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Preface

This thesis is an initial attempt to use reliability
growth models to predict dormant reliability. It can actu-
ally be thought of as a two-part thesis. Tae first part
pertains to reliability growth, and the second part to dor-
mancy aﬁd the Monte Carlo experiments.

The purpose of this study is to provid§ evidence
that it is possible to predict dormant reliﬁbility with

reljability growth models. My hope is that the ihitisl work

| done in this thesis can someday be expanded to provide a
sound methodology for an#lyzing dormant reliability.

The original idea.of usihg reliability growth models
to predict dormant reliability was conceived by my Thesis | \
Advisor, Professor Albert H. Moore. I am sincerely indebted %
to him for his iuspiration and help in completing this study. é ,
Also, I would like to thank the Reader of my thesis, Lt. §
Col. Edward J. Dunne, whose constructive criticisn.was an
important part of the final report. Finally, I would like é
to express great thanks to my wife, Jackie, whose hours at |
the typewriter played an essential role in the completion of §

this project.

John F. Vonloh
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Abstract

This thesis presents the results of an extensive
literature search into reliability growth and the subsequent
use»of three reliability growth rudels to predict dormant
reliability. A brief review of reliability theory is
followed by a survey of reliability growth models, which
includes the detailed developments of and specific examples
for five popular mcdels. The nature of dormant réliability
is then discussed as a prelude to a Monte Carlo analysis

‘using the Duane, Gompertz, and Bonis reliabiiity growth

models to predict dormant reliability.
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RELIABILITY GROWTH AND ITS APPLICATIONS
TO DORMANT RELIABILITY

I. Introduction

Reliability of dormant weapon systems has been a
concern throuéhout military nistory (Ref 32:7). Man}
strategic weapon systems in the Air Force today, for example,
lie in a dormant state for years, but are expected to per-
form reliably when needed. Many of these systems are vifally
important fo our national security. In additionmn, there_is
always a cost associated with the replacement or repair of
systems when they fall below acceptable reliability levels.
Since reliability has a direct impact on the mission perform-
ance and operéting cost of a system, it follows that there

3 a need tolassess the impact'of_dnrmancy on a weapon |
system. o

One of the problems with dormancy is the lack off
consistent or wéll-defined methods for determining its
effects (Ref 32:11). This fact is reinforced by remarks in
the Introduction of a report by J. Bauer, D.F. Cottrell,

T.R. Cagnier, and E.W. Kimball, of the Martin-Marietta

Corporation. They staied:

...Documents such as RADC Reliability Notebook and
MIL-HDBK-217A depict in detail operational failure
rate data, derating factors, environmental factors,
quality factors, etc. Little or nothing is extant




on thc other states of activation--storage, dormancy,
and power on-off cycling [Ref 8:1-1].

These statenents are evidence that there is knowledge to be
gained by additicnal research into dormant reliabiliry.

A general definition of dormant reliability is the
change in reliability of a system over time as it lies in a
dormant or unused state (Ref 32:22). There is no single or
consistent definition of exactly what constitutes a dormant
state., However, most ¢€ the literature will refer to ;
dormant state as a state of very little or no nperational
stress (Ref 24:43). For exanmple, a missile system to which
enough power is added to see if the components are function-
ing properly, say once & month, could be considered a dor-
mant system. Of course, the effect of dormancy on a system
will vary with the system and the environment in which it is
stored. In most cuses, however, the effect of dormancy is
an increase in the failure rate of the system with the pas-
sage of time.

On the other hand, a general definition of reliability
growth is a continuing decrease in a system's actual failure
rote that will approach an inherent value of the systém
(Ref 31:330-331). The inherent value of the system refers
to the maximum reliubility one can-expect from a system based
on the design characteristics. A good example of reliability
growth would be getting the "bugs" out of a new car. Onca
the carly problem arcas are fixed, the car will perform with

a higher level of reliability for most of its life.

e P
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Compsared with reliability growth, dormant reliability
has an opposite or negative effect. With reliabiliry growth
the failure rate will be decreasing, while with dormant reli-
sbility the failure rate will be increasing. Intuitively
then, it seems that the methodology used to aeternine reli-
ability growth could b2 applied to dormant reliability.
| In general, the nature of relisbility growth modeling
is to first test a system, then analyze the results of the
tests, and finally fix the system (Ref 14:35). The pror-iure
is repeated until enough data sre obtained te construct a
reliability growth curve. From the relisbiiity growth curve,
estimations of future reliability of the system can bs made.
Analogous to this situation is a dormant system which is
stored and tosted at regular intervals. In both the dormant
case and the case where reliability growth is present, the
objective is to determine the chanze in the failure rate of
the system. . This analogy should make it possible to use
reliabiiity growth models to estimate dormant relisbilicy.

Since the theme of this study hinges on an in-depth
understanding of reliability growth, the first cbjective
will de to present a survey of applicable reliadility growth
models. Included in the survey will be a detsiled discus-
sion of five relisbility growth models which represent the
most widely used models that are capable of predicting
future reliability. In addition, there will be s general
discussion of other relisbility growth models that were

found in the literature search.

AP """"“:?'x‘m :
L et e wmubu_m ...uwm
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In light of the analogy between reliability growth
and dormant reliability (each has changing failure rates), _
research to determine whether reliability growth models c;n
be used to‘estinate dormant relisbility would be important.
This is because much work has already been done in reliasbil-
ity growth. This reason;ng supports the second objectivz of
this study, that is to determine with relative "goodness?of-
fit" measures how well a set of selected reliability growth
models fit dormant data genersted by Monte Carlo simulation.
Simulation was used so the underlying failure distributions
would be known and could be used to calculate the true
system reliasbility. The true system reliability was used as
the basis for comparison in the relative "goodness-of-fit"
measures. |

To schieve the study objectives, an intensive litera-
ture search was made into reliability growth and dormant
reliability. The results of this literature search are pre-
sented in the'folloQing sections: Section II summarizes
some of the key relationships associated with reliadility
theory which are used throﬁ;hont the study; Section 111l
discusses reliadility growth models; Soctioﬁ IV is s general
discussion of the nature of dormant reliability; Section V
outlines the Monte Carlo simulation; Section VI preseats the
results of the Monte Carlo experiments; and finally, Section
VI1 contains conclusions to the study and recommendations for
further research. li addition, the Appendix contains addi-

tional significaat datu resulting from the Nonte Carlo simulatioc

4
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II. Reliability Review

This section is a short revisw of some of the reli-
ability concepts that will be referred to in this study.
It is intended to refamiliarize the rsader w th the import-
ant probabilistic relationships used iq‘relitbility theory.

In addition, emphasis will be placed on general notation

that is used in this report.

The Relisbility Function
The probability of a system failure as & function

of time (t) is defined as

P(T<t) = F(t), t20 | (2.1)

where T is 3 random variable denuting time to faixnre. F(t)
is the cumulative density function (cdf) of ths failure
times, or the prolbsadility that the systeam will fail by

time t.
The reliability of the system at time t is defined

R(t) = 1-F(t) = P(T>t) (2.2)

where R(t) is the reliadbility function. If the randoa
variable T has & probsbility demsity fumction (pdf) equal

to £(t), then

R(t) = 1-F(t) = 1 - [He(x)ax = £Sf(x)ax (2.3)

T S A M M N i+ b i s e st o




where x is used as the variable of failure time tafore inte-
gration takes place. Eq (2.3) is the fundamental relation-
ship between the pdf - £(t), the cdf - F(t), and the
reliability function - R(t} (Ref 30:9-10).

In this study, the reliability will usually be de-
noted by the letter R. For esxample, the reliability as a
function of time would be R(t), and the reliability at a

specific time, say t = 15, would be R(15). This notation is

consistent with most textbooks and articles on the subject.

The Fxpected Life |
The cgpectcd 1ife of & system is the time during

which it is expected to perform successfully (Ref 30:10).
1f the random variable T is used to denote time to failure,
then by definition "

CB(T) = I:'%f(t)dt | (2.4)
where E(T) is the expected value of the random variable T
(Ref 38:121). Another‘convcnlont'Cxpr'ssion for the expected
1ife is . . |
B(T) = [R()de | (2.5)
This expression is derived as follows. -Let u = R(t) and
dv = dt. Then ' | '

du = d[R(t)] = d[1-F(2)].= d[-F(t)] = -£(t)dt

and v = t. Using integration by parts,

D T ST T PR N LU T S RUVS U K AP I TN TN TR EPALANGES WUt WO-rie RSP AU SR SRR AR LR S R AR
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!.'R(t)dt - !:' udv
= gy - ﬁ:vdu

= [tR(?)] |:’ . f: t£(t)dt (2.6}

it is clear that when t=0, the first term of (2.6) is also
zero. In addition, it is assumed that R(t) = 0 st t = + »
(reliability is a decreasing function of time) and the first

tera is sgain zero. This leaves only the second term
I:tf(t) dt = E(T) | 2.7

from Eq (2.4).

Terms associated with E(T) are the lcan'tine to fail-
ure (MTTF) or mean time between failure (MIBF). However,
these terms should be used only when the failure distridbu-
tion function is specified. The resson for this is because
the reliability at the MTBF or MITF is not generslly the
same for any two given distributions. For example, the

R(MTBF) for normal density function is P(z20) = .S. However,

R(MTBF) for the negative exponential model is EXP(-1) = .368

Relationship to the Hazard P
Function R el Bene e el
The hazard function; h(t), is defined as the instan-
taneous failure rate of a system at time t. More formally,
it is the conditional piobability that a Systel fails in the
small interval (t,t+At), given it has snrviycd until time t.
The relationship betieen h(t), £(t), F(t), and R(t) is as

o

e e e 4 s
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follows
o) - iy - 663

The derivation of this relationship can be found ir Ref 30:
11-15 or Ref 31:135-137. |

A special case, when the )azard functioz is constant
throughout time, is the case of _.he neg exponential distri-
bution having the form (Ref 30:234)

R(t) = EXP(-at), t >0 (2.9)

where
R(t) - the reiiability at time t
A = the instantzneous fsilure rate

The parameter of the model, usuﬁlly denoted by 1, is the
hazard rate for all t (Ref 30:234). This has led engineers
to refer to the failure rats as 1A or A(t) in many cases.
However, care must be taken to gssure that the failure rate
referred to is actually the instantaneous failure rate and
not % cumulative failure rate or failnra'rdte.over 8 speci-
fied interval. It must be emphacized that the relationship
in Eq (2.8) only aspplies when the instantaneous failure
rate is used. In this study, the 1nstantaneous failure rate
will be denoted by h(t) whea the relationship in Eq (2.8)
is expected to hold. : ‘ :

eniii S R et B NI s o5 Wi I e AT e Fes
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I1I1I. Reliability Jrowth

The failure rate of a system in its early life or
development stage is often characterized by change (Ref 30:
3). Many factors can cause this change. For example, an
esuipment may haVe a faulty component that is redesigned or
replaced with a better component which will cause the equip-
ment to be more reliable after the ;hange. Another example
would be the increase in reliability of a weapon systen,
like a new aircraft, that would occur after the operators
became more familiar with how it worked. This phenomenon

is called "reliability growth."

As the name implies, the general notion is that the
reliability will "grow" to some inherent value (Ref 31:330-
331). The inherent value could either be a reliability tar-
get set for the system, or it coﬁld be a limiting reliability
based on the design of the system. However, an increase in
reliability need not be the only case. A change could be
made that would be detrimental to the system. The point is
that a system in its early life is generaliy not character-
ized by random failures of a constant nature, but rather by
a changing failure rate that hopefully will increase with

v

time.

The Survey
An intensive investigation into reliability growth

9
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was conducted for two reasons. The first reason was to deoter-

mine if reliability growth modeling techniques had ever been
used in the past to predict dormant reliability. Secondly,
an in-depth understanding of reliability growth was needed
for the experiments on dormant reliability iu the latter part
of this study. |

The literature search revealed numerous reliability

Some models can be used to predict future
In addition, some

growth models.
reliability levels, wh- .e others cannot.
models are quite easy o use, while others require the use

of more complicated procedures. For example, the Duane model

(Ref 22) uses a sinﬁle graphical technique to estimate

future reliability, while Singpurwalla‘'s technique {Ref 53)
requires use of the Box and Jenkins time series analysis pro-
cedures (Ref 11), which‘a:e nofa complicated. For these
reasons, not every model was studied in great detail.

To give the rea&er a gdod 1d§a of what reliabflity
growth involves, five models are discussed in detail in this
sur;ey. These nodels are: ,1] thq Duane model; 2) the Crow
model; 3) Lioyd snd Lipow's hyp: =bolic nodel; 4) the Gompertz
model; aﬁd §) the Bonis model fbr ome}skot devices. !Th?se
models were chosen because thef séQ widely used by -ilitary
anslysts, and because they yroviée s good ;ross-s@ctﬁon 6£
reliability growth modeling techniques. Also, they were
chosen because they each provide a predictive functional
relationship for the roliabil:c} growth curves. This/
fasture makes it possiblo to predict reliability levels of

10
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future times t. Some models, such as the Barlow and Scheuer
model (Ref S5), do —.ot have this capability.

There will also be a section of this chapter devoted
to other reliability growtl medels. Included in this section
will be a brief description of many of the other reliability
gro=ir models. The intent is to inforn the reader, in a very
general way; abcut each of these models and te prnvide refer-

ences which discuss each model in detail.

‘The Duane Model

J.T. Duane, of the Generzl Electric Company, developed
a reliability growth model that has been widely used in
development and testing programs (Ref 22:563-566), The medel
has been used extensively by the miiitary‘since its first
publication in 1962. The idee for the model came when Duane
noticed that the pietvef eumulative'mean-times between fail-
ure (MTBF) for successive test intervals would many times
plot as a straight line on log- log paper (Ref 17 6) . Duane
used the plots to determine the change in failure rates as a
function of time. B

The Model. The basic assumption of the Duane model
is that a testing prograa is divided into intervals (Ref 19'
Al-AG) " Each interval could represent a design change or
engineering nodification. but the failure rate for any given

interval uould remain constant during that interval - This

assunption implies that the reliability during any spec1f1c

interval can be represented by the negative exponential model

- - e
..-.‘1,,».., i AR RO

1;1.:'




R,(t) = EXP[-2;t], t 20 (3.1)

where
the reliability for the 1?h interval

R, (t)
' the failure rate for the ith interval

>
[
| ]

t = the time
{i=1,2,..., the total number of intervals

Mathematically, the form of the Duane model is
A (t) = MEL wxe™®, t>0, k20 (3.2)

where ;
the cumulative failure rate

Ac(t)
N(t)
»t - the cumulative test tine

the cumulative number of failures

a= the growth rate constant

K = constant that represents the cumula‘ive ‘ :
failure rate at t ‘ ‘

The instantaneous failure rate can be derived by taking

dN(t)/dt. This yields

e e et e e o

l-a

i,

. S N(t) - Kt

.nagqir;WW“ l(t) - :g%%%;:'(l-c)xt'° R {3.3)

where l(t) is the instantaneous failure rate. From this
equation the reliability can be calculated for 8 time t that

‘4corre5ponds to the ith interval and, thus, l(t) becomes Ai

in Eq (3. 1) o
Paraneter ’stimation.‘ Taking logarithns of Eq (3 2)

gives the nathenatical representation of the straight -1line :
12 |
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- nique was used, the outlying data point could be easily seen.

 time is three hours. In this case, three items were placed

T

plots on log-log paper (Ref 19:A4). The resulting equation

is
1n(¥8] = 1n(x) - aln(r) __ (3.4)

From this equation, two methods of parameter estimation
emerge (Ref 4:12-14). First, least squares can be used by
tﬁking the 1n(t) and the In[N(t)/t] as input. Second, a
graphical technique can be employed where K is estimated as
the intercept of the plot ét t =1or ln(t) = 0, and o is
estimated as the negative of the slope of the line.

Least squares may be the more exact method of the
two (Ref 4:13), but the graphical technique lets the analyst
visualize the process (Ref 15:458-459). By getting a visual
perspective, some additional insight may be gained. For
example, least squares techniques would not point out a

specific outlier in the data; however, if the graphical tech-

Example. Suppose the data listed in Table I cou*ain
the cunulated time (t) and cumulated failure# [N(t)] of a
test program (Ref 19:A5). The cumulated time is the total
test time for the item or items on test. For example, if

three items are placed on test for one hour, the cumulated

on test, and as a failure occurred, appropriate design
changes were made to all three items. They were then put i

back on test until t = 10. Using log-log graph paper, t is

plotted on the abscissa and N(t)/t on the ordinate. The-
13
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TABLE I

. Cumulated Test Data

t N(t) 4 N(t)/t
1.00 3 : 3.00
2.00 6 - 3.00
5.00 13 - 2.60
8.00 18 2,25

10.00 ¥y 2.20

slope is then computed and used as the estimate for a. In
this case, the slope is .148 = 14.0mm/94.3mm, The estimate
for K is simply the intercept (ordinatevvalue) at t = |,
which is 3.18. Figure 1 shows the plot of the data as well
as the numbers used to arrive at the estimates for a and K.

If least squares are used to estimate the parameters,
In(t) is considered the independent variable and 1n[N(t)/t]
the dependent variable (from Eq 3.4). The results of using
least squares estimators on the data in Table.l are a = .147
and K = 3.15. These agree closely with the values deter-
mined using graphical techniques.

Once values for K and a have been found, instantaneous
failure rates can be calculated using Eq (3.3). Applying
the negative exponential model, Eq (2.1), will provide esti-
mates of reliability at any specified time. However, one 3

must realize that future predictions are based on the rate

of growth or deterioration which was determined from the

14 ’
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Fig 1. Plot of Data on Log-Yog Paper

original data. In other words, the failure rate will change
consistently with time. V
The least squares method of estimation assumes both

independence of the failure times and also constant variance

~ (Ref 37:389). Since this is usually not the case with cumu-

lative data, confidence limits tsing least squares proper-
ties are not statistically valid (Ref 12:3). However, the
Crow model, which will be discussed next, uses maximum
likelihood4estimators which do enable the analyst to calcu-'

late confidence limits.

The Crow Model

Larry H. Crow, while working with the U.S. Army
Materiel Systeus Analysis Agency (AMSAA), took the Duane
model a step further. Crow used the mathematical interpre-
tation of the straight-line plots of the cumulated failure

rate on log-log paper to shuw that system failure times were

following a nonhomogeneou§ Poiﬁson process with Weibull

15




intensity (Ref 16:205-212),

The Model. The straighi~line plot of cumulated

" failure rates versus cunmulated time on log-log paper means

I (M); - a + bln(t) (3.5)

which is Eq (3.4) of the Duane model wnere 1In(K) = a and
-0 = b (Ref 19-A2-A3). Equating N(t)'with its expected
value (assuming an exacc linear relationship) and taking

exponentials gives

LI R (3.6)
[+3 o
E[N(t)] = e3tP*] (3.7

Letting B = b + 1 and a = e? yields
E[N(t)] = at® (3.9)

The instantaneous failure rate, h(t), is obtained by diffcr-

entiating Eq (3.8) with respect to t. This gives

h(t) = dN(t)/dt = oBtB-l (3.9)

which is recognized a§ the'Weibull hazard function. Of
course, the assumption t?at failure rates remain constant
for the duration of any interval is still in force. This
implies that failures follow a nonhomogeneous Poisson pro-
cess with Weibull intensity function h(t). 1In other words,
for the duration of any interval i, Eq (3.1) aﬁplies. This

is consistent with the assumption of the Duane model,

16
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however, the changing parameter, ki. is models with the
Weibull hazard function (Eq 3.9).

Parameter Estimation. The main difference between

the Crow model and the Duane model lies in the method of
parameter estimation (Ref 16:207). When using least sdutres.
it is assumed that the data are independent with constant
variance. Crow poiats out that the Duane model assumes the
cumulated failure rates are consistently increasing, decreas-
ing, or remaining the sdme. This implies the datt.are not
independent (Ref 16:206). 1In sddition, thg veriance of the
cumulative failure rate is not constant, but decreases as
time increases (Ref 16:206).° The result is that confisence
bound$ of a and B using least squares properties are not

valid. ‘

Rather than using least squares or linear estima-
tions from log-log paper, Crow uses maximum iikeilihood (ML)

estimatcrs. The form of the ML estimators are

S - N;-I-!—-—t— . (3..10)
L lnf “]
1=1 {7‘_1 _
and \
\ 8= (3.11)
| t . ‘
,\ a
where \

N = the total number of failures observed
t; = time 2t the ith fajlure

tn = time at the Nth failure

17
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These estimitors assume s singio reparable system with
failures that follow a nonhomogeneous Poisson process with
Weibull intensity. When s failurq occurs, the system is
repaired and put back into service, and the repair time is
considered negligible (Ref 18:383-388).

The existence of the ML estimators malle it possible
to calculate confidence intervals (Ref 16:208). In additién.
Crow suggests using the Cramer-von Mi;es statistic as a
test for the appropri:téness of the model.

Example. Table II represents data from a test pro-
gram truncated after the Nth failure (Ref 19:A11). The
first step is to estimate B and a using the ML estimates,
and then perfora s goodness-of-fitvtest using the Cramer-
von Mises test statistic (Ref 19:A12). The ML estimate of

B is

~

B = N‘i.r - n-cs—.u-sl-gsm = 4611 (3.12)

N-1)1n(t )- I In(t
(N-1)1n(t)) & n(ty)

The ML cstilate'for‘; is

N _ 15
a L ®  commm— - 06355 3013
3 " a5y WX (3:13)

The Cramer-von Mises statistic is (Ref 19:A10)

5 .
M/t 12 ,
%t 2[() - % (316

[y

where
M = N-2, where N is the number of failures
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TABLE II
?nilnre Data for Crow Model
e ey e
1 1.5 .405 .405
2 3.2 1.163 1.569
3 11.8  2.468 . 4.037
. 29.6  3.388  7.424
5 53.6  3.982  11.406
6 65.2  4.177  15.583
7 119.4  4.782  20.366
8 265.3  5.581 25,947
9 294.0 5.684  31.630
10 441.1  6.089  37.720
11 | 465.1  6.142  43.862
12 567.0  6.340  50.202
13 685.8  6.530  56.733
14 831.4  6.723  63.456
15 949.7  6.856  -eeoe-

ti’- tiu; of 1th failure
~ t, = time of the Nth failpre e e a
B -‘!iia. the unbiased est;natpyofrl ,1  ; .
2
fore the model cannot be rejected. It is also possible vo
use the chi-square goodness-of-fit test for this model

(Ref 13:49, |
19
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Since the model is appropriate, the instantaneous

failure rate for the system may be estimated by

h(t) - anc‘ R T (3.15)

or
h(t) = .6355(.4611)¢t°5389  (3.1¢)

This equation will produce point estimates for given values.

of t. 1In addition, confidence intervals can be computed for

a, B, and h(t) (Ref 19:A12-A13),
This model has found wide acceptance, especially by

the militery and military contrectore. The Army Materiel
Development and Readiness Command 'DARCOMD pamphlet P702-4
has several numerical etemples of applications of the Crow
model (sometimes referred to as the AMSAA model) (Ref 19).
In addition, Donald P. Amiotte did e study of how well this
nodel tracks data (Ref 2) '

The Llo d and Lipow
Hyperbolic Modeg

David K. Lloyd end Miron Lipow considered 8 relia-

bilicy growth model: based on the" following assumptions (Ref
31:338-347). First, s test progren is conducted in N stages,
each stage consists of a certein number ‘of teste or trials
of the system in question, and the only data recorded is
whether the system was a success or feilure.‘ In eddition.
the system has a fixed reliability during~en7'particu1er£'
stage and the results of the testing in e-steze are used to

improve the system in the subsequent stage. After the'Nth

0. |
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stage, a reliability growth curve is fit to the data.
The Model. The form of the growth function at the
kth stage is |
Rk =R, - % (3.17)
where
Rk = the reliability after the kth stage of testing

R, = the ultimate value of reliability which could
be attained 2s k approaches infinity

a = parameter which modifies the growth raté

Parameter Estimation. There are two methods of

parameter estimation suggested by Lloyd and Lipow (Ref 31:
337-347). The preferred method is maximum 1ikelihood (ML),
but the ML estimatprs involve two 2quations which must be
solved iteratively by trial and error. This process could
take a great deal of timé without good initial values. This
~ leads to the second method of estimation, least squares.
Once the least squares estimators are found, they can be
used as initial values for the ML ngghitors.

Since the data are comprised’o'f'sk successes at the

kth stage, the likelihood at the kthvstgcg is given by

R R

e cr ¥ (1_:Rk)”§ LIS (3.18)
vhere ' B
Lk = the likelihood at the kth‘stage'
C = a constant ERE RN
Ry = S /N, = reliability at the kth stage
;sk -ﬂthe.nunber~of'successes»at the‘kth'stage‘
21 |
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Ny = the nunbef of items tested at the kth stage

Assuming each stage is independent gives the 1ikelihood
function

L 1 c b as"u )N“-s“ (3.19)
» DL =C'H - .
kel ¥ kel x (R

The 1og-likelihood function is
1n(L) lcc')yx'lc) T (N-SO(1-R)  (3.20)
n = 1n + £ S.1n + - - .
1k R *+ I xS Ry
Substituting R, - %»for R, from Eq (3.17) yields
“ [+
1) = 1a(C") + I Saa(R, - P
N a
+ I (Nk-sk)ln(l-n_*]p ' (3.21)

k=1

Taking partial derivatives with respect to each parameter

gives the likelihood equations

N 8, N N, - '

- kel R_-§ k=11-R2§

and
amqny . N Sk N (ys/k |
TR R (3.23)
e "% k=11 - R, *+¢

These equations can be solved by trial and error to obtain

the ML estimates for R, and a.
As mentioned earlier, initial values for o and R,
can be determined using least squares techniques. To
22
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deternmine the least squares estimators, let Q be the sum of
the squared deviations of the observed success-ratio (Sk/Nk)

from its expected value (R_ -~ o/k). This gives

. |
Q= £ (S/N, - R+ a/k)? (3.24)
k=1 K

Taking partial derivatives with respect to each parameter

gives the following two linear equations in two unknowns,

N Sk
kflﬁi = NR, - aCy (3.25)
and
N sk
) I 7RGy - oGy (3.26)
where
N oy
=K (3.27)
N o1
C, = kfl ;7 . (3.28)

Solving Eqs (3.25) and (3.26) fur @ and R gives

N N

R C2 kEl(Sk/Nk)-C1 kflcsk/ka)

R, =~ — (3.29)
NC2 - C1

and N N
Cl kil (SI{/Nk) -N I’il(sk/mk) .

8§ = : i {3.30)

NC2 - C1

where a and R, replace a and R respectively.

23
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Example. Suppose 10 items were tested each week for
10 consecutive weeks. After each test, design changes were

made to improve the system based on the results of{the test.

Table III is a suamary of the data collected in this deveiop-

ment p ‘ogram. When N (number Stages) is 10, C1 = t% = 2.93

and cz - ZJ% = 1.55. The least squares estimates are

R, = 1:35(7.2) - 2.93(1.59) . 454 (3.31)

10(1.55) - (2.93)

o 2.93(7.2) - 10(1. 5_1 .745 (3.32)
10(1. 55) - (2. 93)

The resulting growth function is

R, = .938 - (.745/K) (3.33)

This equation will give the reliability for any of the N
stages by substituting in the appropriate value for k.

0f course, Eq (3.33) was found using least squares.
If the ML estimators are desired, the values calculated for
a and ﬁ. should be used as initial values in Eqs (3.22) ind
(3.23). Values for ; and ﬁ. can be éhanged SIIghtiy with
each iteration until Eqs (3.22) andk(3.23)~ire both as close
to zero as possible. The resulting values of ; and ﬁ_ are
the ML estimators. With the properties associated with ML
estimates, the analyst can also f{ind confidence limits for
the estimators and the reliabilities.

Lloyd and Lipow also briefly discusec two variations

‘to the growth model shown in Eq (3.17). One can be used

24 -
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TABLE III

Data from Test Program

E N S kS, S/Np S /KN
1 10 3 3 .3 . .300
2 10 4 8 .4 .200
3 10 7 21 7 .230
4 10 6 24 .6 .150°
s 10 7 35 7 .140
6 10 8 48 .8 130
7 10 8 S6 .8 - 114
8 10 9 72 .9 113
9 10 10 90 1.0 111
10 10 10 100 1.0 100

when data are given as time-to-failure rather than nerély
the number of successes (Ref 31:347). The dther hses
binomial data, but weighs the -urrent estiiate 6f the reli-
ability on the kD trial with ie estimates of all previous
trials (Ref 31:348). R

Lloyd and Lipow alsc g;opedpgitwo-st;te model
(perfect or imperfect) (Réf 5..331f335).u‘ﬂowyv6:; this}_'}
model is restriétad bylthevissunption that fgilﬁres caﬁv r
occur in“dnly one ﬁay. In’other wqrd#,Aéh;y on§ fiiiuféi
mechanism is allowed when‘using the nodéi. in‘iddition,
no ébn#istent estimators for the parameters a;e“prbvided
(Lloyd and Lipow do not provide any, and Sherman, who

r
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conducted a study on ML estimators for reliability growth

models, confirmed this shortcoming) (Ref 9:20).

The Gompertz (Virene) Model
E.P. Virene, of the Boeing Company, used the Gompertz

equation as a general reliability growth model in 1968 (Ref
56:265-270). The model fits a reliability growth curve
through cumulated peteentage points of reliability plotted
against time. The model has been used to determine reliabil-
ity growth in gcvernment programs such as the Lunar Ort‘ter
Spacecraft and the Blue Scout Launch Vehicle (Ref 56:265).

The Model. The form of the Gompertz equation is

. B t ‘ : ] A .
R(t) = 8%, t20" (338

where
system reliability at time t

R(t)

a = the upper limit of reliability as t
approaches infinity A

) _b e?the base_parameter
¢ = the shape parameter.

t = the test time such as cycles or average
7 opernting time per unit equipment age

Nhen using this equation, the parameters a and b must be
between zero and one.' In addition, ‘parameter c nust be
between zero and one if reliability growth is being modeled
ii There are also assunptions concerning the variable
t (Ref 33 D 59) The values of t must be in the same units
for each data point observed and the intervals of t must be
26
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equal. It is alsc assumed that the set of data points used

td'estimate the parameters are divided into three equally

sized groups.
Parameter Estimation.
mate parameters in the logarithmic form (base 10).

Consider data used to esti-
Then,

Eq (3.34) becomes

log (R) = log (a) *+ ctlog(b) (3.35)

The logarithms of the percentage points of reliability are

summed up in each of the three groups to give

"~ n-1 -1

S1 = I log(Rt) = nlog(a) +} £ c |log(b) (3.36)
t=0 . ) L_t-o .
2n-1 "2n-1 ]

S2 = I log(Rt) = nlog(a) +| L c"{log(b) (3.37)
t=n ' L. Le=0 - Jd
3n-1 3n-1 ]

83 - I log(Rt) = nlog(a) + £ c {log(b) = (3.38)
t=2n j t=2n } . =

where n = the number of points in each'gfeﬁp Aha RH = the

percentage reliability for the tth data point. The first
data point in group one is’ elways trensfbrmed tot=0.
Subtraction yields o
” . X 2l B -'n;.li o zn I . N - N . -
2 8y 2 Sy = L e - log(bl (3.39)
- Lt=0 t-n

and Bk

S, - S,=]l ¢ ¢
273 |ten te=2n

[2n-1 . 3m-1 o
- & ¢ |log(b) (3.40)

27




Taking the ratio of Eqs (3.39) to (3.40) gives

n-1 2n-1
S. - § ettt
1 2 . t=0 t=n (3.41)
Sé -5 an-1 _ Sn-1 ¢ *
T ¢"- I ¢
t=n t=2n

By changing the limits of the summation in the denominator

of Eq (3.41), c® can be factored out to give

n-1 2n-1

t t
- tc - I ¢
51 "S5z, _ta0  ten .1 (3.42)
32 - 33 n'h-l t 2n-1 t R *
c e - I ¢
t=0 t=n
Therefore,
1
c = .gz_:_gzj (3.43)
which is the estimate for parameter c.
Rearranging Eq (3.39) gives
S, - 8§ S, - 8§
2
log(h) = gr——FT * &T (3.44)
et et reta-ch -
t=0 t=n t=0

Next, a trick is used to get an expression to substitute

into Eq (3.44) for the summation term. Since
n-1 :
Lctmlececliacde..+? (3.45%)
t=0

and

n-1
[ z c{]c = Cc + c2 + c3 + ...+ P (3.46)

t=0
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.thé results of 15 launches of A missile systém. Since no

Then by subtracting Eq (3.46) from Eq (3.45), the fcllowing

equation rezults

n-1 n-1
tet -] tetle=1-cB (3.47)
t=0 t=0

Factoring and solving for the first term gives

n-1 _.n
zoct = -1——1 —<. | (3.48)
t-

Substituting Eq (3.48) into Eq (3.44) for the summation term
gives the expression

(5, - S)(1 - ©)

(3.49)
(- cMe

which is the estimate for parameter b.
The final parameter, a, is estimated by making sub-
stitutions from Eq (3.48) and Eq (3.49) into Eq (3.36) and

solving for log(a). The resulting equation is
- S, - S
- 1 _ 1 2
103(8) n [Sl —1-*——1“] (3. 50)
. -C
Example. Suppote the data in Tablerlv summarize

successful launches occurred untii the fourth launch, no

growth was assimed and group one (t = 0) starts with launch .

number 4 (Ref 56{268). The sum of the groups are

31 = 1.398 + 1.301 + 1.223 + 1.456 = 5.378 (3.51)

S, = 1.574 + 1.647 + 1,699 + 1,736 = 6.656  (3.52)
| 29 -
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TABLE IV

Missile Data for Gompertz Estimation

Launch Success/ t Reliability log(R)
Number Failure (% R)
1 F - .- .--
2 F - ~-- e
3 F - “ee ---
4 S. 0 25.0 1.398
S F 1 20.0 1.301
6 F 2 16.7 1.223
7 s 3 28.6 1,456
8 S 4 37.5 1.574
9 S 5 44.4 1.647
10 S 6 50.0 1.699
11 S 7 t4.s 1.736
12 S 8 58.2 1.765
13 s 9 61.7  1.790 7
14 S 10 1 64.2 - 1.807 :
1§ S 11 §6.7 1.824 |

Sy = 1.765 + 1.790 + 1.807 + 1,824 = 7,18%  (3.53)

_From Eq (3.43)

1 1
S, -~ S¢n 7
c= [?f':-gé] - [gfgég-;-gfégg] - .80z  (3.38)

and from Eq (3.50)
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s, -8 ~
log(a) = %[51 - —}—_Z%] - 1.890 (3.55)

Therefore, a = 77.6 = the upper reliability limit,
From Eq (3.49)

(sl 'sz)(l * C)

log(b) = - -,740 (3.56)
. (1 - cHe
Therefore
b= ,182
and the reliability equation is
802t
R(t) = 77.6(.182)° » t20 (3.57)

From this equation, the relinbility for any past or future
point can be computed. It should be cautioned, however,
that in this case t = 0 is considered the fourth launch and,
subsequently, R(t) is the reliability for the (t ¢ C)th
launch. '

Virene also cautions that when using this model, a
goodness-of-£fit by comparison should be made as r check for
suitability. The argument is, if the model compares favorably
with existing data, then projections made with the model will
also be good (Ref 56:266).

The Bonis Model

Austin J. Bonis, of the Rochester Institute of Tech-

nology, used a modified exponential function to model

3

L h ey gy s wpar 2o
LT SRS R SICE 927 " 2 > RN




reliability growth of one shot devices (Ref 10:181-18S).

The model is not only capable of producing reliability growth
curves from test data, it can also produce a "target" growth
curve for a test progr:n. 'Tho target growth curve can be
used to monitor progress towards the reliability goal set

for the prograa. | , ‘
The Model. The mathematical form of the Bonis model

is

Ry = R, - qe¥] (3.58)
where {
Ry = the ieliability on the kP test

R, = the ultimate value of reliability that could
be attained if k were allowed to increase

without limit

Q = the initial unreliability or probability of
failure before the test begins

v i = the improvement factor
k = the @gnbeg of the stage
The constant, R_J will shift the curve up or down by a con-
stant amount. ... . ..

A.sénawh;t limiting factor.is that ths improvement
factor, B, is constant throughout the process. This means
whatever 1nproyenent factor is estimated, is assumed to de
the constant improvement factor for the entire test progranm.

Parameter Estimation. The parsmeters in this model

are estimated by solving the equation that represents the

 first throo stnges (Raf 10: 183) The equutions for the
SEE 1 DI : . .

first throo st:gos ard
| 52
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R, = R, - " (3.59)
R, = R, - Q8! (3.60)
Ry = R, - QB% | (3.61)
Subtraction yields
Ry - Ry = -q(8° - BY) = Qa1 - B .62
and |
R, - Ry = Q8! - B%) = -@8(1 - B) (3.63)

By dividing Bq (3.62) into Eq (3.63)

—r (3.64)

which is the estimate for B. Also, solving for Q in Eq
(3.62) gives ’

-T—% e (3.65)

Finally, R_ is determined by solving Eq (3.59)
R.-RIQQ R (366)

'hen using Eqs (3 64). (s. 65). gnd (3 66) to esti-
mate the paranoters. k is assumed to be s consistent ueasure
of time. Also, the data points used in the estimating equa-
tion should either be the first three or three consistent
groups with the same number of data points in Quch group.
Bxggglé.‘ Suppose a missile developnent piogran«con-
sists of testing 10 missiles it each sta;p‘fof 10 stages.
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The desired reliability at the end of the program is 90 per-
cent successes. The first three stages resulted in two,
six, and seven successes respectively. Management wants to

know if the present development will result in a 90 percent

success ratio at the end of the program based on the results

of the first three stages.

In this case, R1 = 2/10 = .2 Rz = 6/10 = .6, and
Ry = 7/10 = .7, which are the estimated reliability levels
of the first three stages based on the results of the test.
Using Eqs (3.64), (3.65), and (3.66), the parameters are

estimated as

w o

5 - iy R: o e R (3.67)
R, - Ry . . .

Q-4 ?-r——[g°°_.'2-f7‘§-.ss  (3.68)

Ry = Ry Q=2+ .55= .73 (3.69)

The answer to‘the‘questlon‘posed‘by‘the management
is clear before actually celculatinz RlO’ because R, is the
highest reliability thet can be hoped for in the present
program. However, ild can be’ eesily calculeted by substi-

‘nb._

tuting ian the appropriate velues. Thus.
. 10 p -

‘RIO‘ .73 .53( 25) =,729 (3.70)
which is Short'of the reliability goel.' Of course, nanage-
ment can now chenge ‘the development program nnd stert the
estimation all over egaln (Ref 10:181- -183).
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Othar Models

The Weiss Model. Herbert K. Weiss, of Northrup

Aircraft, Inc., stated that mary complex systems, especially
those involving numerous electronic components, are subject
to failures with operating time that follow a Poisson-type
distribution (Ref §7:532). Assuming the mean time to |
failure (MTTF) changes by a constant percentage, the model

has the form
T(1) = AL (3.72)

where T(1) is the (MITF) for the 1% trial or stage, and A
and c are parameters to be estimated.

The assumptions for using the n5451'¢re, first, s J
simple system is assumed where the MTTF’ie;believed to ;
change at a rate that is .unknown on successive trisls. 1In
addition, failures are assumed to occur accordinz to a d
Poisson process. Lastly. 'a series of triels are assuned
with the time to failure on eech trial being recorded.

Weiss develops estimates for A and ¢ by the method
of maximum likelihood. The ML eetinetorsﬁnust be computed
in an iterative process wHAfé’gd'151%1&1”v£1ne"15 assumed
for ¢, and then two values for A are colputed from the ML
equations. The process 1is repeeted until the two values
calculated for A are equel (within a specified tolerance)

A nice characteristic of this nodel is the ebility ;

to include other functions for T(i) For example, it can

be simplified to T(i) = A 1£ there. is no change in the MTTF

with each successive trial number. S .
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The Wolman Medel, W.W., Wolman considered a model

which takes into acceunt three distinct outcomes of an
experiment--success, .nherent failure, or azsignable cause
failure (Ref 59:144-)60). Inherent failures are considered
random, while assignable cause failures arc those that are
attributed to a design weakness or, therefore, correctable.
Wolman uses a Markov-chain approach to derive the model.

The Wolman model suffers from three weaknesses.
First, it requires that the number of assignable cause fail-
ures be known in advance. Second, Wolman has no procedure
defined for estimation of parameters in the model. Finally,
it lacks the,ability to make projection about future reli-
sbility (Ref 9:41-42).

Sarlow and Scheuer Model. Richard E. Barlow and

Ernest M. Schsuer, of the University of California at
Berkeley and the Rand‘éorpgritien,walgo considered a trin>-
mial rg};abiliti growth model_(;uccess; inherent failure,
and assignable cause f#iiurq. as with the Wolman mcdel)

(Ref §:53-60). Unlike Wolman's probabilistic model, theirs

is a nonparauetric-statistical model., ﬁs with the Wolman

model, inherant fsilures are defined as those associated
with & systen at .he state-of-the-art., Assignable cause
failures are those which can bdbe corracteq by equipment or
operational modifications. The reliabili\y of the system
at the ith stag&lis defined as

‘ Ry ! f 9 ﬂi ' (3.72)
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where q, is the probability of an inherent failufe, and q;
is the probability_of.an assignable cause failure at the ith
stage. The parameters Q, and q are estimhted by the method
of maximum likelihood (ML). o

The assumptions of the Barlow-S;héuér model are that
there will be k stages of testing. At each stage,Aa certain
number of test trials are conducted which may be fixed in
advance or randomly. The results of the tests from one stage
are used to make impro#éments to the system at future stages.
In addition,_any‘changes that are made to the system are
assumed to increase the reliebility of the system. One of
the problems with the nodel.is that Barlow and Scheuer pro-
vide no functional relationship for the reliability growth
process. This means it is not possible to make reliability
projections (Ref 9:40).

The Gross and Kamins Models. Gross end Kamins, of

the Rand Corporation, investigated four generxalized reliabi-
lity growth iodels (Ref 27:406-416). One of the models was
a generalized form of the Lloyd and Lipow model. The othex
models were viriations of a model very much like Lloyd and
Lipow's. DMNcne of the models smergsed a&s a cleoar choicd, and
Gross and Kamins suggested that yet another variation, an
"adaptive model," would yield good résuits {Ref 4:18).
Gross and Kamins present seversl tables and graphs
whiczh show, in a comparative way, the results of their
efforts, In addition, their concluding remarks point out
the significent results of the research in a 1list of nine
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points.
The Pollock Model (Bayesian). Stephen M. Pollock

introduced a reliability growth model tha% incorporates the

Bayesian concept of prior'infornatidn (Ref 49:187-198).
Pollock's main objeztives were to gain_iaference on estima-
tion (the present value of reliability) and projection (the
relisbility at some future time), with or without continued
spplication of the correcfion or growth processes (Ref 58:
472-475). 1In addition, he includes both continuous and
discrete cases. |

Pollock provides a detailed discussion and rigorouvs
mathematical preientation of Bayesian methods and how taey
apply to reliability growth. He has even iaken ints account
the notion that tolicbilfty may decrease rather chan in-
crease as the development process is administered (Ref 4:30).

The modeling technique presented by Pollork sppears to have

-good monitoring pot-ntial and tlso=gopé projection capability.

. The Singpurwalla Time Seriig_yethod. Nozer D.

Singpurwalla, of George lashinzton University, has done work

in relisbility using time series analysis. techniques. 1Ia
1975, he proposed s method for-forccastinx«roliability growth
or deterioration based ca a time series snalys’s approach
(Ref 53:1-14). He pilaced particular ewphasis oa the fact
thut the time series process he discubscs will measure both
an increase and a decresse in failure rate.

e Thc_assu-ptions of the model are, first, outcomes
of each test are determined to.baloith§r~succosscs or. .-
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failures. In other words, at the end of the jth stage, Nj
indepeadernt tests have been completed with rj succeSses.

1f Pj denotes the reliability a: the end of the jth stage,
then rj is binomially distributed with parameters Nj and Pj.

Singpurwalla offers two techniques for directly esti-
mating the parameters Nj and Pj. First, he discussgs the
method of maximum likelihood. Then, because'it is often
desirable to modify eStimators based on prior information,
he suggests using Bayesian estiﬁators. In addition.'he pro-
vides a discussion ou how to work with transfdrmations of
the estimators.

The time series analysis Singpurwalla suggests using
is the Box and Jenkins method (Ref 11). This is an autoregres-
sive integrated moving average (ARIMA) model, and the tech-
nique is to model the data and then unalyze the residuals.
The determination of a positive trend term would imply
reliability growth is present, wiiile a negative trend term
would indicate deterioration of reliability.

Singpurwalla emphasizes two advantsges to his
approach. First, his method does not require a particular
reliability growth model be specified. This implies more
flexibility for the analyst. Next, the method allows the
anelyst to incorporate deterministic inputs such as engineer-
ing judgments or managerial interventions (Ref 53:2),

A disadvantage to the approach is that it requires
data in s large number of stages. This is necessary so
trends in ihe residuals can be determined.
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IV. Dormancy and Dormant Reliability

Almost any system‘conceived will spend a portion of
its life in a non-operating state. In a'non-operating state,
the electrical or mechanical strésses normally associated
with an activated state are not present, but this does not
mean that all stressés to the system are absent (Ref 32:16).
Other stresses may be at work--the environment, transporta-
tion, or handling, to name # few. o ‘

| Reliability, of course, is state dependent. If the
true reliability of a system iz to be known, the nature of
each state of the systeh ﬁuét bé taken into account. However,
this'has not always'beenAdoﬂe ih fhe paSt. For example;'
Rocco F. Ficchi, an engineer for Radio Corparation of
America, stated: o o

It is generally assumed that parts and equipment
subject to zero electrical stress had zero fail-
2;;5. This has been shown to be untrue [Ref 24:

. Engineers now realize that reliability in a non-operating

state is very important. For example, certain of sl

tegic weapon systems (Minuteman missile system, for one)
spend all their life in non-operating states. 1In addition,
new weapon systems, like the cruise missile, are being built
which will spend most of their life in a non-operating con-
dition (Ref 32:7). This has led to an increasing inﬁéresf
in the reiiability of ﬁon-oﬁerhtiﬁg si#teﬁs (Ref 32:11).
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Definitions

Non-operating State. A non-operating state is actu-

ally a set of states that can be divided into several subsets.
Examples of these subsets are: storage, inherent dormancy
(totally non-operating but not in storage), and operationally
ready storage (awaiting operational use with sone subsystems
energized) (Ref 32:17). However, in this study it'is-not
purposeful'to differentiate between the differentvnon4
operating states. Therefore, terminclogy which has been more
precisely defined‘elsewhere will not be used here. Instead,
the following definitions will be used to refer to a general
non-operating state. A | o \‘Aﬂv‘_vﬂ ;_ N | ;
» Dornancz. This is a state where a system enperiences
either no operational stress, or very low levels of obera-
tional stress (Ref 24:25). Dormancy can include such states
as non-operating portions of alert, transportation and )
handling, and launcher carriage as examples (Ref 32 18)

Dormant Reliability. Reliability is defined as the

A bt e e

probability that failure does not occur before a specified

et

time (see Eq 2.2). Cdnsistent with this definition, dormant
reliability will be referred to as the probability that a

i S e A et

system in a dormant state does not fail prior to a specified
time. In other words, dormant reliability is the reliability

of a system in a dormant state. S S g

Methods of Analxsis _ . i |

Dormant reliability analysis has been identified as
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falling into three Broad categories (Ref 32:27). These
categories are: 1) parts count and stress analysis; %)
failure rate modification factors (K factors); and 3) test-
ing (accelerated and field testing). Each of these methods
have good and bad points, which helps indicate which to use

in a given situation. In the following paragraphs, each

‘method will be briefly described stressing important points

6f each method.

Parts Count and Stress Analysis Method. This tech-

nique assumes that system reliability can be calculated if
the reliabilities of each component are known (Ref 32:27).
The failure rates of each component arz detcrmined and then
summed together to get the system failure réte. The ¢uii-
ponent failure rates are often obtained from tablcs like
the MIL-HDBK-217C. These tables are the results of both
empirical data and laboratory testing on previous equipment
(Ref 39). |

This method has been used.extensively in the design
phase of systems or subsystems (Ref 32:27). It is parti-
cularly usefu1 as a comparative evaluation, but it has not
been conclusively checked against empirical data from dor-
mant systems. For this reason, it is.not likely that the
operational analyst would use this procedure for dormant
reliability prediction (Ref 32:27).

Failure Rate Modification Pactors. Adjustments to

failure rates which account for varyiﬁg stresses, like the
environment, are generally called K factors (Ref 32:28).
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The idea of K factors is to modify the failure rate of a
system to achieve more accurate prédictions. K factors are
usually develo ed from field d#ta or laboratory testing with
systers or components (Rcf 32:28-29).

It is important to stress that K factors must be
used with caution. Unless specifically validated against
empirical results, K factors could simply be wrony. However,
they have been used with good results in certain situations
(Ref 32:60). ;

Testing. Testing is probablf.ihe most desirable
method of analyzing dormant reliability; however, it is also
the most expensive. The two factors that are primary consi-
derations in any testing program are sample size and time

(Ref 32:30). Of course, both of these factors can be measured

~in dollars. Many times, a limited budget makes it impossible

to use testiﬁg to analyze a dormant system.

Testing may be done in either real time or in an
accelerated way (Ref 32:30)., Accelerated testing can be
usgd if the predominant failure mode is known. For example,
if seasonalghumidity cycles (changes in relative humidity
with thq_seisons) are known to cause a seal to fail in a
hydraulic sztem, then the humidity cycles c#n be accelerated
in the_laborhtory to simulate real time data. This has been
shown to be a very effective way of determining failure rates
(Ref 32:31). / However, it i; important to remember that it
is notvexgctly the_s#meéas\fﬁal tiﬁé d#tﬁ‘ﬂ There coculd be

unforeseen failure me@hénismsvthat would not show up ic the
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accelerated test data. For this 1.ason, accelerated test
data should be taken in the proper context, |

Real time testing or surveillance testing, or the
other hand, uses data gathered from actual environmental
conditions((kef 32:32). Given the time and the apﬁropriate
sample size, this method can be & very accurate way to
determine Jormant reliability. However, the failure mechan-
isms in dormant‘systems are often very slow to surface.
For instance, it could take years of dormancy before z de-
crease 1h reliability of an electronic circuit would be
noticed (Ref 21:14). For this reason surveillance testing
is not always practical (kef 32:33). Also, it is generallf
very expensive to administer a surveillance test which is

another reason why other methods of testing are often chosen.

Dormancy Modeling

Dormant systems are generally characterized by
changing failure rates that are increasing over time. The
problem with modeling most dormant systems is usually due
to the slow rate at which failures occur. The failure rate
may change only minutely in the first several years of an
equipment's life. The variance in a set of data is, it
times, large enough to completely mask dormant reliability.
For example, Dickhaut and Dudley did a study of the lonﬁ-
term storage of microelectronic components, and were
completely unable to make predictions based on data that

were available (Ref 21:40-44). The problems encountered in
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the study were typified by data with too much varisbility

to provide statistical trends. Iu addition to very slow
changes in failure rates, dormant systems also have quite
small initial foilure rates in man; cases. Failure rates

of microelectronic devices, for example, can be as low as

1 x 10°% units (Ref 8:3-5 to 3-324). " Again, this means
variability in measurements can be & problem when analyzing
data. Even though problems with dormant data éxist. attempts
" have been made to model dormant systems, particularly during
the design phase.

Dormant reliability modeling in the past has been
done most often in conjunction with life-cycls modeling in
the design phase of systems (Refs 1; 7; 8; 20; 21; 23; 34;
35). Life-cycle modeling takes into account the reliasbility
of each phase of a system's 1life (Ref 32:C-1). Dormancy,
under this concept, consists of periods of time in the life
of a system where the system is in a dormant state. The
failure rate modification method is used to determine a
failure rate for the specified time period and the eaviron-
mental conditions that are sssumed for that time poriod.r B
This failure rate is then used asvthe‘pﬁfa-;tér in.the nega-
tive exponentizl model and the reliability can be calculated.
This technique is used under the concept of “periodic
testing” or "ne testing” (Ref 32:C-2). Under the “periodic
testing”" concept, the system is tested at certain intervals,
and if necessary, repaired. This brings the reliability
level back to the original level or very nearly so. It
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should be noted that no evidence was found (in the form of

technical reports) of this technique being validated with

empirical data.
The literature search on dormant reliability pro-

duced no widely accepted modeling techniques on operational

systems. Reasons for this haig not been specificzlly

. [4
defined. However, one could speculate that the cost of
gathering empirical 4ata has_béen judged to outweigh the

information received fiom the data. Also, the military may

be one of only a few organizations with a real concern about

dorlan; reliability. After all, private sector businesses

are generally concerned with pfoducinﬁ and selling, not

with sto''ng.
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- V. The Monte Carle Exnetiments

The fact that both reliability growth and dormant

reliability are characterized by changing failure rates

was the motivation for the Monte Carlo experiments. Certain ﬁ

reliability growth models use the method of fitting a curve
to a set of data. From the curves, which smooth the data,
reliability estimations can be inferrud. Some reliability

growth models are capable of modeling data that has either

i
i

a decreasing failure rate (reliability growth) or an increas-

ing failure rate (as with dormant reliability). With some
models, the original assumptions may have to be changed to
handle increasing failure rates, but this problem can
usually be overcome. For example, the parameter (a) in the
Duane model i3 assumed to be between zero and one if reli-
ability growth is present. However, by changing this

assumption and alloﬁing a to take on values gieater than

~ _one, an 1ncteesing failure rate caﬁ be‘lodeled;‘ Therefore,

models like the Dusne can be considered cnndidstes for
dormant reliability modeling.

The purpose of the Monte Carlo experiments was to
cbserve results of modeling ette-pts. i.e. modeling dormant
data with r2liability growth models. The vesults are
important because they potentially provide 2 new methodology

for analysts who work with dormant data. There is slready
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& good variety of reliability growth models in existence,
and the methodology behind.most of them is well developed.
Any evidence that siiows reliability growth models to be use-
ful in modeling dormanc¢y would provide alternative methodo-

logies to solve the problem.

Monte Carlo techniques were chosen to generate data

for the experiments_fn: twe reasons. First, no data from a.

dormant system could be found that was suitable for the
experiments. Oely one good set of data was obtained. This
data was the resuvlt of field tests in the AGM 65 A/B
(Mavefick) missilevsystem. The problem with the data was
that it showed too small an increase in the failure rate to
be useful in a comparative analysis and, therefore, was not
used. “ ;

The second and most important reason Monte Carlo
methods were used was to have control over the underlyiﬁg
failure distributions‘ef the'system. Since the underlying
distributions were known. the true systen reliability could
be calculated and used as a comparative basis for the
“goodness-of-£fit" neasures. In eddition. the underlyihg

distribution can de eesily changed for future experimentation.

Models Tested
Three reliability growth models were selected for

the experiments. They are the Gompertz model, the Bonis
model, and the Duane model. There were three primary fuc-

>rs considered in the selection of these models. First,

s
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any model chosen had to have the ability to predict future
reliability (this is an extrapolation of the estimated
function). All three models met this requirement. Second,
the underlying uassunmption in the models chosen had to be
such that dormant data could be modeled. Again, the three
models chosen met the requirement. Lastly, because computer
time was a constraint, it was desirable to select models in
which the paremeters werec relatively eésy to calculate. The
design of the simulation called for the parameters to be
estimated 1200 times for cach model. Therefore, models that
require iterative parameter estimation techniques were ruled
out. An additional factor that was considered was the popu-
larity of the models in the military. These three models
have been used extensively in military programs, particularly
the Duane model. For these reasons, it was decided that the
three models chosen would represent a good set for initial
experimentation.

The Gomnertz Model. This model has three parameters

which are estimated from explicit equations using time

dependent data. Mathematically, this model is represented by

t
R(t) = ab® (5.1)

This samelform was used to model the dormant data with one

exception, The parancter a is defined as the ubper value of

reliability of a systcnm (sce the discussion of this model in

Chapter III). In the sinulation, the assumption was made

that all systems that wers placed in storage at the beginning
49
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of the testing program were nonfailed (good systems). Since
parameter a represents the highest attainable reliability,
this implivs that a = 1, and the functional form of the

model reduces to

ct
R(t) = b (5.2)
where
R(t) = the pfobability the system will be a
success at time t

b = the base parameter
¢ = the shape parameter
t = time

" The pérameters b and ¢ were estimated using Eqs
(3.49) and (3.43) respectively. To make Eq (5.2) a valid
measure of ‘reliability, the parsmeter b must be restricted
to values between zero and one. Alsb, if an increasing
failure rate is assumed, c must be strictly greater than one.

If these conditions were not met in the simuiétion. the model

" was considered invalid. The primary cause of not meeting

the restrictions was not enough consistent data.

" The ﬁohiérubdei.’:Assumptions"éohcernihg the data

when using the Bonis model are similar to those when using
the Gompertz model. The data must be used in three conse-

cutive groups (see the discussion on the Bonis model in

TChapter III). The form of the Bonis model is

nk-n-an' S (5.3)
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R_ represents the upper limit of reliability as k is increased
without bound (see the discussion of this model in Chapter
I11). This parameter is very similar to the parameter a in
the Gompertz equafion. Also like a in the Gompertz equationm,
R, is assumed to be one, because all nonfailed systems are
assumed at the start of the test program.

The other two parameters, B and Q, are estimated with
Eqs (3.64) and (3.65) respectively. Since Q is defined as

the initial unreliability, its value was restricted to bet-

‘ween zero and one. In addition, B must be strictly greater

than one if an increasing failure rate is to be represented.
Once again, if these assﬁmptiohs were not met, the model was
considered invalid.

A particular problem with the Bonis médel is that it
has no inflection point, and Rk will decrease without bound
when used to model dormant data. In other words, once the
reliability starts a downward trehd, it continues downward
without bound as k is increased. Extrapolated values for
reliability obtained from this mode; are invalid after a
certain point. However, there is still a ra:ionale for
using the model., For instance, many times an analyst may
be interested in finding the time (k) where the reliability
level of interest is relatively high (generally above the
inflection point in the true reliability curve); the Bonis
model should provide acceptable results. |

The Duane Model. The Duane model uses two methods

of parameter estimation--the graphicai téchnique and least
51
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squares estimators. The least squares estimators are a
mathematical representation of the graphical technique.
Therefore, least squares was chosen to estimate the para-

meters. The Duane modsi is given as

N(t) = kel (5.4)
where
N(t) = the cumulgtive'number of failures
a = the decreasing reliability rate constant |

K = a constant that represents the cumulative
failure rate at t =0

t = time

Dividing Eq (5.4) by t and taking logarithms gives Eq (3.4),
which is uséd to estimate the parameters a and K.
Once the two parameters have been estimated, they
are used in Eq (3.3) to obtain instantaneous failure rates
for values t. The instantaneous failure rates are t:an;-
formed into relisbilities usini the negative exponential model.
The rztionale for usiné the Duane model is that with
reliability growth, the cumulative failure rate was a de-

'creasing function of time. With dormant réliability, the

opposite occurs; the cumulative failure ;ato‘inc:eases.with

time,

Simulation Methodology

The methodology was to use Monte Carlo %echniques to
generate sets of dornant data which were subsequently modeled
with reliability growth nodels. After the‘gvfa were modeled
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(param>ters estimated), reliabilities were estimated using
the functional relationships associated with each model.
The estimated reliabilities were then compared with th: true
reliabilities based on the underlying failure distributions
which were used to generate the data. The result was a set
of rglative meaéures (which can be thought of as relative
goodness-of-fit measures) of the nodei against the true
system reliability. |
The System. In order to add a sense of realism, a
fictitious missile system was contrived which will be re-
ferred to as hypothetical missile syséem one (HM-1). The
HM-1 consists of five independent subéystems in series:
1) the propuision system; 2) the serv&-mechanical fin actu-
ator; 3) the arming system; 4) the gyro; ind S) the electro-
nic control system. Each subsystem hés a separate failure
distribution associated with it. Theiﬂelbuil failure dis-
tribution ; 7
31 B
£(¢) -‘%-n—-nxp [-}] , t320 (5.5)
was assumed to be the underlying distribution in each sub-
systea. In this distribution, B is the shape parameter
(governs the shape of the density function), snd 6 is the
scale parameter (stretches the density distribution out)
(Ref 30:22). ‘ )
The five subsystems and their associated parameter
values are shown in Fig. 2. Of course, the knowledgeable
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reader will realize that the five separhte distributions
could have been combined into a single Weibull failure dis-
tribution becausé the shape parameter, B, is identical for
each subsystem. However, the computer simulation was
written with the intent of making future changes to the
failure distributions of the subsystéms. Therefore, even
though one distribution could have modeled the entire system
in this case, separate distributions were used to maintain
generality. |
‘In each subsystem, the shape parameter, B, was given
a value of four. Even though the value of B was arbitrary,
the intent was to closely approximate the normal distribu-
tion (Ref 30:294). In other words, it ias assumed that the
failures of each subsystem.were normélly distributed, but
were approximated by the Weibull distribution with B = 4,
The scale parameters were contrived so the system would de-

crease in reliability from one to approximately zero as

time (t) was increased from zero to 20. The reasoning

hehind this was to force the models to contend with a'full

o

range of relin.i"ities and see how well the predictions
would be under this contention.

Data C»ner..tion. Monte Carlo techniques were used

to generate data for the modeling experiments. The «... were
generated as either a missile failure or success. The steps
for determining the successes or failures in a set of data

are as follows:

1, The reliability of each subsystem was calculated
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for the specified value of time (t).

2. Generate a random number for eadh.subsystem and
compare it with the subsystem's reliability
calculated in Step 1.

3. Since the subsystem reliability is defined as the
ﬁrobability of a success, the subsystem was con-
sidered a success if the random number was less
<han the calculated reliability.

4. Tach subsystem is independent and, therefore, all
subsystems must be successful if the system is to
be a success. | '

- 5. Repeat steps two through four until the desired
number of missiles per time period have been
tested.

6. Increment t, where t = 1,2,3,...,12, and repeat
the process until the desired number of 7ears

of data have been generated.

The computer used for the simulation was an Apple II
microcomputef. The internal psehdorandom number generator,
FND( ), was used to generate the random numbers. The vali-
d’ty of the random numbers was checked with two separatz
serial tests (Ref 41:57-59) done on two separate random
number streams of 100,000 random numbers eacﬁ.' In each
serial test, 100 chi-square statistics from a frequency test
were used as input to another chi-squarg test (Ref 41:57).

The results were values of 5.600 and 6.600 for the chi-

square statistics compared with a critical value of 14,684
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at a = .10 level of significance. It was concluded that

.RND( ) was a satisfactory pseudorandom number generator for -

the experiments.

The Testing Procedure. In the simulation, the test-

ing schedule was varied with the intent of finding which
model would work best in a given situation. Also, it was
hoped to gain An insight into how much data were needed
for one model relative to another.

The first assumption is that a large amount of HM-1
misi;iles were produced and placed in storage at t = 0.
Each time period (which could be thought of as years), a
specified number of missiles are brought out of storage and
tested. For example, in the first simulation run 50 missiles
per time period were brought out of étorage and tested. This
was the first testing policy used with each model.

After six time periods of testing, the data were
modeled and the reli:bilities, R(t), for t = 1,2,3,...,20

were estimated. This is considered one set of reliabili-

~ties (which can be thought of as one dormant reliability

curve) based on one set of random numbers. This process was
repeated S0 times using different random numbers each timeﬁ
The result was a set of reliabilities Ri(t) where i = {
1,2,3,...,50 snd t = 1,2,3,...,20, Using the central limit|
theorem (Ref 37:252), the mean and variance for the Ri(t)'s

were calculaled for t = 1,2,5,..., 20 where the mean is
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50
R(t) -‘g% 1xlni(:) (5.6)

and the sample variance is

50 2
L [R;(t) - R(t)]

s(t) » izl (5.7)

n-1

The mean, R(t), was the dormant reliability curve that was
used for the comparison with the true system reliability
curve. This will be discussed in further detail later.

- The next logical step was to add more data. This

was fiist done by leaving the same test program in effect

(S0 missilei per time period tested), but instead of using
only six time periods of data, nine time periods of data
were used. Increments of three time periods were chosen for
increases 15 data be-ause the Gompertz and Bonis‘nodels both
require dnt; in three equally-sized groups. Finally, 12 time
periods of éata~were used to make estimates with the same
test prograﬁ in effect. This resulted in three sets of
E(t)'s or three average dormaht reliability curves, oné for
six, one for nine, and one for twelve time periods of data.
The preceding procedure was considered to be one
simulation run based on one test program. The final step
was tc¢ change the test program from SO missiles per time
perioa tested to 100 missiles per time period tested in
increments of 10. This meant that six different simulation
runs were made on each model with each run using a different
tast program. The idea was to start with a minimal amount
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of data, increase it by increments, and observe the behavior

of the dormant reliability curves as more data were used.

Relative Measures

In order to include a numerical comparison of how
well each model did under a given test program, three rela-
tive measures were used. These measures (M1, M2, and M3)’
can be <hought of as relatsve goodnéss-of-fit measures and
are similar to ones used by Toke Jayachandxan in his stuly
on reliability growth (Refs 28; 29).

Measure One (M1). This measure is simply'the sum

of the discrepancy between the true veliabilities, R*(t),
and the average reliabilities, R(t), for a given test pro-

gram, Mathematically, the measure is
20
Ml = tllk'(t) - R(t)] (5.8)
tm

where t is the time periods. Ml measures the total distance
the average reliability curve [K(t)] is away from the rue
reliability curve [R*(t)] at each of the 20 time periocds.

Measure Two (M2). This measure is the sum of the

squared values of Ml at each of the 20 time periods. Thii
measure is closely associsted with the sum of the s.wared
errors which is used in regression analysis. The fo.m of

M2 is

20 "
M2 = t}:l[R‘(t) - R(t)) (5.9)
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This measure emphasizes average reliabilities that are

grossly different from true liabilities.

Measure Three (M3). M3 is defined as the maximum of

the squared differenr . between the true reliabilities

[R*(t)] and the average estimated reliabilities [R(t)]. The
equation for M3 {s

M3 = Max{[R*(t) - R(t)]%) (5.10)
t

Each of these three measures was calculated for
each average dormant reliability curve estimated (R(e) 1.
This resulted in 18 sets of measures, one set for the test
program wherelso nissiies per time period were tested and
six time periods of data were used, another set for S50
missiles per time period iested and nine time periods of
data used, and so on. The number of missiles tested per
time period rangéd from 50 to 100 in increments of 10, while
the number of time periods of data used was six, nine, or

twelve. Thus, a total of 18 sets of relative measures were

calculated.
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VI. Simulation-ﬁesults

The results of the Monte Carlo exyerimehts were not
as consistent as hoped for. That is, the models did not
bghave as well as expected. For instance, the p;edictions
from both the Duane and Gompertz models were further trom
the true reliabilities when the number of time periods of
~ data used was increased from 9 to 12. For the Duane model,
this happerzd only when 90 or 100 missiles per period were
tested. However, this phenomenon took place in every case
with the Gompert: equation. On the other hand, the Bonis
model w23 generally more consistent. However, the Boals
equation jenerally required more data to achieve.relative :
measures that were as good as either the Duane or Gompert:z
model. Also noted was the fact that increasing the number
of missiles tested per time period did aot make much differ-
ence in & model's ability to predict future‘reliabiiity.

On the other hand, increasing the number of time periods of
data used to estimate parameters made the reliadility pre-

dictions significantly better.
The results of the simulation are shown graphically

in Fig 3 through Fig 20 at the end of the chapter. Also,
the relative goodness-of-fit measures (M1, M2, and M3)
follow the graphs in Tables V through X.
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Results Using the Gompert:z

Equation

The most notable inconsistency evident from the
relative measures involves the Compertz equation. The
measures indicate better results when nine periods of data
were used instead of 12 with every test policy. In other
words, the predictions were worse when more data were used;
The reason for this inconsistency is not completely}under-
stood. However, there were two observations noted that'
help explain this occurrence. |

First, the dormant reliability curves generated by
the Gompertz equation are quite sensitive to the base para-
meter, b, from Eq (S,Z}w”"?;;'exanple. with the shape para-
meter, ¢, set equal to 1.4 and b = .99, the reliability at

10 time periods, R(10), is .75. However, when b was changed

by . w5 to .995, R(10) = .87, a difference of .12. This
points . “e fac2 that if b is estimated slightly high,
the result wi' be a dormant reliability curve that over-
estimates the true \;liahilities (shifted to the right).
From the graphs, this appears to be the case with the
Gez, ...> *Ir~tion. : {

There was slso a& second grend noticed with the
Gompertz model. The shape parangtor. ¢, governs the rela-
tive steepness of the reliabilitﬂ curves at the inflection
point. The higher the value of c, the steeper the curve

will be. Therefore, if the base parameter, b, is estimated

too high, the scsle parsmeter, c, can compensate by making
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the curve steepef. This will cause the predicted reliabil-
ity curve to cross or at least converge toward the true
reliability curve. This occurred with every testing policy
when nine periéds of data were used. The average base para-
meter, b, was always the greatest when nine periods of data
were used (.996 to .998), but the shape parameter, c, always
compensated by being higher when nine periods of data were
used rather than 12 (approximately 1.65 compared to 1.45

for 12 periods of data). The reason for this was not deter-
mined, but.it resulted in better predictions when nine
periods of data were used in every case.

The observations made on the Gompertz model can be
visualized in the graphs of Fig 3 through Fig 20. It should
be noted, that the data used to estimate b and c was cumula-
tive in nature. This was according to the example suggested
by Virene (Ref 56). This means the percent reliability

levels used were cumulated percentages of all the data from

time t = 0,

Results Usingvthe Bonis
Equation

The Bonis model was generaliy mnore consistent than

either the Duane or Gompertz models. Under every testing
policy, the relative measures improved as more data were
made available. The problem with the Bonis model lies in
the fact that more dat# were needed tb get results that -
compared equally with the Duane and Gompertz molels. This
was due in part to the fact that the Bonis model does not
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have an inflection point. This means the reliability ﬁre-
dictions decrease without bound once the downward trend has
started. 'This makes the model unable to predict reliabili-
ties in the right-hand tail of the reliability curve. This
can be seen in Fig 3 through 20. However, the reliability
predictions madevwith the Bonis model appeared to be accept-
able for all reliability levels prior to the inflection
point of the true reliability curve. In many cases, the

fit of the Bonis model appears closer in the early time

periods than either the Duane or Gompertz models.

Results Using the Duane Model

The Duane model generally required more data than
the Gompertz model, but less than the Bonis model, to get
equal results. As with the Gompertz model, however, it also
was inconsistent in some cases. For example, as the number
of missiles tested per period was increased from 70 to 100,

the relative measures increased siightly, indicating t<he

‘predictions were gétting worse., This occurred only when 12

periods of data were used to estimate the_parameters. Also,

 the measures increased when the time periods of data were

increased from nine to 12. However, this was only the case
when 90 or 100 missiles per period were tested.

Like the Gompertz model, the reason the predictions
of the Duane model were getting worse appeared to be a shift
in the pred}cted reliability curve. Unlike the Gompertz

model, however, the Duane curves shifted to the left rather
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| than to the right. One reason for this shift may be in the
way the parameters are estimated. From Eq (3.4), it is ob-
. vious that the dependent variable, 1n[N(t)/t],.is undefined
when N(t) (cumulative number of failures) is zero. This
means that until a failure occurs, data points cannot be in-
cluded in the regression equation. During the simulation,
the system reliability was high enoﬁgh in its early life to
cause no failures in time periods one through three. At
times, there would be no failures until as many as five or
six time periods. Of course, the fact that no failures take
place early in the system's life is taken into account in
some respect by the cumulation of data. However, it must be
re-emphasized that once a change in the failure rate is esti-
mated with the Duane model, the change is assumed‘to be con- : f
sistent throughout the extrapolation. For example, if there )
are no failures for the first three time periods and nine f
time periods of data are used to estimate the parameters,
then the last six time periods are used to model the changing x
failure rate of the system. The model is then extrapolated |
back to t = 1 as well as forward to t = 20, Thé problem is
that the failure rate modeled from time period three to time
period nine is changing at a faster rate than was the case
during the first three time periods. This causes the pre-
dictions to be less than would ordinarily be the case. This
phenomenon can be visualized from the graphs.

It was also irteresting to note how many times there
was not enough data for meaningful resvlis. Th's statistic,
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TABLE V

50 Missiles Per Period Tested

Six Periods Data Used

Model M1 M2 M3
Gompe~cz 1,388 - . 234 .054
Bonis 3.502 1.463 .461
Duane ' 3.486 1.409 .269
Nine Periods Data Used
Model ‘ M1 M2 M3
Gompertz .898 .058 .007
Bonis 1.665 .553 .222
Duane 1.913 .429 .080
Twelve Periods Data Used
Model M1 M2 M3
Gempertz 2.506 .534 .083
Bonis 1.262 .164 .069
Duane 1.440 .216 .037
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TABLE VI

60 Missiles Per Period Tested

Six Perisds Data Used

Model M1 M2 H3
Gompertz 1.791 .419 .102
Bonis 2.826 1.031 .334
Duane 5,167 1.078 .216
Nine Periods Data Used
Model M1 M2 M3
Gompertz .528 .024 .004
Bonis 2.035 .602 .221
Duane 1,348 ,182 .037
Twelve Periods Data Used
Model M1 12 13
Gompertz 2.372 .498 035
Bonis 1.299 .126 043
Duane : .802 .063 .013
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TABLE VII

70 Missiles Per Period Tested

3ix Periods Data Used
Model M1l M2 M3
GCompertz 1.361 .196 .043
Bonis 3.360 1.425 .461
Duane 2.961 814 .189
Nine Periods Data Used
Model M1 M2 M3
Gompertz .971 .068 - .010
Bonis 1.958 .543 «221
Duane 1.354 +154 .034
Twelve Periodz Data Used
Model Ml M2 M3
Gompertz 2.188 .429 - .076
Bonis 1,263 168 . 069
Duane .908 .088 .008
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TABLE VIII
80 Missiles Per Period Tested

Six Periods Data Used
Model Ml M2 M3

Gompertz  1.310 .198 .040

Bonis  3.268 1.388 .461

‘Duane 2.469 .982 .185
Nine Periods Data Used

Model M1 M2 M3

Gompertz <769 .047 .009
Bonis 1.948 . .549 221
Duane 1.372 .158 .028
Twelve Periods Data Used
Model Ml M2 M3

Gompert:z 2.425 .532 .093
Bonis 1.143 «132 .042
Duane 978 .067 . .009
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TABLE IX

90 Missiles Per Period Tested

Six Periods Data Used
Model Ml M2 M3
Gompertz 1.459 .194 - .028
Bonis 3.765 1.774 .461
Duane 2.316 481 .091
Nine Periods Data Used

Model Ml M2 M3
Gompert:z . 748 .053 .012
Boanis 1.790 .492 .221
Duane 1.226 104 .012

Twelve Periods Data Used
Model M M2 M3
Gompert:z 2.468 - +882 088
Bonis 1.189 148 .0SS
Duane 1.188 118 .019
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' TABLE X
160 Missiles Per Period Tested

Six Periods Data Used
Model Ml M2 M3
Gompertz 1.481 .226 .048
Bonis 3.769 1.785 . 466
Duane 2.402  .502 .100
Nine Periods Data Used
Model M1l M2 M3
Gompert: .801 .052 +010
Bonis 1.852 .510 221
Duane 1.490 .160 024
Twelve Periocds Data Used
Model M M2 M3
Gomperts 2.398 822 .092
Bonis 1.132 . ,126 .032
Duane 1.478  .183 .03
90
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VII. Conclusions and Recommendations

Military engineers face many important reliability
problens.» New weapon systems are being designed continu-
ally, and many of these systems are to be placed in long-
term storage or dormancy. These facts ngke both reliability
growth and dormant reliability important corcerns to mili-
tary analysts.

'This study provides evidence that a common attribute
of roliﬁbility growth and dormant reliability (both are
nssuncdvto have changing failure rates) can be the basis of
modifying reliability growth methodology for predicting
dor-ant'rqéiability. In Chapter III, the methodolcgy used
in rcliibility growth analysis is presented. Included in

" this scétion are the mathematical developments and examples
of how éo use five well-known reliability growth -66013.
Also, general descriptions of many other relicdbility growth
models ars outlined. This section was the foundation for
the Monte Carlo experiments discussed in Chapters V and VI.
These two chapters tie to;othof the efforts of this study
by preseating results of attempts to use relisbility growth
models to predict dormant reliabdbility. C

The results of the simulation indicate that it t;

possible (at least potentially) to predict dormant relis-
bility with rn;inbility grovth models. The graphs showa in
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Chapter VI indicate good reiiabllity prediction in many

cases, However, it is important to point out that some of
the underlying assumptions of the reliahility growth models
had to be modified béfOre they were used to predict dormant

reliability. In addition, inconsistencirs werc encountered

with the Duane aad Gompertz models which could not be re-
solved analytically. These points emphasize the fact that
additional work in this area is needed before any specific

conclusion can be made.

Recommendations
This study is believed to be the first attempt to

use reliability growth models to predict dorment reliability.
Of course, this means there sre rany areas which deserve
further study. It is recommended that the reader who wishes
to 40 additional work in this area consider the following:

1) Explore the prodlem of the shift in the predicted
dormant reliability curves that was notices with
both the Duane and the Gompertz models.

2) Use Monte Carlo techniques to genorate dormant data
to be modeled by other reliadbility growth models.

The time series analysis suggested by Singpurwalla
(Ref 53) appcars to have excellent potential.

3) Analyze the results of using other failure distri-
butions for each of the sussystems of the HM-1.

4) Develop confidence bound for the predicted dosmant

~ roliability of the HM-1 using Monte Carlo techaiques.
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It is also recommended that this stu?y be used as:

1) An introduction to reliabilitv growth.

LR

Chapter III can be considered an introductory text

to reliability groﬁth and reliability growth

modeling.

. 2) A major reference source for reliability growth.

P )

3) #n example for further Monte Carlo analysis of

dormant reliability using reliability growth models.
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APPENDIX: SIMULATION DATA

Sompertz Means and Standard Deviations
When SO Missiles per Period Were Used

TVABLE X1

& Periods Dieta

9 Periods Data

12 Periods Data

t Mean Std-Dv | Mean  Std-Dv Mean  Btd-Dv
1 « 991 «012 « 996 <003 « 994 « V06
2 « 950 . 013 « 593 « 006 « 792 «007
3 « 987 « 013 <993 « 007 « 990 «» 009
4 - 963 .012 « 990 008 936  .010
S « 976 .011 « 966 <010 « 981 «012
) « P04 «013 979 <011 « 973 «014
7 « 941 + 033 o967 «011 -« 9646 «013
-] .898 <083 - 947 .014 o T3 «016
9 - 823 « 173 « 913 « 031 « 934 «016
10 o732 279 832 «078 « 908 «013
11 « 643 « 343 « 735 163 - 870 «019
12 «368 « 370 « 634 « 233 «B817 « 040
13 « 300 « 379 «318 « 291 . 744 «078
14 - 437 « 306 « 8413 292 « 631 «127
13 379 394 | .318 + 204 « 341 168
16 -« 332 « 403 « 240 « 268 - 433 169
17 « 299 « 807 «180 « 243 « 329 «192
18 276 « 406 «137 « 219 - 236 «1856
19 « 260 « 403 «103 «191 « 163 «170
20 - 246 - 405 - 0890 « 163 «110 «149

Nusber of Invalid Estimatas Out of 30 Tries

6 Puriods Data

34

9 Periods Deta
4

12 Pericds Data

. -
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TOOLE XIT

Conpeortz HMrzae and Ctandard Caviations
hen 60 ticaliles por Poricd Were Used

”

b Puricds Lata

Foan Grd=-Dv

9 Vaoricds Data

ey Chil=-Dv

12 Poriods Data

Fizan std-Dv

CRANCUOBUN=

013
<570 .C13
073 L0149
WSI3 L0113
977 012

521

«T5T « 57
« 501 «CV2
I s S S
o Fuls ol D
» 227 av .3
« A2 PR ¥
« BT NS |
e A4S «HTS

L) ‘%’C’o - ‘? 3
«57a 4173
o« Sha

. s o4t
74 JRLD
-3 a fidsh

7
”

- .‘:u‘3
LA T
JRAPN TR S
o2 a3
o7 « Tl
« . D « U7
« 713 « 37
PR « 2172
03 R
- 23 a2
« % o2
BRS § o3
PR a7
o D 27
IR 4 PR §
. TR

«149 A |
«111 PN

PRI | «177
« 23 s |

953 .004
.93 .CO3
.991  .00S
.57 007
CU3 .08
976  .009
.4  .010
.533  .011
.94 012
.907  .012
059 013
017 027
736  .0%0
L5384 .03
554 .121
<423 .130
.307  .138
<207  .149
129 .129
.075  .103

[ of Invelid Coticat=ye Cut of SO0 Tries

6 Porions Bata

Lt of
e

@ Poricdn Rata

0

12 Pericdns Data

o
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TABLE XIII

Sospartz Means and Standard Deviations
Whan 70 Missiles per P-riod Yere Ucsed

é Periods Data

9 Puriods Data

12 Periods Data

t | mean Std-Dv | Mean Std-Dv | Mean Std-Dv
1| .993 .010 | .99¢ .00S 9%  .004
2] .9% .010 | .995 .006 994  .00S
3|.992 .010 | .S .006 | .992 .00
4| .989 .010 | .990 .007 .98  .007
| .83 .010 | .986 .008 .984  ,008
6] .71 .013 | .979 .o0e 977 009
7] .94 .038 | .98 .008 98 .01t
8] .897 .09 | .949 .01 933  .012
9| .00 .13 | .17 .0z 935 012
10| 692 .303 | .05 .0S8 .908  .012
11 ] .92 .31 |.m1 .19 868  .014
12 | 4% .403 | 667 .19 813  .023
13] .43 L4171 | .S58 .25% 737  .048
14] .38 .403 | .417 .2m .638  .082
15[ .345 393 | 314 AT S19 122
16 | .306 371 | .z .20 390  .138
17] .27s .38 | a3 .2s2 21 164
19 ] .253  .380 | .131 .23 176  .150
19]|.237 .370 |.100 .22 .108  .123
20| .221 .30 | .080 .193 <063  .093

Nuwber of Invalid Estisates Out of SO Tries

& Peariods Data
13

9 Puriods Data

¢

-0

12 Periods Data

o
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TABLE X1V

Gospertz Means and Standard Deviations
When €0 Misasiles per Period Were Usad

& P=riods Data

9 Periods Data

12 Periods Datal

t Mean Std-Dv Pwan 8Std-Dv Mean Std—-Dv
! n”‘ .020 cm om eV S om
2 «993 «.01% « 9% « 006 « 994 08
3 « 991 «013 - 794 « 007 « 994 « 008
4 - 968 -011 « 991 . 007 « 968 « 006
S « 982 « 010 « 9846 « 008 -3 + 006
é 71 - 013 979 « 008 - 976 « 007
? - 948 « 036 «54H « 0080 <967 « 008
8 « 901, « 098 - 948 «010 +« 733 +009
L « 820 « 202 «713 027 «934 « 009
10 « 721 « 2008 - 859 « 070 « 908 « 009
11 622 384 o772 «142 «87% «010
12 « 334 « 32 » &30 - 2138 2% | 018
13 « 468 -« 39% « 536 232 « 754 203
14 - 416 « 392 A1 29 «6b7  JO34
19 « 372 « 383 » 306 e 247 « 3460 «ON0
16 « 331 o372 214 o 2248 - 439 o112
17 « 293 « 361 « 147 193 « 316 129
18 261 « A «093 « 164 « 204 «127
19 « 33 « 336 « 061 =143 123 «132
20 « 209 o322 « 040 128 « 087 «091
Nusber of Invalid Entimates Out o 90 Tries
4 Poricds Data] ¥ Periods Data ] 12 Periods Deta
4 o o

103




TABLE X

b ‘ Gosperi. Means and Stancard Deviations
. . Shen 90 Missiles per Period Were Used

j é Periods Data| 9 Periods Data| 12 Periods Datal

t | mean Std-Dv | Mean Std-Dv | Mean Std-Dv
1{.993 .00 |.mwe .002 <993  .004
2] .99 .00 | .v7 .002 994  .00S
S|.993 .007 |.993 .003 991 .006
4| .99 .00 | .93 .004 98  .007
S{.8es .00 |.ve@ .003 983 .008
6] .97z .012 |.9e1 .00e Y76 009
7] 944 .057 | .770 .o0m 97 .011
e| .a78 .110 | .91 .o011 938  .012
o] .33t 231 |.920 018 936 ' .013
10] .13 .364 |.* .033 .10  .013
211 | .S513  .3v3 | .790  .0ee 878  .0i4
12 | 438" .403 | .e74 .113 823  .019
13| .378  .408 |.3:23 .164 T 031

14 « 330 -« 378 o 364 « 189 0672 T <081
13 - 293 -39 « 224 «179 «3bd 078

16 | 263 « 380 123 «130 « 844 «106
17 | 239 «370 | 063 «114 319 «126
18 | .217 - L4 «032 «081 « 208 «129
19 | .19 % 7 4 «01é <053 «324 «114

20| .12 .33 [.008 ,032 | .08 .0%
Maber of Invalid Estimates Dut of 30 Tries
4 Puriods Data| ¥ Periods Data | 12 Periods Dataf
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TABLE XVI

 Gospertz Means and Standard Deviations
sihen 100 Missiles per Period Nere Used

6 Periods Data] 9 Peuriods Data) 12 Periods Datal
| t | Mean Std—-Dv Mean Std-Dv ezn 8td-Dv
1 « 996 « 003 997 « 003 « 993 «003
2 997 < 0N3 « 996 « 003 « 994 + 004
3 « 996 + 003 <994 « 004 « 991 « 003
4 | .992 «00% 992 « 003 - 908 « Q06
s | .986 . 003 - 987 006 -3 «007
& « 970 «017 « 980 007 N « 008
7 « 932 + 009 « 949 -« 007 P67 «O0¥
| ] « 49 136 - 930 «010 <34 L0110
9 o716 o276 17 « O30 « 939 «010
10 377 347 « 862 - Ot N e d <009
11 « 860 -« 363 « 780 « 140 872 «00%
12 « 3&0 o 308 «&70 1 Y 22 <019
J 13 - 283 . - « Y - 234 « 734 « 028
14 | . 2209 « 302 - 807 « 200 o bbb « 00
13 « 190 e 326 -294 « 260 3T 078
16 « 1635 « 308 « 200 + 200 +A433 . «107
17 «142 - 290 +14& «210 « 308 127
19 «124 272 « 102 3179 197 131
19 «109 o 238 071 « 248 136 «118
20 +O93 « 30 N 119 <063 JO%
Musber of Invalid Estimates Out of 30 Tries
é Puriods Data] 9 Puoriods Data | 12 Periods Deta
9 L] (]
108
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TARLE XVII

‘ . ' Bonis Means and Standard Daviations
When 30 Missiles per Period Wure Used

& Puriods Data] 9 Periods Uata] i2 Periods Data
Mean Std-Dv MNean Std-bdv Mean Std-Dv

t
‘ .’22 .0!1 1 .”1 0017 o"t 00‘3
2 « 999 Ny 908 <019 - 908 «0138
3 = 013 - 903 o2 + 984 «018
4 978  .017 + 980 « 023 « 978 - 022
S - P6b «012 <978 2029 « 971 « 023
- & « 943 - 018 « 963 « 02 « 961 »030
k4 « 906 +O0Xb 947 +O033 947 «+ 039
] « &30 » 100 « 920 « 033 « 926 « 040
! 9 - 4678 - 262 872 « 036 897 « 043
' a0 ) :363 N 2 o THS " + 067 <054 « 087
' 4| « 623 «193 « 790 «044
12 2300 . .342 | <693 « 040
13 2342 «O80
14 « 303 « 220
13
16
17 Mosne are negative (n this area
10 , of the Table, therefore,
l“ calculetions are not considered

Mabder of Invalid Estimates Out.of 350 Tries
& Periods Data| @ Pericds Data | 12 Periods Data ' |
43 . 7 | 1
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TABLE XVIII

Bonis Means and Standard Deviations
When &0 Misciles per Period VNere Used

& Perioda Data] 9 Periods Data | 12 Periods Dataf
t Mean gtd-Dv Mean Std-Dv Mean Std-Dv
1 |.993 .007 |.99a .01 968 173
: 2 <923 « 008 « 9914 «013 961 <177
b 3 989 «010 « 988 +013 « 9346 « 180
4|.98¢ .011 | .9894 .018 .930  .183
! S 974 +012 977 021 « 941 - 186
! & 937 «013 « P66 « 024 + 730 ‘e 108
L 7] .92 .o22 .949  .024 .914  .190
1 $ 8 873 « 057 « 920 026 -892 «392
| : 9 77?7 « 142 «-878 + 030 » 860 «192
} ; 10) .39 .37 | .77 .07 016  .199
! 11 42 776 «392 223 o 793 - 164
S | 12 T'"";" 2220 403 A2  .174
’ ] ‘3 om .‘“
f 14 o334 177
1 | 2083 276
16
b ¥ 4 Meoans are negative in this area
16 of the Table, tharefore,
19 calculations are not considered
20 ;
, Nusber of invalid Estimates Out of SO Tries
? & Periods Data| 9 Pericds Jata | 12 Periods Deta
* ‘ , 3i t o
i
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TABLE XIX

Ponis Means and Btandard Deviations
When 70 Missiles per Period Were Used

] & Pericds Data| 9 Periods Datal| 12 Periods Data
t | mean Std-Dv | Mean Std-Dv | Mean Std-Dv
1 « 994 +» 006 « 9683 « 064 « 993 «C07
2 - 994 « 008 983 « 066 « 90 «009
3 « 991 « 009 » 980 +068 « 987 «012
4 « 986 « 010 « 976 « 070 - 982 «014
S « 976 «011 - 969 « 073 «973 018
& «957 -+ .03 -« 959 «074 « 963 « 022
? o922 «027 « 942 « 078 « 931 « 026
-] « 851 « 077 « 913 « 074 « 930 <031
9 0704 .207 0“7 .070 .901 .035
10 | 396 331 1 .781 « 073 -y <037
i1 522 « 143 « 790 <033
12 319 393 « 689 «027
13 « 333 « 067
14 « 288 +189
19
16 o
17 - Maans are negative in this araa
16 of the Table, therefore,
19 . calculations are not considered
20
Nusber of Invalid Estisates Out of 30 Tries
& Periods Data] © Periods Data } 12 Periods Data
23 . 0 » o
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TABLE XX

Bonis Means and Standard Deviations
dhen 80 Missiles per Period Were Used

”

é Pariods Data

Mean Std-Dv

9 Periods Data

Mean gtd-Dv

12 Pariods Data
Mean Std-Dv

GONPADUN»

« 996 « 006
« 794 « 007
«991 « 008
« 986 » 009
« 977 « 009
« 961 «010
«923 + 023
« 864 « Q77
« 730 » 220

830,600

« 996 « 003
« 994 « 004
« 992 + 007

« 991 <012
- 988 - 014
« 784 <016

« 9688 « 009 « 979 <019
«981 «011 971 « 022
971 .014 .960  .023
« 933 « 016 « P43 «028
« 927 017 923 «031
.880  .020 .€92  .032
« 793 . 058 « 848 « 032
633 « 199 « 784 «029
| 308 .s46 691 .024
BU3 - L0433

« 334 «110

Means are negative in this area
of the Table, therefore,
calculations are not conotdcrud

2038 237 |

Nuaber of Invalid Estimates Out of 30 Tries

& Pariods Data
14

9 Periods Data
.0

12 Periods Data
[+
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TABLE XXI

Bonis Means and Standard Deviations
When 90 Missiles per Period Were Used

& Periods Data

Mean  8td-Dv

9 Periods Data

12 Periody Da'.a

t Mean Std-Dv Mean Std-Dv
1 « 997 « 003 « 993 . «010 « 994 » 003
2 793 « 006 « 991 <012 « 792 « 004
3 « 992 « 008 « 788 « 014 « 988 « 00&
4 « 988 <009 « 983 2016 « 784 « 007
3 .978 .009 0977 . 0019 n”b .009
6 « 960 «010 9466 « 021 « 966 2012
7 « 920 « 029 « 930 « 023 « 952 « 013
a « 829 « 102 TS « 023 « 930 . 019
L4 o613 » 317 -882 0022 69“ « 020
10 | .09 __.929 | .810 « 040 « 8353 <022
11 « 683 123 « 789 « 022
12 2 448 2 J49 « 693 «021

13 « 351 <032

14 « 340 « 080

18 « 028 « 182

14 '

17 Means are negative in this area

10 of the Table, therafore,

19 calculations are not considered

20

Nusber of Invalid Estimates Out of 30 Tries

é Periods Data
e

9 Periods Data
0

12 Periods Data

o
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TAF'E XXII

Bonis Maans and Standard D-Qtatiuns
When 100 Missiles per Period Were Used

& Periods Data| 9 Periods lata | 12 Pe-iods Data

t Mean 8td-Dv | Mean 8td-Dv Mean Std-Dv
1 995 « 009 « 993 « 0038 « 993 « 007
2 « 994 . 010 . 993 « 007 L 990 «0C8
3 « 991 <012 « 990 « 009 985 «010
4 « 987 - 013 « 986 <011 «. 9612 2012
S « 978 . 012 « 980 «013 « 973 « 013
& « 960 «014 « 949 «C16 « 963 «017
7 .922 0031 -953 : 0018 .9‘7 .020
-] 833 « 109 «927 .0i8 « 926 « 023
9 «6H19 «J49 - 882 - 019 «-893 « 024
10 | 089 1.072 -804 « 047 « 851 « 023
11 « 643 « 1583 « 7998 « 022
12 « 388 - 330 « 596 « 020
13 « 363 « 033
14 « 369 « 081
138 « 084 «170

16

17 Mean= =2-3 fiegative in this area

18 of the Table, therefore,

19 calculaticneg ars not considered

20 .

Number of Invali~” Estisates Out of 350 Tries

4 0 o

6 Puriods Data}] 9 Perixds Data | {12 Periods Data
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TASLE XXIII

Duane Mrcans and Standard Deviations
When 50 Missiles per Period Weore Used

6 Periods Data

? Puriods Data

12 Periods Data

t Mean Std-Dv Moan Std-Dv Moan Std-Dv
1 <998 . 002 « 2?99 .C01 « 959 « 001
2 .« 995 . 003 « 997 «C03 «T27 .02
3 « 993 .C03 « 93 . 003 « G773 « 0038
4 987 .008 - 753 .C07 « 934 . 008
S « 973 .0164 2?73 . 010 « 971 . 010
& « 953 . 044 « 734 019 « 90 . 013
7 - P11 . 122 « P26 . 028 « 722 . 014
8 « 861 « 201 LO03 . 044 534 . 022
9 .813 . 249 « 837 PR sl «» 833 « 033
10 7867 « 2326 - 774 <123 776 « 057
11 « 724 322 « 703 .173 « 707 . 099
12 «&83 303 « 6351 « 223 732 . 124
13 « 653 379 ach3 . a? « ST « 157
14 « 4623 « I93 « S0 271 <401 «182
13 «&08 « 200 « 434 « 304 <413 « 197
16 291 « {03 - 311 « 310 « 333 « 203
17 « 873 <403 374 312 « 300 « 208
18 « 340 <410 « 393 «311 .o « 206
19 « 946 «413 e313 -« 301 «217 « 201
20 « 334 416 271 « 308 « 183 -.194

tmbar of Inv

alid Esticates CQut of S0 Triaos

6 Pericdz Data

9

Q Poricds Data

-0

12 Poricods Data

o
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TABLE XXIV

Duane Means and Standard Dwviations
When 40 Missiles per Period Were Used

& Periods Data| 9 Periods Data| 12 Periods Data
t Mean Std-Dv Mean 8td-Dv Mean Std-Dv
1 « 998 « 002 « 999 « 001 « 999 « 001
2 « 797 « 003 « 997 « 003 997 « 002
3 « 793 « 004 -« 993 « 004 <92 « 004
4 « 987 « 007 « 764 « 007 « 9653 « 007
S « 973 <016 « 969 « 0% 966 «OC ?
b « 942 - 034 « P43 2014 « 941 «0.2
7 -.8681 <156 « 909 028 « 904 0.6
8 .810 « 253 -858 « 053 839 023
9 « 749 « 308 «791 « 097 « 799 «(:41
10 «&97 « 330 712 « 192 «728 «68
11 « 6356 373 8627 « 204 « &HA8 93
12 « 623 « 389 « 343 2446 D62 -’28
13 « 594 « 402 «-A473 271 «A77 132
14 « 3570 <412 « 813 « 283 3 «174
13 -« 349 <419 361 287 323 - 1688
1o « 331 - 424 -318 « 208 o 264 - 194
17 .516 -‘27 .281 ' -ﬂb .214 ol“
-8 B2 « 430 e 231 282 «173 «191
19 « 490 « 432 e 224 «278 « 143 « 183
20 - 479 - 434 «202 277 «119 «179
Nuacber of Inva'id Estisates Out of 30 Tries
6 Periods Data] 9 Periods Data | 12 Periods Data
2 o] ]
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TABLE XXV

Duane Means and Stendard Deviations
Mhen 70 Missiles per Period tlure Used

é& Puriocds Data| 9 Periods Data | 12 Periods Date
t Mean std-Dv Moan std-Dv Mean 8td—-Dv
. 1 .m .m .m .m .m .m: .

2 « 796 « 003 « 9956 « 004 977 « 003
3 « 992 « 006 - 991 « 006 « 992 « 006
) - 904 « 007 « 980 . « 008 979 . « 009
- « 966 «016 « P03 « 010 « 960 012
‘ : 0921 .069 .'36 -0!& .’3‘ .014
7 «833 «199 «-897 «030 091 «017
e » 740 316 <44 036 « 838 « 023
9 <681 « 334 « 776 +O093 772 042
10 « 633 372 « 697 « 140 «&94 « 063
11 393 304 b1l « 189 « 608 «093
12 « 360 396 «327 e 232 « 3519 «123
13 » 329 « 03 « #3121 o 264 « 431 «149
14 «.304 - .412 « 387 « 204 331 « 168
13 - 483 « 413 « 336 « 294 . 282 «178
116 <866 - 417 293 - 297 226 « 180
17 « 430 «#18 « 263 « 297 «181 ‘® 173
18 | .437 -418 D7 293 <147 e16b
19 424 - 418 216 209 «120 « 133
Lio -413 -817 « 190 « 204 099 « 143
thmbar of Invalid Estisates Out of 350 Tries

é Pericds Data| 9 Pericods Data | 12 Periods Data

0 o 0
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TABLE XXVI

Duane Means and Standard Deviations
SWhen 80 Missiles per Period Were Used

é Periods Data| 9 Periods Data| 12 Periods Data
t | mean Std-Dv | Mean Std-Dv | Mean  Std-Dv
1| .998 .002 | .999 .o001 999 . .001
2| .995 .oc4 | .996 .003 996 003
s| .89 .003 .989 .004 989  .00%
4| .90 .008 | .967  .o008 975 .009
s | .963 .015 .956  .010 933 .011
6| .91 035 | .928 .013 520  .013
7} .906 .077 | .sss .o28 .87 .01
8| .839 .139 832  .032 .818  .022
9| .907 .194 | .766 .08& 750  .034-
10| .73 .237 | 692 .127 671 .03&
11 { .706 .27¢ | .613 .167 558,079
12 | .660 .305 | .338 .201 .497  .102
13 | 619  .328 | .44 . 224 412 .121
14 | .383 .34s .400 .238 33T L.134
13 | .5m1 358 | .346 .243 | .28% .140
16 | .524 .37 | .300 .242 «207  .138
17 | .=01 373 | .261 .238 o161 «132
18§ .40 .376 | .228 .232 e125  .123
19 | .461 379 | .200 .22% 097  .113
20 | .4a¢  .380 | .176 .217 076  .102
Nusber of Invalid Estisates Gut o{ S0 Tries
6 Periods Data| 9 Pariode Data | 12 Periods Data
o o o
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TABLE XXVII

. Duane Means and Standard Deviations
When 90 Missiles per Period Were Usad
& Periods Data| 9 Periods Datal| 12 Periods Data
i - Mean gstd-Dv Mean 8td-Dv |. Mean etd-Dv
1] .998 .002 |.299 .oo0t .999 .00t
2 ] « 004 « 994 « 004 « 978 « 003
3 -989 .006 .998 .W? .989 .007 ;
4 977 « 008 « 974 * 010 "« Y73 ) «011 ;
S| .95 «017 « 951 «.013 » 948 «013 '
é « 921 «O45 « 918 + 016 -2 018
7 - 867 «101 872 24 - 863 «019
8 « 793 «1780 «813 <041 799 « 028
9| .718 247 «741 « 047 « 723 ° L,030
10 « &A8 « 292 « 660 « 100 « 638 « 047
11 « 387 o321 572 o134 « 342 « 069
12 « 334 « 339 « 486 « 166 « 47 « 092 ;
13 « 492 « 330 « 806 « 190 « 338 «110 ,
14 «4354 o 338 «337 « 202 « 278 «120 i
19 « 829 « 353 279 «» 204 o222 122 ;
17 « 373 - 382 «193 «193 «120 « 107
10 { 353  .330 [.142 .16 039  ,05S
19 | 334 348 «138 172 « 0467 « 082
20 | 317 346 [.227 .160 «050  .070
Musber of Invalid Estisates Out of 30 Tries
6 Periods Data {? Periods Data [12 Periods Data
o ‘o Lo
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TABLE XXV1II

Duane Meann and Standard Deviations
When 100 Missiles per Period Were Used

& Periods Data| 9 Periods Data | 12 Periods Data
t | Mean 8td-Dv | Mean Std-Dv | Mean  Std-Dv
1 « 998 « 004 « 999 « 001 « 999 « 001
2 « 994 - 005 « 993 « 004 9946 .00
3 . 987 « 007 « 987 « 007 987 « 007
4 « 973 « 009 «971 «011 «970  JO11
S .952 «018 P46 <013 -"2 ' .013
é P13 . 031 « 708 « 01?7 «902 «017
Y 4 832 «128 « 834 « 031 - 548 «018
e « 782 «191 - 788 089 « 778 20253
9 .707 -2“ .706 .098 . : o‘” .041
10 « 633 293 6186 142 «&01 « 064
11 « 572 327 « 326 « 179 «JOJ « 089
12 « 519 351 « 411 « 2046 « 408 «113
13 <477 « 363 o347 221 321 «123
14 « 443 « 373 « 304 «227 o 2Bk «131
13 416 «376 « 234 « 226 « 186 «129
16 « 393 o376 216 « 220 «140 = .121
17 « 373 373 «184 «210 «103 «109
18 « 358 372 » 139 « 199 « 079 097
19 « 343 « 359 «138 « 189 «060 . ,083
20 « 330 « 36b <3121 «176 048  ,074
Nusber of Invalid Estimates Out of 50 Tries
& Periods Data] @ Periods Data | 12 qutm Data
o 0 o
h
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