-assisted searches of the business and social sciences literature between 1970 and mid-1981. A list of studies used appears in the Appendix. A few unpublished studies familiar to the authors were also included, though a thorough search for unpublished results was not undertaken. The argument can be made that unpublished studies differ in results, probably by having fewer significant findings, from published studies. This may be true, but probably would not affect any strong conclusions drawn from the studies we did include. Rosenthal (1979) addressed
this issue, and described a procedure for calculating the number of "hidden" studies with zero effect sizes which would be needed in order to totally invalidate conclusions based on a particular set of studies. Often a great many studies would be needed.²

Some studies reported data on more than one separate sample, so that altogether, 59 independent samples were used. For each sample, the following information was recorded: 1) correlations of conflict and ambiguity with any other variables, 2) sample size for each correlation, 3) type of measure and reliability of measure (when available) for conflict, ambiguity, and correlates, and 4) type of subjects (sex, occupational level, type of industry). All but five of the studies employed some form of the self-report measures of conflict and ambiguity developed by Rizzo, House, and Lirtzman (1970). (Meta-analysis does not require that the same instruments be used in all samples, merely that similar constructs be measured.) Eighteen correlates were mentioned in the literature with sufficient frequency to be included in the analyses. "Sufficient" frequency for our purposes meant that data from at least three samples were available, though Hunter (Note 2) states that meta-analysis can correctly be used on as few as two samples. The eighteen variables can be seen in the far left column of Tables 1 and 2.

RESULTS AND DISCUSSION

A Statistical Analysis System (SAS) program was written to perform the basic meta-analysis calculations described in Hunter et al. (Note 1).³ The program was applied to the correlations of conflict and ambiguity with each of the 18 correlates. The results for role
conflict appear in Table 1, and the results for role ambiguity in Table 2.

Insert Tables 1 and 2 about here

Each table displays the frequency-weighted mean correlation for each correlate across studies, the range of sample correlations and sample sizes, the total number of subjects involved, and the number of studies pertaining to each correlate. As mentioned earlier, the range of values for the same relationship across studies is often large. For example, sample correlations between propensity to leave and role ambiguity range from -.07 to .63. Sample sizes for this relationship varied from 49 to 506, and a total of 14 studies reported propensity to leave-ambiguity correlations. The frequency weighted mean correlation for this relationship is .307.

The far right columns of each table contain figures for the meta-analysis. Total variance in the sample correlations appears in column 7. The variance one would expect due to sampling error was then subtracted, and column 8 shows how much variance remains unexplained. The figures in column 8 are corrected only for sampling error. Variation across studies due to other artifacts such as differential reliability, construct validity, and range restriction could not be estimated or removed since many studies did not report the necessary information. Thus, column 8 may include some variance due to true differences in correlations across sub-populations, but probably also contains substantial variance due to unquantified artifacts.

Hunter et al. (Note 1) give a chi square statistic for testing
whether the remaining variance (column 8) is significantly different from zero, indicating that meaningful variation across samples may exist. However, they state that the test "has very high statistical power and will therefore reject the null hypothesis given a trivial amount of variation across studies. Thus, if the chi square is not significant, this is strong evidence that there is no true variation across studies, but if it is significant the variance may still be negligible in magnitude" (p. 39-40). Chi square values are reported in column 9. To counterbalance the extreme power of the test, a significance level of .01 was adopted.

Population Value Estimates

For some of the relationships investigated, the amount of variance remaining after correcting for sampling error was non-significant. Thus, no evidence for differences in underlying sub-population correlations exists. When artifacts explain most of the variance across samples, the mean correlation is the best estimate of the population value. We can thus conclude that the estimated true relationships, given present measurement methods, are as shown in Table 3.

Insert Table 3 about here

It is possible to determine whether these relationships are significantly different from zero by converting the variances in column 8 into standard deviations. Mean correlations more than two standard deviations from zero are considered significant (Note 2), and are indicated by an asterisk in Table 3. One may thus conclude that
role ambiguity is positively related to educational level, and negatively associated with organizational commitment, job involvement, satisfaction with co-workers and promotion, boundary spanning, tenure, and age. Role conflict is unrelated to self-rated performance and education, positively related to boundary spanning; and negatively related to commitment, involvement, satisfaction with pay, co-workers, and supervision, and participation in decision making. These conclusions are based upon empirical analyses of results across many studies, and should be considered more accurate than the results of any one study, or the results of purely narrative reviews of many studies. For example, the review by Van Sell et al. (1981) concluded that the relationship of organizational commitment to role conflict is still unclear. The present analyses show it to be quite clear, a correlation of -.247, based on 755 subjects from 6 samples, with trivial unexplained variance between samples.

Another relationship, that between conflict and ambiguity, has also appeared to vary quite a bit in past research. Rizzo et al. (1970) originally developed the scales to represent two independent constructs by discarding items which loaded on both factors. Schuler, Aldag, and Brief (1977) assessed the psychometric properties of both scales in six samples, and found that intercorrelations were different across samples, though always positive. In the present study, intercorrelations from 14 samples were subjected to meta-analysis (see Table 1). The mean correlation was .366 and the chi square was significant, indicating that the relationship does vary across samples.

Let us return to considering the correlates starred in column 9 of Tables 1 and 2. These represent relationships in which non-trivial
variance across samples remains after subtracting variance expected due to sampling error. Two explanations of these results are possible. One is that true differences in the relationships exist within sub-populations. This possibility will be discussed later. The second explanation is that the apparent diversity of sample results is due to artifacts which were not measured and subtracted out. For example, differential reliability and/or construct validity of measures across studies may account for the results. It was not possible to directly correct for these, since many studies failed to report reliability, and validity was seldom even mentioned. However, some support for the above artifactual explanation can be inferred from an examination of the correlates which did and did not present significant chi squares in Tables 1 and 2.

Variables which were consistently measured in the same way from study to study, and thus presumably had similar reliability and construct validity, seldom displayed great variability in correlations across samples. For example, commitment, involvement, and satisfaction with pay, co-workers, supervision, and promotion were virtually always measured with the same instruments across studies [respectively, the Mowday, Steers, and Porter (1979) instrument, the Lodahl and Kejner instrument (1965), and the Job Descriptive Index (Smith, Kendall, and Hulin, 1969)]. Correlates for which results varied across studies tended to be those measured in markedly different ways from study to study (tension/anxiety, overall job satisfaction, satisfaction with the work itself/intrinsic satisfaction, and job performance) or one-item measures of questionable reliability (propensity to leave).

Another artifact which was not dealt with directly in the initial
Meta-analysis is the possibility of differential restriction in range across samples. Very few authors provided information on means or standard deviations of either conflict and ambiguity measures or correlates. However, since some studies were based on homogeneous samples (same job title) and others on quite heterogeneous samples, it seems likely that the range of conflict and ambiguity probably varied quite a bit from study to study. Since weaker relationships are likely to be observed in the more restricted samples, varying amounts of restriction would contribute to between sample variations in results. We attempted to classify studies as to heterogeneity of sample with the intention of repeating the basic meta-analysis within homogeneous and heterogeneous groupings, but were unable to do so because of inadequate information. While "registered nurses working in hospitals" constitutes a fairly homogeneous sample, the degree of homogeneity in samples of "research professionals," "administrative workers," or "clerical and drafting employees" is unclear.

Our difficulties surely indicate a need for researchers to more carefully report the characteristics of their samples, reliability of all instruments, and means and standard deviations of all variables. If meta-analysis is to be used to its full potential in the future, such data must be available from many of the studies in a given area.

Moderator Analysis

Since all artifacts could not be accounted for, significant remaining variance among sample results could be due to either artifacts or true differences in sub-population values. If the latter is the case, then previous researchers and reviewers have been correct in noting that results across studies did not agree, and in calling
for a search for moderators which identify sub-populations with different correlations. Hunter et al. (Note 1) give two different meta-analysis procedures for locating moderators based on the results of numerous correlational studies. One approach is to divide the studies on the basis of their values on the potential moderator variable (i.e., studies done on high socio-economic status subjects versus studies done on low SES subjects) and then perform the basic meta-analysis procedures within each group of studies. If the \(r \)'s are different, and the unexplained variance across samples is lower in the groups than it was in the total sample, then the grouping variable does have a moderating effect. A second approach involves correlating the observed sample correlations with the values of the potential moderator. For example, if age is the moderator of interest, then mean age of samples would be correlated with the values of the relationship of interest (say, between role ambiguity and performance). A significant positive correlation (when suitably corrected by the formulas given by Hunter, et al., Note 1), would mean that the relationship of interest is stronger, the higher the age of the sample.

Glass (1977) has suggested coding as many study characteristics as possible and then trying each as a moderator. Hunter et al. (Note 1) note that this empiricist approach can lead to the discovery of apparent moderators due to chance alone. We were spared the necessity of choosing between approaches (code all study characteristics versus code only those of theoretical relevance) by the fact that very few characteristics were consistently reported by authors. Sex and mean age of subjects were given by some authors, but only job type was frequently reported. Job type (or organizational "level") has been
suggested before as a potential moderator of role conflict and ambiguity relationships (Morris et al., 1979; Schuler, 1975, 1977; Szilagyi, 1977). Schuler (1975) has made the most specific predictions, arguing that conflict should be more strongly related to satisfaction and performance at lower organizational levels than higher levels, while the reverse should be true for ambiguity. Morris et al. (1979) found that structural antecedents varied by occupational type for role ambiguity but not role conflict. On the other hand, Berkowitz (1980) found no support for organizational level as a moderator in samples of salespeople and sales managers.

Job type is a nominal variable, so the subgrouping rather than correlational approach to finding moderators was used. Three groups of studies were formed based on the job type of subjects: lower level jobs, professional jobs (engineers, nurses, scientists, librarians, teachers), and managerial jobs (all levels). Further subdividing would have resulted in subgroups containing too few observations for analysis. Samples were excluded if they were not described well enough to categorize, or contained subjects from many diverse job types. The results of the moderator analyses are shown in Tables 4 and 5. Note that moderator analyses were performed only for relationships in which significant variance across samples remained after correcting for sampling error.

Insert Tables 4 and 5 about here

Job type is clearly not the only moderator which will be required to understand the variability in sample results. For many of the analyses, one or more job type groups still show significant within
group variance in sample results. However, for some correlates of role conflict, job type is a sufficient moderator. The correlation of role conflict with propensity to leave (Table 4) is uniformly stronger in the professional job group than in the managerial job group, which is in turn stronger than the lower level job group. Similar results obtain for the conflict-ambiguity relationship. For satisfaction with the work itself, the unexplained variance within each group has been reduced to nonsignificance, but the mean correlations of the groups do not differ markedly. Conflict is much more strongly related to tension/anxiety in lower level jobs ($\bar{r} = .306$) than in managerial jobs ($\bar{r} = .178$), but no definitive conclusions are possible for this relationship in professional jobs.

For ambiguity, (Table 5), job type moderates both satisfaction with pay and satisfaction with supervision relationships, though not in exactly the same way. Propensity to leave is more strongly related to ambiguity among professionals ($-.361$) than among managers ($-.217$), while the relationship for lower level jobs still varies greatly across samples. Finally, satisfaction with the work itself is more strongly related to ambiguity for managers ($-.414$) than for lower level employees ($\bar{r} = -.257$), with the relationship among professionals remaining unclear.

Several conclusions are possible from this moderator analysis. First, job type is a sufficient moderator for a few correlates. For other correlates, grouping by job type gets rid of the variability within one or two groups, while leaving significant variability in the other group(s). Taken together, the various moderating effects found here do not either support or refute Schuler’s (1975) predictions about the relative strength of conflict and ambiguity relationships.
across organizational levels. Second, further analyses with different moderators will be necessary to thoroughly understand the remaining unexplained variability (assuming that this is true variability, not due to unmeasured artifacts). A third possible conclusion is that these moderator analyses are premature for some correlates, due to the small number of samples (2 or 3) in some of the job type groups.

Conclusions

Past research has produced conflicting and unclear results with regard to the nature and strength of the relationships between role conflict and ambiguity and their hypothesized antecedents and consequences. The intent of this paper has been to reduce this confusion by means of meta-analysis of the results of numerous past studies. For some correlates, we have succeeded, in that the apparent variability in results across samples was shown to be no greater than that expected due to sampling error. For other correlates, occupational type was shown to moderate the relationships such that correlations within an occupational type were not different from each other, while the average correlation across types did differ. However, the results for other correlates are still unclear. For instance, even when controlling for variations in sample size and occupational type, the strength of the relationship between both conflict and ambiguity and overall job satisfaction are still highly variable across samples. This may indicate a need to pursue further moderator research on variables which may have differed across the samples used in this review, such as age, tenure, sex, need for role clarity, and so on. Alternatively, artifacts which could not be controlled for in these meta-analyses may account for much of the
remaining variance. In this case, a search for moderators would be unnecessary, and the mean correlations shown in Tables 1 and 2 can be taken as the best estimates of the strength of the population relationships.

A final object lesson is that researchers should be more careful to report in print any sample characteristics, reliabilities, ranges, and so on which may be required at some future time for the conduct of meta-analysis.
FOOTNOTES

1 Funding for the data analyses was provided by a grant from the Office of Naval Research, N00014-81-K0036, NR170-925. This paper grew out of a session the first author attended at the American Psychological Association Division 14 Innovations in Methodology Conference, held in Greensboro, NC in March, 1981. The session was entitled "Innovative Ways of Cumulating Evidence" and was led by Jack Hunter.

2 Rosenthal's (1978) formula was applied to several subsets of the data for illustrative purposes, and gave the expected results. That is, for variables yielding a reasonable mean effect size (F), and based on more than just a few samples, many studies would be needed to invalidate our conclusions. For example, 425 studies with zero effect sizes would have to exist in order to invalidate the conclusion based on 13 studies (F = -.347) that overall job satisfaction and role conflict are negatively related. For the more modest correlation (F = -.22) between role ambiguity and satisfaction with coworkers, 192 studies would be needed. The correlation between education and role ambiguity (F = .147) based on six samples, is among the weakest considered significant (see Table 3), and only 17 additional zero effect size studies would be needed to invalidate it.

3 Thanks to Joe Eulberg for writing a SAS program to perform the meta-analysis. Interested readers may obtain a copy of this program from the first author.
REFERENCES

Abdel-Halim, A. A. Effects of person-job compatibility on managerial reactions to role ambiguity. Organizational Behavior and Human Performance, 1980, 26, 193-211.

Lyons, T. F. Role clarity, need for clarity, satisfaction, tension, and withdrawal. *Organizational Behavior and Human Performance,* 1971, 6, 99-118.

TABLE 1
Information on Role Conflict and 18 Correlates from 42 Studies

<table>
<thead>
<tr>
<th>1 Correlate</th>
<th>2 mean correlation</th>
<th>3 range of correlations</th>
<th>4 total sample size</th>
<th>5 range of sample sizes</th>
<th>6 number of samples</th>
<th>7 variance in sample correlations</th>
<th>8 unexplained variance<sup>1</sup> in sample correlations</th>
<th>9 chi square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propensity to leave</td>
<td>.291</td>
<td>.06 to .52</td>
<td>1814</td>
<td>49 to 506</td>
<td>12</td>
<td>.0189</td>
<td>.0133</td>
<td>40.89**</td>
</tr>
<tr>
<td>Organizational commitment</td>
<td>-.247</td>
<td>-.12 to -.41</td>
<td>755</td>
<td>55 to 203</td>
<td>6</td>
<td>.0076</td>
<td>.0006</td>
<td>6.48</td>
</tr>
<tr>
<td>Job involvement</td>
<td>-.152</td>
<td>.00 to -.21</td>
<td>1220</td>
<td>55 to 399</td>
<td>7</td>
<td>.0035</td>
<td>-.0020</td>
<td>4.44</td>
</tr>
<tr>
<td>Tension/anxiety</td>
<td>.275</td>
<td>.12 to .69</td>
<td>1768</td>
<td>61 to 488</td>
<td>12</td>
<td>.0336</td>
<td>.0278</td>
<td>69.52**</td>
</tr>
<tr>
<td>Overall job satisfaction</td>
<td>-.347</td>
<td>.13 to -.55</td>
<td>2343</td>
<td>61 to 506</td>
<td>13</td>
<td>.0266</td>
<td>.0222</td>
<td>80.44**</td>
</tr>
<tr>
<td>Satisfaction with pay</td>
<td>-.203</td>
<td>.06 to -.33</td>
<td>2545</td>
<td>50 to 506</td>
<td>12</td>
<td>.0037</td>
<td>-.0006</td>
<td>10.25</td>
</tr>
<tr>
<td>Satisfaction with co-workers</td>
<td>-.314</td>
<td>-.11 to -.40</td>
<td>2538</td>
<td>50 to 506</td>
<td>12</td>
<td>.0045</td>
<td>.0006</td>
<td>13.99</td>
</tr>
<tr>
<td>Satisfaction with supervisor</td>
<td>-.374</td>
<td>-.28 to -.49</td>
<td>2104</td>
<td>50 to 399</td>
<td>12</td>
<td>.0034</td>
<td>-.0008</td>
<td>9.76</td>
</tr>
<tr>
<td>Satisfaction with promotion</td>
<td>-.259</td>
<td>-.14 to -.41</td>
<td>2541</td>
<td>50 to 506</td>
<td>12</td>
<td>.0093</td>
<td>.0052</td>
<td>27.08**</td>
</tr>
<tr>
<td>Satisfaction with work itself</td>
<td>-.313</td>
<td>-.07 to -.58</td>
<td>3991</td>
<td>35 to 506</td>
<td>26</td>
<td>.0132</td>
<td>.0079</td>
<td>64.59**</td>
</tr>
<tr>
<td>Performance self-rated</td>
<td>-.116</td>
<td>.12 to -.37</td>
<td>797</td>
<td>49 to 302</td>
<td>6</td>
<td>.0166</td>
<td>.0093</td>
<td>13.59</td>
</tr>
<tr>
<td>Performance superior-rated</td>
<td>-.086</td>
<td>.08 to -.29</td>
<td>2376</td>
<td>34 to 399</td>
<td>16</td>
<td>.0159</td>
<td>.0093</td>
<td>38.39**</td>
</tr>
<tr>
<td>Boundary spanning</td>
<td>.249</td>
<td>.08 to .36</td>
<td>967</td>
<td>51 to 714</td>
<td>3</td>
<td>.0043</td>
<td>.0016</td>
<td>4.78</td>
</tr>
<tr>
<td>Participation in decision making</td>
<td>-.276</td>
<td>-.19 to -.30</td>
<td>1200</td>
<td>61 to 714</td>
<td>5</td>
<td>.0004</td>
<td>-.0031</td>
<td>.64</td>
</tr>
<tr>
<td>Formalization</td>
<td>-.060</td>
<td>.24 to -.40</td>
<td>984</td>
<td>88 to 252</td>
<td>6</td>
<td>.0475</td>
<td>.0414</td>
<td>47.08*</td>
</tr>
<tr>
<td>Tenure</td>
<td>.029</td>
<td>.28 to -.21</td>
<td>14</td>
<td>81 to 714</td>
<td>8</td>
<td>.0146</td>
<td>.0101</td>
<td>26.31**</td>
</tr>
<tr>
<td>Education</td>
<td>.101</td>
<td>.26 to -.18</td>
<td>15</td>
<td>81 to 506</td>
<td>7</td>
<td>.0074</td>
<td>.0038</td>
<td>14.51</td>
</tr>
<tr>
<td>Age</td>
<td>-.045</td>
<td>.29 to -.27</td>
<td>712</td>
<td>81 to 252</td>
<td>5</td>
<td>.0232</td>
<td>.0162</td>
<td>16.56**</td>
</tr>
<tr>
<td>Role ambiguity</td>
<td>.366</td>
<td>.01 to .50</td>
<td>2521</td>
<td>70 to 399</td>
<td>14</td>
<td>.0170</td>
<td>.0129</td>
<td>57.18**</td>
</tr>
</tbody>
</table>

¹Variance still unexplained after the removal of variance expected due to sample sizes.

* p < .01
** p < .001
<table>
<thead>
<tr>
<th>Correlate</th>
<th>1 mean</th>
<th>2 mean</th>
<th>3 range of</th>
<th>4 total</th>
<th>5 range of</th>
<th>6 number</th>
<th>7 variance in</th>
<th>8 unexplained variance</th>
<th>9 chi square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propensity to leave</td>
<td>.316</td>
<td>-.07</td>
<td>-.63</td>
<td>1963</td>
<td>49 to 506</td>
<td>14</td>
<td>.0192</td>
<td>.0134</td>
<td>46.51**</td>
</tr>
<tr>
<td>Organizational commitment</td>
<td>-.340</td>
<td>-.27</td>
<td>-.43</td>
<td>577</td>
<td>23 to 190</td>
<td>6</td>
<td>.0022</td>
<td>-.0059</td>
<td>1.64</td>
</tr>
<tr>
<td>Job involvement</td>
<td>-.264</td>
<td>-.12</td>
<td>-.37</td>
<td>1354</td>
<td>55 to 399</td>
<td>8</td>
<td>.0068</td>
<td>.0017</td>
<td>10.69</td>
</tr>
<tr>
<td>Tension/anxiety</td>
<td>.186</td>
<td>-.07</td>
<td>-.78</td>
<td>1858</td>
<td>27 to 488</td>
<td>16</td>
<td>.0335</td>
<td>.0255</td>
<td>66.89**</td>
</tr>
<tr>
<td>Overall job satisfaction</td>
<td>-.251</td>
<td>.05</td>
<td>-.57</td>
<td>2295</td>
<td>48 to 488</td>
<td>16</td>
<td>.0408</td>
<td>.0347</td>
<td>106.72**</td>
</tr>
<tr>
<td>Satisfaction with pay</td>
<td>-.118</td>
<td>.11</td>
<td>-.56</td>
<td>2041</td>
<td>50 to 399</td>
<td>11</td>
<td>.0129</td>
<td>.0077</td>
<td>27.09*</td>
</tr>
<tr>
<td>Satisfaction with co-workers</td>
<td>-.220</td>
<td>-.07</td>
<td>-.33</td>
<td>2540</td>
<td>50 to 506</td>
<td>12</td>
<td>.0029</td>
<td>-.0014</td>
<td>8.16</td>
</tr>
<tr>
<td>Satisfaction with supervisor</td>
<td>-.368</td>
<td>-.16</td>
<td>-.53</td>
<td>2207</td>
<td>50 to 399</td>
<td>13</td>
<td>.0101</td>
<td>.0057</td>
<td>29.90*</td>
</tr>
<tr>
<td>Satisfaction with promotion</td>
<td>-.243</td>
<td>-.12</td>
<td>-.44</td>
<td>2543</td>
<td>50 to 506</td>
<td>12</td>
<td>.0063</td>
<td>.0022</td>
<td>18.18</td>
</tr>
<tr>
<td>Satisfaction with work itself</td>
<td>-.350</td>
<td>-.07</td>
<td>-.61</td>
<td>4589</td>
<td>35 to 506</td>
<td>31</td>
<td>.0158</td>
<td>.0106</td>
<td>94.12**</td>
</tr>
<tr>
<td>Performance self-rated</td>
<td>-.236</td>
<td>.18</td>
<td>-.49</td>
<td>1035</td>
<td>49 to 203</td>
<td>7</td>
<td>.0277</td>
<td>.0217</td>
<td>32.23**</td>
</tr>
<tr>
<td>Performance superior-rated</td>
<td>-.102</td>
<td>.11</td>
<td>-.36</td>
<td>2596</td>
<td>34 to 399</td>
<td>18</td>
<td>.0166</td>
<td>.0098</td>
<td>43.99**</td>
</tr>
<tr>
<td>Boundary spanning</td>
<td>-.142</td>
<td>-.13</td>
<td>-.31</td>
<td>967</td>
<td>51 to 714</td>
<td>3</td>
<td>.0016</td>
<td>-.0014</td>
<td>1.61</td>
</tr>
<tr>
<td>Participation in decision making</td>
<td>-.507</td>
<td>-.25</td>
<td>-.60</td>
<td>1139</td>
<td>68 to 714</td>
<td>4</td>
<td>.0154</td>
<td>.0135</td>
<td>31.76**</td>
</tr>
<tr>
<td>Formalization</td>
<td>-.402</td>
<td>-.23</td>
<td>-.57</td>
<td>984</td>
<td>88 to 252</td>
<td>6</td>
<td>.0180</td>
<td>.0137</td>
<td>25.20**</td>
</tr>
<tr>
<td>Tenure</td>
<td>-.128</td>
<td>-.03</td>
<td>-.24</td>
<td>1796</td>
<td>81 to 714</td>
<td>8</td>
<td>.0027</td>
<td>-.0016</td>
<td>4.99</td>
</tr>
<tr>
<td>Education</td>
<td>.147</td>
<td>.04</td>
<td>.18</td>
<td>1426</td>
<td>81 to 714</td>
<td>6</td>
<td>.0018</td>
<td>-.0022</td>
<td>2.72</td>
</tr>
<tr>
<td>Age</td>
<td>-.174</td>
<td>-.13</td>
<td>-.29</td>
<td>1127</td>
<td>81 to 506</td>
<td>5</td>
<td>.0034</td>
<td>-.0008</td>
<td>4.06</td>
</tr>
</tbody>
</table>

1 Variance still unexplained after the removal of variance expected due to sample sizes.

* p < .01
** p < .001
TABLE 3
Mean Correlations Which Estimate Population Values

Role ambiguity with:	organizational commitment	- .340*
	job involvement	- .264*
	satisfaction with co-workers	- .220*
	satisfaction with promotion	- .243*
	boundary spanning	- .142*
	tenure	- .128*
	education	.147*
	age	- .174*

<p>| Role conflict with: | organizational commitment | - .247* |
| | job involvement | - .152* |
| | satisfaction with pay | - .203* |
| | satisfaction with co-workers | - .314* |
| | satisfaction with supervision | - .374* |
| | self-rated performance | - .116 |
| | boundary spanning | .249* |
| | participation in decision making | - .276* |
| | education | .101 |</p>
<table>
<thead>
<tr>
<th>Correlate</th>
<th>Job type</th>
<th>Mean correlation</th>
<th>Total sample size</th>
<th>Number of samples</th>
<th>Variance in sample correlations</th>
<th>Unexplained variance in sample correlations</th>
<th>Chi square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propensity to leave</td>
<td>lower</td>
<td>.196</td>
<td>176</td>
<td>2</td>
<td>.0009</td>
<td>-.0096</td>
<td>.17</td>
</tr>
<tr>
<td></td>
<td>professional</td>
<td>.389</td>
<td>944</td>
<td>4</td>
<td>.0031</td>
<td>-.0012</td>
<td>2.43</td>
</tr>
<tr>
<td></td>
<td>managerial</td>
<td>.263</td>
<td>404</td>
<td>4</td>
<td>.0169</td>
<td>.0083</td>
<td>7.88</td>
</tr>
<tr>
<td>Tension/anxiety</td>
<td>lower</td>
<td>.306</td>
<td>176</td>
<td>2</td>
<td>.0236</td>
<td>.0143</td>
<td>5.06</td>
</tr>
<tr>
<td></td>
<td>professional</td>
<td>.484</td>
<td>492</td>
<td>3</td>
<td>.0407</td>
<td>.0371</td>
<td>34.16**</td>
</tr>
<tr>
<td></td>
<td>managerial</td>
<td>.178</td>
<td>742</td>
<td>4</td>
<td>.0034</td>
<td>-.0016</td>
<td>2.71</td>
</tr>
<tr>
<td>Overall job satisfaction</td>
<td>lower</td>
<td>-.150</td>
<td>203</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>professional</td>
<td>-.4289</td>
<td>1223</td>
<td>6</td>
<td>.0249</td>
<td>.0198</td>
<td>24.47**</td>
</tr>
<tr>
<td></td>
<td>managerial</td>
<td>-.267</td>
<td>848</td>
<td>5</td>
<td>.0149</td>
<td>.0117</td>
<td>27.47**</td>
</tr>
<tr>
<td>Satisfaction with</td>
<td>lower</td>
<td>-.176</td>
<td>563</td>
<td>3</td>
<td>.0009</td>
<td>-.0042</td>
<td>.47</td>
</tr>
<tr>
<td>promotion</td>
<td>professional</td>
<td>-.308</td>
<td>1338</td>
<td>6</td>
<td>.0097</td>
<td>.0060</td>
<td>15.84*</td>
</tr>
<tr>
<td></td>
<td>managerial</td>
<td>-.153</td>
<td>241</td>
<td>2</td>
<td>.0006</td>
<td>-.0073</td>
<td>.16</td>
</tr>
<tr>
<td>Satisfaction with</td>
<td>lower</td>
<td>-.360</td>
<td>823</td>
<td>6</td>
<td>.0069</td>
<td>.0013</td>
<td>7.48</td>
</tr>
<tr>
<td>work itself</td>
<td>professional</td>
<td>-.366</td>
<td>1726</td>
<td>9</td>
<td>.0089</td>
<td>.0048</td>
<td>19.79</td>
</tr>
<tr>
<td></td>
<td>managerial</td>
<td>-.321</td>
<td>753</td>
<td>8</td>
<td>.0148</td>
<td>.0062</td>
<td>13.85</td>
</tr>
<tr>
<td>Performance superior-rated</td>
<td>lower</td>
<td>-.088</td>
<td>781</td>
<td>6</td>
<td>.0112</td>
<td>.0037</td>
<td>8.92</td>
</tr>
<tr>
<td></td>
<td>professional</td>
<td>-.130</td>
<td>797</td>
<td>4</td>
<td>.0256</td>
<td>.0207</td>
<td>21.07**</td>
</tr>
<tr>
<td></td>
<td>managerial</td>
<td>-.041</td>
<td>399</td>
<td>5</td>
<td>.0138</td>
<td>.003</td>
<td>5.31</td>
</tr>
<tr>
<td>Formalization</td>
<td>insufficient sample size for grouping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenure</td>
<td>insufficient sample size for grouping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>insufficient sample size for grouping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Role ambiguity</td>
<td>lower</td>
<td>.279</td>
<td>245</td>
<td>3</td>
<td>.0149</td>
<td>.0045</td>
<td>4.29</td>
</tr>
<tr>
<td></td>
<td>professional</td>
<td>.447</td>
<td>576</td>
<td>2</td>
<td>.0051</td>
<td>.0029</td>
<td>4.61</td>
</tr>
<tr>
<td></td>
<td>managerial</td>
<td>.324</td>
<td>487</td>
<td>4</td>
<td>.0172</td>
<td>.0106</td>
<td>10.47</td>
</tr>
</tbody>
</table>

* p < .01
** p < .001
<table>
<thead>
<tr>
<th>Correlate</th>
<th>Job type</th>
<th>Mean correlation</th>
<th>Total sample size</th>
<th>Number of samples</th>
<th>Variance in sample correlations</th>
<th>Unexplained variance in sample correlations</th>
<th>Chi square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propensity to leave</td>
<td>lower</td>
<td>.487</td>
<td>204</td>
<td>2</td>
<td>.0339</td>
<td>.0282</td>
<td>11.88**</td>
</tr>
<tr>
<td></td>
<td>professional</td>
<td>.361</td>
<td>1030</td>
<td>5</td>
<td>.0028</td>
<td>-.0009</td>
<td>3.80</td>
</tr>
<tr>
<td></td>
<td>managerial</td>
<td>.217</td>
<td>439</td>
<td>5</td>
<td>.0212</td>
<td>.0108</td>
<td>10.24</td>
</tr>
<tr>
<td>Tension/anxiety</td>
<td>lower</td>
<td>.304</td>
<td>282</td>
<td>4</td>
<td>.0253</td>
<td>.0137</td>
<td>8.68</td>
</tr>
<tr>
<td></td>
<td>professional</td>
<td>.351</td>
<td>398</td>
<td>4</td>
<td>.0007</td>
<td>-.0071</td>
<td>.34</td>
</tr>
<tr>
<td></td>
<td>managerial</td>
<td>.050</td>
<td>686</td>
<td>4</td>
<td>.0370</td>
<td>.0312</td>
<td>25.50**</td>
</tr>
<tr>
<td>Overall job satisfaction</td>
<td>lower</td>
<td>-.250</td>
<td>203</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>professional</td>
<td>-.340</td>
<td>735</td>
<td>5</td>
<td>.0194</td>
<td>.0141</td>
<td>18.22*</td>
</tr>
<tr>
<td></td>
<td>managerial</td>
<td>-.125</td>
<td>934</td>
<td>6</td>
<td>.0361</td>
<td>.0299</td>
<td>34.85**</td>
</tr>
<tr>
<td>Satisfaction with pay</td>
<td>lower</td>
<td>-.107</td>
<td>563</td>
<td>3</td>
<td>.0082</td>
<td>.0029</td>
<td>4.70</td>
</tr>
<tr>
<td></td>
<td>professional</td>
<td>-.169</td>
<td>832</td>
<td>5</td>
<td>.0150</td>
<td>.0093</td>
<td>13.23</td>
</tr>
<tr>
<td></td>
<td>managerial</td>
<td>.047</td>
<td>247</td>
<td>2</td>
<td>.0011</td>
<td>-.0069</td>
<td>.27</td>
</tr>
<tr>
<td>Satisfaction with</td>
<td>lower</td>
<td>-.309</td>
<td>741</td>
<td>5</td>
<td>.0093</td>
<td>.0037</td>
<td>8.39</td>
</tr>
<tr>
<td>supervision</td>
<td>professional</td>
<td>-.360</td>
<td>832</td>
<td>5</td>
<td>.0102</td>
<td>.0057</td>
<td>11.27</td>
</tr>
<tr>
<td></td>
<td>managerial</td>
<td>-.478</td>
<td>235</td>
<td>2</td>
<td>.0000</td>
<td>-.0051</td>
<td>.01</td>
</tr>
<tr>
<td>Satisfaction with work</td>
<td>lower</td>
<td>-.257</td>
<td>924</td>
<td>7</td>
<td>.0121</td>
<td>.0055</td>
<td>12.83</td>
</tr>
<tr>
<td>itself</td>
<td>professional</td>
<td>-.342</td>
<td>1726</td>
<td>9</td>
<td>.0118</td>
<td>.0077</td>
<td>26.13**</td>
</tr>
<tr>
<td></td>
<td>managerial</td>
<td>-.414</td>
<td>845</td>
<td>9</td>
<td>.0103</td>
<td>.0030</td>
<td>12.66</td>
</tr>
<tr>
<td>Performance</td>
<td>lower</td>
<td>-.109</td>
<td>302</td>
<td>2</td>
<td>.0407</td>
<td>.0343</td>
<td>12.60**</td>
</tr>
<tr>
<td>self-rated</td>
<td>professional</td>
<td>-.339</td>
<td>488</td>
<td>3</td>
<td>.0089</td>
<td>.0041</td>
<td>5.58</td>
</tr>
<tr>
<td></td>
<td>managerial</td>
<td>-.188</td>
<td>245</td>
<td>2</td>
<td>.0058</td>
<td>-.0018</td>
<td>1.52</td>
</tr>
<tr>
<td>Performance</td>
<td>lower</td>
<td>-.113</td>
<td>859</td>
<td>7</td>
<td>.0095</td>
<td>.0016</td>
<td>8.41</td>
</tr>
<tr>
<td>superior-rated</td>
<td>professional</td>
<td>-.065</td>
<td>797</td>
<td>4</td>
<td>.0134</td>
<td>.0084</td>
<td>10.75</td>
</tr>
<tr>
<td></td>
<td>managerial</td>
<td>-.103</td>
<td>541</td>
<td>6</td>
<td>.0340</td>
<td>.0231</td>
<td>18.79*</td>
</tr>
<tr>
<td>Participation in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>decision-making</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formalization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < .01

**p < .001
Appendix

Studies Included in Meta-analysis

Fisher, C. D. Unpublished data.

Miles, R.H. Role-set configuration as a predictor of role conflict and ambiguity in complex organizations. *Sociometry*, 1977, 40, 21-34.

*LIST 1/Mandatory

Defence Technical Information Center
ATTN: DTIC DBA-2
Selection and Preliminary Cataloging Section
Cameron Station
Alexandria, VA 22314 (12 copies)

Library of Congress
Science and Technology Division
Washington, D.C. 20540

Office of Naval Research
Code 4420E
800 N. Quincy Street
Arlington, VA 22217 (3 copies)

Naval Research Laboratory
Code 2627
Washington, D.C. 20375 (6 copies)

Office of Naval Research
Director, Technology Programs
Code 200
800 N. Quincy Street
Arlington, VA 22217

Office of Naval Research
Code 440
800 N. Quincy Street
Arlington, VA 22217

Office of Naval Research
Code 442PT
800 N. Quincy Street
Arlington, VA 22217

Office of Naval Research
Code 442EP
800 N. Quincy Street
Arlington, VA 22217

*LIST 2/ONR Field

ONR Western Regional Office
1030 E. Green Street
Pasadena, CA 91106

Psychologist
ONR Western Regional Office
1030 E. Green Street
Pasadena, CA 91106

ONR Regional Office
536 S. Clark Street
Chicago, IL 60605

*LIST 2/ONR Field (cont.)

Psychologist
ONR Regional Office
536 S. Clark Street
Chicago, IL 60605

Psychologist
ONR Eastern/Central Regional Office
Bldg. 114, Section D
666 Summer Street
Boston, MA 02210

ONR Eastern/Central Regional Office
Bldg. 114, Section D
666 Summer Street
Boston, MA 02210

*LIST 3/OPNAV

Deputy Chief of Naval Operations
(Manpower, Personnel, and Training)
Head, Research, Development, and
Studies Branch (Op-115)
1812 Arlington Annex
Washington, D.C. 20350

Director
Civilian Personnel Division (OP-14)
Department of the Navy
1803 Arlington Annex
Washington, D.C. 20350

Deputy Chief of Naval Operations
(Manpower, Personnel, and Training)
Director, Human Resource Management
Plans and Policy Branch (Op-150)
Department of the Navy
Washington, D.C. 20350

Deputy Chief of Naval Operations
(Manpower, Personnel, and Training)
Director, Human Resource Management
Plans and Policy Branch (Op-150)
Department of the Navy
Washington, D.C. 20350

Chief of Naval Operations
Head, Manpower, Personnel, Training
and Reserves Team (Op-964D)
The Pentagon, 44478
Washington, D.C. 20350
Chief of Naval Operations
Assistant, Personnel Logistics Planning (Op-98/11)
The Pentagon, 5B772
Washington, D.C. 20350

Naval Weapons Center
Code 094
China Lake, CA 93555

Program Administrator for Manpower, Personnel, and Training
A. Rubenstein
NAVAT 0722
800 N. Quincy Street
Arlington, VA 22217

Naval Material Command
Management Training Center
NAVAT 09M32
Jefferson Plaza, Bldg #2, Rm 150
1421 Jefferson Davis Highway
Arlington, VA 20360

Naval Material Command
J. W. Tweeddale
ONS (SNL)
NAVMAT-00K
Crystal Plaza #5, Room 236
Washington, D.C. 20360

Naval Material Command
NAVAT-00KB
Washington, D.C. 20360

Naval Material Command
J. E. Colvard
(MAT-03)
Crystal Plaza #5
Room 236
2211 Jefferson Davis Highway
Arlington, VA 20360

Commanding Officer
Naval Personnel R&D Center
San Diego, CA 92152 (3 copies)

Navy Personnel R&D Center
Washington Liaison Office
Building 200, 2N
Washington Navy Yard
Washington, D.C. 20374

Naval Personnel R&D Center
San Diego, CA 92152
(Dr. Robert Penn-1 copy)
(Ed Aiken-1 copy)

Commanding Officer
Naval Health Research Center
San Diego, CA 92152

CDR William S. Maynard
Psychology Department
Naval Regional Medical Center
San Diego, CA 92134

Naval Submarine Medical Research Laboratory
Naval Submarine Base
New London, Box 900
Groton, CT 06349

Director, Medical Service Corps
Bureau of Medicine and Surgery
Code 23
Department of the Navy
Washington, D.C. 20372

Naval Aerospace Medical Research Laboratory
Naval Air Station
Pensacola, FL 32508

Program Manager for Human Performance (Code 44)
Naval Medical R&D Command
National Naval Medical Center
Bethesda, MD 20014

Navy Medical R&D Command
ATTN: Code 44
National Naval Medical Center
Bethesda, MD 20014
LIST 6/Naval Academy and Naval Postgraduate School

Naval Postgraduate School
ATTN: Dr. Richard S. Elster
Code 012
Department of Administrative Sciences
Monterey, CA 93940

Naval Postgraduate School
ATTN: Professor John G. Sanger
Operations Research and Administrative Science
Monterey, CA 93940

Superintendent
Naval Postgraduate School
Code 1424
Monterey, CA 93940

Naval Postgraduate School
ATTN: Dr. James Arima
Code 54-Aa
Monterey, CA 93940

Naval Postgraduate School
ATTN: Dr. Richard A. McGonigal
Code 54
Monterey, CA 93940

U.S. Naval Academy
ATTN: CDR J. M. McGrath
Department of Leadership and Law
Annapolis, MD 21402

Professor Carson K. Eoyang
Naval Postgraduate School, Code 54EG
Department of Administration Sciences
Monterey, CA 93940

Superintendent
ATTN: Director of Research
Naval Academy, U.S.
Annapolis, MD 21402

LIST 7/HRM (continued)

Officer in Charge
Human Resource Management Division
Naval Postgraduate School
Mayport, FL 32228

Commanding Officer
Human Resource Management Center
Pearl Harbor, HI 96860

Commander in Chief
Human Resource Management Division
U.S. Pacific Fleet
Pearl Harbor, HI 96860

Officer in Charge
Human Resource Management Detachment
Naval Base Charleston, SC 29408

Commanding Officer
Human Resource Management School
Naval Air Station Memphis
Millington, TN 38054

Human Resource Management School
Naval Air Station Memphis (96)
Millington, TN 38054

Commanding Officer
Human Resource Management Center
1300 Wilson Boulevard
Arlington, VA 22209

Commanding Officer
Human Resource Management Center
5621-23 Tidewater Drive
Norfolk, VA 23511

Commander in Chief
Human Resource Management Division
U.S. Atlantic Fleet
Norfolk, VA 23511

Officer in Charge
Human Resource Management Detachment
Naval Air Station Whidbey Island
Oak Harbor, WA 98278

Commanding Officer
Human Resource Management Center
Box 23
FPO New York 09510

Commander in Chief
Human Resource Management Division
U.S. Naval Force Europe
FPO New York 09510
Officer in Charge
Human Resource Management Detachment
Box 60
FPO San Francisco 96651

Officer in Charge
Human Resource Management Detachment
COMNAVFORJAPAN
FPO Seattle 98762

LIST 8/Navy Miscellaneous
Naval Military Personnel Command
HRM Department (NMPC-6)
Washington, D.C. 20350 (2 copies)
Naval Training Analysis and
Evaluation Group
Orlando, FL 32813

Commanding Officer
ATTN: TIC, Bldg 2068
Naval Training Equipment Center
Orlando, FL 32813

Chief of Naval Education and
Training (N-S)
Director, Research Development,
Test and Evaluation
Naval Air Station
Pensacola, FL 32508

Chief of Naval Technical Training
ATTN: Dr. Norman Kerr, Code 017
NAS Memphis (75)
Millington, TN 38054

Navy Recruiting Command
Head, Research and Analysis Branch
Code 434, Room 8001
801 North Randolph Street
Arlington, VA 22203

Commanding Officer
USS Carl Vinson (CVN-70)
Newport News Shipbuilding &
Drydock Company
Newport News, VA 23607

LIST 9/USMC
Headquarters, U.S. Marine Corps
Code MPI-20
Washington, D.C. 20380

Headquarters, U.S. Marine Corps
ATTN: Dr. A. L. Slafkosky, Code RD-1
Washington, D.C. 20380

Education Advisor
Education Center (E031)
MCDEC
Quantico, VA 22134

Commanding Officer
Education Center (E031)
MCDEC
Quantico, VA 22134

Commanding Officer
U.S. Marine Corps
Command and Staff College
Quantico, VA 22134

LIST 11/Other Federal Government
Dr. Douglas Hunter
Defense Intelligence School
Washington, D.C. 20374

Dr. Brian Usilaner
GAO
Washington, D.C. 20548

National Institute of Education
ATTN: Dr. Fritz Mulhauser
EOLC/SMO
1200 19th Street, N.W.
Washington, D.C. 20208

National Institute of Mental Health
Minority Group Mental Health Programs
Room 7 - 102
5600 Fishers Lane
Rockville, MD 20852

Office of Personnel Management
Office of Planning and Evaluation
Research Management Division
1900 E. Street, N.W.
Washington, D.C. 20415

Office of Personnel Management
ATTN: Ms. Carolyn Burstein
1900 E Street, N W.
Washington, D.C. 20415
*LIST 11/Other Federal Government (continued)

Office of Personnel Management
ATTN: Mr. Jeff Kane
Personnel R&D Center
1000 E Street, N.W.
Washington, D.C. 20415

Chief, Psychological Research Branch
ATTN: Mr. Richard Lanterman
U.S. Coast Guard (G-P-1/2/TP42)
Washington, D.C. 20593

Social and Development Psychology Program
National Science Foundation
Washington, D.C. 20550

*LIST 12/Army

Headquarters, FORSCOM
ATTN: AFPR-HR
Ft. McPherson, GA 30330

Army Research Institute
Field Unit-Leavenworth
P.O. Box 3122
Fort Leavenworth, KS 66027

Technical Director
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Director
Systems Research Laboratory
5001 Eisenhower Avenue
Alexandria, VA 22333

Director
Army Research Institute
Training Research Laboratory
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. T. O. Jacobs
Code PERI-IM
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

COL Howard Prince
Head, Department of Behavior Science and Leadership
U.S. Military Academy, New York 10996

*LIST 13/Air Force

Air University Library/LSE 76-443
Maxwell AFB, AL 36112

COL John W. Williams, Jr.
Head, Department of Behavioral Science and Leadership
U.S. Air Force Academy, CO 80840

MAJ Robert Gregory
USAF/DFBL
U.S. Air Force Academy, CO 80840

AFOSR/NL (Dr. Fregly)
Building 410
Bolling AFB
Washington, D.C. 20332

LTCol Don L. Presar
Department of the Air Force
AF/MPXHM
Pentagon
Washington, D.C. 20330

Technical Director
ATHRL/MO(T)
Brooks AFB
San Antonio, TX 78235

AFMPC/NPCYPR
Randolph AFB, TX 78150

*LIST 15/Current Contractors

Dr. Richard D. Arvey
University of Houston
Department of Psychology
Houston, TX 77004

Dr. Arthur Blaiwes
Human Factors Laboratory, Code N-71
Naval Training Equipment Center
Orlando, FL 32813

Dr. Joseph V. Brady
The Johns Hopkins University School of Medicine
Division of Behavioral Biology
Baltimore, MD 21205

Dr. Stuart W. Cook
Institute of Behavioral Science #6
University of Colorado
Box 482
Boulder, CO 80309
LIST 15/Current Contractors (continued)

Dr. L. L. Cummings
Kellogg Graduate School of Management
Northwestern University
Nathaniel Leverone Hall
Evanston, IL 60201

Dr. Henry Emurian
The Johns Hopkins University School of Medicine
Department of Psychiatry and Behavioral Science
Baltimore, MD 21205

Dr. John P. French, Jr.
University of Michigan
Institute for Social Research
P.O. Box 1248
Ann Arbor, MI 48106

Dr. Paul S. Goodman
Graduate School of Industrial Administration
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. J. Richard Hackman
School of Organization and Management
Box 1A, Yale University
New Haven, CT 06520

Dr. Lawrence R. James
School of Psychology
Georgia Institute of Technology
Atlanta, GA 30332

Dr. Allan Jones
Naval Health Research Center
San Diego, CA 92152

Dr. Frank J. Landy
The Pennsylvania State University
Department of Psychology
417 Bruce V. Moore Building
University Park, PA 16802

Dr. Bibb Latane
The Ohio State University
Department of Psychology
404 B West 17th Street
Columbus, OH 43210

Dr. Edward E. Lawler
University of Southern California
Graduate School of Business Administration
Los Angeles, CA 90007

Dr. Edwin A. Locke
College of Business and Management
University of Maryland
College Park, MD 20742

Dr. Fred Luthans
Regents Professor of Management
University of Nebraska-Lincoln
Lincoln, NB 68588

Dr. R. R. Mackie
Human Factors Research
Santa Barbara Research Park
6780 Cortona Drive
Goleta, CA 93017

Dr. William H. Mobley
College of Business Administration
Texas A&M University
College Station, TX 77843-4113

Dr. Thomas M. Ostrom
The Ohio State University
Department of Psychology
116E Stadium
404C West 17th Avenue
Columbus, OH 43210

Dr. William G. Ouchi
University of California, Los Angeles
Graduate School of Management
Los Angeles, CA 90024

Dr. Irwin G. Sarason
University of Washington
Department of Psychology, NI-25
Seattle, WA 98195

Dr. Benjamin Schneider
Department of Psychology
Michigan State University
East Lansing, MI 48824

Dr. Saul B. Sells
Texas Christian University
Institute of Behavioral Research
Drucker C
Fort Worth, TX 76129

Dr. Edgar H. Schein
Massachusetts Institute of Technology
Sloan School of Management
Cambridge, MA 02139
Dr. H. Wallace Sinaiko
Program Director, Manpower Research
and Advisory Services
Smithsonian Institution
801 N. Pitt Street, Suite 120
Alexandria, VA 22314

Dr. Richard M. Steers
Graduate School of Management
University of Oregon
Eugene, OR 97403

Dr. Siegfried Streufert
The Pennsylvania State University
Department of Behavioral Sciences
Milton S. Hershey Medical Center
Hershey, PA 17033

Dr. James R. Terborg
University of Oregon
West Campus
Department of Management
Eugene, OR 97403

Dr. Harry C. Triandis
Department of Psychology
University of Illinois
Champaign, IL 61820

Dr. Howard M. Weiss
Purdue University
Department of Psychological Sciences
West Lafayette, IN 47907

Dr. Philip G. Zimbardo
Stanford University
Department of Psychology
Stanford, CA 94305

H. Ned Seelye
International Resource Development, Inc.
P.O. Box 721
LaGrange, Illinois 60525

Bruce J. Bueno De Mesquita
University of Rochester
Department of Political Science
Rochester, NY 14627