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ABSTRACT
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SIGNIFICANCE AND EXPLANATION

Finite mixture distributions are usually characterized by a probability
density function of the form

k
p(x) = 321 “jfj

(x) ,

where ¥ _,...,¥ are probabilities and £ ,(°*),...,f, (*) are themselves
prohabillty density functions. It is often helpful ¥ interpret the {r,} as
prevalence rates of observations from k sources and the {f.(+)} as tNe
density functions for the observed random quantity, conditionil on the

source. In a typical application, in sedimentology, a sand sample if analyzed
for grain-size (giving a frequency distribution of values of x). The k
sourcesg correspond to the congtituent minerals of the sand. Mixtures find
application in a very wide number of applied fields, such as geology,
fisheries research, medicine, electrophoresis, economics, botany and

communications. They are also useful as tools in some branches of statistical
analysis.

The paper surveys the methods of solution of statistical problems which
arigse with data from a mixture, possibly supplemented by further data whoge
source identities are known.

The wost detailed comments are related to mixture decowmposition: given
data, to estimate any unknown features of the model underlying the formula
for p(x). All the standard statistical estimation procedures are discussed
and particular emphasis is placed on the points where difficultiaes arise that
are psculiar to this probleas.

The statistical discrimination problez usually involves the use of a
“training set® of data, whose gources are unknown, to develop a procedure to
aid the identification of the source of a future cbservation. The present
paper investigates the extent to which aixture data can contribute to such a
discriminant rule.

Finally the problem of testing for the number, k, of componunte is
discussed. The interesting feature again is that, although a very familiar
general technique may be considered, particular difficulties arise in tha e
present context. l l 1‘ ‘ 1 \

-

REEPIN ﬁ

-

a

ot

a3 SIS
*

r
€710 L.
-
i
¥

Arat
t

o
.

o

¢ L

i

The responsibility for the wording and views expressed in this deséribtive
gummary lies with MRC, and not with the author of this report.




e e

e L T Y

SOME PROBLEMS WITH DATA FROM FINITE MIXTURE DISTRIBUTIONS
De M. Titterington'

1. DEFINITION OF FINITE MIXTURE DISTRIBUTIOHNS

Suppose that a random variable, X, takes values in a sample spzce, S, and that its
digtribution is represented by a probability density function (p.d.f.) of the form

k
pix} = § w £ (), (x @ §) 1)
gmq 33

vhere (r.} are a set of probabilicies and (fj(-)) are themgelves p.d.f.'s on 5.

3
Then X is said to have a finite mixture distribution. The parameters ('j) are the

mixing weights and the (tj(°)) are the component densities. It is easy to check that
p(*), as defined above, is indeed a p.d.f. on 8.

Although equation (1) appeirs to be written as if X {s mBeant to ba 3 univariate
continucus random variable, we shall subsume, under the same notation, the cases of randoa
vectors and digcrete data, interpreting pl(*) and (t’(')) as probability mass functiors
in the latter case.

If the densities (£ (+)} are of specified parametric forms, ve shall write

3
X

plx) » ) v £.(x10,) = plx|x,8) = pty) ,
oy 338

in which 0’ denotes the parasetere rslevant to

distinct parameters in 0‘,....0

j('). 8 denctes the aggregate of all

X and § denotes the set of all paremeters in the sodel.

although thera are a few exceptions (see Davie, 1952, for i(nstance) most applications
of finlte mixtures of paranetric densities involve component danaities of the same

parametric type. In this case, o',....e all belong to the same paraneter space, O,

k
say. e may then regard ¥, au defining a probability distribution over O, and write

*pepartment of Statistice, un&».f.lty of Glasgowm, Glasgow G112 80W, Scotland
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x
pixiy) = 32‘ 1, 8(x10,)

-f t(xle)ﬂ!(ﬂ) (2)
e

- £(x|8) ,
Sy

vhere G!(') danotes the probability measure on 0 defined by =¥.

Finite mixtures correspond to finite discrete measures G!(') and wve shall be
concentrating on thess. The more gensral notation of (2) clearly suggests the generation
of p.d.f.'s using more general probability weasures on 8, These may be called general
mixtures. The formulation in (2) also clarifies the origin of the term compound
distribution, which is sometimes used instead of misture distribution. The distribution
on 8 represanted by £(*|0) ie compounded with that on € given by G!(')- 1£, for
izstance, £(*{8) 4im a Poisson density, we obtain so~called compound Poisson
distridbutions.

Another reveaiing festurs of the basic p.d.f., s given in (1), ie that mixturs data

can be regardsd s incomplste data, in a certain ssase. Suppose we have a pair of randmm

variables (X,¥), vhare X hay sanple apace 8 and Y s discrete, with sssple space

{V,000ek}s Buppose aleo that the joint p.d.f. at X » x and ¥ = ) is fectorieed as

pla, $) = plipixl )

- .’(’(l’ (x 88, J= V,e00,K) &

than the sixture dansity (1) ie the sargical p.d.f, for X. An cbssrvatioa from the
aixture caa therefoxe be regarded ap & redlizatiom of (X,¥), bat with the valus of ¥
aissing. As we shall sées, not only does thies intsrpretation have imiediate smsaning in sany
practical problems (in which we may hive observatioas, stch of which Ls known to coms from
one of othar of a set of Kk eource populstions, btut it 1s ot kaown exactly which) bot it
aleo motivates some of the numerical msthods regquired for paramster sstimstion,

particularly with saximos likelihood {Section 4.4).
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2. APPLICATIONS OF PINITE NIXTURE DISTRIBUTIONS

In this section we motivate the study of stacistical methodology for dealing with data
from mixture distributions by giving some indication of the number and variety of
applications. These applications we shall divide into two categories to be called,

somewvhat arbitrarily, direct and indirect.

In direct applications there will be a belief in the existence, or possible existence,

of k underlying sources from which the experimental unit generating X comes. The
mixture model then appears directly, as built up in the final paragraph of Section 1. The
following list of direct applications is therefore a list of applied fields. 1In each case
there is a "physical” msaning for the sources or mixture components.

By an indirect application we mean a circumgtance in which the aixtura density is

being used as a mathematical device, to facilitate the analysia in some way.

The following catalogue is intended to give a mere taste of the galaxy of applications
that may be unearthed.

2,% DIRECT ARPLICATIONS

{4} Sedimentology. Samples of sand are often analyzed by seasuring the frequency
dletribution of grain alces. The sand way be %nown o ba a (literal) wmisture of several
alnerals. It ls of interest to estimate the proportions of the different uinerals in the
sand. It way also be dasired to estimate the gralin size Jdistributions for the difforent
ainerals, although thase may slready be “"kiaoun®™ from oxtensive previous survey work.

{44) Batany. In (i} above, if for “eineral type® wo write “plant typs® and for “sand
grain size® we write “pollen yrain size®, ®plant helght® or “petal dismensions®, then we
account for a vealth of botanical applications.

(144} Pishexien and maczine blological research. Some characteristics of a flah are

sasy to ssasure once it has been landed. These include length but often do not include sen
{oaly another fish can do this easlily in some species!) or age. OData on, cay, fish longth,
are often used for the estimation of sex newjartions amohg a population of fish of the same
age or of tre age dletribution of a nlxe.\..-..-‘z.;’ #F4t-ral yoars' spawnings. Pigure 1, taken

from ficamar (1973), shows a histogram of leagth data from a get of nale and fomale

-3
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halibut. The separate male and female data are shown in Figure 1(a) and the mixture data
in Pigqure 1(b).

(iv) Medicine. Sometimes data may be available from clinical tests on a group of
patients, each of whom is known to be suffering from one of two diseases. It is
not,hovever, known exactly which disease is affecting each patient. A mixture model is
somatimes used, with the particular aim of aiding diagnosis or prognosais; see Section 5.

{v) Electrophoresis and gas chromatography. Electrophoresis is used to estimate the
relative concentrations of proteins in experimental samples and sometimes also to establish
which proteins are actually present. Figure 2, adapted from Tiselius and Kabat (1939),
shows a typical elsctropharesis curve of concentration against the “amigration position®
achieved relative to a common initial position by the end of the sxpariment. Different
proteins migrate at different rates, so the constitusnt proteins (in the example of Figure
2 they are albusin and o-, B~ and Y-globumin) =ay be identified. This differs from the
other applications in that the “data™ are themselves in the form of & smooth cutva.

{vi) Egonomica, 1In one model for wage bargaining (t is proposed (Quandt and Ramsey,
1973) that thers are two possible Phases, distinguished by some critical value of the sost
of iiving Andex, characterized by two different regression models. In practice it may not
be known, st any tine at which Jdata are gatherod, shich phase L8 in operation and this
leads to a statistical model which is a "mixture" of the two regressions (gwituhing

regresaions).

{vil) Cowmunications: & ssguence of segsagoes ls received, cach one of which is

either a signal or just nolse. The proportion of signale and the signel and noise
distributions may ba of interest.
{viii) Others. Pevchology, paleantology. geoclogy, agi. "‘lturv and zoology are a few

of the miny other fislds of appiication.

2.2, IMDIRECT APPLICATIOMS.

(1) outlisr models. A mixture of &k » 2 densitics with one mixing weight cloke to
one and the other close to 2010 is somstimes used to mode)l cutliers. The so-called

contaminatead Mormal distributions fors one such class. Thelir densities are of the foro

-5
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-1 -1
*49 *(x - Ni)/ﬂ‘) + (Y- ¥ 10, elix - Dz)/ﬂz) ¢ (1)

34 1.2
where 0409, 2 0, #(u) = (2v) exp{- 3 } and v say, is close to one. Por

2

symmetric models LT

1!

2 is imposed; see Barnett and Lewis (1978}, Abraham and Box

(1978).

(44) Heavy-tailed and multimoda)l densities. The two-coxponent Normal mixture (3),
wvith ua. is one way of representing a symmetric heavy-tailed distribution. Wwhen the
means are sufficiently vell separated, relative to the variances, (3) represents a bimodal
density; see Section 6.

(144) Cluster analysis and latent structure modela.

Hultivariate nixture densities (Novmal-based in particular) may be used as a basis for
clustering technigues (Symona, 1981) and, in spaclial casea, form latent structure aodels
‘Fielding, 1977). In the latter application the probles beconea that of fiading a aixture
model to fit the data. It is not essential that the componeats uf the msixture that is
chosen have aeaning as physical socurces, althuug scae leterpretation may be made, in the
sane spirit in which factors are i{nterpreted in fector analysis.

(iv) Ronpavametric denmity eatlmation. 1In the kerael asethod, a nonpavametric

estisate of 3 p.d.f. £(*) is obtained in the form

- - B

£0x) = {ab) ] &itx - %, Mu) .

L=

exre h Ais a go~called smoothing parameter, n‘,....x“ is 3 randon sample Srom a
population with the Cistribution which gives rise to f{*) and K(+), the kernel
function, is itself a p.d.f.; vee, Cor lnetance, Weyman (1972). The estimate ¢{*) can
obviocusly be describad as an equally-welghted aixture of n  component densities.

{v) M3delling of pricr denmities. Xixtures can provide rich families of conjugate

prior dansities in Bayeslan analysis. If, for instance, cach observation is distributed as
H(0,1) and 0 is given a Kormal pricr, then the posterior for 9 Ls also Normal. The

sams conjugacy holds LE the prior for 0 e taken to be a k-componsnt mixture of

7=




Normals. If a “general® mixture is used we are led to hierarchical priors as in Lindley
and smith {1972).

(vi) Others. These include random number generation (Marsaglia, 1961), modelling of
error distributions (Sorenson and Alspach, 1971), manifestation in empirical Bayes methods
(Deely and Lindley, 1981), and as approximations to other distributions. Sometimes this
last application is reversed. For instance, a lognormal density may be used to approximate

to a skev mixture of two Normals; see also Smith and Naylor (1981}).
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3. SANPLING STRUCTURES AND BASIC STATISTICAL PROBLEMS
Hosmer (197)) distinguishes, in a helpful way, among three sampling models., In the
first one (MO) the data are realizations of n independent random variables di{stributed

according to (1). The likelihood is, therefore,

5y 1
L. » 0 s £ (x,)} (4)
O fay gey 33

A more complicated likelihecd, which results if the underlying sources for the
obgervations follow Markov chaln behaviour, has also been studled; see Daym et al. (1971)
and Lindgren (1978).

Often supplementary data are availablo whose sources have bheen identified. 1f we
denote these data by (xj‘ ST TN PRURE Y \.....aj}, then the new likelihood is

k n 3
by =L, ,E, (zf‘ (jtxjg}} .

This is wmodel NI, 1t sleaviy piovides esxtra data ahout the (!j(-})‘ 1¢ the sanpling
vates of thoss catequrized obsarvatiohs are equal to the alxming weighta, then there e also
#ore information about 3. This 10 wodel W2, for vhich the likelihood ie

Loeren (o)
2 Ve 3 *

Dats of this type arise when a large set of data le avallaeble fiom the oirture and
some of thew, seledted ot randon, have their svurcus identificd by further “physical®
exanination.

The avallabllity of some catagoriced {("complete®) data usnally Wu tha statistical
power of the data considevably, as Howmer (V273) points out. \

¥Wo shiall consider Ln detail the Lreatomat of three somavhat oveclapping statistical
probless.

3.4 Mimtuvre decompoaition.

Given data from WO, N) or M2, tc “estimate™ the misture deasity function. This wial

involve estimation of some or all of the following: =ha nunber of alxtufe conponeats (for

) data), the miming veights and the component demsities, or paraseters theteof.
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3+.2. Discrimination (Pattern Recognition).

Given data from MO, M1 or M2, to use them for deriving discrimination procedures and
to assess the worth of mixture data in this context.

3.3. Testing for the number of components.

Given data from M0, to find the model with the smallest number, k, of components but
which is still compatible with the data. We may, for instance, wish to test whether the
data come from a mixture of two univariate Normals as opposed to a single Normal. A
related, but not equivalent, activity is that of testing for the modality of the p.d.f.

The rost of the paper discusses these objectivea. Nost of the space is devoted to
mixture decomposition, on which there is the most voluminous literature. In general, the
methodological principles that will be considered are very familiar and we shall be
discussing vhat are just particular applications of these standard procedures. Wwhat makes
the misture problem special is that with many of the techniquea there are snags, both
theoretical and computational. We shall emphasize these particularly and point out that

some of the complications remain unresolved.

-10-
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4. MIXTURE DECOMPOSITION

Before launching into a cataloque of various estimation mathodologies and their
application to mixture data we go through some initial questions that have to be answered
before calculations can begin.

4.1. Preliminaries

(1) Which sampling structure is in operation: M0, M1, M2? It is particularly

important to decide correctly whether M1 or M2 cbtains. With M0 data, estimation of the

mixing weights iz notoriously imprecise, so if the supplementary categorired data tell us

aore about X it can bs quite a bonus.

(11) %hat in the mode)l is unknown?

(a) x? This sota the problem up essentially as one in gluster analysis.

(b) ® _only? In some problems, extensive previocus experience may provids
Getailed knowledge about tha component densitiea so that they may be treated as
known. This ocours in s me problams in sedimertology (Section 2.1) and in
remole gensing, in which aerial photographs are analyzed to dlscover the

~lative concentraticus of several arops in a geographical area.

{e) Lg,(-)}'- only? Souatimes the mixing weights may be, for all practival

purposes, Xnown. A sex-vatio may somstimes be assumed to Le unity, for

instance,

(a) v _and {£ (*))'s? Pporhaps the most coamon Caasa.
¥
in cases (¢) and {d) the (t,('))'o are unknown and we have the following dilswoa.

($45) can the (€ {*}}'s ba aswuned to have specified pacamstric forms, or not? 1If
7

the answer is yeos then wo may subsojuently aspire that the pavanetric forss be simple ones,

such as Rormall

{iv) Is the clasp of mixtures we have chomen identiflable? Thie is the first of the

complications that may arise with mixture data, although it doues not happen often in
pragtical problems. For soms Classes of mixtures the mesrbers of the class are not uniquely

delined and, LI thie is the case, ostimation procodures #re likely to run lnto

-11-
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difficulties. The main culprits are some discrete distributions on finite sweple spaces
and mixtures of uniform distributions.
(a) Consider mixtures of binocmial distributions Bi(N,G), with N known but
8 wvariable. Then the class of k-component mixtures is identifiable only if
N ? 2k = 1 (Biischke, 1962).
(b} ILet Ux(a.b), as x varies, denote the p.d.f. for the uniform
distribution on (a,b). Then the following two~component uniform mixture
ped.f.'s are identical
302(0,0) + (1 - G)Ux(u,l). for all 0 <a <1,
Thecoratical work which reassures us that most classes of finlte mixture densities of
interest are identifiable is available in various papers, including Teicher (1963},

Yakowitz and Spragins (1968) and Chandra (1977).

(v) which metnod of estimation to use? The decision ahout what technique we shall

use asay well ba based on our statistical philosophy but practical feasibility may also play
& part, as wo ahall sce. We now liat, ly subsection, methode that lLiave beer used for the
rixture problenm.,

4.2, Graphlcal methods.

4,3, Method of moments.

4.4. Naxioua likelihood.

4.5, Ninimum digtance methods.

4.6, Dayoatan methods.

4.7, Sequential methods.

4.0, Curve fitting.

Por purposes of Lllustration we shall restrict detalled attention to two simple

examnles.

Example 1. Nixture of two kiioun densities.

pin) = !1!‘(x) + (1 - '1)!2(:) {n @ 8, {s)

share t‘(') and !2(') are Xnown and 0 € " <1,

-12-




Erample 2. Mixture of two univarjate Normal densities.

The p.d.f. is given by (3), which we rewrite here, for convenience
-1 ~1
pix) = L ol(x - u1)/o1) + (1 - LIS LA ¢l(x - “z’/"z) P (3)

vhere o1>0, 02>o and 0<!‘ <1,
As an indication of the flexibility of this as a model, we illustrate, in Figure 3,
just 6 special examples.

4.2. Graphical nethods

These have been used both in an exploratory way, for obtaining an informal assessment
of the number, k, of components, along with quick, if crude, parameter estimates for
subsequent numerical improvement, and also as the onlv amethod of analysis applied to the
data. The latter vas common in early work in applied fields and was stimulated to scme
oxtent by the numerical problems associated with the other methoda.

The graphical methodm are based on convenient plots, related to either tha cumulative
din ‘ribe’ ‘on function or the p.d.f. itself. The most familiar of the foruer is the use of

dormal probabllity paper with Example 2. Fiqure ¢ showa the thearetical plots for s

particular Normal mixture and ite components. The corresponding plot from a sst of data
can be used to assess ‘hother the charsasteristic Normal aixture shape is appavent and, if
80, tc provile estimates of the means and vaviances {(from the asysptotes) and for the
mixing welght (rouginly, tros the point of inflexion); see Powlkes (1979} For a useful
sutvey and extanulon of this techniaua.

Other plots for Examply 2 havs been based on the p.d.f. and one of lts data~baged
estisacors, the histogram., First differenres of the lugarithms of the histogran
feaguencies give local ajproximationg to the derivativos of the logarithms of th. Normal
conponunt that is domin..at at the ylven puint. Purthersore, "hig dertvative willi be linear
with nagative slope wh.ch (s {nvergely proportional tu the varlanca of the dominant
cuapunent. Theso facts fora tne bamis of A graphical we-hod of Bhattacharya (1567). The

quadratic naiure of the logarithm of a Hormal p.d.f. also stimulated a semi-gr ‘uhical

+1)=




Pigure J. & seloction of density functions for
mixture of two univariate Normal dansities.
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method of Buchanan-Wollaston and Hodgson (1929). In general, success of t!-- wmethods relies
heavily on the mixture components being fairly well separated.

4.3. Method of moments

Suppoge ¥ containg s distinct parameters and that n,(x)....,ms(x) are 8 real-
valued functions on the sample gpace such that thelr expected values exist as independent
functions of ¥. Write

- -1,.--' .
INTIER NI .

Then, given X = (x\""'xn)' a random sample of size n, a set of moment estimators
for ¥ can be obtained by solving

By = mtx) , (6

- q 0
vhere (m) -n‘ Z nj(x&). J= Y000 8.

) -

1f the class t)r‘duttlbutlom under investigation ia identifiable, consistent
estimators of ¢ are usually obtained, thanks to the lave of largs numbers. Asymptotic
Hormality and the asymptotic covariance structure can usually be deduced from a tirvst order
Taylor Expansion of (6) into, approximately.

g+ DIRIP ~ 9) = wix) ,
whete D{(°) danotes the matrix of first dervivatives of ui9). Approximately, therefors,
covif) = o() " covim (0027} . (7

Although this is 80 far quite satlslying, problesas do sosetimes arise vhen attempta
are made to solve the apprupriato realication of (6). Plratly, explicit solution may not
be possible and, secondly, there may be no solution in the paramster space, or sore than
one.

Example 1. Mixture of two known densities.

With only one unknown paramecter, ¢ only one moment equation is reguired.

‘0
Purthersore, the equation will be linesar in Yy giving
l‘ R C TIPS P T e {8)

where u" -/ l‘islf (x)dx, j = 1,2, It is easy to check that t‘ is unbiased for =

b} 1

-l6=




and

vu(i‘) = var(;')/(u" - uu,)2 . (9)

Unfortunate'y there is no guarantee, except asymptotically, that 0 € f' <1,

althougn in this simple example thia may not have great practical import. In principle,
study of the right hand side of (9) may suggest a function m,(*) for which var“,) is
smull, or even minimal and which would therefore give an “optimal” moment sstimator.
Although achievement of this requires knowledge of I, itself, some practical guideline
way vell be possible in aany examplas.

The usual power moments are coasonly used in (8), or in (6) for that matter. Ancther

poasibility in this example is to use an indicator tunction for al(.)' That is, take
B (X) =V it X<g¢

=  otherwise .

Then ;‘ is the proportivn of cbservations in the sample ¢ ¢: see Johngon {1973)

ard Janas (1976).

Exammle 2. Mixture of twh univariate Hormals.

Pussidly the earlieat systematic look at mixtures vas the application of the mathod of
sonants to this axanple by Psarsca (18%4) in a study of forelead wmeasursments of a set of
usle and female crabs. We now have five paramstervs and Pearson used moment. squations for
the flrst five central womants. After a certajn amount of eliminetion of variables the
computation probles reduced (1?) to that of finding & negative root of & ninth degree
polynomial, solution of which wus no wean foat in the 1890'sl Baca-substitution then
provides the piramster estimates. Somestismes, however, the nonic has no negative root and
somstines wore than ore. This is avkvard, although in the formar vast & single Hormal {s
often an sdequate modsl and in the latter, either soluticn is usually satistactory. Just
how often thess and other complications arise has besn investigated by Bowman and Shenton
(197M).,

The number of papers that are directly derivative of that of Pearson (VRPd) rune into

dozens, with many applications and modifications of the mathod of solution. ¥For the

-17




special case of 01 =0 the "nonic® is replaced by a cubic (Cchen, 1967) and a neat

2’
graphical aid for this case is given by Preston {1953). The bivariate case is mantioned by
Charlier and Wicksell (1914) and the multivariate by Day (1969) and John (1970).

Nixtures of the other simple parametric distributions have also been given the method-
of-moments treatment. Several of them, in which the component densities are ons-paraneter

p+d.L.'s, lead to a gensral pattern in which there is a sat of moment equations of the form

k
2 s.-" & C , 8= 1,....3k ' (‘0)
wvhere 0., is the (scalar) parameter associated with the jth cosponsnt density, o, = 1

3 0

and tha other (o} are data-based.

They include mixturea of exponentials (based on ordinary power somenta), binomials and
asgative binomials (both based on weighted factorial moments, with 0 as tha “success
probability®), Polssona (factorial moments), ons-parameter Weibulls and cne-paraseier
gasmaa (both hesed on weighted power mosents), and a gensralized method of momenta dus to
Kabixr (1988). Pox ap illustration of the standard asthod of golution of equatiocas like
(10), ses Niachike (1264).

As in Example 1, (7) may, in peinciple, be used to sslect “optimal" amosents for use in
mare guneral probless. Tallie snd Light {1968) discuss the choice of fracticaal power
aoments 0 &8 to minimize det cov(§), as given by (7), for a mixture of two exponentials.
4sé.  Naximm likelihood

For & given parsmatric aixture Nodel, the method of saximum likelihood is availabdle.
That thate are Aifficulties le lemedlately apparsat Af ve look at tha MO likelihood given
by sguatica (4). Almost certainly the ordex statistic (in the camse of univariate
coatinuous dsta) will be ainimsl sufficiest and explicit MLE's will not De availsble.
sussrical optimization will be nscessary although, in many cases, waximum likelihood
analysis of the “"complete” categorited version of the data may D& very sasy, &8 woald de

the case for both our special examples.
Rxasple 1

a
Ly = Yylvy) = ‘E‘ (-,(!“ -t ) 1)
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where !‘-j = fj(xl)’ i = Teeee,n, j = 1,2, Thus
n
3 log 1 /3, = 121 (£, = £,,0/plx,) (11)

and

2 : 2 2
log L /3wy = - 1'2.‘ (g, = £,,07/p(x )% ¢ (12)

32

Although we see, from (11), that the likelihood equation is a polynomial equation of

degres up to (n = 1} in LAY equation (12) shows that log L; is strictly concave in

*
w so that there is at most one real root, LY of (11) and it gives a global maximum

1’
*
of Lge It is easy to chedk vhether 0 ¢ L € 1 and thus determine the maximum

likelihood, '1' say. Peters and Coberly (1976) gsneralize this to a version of this

example with more than two components.

Bven with this simple probles, hovever, there is a complication, which arises in the
asymptotic theory of maximum likelihood. It ia fairly esasy to discover that, Lf the true

valus of ®_ is 1 then, asymptotically, t‘ = t with probadiliey 1/2. Thuas !‘ is

1
not ssymptotically Horwmal, although it {s consistent. The standard theory fails because

the true ', is on the boundary of the paramater space.
Example 2
L.ow L (9) ; (v o"M(k --u)/onn-'w"'m - u,1/0.))
oo!m\\s1| Rt I AR U LA LE

The tvo~compinant univariats Hormal alxture is by far the sost commonly researched or
applied case and yet its likelihood surface is a potential disaster areéa. It is riddled
with singularities. If we set, say, u‘ - LI then it iz casy to sse that, as o1 * 0,

“0 + =, purtherncre, there are sany reported cases of weird features on the likelitwood
surfaces, quite apart from the problem of singularities: ses for instance the relstsd
Figqure 1 of Hartigan (1977). They iaclude multiple maxima, unusual troughs and unusual
behavicur at the boundary of the parimeter space. In spite of this, the sethod of maximus
likelihood fs used in practice for this problem and Kiefer {1978) has even established the

existence of a local maximum of U, for which the usual asymptotic theory holds. To some
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extent the difficulties are lessened if there are supplementary categorized Jata of if the
parameter space is restricted, by demanding that o‘ = 02, for instance. As far as the
computation of maximum likelihood estimates is concerned, we may employ traditional
numerical methods, of which the most familiar to statisticians are the method of Newton
Raphson and its derivative, the method of scoring, both of which calculate, automatically,
via a Hessian matrix, an estimate of the asymptotic covariance matrix. Boes (1967)
discusses a one-stage method of scoring for Bxample 1. If the initial estimater is
consistent, then the first iterate is Best Asymptotically Normal.

It is also possible to explolt our interpretation of mixture data as being
®"incomplete® and use a version of the EM (Expectation-Maximization) algorithm of Dempster
et al. (1977). The algorithm generates a soquence of estimates (!(r)) of y for which
the corresponding sequence of likelihoods is wmonotonic increasing. Although it can be slow
to coaverge, the slgoritham is usuvally very easy to program. Many of its sanifestations,
ineluding thuse related to mixture problems, appeared in much earlier papers as appealing
successive-approxisations procedures, without the general structure or siaple proof of
sonotonioity being spoteed. In Section 1 we interpreted the chserved mixture data x (MO
data) as oviginating from & complete data-sat

(g oyydeeenptm oy M} = (xey) o
but with the source ldantifiers Yyeseoo¥, aiszsing. The two~step iterative stage of the
EN algorithm {s as follows, in which g denotes the p.d.f. for the complete Mata. We
suppose that paramster estisates (!(ﬂ) are currently available, to be Smproved upon to

(r’!)).

give (¢ Hopetully, sa r * =, !") - 8.

E-step: Evaluste B{log q(g.xlg)la.g(”) *Q(!.!‘”). say.

(P o maximise (3,9,

MN-ostep: Pind §y = §
Datails of the gensral &M algorithm €or finite mixtures are given Section 4.3 of
Ocapster et al. (1977), vhere it ie found acre convenlent to express the source identifiexs

in terms 0! indicator vectors. Here we show the appealing forms for ocur two examples.
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Example 1.

E-step: Given r:", let "i;) -!;r)flj/p(r)(x )o 1= 1,.ee,n, §=1,2, where

r;‘) -1- '(t” ana p'"00) - l(”)t Jx) o+ - '(r))f (x).
n
(r+1) _ =t (r)
M-step: b =n 121 Vit

Note how, in the E-step, the n obgervations are “"allocated” to the two components by

fractions which are current estimates of predictive probabilities. That ias

(x) - (r)
13 Proh(yx - jlxi,t ) .

In the N-step, I:”” is obtained as a “relative froquency” based on aggregating
these fractions. The categorized-data version would have all v, j'a as pero or unity.
Rxng le 2.

{ )
E-atep: Given £ l) (r).u:r)'ozr)‘u;! 00;'))o let
(r) u(Fhglr) ()
1) j ij / (l Yo L Youen, 3 =1,2
{r {x) (r)

vhare p (l)-il
w1 3 1y

L= Y,..0,n, and

{r) (x)y=? tx} {r)
- (g - (4] * [ .
‘U { ) } $ix, vy ¥ ) ). for cach 4,3

Agaln the (u"’) are gurrest predictive probabilities.

Mestaps ¥or § = 1,2,

(1) % 0

(!)
vy = Loy x*/F

) 1=t
2.4r¢1) . T () Jleen) 2 T o
and @) - P ERE e b
11 =y 43

Hots the similarity of W-step to the calculations for fully-catagorized data.
Similar simple recursions aie available for mixturzs of other paramotric distributions

such sxkponnntiales, Polssons and their gensralization, the expenential family. Wolfe {1970)
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and Day (1969) give the EM algorithm for multivariate Normal aixtures, Skene (1978) that

o AT
N

for latent claas analysis, Hartley (1978) that for the switching-regressions model and Baum
et al. {1971) that for the Markov chain case referred to in Section 3.

Many other families of mixtures have had their maximum likelihood methodolag: dealt
wicth by this or other algorithms. <They include binomials and others (Hasselblad, 1969),
truncated sxponentials (Mendenhall and Hader, 1958), uniforms (Gupta and Kiyawaki, 1978),
voh Hises (Mardia and Sutton, 1975), logistics (Anderson, 1979) and even the compound
Poisson distribution (Simar, 1976).

A related approach is the so-called “"cluster analysis® asthod. For Example 2 this
amounts to the following. Consider all 27 partitions of the data into two cluaters. For

each partition, maximize the likelihood and chooss that partition and corresponding

paranster estimates which give & global maximum. Symons {1981) emphasizes that the major
usefulness of this mathod and its multivariate version is in cluster construction as
opposed to paramster estimation in which obvicus biasss occur. In the univariate Normals
case, Example 2, the optimal partition corresponds to some cut-ofY valus ¢, eay, such
that all x, € ¢ go into one component and the rest into the other. That the resulting
variance estimates, say, are blased is quite clear.

4.5 Mioisus distance estimstion

A wide variety of estimation procedures may ba savisaged whiich can be laterpreted

informally as the sinimizaticn of
§ {(cate, theoretical distribution)
ovsr the second argumnt, where ¢ is sowe Esasuve o€ JUfference or distance. Move
Cormally, we may chooze ¥ to ainimize
arry)

¥
whers P, 1s the theoretical cumulative distribution function and P is some data-based

]
varsion, the wost natural being the esplzical Alstribution function. All sorts of § way
be chossn, svome of them watrice, sowe not, and indeed the previously mentionsd msthods of
uoments and masimum likelihood can be described in these tezas. The latter corresponds to

the Xullback-leiblar divectad Aivergence
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8y, (FG) = [ logtdr(x)/dG(x))dr(x) ,

vhere dr(x)/dG(x) is a ratioc of “densities®. Given data of type M0, the part of

Gn.(?.l’!) depending on y is

n
-/ log(p(xip))ar(x) = - 1 1log p(xil_g) == logLy .
i=1
Other spscial versions are

8, m6 = [ {20 - gl etn e

and

Gue(r.c) - 50(6.3).

Discrete versions of these give the methods of minimum chi-squared and minisua

sodified chi-squared, the formar of which vas used by Fryer and Robarteon (1272) for Normal
nixtures using groupad data.

The quadratic distanca function
8 (2,6) » [ (ptx) - st} iapix)

Q
is useful, particularly for our Exemple 1.

sxug).q 1.

3
- ~1 3 2
cqtr,rz) - n ‘g‘ (’E‘ (AL \/a)* .

vhere r’(') is the cumulative ddstribution function from (3(‘). We have to alnimize,

thersfore, a quadtatic functien of v, dudject to vee o ., e 2o, N > 0. 1t

the nonnagstivity constralnts are ighored, explicit solutioch is poesible for $: cee

2!

Hacdonald and Phtcher (1979), for instance.

shen explicit solution i3 not podsible, numerical solution is tequired. A first order
Taylor Expansion of the stationarity eguations can be made iho basis Cor asymptotic
results, as in the msthod of moments or maxiaum likelihood. 1In particular, asysptotic
covariance aatrices may bLa obtained.

A modification of the bisic techiique ia to minimize a distance wsasure Detween, not

7 oand ?!. but ;u and & (B), say, vhere 3 (§) is some tranwform of ?!. with

auriliary variables u, end ;u ia the empirical versios. The .lstance moasute Jepends
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on u, clearly. One approcch ls to impose a weighting measure, W(u) on tne range of
u and to minimize
8,093 = | S (1AW .
Quandt and Ramgey (197¢. wse this method with
(1) & quadratic;
(11) W(*) a measure with finite support ;

(iii) Ou(i) the moment generating function.

They apply the technique to Normal mixtures and switching regressions. Xumar et al.
(1979) use the characteristic funciton with a continuocus measure for W(+). So far, little
has been said about the obvious problem of choosing an “optimal™ measure W(+¢), as far as
the asymptctic covariance matrix, cov(®), say, is concerned. It corresponds to the
choice of optimal momen~ equations in Section 4.3.

A slightly different use of distance functions is that of Hall (1981), for estimating
mixing weights when there are date available from the mixture, providing empirical c.J.f.

;, and from the k ocomponent discributione, giving umpirical c.d.f.'s ;1""'Pk The

11,...,i are chosen to minimire

k
6(;,j}: 1533) .

As in the treatment of Exampla 1 above, the use of a quadratic ¢ gives explioit
minimization, if the nonnegativity constraints are ignored. For this essentially
nonparamet:lc technique, Hall (1981) derives asymptotic theory. Titterington (1903) looks
at versions for disorete and smoothad continuous data.

4.6, Bayesian maethod

Thare is usually & strong similarity betwemn the relative ease that is possibie with

likelihood inference and Bayesian methods. In principle the Bayesian approach promises to

Le the wore amenable with mixture data., In practice we xrun into difficulty again, as

illustrated below with NO data.

Example 1
n
Lo= N {n e +r-wge te T qxy, (13
0 [CH LKL Ve 2" terms
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where the summation is over all possible y. L,, therefore, is the sum of 2"

likelihoods each of which corresponds to categcrized data. If categorized data are easy to
deal with in Bayesian »nalysis {(in other words, if there is a convenient, conjugate family
of priors) then the same will be true for mixture data. In this example, if a Beta prior

is available for ¥ ther the posterior density for ®  will be that of a calculable

1 1
mixture of Betas. Unfortunately, the number of mixture components is 27, which quickly
becomes large with n. If the numbyr of mixture components were Kk, we would end up with

a k“—component mixture for the pusterior for w

.

1
Example 2

Here the natural prior structure is to have ¥ (u‘,d?) and (uz,dg) mutually

1
independent. Then “as usual“ choose a Beta priozr for " and a Normal/inverse Gamma prior
tor esch of (u‘,af) and (uz.o:). Again exact results may be written down in terms of
au-conponent mixtures for joint and marginal posterior p.d.f.'s.

Various ways of coping with this computational and storage problem have been
congidered.

(1) If only posterior expected values are of lnterest, use numerical intsgration
based on (1)), This may not, however, be very helpful in scse circumatances, f, for
instance, e posterior denaity ig multimodal, then the posterior mean m3y be an unhelpful
index of location. HNumericsl integration may however be the way to calculate predictive
deanaitien, as given by

qlz) = & plziy) = [ plzlyiciyixiay .
vhere t(*|x) denotes the posterior p.d.f. for ¥.

(1i) deglect terms ({n the posterior which are known . be seall, when a
contamination model {s usvd for outllers, v is conpidered to be close to 1. Only those
terms in L, with small powers of (1 - 1‘) are recained and the posterior p.d.f. is
renorealized appropristely (Box and Tiso, 1968, Abrahaz and Box, 1978).

(4i1) Select a (comparatively) small auaber of the 2" terms at randoa, evaluate thaa

and renormalize (Leonard, 1982).
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(iv) If only the predictive density, say, is of interest and not the parameters, ¥
themselves, replace the mixture density by another with similar characteristics but which
is more amenable to practical Bayesian analysis (Smith and Naylor, 1981).

(v} Use an approximate method based on sequential incorporation of the data
(Section 4.7).

A Bayesian version of the “cluster analysis" approach (see end of Section 4.4) is
discussed by Binder (1978).

4.7. Sequential wethods

There is an important class of methods in which the data, x1.‘..,xn, are treatced
sequentially and which lead to ways of decomposing the mixture approximately. Many of the
procedures, particularly rvelated to Example 1 (known component densities), were daveloped
in the electrical engincering literature and, consaquently, introduce a new jargon, The

dacomposition problem itself is called that of unsupervised learning, in that we have to

process N0 data without being told the whole story, namsly, the identities of the
sources. In the engineering context, the sequential naturv of the analysis serves the need

to process, on-line, data vhich bacome available sejuentially. When such methods have been

developed in the statistical litorature there haa also been the principle of tryiang to
obviate the coaputational difficulties iaplicit in saximum likelihood and Bayesian
analysis, aa ¥3 shall see. Me shall use Exemple 1| to illustrate four procadures.

(1) Dacision directsd (D).

(i1) Learaing with a probabilistic teacher (PY¥).

(L1) Quasi maximum likelihood (QML).

(iv} Quasi Bayes (0B).

Axawple !

Buppose, after r obssrvations have been deslt with, the "current®™ estimate of

" is ':‘). Yur the daxt observation, Xepyr W svaluate (cf. Section 4.4) weights
teet) _ (1) {x)
vy hRI LT I LWL
and

(ret) o _ lged)
'2 ] v‘
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These weights have possible application (see Section 5) in the classification of
X.4q into one or other of the two component populations. The procedures develop quite
naturally from this interpretation, particularly the first three.

DD: Assign observation r + 1 to component 1 (resp. 2) if

{(r+1)
2 L]

v:r*‘) > (resp. <) w

(r+1)
j 4

QML: Assign a “fractinn®

PT: With probability w assign observation r + 1 to component j, 3 = 1,2.

';r+1) of observation (r + 1) to component j,
j=1,2.
This leads to the following recursive algorithms, stated here in forms which fit in

with comments later on.

Dbt If

w:rﬂ) > w(rﬂ)' '(rﬂ) - '(r) - (r+ ”-1('(2) - 1) (14)
2 1 1 1
It
(r+1 (x+1) (r+1) (x) =-1_(x)
w‘ < v2 . 11 - t‘ - {xr+ 1) 1‘ (15}
PTt With probability wir*‘). (14) holds; otherwise, (15) holds.
QML: Por 3 = 1,2, l;r*‘) - l;') - {r *1)'1(I;r) - ugr*‘)). (16)

In the QB approach the rationale is to maintain a Beta density for ¥®_  at each gtage

1
and a recursion i3 set up on the msan, for which we use the notation ¥ "', 1If, at atage

9
LI P B“°r'523‘ 8o that I: )

(r)

1

- ur/(or + Br). then the diastribution of v, at

stags r + 1 ocught to be a aixture of a Bo(ur + i,Br) and a no(ur.ﬂr + 1). Instead, we
(x+1)

approximate to this mixture by a single Beta, with parameters ur + v, and
ar + w;¥+‘), with (':r*l)";r#i)) dafined in toras of ‘:r) exactly as above. We
obtain

W0 ';r (r) _ ,tx)y je1,2.

) -t
~f(a +8 ¢ 1) (v
3 r o r > I E
Obvicusly the results will depend on the order in which the data are incorporated but

the on-line facility may over-ride this oriticisa. The ilamportant theoretical question is

whether convergence can ba guarantead of n:‘) to the txve %  as r ¢ = (n ¢+ =), The

1
recursions (14) = (17) have been writtan in forms vhich suggest that the key will lie {a

Y ¥ 2




A L

VETEE W T T M en

the theory of stochistic approximations (Wasan, 1964). For the DD msthod it is known that,

sometimes, the sequence {t:r)} may "runaway® to a value other than the true ¥ . For the
other methods, consistency can be established. Similar sequential procedures may be set up
for more complicated mixtures (Smith and Makov, 1978), Titterington, 1976, Titterington and
Jiang, 1981). A useful survey is provided by Makov (1980).

4.8, Curve ﬂ.tting .

S0 far we have given no indication of how to analyze (exactly the right word herel)
the electrophoresis curve of Fiqure 2. Here the data are themsleves a smooth curve. In
electrophoretic practice informal methods are sometimes used for estimating the relative
concentrations of the proteins. The area under the curve is divided up in as fair a wvay as
possible and the sub~areas are measured using a gadget called & planimeter.

For a more formal analysis, aminimum distance methods may be used (S8ection 4.5) and a
wodified type of Pourier analysis is also available, thanks largely to Medgyessy (1977).

This approach is stimulated by the following obvious statement about curves like the

p«d.f. corresponding to Example 2. Suppose we let

pUxIgA) = 10710000 = 817010 + (1= X 201N = 1,)/0,,) (18)

where °§A - c§ -3, je=1,2 and 0 €A uxn(af,og).

As ) increases from terc, the mixture becomes more and more clearly bimodal and the
paramsters become easier and easier to estimate from the curve. By operating
uathematically in a specified way on the datum curve it is indeed poasible to draw data~
based versians of (18) and, thence, to dscompose the mixture. Nedgyessy {1977) gives
dotails for both continuous and discrets dats. Stanat (1968) gives multivariate
veraions. Gregor (1969) applieo the procedure to histograx data and Tarter and Silvers

(1975) decompose bivariate Normal mixtures in a rather similar manner.
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S« DISCRIMINANT ANALYS1S

In usual discriminant analysis there are training sets of categorized observations
from k sources. Prom these data a procedure is developed for assessing the possible
gource of a further cbgervation, x, say, the source of which is unknown. Our questions
here are whether further uncategorired data can be built into the digcrimination procedure
and whether the discriminatory performance is improved thereby. In the limiting case only
uncategorized data are available from the start (M0 data). (In practice it may be
expensive or, in some medical contexts, dangerc-s to obtain enough information to fully
categorize an experimental unit. If therefore uncategorized data are useful as such, this
could be very welcome.)

whether or not uncategorized data are useful at all depends critically on the model
chossn for the joint probability density

pix.y)
of x and the source identifier y. We may write either
plx,y) = p{x)ply|x) (D)

or
pix,y) = p(xly)ply) (8)

in vhich (D) recognises the Alagnostic paradigs and (8) the sampling paradigm of Dawid
(1976).

In discriminant analysis we are interestad in using the training data to tell us
about p(y|x). If a parametric varsion of (D) is set up such that the paramaters
associated with the two factors on the right hand side are distinct, then no amount of data
on uncategoriged data give any information at all about p(y(x). If (5) is used similarly,
however and we obtain, by Bayes Theorem,

plylx) = ply)pixly)/pixn} ,
vhers pi{x) 4is a mixture density, as in Section 1, then the uncategorired data will affect
the disorimination procedure and its performance, In partiocular, as the amount of

uncategorized data available increases, p(y|x) should be estimated consittently.
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Discriminant rules based on estimated likelihood ratios will tend to the optimal rule (in

terms of misclassification rates, that is).

Example 2 (Restriction: 0, = 0, = 0)
In this case the likelihood ratio rule can be written in temrms of a discriminant

function that is linear in x and depsnds on the unknown pucameters (Lachenbruch, 1975).

These parameters may be estimated from mixture data, with or without supplementary

categorized data sets, using, for instance, the EM algorithm of Section 4.4. Perlormance

nay be agsessed either empirically or by considering the asymptotic expected rate of

uisclassification. O0'Neill (1978) and Ganesalingam and McLachlan (1978), in almost

simultaneous publications, showed that the mixture data can help in this conuaext, although

the two Normal components have to ba rather well separated for the effect to be

substantial. Let 4 = lu1 - uzllu and supposs ¥, = 1/2. Then, relative to the case in

which all data are categorized, the asymptotic efficlencios for MO data and for M2 data

with 50¢ categorized data are, regpectively, 108 and 508 (for A4 = 2); 654 and 83 (for

b= _
Bupirical evidenve of the gains from an approximate Bayesian version of the

syltivariate Normal case is given by Titterington (1976} and Anderson {1979) coabinas the

paradigms (D) and (8) by parametrising according to the fagtorization (8) and then

analysing the data by logistic methods, vhich are diagnoatic in spirit. Silverman (1978)

estimates likelihood ratio's nonparamatrically using data some of which are uncategorized.
It is clearly disturbing that the two parametrizations based on (D) and (8) lesd to

qualitatively differant results in the present context. If (D) is used wrongly then

potentially ugeful information is not being used) if (8) is used wrongly then the bonus the

aixture data appsar to offer is misleading. It makes it important to find the right model

in any given application and, needless to say, it has led to considerable controversy sbout

principle.
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6. HYPOTHESIS TESTING AND MULTIMODALITY
In Section 4 we mentionad cluster analysis as a means of establishing the nuaber of
components present in a mixture when we only have uncategorized data. Alternatively, we
may use likelihcod criteria with added penalties for the number of parameters involved
(Akaike, 1973, Schwarz, 1978). Another possibility is to seek the mixture with fewest
components which is still compatible with the data. In particular, we way wvant to ask
vwhether there reslly is a mixture or whether there is just a single underlying component.
This could be just the sort of question we want to agk in practice. We seem to be on wvell-
trodden ground, if paramatric models may be assumed, because ths problem can be formulatsd
as one of testing between two nestad hypotheses, for which the generulized likelihood ratio
test is available. However, we soon hit snags.
Example 2
H01 Single Normal.

Ht:  Mixture of two Hormals.

we would hope to evaluate the usual "2 log A" test statistic and refer its value to
a perxcentile of a )(2 distribution with some number, v, of dagress of fyesdom. What,
however, should VvV ba? In most problems, V {s dbtained as the number of constraints
required to reduge H1 to HO. Wa may obtain thie reduction here, however, by eithar: (1)
¥, =1 (1 coastraint), or (i1} u = Uye Oy = 0, {2 constrainta).

8hould we take Vo | or V=2 or saybe soma interssdiate valus, as conjectured by
Martigan (1977)?

Bhould we even ba tryiny to use the xa table at all?

Exampie 1\

HC: I‘ -9

HY: 0("(“

Hore asymptotically, undar HO, the maximum likelihcod estimator for ¥_ in the H1 model is

1
equal to t with probability 1/2 (Ssction 4.4). Thus 2 log A is zero, with probability

1/2, and therestore certainly not xa.
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The problem is that the regularity conditions required for the asymptc-ic theory do
not hold (c.f. Section 4.4). Under HO, the true value of = 1 lies on the boundary of its
parameter space. In Example 2, HO also corresponds to a region on the boundary of the
parameter space for Ht, a region in which identifiability "ails.

So far, the treatment that has been developed for this important difficulty is far
from satisfactory. Until recently, in many applications the x2 approximation has been
used without the awkwardness about degrees of freedoa being detected. FPor Example 2 and
multivariate versions thereof, some simulations have been carried out in attempts to
concoct a number of degrees of freedom to use in the )(2 table; aseoc Wolfe (1972), Aitkin
et al. (1981) and Everitt and Hand (1981). Hardly any theoretical work has been
reported, Davies (1977) mentiocna, but does not work through in detail, the uvse of a union-
intersection principle for one special exampla.

Altsrnative test procedures are theusslves somevhat unsstisfactory. Engelman and
HBartigan {1969) use, as test statistic for Example 2, the estimated Mahalanobis distance
corresponding to the optimal "maximum likelihood" clustering of the data into two
components {end of Gection 4.4). Also for Example 2, omnibus tests of Normality could ba
used,

A final possibility is to look at the dagres of multimodality representsd by the
data. Of course, unimodality of a density is not equivalent to its corrsasponding to a
single component density. Indsed, & syssatric sixture of two univariate Rormals

(v, = 1/2, 9, =g, = 0) ia only bimodal if Iu‘ - uzl > 20. The study of bimodal and

1 2

sultimodal densities is, howsver, of soms interest and the two component Normal mixture is
a convenlent model for a bimodal dsnaity. (An alternative one with ona fewver parasster is
ths quartic exponeatisl dsnsity: see Kats, 1978.) Nany papsrs, sspecially in fields of
application, talk specifically about mnltimodality. What they are usually interested in,
however, is the possible presence of a mixture (Murphy, 1964). What is possible, however,
is to use & significance test agalnst unimodality as & congservative test against the

hypothesis of a one-component digtrxibutiocn. At least the asywptotic theory will not ceuse

such problems.
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Silverman (1981) has developed a technique, based on simulation and nonparametric

density estimation, for asgessing the modality of a data-set.

7. CLOSING REMARKS

It is hoped that we have done justice to the variety of applications and special
problems that arise with distribution mixtures and that it is clear that the thorniest
problems await satisfactory solution. The field is very much alive and, if anything, the
publication rate on this topic is higher than ever.

We have not been able to give many details of analysis, nor even to provide anything
like a full list of refersnces. Geveral papers have been written which contain survey or
bibliographic material; see Blischke (1953), Clark (1976), Macdonald and Pitcher (1979},
Odell and Basu (1976) and Murray and Titterington (1978). Purther reference may be made to
aporadic sections in the quartet of books by Johnson and KXotz (1969=72), to Chapter 4 of
Ord (1972) and to the recent monograph by Everitt end Hand (1981), The present
contribution arose from vork towards a forthcoming book Ly Makov et al. (1932) where, it is
hoped, the missing details and refersnces will be fully documented. In particular, a much

fuller account of the soquential mmthods of Bsction 4.7 will be provided.
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