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theory can be utilized.
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ABSTRACT

in the existing scenario of optimal search theory. = THIS Cannot bedone for—— - . -

" [Dist Speelal

This Report discusses the along orbit search, by optical means, for an

‘artificiat- satellite. _In particular the attempt is made to couch the search

existing and envisaged searches. The reasons for this are explored and some
new concepts of optimality are discussed for real searches. The point is
made that both hardware and software adjustments would be necessary in order

to reconfigure optical searches for artificial satellites so that search
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I. INTRODUCTION

The theory of search, as a branch of operations research, had its

beginnings during World War II. This start was made by Bernard Koopman and

T T TR T e

his colleagues for the United States Navy on problems reiated to anti-
submarine warfare. Since then there has been considerable progress in the

i theoretical development of searches for non-moving targets.* Some progress

“has been made when the target 1 aliowed to move in a conditionally deter- =~ 1§
G ministic fashion. Lawrence D. Stone has summarized much of the field in his
book, "Theory of Optimal Search" published in 1975 by Academic Press. This i .
Report is an introduction to this field of mathematics. I closely foilow

Stone's notation. This is to ehable the interested reader to make a smooth

transition to the literature should he care to pursue the subject further.
i This Report is not a re-writing of Stone's book. Although I follow

ﬁ him in basic definitions and notation, I've chosen to i1luminate the concepts | . 4
3 within the framework of an along orbit search for an art1f1cja1 satellite by

optical sensors. As the Ground-Based Electro-Optical Deep Space Surveillance

will become more frequent. An along orbit search is a particularly simple

I
|
¥
(GEODSS) system comes on-line, optical searches for artificial satellites l
|
|
l

search that can illustrate how optical searches for artificial satellite§ fit

into the existing theoretical framework.
Actually such searches don't fit within the existing framework. A minor

2 ) problem, for rapid searches on slow moving satellites, is the fact that the

target is moving. When the search is executed slowly or the satellite is

: » | deliberately avoid using the adjective stationary because of the special ¥
[ meaning i1t has in the artificial satellite context.

i
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moving quickly, this becomes a major problem. The principal reason that
the mathematical superstructure of optimal search theory is superfluous is

that the optimization problem has been co-opted by the ba=ic design of | ]

existing and currently contemplated searches. I will consider some o7 the l "
reasons for this. This Report can serve as a stimulus for re-thinking why
; we search the way we do and whether or not we should modify it to obtain
é the benefits of the existing theory. |
Given the existence of Stone's book I won't reference any other litera- . !;
|

ture herein. A1l results specifically pertinent to the along-orbit optical

TR L Y T

search for an artificial satellite are original.




11. BASIC IDEAS

First we introduce the concept of a discrete search space. The target
is in one of a set J of cells that are taken to be a (possibly infinite) sub-
set of the positive integers, We can obtain a concrete realization of this
in the along orbit optical search problem by imagining that the sensor has a
field-of-view of 8 radians and that our search lies along the artificial
satellite's orbit. The maximum number of cells is 2n/6. Geometrical con-
straints would 1imit this further. Also most along orbit searches are based
on the assumption that the sateliite will be "early" by a maximum amount and
"late" by a maximum amount. This too would 1imit the maximum number of cells.

The second concept is that of an a priori target distribution. By this

we mean the probability distribution over the search space which summarizes
our knowledge of where the target was likely to be when the search commenced.

We symbolize the target distribution by p(j) where

p(3)el0,1]V¥jed and X p(J)s]
jed

In general we allow the target distribution to be defective. In the along
orbit problem we might have to allow for a maneuver of the satellite which
changed its orbital plane. If our search space consisted of only a few cells,
then the satellite might not appear in any of them.

When we search a cell jeJ we expend a certain amount of effort measured

by ze[0,»), The cost of this effort is given by the cost function c(j,z).

Cost may be measured in time or money while effort might represent area

searched or the duration of time spent in a cell. In the along orbit problem
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effort and cost might be both measured in time. The effort would be simply
the amount of time devoted to searching cell j. The cost would be this time
plus the amount of time necessary to move the telescope to cell j from its
last location. Such a cost function is realistic and does not fit into the
above framework. If the amount of time spent searching in a cell was much
longer than the amount of time required to move tco a cell, then we might
ignore the non-local nature of the cost function, We ¢ould for instance, use
a cost function of the form c(j,z) - cy + 2z where c\j is the average time to
move to cell j from any other ¢ell in J, At this early stage we've been
forced to make two modifications of real along orbit searches in an attempt
to fit into the formalism; real satellites are moving not fixed and real
cost functions are non-local.

When we expend effort z in cell j we spend cost c(j,z). In return for
this we increase (or at least not decrease) the probability of detection.

We define a detection function b(j,z) that measures this. Specifically

b(j,z) is the conditional probability that after expending effort z in cell

J we will detect the target given that it is in cell j. Note that this
definition of the detection function assumes that the conditional probabiiity
of detection depends only on the total amount of effort expended and not on
the way that the effort was expended. An obvious limitation we must impose

on the cost function c(j,z) is

c(j,2)>0 y jed, ze[0,®)
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Clearly we must demand that the detection function satisfy
b(sz) E[O:]] Vjed, ZE[O.W)

There is a special class of detection functions known as regular detection
functions that are important in the theoretical framework. The detection

function b(j,z) is regular if

(i) b(j,0) =0 and

(11) ob(j,z) 1s continuous, positive, and strictly decreasing yjed
éz

The first requirement just says that we must expend effort if we are to find

the target. The second requirement implies that b(j,z) 1s strictly concave

and that the rate of return function p(j,z) = p(Jj)ab(j,z) diminishes with
increasing effort. The rate of return function tellgzus which cell yields
the largest increase in probability of detection for a given, small, incre-
ment of effort. A search that always places the next increment of effort in

the cell with the highest rate of return is called locally optimal.

The detection function b(j,z) is something that we could model for a
particular optical sensor. Presumabiy it would require only minor approxi-
mations (or perhaps no approximations) for such a detection function to be
reqular., As far as 1 am aware this has not been done. It would turn out to
be superfluous for presently conceived searches though because current hard-
ware constraints are such that one would not change the amount of effort
allocated to a cell during a search. This ab initio fixing of the effort

allocated to a cell (in fact to be the same constant amount for each cell)




co-apts the optimization problem completely. We'll see this more clearly

soon. Moreover, even if this were not the case, many types of artificial
satellite searches have designs which prohibit the design of an optimal
search in the sense discussed below. Searches that define J or searches that
are designed to be Tleakproof can remove the essential degree of freedom
necessary for the successful, meaningful application of search theory.

So far we have introduced the search space J of cells, the a priori
probability distribution over the search space p(j), the cost of expending
effort z in cell j, c(J.z), and the conditional probability of detecting the
target in cell j after expending effort z there, b(j,z). Finally we intro-
duce the concept of an allocation of effort over J, f(j). If we define the

set F(J) by .
F = F(J) = Set of all non-negative functions f defined on J

then we can formulate the basic search problem,
Suppose we have an allocation of effort f(j) for each cell in the search
space. Then the total cost C[f] of this allocation is
Cf] = 2 c(§,f(3))
jed
The total probability of detecting the target with this allocation is P[f],

P = 2 p(3)b(d,f(J))
jed




Suppose that the maximum cost is K. The basic search problem is to find

an allocation of effort f*cF such that

Clf*) <K
and
P[f*] = max 'P[f]: feF and C[f] s K

If such an allocation exists then it is said to be optimal for cost K.

Now we can clearly see the critical element of the above mentioned
difficulty. We ignore the fact that the theory is concerned with fixed
targets. We ignore the fact that the theory is capable of dealing only
with local cost functions. We cannot, however, ignore the fact that opera-
tionally we ab initio determine that f(Jj) is a constant such that C[f] = K.
This stricture removes the free element of the optimization problem, To fit
optical artificial satellite searches within the theoretical framework we can
not ab initio declare that f(j) is a constant. In order to free the alloca-
tion of effort requires a re-design of some hardware and software as well
as careful examination of the current demands on artificial satellite searches

(eg leakproofness).

After we introduce one more concept we can turn to the results of
optimal search theory. The final concept is that of a search plan. A search
plan ¢(j,t) 1s a function defined on jeJ, te(0,») which tells us how much
effort has been expended in cell j by time t. If M(t) gives the total effort
available by time t then

. o(,t) = M(t)
jed
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Let (M) be th. .11ss of search plans satisfying the above. Then we say that

a search plan ¢*e&(M) is uniformly optimal within &(M) if

PLo*(3,t)] = max |PLo(3,t)1:4e0(M)] ¥ t20

In other words such a search plan ¢* maximizes the probability of detection at E
every instant. Under certain conditions one can show that the locally optimal
plan, the uniformly optimal plan, and the plan that minimizes the mean time C

to detection are identical.
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II1. THEORY

Above the basic concepts of search theory in a discrete search space
have been introduced. In this section we shall see haw optimal search plans
can be found and computed. No proofs are provided; they are in Stone's book.
Also, as [ feel that it's more important to convey the sense of what can be
demonstrated, rather than the details, I've taken some liberties in relaxing
the wording of some of the results. Again see Stone's book for details.

Definition: An allocation of effort f*eF(J) 1s optimal for cost K if
CLF+]<K and P(f*] = max (P[f]:feF(J) and C[FIsK]

Theorem: Suppose there exists a Ae[0,») and an allocation fieF(J) such

that C[fi]<w and

PLFLT - ACLFXI2PLF] - AC[F] for feF(J) 3C[fl<wo
then

PLFF] = max [P[f]:feF(a) and C[f]sc[f;]l

This theorem tells us when an allocation f; is optimal for a given cost

C[fx]. The introduction of the Lagrange multiplier A converts a constrained
optimization probilem for the functional P[f] 1nto anunconstrained optimization
problem for P[f]-AC[f]. This device suggests the introduction of the point-

wise Lagrangian

£(j,x,2) = p(j)b(j,z)-kc(j.z) forv jed; A,ze[0,=)

LR RNy < U
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Note that

¥ £(3.x,f) =PLfl-AC[f]
Jjed

Theorem: Suppose there exists a Ae[0,») and an allocation fieF(J) such that
C[f§]<m and

LI Q) = max [£(3,2,2):2e(0,%)] vded
then
PLFY] = max IP[',f]:feF(J) and c[f]sc[f;]|

Note that in this simple case once J and A are fixed £(j,A.2) is a function
of one variable and the apparatus of ordinary differential calculus may be
used to find its maximum. The above theorems give sufficient conditions
that a particular allocation satisfies the constrained optimization problem.
To go further we must assume a bit more about the detection function and the

cost function. Moreover we say that whenever (A,f*) are such that f*eF(J)
and Ae[0,») and

L(j;x.f*(j)) = max I&(j,k,z):ze[o,w]l Vjed

that (A,f*) maximizes the pointwise Lagrangian.

Theorem: Let b(Jj,z) be a concave function of z and c(j,z) be a convex
function of z. Let f*eF(J) and C[f*]e(0,K). Then a necessary and sufficient
condition for f* to be optimal for cost C[f*] is that there exists a Ae[0,=)

such that (A,f*) maximizes the pointwise Lagrangian.

10
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Corpllary: Let ab(j,z)/dz be a decreasing and continuous function of z and
let 9c(j,z)/dz be an increasing and continuous function of z yjed. If

f*cF(J) is optimal for cost C[f*Je(0,K) then there exists a A>0 such that

=0 if f*(j) > 0

p(3) ab(d,f*(1)) - A ac(d,f*(]))
9z 3z

< 0 if f*(§) = 0

To complete the elementary part of the theory we need the inverse of

the rate of return function o(j,2) =p(J) ab(j,z)/92, viz.

inverse of p(J,z) evaluated at z=x for xe(0,0(J,0)]

D-1 (j,X) =
0 for x> p(J,0)

We also need the function
U(x) = o7 (J,x)
Jed

and 1ts inverse U~'.
Theorem: If c(j,z)=2 yze[0,») and jeJ and b(j,z) 1s a regular detection

function then for a fixed cost K>0 the allocation

= 071 (J,A) Wed

where A = U"!'(K) is optimal for cost K and C[f;] = K,

Theorem: Under the above conditions the search plan

¢* (35t) = 07} (3,01 (M(t))) vied, £>0

is uniformly optimal for cumulative effort M(t) in $(M).

N
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Finally define the mean time to find the target when using search plan ¢, u(¢).

We can write
u(e) = f; (1-PLo(3,t)])dt

Theorem: Let the search plan ¢* be uniformly optimal in &(M). Then
Wed(M) u(o*)su(e).

The above theorems completely solve the problem of constructing optimal
search plans for regular detection functions and cost functions proportional
to the effort expended. In order to give some life to theory, consider the
along orbit search again. Let there be J cells, let the target distribution

be p(j), and suppose that the detection function b(Jj,z) = 1-exp(-ajz). ajzo.
Note that this detection function is regular. Fix the tetal cost at K and

let the cost function be c(j,z)=z. We will construct an algorithm for
finding the optimal allocation of effort f(J)=zJ.
The total probability of detection for allocation f is

J J
PIFl =X p(J)b(3,f(3)) = Z D(J)(l-exp(ajzj))
3= J=1
The total cost for this allocation is
J J
Clfl =% c(4,f(§)) = X 2
J=1 J=1

We seek to maximize P[f] subject to the constraint C[f]=K. We do this by
introducing the Lagrange multiplier A and minimizing P[f]-AC[f] with respect

12
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! to {z;}. We find that d(P[f1-AC[f1)/az=0 mplies

p(J )ajexp(-ajzj) =1 vie[1,0]

Hence

zy = (1/ay) £n (p(j)ay/A) |

Notice that the implicit equation for zj is just p(J.zJ) = X and that the

solution 1s just zy = p"*(j,A). Of course, we can only consider non-negative

P ) H -, -
i it b e i o

effort so if p(j)aJ/A<1,zJ=0. We determine A from the total cost con-

straint,
J J
] z:zj = K= % (1/63) Zn (p(J)aJ/A) = U(2r)
i J-] J;] é
!

where only those terms are included whose argument of the natural logarithm |

are 21. This completes thesolution of the problem. To see even more :

clearly how the search evolves suppose that the cells are labeled such that
a1p(1) 2ap(2) . . . . . 2a,p(d)

If the total cost K is small only cell #1 will be searched for p(j)aj will

be less than A for j>1. As the total cost increases additional cells will

be searched with the effort partitioned between them according to the above i

rules. }




IV. ADDITIONAL TOPICS

The above theoretical development concerned optimal search plans over
a discrete search space. The amount of effort expended was infinitely
divisible though. A more realistic approach would be to quantify the amount
of effort expended in each cell. A1l expenditures of effort would then occur
in discrete multiples of the minimum. In optical searches the minimum amount
of effort is the time to form an image with the sensor. Clearly it makes no
sense to allocate an amount of effort (measured in time) that is less than
the single image integration time.

Such searches are known as search with discrete effort. A logical
measure of the cost 1s the amount of time needed to perform a single look
(form an image) in a cell. The quantity subject to variation in the optimi-
zation problem is the distribution of the number of looks per cell. This is
analogous to the allocation of effort discussed above. One can also carry
over the notion of a locally optimal search., Such a search plan looks in
that cell that yields the highest value for the quantity (increment in pro-
bability)/(increment in cost). If this ratio decreases with the number of
1ooks ({n every cell of the search space), then the locally optimal plan
minimizes the mean time to find the target. If in addition we do measure
cost by the number of looks per cell, then the locally optimal plan is also
uniformly optimal, f.e. 1t maximizes the probability of detection for any
number of looks >0.

Other topics treated by the theory in¢lude whereabouts searches,
optimal search and stop, search in the presence of false targets, the approx-

imation of optimal search plans, some small steps in solving the conditionally

14
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deterministic target motion probliem, and Markovian target motion. The

interested reader is referred to Stone's book.
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V. THE ALONG ORBIT SEARCH

Within the framework of currentiy conceived searchés there would appear
to be little left to discuss. One can still pose interesting problems for
along orbit searches depending on one's concept of optimality. In this
Section 1'11 look at some of the simple problems an along orbit search
presents.

A. Search Scenario

The search is cursirained in the following fashion. The search

space 15 a set of 2N+1, N20 (an integer) field-of-view 6. The fields are
labeled by n=-N, -N+1, ..., N, A1l searches commence at n=0, the nominal
position for the artificial satellite. The 2N+1 fields lie along the
satellite's orbital plane. The target distribution p(n) is specified. The

restrictions
12p(0)2p(n)20 VYnel-N,N]

might be imposed with 1ittle loss of generality. In addition one might
impose a symmetry constraint p(n) = p(-n)yne[-N,N].

Each cell {5 searched with the same amount of effort. Moreover
we assume that the detection function 1s homogeneous, b(n,z) = b(m,z)
vy n,me[-N,N]. Wedefine a search plan as a set of 2N+1 integers NgsNyshy, -+
nyy drawn from [-N,N] subject to the constraints that ng = 0 and that there
is no repetition. There are (2N)! different search plans of which half are
the reflection of the other half. The cost function we develop below after

we construct a model for the telescope's motion. Then we can pose several

questions: 1) Which search plan takes the least time to complete an




—

examination of all 2N+1 cells?, 2) Which search plan has the highest average
probability of finding the target as a function of time? 3) Which search
plan has the highest aggregate probability of detection for all times during
the search? (The aggregate probability of detection is

P(t) =2 p(n)
neM(t)

where M(t) is the set of cells searched by time t.), and 4) Do any of these
matter in real world along orbit optical artificial satellite searches?
B. A Model for the Telescope

In order to define a realistic cost function we need a model for
the telescope motion. For this purpose I assume that when the telescope
starts from rest that it is capable of a maximum constant acceleration o
for a maximum time 1. Hence the maximum angular speed of the telescope is
Q=oat. The telescope can move at the rate of & for an arbitrary length of
time. When the telescope decelerates, it does so at a constant deceleration
6 (8>0) until it comes to rest or a specified angular speed w,|w|$g Q.

Suppose that the problem is to move the telescope, initially at
rest at ¢ =¢; to some other position O =0 > ¢y where it will again be at rest.
This process can occur in a maximum of three phases. QDuring phase I the
telescope accelerates at the rate of o for a total time taST. During phase 11
the telescope moves at the constant angular speed wa=ata for a time tc.
During phase III the telescope decelerates at the rate § until it reaches a
stop at ¢ *dge This takes an addition time td. The total time of the move

is T = ta+tc+td' Question: Wwnat combination of ta’ tc and td minimizes T?

17
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To solve this problem, we need equations of motion for the telescope.
They are

Phase I: te[O,ta]

¢ =a t2/2+¢1. w=at
Phase II: t-t, e[O,tc] by = © t?& + 050 wEat,

¢ = uy (t-ty) + by » WBW,
Phase I1I: t-(ta+tc) e[O.td] b ® Wy Bt By 2 W TW,

o = -6[t-(t,+t )% + w lt-(t+t )l + o o

w= =8 [t-(ta*'tc)] ‘g

Set t = ta+tc+td in the Phase Il equations and insist that ¢=de,w = 0.
One finds

i Jbp _t
ty = ot/ st o—gia fa (1+0/8)

where Ad=¢c - ¢4 The total traverse time T is
t A
T = "a (1+a/8) +-
= “Tf
Considered as a function of ta‘ T has a single minimum when
2 o _2h
ta OL('|+(17’S )

which implies that the coast time, tc is zero. The total time to move an

angular distance A¢ is

y/

18
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The above assumes that ta < 1. Should the above value of ta be

greater than or equal to t, then the single degree of freedom is removed and

c Slotd) 208
T= %% [‘*n o:+<5]

Only for an extremely fast telescope or a very long along orbit search
would t, exceed T,
C. Optimal Searches
The cost function we'll use is the time required to move from the
last cell examined to the cell of interest plus the time spent examining the
cell. The time per cell (= the effort expended) is a constant equal to
t1ook: Since the center of cell ne[-N,N] is at ¢=no, for t,<T the cost

function for the K'th cell is

1'|
[2-(-—-——)—-0’;2 0 l"K'"K-ll] Ay Y100k

Consider first a complete search (1.e. each cell is examined). Then the

total time to complete the search is

Y Y/ Y
2 o 2 2 2
(2N 1)ty o0k * ['(TgLe'] l'"r"o' gl o+

+ |[nyy=n |1/2
2N 7'2N-1

Clearly when determining an optimal search only the sum of the square roots

are important,

19
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Conjecture: The complete search plan that has the shortest time to complete
is the following (or its reflection): Pick a direction and move in it, one
cell at a time, until the last cell on thatside 1s reached. Next jump, in
the other direction, one cell past the start and repeat the (new) unidirec-
tional one cell at a time traverse. The time to complete is 2N+(N+l)5a-1.
The along orbit searches actually used is an alternating one, eg. n0=0,

n1=+1, n2=-1. n3=+2, ny= -2, etc. The time to complete is

2N
) nl/z n N’/z

n=l '
and therefore very long. This search does build up aggregate probability
quickly though, especially for a sharply peaked, unimodal, symmetric distri-
bution. If the arc of the orbit is long, then this probably {isn't optimal
in the sense of maximum aggregate probability. The reason is that since
p(n) falls off rapidly with n but the time to move increases as the square
root of n, for large enough of n it will be better to do cell n+1 after
cell n and then jump to cell -n, do cell -(n+1), then jump to cell p+2. etc.
Clearly one needs real numbers for o,6,0, and t100k to decide the question.
The same is true for the highest average probability searches,

D. Does it matter?

Stone references, but does not deal with, the subset of the search
Jiterature concerned with searches along a line. 1I've briefly looked at it
and it appears to be irrelevant. Finally, unless one has an extremely slow

telescope or contemplates very long (in the sense of arc) along orbit
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searches, it is doubtful that considerations of optimality really matter.
Note though that impiicit in current along orbit searches is the assumption

that p(0) ~ %, p(+1)~ Y, or the satellite maneuvered.
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