INSTRUCTION REPORT K-82-4

NOTEBOOK FOR LESSONS ON THE GRAPHICS COMPATIBILITY SYSTEM (GCS)

by

Darrell Ward, James M. Jones II, Michael E. George

Automatic Data Processing Center
U. S. Army Engineer Waterways Experiment Station
P. O. Box 631, Vicksburg, Miss. 39180

April 1982
Final Report

Approved for Public Release; Distribution Unlimited

Prepared for Office, Chief of Engineers, U. S. Army
Washington, D. C. 20314

82 06 28 026
Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
Notebook for Lessons on the Graphics Compatibility System (GCS)

1. Report Number
Instruction Report K-82-4

2. Government Accession No.

3. Security Classification
Unclassified

4. Title and Subtitle
NOTEBOOK FOR LESSONS ON THE GRAPHICS COMPATIBILITY SYSTEM (GCS)

5. Type of Report & Period Covered
Final report

6. Performing Org. Report Number

7. Author(s)
Darrell Ward
James M. Jones II
Michael E. George

8. Contract or Grant Number(s)

9. Performing Organization Name and Address
U. S. Army Engineer Waterways Experiment Station
Automatic Data Processing Center
P. O. Box 631, Vicksburg, Miss. 39180

10. Program Element, Project, Task Area & Work Unit Numbers

11. Controlling Office Name and Address
Office, Chief of Engineers, U. S. Army
Washington, D. C. 20314

12. Report Date
April 1982

13. Number of Pages
143

14. Security Classification of This Report
Unclassified

15a. Security Classification of Data in This Report
Unclassified

16. Distribution Statement (of this report)
Approved for public release; distribution unlimited.

17. Distribution Statement (of the abstract entered in Block 20, if different from Report)

18. Supplementary Notes
Available from National Technical Information Service, 5285 Port Royal Road, Springfield, Va. 22151.

19. Key Words (Continue on reverse side if necessary and identify by block number)
- Computer graphics
- Computer programs
- FORTRAN (Computer program language)
- Programming (Electronic computers)

20. Abstract (Continue on reverse side if necessary and identify by block number)
This report presents graphics examples and corresponding computer codes for each example to supplement the computer resident course on Computer-Aided Instruction (CAI) for the Graphics Compatibility System (GCS).
Preface

This report presents graphics examples and corresponding computer codes for each example to supplement the computer resident course on Computer-Aided Instruction (CAI) for the Graphics Compatibility System (GCS). The work in preparing the CAI lessons and this report was performed at the U. S. Army Engineer Waterways Experiment Station (WES) as a part of a project sponsored by the Computation and Analysis Section, Office, Chief of Engineers, U. S. Army (OCE), to develop computer graphics applications for the Corps of Engineers and to maintain and support GCS.

The work in preparing the lessons was done by Dr. Darrell Ward, expert, Automatic Data Processing (ADP) Center, WES, and Mr. James M. Jones II, formerly with the Research and Development Software Group (RADSG), ADP Center, WES. Mr. Michael E. George, RADSG, made some changes to the lessons and compiled this report. The work was done under the supervision of Mr. Fred T. Tracy, Chief, RADSG, and Dr. N. Radhakrishnan, Special Technical Assistant, ADP Center, and under the general supervision of Mr. Donald L. Neumann, Chief, ADP Center.

Directors of WES during the preparation and publication of this report were COL N. P. Conover, CE, and COL T. C. Creel, CE. Technical Director was Mr. F. R. Brown.
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Execution</td>
<td>3</td>
</tr>
<tr>
<td>Examples</td>
<td>5</td>
</tr>
</tbody>
</table>
NOTEBOOK FOR LESSONS ON THE
GRAPHICS COMPATIBILITY SYSTEM (GCS)

Introduction

1. A series of lessons has been developed for teaching graphics programming with computer assistance. These lessons are intended to serve as a refresher course as well as an initial exposure to graphics programming with the Graphics Compatibility System (GCS). The lessons effectively communicate the concepts, examples, and information contained in the first 11 chapters of the GCS "Primer on Computer Graphics Programming." There are two versions of each lesson: one provides text output at an alphanumeric terminal, and the other provides both text and graphics output when used on a Tektronix 4014 graphics terminal. The 13 lessons have been implemented on the Honeywell computers at the U. S. Army Engineer Waterways Experiment Station (WES) in Vicksburg, Miss., and at Macon, Ga., and the CDC computer with Boeing Computer Services and must be executed in time-sharing.

Execution

2. To execute the lessons on the WES or Macon systems, enter the following:

*FORT NEW
*RUN GRAPHICS/GCSCAI,R

3. To execute the lessons on the Boeing system, enter the following:

C>OLD,GCSCAI/UN=CECELB
C>CALL,GCSCAI

4. Upon execution, the following is printed from the computer:
GREETINGS TO YOU TODAY. IF YOU WOULD LIKE TO SEE THE LESSON INDEX THEN TYPE IN YES WHEN THE EQUAL SIGN IS TYPED, OTHERWISE TYPE IN NO AND IN EITHER CASE PRESS THE RETURN KEY TO TERMINATE YOUR REPLY.

5. A response of YES will yield the following index of lessons:

<table>
<thead>
<tr>
<th>LESSON</th>
<th>LESSON CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IMPORTANT TECHNICAL CONCEPTS AND CONVENTIONS IN GCS</td>
</tr>
<tr>
<td>2</td>
<td>GCS PROGRAMMING FUNDAMENTALS</td>
</tr>
<tr>
<td>3</td>
<td>VIRTUAL AND DEVICE GRAPHICS IN GCS</td>
</tr>
<tr>
<td>4</td>
<td>ALPHANUMERIC OUTPUT WITH GCS</td>
</tr>
<tr>
<td>5</td>
<td>GRAPHICAL AND ALPHANUMERIC INPUT WITH GCS</td>
</tr>
<tr>
<td>6</td>
<td>PROBLEM 1</td>
</tr>
<tr>
<td>7</td>
<td>GCS UTILITY ROUTINES</td>
</tr>
<tr>
<td>8</td>
<td>HIGH LEVEL GRAPHICS WITH GCS</td>
</tr>
<tr>
<td>9</td>
<td>PROBLEM 2</td>
</tr>
<tr>
<td>10</td>
<td>COORDINATE SYSTEMS AND TRANSFORMATIONS</td>
</tr>
<tr>
<td>11</td>
<td>THREE-DIMENSIONAL GRAPHICS</td>
</tr>
<tr>
<td>12</td>
<td>GRAPHICAL DATA STRUCTURING PROCESSING</td>
</tr>
<tr>
<td>13</td>
<td>PICTURE SEGMENTATION AND NAMING</td>
</tr>
</tbody>
</table>

6. The following is then output:

PLEASE INPUT THE NUMBER OF THE LESSON THAT YOU WISH TO TAKE THEN PRESS THE RETURN KEY
= (enter a number from 1 to 13)

ARE YOU USING A TEKTRONIX 4014 GRAPHICS TERMINAL (YES/NO)?
= (enter either YES or NO)

The lesson will now execute.

7. After the lesson has been completed, the following message is output:
WOULD YOU LIKE TO TAKE ANOTHER LESSON (YES/NO)?
= (enter either YES or NO)

8. If a YES answer is entered, the following is then output:

WOULD YOU LIKE TO SEE THE LESSON INDEX AGAIN (YES/NO)?
= (enter either YES or NO)

9. If the user enters NO to taking another lesson, the lesson session is terminated.

Examples

10. The following examples are the same examples that are plotted in the lessons. If the user is taking the lessons on an alphanumeric terminal, the lessons will pause, giving the user a chance to look at the example being discussed. If the user is taking the lessons using a Tektronix 4014 graphics terminal, the example will be plotted and the user given a chance to replot the example as many times as necessary to fully understand the example. In either case, the source code for each example can only be viewed by using this manual.
EXAMPLE 2.1

C THIS SAMPLE PROGRAM WILL DEMONSTRATE SIMPLE LINE-DRAWING BY
C DRAWING A SQUARE BOX IN 4 PEN MOVEMENTS.
C
C INITIALIZE GCS
C
C THIS INITIALIZATION SETS GCS TO RECTANGULAR, ABSOLUTE COORDINATES,
C SOLID LINE PEN-DRAWING MODE AND INITIAL PEN COORDINATES (0.,0.).
C
C CALL USTART
C
C NOTE THAT ALL GCS SUBROUTINES USE "REAL" CALLING PARAMETERS. Thus
C COORDINATES MUST BE ENTERED AS REAL NUMBERS (WITH DECIMAL POINTS).
C
C MOVE PEN TO (0.,50.) THEREBY DRAWING LINE (0.,0.) TO (0.,50.)
C
C CALL UPEN (0.,50.)
C
C MOVE PEN TO (50.,50.) THEREBY DRAWING LINE (0.,50.) TO (50.,50.)
C
C CALL UPEN (50.,50.)
C
C MOVE PEN TO (50.,0.) THEREBY DRAWING LINE (50.,50.) TO (50.,0.)
C
C CALL UPEN (50.,0.)
C
C MOVE PEN TO (0.,0.) THEREBY DRAWING LINE (50.,0.) TO (0.,0.)
C
C CALL UPEN (0.,0.)
C
C THIS Completes DRAWING OF THE SQUARE.
C
C WRAP-UP. FIRST TERMINATE GCS BY CALL UEND, THEN STOP EXECUTION
C WITH STOP. FINALLY END FORTRAN PROGRAM WITH END.
C
C CALL UEND
C STOP
C END
Figure 1. Example 2.1
EXAMPLE 2.2

C THIS PROGRAM DEMONSTRATES USE OF THE MOVE COMMAND TO MOVE THE PEN
C INVISIBLY WITHOUT NEED FOR A MODE CHANGE. IT draws A SQUARE
C IDENTICAL TO THE PREVIOUS ONE.
C
C INITIALIZE GCS
C CALL USTART
C
C DRAW A BOX AROUND THE DEFAULT DEVICE PLOTTING AREA.
C CALL UMOVE (0.,0.)
CALL UPEN (100.,0.)
CALL UPEN (100.,100.)
CALL UPEN (0.,100.)
CALL UPEN (0.,0.)

C MOVE PEN INVISIBLY TO COORDINATES (45.,45.)
C CALL UMOVE (45.,45.)
C
C NO CHANGE HAS BEEN MADE IN PEN STATUS SO IT IS STILL IN THE DEFAULT
C CASE OF SOLID LINES. DRAW THE SQUARE.
C
CALL UPEN (45.,95.)
CALL UPEN (95.,95.)
CALL UPEN (95.,45.)
CALL UPEN (45.,45.)

C WRAP UP
C
CALL UEND
STOP
END
Figure 2. Example 2.2
Example 2.3

This program demonstrates the use of a mode change to move the pen position without drawing a line. Otherwise it draws a square identical to the previous example.

Initialization by USTART is always necessary. Among other things it automatically sets pen status for drawing solid lines and initial pen position to coordinates (0.,0.).

CALL USTART

Draw a box around the default device plotting area.

CALL UMVE (0.,0.)
CALL UPEN (100.,0.)
CALL UPEN (100.,100.)
CALL UPEN (0.,100.)
CALL UPEN (0.,0.)

Set mode to 'NOLINE' and then move pen to coordinates (45.,45.) without drawing a line.

CALL USET ('NOLINE')
CALL UPEN (45.,45.)

Now reset pen status for drawing solid lines and draw a square.

CALL USET ('LINE')
CALL UPEN (45.,95.)
CALL UPEN (95.,95.)
CALL UPEN (95.,45.)
CALL UPEN (45.,45.)

Wrap up

CALL UEEND
STOP
END
Figure 3. Example 2.3
EXAMPLE 2.4

SAMPLE PROGRAM TO ILLUSTRATE "ARROW", "BACKARROW" AND "DOUBLEARROW" LINE OPTIONS AVAILABLE THROUGH USET/UPEN.

INITIALIZE GCS.

CALL USTART

DRAW A BOX AROUND THE DEFAULT DEVICE PLOTTING AREA.

CALL UMOVE (0.,0.)
CALL UPEN (100.,0.)
CALL UPEN (100.,100.)
CALL UPEN (0.,100.)
CALL UPEN (0.,0.)

MOVE TO VIRTUAL LOCATION (25.,75.), SET LINE TYPE TO "ARROW" AND DRAW A LINE WHICH EXTENDS TO VIRTUAL LOCATION (75.,75.)

CALL UMOVE (25.,75.)
CALL USET ("ARROWHEAD LINE")
CALL UPEN (75.,75.)

MOVE TO VIRTUAL LOCATION (25.,50.), SET LINE TYPE TO "BACKARROW" AND DRAW A LINE WHICH EXTENDS TO VIRTUAL LOCATION (75.,50.)

CALL UMOVE (25.,50.)
CALL USET ("BACK ARROWHEAD LINE")
CALL UPEN (75.,50.)

MOVE TO VIRTUAL LOCATION (25.,25.), SET LINE TYPE TO "DOUBLEARROW" AND DRAW A LINE WHICH EXTENDS TO VIRTUAL LOCATION (75.,25.)

CALL UMOVE (25.,25.)
CALL USET ("DOUBLE ARROWHEAD LINE")
CALL UPEN (75.,25.)

WRAP UP

CALL UEND
STOP
END
Figure 4. Example 2.4
EXAMPLE 2.5

SAMPLE PROGRAM TO ILLUSTRATE TIC LINE GENERATION OPTIONS AVAILABLE THROUGH GCS. INITIALIZE GCS, SET PEN STATUS TO THE 'TIC' MODE, AND THEN DRAW A LINE WHICH BEGINS AT (0,.99,) AND TERMINATES AT (100.,.99,) USING THE DEFAULT TIC LENGTH.

CALL USTART
 CALL USET ('TICLINE')
 CALL UMOVE (0.,.99,)
 CALL UOPEN (100.,.99,)
END

REQUEST TICS TO APPEAR AT EVERY 2.0 VIRTUAL UNITS AND DRAW A LINE WHICH STARTS AT (0,.80,) AND ENDS AT (100.,.80,)

CALL USET ('TICINTERVAL',2.)
 CALL UMOVE (0.,.80,)
 CALL UOPEN (100.,.80,)

REQUEST TICS TO APPEAR AT EVERY 5.0 VIRTUAL UNITS AND DRAW A LINE WHICH STARTS AT (0,.60,) AND ENDS AT (100.,.60,)

CALL USET ('TICINTERVAL',5.)
 CALL UMOVE (0.,.60,)
 CALL UOPEN (100.,.60,)

REQUEST TICS TO APPEAR AT EVERY 10.0 VIRTUAL UNITS AND DRAW A LINE WHICH STARTS AT (0,.40,) AND ENDS AT (100.,.40,)

CALL USET ('TICINTERVAL',10.)
 CALL UMOVE (0.,.40,)
 CALL UOPEN (100.,.40,)

REQUEST TICS TO APPEAR AT EVERY 20.0 VIRTUAL UNITS AND DRAW A LINE WHICH STARTS AT (0.,20,) AND ENDS AT (100.,20,)

TURN OFF THE TOP PART OF THE TIC ('TICPLUS')

CALL USET ('TICINTERVAL',20.)
 CALL USET ('TICPLUS',0.)
 CALL UMOVE (0.,20,)
 CALL UOPEN (100.,20,)

REQUEST TICS TO APPEAR AT EVERY 50.0 VIRTUAL UNITS AND DRAW A LINE WHICH STARTS AT (0.,1,) AND ENDS AT (100.,1,)

CALL USET ('TICINTERVAL',50.)
 CALL USET ('TICPLUS',1.)
 CALL USET ('TICMINUS',0.)
 CALL UMOVE (0.,1,)
 CALL UOPEN (100.,1,)

WRAP UP

CALL UEND
STOP
END
Figure 5. Example 2.5
EXAMPLE 2.6

C SAMPLE PROGRAM USED TO ILLUSTRATE DASHED LINE GENERATION
C OPTIONS AVAILABLE THROUGH GCS. INITIALIZE GCS, SET THE
C PEN STATUS TO 'DASHLINE' MODE AND DRAW A LINE WHICH BEGINS AT
C (0.,100.) AND TERMINATES AT (100.,100.). THE DEFAULT
C VALUE OF DASH WILL BE USED FOR THIS CASE.
C
CALL USTART
CALL USET ('DASHLINE')
CALL UMOVE (0.,100.)
CALL UOPEN (100.,100.)
C
C SET THE DASH SPECIFICATION TO 54.0 AND DRAW A LINE THAT
C STARTS AT (0.,80.) AND ENDS AT (100.,80.).
C
CALL USET ('SETDASH',54.)
CALL UMOVE (0.,80.)
CALL UOPEN (100.,80.)
C
C SET THE DASH SPECIFICATION TO 56.0 AND DRAW A LINE THAT
C STARTS AT (0.,60.) AND ENDS AT (100.,60.).
C
CALL USET ('SETDASH',56.)
CALL UMOVE (0.,60.)
CALL UOPEN (100.,60.)
C
C SET THE DASH SPECIFICATION TO 5212.0 AND DRAW A LINE THAT
C STARTS AT (0.,40.) AND ENDS AT (100.,40.).
C
CALL USET ('SETDASH',5212.)
CALL UMOVE (0.,40.)
CALL UOPEN (100.,40.)
C
C SET THE DASH SPECIFICATION TO 3.0 AND DRAW A LINE THAT
C STARTS AT (0.,20.) AND ENDS AT (100.,20.).
C
CALL USET ('SETDASH',3.)
CALL UMOVE (0.,20.)
CALL UOPEN (100.,20.)
C
C SET THE DASH SPECIFICATION TO 9.0 AND DRAW A LINE THAT
C STARTS AT (0.,0.) AND ENDS AT (100.,0.).
C
CALL USET ('SETDASH',9.)
CALL UMOVE (0.,0.)
CALL UOPEN (100.,0.)
C
C WRAP UP
CALL UEND
STOP
END
Figure 6. Example 2.6
EXAMPLE 2.7

C SAMPLE PROGRAM THAT ILLUSTRATES THE USE OF POLAR
C PLOTTING IN RELATIVE MODE. INITIALIZE GCS, SET
C THE COORDINATE TYPE TO 'POLAR' AND MOVE TO THE
C STARTING LOCATION.
C
CALL USTART
CALL USET ('POLAR COORDINATES')
CALL UMOVE (50.*SORT(2.),45.)

C ALTERNATE BETWEEN 'RELATIVE' AND 'ABSOLUTE'
C COORDINATE MODE TO DRAW A SERIES OF RADIAL LINES.
C
DO 100 K = 1, 361, 10
 I = K - 1
 CALL USET ('RELATIVE PLOTTING MODE')
 CALL UPEN (50., FLOAT (I))
 CALL USET ('ABSOLUTE PLOTTING MODE')
 CALL UMOVE (50.*SORT(2.),45.)
100 CONTINUE

C WRAP UP
C
CALL UEEND
STOP
END
Figure 7. Example 2.7
EXAMPLE 3.1

This program generates two vectors with arrow lines, and the resultant vector with a dashed arrow line.

Initialize GCS and generate an outline

CALL USTART
CALL UOUTLN

Redefine the 'virtual' window.

CALL UWINDO (-50000.,50000.,0.00001,0.00005)

Draw the two vectors.

Move to the beginning point of the first vector and set to arrow mode and draw vector from (-40000.,0.00004) to (40000.,0.00004)

CALL UMOVE (-40000.,0.00004)
CALL USET ('ARROWHEAD LINE')
CALL UPEN (40000.,0.00004)

Draw second vector from end of first to (40000.,0.00002)

CALL UPEN (40000.,0.00002)

Move to beginning of vector system

CALL UMOVE (-40000.,0.00004)

Set pen status to draw a dashed arrow and draw resultant vector

CALL USET ('DARROWHEAD LINE')
CALL UPEN (40000.,0.00002)

Wrap up

CALL UEND
STOP
END
Figure 8. Example 3.1
EXAMPLE 3.2

SAMPLE PROGRAM USED TO ILLUSTRATE ELEMENTARY SIX-LEVEL
ZOOMING BY ADJUSTING ONLY THE VIRTUAL WINDOW BOUNDARIES.
NOTE THAT THE PEN COMMANDS REQUIRED TO DRAW THE FIGURE
REMAIN UNCHANGED.

ENTER GCS AND SET UP LOOP TO PERMIT US TO ZOOM AWAY
FROM FIGURE.

CALL USTART
DO I I = 1, 6

ERASE THE SCREEN AND DEFINE THE BOUNDARIES FOR OUR NEW
WINDOW.

CALL UERASE
BOUNDS = 50. * FLOAT(I)
CALL UWINDO (-BOUNDS,BOUNDS,-BOUNDS,BOUNDS)

OUTLINE THE DEFAULT DEVICE AREA AND DRAW THE FIGURE.

CALL UOUTLN
CALL DRWFIG
1 CONTINUE

WRAP UP ALL GRAPHICS ACTIVITY AND TERMINATE THE FORTRAN
PROGRAM.

CALL UEND
STOP
END

SUBROUTINE DRWFIG

SUBROUTINE USED TO GENERATE A PENTAGON WITHIN A CIRCLE,
RING A BELL AND PAUSE. PUSH THE RETURN KEY TO CONTINUE.

CALL USET ('POLAR COORDINATES')
DO 10 I = 1, 361, 10
K = I - 1
IF (K.EQ.0) CALL UMOVE (25.,FLOAT(K))
IF (K.NE.0) CALL UPEN (25.,FLOAT(K))
10 CONTINUE

DO 20 I = 1, 6
ANGLE = 18. + FLOAT(I-1) * 72.
IF (I.EQ.1) CALL UMOVE (15.,ANGLE)
IF (I.NE.1) CALL UPEN (15.,ANGLE)
20 CONTINUE

CALL UBELL
CALL UPAUSE
CALL UEND
STOP
END
Figure 9. Example 3.2
Figure 10. Example 3.2 (continued)
Figure 11. Example 3.2 (continued)
Figure 12. Example 3.2 (continued)
Figure 13. Example 3.2 (continued)
Figure 14. Example 3.2 (continued)
EXAMPLE 3.3

SAMPLE PROGRAM USED TO ILLUSTRATE ELEMENTARY SIX-LEVEL ZOOMING BY ADJUSTING ONLY THE VIRTUAL WINDOW BOUNDARIES. NOTE THAT THE PEN COMMANDS REQUIRED TO DRAW THE FIGURE REMAIN UNCHANGED.

ENTER GCS AND SET UP LOOP TO PERMIT US TO ZOOM TOWARD THE FIGURE.

CALL USTART
DO 1 I = 1, 6

ERASE THE SCREEN AND DEFINE THE BOUNDARIES FOR OUR NEW WINDOW.

CALL UERASE
BOUNDS = 50. - (5. * FLOAT(I-1))
CALL UWINDO (-BOUNDS,BOUNDS,-BOUNDS,BOUNDS)

OUTLINE THE DEFAULT DEVICE AREA AND DRAW THE FIGURE.

CALL UOUTLN
CALL DRWFIG
1 CONTINUE

WRAP UP

CALL UEND
STOP
END

SUBROUTINE DRWFIG

SUBROUTINE USED TO GENERATE A PENTAGON WITHIN A CIRCLE, RING A BELL AND PAUSE. PUSH THE RETURN KEY TO CONTINUE.

CALL USET ('POLAR COORDINATES')
DO 10 I = 1, 361, 10
K = I - 1
IF (K.EQ.0) CALL UNOVE (25.,FLOAT(K))
IF (K.NE.0) CALL UPEN (25.,FLOAT(K))
10 CONTINUE
DO 20 I = 1, 6
ANGLE = 18. + FLOAT(I-1) * 72.
IF (I.EQ.1) CALL UNOVE (15.,ANGLE)
IF (I.NE.1) CALL UPEN (15.,ANGLE)
20 CONTINUE
CALL UDELL
CALL UPAUSE
CALL UEND
STOP
END
Figure 16. Example 3.3 (continued)
Figure 17. Example 3.3 (continued)
Figure 18. Example 3.3 (continued)
Figure 19. Example 3.3 (continued)
Figure 20. Example 3.3 (continued)
EXAMPLE 3.4

SAMPLE PROGRAM USED TO ILLUSTRATE ELEMENTARY SIX-LEVEL
ZOOMING BY ADJUSTING ONLY THE VIRTUAL WINDOW BOUNDARIES.
NOTE THAT THE PEN COMMANDS REQUIRED TO DRAW THE FIGURE
REMAIN UNCHANGED. ALSO NOTE THE DISTORTION DUE TO THE
OF NON-SQUARE WINDOWING.
INITIALIZE GCS AND SET UP A LOOP TO PERMIT US TO ZOOM
TOWARD THE FIGURE.

CALL USTART
DO 1 I = 1, 6

ERASE THE SCREEN AND DEFINE THE BOUNDARIES FOR OUR
NEW WINDOW.

CALL UERASE
XBOUND = 50. - (5.*FLOAT(I-1))
YBOUND = 50. - (2.5*FLOAT(I-1))
CALL UWINDO (-XBOUND, XBOUND, -YBOUND, YBOUND)

OUTLINE THE DEFAULT DEVICE AREA AND DRAW THE FIGURE.

CALL UOUTLN
CALL DRWFIG
1 CONTINUE

WRAP UP

CALL UEND
STOP
END

SUBROUTINE DRWFIG

SUBROUTINE USED TO GENERATE A PENTAGON WITHIN A CIRCLE,
RING A BELL AND PAUSE. PUSH THE RETURN KEY TO CONTINUE.

CALL USET ('POLAR COORDINATES')
DO 10 I = 1, 361, 10
K = I - 1
IF (K.EQ.0) CALL UMOVE (25., FLOAT(K))
IF (K.NE.0) CALL UPEN (25., FLOAT(K))
10 CONTINUE
DO 20 I = 1, 6
ANGLE = 18. + FLOAT(I-1) * 72.
IF (I.EQ.1) CALL UMOVE (15., ANGLE)
IF (I.NE.1) CALL UPEN (15., ANGLE)
20 CONTINUE
CALL UBEELL
CALL UPAUSE
CALL UEND
STOP
END
Figure 23. Example 3.4 (continued)
Figure 25. Example 3.4 (continued)
EXAMPLE 3.5

C SAMPLE PROGRAM USED TO ILLUSTRATE ELEMENTARY SIX-LEVEL C ZOOMING BY ADJUSTING ONLY THE VIRTUAL WINDOW BOUNDARIES. C NOTE THAT THE PEN COMMANDS REQUIRED TO DRAW THE FIGURE C REMAIN UNCHANGED. ALSO NOTE THE CLIPPING OF THE FIGURE C AT THE WINDOW BOUNDARY.

C INITIALIZE GCS AND SET UP A LOOP TO PERMIT US TO ZOOM C TOWARD THE FIGURE.

C CALL USTART
DO 1 I = 1, 6
C ERASE THE SCREEN AND DEFINE THE BOUNDARIES FOR OUR NEW C WINDOW.
C CALL UERASE
XYMIN = -25.
XYMAX = 25. - (7.5*FLOAT(I-1))
CALL UWINDO (XYMIN,XYMAX,XYMIN,XYMAX)

C OUTLINE THE DEFAULT DEVICE AREA AND DRAW THE FIGURE.
C CALL UOUTLN
CALL DRWFIG
1 CONTINUE
C WRAP UP
C CALL UEND
STOP
END

SUBROUTINE DRWFIG
C SUBROUTINE USED TO GENERATE A PENTAGON WITHIN A CIRCLE, C RING A BELL AND PAUSE. PUSH THE RETURN KEY TO CONTINUE.

C CALL USET ('POLAR COORDINATES')
DO 10 I = 1, 361, 10
K = I - 1
IF (K.EQ.0) CALL UMOVE (25.,FLOAT(K))
IF (K.NE.0) CALL UPEN (25.,FLOAT(K))
10 CONTINUE
DO 20 I = 1, 6
ANGLE = 18. + FLOAT(I-1) * 72.
IF (I.EQ.1) CALL UMOVE (15.,ANGLE)
IF (I.NE.1) CALL UPEN (15.,ANGLE)
20 CONTINUE
CALL UBELL
CALL UPAUSE
CALL UEND
STOP
END
Figure 28. Example 3.5 (continued)
Figure 29. Example 3.5 (continued)
Figure 30. Example 3.5 (continued)
Figure 31. Example 3.5 (continued)
Figure 32. Example 3.5 (continued)
EXAMPLE 3.6

C SAMPLE PROGRAM TO GENERATE A SIMPLE STREET DIAGRAM
C FOR A TEKTRONIX 4010/4013 TERMINAL. NOTE THAT ALL
C (X,Y) VALUES ARE GIVEN IN DEVICE UNITS. THE DEFAULT
C DEVICE UNIT IS INCHES.
C
C INITIALIZATION, DEVICE MODE ENTRY AND OUTLINE
C GENERATION.
C
 CALL USTART
 CALL USET ('DEVICE UNITS')
 CALL UOOUTLN

C GENERATION OF ROADS WITH THE DEFAULT CASE OF LINES
C IN TERMS OF INCHES.
C
 CALL UMOVE (0.3,2.7)
 CALL UPEN (7.2,2.7)
 CALL UMOVE (7.2,2.1)
 CALL UPEN (4.5,2.1)
 CALL UPEN (2.5,0.3)
 CALL UMOVE (1.7,0.3)
 CALL UPEN (3.7,2.1)
 CALL UPEN (0.3,2.1)

C GENERATION OF HOUSES WITH DASHED LINES IN TERMS OF
C CENTIMETERS.
C
 CALL USET ('CENTIMETERS')
 CALL 'ISET ('DASHLINE')
 CALL UMOVE (12.5,5.0)
 CALL UPEN (15.5,5.)
 CALL UPEN (15.5,2.5)
 CALL UPEN (12.5,2.5)
 CALL UPEN (12.5,5.)
 CALL UMOVE (5.7,5.)
 CALL UPEN (11.3,7.5)
 CALL UPEN (11.3,10.0)
 CALL UPEN (5.7,10.)
 CALL UPEN (5.7,7.5)

C GENERATION OF DIRECTION REFERENCES WITH ARROW LINES
C IN TERMS OF PERCENTUNITS.
C
 CALL USET ('PERCENTUNITS')
 CALL USET ('ARROWHEAD LINE')
 CALL UMOVE (10.,80.)
 CALL UPEN (20.,80.)
 CALL UMOVE (15.,75.)
 CALL UPEN (15.,85.)

C WRAP UP
C
 CALL UEND
 STOP
 END
Figure 33. Example 3.6
EXAMPLE 3.8

C SAMPLE PROGRAM TO GENERATE THE SAME DISPLAY AT VARIOUS
C LOCATIONS ON THE DEVICE. THIS IS WRITTEN FOR A
C TEKTRONIX 4014/4015.
C INITIALIZE GCS AND OUTLINE THE DEFAULT DEVICE AREA.
C CALL UERASE
C CALL UOUTLN
C FOR EACH OF THE THREE PASSES, DEFINE A DEVICE AREA,
C OUTLINE THE DEVICE AREA AND DRAW THE FIGURE.
C DO 10 I = 1, 3
C IF (I .EQ. 1) CALL UDAREA (5.,9.,0.,4.)
C IF (I .EQ. 2) CALL UDAREA (10.,14.,1.,5.)
C IF (I .EQ. 3) CALL UDAREA (6.,10.,6.,10.)
C CALL UOUTLN
C CALL THE SUBROUTINE TO DRAW THE FIGURE
C CALL GRAFIT
C 10 CONTINUE
C WRAP UP
C CALL UEND
C STOP
C END SUBROUTINE GRAFIT
C SUBROUTINE USED TO DRAW THE FIGURE.
C CALL UMOVE (10.,10.)
C CALL USET ("LINE")
C CALL UPEN (90.,10.)
C CALL UMOVE (20.,10.)
C CALL UPEN (30.,70.)
C CALL UPEN (70.,70.)
C CALL UPEN (80.,10.)
C CALL UMOVE (30.,70.)
C CALL USET ("DOUBLE ARROWHEAD LINE")
C CALL UPEN (40.,10.)
C CALL UPEN (50.,70.)
C CALL UPEN (60.,10.)
C CALL UEND
C STOP
C END
EXAMPLE 3.9

THIS PROGRAM GENERATES A FIGURE, A VERTICALLY DISTORTED VERSION OF THE FIGURE AND A HORIZONTALLY DISTORTED VERSION OF THE FIGURE.

THIS IS WRITTEN FOR A TEKTRONIX 4010/4013.

INITIALIZATION

CALL USTART

FOR EACH OF THE THREE PASSES, DEFINE A NEW DEVICE PLOTTING AREA, OUTLINE THE AREA AND DRAW THE FIGURE.

X0 = -2.1
DO 10 I = 1, 3
X0 = X0 + 2.5
CALL UAREA (X0,X0+2.,2.,3.5)
IF (I.EQ.2) CALL UAREA (X0,X0+2.,2.,3.5)
IF (I.EQ.3) CALL UAREA (X0+5.,X0+1.5,2.,3.5)
CALL UOUTLN
CALL UMOVE (50.,20.)
CALL UPEN1 (50.,90.,"DOUBLEARROW")
CALL UMOVE (10.,90.)
CALL UPEN (50.,65.)
CALL UPEN (100.,65.)
CALL UMOVE (10.,90.)
CALL UPEN (50.,50.)
CALL UPEN (100.,50.)
CALL UMOVE (10.,90.)
CALL UPEN (50.,35.)
CALL UPEN (100.,35.)
10 CONTINUE

WRAP UP

CALL UEND
STOP
END

54
Figure 35. Example 3.9
EX A M P L E 4.1

C SAMPLE PROGRAM USED TO ILLUSTRATE OPTIONS AVAILABLE THROUGH 'UPRINT' AND 'UWRITE'. THE DEFAULT VIRTUAL WINDOW AND DEVICE AREA WILL BE USED.
C
D I M E N S I O N COORD (2)
D A T A COORD/25., 0.999E7/
C
C INITIALIZE GCS. CHANGE THE DEFAULT TERMINATOR (\)
C FOR 'TEXT' TO A 'i' AND USE 'EXTRALARGE' CHARACTERS.
C OUTPUT A LINE OF TEXT AT (0., .75.). NOTE THAT THE
C TEXT STRING IS CLIPPED AT THE DEVICE AREA BOUNDARY.
C
C C A L L U S T A R T
C C A L L U P S E T ('TERMINATOR CHARACTER', 'i')
C C A L L U S E T ('EXTRALARGE CHARACTERS')
C C A L L U P R I N T (0., .75., 'THIS IS A SAMPLE LINE OF OUTPUT TEXT
C WHICH WILL BE CLIPPED!')
C
C SPECIFY 'REALNUMBER' MODE OF OPERATION AND USE
C 'UWRITE' TO OUTPUT THE NUMBER 100.
C
C C A L L U S E T ('REALNUMBER')
C C A L L U W R I T E (50., 25., 100.)
C
C SPECIFY 'INTEGER' MODE AND OUTPUT THE NUMBER
C -123456789. NOTICE THAT SINCE ALL GCS MUST BE
C REAL NUMBERS, EVEN THIS INTEGER MUST BE PASSED
C AS A REAL NUMBER.
C
C C A L L U S E T ('INTEGER')
C C A L L U P R I N T (75., 0., -1.23456789.)
C
C SPECIFY 'XYCOORDINATES' MODE. NOTE THE VARIED
C FORM OF OUTPUT OF REAL NUMBERS WITH '6' FORMAT.
C
C C A L L U S E T ('XYCOORDINATES')
C C A L L U W R I T E (75., 50., COORD)
C
C W R A P U P
C
C C A L L U E N D
C S T O P
C E N D
THIS IS A SAMPLE LINE OF OUTPUT TEXT WHICH WILL BE CLIP

(25, 9990E+7)

100.

-123456789

Figure 36. Example 4.1
EXAMPLE 4:

C SAMPLE PROGRAM TO ILLUSTRATE THE OPTIONS AVAILABLE
C THROUGH MARGINING. DEFAULT VALUES WILL BE USED IN THIS
C EXAMPLE WITH ADDITIONAL CALLS TO "UMARGN" TO ADJUST
C THE ALPHANUMERIC MARGIN BOUNDARIES.
C
C SET UP A 300 CHARACTER ARRAY NAMED SAMPLE AND INITIALIZE.
C
C
CHARACTER SAMPLE#200
 DATA SAMPLE:*"THIS IS A LINE OF OUTPUT TEXT WHICH IS LONG
 I ENOUGH TO CAUSE THE ALPHANUMERIC OUTPUT TO WRAP-AROUND. NOTE THE
 I EFFECTS WHICH THE DEFAULT MARGINS HAVE UPON OUTPUT*/
C
C INITIALIZE GCS. SET ALL (X,Y) COORDINATE TO DEVICE UNITS
C AND CHANGE THE DEVICE UNITS TO PERCENT UNITS. REMEMBER
C THAT MARGINING ONLY WORKS IN "DEVICE" COORDINATE SPACE.
C ALSO CHANGE THE TEXT STRING TERMINATOR TO A "*" AND
C USE "EXTRALARGE" CHARACTERS.
C
CALL USTART
CALL USSET (*"DEVICE UNITS")
CALL USSET (*"TERMINATOR CHARACTER","*")
CALL USSET (*"PERCENTUNITS")
CALL USSET (*"EXTRALARGE CHARACTERS")

C
C OUTPUT THE TEXT STRING AND NOTE THE WRAP-AROUND.
C
CALL UPRINT (31,25,SAMPLE;
C
C SPECIFY "FONTUNITS" AS THE DEVICE UNIT OF MEASURE. THE
C ALLOWS YOU TO SET MARGINS BASED UPON A SINGLE CHARACTER
C HEIGHT AND WIDTH. REMEMBER THE RULES FOR MARGINING
C IF THE STARTING POSITION OF THE TEXT STRING IS MARKED
C ABOVE THE TOP MARGIN.
C
C OUTPUT THE TEXT STRING. NOTICE THE "*".
C
CALL USSET (*"FONTUNITS")
CALL UMARGN (15.,16.,11.,15.)
CALL UPRINT (0.,400.,"HELLO THERE!");

C WRAP
C
CALL UEND
STOP
END
HELLO THERE!

THIS IS A LINE OF OUTPUT TEXT WHICH IS LONG ENOUGH TO CAUSE THE ALPHANUMERIC OUTPUT TO WRAP-AROUND. NOTE THE EFFECTS WHICH THE DEFAULT MARGINS HAVE UPON OUTPUT

Figure 37. Example 4.2
EXAMPLE 4.3

C SAMPLE PROGRAM USED TO ILLUSTRATE SINGLE CHARACTER
C OUTPUT AND LINE TERMINATOR OPTIONS AVAILABLE
C THROUGH "UPEN". TWO GRAPHS WILL BE PLOTTED.
C
C SET UP X, Y AND Z ARRAYS. PRESTORE DATA IN THEM.
C
DIMENSION X(11), Y(11), Z(11)
DATA X/0.,10.,20.,30.,40.,50.,60.,70.,80.,90.,100./
DATA Y/0.,10.,20.,30.,40.,50.,60.,70.,80.,90.,100./
DATA Z/0.,1.,4.,9.,16.,25.,36.,49.,64.,81.,100./
C
C INITIALIZE GCS AND OUTLINE THE DEFAULT DEVICE AREA.
C
CALL USTART
CALL USET ('EXTRALARGE CHARACTERS')
CALL UOUTLN
C
C SPECIFY THAT AN 'A' TERMINATOR WILL BE DRAWN AFTER
C EACH 'UPEN'. MOVE TO AN INITIAL (X,Y) POINT.
C
CALL USET ('LA')
CALL UMOVE (X(1),Y(1))
C
C DRAW 11 LINE SEGMENTS AND NOTICE THE 'A'.
C
DO 1 I = 1, 11
 1 CALL UPEN (X(I),Y(I))
C
C SPECIFY THAT 'NULL' LINES WILL BE DRAWN WITH A 'B'
C AT THE END OF EACH INVISIBLE LINE SEGMENT.
C
CALL USET ('NB')
C
MOVE TO THE FIRST (X,Z) POINT, THEN PLOT 11 (X,Z)
C VALUES.
C
CALL UMOVE (X(1),Z(1))
DO 2 I = 1, 11
 2 CALL UPEN (X(I),Z(I))
C
C WRAP UP
C
CALL UEND
STOP
END
Figure 38. Example 4.3
EXAMPLE 4.4

C SAMPLE PROGRAM USED TO ILLUSTRATE CHARACTER TERMINATOR AND ALPHANUMERIC OUTPUT USED IN CONJUNCTION WITH GRAPHICAL OUTPUT. THIS PROGRAM WAS WRITTEN FOR A TEKTRONIX 4014/4015 TERMINAL.
C
C ALLOCATE ARRAYS AND INITIALIZE ALL VARIABLES THAT WILL BE USED
C
CHARACTER ROUTINE*7(4)
INDEX = 0
C
ROUTINE(1)= 'OPEN;'
ROUTINE(2) = 'AOUT;'
ROUTINE(3) = 'UPRNTI;'
ROUTINE(4) = 'UWRITI;'
C
INITIALIZE GCS. DIVIDE THE DEVICE PLOTTING AREA INTO FOUR EQUAL PARTS, CHOOSE ONE PART AND OUTLINE THE 'UDAREA'.
C
CALL USTART
CALL USET ('EXTRALARGE CHARACTERS')
CALL USET ('TERMINATOR CHARACTER', 'a;')
DO 5 I = 1, 4
INDEX = INDEX + 1
IF (I.EQ.1) CALL UDAREA(2, 7, 5, 5, 10, 5)
IF (I.EQ.2) CALL UDAREA(7.5, 12.5, 0.5, 10.5)
IF (I.EQ.3) CALL UDAREA(2, 7, 0, 5)
IF (I.EQ.4) CALL UDAREA(7.5, 12.5, 0, .5)
CALL UOUTLN
C
MOVE TO (0, 0) AND SPECIFY STANDARD LINE WITH NO TERMINATOR. IF 'OPEN' OPTION IS IN EFFECT, SPECIFY AN 'A' AS THE TERMINATOR.
C
CALL UMOVE (0, 0)
CALL USET ('LNULL;')
IF (INDEX .EQ. 1) CALL USET ('LA')
C
DRAW A LINE THEN BRANCH TO ONE OF THE FOUR ROUTINES TO PRINT AN 'A' AT THE END OF THE LINE.
C
DO 4 K = 1, 4
CALL UOPEN ((25.*FLOAT(K)), (25.*FLOAT(K)))
GO TO (4*1.423), INDEX
1 CALL UAOUT ('A;')
GO TO 4
2 CALL UPRNT1 ('A;','TEXT')
GO TO 4
3 CALL UWRITI ('A;','TEXT')
4 CONTINUE
C
OUTPUT THE NAME OF THE ROUTINE USED IN THE BOTTOM RIGHT CORNER. REMEMBER THE WINDOW BOUNDARIES ARE THE SAME FOR ALL FOUR DEVICE AREAS.
C
CALL UPRINT (75, 2, ROUTINE(INDEX))
5 CONTINUE
C
WRAP UP
C
CALL UEND
STOP
END
Figure 39. Example 4.4
EXAMPLE 4.5

C SAMPLE PROGRAM USED TO ILLUSTRATE ALPHANUMERIC OUTPUT.
C THROUGH "SOFTWARE" CHARACTER OPTION IN OCR-300. THREE
C EXAMPLES SHOW: SOFTWARE CHARACTER OUTPUT USING SPECIFIED
C CHARACTERS. GOTHIC, DEFAULT) OUTPUT WITH CHARACTERS ROTATED:
C AND REDUCED AND ROTATED SOFTWARE CHARACTERS PLUS.
C
C CHARACTER OUT(#50)
C CHARACTER OUT(#50)
C CHARACTER FORM(#50)
C DATA OUTPUT/REDUCED AND ROTATED CHARACTERS:
C DATA DEG 45.
C
C INITIALIZE OCR AND SPECIFY "SOFTWARE" CHARACTERS.
C
CALL USTAIR
CALL USTR
CALL USTR "SOFTWARE GENERATED CHARACTERS"
C
CALL USTR "ITALIC"
CALL UPRINT " " "SAMPLE SOFTWARE CHARACTERS"

C SPECIFIED "GOthic" (DEFAULT) CHARACTERS ARE USED. ITALIC
C IS APPLIED TO "SOFTWARE" CHARACTERS AND EACH CHARACTER IS
C ORIENTED.

CALL USTR "GOthic"
CALL UPRINT " " " "DEFAULT TEXT SIZE"

C CHANGE SOFTWARE CHARACTER SIZE AND ORIENT THE ENTIRE
C TEXT STRING INSTEAD OF EACH CHARACTER.

XSIZE = 1.
YSIZE = 1.
CALL UPRINT "MORPHICAL CHARACTER WIDTH": "X"
CALL UPRINT "VERTICAL CHARACTER WIDTH": "Y"

C DETERMINE THE NUMBER OF CHARACTERS

CALL UCOUNT (OUTPT,COUNT)
COUNT = COUNT
C
C USE FORTRAN "ENCODE" TO BUILD A FORMAT
C
11 = INT/10
12 = INT - (11#10)
ENCOD = FORMT(100) "("+11.12)+"A"
100 FORMT(A1+11.12)+"A"

C USE FORTRAN "DECODE" TO SEPARATE CHARACTERS

DECODE (OUTPT,FORMT) (OUT(I)+11.12)

C OUTPUT TEXT STRING

CDEG = 3.1416/180.
X = XSIZE * COS(DEG*CDEG)
Y = XSIZE * SIN(DEG*CDEG)
XX = 5.
YY = 25.
DO 300 I = 1, COUNT
CALL UMOVE (XX,YY)
CALL UOUT (OUT(I))
XX = XX + X
YY = YY + Y
300 CONTINUE

C WRAP UP

CALL UEND
STOP
END
Figure 40. Example 4.5
EXAMPLE 5.1

C SAMPLE PROGRAM WHICH ILLUSTRATES GRAPHICS INPUT THROUGH 'UGRIN'. THREE TYPES OF CASES ARE HANDLED: SOLID 'S', INVISIBLE 'I' AND DASHED 'D' LINES. THE DESIRED OPTION FOR THE LINE IS ENTERED AS A SINGLE CHARACTER WHEN THE CURSORS HAVE BEEN POSITIONED. THIS PROGRAM WAS WRITTEN FOR A TÉKTRONIX TERMINAL AND IT MAY BE NECESSARY TO PUSH THE RETURN KEY AFTER THE SINGLE CHARACTER IS ENTERED. DEFAULT VALUES OF WINDOW, DEVICE AREA AND DASH SPECIFICATION ARE USED. AN 'E' WILL TERMINATE THE PROGRAM.

CHARACTER CHAR * 1

C INITIALIZE GCS AND OUTLINE THE DEFAULT DEVICE AREA.
C CALL USTART
CALL UOUILN
C ENABLE THE CURSORS, POSITION THEM WHERE DESIRED AND ENTER A SINGLE CHARACTER. THE (X,Y) LOCATION AND THE SINGLE CHARACTER ENTERED WILL BE RETURNED TO THE PROGRAM.
C 1 CALL UGRIN (X,Y,CHAR)
C CHECK IF THE SINGLE CHARACTER IS AN 'S', 'I' OR 'D'. PERFORM THAT GRAPHICS FUNCTION IF YES. IF AN 'E' IS ENTERED, STOP THE PROGRAM.
C IF (CHAR .EQ. 'S') CALL UPEN1 (X,Y,'LINE')
IF (CHAR .EQ. 'I') CALL UMOVE (X,Y)
IF (CHAR .EQ. 'D') CALL UPEN1 (X, Y, 'DASH')
IF (CHAR .EQ. 'E') GO TO 2
GO TO 1
2 CONTINUE
C WRAP UP
C CALL UEND
STOP
END
Figure 41. Example 5.1
EXAMPLE 5.2

C SAMPLE PROGRAM USED TO ILLUSTRATE USE OF 'UINPUT' TO
C ACCEPT ALPHANUMERIC INPUT FROM A USER, EDIT IT INTO
C THE PROPER FORMAT, STORE IT IN A DATA ARRAY AND PRINT
C THE DATA AT A DIFFERENT LOCATION ON THE DISPLAY.
C
C DEFINE AND INITIALIZE SOME DATA ARRAYS
C
CHARACTER OPTION(12), COUNT(4), DATA(6), INDEX(4)
DIMENSION COUNT(4), DATA(6), INDEX(4)
COUNT(1)=5.
COUNT(2)=1.
COUNT(3)=1.
COUNT(4)=1.
INDEX(1)=3
INDEX(2)=3
INDEX(3)=4
INDEX(4)=5
OPTION(1)=*TEXT*
OPTION(2)=*REALNUMBER*
OPTION(3)=*INTEGER*
OPTION(4)=*XYCOORDINATE*
X=5.
Y=90.

C INITIALIZE GCS, SET CHARACTER SIZE TO EXTRALARGE AND
C OUTLINE THE DEFAULT 'UDAREA'.
C
CALL USTART
CALL USET (*EXTRALARGE CHARACTERS*)
CALL UOUTLN
C
C DEFINE A LOOP TO ILLUSTRATE THE FOUR INPUT AND
C OUTPUT OPTIONS.
C
DO 1 I = 1, 4
C
C POSITION BEAM/pen TO INITIAL LOCATION
C
CALL UMOVE (X,Y)
C
C ALERT THE USER THAT INPUT IS DESIRED, THEN ACCEPT DATA
C
CALL UPRINT (*ENTER: \",*TEXT")
CALL UINPUT (DATA(INDEX(I)), COUNT(I), FLAG, OPTION(I))
C
C IF *TEXT* OPTION, INSERT TERMINATOR CHARACTER AT END
C OF INPUTTED TEXT STRING.
C
IF (I.EQ.1) CALL UAPEND (COUNT(1), DATA(INDEX(1)), DATA(INDEX(1)))
C
C SET THE CORRECT OPTION TO OUTPUT THE DATA THE USER
C HAS JUST ENTERED AND PRINT THE DATA.
C
CALL USET (OPTION(I))
CALL UPRINT (X*10., DATA(INDEX(I)))
C
C UPDATE COORDINATE LOCATIONS FOR NEXT INPUT PROMPT.
C
X = X + 22.5
Y = Y - 20.
1 CONTINUE
C
C WRAP UP
C
CALL UEND
STOP
END
ENTER: GREETINGS

ENTER: 1.234E+10

ENTER: -123456

ENTER: 1.2,3.4

GREET .1234E+11 -123456 (1.2,3.4)

Figure 42. Example 5.2
EXAMPLE 5.3

C SAMPLE PROGRAM USED TO ILLUSTRATE MEN cling. THE CHARACTER
C ARRAY "OPTION" CONTAINS THE LABELS TO BE PRINTED UNDER
C EACH OF THE MENU SELECTION BOXES. THE NUMBER OF THE
C BOX WHICH WAS SELECTED BY THE USER POSITIONING THE
C CROSSHAIRS AND ENTERING A CHARACTER IS RETURNED IN THE
C PARAMETER 'CHOICE'. THIS WAS WRITTEN FOR A TEKTRONIX
C TERMINAL. THE DEFAULT VALUES OF WINDOW AND DEVICE AREA
C ARE USED.
C
C INITIALIZE LABELS FOR THE MENU CHOICES
C
CHARACTER OPTION 1 8(9)
DATA OPTION/"OPTION 1","OPTION 2","OPTION 3","OPTION 4",
"OPTION 5","OPTION 6","OPTION 7","OPTION 8",
"OPTION 9"/
C
C INITIALIZE GCS, SET CHARACTER SIZE TO EXTRALARGE AND
C OUTLINE THE DEFAULT DEVICE AREA (UDAREA).
C
CALL USTART
CALL USET ("EXTRALARGE CHARACTERS")
CALL UOUTLN
C
CALL 'UMENU' TO DRAW A MENUBOARD OF 9 OPTIONS AND ACCEPT
C THE USER'S SELECTION. PUSH A SINGLE CHARACTER AND THE
C RETURN KEY.
C
CALL UMENU (9.0,OPTION,CHOICE)
C
PRINT WHAT MENU BOX SELECTED
C
CALL UPRINT (25.,25.,'THE MENU BOX SELECTED WAS \\
CALL UPRINT (CHOICE,'INTEGER')
C
CALL 'UMENU' AGAIN, BUT USE A MINUS (-) SIGN TO SPECIFY
C THAT THE MENUBOARD IS NOT TO BE REDRAWN. ENTER ANOTHER
C SINGLE CHARACTER AND THE RETURN KEY.
C
CALL UMENU (-9.0,OPTION,CHOICE)
C
PRINT WHAT MENU BOX SELECTED
C
CALL UPRINT (25.,50.,'THE MENU BOX SELECTED WAS \\
CALL UPRINT (CHOICE,'INTEGER')
C
WRAP UP
C
CALL UEND
STOP
END
THE MENU BOX SELECTED WAS 8

THE MENU BOX SELECTED WAS 7

Figure 43. Example 5.3
EXAMPLE 6.1

C PROBLEM SOLUTION I
CALL USTART
CALL UPSET('SPEED',120.)
CALL USTART
CALL AREA1
CALL SQUARE
CALL AREA2
CALL TRIAN
CALL COMMND
CALL UEND
STOP
END
SUBROUTINE AREA1
CALL UDAREA(0.,7.,0.,7.)
CALL UOUTLN
CALL UEND
STOP
END
SUBROUTINE AREA2
CALL UDAREA(7.3,14.3,0.,7.)
CALL UOUTLN
CALL UEND
STOP
END
SUBROUTINE SQUARE
CALL UMOVE(20.,20.)
CALL UPERI(80.,20.)
CALL UEN(80.,80.)
CALL UEN(20.,80.)
CALL UEN(20.,20.)
CALL UPRINT(5.,5.,'SQUARE\'
CALL UEND
STOP
END
SUBROUTINE TRIAN
CALL UMOVE(20.,20.)
CALL UPERI(80.,20.)
CALL UEN(80.,80.)
CALL UEN(20.,80.)
CALL UEN(20.,20.)
CALL UPRINT(5.,5.,'TRIANGLE\'
CALL UEND
STOP
END
SUBROUTINE COMMAND
CHARACTER CHAR*1
100 CALL UAIN(CHAR)
CALL UERASE
IF(CHAR.EQ.,'E') GO TO 200
IF(CHAR.EQ.,'S') GO TO 300
IF(CHAR.EQ.,'T') GO TO 400
IF(CHAR.EQ.,'R') GO TO 500
CALL ERROR
GO TO 100
200 CALL AREA1
CALL SQUARE
CALL AREA2
CALL TRIAN
GO TO 100
300 CALL AREA
CALL SQUARE
GO TO 100
400 CALL AREA
CALL TRIAN
GO TO 100
CALL UEND
500 STOP
END
EXAMPLE 6.1 (continued)

SUBROUTINE ERROR
CALL UHOME
CALL UALPHA
PRINT,'B - BOTH FIGURES'
PRINT,'S - SQUARE'
PRINT,'T - TRIANGLE'
PRINT,'R - RETURN'
CALL UEND
STOP
END

SUBROUTINE AREA
CALL UDAREA(0.,10.,0.,10.)
CALL UOUTLN
CALL UEND
STOP
END
Figure 45. Example 6.1 (continued)
Figure 46. Example 6.1 (continued)
Figure 47. Example 6.1 (continued)
EXAMPLE 7.1

C SAMPLE PROGRAM USED TO ILLUSTRATE "UCIRCLE".
C DEFAULT WINDOW AND DEVICE AREA ARE USED. NOTE
C THE EFFECT OF "CLIPPING" DUE TO THE VIRTUAL
C WINDOW'S RESTRICTING OF ALL GRAPHICAL
C INFORMATION TO RESIDE WITHIN THE REGION DEFINED
C BY 100.0 BY 100.0 SQUARE.
C
C INITIALIZE GCS AND OUTLINE THE DEFAULT DEVICE AREA.
C
 CALL USTART
 CALL UOUTLN

C DRAW A SERIES OF CIRCLES WITH RADIUS OF 50.
C
 CALL UCIRCLE (0.,0.,50.)
 CALL UCIRCLE (50.,0.,50.)
 CALL UCIRCLE (100.,0.,50.)
 CALL UCIRCLE (100.,50.,50.)
 CALL UCIRCLE (100.,100.,50.)
 CALL UCIRCLE (0.,100.,50.)
 CALL UCIRCLE (0.,50.,50.)

C DRAW A CIRCLE OF RADIUS 20.7 WITH A CENTER AT (50.,50.).
C
 CALL UCIRCLE (50.,50.,20.7)

C WRAP UP

 CALL UEEND
 STOP
END
Figure 48. Example 7.1
EXAMPLE 7.2

C SAMPLE PROGRAM USED TO DEMONSTRATE HOW 'UARC'
C draws an arc centered at (40.,20.) and of
C radius 30. The arc will begin at (40.,50.) and
C terminate at (10.,20.).
C INITIALIZE GCS, SET CHARACTER SIZE TO EXTRALARGE
C AND OUTLINE THE DEFAULT 'UDAREA'.
C
CALL USTART
CALL USET ('EXTRALARGE CHARACTERS')
CALL UOUTLN
C
CALL UPENI (40.0,50.0,'NCOORDINATES')
CALL UMOVE (40.0,50.0)
C
CALL 'UARC' TO GENERATE THE ARC WITH AN ANGULAR
C SPAN OF 90.0 DEGREES.
C
CALL UARC (40.0,20.0,90.0)
C
DETERMINE WHERE 'UARC' COMPLETED THE ARC AND PRINT
C THE COORDINATES OF THIS LOCATION. ALSO PRINT THE
C COORDINATES OF THE CENTER OF THE ARC.
C
CALL UWHERE (X,Y)
CALL UPENI (X,Y,'NCOORDINATES')
CALL UPENI (40.0,20.0,'NCOORDINATES')

C WRAP UP
C
CALL UEND
STOP
END
Figure 49. Example 7.2
EXAMPLE 7.3

C SAMPLE PROGRAM USED TO DEMONSTRATE USE OF 'UPLYGN'.
C POLYGONS OF FROM 2 TO 9 SIDES WILL BE DRAWN WITHIN
C THEIR OWN WINDOW, WHICH IS MAPPED TO DIFFERENT
C PORTIONS OF THE SCREEN. THIS PROGRAM WAS WRITTEN
C FOR A TEKTRONIX 4014/4015 TERMINAL.
C
C INITIALIZE VARIABLES
C
SIDES = 1.0
YO = 9.4
C
C INITIALIZE GCS, SET CHARACTER SIZE TO EXTRALARGE
C AND CHANGE TEXT STRING TERMINATOR TO A SEMICOLON (;).
C SET VIRTUAL WINDOW TO -1.1 TO 1.1 FOR X AND Y. THIS
C SMALL WINDOW WILL BE DRAWN 8 TIMES; 2 ROWS OF FOUR,
C EACH TIME CONTAINING A DIFFERENT POLYGON WITH THE
C DEVICE AREA OUTLINED.
C
CALL USTART
CALL USET ('EXTRALARGE CHARACTERS')
CALL UPSET ('TERMINATOR CHARACTER',';')
CALL UWINDO (-1.1,1.1,-1.1,1.1)

C THE FOLLOWING DO LOOPS SET UP THE 2 ROWS OF 4 DISPLAYS.
C
DO 1 1 = 1, 2
XO = -2.6
YO = YO - 3.6
DO 1 J = 1, 4
XO = XO + 3.3

C INITIALIZE NUMBER OF SIDES; 1 IS ADDED BEFORE EACH
C EXECUTION SO POLYGON SIDES START AT 2 AND GO TO 9
C IN 8 STEPS.
C
SIDES = SIDES + 1.0
C
C SET UP THE DEVICE AREA AND OUTLINE IT, AS XO AND YO
C CHANGE, IT WILL MOVE TO 8 DIFFERENT LOCATIONS.
C
CALL UDAREA (XO,(XO+3.0),YO,(YO+3.0))
CALL UOUTLN

C DRAW THE POLYGON
C
CALL UPLYGN (0.0,0.0,SIDES,1.0)

C LABEL THE POLYGON
C
CALL USET ('TEXT')
CALL UPRINT (-1.0,-1.05,'SIDES;;')
CALL USET ('INTEGER')
CALL UPRINT (0.9,-1.05,SIDES)

1 CONTINUE

C WRAP UP
C
CALL UEND
STOP
END
Figure 50. Example 7.3
EXAMPLE 7.4

C SAMPLE PROGRAM USED TO DEMONSTRATE USE OF 'UPLYGN'.
C A TRIANGLE WILL BE DRAWN USING 1 OF 12 POSSIBLE PEN OPTIONS.
C THIS PROGRAM WAS WRITTEN FOR A TEKTRONIX 4014/4015.
C
C INITIALIZE CHARACTER ARRAY WITH OPTIONS TO BE USED BY
C 'USET' AND 'UPRINT'. NOTE THAT A BACKSLASH (\) IS USED
C AS THE LAST CHARACTER. 'USET' CHECKS ONLY THE FIRST 4
C CHARACTERS, BUT 'UPRINT' MUST HAVE THE BACKSLASH.
C
C CHARACTER OPTION*16(12)
DATA OPTION/"LNULL","LARROW","LBACKARROW","LDOUBLEARROW","DNULL","DARROW","DBACKARROW","DDOUBLEARROW","I"/INDEX = 0
Y0 = 10.9
C INITIALIZE GCS, SET CHARACTER SIZE TO EXTRALARGE AND
C SET NEW TICMARK INTERVAL. DEFINE NEW VIRTUAL WINDOW.
C
C CALL USTART
CALL USET ('EXTRALARGE CHARACTERS')
CALL UPSET ('TICINTERVAL',0.25)
CALL UWINDO (-1.1,1.1,-1.1,1.1)
C
C DRAW FIGURES IN 3 ROWS OF 4.
C
DO 1 I = 1, 3
X0 = -2.6
Y0 = Y0 - 3.4
DO 1 J = 1, 4
X0 = X0 + 3.3
INDEX = INDEX + 1

C DEFINE NEW DEVICE AREA AND OUTLINE IT.
C
CALL UDAREA (X0,(X0+3.0),Y0,(Y0+3.0))
CALL UOUTLN
C
C DRAW THE POLYGON USING 1 OF THE 12 POSSIBLE 12 OPTIONS
C WITHIN THE DEFINED UDAREA'.
C
CALL USET (OPTION(INDEX))
CALL UPLYGN (0.0,0.0,3.0,1.0)
C
C LABEL THE POLYGON
C
CALL UPRINT (-1.0,-1.0,OPTION(INDEX))
1 CONTINUE
C
C WRAP UP
C
CALL UEND
STOP
END
Figure 51. Example 7.4
EXAMPLE 7.5

SUBROUTINE USED TO DEMONSTRATE 'UPLYGN'. A TRIANGLE WILL BE DRAWN IN RELATIVE MODE AND ROTATED ABOUT ITS CENTER IN TEN DEGREE INCREMENTS. THIS PROGRAM WAS WRITTEN FOR A TEKTRONIX 4014/4015 TERMINAL.

INITIALIZE VARIABLES.

DEGREE = 0.0
YO = 10.9

INITIALIZE GCS, SET CHARACTER SIZE TO EXTRALARGE AND DEFINE A NEW WINDOW. DEFINE TWO 'UPEN' OPTIONS.

CALL USTART
CALL USET ('EXTRALARGE CHARACTERS')
CALL UWINDO (-1.1,-1.1,-1.1,-1.1)
CALL USET ('INTEGER')
CALL USET ('LAFROW')

DRAW FIGURE IN 3 ROWS OF 4.

DO 1 1 = 1, 3
X0 = -2.6
YO = YO - 3.4
DO 1 J = 1, 4
X0 = X0 + 3.3
DEGREE = DEGREE + 10.0

DEFINE NEW DEVICE AREA IN WHICH POLYGON WILL BE DRAWN.
OUTLINE THE AREA.

CALL UDAREA (X0,(X0+3.0),YO,(YO+3.0))
CALL UOUTLN

DRAW THE POLYGON WITHIN THE 'UDAREA', ROTATING IT IN RELATIVE MODE BY TEN DEGREE INCREMENTS.

CALL UMOVE (0.0,0.0)
CALL USET ('RELATIVE PLOTTING MODE')
CALL USET ('ROTATE',DEGREE)
CALL UPLYGN (0.0,0.0,3.0,1.0)

RESET TO ABSOLUTE MODE AND LABEL THE POLYGON.

CALL USET ('ABSOLUTE PLOTTING MODE')
CALL UPRINT (-1.0,-1.0,DEGREE)
1 CONTINUE

WRAP UP

CALL UEND
STOP
END
Figure 52. Example 7.5
EX A M P L E 7.6

C SAMPLE PROGRAM USED TO DEMONSTRATE "URECT". A
C RECTANGLE WILL BE DRAWN IN RELATIVE MODE AND
C ROTATED IN 30 DEGREE INCREMENTS.
C
C INITIALIZE VARIABLES
C
DEGREE = 0.0
YO = 10.9
C
C INITIALIZE GCS, SET THE CHARACTER SIZE TO EXTRALARGE AND
C DEFINE A NEW WINDOW. SET "UPRINT" OPTION TO INTEGER.
C
CALL USTART
CALL USET ('EXTRALARGE CHARACTERS')
CALL UWINDO (-1.1,1.1,-1.1,1.1)
CALL USET ('INTEGER')
C
C DRAW THE RECTANGLE IN 3 ROWS OF 4 IN 30 DEGREE INCREMENTS.
C
DO 1 I = 1, 3
XO = -2.6
YO = YO - 3.4
DO 1 J = 1, 4
XO = XO + 3.3
DEGREE = DEGREE + 30.0

C DEFINE DEVICE AREA WITHIN WHICH RECTANGLE WILL BE DRAWN.
C OUTLINE THE AREA.
C
CALL UDAREA (XO, (XO+3.0), YO, (YO+3.0))
CALL UOUTLN
C
C DRAW THE RECTANGLE WITHIN THE UDAREA, ROTATING IT IN
C RELATIVE MODE BY 30 DEGREE INCREMENTS.
C
CALL UMOVE (0.0, 0.0)
CALL USET ('RELATIVE PLOTTING MODE')
CALL UPSET ('ROTATE', DEGREE)
CALL URECT (0.8, 0.6)
C
C RESET TO ABSOLUTE MODE AND LABEL THE RECTANGLE.
C
CALL USET ('ABSOLUTE PLOTTING MODE')
CALL UPRINT (-1.0, -1.0, DEGREE)
1 CONTINUE
C
C WRAP UP
C
CALL UEND
STOP
END
Figure 53. Example 7.6
EXAMPLE 7.7

C SAMPLE PROGRAM USED TO ILLUSTRATE APPLICATION OF 'UCONIC'
C TO GENERATE ELLIPSES AND HYPERBOLAE. FOUR FIGURES
C WILL BE DRAWN: 2 ELLIPSES ORIENTED ALONG THE X AND Y AXES;
C AND 2 HYPERBOLAE ORIENTED ALONG THE X AND Y AXES. EACH
C ONE OF THE FIGURES IS DRAWN WITHIN ITS OWN REGION OF THE
C SCREEN BY REDEFINING THE DEVICE AREA PRIOR TO DRAWING THE
C FIGURE. THIS PROGRAM WAS WRITTEN FOR A TEKTRONIX 4014/4015.
C
C SET UP DATA ARRAYS FOR UCONIC
C
C DIMENSION X(4),Y(4),P(4),E(4)
C
INDEX=0
YO=10.9
X(1)=10.
X(2)=50.
X(3)=67.
X(4)=50.
Y(1)=50.
Y(2)=10.
Y(3)=50.
Y(4)=67.
P(1)=9.5
P(2)=-9.5
P(3)=9.
P(4)=-9.
E(1)=-.9
E(2)=-.9
E(3)=1.44
E(4)=-1.44

C INITIALIZE GCS
C
CALL USTART
C
LOOP TO DEFINE FOUR DEVICE AREAS AND OUTLINE EACH ONE.
DO I =1, 4
IF(I.EQ.1) CALL UDAREA(1,9,6,9,5,7,10.7)
IF(I.EQ.2) CALL UDAREA(7.4,12.4,5.7,10.7)
IF(I.EQ.3) CALL UDAREA(1,9,6,9,2,5.2)
IF(I.EQ.4) CALL UDAREA(7.4,12.4,2,5.2)
INDEX=INDEX+1
CALL UOUTLN
C
DRAW THE CONIC. NOTE THAT THE DEFAULT WINDOW IS MAPPED
C TO THE CURRENT DEVICE AREA SPECIFICATION.
C
CALL UCONIC (X(INDEX),Y(INDEX),P(INDEX),E(INDEX),0.0,360.0)
1 CONTINUE
C
WRAP UP
C
CALL UEND
STOP
END

90
Figure 54. Example 7.7
EXAM PLE 7.8

C SAMPLE PROGRAM USED TO ILLUSTRATE APPLICATION OF 'UCONIC'
C TO GENERATE PARABOLAE. FOUR FIGURES WILL BE DRAWN: 2 WILL
C BE ORIENTED ALONG THE +X AND +Y AXES; AND 2 WILL BE ORIENTED
C ALONG THE -X AND -Y AXES. EACH ONE OF THE PARABOLAE IS
C DRAWN WITHIN ITS OWN REGION OF THE SCREEN BY REDEFINING THE
C DEVICE AREA PRIOR TO DRAWING THE FIGURE.

SET UP ARRAYS FOR UCONIC

C DIMENSION X(4), Y(4), P(4), E(4)
INDEX=0
YO=10.9
X(1)=10.
X(2)=50.
X(3)=90.
X(4)=50.
Y(1)=50.
Y(2)=10.
Y(3)=50.
Y(4)=90.
P(1)=13.
P(2)=-13.
P(3)=-13.
P(4)=13.
E(1)=1.
E(2)=-1.
E(3)=1.
E(4)=-1.

C INITIALIZE GCS
CALL USTART

C LOOP TO DEFINE FOUR DEVICE AREA AND OUTLINE EACH ONE.
DO 1 I = 1, 4
IF (I.EQ.1) CALL UDAREA (1.9,6.9,5.7,10.7)
IF (I.EQ.2) CALL UDAREA (7.4,12.4,5.7,10.7)
IF (I.EQ.3) CALL UDAREA (1.9,6.9,2.5,2.5)
IF (I.EQ.4) CALL UDAREA (7.4,12.4,2.5,2.5)
INDEX = INDEX + 1
CALL UOUTLN

C DRAW THE CONIC. NOTE THAT THE DEFAULT WINDOW IS MAPPED
C TO THE CURRENT DEVICE AREA SPECIFICATION.
CALL 'UCONIC (X(INDEX), Y(INDEX), P(INDEX), E(INDEX), 0.0, 360.0)
1 CONT.

C WRAP UP
CALL UEND
STOP
END
Figure 55. Example 7.8
EXAMPLE 7.9

C SAMPLE PROGRAM USED TO ILLUSTRATE APPLICATION OF 'ULINFT' TO
C CALCULATE THE SLOPE (S) AND Y-INTERCEPT (YI) OF A LINE WHICH
C REPRESENTS THE 'BEST' LINEAR FIT TO A SERIES OF DATA POINTS.
C SET UP DATA ARRAYS FOR ULINFT
C
DIMENSION X(20),Y(20)
1 & 80.,85.,90.,95./
DATA Y/7.,7.,10.,14.,25.,24.,31.,34.,40.,46.,50.,59.,58.,64.,70.,76.,
1 & 82.,86.,91.,97./
C INITIALIZE GCS AND OUTLINE THE DEFAULT DEVICE AREA.
C PLOT THE DATA POINTS, CENTERED, WITH PLUS (+) SIGNS.
C NOTE THAT THE DATA LIES WITHIN THE DEFAULT WINDOW BOUNDARIES.
C
CALL USTART
CALL UOUTLN
CALL USET ('ACENTER CHARACTERS')
CALL ULINE (X,Y,20.)
C CALL 'ULINFT' TO CALCULATE THE LINE'S SLOPE AND Y-INTERCEPT.
C
CALL ULINFT (X,Y,20.,S,YI)
C RESET THE PEN MODE TO DRAW SOLID LINES, MOVE TO THE
C Y-INTERCEPT AND GRAPH THE LINE USING YO=S*X+YI.
C
CALL USET ('LINE')
XMIN = 0.0
XMAX = 100.0
CALL UMOVE (XMIN,YI)
YO = YI + S % XMAX
CALL ULINE (XMAX,YO)
C WRAP UP
C
CALL UEND
STOP
END
Figure 56. Example 7.9
EXAMPLE 7.10

C SAMPLE PROGRAM USED TO ILLUSTRATE APPLICATION OF 'ULSTSQ' TO
C CALCULATE THE COEFFICIENTS OF A POLYNOMIAL OF ORDER 6
C WHICH REPRESENTS THE 'BEST' FIT TO A SERIES OF DATA POINTS.

C SET UP DATA ARRAYS FOR ULSTSQ
C
DIMENSION A(7),X(20),Y(20)
DATA IDEGRE/7/
1 DATA Y/0.,8.,16.,25.,32.,39.,46.,55.,60.,66.,72.,75.,80.,86.,92.,95./
C INITIALIZE GCS AND OUTLINE THE DEFAULT DEVICE AREA.
C CALL USTART
CALL UOUTLN
C PLOT DATA POINTS, CENTERED, WITH PLUS (+) SIGNS.
C CALL USET ('N+')
CALL USET ('ACENTER CHARACTERS')
CALL ULINE (X+Y,20.)
C MOVE PEN TO ORIGIN AND COMPUTE LEAST SQUARES LINE WITH 6TH
C ORDER FIT.
C CALL UMOVE (0.0,0.0)
CALL USET ('POLYNOMIAL DEGREE',FLOAT(IDEGRE-1))
CALL ULSTSQ (X+Y,20.,A)
CALL USET ('LINE')
C PLOT LEAST SQUARES LINE APPROXIMATING POINTS
C DO 5 I = 1, 101
YO = A(I)
XO = FLOAT(I-1)
XX = XO
DO 4 J = 2, IDEGRE
YO = A(J) * XX + YO
XX = XX * XO
4 CONTINUE
CALL UOPEN (XO,YO)
5 CONTINUE
C WRAP UP
CALL UEND
STOP
END
Figure 57. Example 7.10
EXAMPLE 8.1

SAMPLE PROGRAM TO ILLUSTRATE OPTIONS AVAILABLE WITH 'UAXIS'.

INITIALIZE GCS AND GENERATE AXES

CALL USTART
 CALL USET ('EXTRALARGE CHARACTERS')
 CALL USET ('XBOOTLABLES')
 CALL USET ('XLABEL', 'EDGEAXIS')
 CALL UAXIS (-5.32, 4.89, -63.4, 156.459)

WRAP UP

CALL UEND
STOP
END
Figure 58. Example 8.1
EXAMPLE 8.2

SAMPLE PROGRAM TO ILLUSTRATE OPTIONS AVAILABLE WITH "UAXIS".

INITIALIZE GCS AND GENERATE AXES

CALL USTART
CALL USET ("EXTRALARGE CHARACTERS")
CALL USET ("ZEROAXES")
CALL USET ("XBOOTHANDLES")
CALL UPSET ("XLABEL","ZEROAXES")
CALL UAXIS (-6.,2.,-5.,4.)

WRAP UP

CALL UEND
STOP
END
Figure 59. Example 8.2
EXAMPLE B.3

C SAMPLE PROGRAM TO ILLUSTRATE OPTIONS AVAILABLE WITH 'UAXIS'.
C
C INITIALIZE GCS AND GENERATE AXES
C
CALL USTART
CALL USET('EXTRALARGE CHARACTERS')
CALL USET('PENAXIS')
CALL USET('XBOTHLABELS')
CALL UPSET('XLABET','PENAXES')
CALL UPEN(-3.,2.)
CALL UAXIS(-6.,2.,-5.,4.)

C WRAP UP
C
CALL UEND
STOP
END
Figure 60. Example 8.3
EX AM P L E 8.4

C SAMPLE PROGRAM TO ILLUSTRATE OPTIONS AVAILABLE WITH "UAXIS".

C INITIALIZE GCS AND GENERATE AXES

C CALL USTART
CALL USET ("EXTRALARGE CHARACTERS")
CALL USET ("XLABEL", "POLAR GRID")
CALL USET ("POLARAXES")
CALL USET ("GRID")
CALL USET ("XBOTHLABELS")
CALL UAXIS (-6.,6.,0.,360.)

C WRAP UP
C CALL UEND
STOP
END
Figure 61. Example 8.4
EXAMPLE 8.5

C SAMPLE PROGRAM TO ILLUSTRATE THE USE OF "UHLOT".
C TWO CURVES WILL BE PLOTTED ON A SINGLE PAIR OF AXES.
C THIS PROGRAM WAS WRITTEN FOR A TEKTRONIX 4014/4015.
C
C SET UP DATA ARRAYS FOR "UHLOT". NOTE THE SEMICOLON (;)
C AT THE END OF THE LABELS.
C
DIMENSION X(12), Y(12), PARRAY(2)
CHARACTER OPTARY*4(2)
CHARACTER XLABEL*40, YLABEL*40
DATA X/1.0, 2.0, 3.0, 4.0, 5.0, 1.0, 2.0, 2.5, 3.0, 3.5, 6.0, 7.0/
DATA Y/1.0, 4.0, 9.0, 16.0, 25.0, 5.0, 1.2, 1.5, 1.7, 3.0, 3.5/
DATA PARRAY/5., 7./
DATA XLABEL/'THIS IS THE X LABEL;'/
DATA YLABEL/'THIS IS THE Y LABEL;'/
DATA OPTARY/'LINE;"DASH"/

C INITIALIZE GCS: SET THE CHARACTER SIZE TO EXTRALARGE AND
C CHANGE THE TEXT STRING TERMINATOR TO A SEMICOLON (;).
C INITIALIZE AXES OPTIONS. REMEMBER THAT "UHLOT" CALLS
C "UAXIS".
C
CALL USTART
CALL USET ("EXTRALARGE CHARACTERS")
CALL USET ("TERMINATOR CHARACTER;")
CALL USET ("XLABEL", XLABEL)
CALL USET ("YLABEL", YLABEL)
CALL USET ("GRIDAXES")
CALL USET ("XBOTLABEL")
CALL USET ("YBOTLABEL")

C X-AXIS WILL BE LINEAR (DEFAULT) AND Y-AXIS WILL BE
C LOGARITHMIC.
C
CALL USET ("LOGYAXIS")
C
DEFINE NEW DEVICE AREA AND OUTLINE IT.
C
CALL UDAREA (4., 14.0, 10.)
CALL UOUTLN
C
PLOT THE TWO CURVES
C
CALL UHLOT (X, Y, 2., PARRAY, OPTARY)
C
WRAP UP
C
CALL UEND
STOP
END
Figure 62. Example 8.5
EXAMPLE 8.6

C THIS PROGRAM ILLUSTRATES THE USE OF *UPLLOTI* TO PLOT
C A SINGLE CURVE THAT REPRESENTS A 4TH ORDER POLYNOMIAL FIT.
C THIS PROGRAM WAS WRITTEN FOR A TEKTRONIX 4014/4015.

C SET UP DATA ARRAYS FOR UPLLOTI.
C
DIMENSION DB(61),E2(61)
CHARACTER XLABEL$40,YLABEL$40
DATA XLABEL$/'STEADY-STATE EXCITATION VOLTAGE (VOLTS)'/
DATA YLABEL$/'EXCITATION REFERENCED TO IV (DB)'/

C GENERATE SOME DATA VALUES
C
DO 1 I = 1, 61
1 DB(I) = FLOAT(I-1)
 E2(I) = 10.0**((DB(I) / 20.0)

C INITIALIZE UCS; SET CHARACTER SIZE TO EXTRALARGE AND
C INITIALIZE 'UAXIS' OPTIONS.
C
CALL USTART
CALL USET ('EXTRALARGE CHARACTERS')
CALL UPSET ('XLABEL',XLABEL)
CALL UPSET ('YLABEL',YLABEL)
CALL USET ('GRIDAXES')
CALL USET ('XBOTHLABEL')
CALL USET ('YBOTHLABEL')

C INITIALIZE 'UPLLOTI' OPTIONS FOR A POLYNOMIAL FIT
C
CALL USET ('FITPOLYNOMIAL')
CALL USET ('POLYNOMIAL DEGREE',4.)

C DEFINE A NEW DEVICE AREA AND OUTLINE IT
C
CALL UDAREA (4.,14.3,0.,10.9)
CALL UOUTLN

C PLOT THE CURVE. NOTE THAT THE Y-LABEL IS CLIPPED.
C
CALL UPLLOTI (E2, DB, 61.0)

C CONNECT THE ORIGINAL DATA POINTS WITH A 'HARDWARE' GENERATED
C DOTTED LINE.
C
CALL USET ('DASHLINE')
CALL UPSET ('SETDASH',9.)
CALL ULINE (E2, DB, 61.)

C WRAP UP
C
CALL UEND
STOP
END
Figure 63. Example 8.6
EXAMPLE 8.7

SAMPLE PROGRAM TO ILLUSTRATE APPLICATION OF 'UHISTO'.

ALLOCATE VARIABLES FOR UHISTO

 DIMENSION DATA(1000)
 DATA XN /1000. /

BUILD DATA FROM SINE VALUES.

 DO 2 I = 1, 1000
 2 DATA(I) = SIN(FLOAT(I)/150.)

INITIALIZE GCS, SET CHARACTER SIZE TO EXTRALARGE
AND CHANGE TEXT STRING TERMINATOR TO A SEMICOLON (;).

 CALL USTART
 CALL USET ('EXTRALARGE CHARACTERS')
 CALL UPSET ('TERMINATOR CHARACTER',';G')

INDICATE THAT BOTH NUMERIC AND ALPHABETIC LABELS ARE
DESIRED FOR THE X-AXIS AND SET ALPHABETIC LABEL.

 CALL USET ('XBOTHLABELS')
 CALL UPSET ('XLABEL', 'DISTRIBUTION OF VALUES OF SINE')

CHANGE DEVICE UNITS TO PERCENTUNITS AND CHANGE
DEVICE AREA TO ENTIRE SCREEN.

 CALL USET ('PERCENTUNITS')
 CALL UDAREA (0.,100.,0.,100.)

INDICATE THAT YOU WILL PROVIDE YOUR OWN SCALE AND
SET THE LIMITS WITH 'UWINDO'.

 CALL USET ('OWNSCALE')
 CALL UWINDO (0.,150.,-1.,1.)

PROCESS THE DATA ARRAY USING 20 CELLS.

 CALL UHISTO (DATA,XN,20.)

WRAP UP

 CALL UEND
 STOP
 END
Figure 64. Example 8.7

DISTRIBUTION OF VALUES OF SINE
EXAMPLE 8.8

C SAMPLE PROGRAM USED TO ILLUSTRATE 'UBAR'.

C ALLOCATE ARRAYS FOR UBAR
C
DIMENSION DATA(7)
CHARACTER LABELS*12(7)
DATA DATA/4.,30.,48.,10.,2.,2.,4./
DATA LABELS/'ALGOL','COBOL','FORTRAN','GMAP','JOVIAL','
& 'IMSCRIPT','SNOBOL' /
C INITIALIZE GCS; SET CHARACTER SIZE TO EXTRALARGE AND
C INDICATE THAT BOTH X-AXIS LABELS ARE TO BE USED.
C
CALL USTART
CALL UESET ('EXTRALARGE CHARACTERS')
CALL UESET ('XBOTHLABELS')
CALL UPSET ('XLABEL','TYPICAL LANGUAGE UTILIZATION AT USMA')
C GENERATE THE BARCHART WITH THE SPECIFIED DATA VALUES
C AND LABELS.
C
CALL UBAR (DATA,7.,LABELS,12.)
C
WRAP UP
C
CALL UEEND
STOP
END
TYPICAL LANGUAGE UTILIZATION AT USMA

Figure 65. Example 8.8
EXAMPLE 8.9

C SAMPLE PROGRAM USED TO ILLUSTRATE "UPIE".
C IN ADDITION TO GENERATING A PIECHART, SOME
C ADDITIONAL GRAPHIC OUTPUT IS DONE BY "UPRNT1".
C
C ALLOCATE ARRAYS FOR UPIE.
C
DIMENSION DATA(7)
CHARACTER LABELS(12,7)
DATA(1)=4.
DATA(2)=30.
DATA(3)=48.
DATA(4)=10.
DATA(5)=2.
DATA(6)=2.
DATA(7)=4.
Y=100.
LABELS(1)=*ALGOL\'
LABELS(2)=*COBOL\'
LABELS(3)=*FORTRAN\'
LABELS(4)=*MOAP\'
LABELS(5)=*JOVIAL\'
LABELS(6)=*SIMSCRIPT\'
LABELS(7)=*SNOBOL\'

C INITIALIZE GCS; SET CHARACTER SIZE TO EXTRALARGE
C AND INDICATE THAT ONLY X-AXIS ALPHABETIC ARE NEEDED.
C
CALL USTART
CALL USET (*EXTRALARGE')
CALL USET (*XALPHABETIC')
CALL UPSET (*XLABEL', 'TYPICAL LANGUAGE UTILIZATION AT USMA\n"
C
GENERATE THE PIECHART

CALL UPIE (DATA,7, LABELS, 12,)

C SET ADDRESSING MODE TO "DEVICE/PERCENTUNITS" AND
C OUTPUT LABEL INFORMATION. NOTE THAT IN "DEVICE" MODE
C ALL (X,Y) COORDINATES ARE IN PERCENTUNITS.
C
CALL USET (*DEVICE')
CALL USET (*PERCENTUNITS')
CALL UDAREA (0.*100.,0.,100.)
DO 1 I = 1, 7
 Y = Y - (100. / FLOAT(7+1))
 CALL UMOVE (0., Y)
 CALL UPRNT1 (LABELS(I), 'TEXT')
 CALL UPRNT1 (*-\", 'TEXT')
 CALL UPRNT1 (DATA(I), 'INTEGER')
 CALL UPRNT1 ('%\", 'TEXT')
1 CONTINUE

C WRAP UP
C
CALL UEND
STOP
END
ALGOL - 4%
COBOL - 30%
FORTRAN - 48%
GMAP - 10%
JOVIAL - 2%
SIMSCRIPT - 2%
SNOBOL - 4%

TYPICAL LANGUAGE UTILIZATION AT USMA

Figure 66. Example 8.9
C

EXAMPLE 9.1

PROBLEM SOLUTION II

COMMON/PLT/ X(18),Y(18),PTS(3),OPT(3)
CHARACTER FF2*21
ENCODER(FF2,77)'GRAPHICS/LESSON/DATA'

77 FORMAT(A21)

CALL ATTACH(11,FF2,1,0,1STAT,)
DO 100 I=1,18
READ(11,110) X(I),Y(I)

110 FORMAT(V)

CONTINUE

CALL INIT
CALL TPLOT
CALL CTRL
CALL UEND
STOP
END
SUBROUTINE INIT

COMMON/PLT/ X(18),Y(18),PTS(3),OPT(3)
CHARACTER XLABEL*10,YLABEL*10
DATA OPT/'LINE','DASH','H*/,
DATA PTS/5.,7.,6.,
DATA XLABEL/'X VALUE'/,YLABEL/'Y VALUE'/

CALL USTART
CALL USET('XLABEL',XLABEL)
CALL USET('YLABEL',YLABEL)
CALL ISET('GRIDAXES')
CALL USET('XBOTHLABEL')
CALL USET('YBOTHLABEL')
CALL UEND
STOP
END
SUBROUTINE TPLOT

COMMON/PLT/ X(18),Y(18),PTS(3),OPT(3)
CALL UAREA(0.,10.,0.,10.,)
CALL UERASE
CALL UPLLOT(XF,Y3,PTS,OPT)
CALL UEND
STOP
END
SUBROUTINE CTRL

CHARACTER CHAR*1

100 CALL UAIN(CHAR)
IF(CHAR.EQ.'T') GO TO 200
IF(CHAR.EQ.'W') GO TO 300
IF(CHAR.EQ.'R') GO TO 400
CALL FAULT
GO TO 100
200 CALL USET('AUTOSCALE')
CALL TPLOT
GO TO 100
300 CALL UGRIN(XL,YL,CHAR)
CALL UGRIN(XU,YU,CHAR)
CALL UWINO(XL,XU,YL,YU)
CALL USET('OWNSCALE')
CALL TPLOT
GO TO 100
CALL UEND
400 STOP
END
SUBROUTINE FAULT
CALL UERASE
CALL UHOME
CALL UALPHA
PRINT,'T - TOTAL'
PRINT,'W - WINDOW'
PRINT,'R - RETURN'
CALL UEND
STOP
END
Figure 67. Example 9.1
Figure 68. Example 9.1 (continued)
Figure 69. Example 9.1 (continued)
EXAMPLE 10.1

CALL USTART
CALL USET('WORKINGAXIS')
CALL UWINDO (-10.,10.,-10.,10.)
CALL UOUTLM
CALL UMOVE (0.,0.)
CALL UOPEN (2.,0.)
CALL UOPEN (0.,2.)
CALL UOPEN (0.,0.)
CALL UCOSYS (5.,4.,1.,1.,45.)
CALL UMOVE (0.,0.)
CALL URECT (3.,3.)
CALL UEND
STOP
END
Figure 70. Example 10.1
EXAMPLE 10.2

CALL USSTART
CALL USET ('WORKINGAXIS')
CALL UWINDOW (-2.,8.,-2.,8.)
CALL UOUTLN
CALL AXIS
CALL UMOVE (0.,0.)
CALL UCOSYS (1.5,1.,1.,40.)
CALL UOPEN1 (0.,0.,'DARROW')
CALL AXIS
CALL UCOSYS (5.,1.,1.,1.,45.)
CALL USET ('SYSTEMAXIS')
CALL UMOVE (0.,0.)
CALL USET ('USERAXIS')
CALL UOPEN1 (0.,0.,'DARROW')
CALL AXIS
CALL UEND
STOP
END

SUBROUTINE AXIS
CALL UMOVE (-1.,0.)
CALL UOPEN1 (1.,0.,'LARROW')
CALL UMOVE (0.,-1.)
CALL UOPEN (0.,1.)
CALL UEND
STOP
END
Figure 71. Example 10.2
Example 10.3

CALL USTART
CALL UWINDO (-1.,9.,-1.,9.)
CALL UOUTLN
CALL USET ("REFERENCEAXIS")
CALL AXIS
CALL UMOVE (0.,0.)
CALL UCGSYS (2.,5.,1.,1.,20.)
CALL UPMNI (0.,0.,"DARROW")
CALL AXIS
CALL UMOVE (0.,0.)
CALL UCGSYS (5.,1.,1.,1.,45.)
CALL UPMNI (0.,0.,"DARROW")
CALL AXI
CALL UEND
STOP
END

SUBROUTINE AXIS
CALL UMOVE (-1.,0.)
CALL UPMNI (1.,0.,"LARROW")
CALL UMOVE (0.,-1.)
CALL UPMEN (0.,1.)
CALU UEND
STOP
END
Figure 72. Example 10.3
EXAMPLE 10.4

T=0,
THETA=75.
VO=107.
X0=-180.
YO=0.
CALL USTART
CALL USET ("WORKINGAXIS")
CALL UWINDO (-225.,225.,-15.,95.)
CALL UDLIN
CALL UMOVE (X0,Y0)
CALL USET ("SOFTWARE")
CALL USET ("HORIZONTAL",6.)
CALL USET ("VERTICAL",3.)
CALL USET ("SETDASH",8.)
DO 1 I = 1, 11
 X = (0.707*VO*I) + X0
 Y = T * (0.707 * VO - (16.*I)) + Y0
 CALL UCOSYS (X,Y,1.,1.,THETA)
 CALL UPEN1 (0.,0.,"DASH")
 CALL UWINDO (0.,100.,0.,100.)
 CALL UWHERE (X,Y)
 CALL UPEN1 (X,Y,"DD")
 CALL UWINDO (-225.,225.,-15.,95.)
 T = T + 0.4758
 THETA = THETA + 57.
1 CONTINUE
CALL UEND
STOP
END
EXAMPLE 10.5

T=0.
V0=107.
X0=-180.
Y0=0.
CALL USTART
CALL USET (*WORKINGAXIS*)
CALL UWINDO (-225.,225.,-15.,95.)
CALL UOUTLN
VX = .707 * V0
ZETA = 11. * VX
CALL UMOVE (X0,Y0)
CALL USET (*SETDASH*,.92.)
DO 1 I = 1, 11
X = (VX*T) + X0
Y = T & (VX - (32.*T)) + Y0
CALL UCOSYS (X,Y,1.,1.,0.)
CALL UPEMT (0.,0.,"DASH")
CALL UWINDO (0.,ZETA,-ZETA,ZETA)
CALL USET (*RELATIVE*)
CALL UPEMT (VX,0.,"LARROW")
CALL UMOVE (-VX,0.)
CALL UPEMT (0.,-VY,"LARROW")
CALL UMOVE (0.,-VY)
CALL USET (*ABSOLUTE*)
CALL UWINDO (-225.,225.,-15.,95.)
T = T + .4758
1 CONTINUE
CALL UEND
STOP
END
EXAMPLE 10.5

T=0,
VO=107.,
X0=-180.,
YO=0.,
CALL USART
CALL USET ('WORKINGAXIS')
CALL UWINDO (-225.,225.,-15.,95.)
CALL UDOUTLN
VX = .707 * VO
ZETA = 11. * VX
CALL UMOVE (X0,Y0)
CALL USET ('SETDASH*,92,')
DO 1 I = 1, 11
X = (VX*T) + X0
VY = 2. * (VX - (32.*T))
Y = T * (VX - (16.*T)) + Y0
CALL UCOSYS (X,Y,1.,1.,1.)
CALL UPENI (0.,0.,'DASH')
CALL UWINDO (0.,ZETA,-ZETA,ZETA)
CALL USET ('RELATIVE')
CALL UPENI (VX*0.,'ARROW')
CALL UMOVE (-VX,0.)
CALL UNOE (0.,VY,'ARROW')
CALL UMOVE (0.,-VY)
CALL USET ('ABSOLUTE')
CALL UWINDO (-225.,225.,-15.,95.)
T = T + .4758
1 CONTINUE
CALL VEND
STOP
END
Figure 74. Example 10.5
EXAMPLE 10.6

\(\begin{align*}
T &= 0. \\
V_0 &= 107. \\
X_0 &= -180. \\
Y_0 &= 0.
\end{align*} \)

CALL USTART
CALL USET ("WORKINGAXIS")
CALL UWINDO (-225.,225.,-225.,225.)
CALL UOUTLN
VX = 0.707 * V0
CALL UMOVE (X0,Y0)
CALL UPSET (*SETDASH*,92.)
CALL USET (*RADIANS*)
DO 1 I = 1, 11

\(\begin{align*}
X &= (V_X \times T) + X_0 \\
Y &= T \times (V_X - \frac{16. * T}{V_X \times 2}) + Y_0 \\
DYDX &= 1 - \frac{32 \times (X-X_0)}{V_X \times 2}
\end{align*} \)

CALL UCOSYS (X,Y,1,.1,ATAN(DYDX))
CALL UPEM1 (0,0,'DASH')
CALL UWINDO (0,.1,.1,-.1)
CALL USET (*RELATIVE*)
CALL UMOVE (.05,0,'L ARROW')
CALL UMOVE (-.05,0)
CALL USET (*ABSOLUTE*)
CALL UWINDO (-225.,225.,-225.,225.)
T = T + 0.4758
1 CONTINUE
CALL UEND
STOP
END
EXAMPLE 12.1

CALL ATTACH(*GRAPHICS/LESSON/FILE121*T,3,0,ISTAT)
CALL ATTACH(*GRAPHICS/LESSON/FILE121S,3,0,ISTAT)
CALL USTART
CALL UPSET (*TERMINATOR*;
CALL UPSET (*SPEED*;120.)
CALL UPSET (*LIBRARY*;1.)
CALL UPSET (*SETDASH*;1.)
CALL UPSET (*PERCENTUNITS*);
CALL UDAREA (0.,100.,0.,100.)
CALL UERASE
CALL UOUTLN
CALL UWINDO (-100.,100.,-100.,100.)
CALL USTRCT (*AXIS*);
CALL AXIS
CALL UTERM (*AXIS*);
CALL USET (*ORTHOGONAL*);
CALL U3CSYS (25.,25.,25.,1.,1.,10.,10.,0.)
CALL UVIEW (-20.,-20.,-150.,0.,0.,0.)
CALL USTRCT (*BOX*);
CALL BOX
CALL UTERM (*BOX*);
CALL USET (*PERSPECTIVE*);
CALL BOX
CALL UTILTY (*SAVE*;8.)
CALL UTILTY (*PURGE*;1.)
CALL UEND
STOP
END
SUBROUTINE AXIS
CALL USET (*DASH*);
CALL U3MOVE (-20.,-20.,-20.)
CALL U3PEN (50.,-20.,-20.)
CALL UPRNT1 (*XY*;
CALL U3MOVE (-20.,-20.,-20.)
CALL U3PEN (-20.,50.,-20.)
CALL UPRNT1 (*Y**;
CALL U3MOVE (-20.,-20.,-20.)
CALL U3PEN (-20.,-20.,100.)
CALL UPRNT1 (*Z**;
CALL UEND
STOP
END
SUBROUTINE BOX
CALL USET (*LINE*);
CALL U3MOVE (0.,0.,0.)
CALL U3PEN (10.,0.,0.)
CALL U3PEN (10.,10.,0.)
CALL U3PEN (0.,10.,0.)
CALL U3PEN (0.,0.,0.)
CALL U3MOVE (10.,0.,0.)
CALL U3PEN (10.,0.,60.)
CALL U3PEN (10.,10.,60.)
CALL U3PEN (10.,10.,0.)
CALL U3MOVE (0.,10.,0.)
CALL U3PEN (0.,10.,60.)
CALL U3PEN (10.,10.,60.)
CALL U3PEN (0.,0.,60.)
CALL U3PEN (0.,10.,60.)
CALL U3PEN (0.,10.,0.)
CALL U3MOVE (0.,0.,60.)
CALL U3PEN (10.,0.,60.)
CALL UEND
STOP
END
EXAMPLE 12.4

CALL ATTACH(1,*GRAPHICS/LESSON/FILE124",Z,0,ISTAT,)
CALL ATTACH(8,*GRAPHICS/LESSON/VILLAGE",Z,0,ISTAT,)
CALL USTART
CALL UPSET (*LIBRARY",1.)
CALL UTILITY (*LOAD",9.)
CALL UPSET (*TERMINATOR","*")
CALL USET (*VIEWDISTANCE")
CALL UVWFRT (100.)
CALL UWINDO (-100.,100.,-100.,100.)
CALL UVIEW (-40.,200.,70.,-20.,20.,0.)
CALL VILLAGE
CALL UEND
STOP
END

SUBROUTINE VILLAGE
CALL USET (*XYZ")
CALL USET (*SYSTEMAXIS")
CALL USET (*REFERENCEAXIS")
CALL U3CALL (-50.,20.,0.,1.,1.,1.,90.,0.,0.,"CHURCH")
CALL USET (*RED")
CALL U3CALL (24.,-19.,0.,1.,1.,1.,90.,-90.,0.,"SCHOOL")
CALL USET (*BLUE")
CALL U3CALL (70.,70.,0.,0.7,0.7,0.7,0.,0.,0.,"PIZZA")
CALL USET (*BLACK")
CALL U3CALL (0.,0.,0.,1.,1.,0.,0.,0.,0.,"ROAD")
CALL UEND
STOP
END
Figure 77. Example 12.4
EXAMPLE 13.1

CALL ATTACH(1,'GRAPHICS/LESSON/FILE131;3,0,ISTAT,)
X = 10.0
Y = 60.0
CALL USTART
CALL UPSET ('LIBRARY;1.)
CALL UOUTLN
DO 1 I = 1, 8
CALL UFRAME ('TRIANGLE')
CALL UMOVE (X,Y)
CALL UPEN (X,(X+5.0))
CALL UPEN ((X+5.0),Y)
CALL UPEN (X,Y)
CALL UFREND ('TRIANGLE')
CALL UFRAME ('SQUARE')
CALL UMOVE (X,Y)
X = X + 10.0
Y = Y - 10.0
CALL URECT ((X-5.0),(Y+15.0))
CALL UFREND ('SQUARE')
1 CONTINUE
CALL VEND
STOP
END
Figure 78. Example 13.1
EXAMPLE 13.2

!CHARACTER CHAR*1!
CALL ATTACH(1,*GRAPHICS/LESSON/FILE132;*,3,0,ISTAT,)
X=10.0
CALL USTART
CALL UPSET (*LIBRARY*,1.)
CALL UOUTLN
DO I = 1, 8
CALL UFRAME (*TRIANGLE*)
CALL UMOVE (X,X)
CALL UPEN ((X+5.0),X)
CALL UPEN (X*,X)
CALL UPEN ((X+5.0),X)
X = X + 10.0
1 CONTINUE
CALL UNSHOW (*TRIANGLE*)
2 CALL UAIN (CHAR)
 IF (CHAR .EQ. 'T') GO TO 3
 CALL USHOW (*TRIANGLE*)
 GO TO 2
 CALL UEND
3 STOP
END
Figure 79. Example 13.2
EXAMPLE 13.3

CALL ATTACH(1,*GRAPHICS/LESSON/FI133;*;3;0;ISTAT,)
DEGREE=0.
CALL USTART
CALL UPSET (*LIBRARY*,1.)
CALL UWINDO (-50.,50.,-50.,50.)
CALL UOUTLN
CALL USET (*POLAR*)
DO 1 I = 1, 12
 DEGREE = DEGREE + 30.0
 CALL UFRAME (*SQUARE*)
 CALL UMOVE (25.,DEGREE)
 CALL UPSET (*ROTATE*,DEGREE)
 CALL USET (*RELATIVE*)
 CALL UPLYGM (0.,0.,4.,5.)
 CALL USET (*ABSOLUTE*)
 CALL UFREND (*SQUARE*)
1 CONTINUE
CALL VEND
STOP
END
Figure 80. Example 13.3
EXAMPLE 13.4

INTEGER FRAME(9)
DATA FRAME/*A','B','C','D','E','F','G','H','I'/
CALL ATTACH(1,'GRAPHICS/LESSON/FILE134;',3,0,ISTAT,)
CALL USTART
CALL UPSETP("LIBRARY",1,)
CALL UOUT1N
DO 1 I = 1, 9
 X = 10.0 # FLOAT(I)
 CALL UFRAME(FRAME(I))
 CALL UM OVE(X,X)
 CALL UPSET("ROTATE",X)
 CALL USET("RELATIVE")
 CALL UPLYGN(0.0,0.0,FLOAT(I))
 CALL USET("ABSOLUTE")
 CALL UFREND(FRAME(I))
 CALL UNSHOW (FRAME(I))
1 CONTINUE
 DO 2 I = 1, 9
 J = MOD((I-1),9) + 1
 CALL USHOW (FRAME(J))
 CALL UNSHOW (FRAME(J))
 2 CONTINUE
 CALL UEND
STOP
END
Figure 81. Example 13.4
In accordance with letter from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

Ward, Darrell
143 p. ; ill. ; 27 cm. -- (Instruction report ; K-82-4)
Cover title.
"April 1982."
Final report.
"Prepared for Office, Chief of Engineers, U.S. Army."

Ward, Darrell
(Card 2)

Engineer Waterways Experiment Station. Automatic Data Processing Center. V. Title VI. Series: Instruction report (U.S. Army Engineer Waterways Experiment Station) ; K-82-4.
TAT.W34i no.K-82-4
FILMED 7-8