AN ANALYTICAL, ONE-PARAMETER FAMILY OF SELF-ADJOINT BOUNDARY OPERATORS

APR 82 R. L. SACHS
MRC Technical Summary Report #2357

AN ANALYTIC, ONE-PARAMETER FAMILY OF SELF-ADJOINT BOUNDARY CONDITIONS FOR SCHröDINGER OPERATORS ON AN INTERVAL

Robert L. Sachs

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53706

April 1982

Received February 9, 1982

Approved for public release
Distribution unlimited

Sponsored by
U. S. Army Research Office
P. O. Box 12211
Research Triangle Park
North Carolina 27709

National Science Foundation
Washington, D. C. 20550
UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

AN ANALYTIC, ONE-PARAMETER FAMILY OF SELF-ADJOINT BOUNDARY CONDITIONS
FOR SCHRODINGER OPERATORS ON AN INTERVAL

Robert L. Sachs

Technical Summary Report #2357
April 1982

ABSTRACT

A one-parameter family of real, homogeneous boundary conditions on the
interval [0,1], under which the operator $-\frac{d^2}{dx^2}$ is self-adjoint, is
constructed. The relation between such boundary conditions and Lagrangian
planes in \mathbb{R}^4 is used and the resulting circle of boundary conditions is seen
to include Dirichlet, Neumann, periodic, antiperiodic, and several other well-
known examples.

AMS(MOS) Subject Classifications: 34B10; 34B25

Key Words: Deformation of Boundary Conditions; Self-adjointness.

Work Unit #1 - Applied Analysis

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS-7927062, Mod. 1.
SIGNIFICANCE AND EXPLANATION

A more or less explicit deformation of boundary conditions for an interval is constructed, under which the operator $-\frac{d^2}{dx^2}$ remains self-adjoint. The deformation depends analytically on its parameter and includes Dirichlet, Neumann, periodic, antiperiodic, and other boundary conditions. It is hoped that this family of self-adjoint boundary conditions can be used to construct solutions in problems where one set of boundary conditions (for example, periodic or Dirichlet) leads to a significant simplification of the problem.

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the author of this report.
AN ANALYTIC, ONE-PARAMETER FAMILY OF SELF-ADJOINT BOUNDARY CONDITIONS
FOR SCHröDINGER OPERATORS ON AN INTERVAL

Robert L. Sachs

Consider the operator \(L = -\frac{d^2}{dx^2} \) acting on reasonably nice functions which satisfy the pair of real linear homogeneous boundary conditions

\[
\begin{align*}
(1) & \quad a_i y(0) + b_i y'(0) + c_i y(1) + d_i y'(1) = 0, \quad i = 1, 2. \\
\end{align*}
\]

By definition, this operator is self-adjoint if and only if the bilinear form:

\[
(2) \quad B(y, z) = y(0) z'(0) - y'(0) z(0) - y(1) z'(1) + y'(1) z(1)
\]

vanishes identically for all \(u, v \) satisfying the boundary conditions (1). In terms of column vectors \(Y \equiv (y(0), y'(1), y'(0), y(1))^T \), \(Z \equiv (z(0), z'(1), z'(0), z(1))^T \), (2) is equivalent to

\[
(3) \quad Y^T J Z = 0 \quad \text{where} \quad J \quad \text{is the usual} \quad 4 \times 4 \quad \text{symplectic matrix}
\]

\[
\begin{pmatrix}
0 & I \\
-I & 0
\end{pmatrix}
\]

where 0, I are 2 \times 2 matrices. If \(Y, Z \) are in the span of

\[
\begin{pmatrix}
\alpha_1 \\
\beta_1 \\
\gamma_1 \\
\delta_1
\end{pmatrix}, \quad \begin{pmatrix}
\alpha_2 \\
\beta_2 \\
\gamma_2 \\
\delta_2
\end{pmatrix}
\]

then (3) is equivalent to \((A^T B^T)J(A) = 0\) where

\[
A \equiv \begin{pmatrix}
\alpha_1 & \alpha_2 \\
\beta_1 & \beta_2
\end{pmatrix}, \quad B \equiv \begin{pmatrix}
\gamma_1 & \gamma_2 \\
\delta_1 & \delta_2
\end{pmatrix}
\]

and this leads immediately to the condition

\[
A^T B - B^T A = 0
\]

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is based upon work supported by the National Science Foundation under Grant No. MCS-7927062, Mod. 1.
which is clearly no stronger than the requirement

\[A + iB \text{ is unitary.} \]

We shall construct a one-parameter family of unitary matrices \(U(t) \) connecting the matrix representing periodic boundary conditions:

\[y(0) = y(1); \quad y'(0) = y'(1) \]

with the matrix representing Dirichlet boundary conditions:

\[y(0) = y(1) = 0. \]

(6) is equivalent to \(Y \in \text{span} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{pmatrix} \right\} \) which leads to the unitary matrix

\[
\begin{pmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix}
\]

while Dirichlet boundary conditions (7) are equivalent to the unitary matrix \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \). Thus we seek a one-parameter family \(U(t) \) of unitary matrices with

\[U(0) = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}, \quad U(1) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \]

Such a family is easily found in the form

\[U(t) = U(0)e^{ist} \text{ where } e^{ist} = U(0)^{-1}U(1) = \begin{pmatrix} -\sqrt{2} & i/\sqrt{2} \\ i/\sqrt{2} & \sqrt{2} \end{pmatrix} \]

i.e.

\[is = \log \begin{pmatrix} -\sqrt{2} & i/\sqrt{2} \\ i/\sqrt{2} & \sqrt{2} \end{pmatrix} = \log(U(0)^{-1}U(1)). \]

Now \(M = U(0)^{-1}U(1) \) has eigenvalues \(\lambda = e^{-7\pi/12}(e^{\pi i/3}) = e^{\pi i/12}, e^{-7\pi i/12} \)

and, diagonalizing \(M \), we find
\(M = P \begin{pmatrix} e^{\pi i/12} & 0 \\ 0 & e^{-7\pi i/12} \end{pmatrix} P^{-1} \) where \(P, P^{-1} \) are given by the 2 \times 2 matrices

\[
\begin{pmatrix}
\frac{\sqrt{3}-1}{2} e^{\pi i/4} & \frac{\sqrt{3}+1}{2} e^{\pi i/4} \\
\frac{1}{2} & 1
\end{pmatrix}
\]

\(P^{-1} = \begin{pmatrix} e^{-\pi i/4} & \sqrt{3}+1 \\
\frac{\sqrt{6}}{2} & 2/3 \\
\frac{e^{-\pi i/4}}{\sqrt{6}} & \frac{\sqrt{3}-1}{2} \end{pmatrix} \)

Thus \(e^{ist} = P \begin{pmatrix} e^{\pi i/12t} & 0 \\ 0 & e^{-7\pi i/12t} \end{pmatrix} P^{-1} \)

and the desired path is

\(U(t) = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\
1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} e^{ist} \)

which, by a tedious computation, is precisely the matrix

\(U(t) =
\begin{pmatrix}
\frac{e^{-\pi i/4t}}{\sqrt{2}} (\cos(\pi/3t) - \frac{\sin(\pi/3t)}{\sqrt{3}}) & \frac{e^{-\pi i/4t}}{\sqrt{2}} (i \cos \frac{\pi}{3} t + (\frac{2+1}{\sqrt{3}}) \sin \frac{\pi}{3} t) \\
\frac{e^{-\pi i/4t}}{\sqrt{2}} (i \cos(\pi/3t) + (\frac{2+1}{\sqrt{3}}) \sin(\pi/3t)) & \frac{e^{-\pi i/4t}}{\sqrt{2}} (\cos(\pi/3t - \frac{1}{\sqrt{2}} \sin(\pi/3t)))
\end{pmatrix} \)
We see easily that U has period 24 and that $U(t + 12) = -U(t)$, indeed
$U(t + 6) = iU(t)$ so that, in terms of the corresponding boundary conditions, we need only consider $U(t), 0 < t < 12$. Listing $U(j), j = 0, \cdots, 11$ and the corresponding boundary conditions, we have

\[
U(0) = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}, \\
U(1) = \begin{bmatrix} 0 & +i \\ 1 & 0 \end{bmatrix}
\]

(15)

\[
U(2) = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}, \\
U(3) = \begin{bmatrix} \frac{1+i}{2} & -\frac{1+i}{2} \\ \frac{1+i}{2} & \frac{1+i}{2} \end{bmatrix}
\]

\[
U(4) = \begin{bmatrix} 0 & -\frac{1+i}{\sqrt{2}} \\ \frac{1+i}{\sqrt{2}} & 0 \end{bmatrix}, \\
U(5) = \begin{bmatrix} \frac{-1+i}{2} & -\frac{1+i}{2} \\ \frac{1+i}{2} & -\frac{1+i}{2} \end{bmatrix}
\]

\[
U(6) = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}, \\
U(7) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
\]

\[
U(8) = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}, \\
U(9) = \begin{bmatrix} \frac{-1+i}{2} & \frac{-1-i}{2} \\ \frac{-1+i}{2} & \frac{-1-i}{2} \end{bmatrix}
\]

\[
U(10) = \begin{bmatrix} 0 & -\frac{-1-i}{\sqrt{2}} \\ \frac{-1+i}{\sqrt{2}} & 0 \end{bmatrix}, \\
U(11) = \begin{bmatrix} \frac{-1-i}{2} & \frac{-1-i}{2} \\ \frac{1+i}{2} & \frac{-1-i}{2} \end{bmatrix}
\]
The corresponding boundary conditions, found by reversing the procedure above, are as follows:

<table>
<thead>
<tr>
<th>t</th>
<th>Boundary conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(y(0) = y(1)) , (y'(0) = y'(1))</td>
</tr>
<tr>
<td>1</td>
<td>(y(0) = 0) , (y(1) = 0)</td>
</tr>
<tr>
<td>2</td>
<td>(y(0) = 0) , (y'(1) = 0)</td>
</tr>
<tr>
<td>3</td>
<td>(y(0) = -y'(1)) , (y'(0) = y(1))</td>
</tr>
<tr>
<td>4</td>
<td>(y(0) = -y'(0)) , (y'(1) = y(1))</td>
</tr>
<tr>
<td>5</td>
<td>(y(0) = -y'(0)) , (y'(1) = -y(1))</td>
</tr>
<tr>
<td>6</td>
<td>(y(0) = -y(1)) , (y'(0) = -y'(1))</td>
</tr>
<tr>
<td>7</td>
<td>(y'(0) = 0) , (y'(1) = 0)</td>
</tr>
<tr>
<td>8</td>
<td>(y'(0) = 0) , (y(1) = 0)</td>
</tr>
<tr>
<td>9</td>
<td>(y(0) = y'(1)) , (y'(0) = -y(1))</td>
</tr>
<tr>
<td>10</td>
<td>(y(0) = y'(0)) , (y'(1) = -y(1))</td>
</tr>
<tr>
<td>11</td>
<td>(y(0) = y'(0)) , (y'(1) = y(1))</td>
</tr>
</tbody>
</table>

Thus our one parameter family in fact includes periodic, Dirichlet, antiperiodic, Neumann, and several other well-known boundary conditions.

RLS/db
Title: An Analytic, One-Parameter Family of Self-Adjoint Boundary Conditions for Schrödinger Operators on an Interval

Author: Robert L. Sachs

Abstract: A one-parameter family of real, homogeneous boundary conditions on the interval \([0,1]\), under which the operator \(-\frac{d^2}{dx^2}\) is self-adjoint, is constructed. The relation between such boundary conditions and Lagrangian planes in \(\mathbb{R}^3\) is used and the resulting circle of boundary conditions is seen to include Dirichlet, Neumann, periodic, antiperiodic, and several other well-known examples.