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Abstract

The change in the destruction capability of a bomber force resulting
from the incorporation of the Multiple Force Buployment Variation

(MFEV) was estimated under a variety of conditions. The study varied

' the distribution of target values, the bomber's base escape survival

probability, the number of preplanned options, and targeting philosophy.
The resulting value of targets destroyed under the MFEV were compared
with the value of targets destroyed under a single-plan system, under
identical conditions.

Targeting philosophy was found to be a major determinant of MFEV
value, The value when all targets musi be assigned in every plan was
compared with the value with that requirement relaxed. The restriction
was found to be very important in estimating MFEV value, particularly
for survival probabilities lower than ,6, Without the restriction
in effect, about two=thirds of the value of retargeting was achieved
by the MFEV. The value of retargeting is defined as the difference between
full flexibility and a single-plan case as is now employed. When all
targets had to be dssigned in each plan, only about one-third of the
value of retargeting was realized.

The value of retargeting was found to be very sensitive to the
aircraft probability of surviving an enemy surprise attack on bomber
bases., For low survival probabilities, the capability  of retargeting was
found to be very important. As the survival probability increased, however,
the value of the MFEV decreased.

The distribution of target values also was found to be an important
determinant of MFEV value. Target values sampled from an exponential dis-

tribution resulted in the highest percentage MFEV value. The lowest

vii

P VPO

© s sG]




values occurred when the target values followed a normal distribution

with a strong central tendency. Ranked (integer) target values and
values following a uniform distribution resulted in a measure about
1 midway between the two extremes.

The number of plans above two was not found to be a strong deter=-

minant of MFEV value. Any increase in the number of plans, however,

was found to increase the value of the system.
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I Statement gg the Problem

Introduction

Presently, if an incoming attéck were to scramble the United States
manned bomber force, no retargeting would be possible. Once the air=-
craft were airborne, there would be no way to change the target set
assigned to each aircraft. Even if it were known, for example, that
some targets were no longer of value to the enemy (perhaps destroyed
by missiles shortly after the aircraft were airborne), nothing could
be done to redirect the bombers ordered against these targets. In
addition, if some bombers were destroyed by the enemy attack, failed
to rendezvous with a tanker for refueling, or had to abort their mission
for some other reason, their targets would not be attacked since air-

borne retargeting is not presently possible.

Statement of the Problem

Under the present targeting gystem, in the event of an enemy first
strike, many of the high value enemy targets would never be attacked
because the weapons targeted against them would be destroyed in the
initial attack. This deficiency in the capability of the United States

strategic forces reduces their effectiveness as a deterrent.

Background
At least three strategies could be used to increase the deterrent

capability of the U.S. forces. First, massive numbers of redundantly-
targeted weapons could be constructed. Then, in the event of an enemy
strike, enough weapon systems would survive to attack most enemy high-
value targets. Second, a defensive net could be constructed to protect

the strategic offensive forces from an enemy first strike, thereby
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ensuring enough forces woild survive to attack the "most important"
targets. Third, the U.S. targeting system could be adapted so that
those weapon systems which do survive an enemy surprise attack could
be retargeted against the "most valuable" targets. This thesis focuses
on one approach to the third strategy -- airborne retargeting. |

Many adaptations to incorporate the retargéting into the Single
Integrated Operations Plan (SIOP) could be conceived. (The SIOP is the
plan which assigns strategic forces to their duties in time of war.)
Since the manned bomber once airborne is inherently more flexible than
ballistic missiles, any inflight retargeting scheme would pertain mainly
to penetrating bombers or their cruise missile payloads. The Multiple
Force Employment Variation (MFEV) is one such retargeting plan.

Consider a modification to the present assignment procedure.
Rather than a single SIOP, a set of plans are formulated, each plan
allocating aircraft to target sets differently. After an enemy attack,
when survival information was available, the commander could select
the best plan. He could analyze which aircraft remained operational
and which enemy targets retained their value through the U.S. missile
attack. He could then select that plan which would maximize the expected
value of the enemy targets to be destroyed under those specific conditions.
This flexibility option is known as the Multiple Force Employment
Variation. The idea of the MFEV could also be applied to the other legs
of the strategic triad. Multiple plans could be created in advance,
allocating missiles to targets differently in each plan, similar to the
procedure suggested for a bomber force. After an enemy attack, the
commander could select that plan which had the best assignment of missiles

to targets, for the specific missiles that survived the enemy attack.

h""*';#.',f"’.nzﬂn,.? e
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Thus, the MFEV could also be used to increase the effectiveness of a

surviving second~strike missile force.

i A flexibility option such as MFEV would increase the total value
of enemy targets destroyed in the event of a surprise attack against
the United States, thereby increasing the .effectiveness of the U.S.
bomber force as a deterrent. But by how much is the deterrence in-
creased? Is the expected increase in the value of enemy targets killed

worth the costs, both hardware and software, of designing, developing

and implementing such a system? Could the money required for converting
the bombers and command and control systems be better spent on some
other weapon system? These questions can only be answered if the bene=-

fits of such a system are known or have been estimated.

Objectives

The primary objective of this research is to obtain an estimate

of the value of the MFEV as compared with a system without airborne

retargeting. The cost and feasibility issues will not be congidered.

Scope
Research into the value of the MFEV could follow at least three

separate paths, as illustrated in Figure 1. The three axes shown
represent the three directions. The inner, solid box represents the
work done by Dimon (Ref 3). The dashed lines enclose the region researched
by this thesis. The specific topic areas shown in this figure will
be discussed in the Recommendations section of Chapter VII.

The value of the MFEV is thought to be dependent upon a number of
factors:

1) differences in the probability distribution of target values,

o m—gp———
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2) differing values of aircraft survival probability,

3) target selection criteria, and

L) the number of preplanned MFEV options.

The above factors will be varied and the MFEV values obtained under
differing assumptions will be compared to determine the sensitivity
of the value to each of them.

All ajrcraft are assumed homogeneous and have an equal probability
of surviving the enemy attack. Any aircraft which survives, kills its
target with probability one. That is, the conditional robability
that an aircraft destroyas its intended target, given that the plane sur-

vived the enemy attack, is one.

Approach
The model begins with a given set of twenty aircraft and twenty

target sets. Each target set may consist of multiple targets, but the
set itself is considered as a single unit and evaluated as such. Thus,
in this thesis, the terms target and target set are used interchangeably.

Twenty samples are taken from each of five distributions to deter-
mine target values. The identical methodology is then followed for each
set of targets.

First, the assignment procedure is accomplishéd. This process
corresponds to the building of a multi-plan SIOP. The assignment of
aircraft to targets in multiple, complementary plans is not a trivial
task. The SIOP is essentially a constrained, two-dimensional assignment
problem, allocating aircraft to targets. The two-dimensional assignment
problem is considered a simple problem, as the difficulty of problems is
measured (Ref L:50-53), yet thousands of man and computer hours are needed

each year to complete the SIOP. The allocation of aircrafftto targets
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in the MFEV, on the other hand, is thought to be a "hard" problem.

The MFEV is closely related to a three-dimensional assignment problem
(allocating aircraft to targets and plans), and as such, is thought to
be inherently intractable; that is, the three-dimensional assignment
problem is a member of a class of over 300 hard problems for which

no polynomial time algorithm has yet been found to solve any of them
optimally (Ref L4:8, 50-53). Therefore, rather than exert an extensive
amount of time searching for an optimal solution, a heuristic technique
is developed and used to find a near optimal assignment. A heuristic
is a solution technique which, although not guaranteeing optimality, can
obtain "good" solutions to large problems with limited computational
effort (Ref 1:163).

Second, the enemy attack is simulated and surviving aircraft deter-
mined. For these surviving aircraft, statistics are collected on the
value of the MFEV versus the value of the single-plan assignment
system, similar to the current SIOP. One thousand enemy attacks are
simulated.

The results of the simulation are analyzed by comparison with other
targeting strategies. The value of the MFEV is compared with a single-
plan assigmment system and with a retargeting system which has the
highest possible flexibility =- the system which is able to attack the

J most important targets when only j aircraft survive the enemy strike.

Sequence of Presentation

Chapter II presents the theoretical basis for the results used
throughout this thesis. The difficulty of the MFEV assignment problem
is discussed and different single-plan assignment strategies proved

optimal under differing assumptions. The statistics to be collected




in this research are derived.

The third chapter serves as the framework which holds the research
together. Here the overall design is discussed, together with specifics
on procedures and assumptions,

The fourth and fifth chapters explain the computerization of
the model, Chapter IV explains the Phase I version -=- all aircraft
allocated against distinct targets. Changes made to the system to allow
muiltiple aircraft to be assigned against the same targets are explained
in Chapter V.

Chapter VI presents and analyzes the data accumulated from the
simulation model. The results are viewed from several directions, and
compared with different measures. Conclusions are drawn about the value
of the MFEV and the sensitivity of the value measurement to changes
in the factor levels.

The seventh chapter summarizes the conclusions made in Chapter VI,

Also, avenues for future research are recommended.
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J1I Theoretical Development

This chapter develops the theoretical base for the analysis docu-
‘ mented in subsequent chapters, First the difficulty of the MFEV assigne
. ment problem is discussed with emphasis on the obtainability of an
% optimal solution in a reasonable amount of time., Then a variety of ;
, general target assignment methodologies are presented and reference
‘ made to the use that was made of the result., Finally, the measures of
; merit utilized in this research are explained. A description of the

computer code based on these results can be found in Chapters IV and ;
v. |

Mathematical Model

As mentioned in Chapter I, the allocation of aircraft to targets
in a MFEV system is a three-dimensional assigmment problem with a none
! linear objective function. A fofmulation for the case when all aircraft

must be assigned to distinct targets is as follows:

Maximize: the expected value of targets destroyed
n
Subject to: j§1 xijk =1 for i=1, ...y n; kel, ..., m (1)
n
i§1 xijk =1 for j=1, eeey nj k=1, ..oy m
where xi ik = 1 if aircrdft i is assigned to target j in plan k
= 0 otherwise

It should be noted that the three~dimensional assignment problem is

— e ———————— o s e

usually formulated with a third set of constraints, summed over the
third index. Since these constraints were excluded, an aircraft could




conceivably be allocated against the same target in more than one plan.

The objective function is easily described in words but is not so
easily described mathematically. The basic difficulty lies in the fact
that the goal "to maximize the expected value of targets destroyed"
is actually the largest order statistic from a set of dependent random
variables ~- the values of the m plans, The plan of largest value for
a given state of nature is the plan selected. So the system always takes
on the value of its largest element., The value of more than one plan
may be "large" for a given state of nature, but only one plan may be
selected. Therefore, having two plans of "large” value is wasteful
in that the value of both plans under other states of natire must be
correspondingly "small® (Ref 3:C23). Since no optimal formulation of
this objective function was discovered, a hewristic iterative improve~
ment procedure based on criteria suggested by Dimon was used to deter-
mine a near-optimal solution (Ref 3).

Heuristic solution technijues are used to obtain solutions to large
problems with only limited computational effort. Normally, they are
used in cases of diminishing marginal returns of camputer resource =-
they determine near-optimal solutions with much less computer effort
than would be needed to determine the optimal solution (Ref 1:163). The
heuristic procedure used in this research is described in Chapters
II and IV.

NP-Hardness

It appears that the MFEV assigmment prablem, like the general three-
dimensional assigmment problem, is NP-Hard (Ref 4:50-53). Although a
discussion of the class of NP-Hard problems lies beyond the scope of

this paper, a consequence of NP-Hardness drastically impacts the optimal
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solvability of this class of problems. No algorithm has yet been found
which can solve, in a reasonable amount of computer time, any but the

most trivial NP-Hard problem, (the solution time is normally an exponential
function of the size of the problem) (Ref 4). For this reason, a heur-

istic solution technique was devised to find a near-optimal MFEV assign-

ment.

Optinal Single-Plan Assigment

In this section, two different single=plan assigmment methodologies
are proven optimal under differing criteria. First, the optimal allo=-
cation when no two aircraft may be assigned against the same target will
be demonstrated. Second, the optimal assigmment will be developed for
the case when the target assigmment need not be distinctive.

Distinct Targets. In this research, the value of any system is

measured relative to the base case =-- the single plan assigmment which
allocated aircraft to targets in order to maximize the expected value of
targets destroyed while assigning exactly one aircraft against each
target. The following lemma describes the optimal assignment under
these conditions.

Lerma 1 == Suppose the aircraft are ordered by non-increasing
probability of survival (i.e. P, ® P_ 2,2 P~ where P, = pro-
bability of survival of aircraft i fa i =1, 2, ..oy n ). Also

suppose the targets are numbered such that V, @ v, 2., 2 v, s

’

1
wherevd-valueoftarget:jforj-1,2,...,n;andnisthe 3

number of aircraft and targets. Then the assigmment which maximizes

the expected value of targets destroyed associates aircraft i to target i, ?

for i = 1, 2’ esoy N o

10
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Aircraft 1, 2, eeey i, csey k, seey I

Tﬂrget 1, 2, XYY} j, XYY} i, seey 1

( Figure 2, Initial Assumed Assignment (I1)

i Aircraft 1, 2y eeey iy eeey k, seey I

‘ Tﬂrget 1’ 2, seey i’ seey j, eoey 1

| Figure 3. Assigmment After a Single Interchange (12)

Proof == ILet the aircraft and targets be ordered as assumed in the
t Y 2 2 2 a 2
lemma ( P1 P2 see Pn and V1 V2 XX Vn )o Let I be the

assigmment suggested in the lemma and let I1 be some other assigmment

of aircraft to targets such that I and I1 differ. ILet i be the first

position in I1 such that I and I1 differ. Let j be the target assigned
to plane 1 in I' and k be the plane which is assigned against target i
in I'. (See Figure 1 for an illustration). Now interchange targets
iand jin I‘I to form a new assigmment 12 as shown in Figure 2,

The objective function values for I1 and 12 differ only in the

1% and k™ positions and are given by
1
EV(I ) = P1V1 + P2V2 * 00 ¢ Pivj + see * kai +* see * anl (2)
2
EV(IC) PV, + P2V2 + cee ¥ Piv:t + gee * ka:) + eee + anl (3)

Subtracting Eq (2) from Eq (3)

2 1
B (I%) - BV(I') = PV; + PV, = (PyV, + PV, )
b Pi(vi - VJ) + Pk(vj - vi)
- (Pi - k)(vi - VJ)
L)

(h)
Y vV, 2V
since P! P] » 1 3 by definition

1
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Hence, the interchange cannot produce an inferior solution and may
produce a superior one, After at most n = 1 of these interchanges,
the resulting solution is identical to I, Hence, the assigmment given
by Lenma 1 is optimal and the Lemma is accepted.

Distinct Targets Not Required., Phase I of this research required
that each aircraft be assigned against a unique target in a given plan.
It may well be, though, that the best targeting strategy assigns more
than one aircraft against some of the targets and consequently, none at
all against some others. Phase II explores this approach and allows
multiple aircraft to be allocated against the same target in any plan.

The targeting logic utilized in Phase II was to maximize the mar-
ginal value of each aircraft as it was assigned. Thus, each aircraft,
in turn, is allocated against the target where it would be expected to
do the most good =~- where the marginal value is highest. Once the single-
plan assignment is determined, the number of aircraft assigned against
each of the targets in that plan determines the number of airecraft
assigned against each target in the other MFEV plans, Thus, the number
of aircraft assigned to each target is identical under all plans, The
following lemma describes the optimal solution for the single=plan
assigmment when targets need not be distinct.

Larma 2 =~ Let Vi be the value of target i, Ps be the probability
that a given friendly aircraft survives an enemy attack, and Pk be the
probability that an attacking aircraft kills target j. The optgmal
assigmment of planes to targets allocates each aircraft, in turm,
against the target with the largest remaining marginal value. The
marginal value of target i (MVi) represents the value of assigning one
more aircraft against target 1 when j aircraft have already been assigned

12
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against it. It can be expressed nathematically by the following expression:

MV, = Pspkim - Pspki)j v, (5)
Proof -- This proof has two parts., First, the above expression
will be shown to represent the marginal target valuve. Secondly, it
will be shown that assigning aircraft to targets by means of remaining
maximum marginal value does maximize the expected value of targets
destroyed, and thus is the optimal assigmment for that objective.
The probability that aircraft m kills target i is just the inter=-
section of the two events A and B, where A is the event that aircraft
m survives the initial enemy attack and B is the event that an attacking
aircraft successfully destroys target i, and A and B are assumed in-
dependent. The probability of the intersection of two independent

events is just the product of their probabilities (Ref 6:42), so:

P(aircraft m kills target i) = P(A) P(B)

=P P
smki.

where Ps = probability that aircraft m survives the initial attack
m

Pk = probability that an attacking aircraft kills target i =~
i conditional probability of a kill given the aircraft
survives to attack
The probability that the target survives the aircraft's attack ts just
the probability of the union of the complements or one minus the above
product, as shown below (Ref 6:15):

PAVE) «=PQA) +P3B) -P(An3B

= (=P )+ (=R )= (=B )0 -R)

«1-P P (7)
smk:L
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The probability that target i survives two such aircraft targeted against
it is just the product of two terms of the form given above (assuming
independence between aircraft)(Ref 6:24).

In this research, all aircraft are assumed to have an equal

probability of survival., Using this assumption ( Ps - Ps 4 for

i
all i), the probability that target i survives when j aircraft are

assigned against it is given by the following expression:
P(target i survives when targeted by j identical aircraft)

J
= q (1=-P

P..)

= (1- Psti)J

Thig same probability is also the expected proportion of target value
remaining after j aircraft have been assigned against target i. Thus,
a residual value of (1 - PP, )} V, remains out of the initial target
value of Vi. .

The assigmment objective is to allocate eath aircraft against
the target where it would do the most good, The marginal value of
target 1 (Mvi) is the value of assigning one more aircraft against
target i when j aircraft have already been assigned against it, Thus,
the best target to allocate an alrcraft against is the one with the
highest remaining marginal value, The marginal value equals the diff-
erence between the residual value when j aircraft have been assigned

against target 1 and the residual value if J + 1 aircraft were
assigned, Thus,

(8)




«(1-PP Wy -(1-pp )Y
MV, = (1 Psti) v, - (1 Psti) v

J
=(1- Psti) (1=-(1- Psti)) v,

- - J
Pst. (1 Pst. ) Vi
i i

This expression will be referenced in Chapter V and was used in the
computer algorithm to determine how many aircraft to assign against
each target.

Now, it remains to show that this is the optimal assigmment. Our
objective is to maximize the expected walue of targets destroyed.
The expected value of targets destroyed is the sum of the expected value
contributed by each aircraft because the aircraft are assumed independent.
Since at each decision point, the marginal value was selected so that
it was as large as possible, the sum must be as large as possible.
Thus, if one wa. to replace any assigmment with one that has a smaller
marginal value, the sum (expected value) would be reduced. Therefore,
assigmment by largest marginal value is the optimal allocation scheme,
This completes the proof of Lemma 2,

Post-Simulation Value Measurement

Once the assigmment procedure has been completed, the states of
nature are similated by a Monte-Carlo simulation, as is discussed in
Chapter ITII. These states of nature represent the specific aircraft which
survive a simulated enemy attack, given a common probability of survival
for each aircraft. The expected value of targets destroyed, given
perfect knowledge of the aircraft that survive, can then be measured as
the sum of the expected value of targets destroyed by each of the sur-
viving aircraft.




When all aircraft are assigned to distinct targets, the expected
value contributed by each aircraft is independent of all other aircraft.

Therefore, the value of each plan is given by the following equation:

n
E(value targets destroyed) = L XiP

e S
where Pki = Probability that an attacking aircraft kills target i
Vi = Value of target i
Xi = 1 if the aircraft assigned against target i survives

0 otherwise

The measurement of the value of a plan is more complicated when the
distinct target constraint is relaxed. Under the FPhase II case, multiple
surviving aircraft may be assigned against the same target. One must
insure that the same target is not counted as destroyed more than once,
Obviously, the value contributed by each target depends on the number
of planes assigned against it., The targets were evaluated at their
current marginal value as the contribution from each aircraft was deter-
mined, in turn. The rationale for this is actually just a special case
of the previously derived expression for the marginal value of a target,
Eq (9), when specific aircraft are known to survive with probability one
( Ps = 1,0 ). The definition of j is slightly altered, however.

The expression shown beluw was used to evaluate the value of each plan

in Phase II of this research.

n m
E(Value of targets destroyed) = & X Xi(P (1 -P )‘j-'1 v,)
yot dyar K 1

where n = number of targets

m, = the number of surviving aircraft assigned against target

i in this plan

(10)

(11)
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probability that an attacking aircraft kills target i

V. = value of target i
i = index of the target array

X, =1 if m, 21
i

0 otherwise

Obviously, if no aircraft assigned to target j survive, target j
c mtributes nothing to the value of the plan. As an example, let
m, = 3 for some i (three of the surviving aircraft are targeted against
target i in the plan being measured). Then the contribution of this

target to the expected value is given by the following term:

3 .
Contribution by target i = I (B, (1 - B_ yd=1 v,)
ja1 Ky 1

0 )
=P (=R )V, +P (0 -P )V,
i i i i

2
+P (0 =-B )T
1 1

=P (1+(1=-P )+ (1 =P )2)V.
ki ki ki i

2
=P (3-3P +P°)V.
ki ki ki i
The distinet targets evaluation scheme mentioned earlier is really
just a special case of this marginal value measure (with mi = 1 for

all aircraft). This can be seen by the following adaptation of Eq(11):

E(value of targets destroyed, Phase I)

n 1 31

= LXL(-P ) V)
i=1 " jmi 1
- 0

= LXP (1-p )V,
.j'1 i ki ki 1
n

= LXP V
ju1 1Ky 1

vhere all variables are consistent with their previous definitions
17
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J Derivation of Statistics Collected

Three measurements were created to compare the value of the MFEV

: with different figures. The percent improvement over the base case
compares the MFEV against a single-plan assigmment by a ratio of their

| values. The percent total value demonstrates the maximum expected value
that any assigmment could possibly approach, given an aircraft probability
of survival, The percent of the best possible solution compares the
value of the MFEV with the value of the optimal assignment (best possible
solution) for given aircraft survival probabilities, where the optimal
assigmment is defined as the allocation which attacks the j highest-
valued targets when exactly j aircraft survive,

Percent Improvement Over the Base Case. The basic measure of merit

throughout this research is the ;ercent improvement over the base case

(P), a ratio of two values, each averaged over one thousand trials.

Data generated from this procedure drive most of the other measurement
: procedures.

The following expression describes the data which was gathered:

: Pa= 100(-%;- -1)
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value of the base plan, trial i

! V = average V, over the 1000 trials

| i
| = average B, over the 1000 trials

Note: all sums are taken over all 1000 trials,

; B

- | - -— = - e
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For a given trial i, V, 2 B, , so the ratio of the averages has a
lower bound of one, which in turn implies P * 0 , since one was sub-
tracted to shift this lower bound to zero., Multiplication by one hundred
was used to scale the value to percent.

The measure, P, mentioned above is the "ratio of the averages,"
A similar estimator, the "average of the ratios”" (Q), was considered
as an alternative measure of merit, This estimator is shown in the

following equation:
Vi
q-1ooz(§;-1)/1ooo (15)

Q has some unpleasant properties. First, it has a higher variance than
P since small deviations from the mean of V and from the mean of B can
interact to cause rather large deviations from the expected value of BNV,
Second, if V and B are assumed to be independent, normal random variables,
Q is related to a Cauchy distribution, which doesnft have an expected
value, Also, the sample mean of random draws from a Cauchy distribution
does not converge as the number of samples increases == one sample
is just as likely to be close to the true value of the ratio as is the
sample mean over 1000 trials (Ref 2:421).

P, on the other hand, has some valuable properties. Since V is
the best estimate for the expected value of V (the value of the best
plan) and B is the best estimate for the expected value of B (the value
of a single plan), B/V should be a good estimate for the true ratio of
B to V (Ref 10), For these reasons, P was selected as the measure of
merit for this research.

Percent Total Value, The percent total value measurement (T)

shown in Chapter VI is the value of the most efficient bomber attack,

19
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measured in percent of the total target value, that would be expected
for a given P g* If all aircraft are expected to survive an attack
( P = 1 ), T=100 , For all other P values, the value is less.
The measure does not exist at Ps =0 ,

The values for T are calculated at each of five levels of Ps for

each distribution in the following manner:

Step 1: For each level of P_ (o2, by 6, 8, 1.), determine
the expected number (N) of aircraft surviving out of
twenty. That is, N = L4, 8, 12, 16, 20, respectively.

Step 2: Set T equal to the average sum of the N largest target
values taken over gll target sets drawn from a specific
distribution, multiplied by one hundred and divided by

the sum of all twenty target values,

For any distribution, T is a strictly increasing function of Ps
such that any point (Ps, T) 1lies on or above the line connecting
(1, 0) and (1, 100), T would be linear only if all of the targets in
the set had the same value., For any other distribution of target values,
the slope of the curve depends on Ps' For large values of Ps’ only
the smallest targets fail to be counted, A4s Ps decreases through the
medium-size range, none of the smaller targets are included and only
the largest of the medium-size ones, For each incremental decrease
in Ps for Ps amall, a larger and larger value target is not included
in the percent of total value sum.

Thomas produced an expression for the percent of total value for
ranked values consisting of targets of value equal to the first n pos-
itive integers (identical to the integer "distribution" used in this

20
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research) (Ref 9). Thus, the most important target has value n and the

least valuable target is worth one unit. The general expression for an
arbitrary number of aircraft is derived below. Specific expressions for
twenty and an infinite number are also given and graphed in Figure LO,
together with the linear expression (all target values equal), The

horizontal scale was reversed from Thomas' work to remain consistent in

this paper. a
T(n+1-1i)
D= £.1
n
i
i=

d d
tn+1)=~- o1
_im1 inl

im1

d(n +1) - a2 1)

- 2

n‘n-ﬁ-’lz
2

d(2n =d + 1
-—(7__171nn+ (16)

nP (2n = nP_ + 1)
nin+1)

but E(d) = nP_ , so E(D) =

P (n(2-P) +1)
- n+$ (17)

where n = number of targets

d = number of targets attacked
Substituting n = 20 into Eq(17) gives the following result:

Lp =~ 20P2
E(D) = w2 (18)




The limiting case, as the number of targets grows infinitely large, is

given by the following expression:
E(D) = (2 = Ps)Ps

Percent of the Best Possible Solution. The percent of the best

possible solution measurement is derived from the two previoualy men-
tioned measures (percent improvement over the base case and percent
total value). The value of the MFEV obtained through simulation is
divided by the expected value of the best possible assigrment. The

value of the best possible assignment for a given set of targets is

defined as the sum of the j largest target values when exactly j aircraft

survive the initial enemy attack. This value is estimated for each

distribution by the following procedure:

Step 1: Calculate the expected value of a single-plan, discrete

target assigmment ( E(B) ) by the following expression:

10 n
P &L L V..
S o1 snq 1
E(B) = i=1_J=1
10

where Vij = jth largest target in target set i

n = initial number of aircraft

In other words, calculate the average total value of a
target set, averaged over the ten sets sampled from each
distribution.

Step 2: For each of ‘the four levels of P (.2, oLy .6, .8),

determine the expected number of surviving aircraft (N)

N = nP
s

(19)

(20)

(21)
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Step 3: Calculate the sum (S) of the largest N target values for

each level of Ps (averaged over the ten sampled sets of
targets). This is labelled the value of the best possible

solution.

10 N
g = i=l d=t (22)
10

Step L: Create the ratio (R) of the value of the MFEV to the value
of the best possible assigmment. Since percent improve-
ment over the base case (P), derived in Eq(14), is the mea-
sure used to estimate the value of the MFEV, this figure
must first be converted back to a value before the ratio
can be taken., The conversion and division is done by the

following expression:

p B 1o%LE(B)

(100(—?- - 1) + 100) E(B)
B

= —

3
100 -(ELRL,)
s B
= 100— (23)
S

e o e e e e o < e e e+
L}

Although B # E(B) (simulated estimate not identical to analye
tically derived exact result), the two were verified as very nearly equal.
The values were compared for this study and a difference of slightly over

two percent was the largest deviation discovered., Most differences




were down in the one percent range. Therefore, although this mixing of

sources may introduce some error into the estimate of R, the figure out-

| put from this algorithm should be close to the true value. Thus, R
should be a reasonable approximation to the percentage of the best
possible solution achieved by the MFEV.

The estimated percent best possible solution of the base case is
used to compare with the MFEV values in Chapter VI. The measure is
approximated by dividing the expected value of the base case by the
estimated value of the best posgsible solution, which were derived

earlier, as shown below:

Ev-ﬁsél (2L)

where E(B) and S are defined in Eq (20) and Eq (22).




IIT Design 9£ Experiment

The objective of this research is to measure the change in the

destruction capability of a banber force resulting from incorporating
i . the Multiple Force Employment Variation (MFEV). Also of great interest
is the sensitivity of this measure to changes in the distribution of

target values and the probability of aircraft survival. A model was

L created to estimate the value of the MFEV at different levels of these,
and other parameters. The research was separated into two phases.
Phase I requires that all targets are assigned in each plan. FPhase II
relaxes this requirement and allows multiple aircraft to be allocated
against a single target.

Initial investigation into this subject suggested the value of the
MFEV could be highly dependent upon many factors. The research therefore
had to be carefully designed to properly account for these variables,

As will be discussed in the Methodology and Target Value Distribution

sections, some factors were assumed constant, some included parametrically

and some had to be allowed to vary randomly in the model,

! Scenario

‘ This research will center on a simulation of a bomber force of
twenty aircraft and a target set list cmsisting of twenty targets with
known values. Twenty aircraft and targets were selected as a trade-off
between the desire for a large number of aircraft (to enhance the degree
of operational validity) and a number small enough to keep the problem

to workable proportions., Twenty was felt to be a reasonable trade-off

between the two arguments,

! Implicit Assumptions. Throughout this research, all aircraft will
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be assumed haomogeneous. Each aircraft has an equal probability of sure
viving the initial enemy attack on its airfield and an identical pro-
bability of killing a given target, dependent only upon the target being
attacked. In addition, the survival probabilities for all aircraft and
probability of any target kill by any aircraft given launch survival are
assumed independent of one another,

The target values are assumed constant over time unless destroyed
by a bomber. Any aircraft which survives the simulated enemy attack
is assumed to destroy the target it attacks with probability one =~ that
is, the conditional probability that a specific target is destroyed,
given that the aircraft assigned against it survives the enemy attack,
equals one. In Phase II, when more than one surviving aircraft may. be
assigned against a single target in a plan, only one aircraft is cre-
dited with having destroyed the target -- i,e. no target is counted as
killed more than onee. '

Measure of Merit

Since the aircraft are assumed homogeneous, any single-plan assigne-
ment which allocates a bomber against every target is equivalent, i.e.
has an identical expected value of targets destroyed. Therefore, an
arbitrary single-plan assigmment was selected and labelled as the
"base case." This assigmment served as the control, against which the
value of the MFEV under different conditions could be evaluated., Each

time a state of nature was simulated, both the value of the system under

the assumed conditions (Vi) and the value of this base case (Bi) was

recorded., After 1000 states of nature (specific aircraft surviving the
enemy attack) were simulated, a ratio of the average values was cal-

culated to determine the average percent improvement in value over

26




P

the average value of the base case. Thus a reading of 0,0 translates
into no improvement while 100.0 would mean twice as much value as the
base case (100.0 percent improvement). Improvement of more than 100,0
percent is possible. This percent improvement over the base case sta-
tistic served as the basic measure of merit for this entire project.

This particular measure of merit seemed most appropriate for
numerous reasons, First, it is a scaleless quantity. No matter on what
scale the target values might be measured, percent improvement (additional
value) would just have a multiplier effect - measured in the same scale.
Secondly, this measure would be more directly applicable to a variety
of problems than any measure tied to a specific unit., In addition, it
maintains significance at any parameter level where many other measures
would not, For example, if a value~based measure of merit were in use,
an expected system increase of ten units of wvalue might be an extremely
gignificant improvement if only a few aircrdaft were expected to survive
an enemy attack., If, on the other hand, most of the bomber fleet were
expected to survive, this ten units may be only a negligible improvement.

The only other research on this problem used two measures of
effectiveness. The basic measure was the value of an assigmment given
that a particular number of aircraft were lost (comparable to a given
value of Ps)' The assigrment which was optimal for every choice of number
of surviving aircraft was defined as the optimal assigmment. (Thus, in
order to be considered optimal, the assigmment also had to be suboptimal
for every possible number of surviving aircraft and every possible com-
bination of specific aircraft surviving,) This definition proved to
be overly restrictive., Indeed, Dimon proved no such optimum exists for
systems of six aircraft and three plans or larger (Ref 3:C31-41), The




other measure of merit was an adaptation of this basic measure and

was utilized when no "optimal"” assigmment existed. It consisted of the
percentage by which the expected value a particular solution fell short
of the generally unreachable upper bound solution, for a given number
of surviving aircraft. This upper bound solution is the best possible
solution used in this research and described in Chapters I1I, III, VI,
and VII. Also, the percent improvement over the base case weights each
specific number of surviving aircraft by its probability of eccurrence
through .the Monte Carlo similation procedure mentioned later in this

chapter.

Target Value Distributions

The other investigation into the value of the MFEV assumed target
values equal to successive integers (Ref 3). This research expands the
scope of that study as well as relaxes the assumption of consecutive
integer-valued targets by treating the target values as random obser=-
vations from a known probability distribution.

In order to test the robustness of MFEV effectiveness to changes
in target value distribution, identical methodologies were followed to
measure the value of the MFEV under a variety of distributions of target
values, The values were selected by Monte-Carlo sampling, a method
of producing random variates from the particular probability distributim
being sampled (Ref 8:65). The distributions selected cover a wide range
of possibllities and most lists of operational target sets could be
considered to approximate one of these, The five distributions from
which target values were sampled for use in this research are given
in the following sections.

Successive Integers. In the integer target list, target values are




deterministically established as the first twenty successive integers,

Thus, the target of highest importance has value 20.0 and the target of
lowest importance is valued at 1.0 unit. This was the scheme utilized
by Dimon (Ref 3).
Uniform. Under the uniform target distribution, target values
were randomly selected from a wniform distribution between 0.0 and
100,0, Since all values in the range have equal probability of occurrence,
one would expect the most highly regarded target to be valued in the
90's and the target of least impertance to be worth between 0.0 and
10.0 units. A sample graph of a uniform probability distribution
function (pdf) is shown in Figure L.

Low=Variance Normal., Target values for the low-variance normal

distribution were sampled from a truncated (0, 100) normal distribution
with mean 50.0 and a standard deviation of 10,0. This distribution
would be expected to result in a large number of medium-valued targets
and only a very faw target values greater than 20.0 units away from
the mean. A graphical example of this pdf is shown in Figure 5.
High-Variance Normal. Under the high=variance normal target list,
target values were selected from a truncated (0, 100) normal distribution
with mean 50 and standard deviation 30. Thus, in sampling from this
distribution, one would expect a loose cluster around the mean with a
good percentage of the values more than 20,0 units away from the mean.
An example of a truncated high-variance normal pdf is given in Figure 6.
Exponential. Target values for the exponential target list were
obtained from a truncated (£ 100) exponential distribution with mean
25, (The expected sample mean is actually about 23.134 due to the trun-

cation at 100). This distribution approximates the case of a great
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proportion of low-valued targets, a few medium-valued targets, and a very

few targets in a high-value (above 70) category. See Figure 7 for a graph

of this pdf.

Selection of Target Values. A set of two hundred random values
were sampled from each distribution for a total of 1000 observations.
The two hundred datapoints were divided into ten subsets of twenty in-
dependent, identically-distributed values each, Thus, a total of fifty
target lists were created -- ten from each of the five distributions.
(Actually all ten target lists from the integer-valued "distribution"
were identical since they are selected deterministically -~ the integers
from one to twenty inclusive). A FORTRAN listing of the code used to
generate the ten subsets of target values for the highevariance normal
distribution is included as Appendix A, The target values for the other

distributions were created in a similar manner by calls to the appropriate

IMSL random deviate generator (GGUBFS for the uniform distribution, GGNQF

: for the normal distributions and GGEXN for the exponential distribution
(Ref 5:G=1+))., All four sets of target values were sampled beginning with
the identical random number seed == the value shown in Appendix A, This
{ was done to make target sets sampled from different distributions more

| canparable, With the identical initial random number seed for all
distributions, any possible bias in the random deviates (large percen-

tage of "big" samples, for example) would occur in all target distributions,

thus reducing its effect,

Methodblogx

! The objective of this research, as mentioned earlier, is to es- |
timate the value of the MFEV, determine the sensitivity of the measure

to changes in its input parameters and create a prediction model, Toward
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that end, four factors were varied and the resulting measures of value
compared. A regression equation was constructed from this data to es-
timate the expected value of this retargeting option, given specific
values for the input parame;ers. A1l this was done twice == once with
all aircraft assigned to different targets (Phase I) and a second time
when more than one aircraft is allowed to attack the same high-value
target (Phase II).

Input Parameters. Two factors were treated as parameters in this

research -- the mmber of plans in the assigmment and the probability
that an aircraft survives the initial enemy attack (Ps)' (These variables
serve as the predictor (independent) variables in the regression modelj.
Each of these factors will be tested at four levels. Variations with

two, three, four and five MFEV plans will be compared with the base

case of one plan. In addition, Ps will be varied between 0.2, 0.L,

0.6, or 6.8 for each run,

The other two factors included in the model were target value dis=-
tribution (five levels =- discussed earlier in this chapter) and what will
be called the targeting option, This binary targeting option either
1) forces all aircraft to be allocated against different targets (and
therefore forces all targets to be targeted since the number of aircraft
equals the number of targets) =~ Phase I; or 2) allows multiple aircraft
to be assigned against the same target by the marginal value criteria
presented in Chapter II -- Phase II,

Sixteen hundred datapoints resulted from 1600 runs of the model.,

For each of the five target value distributions, ten sets of targets
were sampled. In other words, ten replications of a set of random
draws from each of the five distributions (that would be fifty runs ==
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10 # 5) were taken. Each of these fifty divisions must be further
subdivided in three ways -- by targeting options (two levels), by the
number of plans (four levels), and by P (four levels), Thus, each
of those fifty divisions were split into another 32 ( 2 # i # L )
sections leading to 1600 ( 10 % 5 % 2 # L4 # L4 ) datapoints.

Once the level of each factor was determined (specific replication
from a specific target value distribution at specific value of Ps and
number of plans for a given targeting option), two functions had to be
accomplished so the value corresponding to this block could be measured.
These two functions, assignment and simulation, are discussed in the
next two sections.

Assigmnment. The assigmment function of the model corresponds to
the real-world task of building the SIOP. This portion of the model
determines which targets are assigned to what aircraft in which plan --
actually a three dimensional agsigrment problem, as discussed in Chapters
I and IT.

The assigrment section has one basic duty -~ create a near optimal
allocation of aircraft to targets over all plans. As was mentioned
in Chapter I, this task is much more difficult than one might suspect
at first glance. Since finding an optimal solution would normally dic-
tate an unreasonable amount of computer resource, a heuristic solution
was selected to find a near-optimal solution -- an assigmment which
would perform almost as well as the optimal solution, but which is more

easily obtainable.
In his paper on the subject, Dimon states that in order for an
assigment of targets to be optimal, the column sum of their values

should be as nearly equal as possible (Ref 3:C23). The rationale behind




the concept is as follows. In order for the column sums throughout
the assignment to be nearly equal, they must be worth an average of
k/m where m is the number of plans. But this means the amount by which
the high-value targets in the column exceed k/m is about equal to the
amount by which the low-value targets fall short. Thus, for every ex-
tremely high-valued target in a column, there must be an extremely low-
valued target, or two (or more) low-valued targets. But since the same
targets are in every row, a high-valued target in one column means
there must be lower-valued targets in the other columns., But these
lower-valued targets must have higher-valued targets in the other rows
of the same column in order for the columns to all sum to about k.
Therefore, no matter what column might be deleted,.high values will be
removed from some plans and low values from others. The specific columns
deleted is what determines which rows will have more high-valued targets
remaining and which rows will have more low-valued targets, That row
with the greatest proportion of high-valued targets would be the optimal
plan, given the specific columns deleted (state of nature). For a more
elaborate discussion of the rationale, see Dimon's paper (Ref 3:C7-C30).
Although Dimon's concept has great intuitive appeal and seems to
work under most conditions, making the cdlumn sums as nearly equal as
possible is not the best assigmment in all cases. Consider, for example,
four targets of value 1, 5, 12, and 25 units. Let two MFEV assignments
be as shown in Figures 8 and 9, Figure 8 contains the allocation which
makes the column sums as nearly equal as possible, while the dptimal
assigmment is shown in Figure 9. The value of the two assigrments is

identical under all but one of the possible states of nature. When

aircraft two alone is destroyed, however, the assigmment obtained by




Aircraft

1 2 3 L

Plan 1 25 12 5 1
Plan - 1 12 25 5
Plan 3 5 12 1 25
Column Sum 3 36 n N

Figure 8., Assignment Resulting From Dimon's Concept

Aircraft
1 2 3 L
Plan 1 25 12 5 1
Plan 2 1 5 25 12
Plan 3 S 12 1 25
Column Sum 3N 29 3 38

Figure 9. Optimal Assigrment

making the colum sums as nearly equal as possible (Figure 8) has a lower
value than the optimal assignment (Figure 9) (31 versus 38). Thus,
although intuitively reasonable, this concept can not be guaranteed to
produce the optimal assigmment for any particular set of target data.

Dimon, in his research, used a branch and bound technique to find
the suboptimal assigmment, given a specific state of nature. He then
attempts to generalize these results by observing patterns in the target
assignment matrix. For larger problems, even this indirect solution
methodology would take an unreasonable amount of computer time to operate.
Therefore, an element-interchange assigrment-improvement heuristic
procedure was created.

Beginning with any assigmment, the procedure tests pairs of same
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row elements to see if exchanging them would improve their respective
column sums, i.e. would make the column sums more equal. If the exchange
would be an improvement, the change is made. This test-interchange
procedure continues until no additional improving exchanges can be

made, At this stage, the assignment matrix is passed to the simulation
section. As shown in Chapters I and IV, this assignment need not be
optimal, but only near-optimal.

Simulation., Using the user supplied Ps’ the simulation section
generated states of nature (specific airfcraft surviving an enemy attack)
by means of a Monte-Carlo simulation., Once it is known which specific
aircraft have survived the attack, the value of the base case and of
each plan of the MFEV can be calculated. The best MFEV plan was ident=-
ified and its value included in the measure of merit statistic dis-
cussed earlier in this chapter (along with the value of the base
case), One thousand simulated attacks were completed on each assign-
ment at given parameter levels. The same set of random numbers were
used in the Monte=Carlo simulation f£6r each level of all four factors
(number of plans, probability of survival, targeting option and target
value distribution) in an attempt to reduce the variability in the
data.

Prediction. In order to create an MFEV value predictor, the 1600
datapoints created in the simulation section were used as input into
the SPSS regression statistical package to produce a linear regression
model (Ref 7:320-368). Ten regression equations (160 datapoints input
for each)were formed, one for each of the targeting option/target value
distribution pairs. In order to use the model, one would select the

equation corresponding to the targeting option and target value dis-
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tribution that was appropriate. After substituting the correct values
for the aircraft probability of survival and the number of plans, one

could compute an estimate of the value of the MFEV, given those conditions.
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IV System Description -- Phase I

This chapter describes the algorithms and software package created
to measure the value of the MFIV when there are an equal number of
aircraft and targets and all targets must be assigned to an aireraft
under each plan. Initially, the chapter describes the design of the
computer model. The remaining portion of the chapter takes a step-by-

step walk through the software system.

§xstem Desigg

The computerization of the model is partitioned into five sec=-
tions -- target selection, initialization, assignment, sirmlation and
output. The target selection section was used to create the target
values which were used in this research, The initialization section
contains the program SIM which initializes variables, obtains the tar-
get values and calls all subroutines. The assignment section contains
subroutines ASSIGN and RULE!. This section creates an initial assigne
ment and iteratively improves the assigmment as much as possible., The
simulation section generates one thousand independent states of nature
(specific sets of surviving aircraft). For each state of nature, the
value of the single-plan system and the multiple-plan variation are
calculated using the assigmments provided by the previous section.
Statistics on these values are collected. Subroutines SURV, VALUE
and BASE perform the duties of this section. The output section
writes data to two files == one for visual scrutiny by the analyst
and one for input into the SPSS statistical package.

The following summarizes the duties of each section, in order

of execution.




J Target Selection

Program MAKET was used to select the target values used throughout
the research. The routine creates ten sets of twenty target values each,
all sampled independently from the same distribution (one of the five
used by this thesis). Essentially the same program was executed five
; times with only minor changes needed to control the pdf from which
the values were sampled.

; As the samples were taken, they were sorted into decreasing order
! by target value. After a set of twenty samples was taken, it was written

out to a disk file, Ten such independent identically-distributed samples

2 iq

of twenty target values each were stored on the same file. Values from

P T

different distributions were plated on different files. Each of these

files, in turn, fed its values into the master program -- Program SIM.

Initialization Section
Program SIM. Program SIM serves as a master program, initializing

variables and generally setting up the remaining portion of the program

for execution. The number of aircraft (which equals the number of tar-
gets) and the probability that an attacking aircraft kills a given

target (PK), are always set to 20 and 1.0, respectively, for this research.

The number of preplanned MFEV options and the aircraft probability of
survival (PS) are then determined by user input. All of the previous
values remain constant for all sets of target values taken from the same
distribution. Everything after this point, though, is repeated ten times,
once for each of the ten sets of target values sampled from inhe particular
distribution. First, twenty target values are read from the data file
selected by the user. Since the values were sorted before they were

written on the file, the targets are entered into the target matrix
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(TVALUE) in non-increasing value order (the highest value target is
TVALUE(1) and the lowest TVALUE(20)). Control is then passed to the

assignment section to allocate the aircraft to targets.

Assignment Section

Subroutine ASSIGN. Subroutine ASSIGN begins by assigning the base
case -- the assignment against which all others are measured. Since
this research only investigates the case of homogeneous bombers with ﬁ
identical probability of survival, the aircraft are indistinguishable.
Therefore, the base case can be assigned arbitrarily since all permutations
produce the identical expected value of targets destroyed. Arbitrarily, %
therefore, target one is assigned to aircraft one, target two to aircraft j
two, and so on. By the same reasoning, the first MFEV plan is identical i

to the base case. z

The MFEV assignment can be modeled as a matrix with rows representing
plans; and columns, aircraft. The value of an element stands for the value
of the target assigned to that aircraft in that plan. Thus, if element
(2,1) equals 17.3, then a target valued at 17.3 is assigned to aircraft
one in plan two. (In the computer model, the value of an element
actually represents a target number -- an index into the target value
array. For ease of discussion, though, the matrix will be treated as
defined above).

Once the first row (plan) has been initialized, the other rows
(plans) are given an initial assignment by a simple two-stage algorithm.
The first stage creates an assignment for the second row. All other rows
are assigned by the second stage,

Assume the general case of n aircraft and m plans, for m<n .

In plan two, assign target n (the lowest value target) to aircraft one.
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Target n - 1 1is then assigned to aircraft m +1 (mod n) -- the
previous aircraft that was assigned (1) plus the number of plans (m),
modulus n. The third lowest target is assigned to aircraft 2m + 1
(mod n), the previously assigned aircraft, m + 1 , plus the number of
plans (m). This modulus arithmetic assignment system continues until
all targets are assigned, which is equivalent to ensuring that all air-
craft are allocated. If n =km , where k is some integer, the modulus
arithmetic has to be modified slightly so that the remainder is incre-
mented by one when n is exceeded -~ for example, n + 1 (mod n) becomes
2 rather than the expected 1.

Stage two of this initial assignment procedure allocates targets
to aircraft in all other plans, if there are any. Row three is created
by simply shifting the row two assignment to the right by one column
with wrap-around (wrapping the last column around to the first column).
Row four's assignment is shifted by one more column than row three's
assigmment; and row five's assignment one more again., An initial assign-
ment of five aircraft and three plans is shown in Figure 10, assuming
target values of one to five, inclusive., Note that the column sums
are somewhat close, as one would hope. This method was found, in most
cases, to reduce run time significantly over an assignment consisting
of all plans with an identical target/aircraft allocation. Consequently,
the effort to improve the initial solution was worth the time required
to accomplish it. Subroutine RULE! is then called upon to improve upon

this initial feasible assignment,

Subroutine RULE1. As discussed in Chapter III, the objective of
the heuristic assignment procedure is to allocate the aircraft to targets

so that the column sums are as nearly equal as possible. Beginning
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Aircraft

1 2 3 N 5
Plan 1 5 L 3 2 1
Plan 2 1 3 5 2 L
Plan 3 L 1 3 5 2

Column Sums 10 8 11 9 7

Figure 10. Sample Initial Assignment

with the initial assignment created in ASSIGN, RULE!1 transposes same-
row elements to monotonically advance the solution toward this goal. The
column sum of column i is the sum of the target values assigned to air-
craft 1 over all plans, as was demonstrated in Figure 10.

The approach used is to first sort the columns by column sum and
then attempt to decrease the largest column sum. Elements of the calumn
of largest sum are compared with elements of the column of smallest
sum from top to bottom to see if an exchange of elements would improve
the state of the column sums. Since the aircraft are homogeneous, all
assignments can be made without working with row one. Therefore, row
two is the first one checked and then row three and so on until a bene=-
ficial change is found. If no improvements can be made, the elements
of the largest column are compared with the elements of the column with
the second-smallest column sum (also in order of increasing plan number)
to see if any exchange will improve the sums. If this also fails, the
largest column is compared with the third smallest, the fourth smallest,
and so on until an improvement can be made. If no way of decreasing the
largest column sum can be found, the second largest column sum is com=-
pared with the column of smallest sum. If this leads to no improvement

in sums, the second largest is compared with the second smallest and so




on as before. This method (checking the column of largest sum first

against the column of the smallest and so on) was found to be more
efficient than a procedure which merely began comparing arbitrary
: columns. However, there is no reason to suspect that this is the most
efficient approach.
Once an exchange is found which would improve the column sums, the
f algorithm makes the exchange, uatermines the new column sums and resorts L
them. The algorithm then shifts back to begin the entire process once

again (comparison of the largest column sum with the smallest). If no

improvement can be made after comparing all pairs of columns, the assign-
ment cannot be improved. This final assignment matrix and corresponding
colum sums are written out for the analyst. Then RULE1 passes this
solution and operational control to the simulation portion of the program.

Sample Calculations. An example might be enlightening at this

. stage. Assume the naive initial assignment in Figure 11 has been made,
The elements themselves represent target values, the rows -- plans and

the columns -- aircraft.

: Aircraft

] 1 2 3 L

g Plan 1 1 3 L 6

i Plan 2 1 3 L 6

! Plan 3 1 3 L 6
Column Sum 3 9 12 18

Figure 11, Initial Assignment

The objective of this routine, as was previously mentioned, is to
! make the column sums more equal. An element-interchange only improves

the state of the colum sums if it passes both of the following tests:
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Test 1: The element of the column with the smaller sum is smaller
than the element of the column with the larger sumj
Test 2: The difference between the elements must be less than

the difference between the column sums,

Test 1 ensures that the larger sum doesn't get larger and, consequently,
that the smaller doesn't get smaller. Test 2, on the other hand, ensures
that the interchange isn't too much of a good thing. An exchange which
violates Test 2 would cause the smaller column sum to become as large
or larger than the large column sum and vice versa. Obvioudly, this would
not be an improvement in the state of the column sums.

The algorithm would first compare element (Z,4) with element
(2,1) (the column with the largest column sum (column L) and the column
with the smallest (column 1)). Since (2,4) is greater than (2,1) (Test
1) yet not too much greater (Test 2), the exchange would be made. Figure

12 demonstrates the status after this one interchange.

Aircraft
1 2 3 L
Plan 1 1 3 L 6
Plan 2 6 3 L 1
Plan 3 1 3 L 6
Column Sum 8 9 12 13

Figure 12, Solution After First Interchange

Since an exchange was made, the entire procedure begins again
looking at the largest column sum (still column L) and the smallest
column sum (still column 1). Comparing elements (2,4) and (2,1) shows

that (2,1) is greater so no exchange is made (Test 1 -- it would decrease
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the smaller column sum and increase the larger -~ exactly the opposite
of the objective). Now try row 3. Element (3,L) is greater than (3,1)
: so it passes Test 1, But is it too large (Test 2)? Would the exchange
| cause the sum of column 1 to become greater than or equal to the present
sum of column L4? It turns out that (3,4) is just barely too much larger
than (2,1) so that, if the exchange were made, no improvement would be

seen, as shown in Figure 13,

Aircraft
1 2 3 L
Plan 1 1 3 4L 6
Plan ? 6 3 L 1
Plan 3 6 3 L 1
Column Sum 13 9 12 8 B

Figure 13. Example of Unprofitable Interchange

The algorithm now calls for a comparison of the largest column

(column 4) with the second smallest (column 2). Row two violates Test
1 but row three passes both tests. Therefore, elements (3,4) and (3,2)

i are exchanged, with the result shown in Figure 1L.

Aircraft '

; 1 2 3 I
| Plan 1 1 3 L 6
’ Plan 2 6 3 L 1
1 . Plan 3 1 6 L 3
: Column Sum 8 12 12 10

Figure 1h. Solution After Two Interchanges

The column which would be labelled as having the largest column sum




(colum 2 or column 3) would depend upon the sorting algorithm used.

Assume column 2 was selected as largest. Since an exchange was just
accomplished, the algorithm reverts to comparing the columns with the
largest and smallest sums (columns 2 and 1 respectively). Row 2 fails

Test 1 and row 3 fails Test 2, so column 2 is compared with column L

(the column of largest sum with the column with the second smallest).

No exchanges would be made between these columns :either, because both

rows fail Test 2. Next, the algorithm calls for a comparison of columns

3 and 1, the columns with the second-largest and smallest sums, respectively.
Row 2 violates Test 1, but row 3 passes both tests. The exchange of

(3,3) and (3,1) results in the assignment in Figure 15.

Aircraft
1 2 3 L
Plan 1 1 3 L 6
Plan 2 6 3 L 1
Plan 3 L 6 1 3
Column Sum 11 12 9 10

Figure 15, Final Solution

Although this assignment is not optimal (other assignments exist
in which the column sums are more equal), the algorithm, as modeled,
would not perform any more sxchanges. All possible interchanges would be
tested and none which would produce improvement would be found. There-
fore, this assigmment would be passed to the simulation section.

A better solution could be achieved if one was willing to allow
sither 3-elemént swaps or exchanges which do not directly further the
objective (i.e. do not change the magnitude of the column sums, but do

change which particular column has a particular sum), For example,
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in Figure 15, the exchange of elements (2,2) and (2,4) would result in
the solution in Figure 16. Note that the column sums of column 2 and

colum L are reversed.

Aircraft
1 2 3 L
Plan 1 1 3 L 6
Plan 2 6 1 L 3
Plan 3 L 6 1 3
Column Sum 11 10 9 12

Figure 16, Final Solution After Unproductive Interchange

Although no improvement was made with regards to the objective function,
the optimal solution (shown in Figure 17) is obtainable in only one

more interchange.

Aircraft
1 2 3 L
Plan 1 1 3 L 6
Plan 2 6 1 L 3
Plan 3 L 6 3 1
Column Sum 1 10 1 10

Figure 17, Optimal Solution

This example was selected specifically to point out that this al-
gorithm does not always find the best solution., Under most conditions,
the two-way interchange procedure does eventually produce the best solution.
Therefore, exchanges were limited to the pairwlise switches which improve
the objective function. The other types of interchanges were not allowed

since they would usually increase run time dramatically without appreciably
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improving the assignment determined. Besides, even the optimal solution

to this problem represents only a heuristic solution to the underlying

, problem.

| The total number of element interchanges was limited to 200 iterations
by a similar rationale. The number of single-plan assignments equals

the number of ways the n targets can be ordered -- n!, If there arem

plans, there are (nl)m ways the m # n assignment matrix can be arranged.
But the aircraft are assumed homogeneous, so just permuting the columns

' should not be considered a different assignment., Similarly, if plan i
and plan j were interchanged, the assigmment really hasn't been changed.
Therefore, the previous result should be decreased to é?!%? = (n!%T-1
possible different assigrments. Although the number of possible assign-

ments is finite, it is extremely large, as shown above., The number of
possible improving exchanges, thus, although bounded, is also very large.

It was discovered during the software debug phase of the research that

run times were becoming excessively large for some data sets and initial
assignments. Consequently, the number of allowed exchanges was limited

to 200 based on the following rationale:

1) Empirically, a bound of 200 iterations impacted only a few of
the assignments. The assigmment iteration procedure halted in less
than- seventy exchanges in most cases.

2) Since the algorithm concentrates on the maximum and minimum

column sums, any assignment changes made after 200 iterations should

have only minimal impact on the column sums. Experimental data

supported this hypothesis. When column sums derived from the
algorithm limited to 200 iterations were compared with column

sums from the algorithm limited to 500, the biggest change in samples
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taken was less than 1%.

Once subroutine RULE! obtains the best solution it can, control

is passed from the assigmment to the simulation section.

Simulation Section

The simulation section emulates one thousand independent enemy
attacks on bomber bases. Given the base escapé probability (equal for
all aircraft in this research) defined during the initialization phase,
the specific aircraft swrviving each simulated attack are determined.
Given this "state of nature" (specific surviving aircraft), the value of
the best plan is measured and compared with the value of the base case
under the same state of nature, The ratio of the averages over 1000
trials is the one data point created in the section.

The simulation section consists of three subroutines -- SURV, VALUE
and BASE; each of which is called for every trial. The following des=
cribes the operation of each module.

Subroutine SURV. The purpose of subroutine SURV is to determine

how many and which particular aircraft have survived the simulated missile
attack, The inputs consist of the probability of survival for each
aircraft defined by the user in the initialization section, and a set

of random numbers. The outputs are the number of aircraft surviving and
an array containing their airecraft numbers. Since the-dircraft are
assumed independent, the program merely compares a different uniform

(0,1) pseudo random variate obtained from an IMSL routine with each
aircraft!s probability of survival to determine which ones live and which
are destroyed. If the random number is greater than the probability of

survival, that particualr aircraft is assumed destroyed. Nothing needs




to be done since a dead aircraft contributes nothing to the wvalue of

any plan. If the random number is less than or equal to the survival
probability, the number of survivors in incremented and the aircrafi is
added to the surviving aircraft array. This procedure is accomplished
for all twenty aircraft, The surviving aircraft array saerves as an
input for the next subroutine -- VALUE.

Subroutine VALUE. Subroutine VALUE measures the value of each plan

and determines which plan is best. The inputs for this routine are the
assignment generated from the assignment section and the surviving air-
craft array created in subroutine SURV. The program sums the value of
the targets assigned to surviving aircraft to get a measure of the value
of each option (plan). A pointer is set to the plan of largest value --
the plan which should be selected by the decision maker based on the
objective of maximizing expected target destruction.

Subroutine BASE. Subroutine BASE computes the value of the base

case assigmment and a measure of the difference between the base case

and the best multiple plan value. Since plan 1 is identical to the

base case, the value of the base case is exactly the value of plan 1,

A non-negative measure of the improvement over the base case (delta

value) is created by subtracting the value of the base case from the value

of the best option. Since one of the plans is identical to the base case,

a zero delta value is the worst that can be obtained. As was discussed
in Chapters II and III, the value of the base case and the delta value
are summed over all one thousand trials, After all the trials are

canpleted, control is passed to the output section.

Outgut Section

The output section uses as inputs the sums of the base case values
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and the values created by the simulation section., From these numbers,

a single statistic -- percent delta value (PCDVAL) is calculated by

Eq (1k4) derived in Chapter II. This value represents the expected in-
crease in the value of targets destroyed under the MFEV targeting system
as compared with a single-plan assignment.,

PCDVAL, labelled as the "percent improvement over the base case"
is added to the previous output. In addition, PCDVAL, together with
two user determined parameters (the probability of aircraft survival
and the number of plans), are written to another file for eventual
input to the SPSS statistical package.

When all these procedures are completed for the ten sets of target

values for a particular distribution, the program is complete,
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V System Description -- Phase II

This chapter describes the changes to the computer software system
to allow for multiple aircraft assigned against some targets. The
chapter walks through the adapted program, giving examples to help ex-
plain the workings of the code. Emphasis is placed on differences
between this version and the single-aircraft/single-target version
described in the previous chapter.

The measure of effectiveness utilized in the multiple aircraft
versus one target version continued to be percent improvement over the

same "base case" (with all aircraft assigned against different targets),

as discussed in Chapter III., The initialization and output sections
were not changed at all from the previous version. In fact, only two
subroutines had to be modified to allow multiple assigmments against

a target -- ASSIGN and VALUE. The following describes these changes and

their effect on the subroutines.

Subroutine ASSIGN

As in the Phase I system (described in Chapter IV), all the initial-
izations have been completed and the values of parameters set before
entering subroutine ASSIGN, For the Phase II scenario, the duties of
this module have been expanded to include the selection of targets
to be attacked. It still accomplishes the original purpose of creating
an initial feasible assignment. Recall that in the initial system,all
targets and all aircraft were utilized; i.e. every target was attacked,

so the target selection process was not nesded.

The base case assignment is initialized by allocating the highest

value target to aircraft number one, the second-most-valuable target to
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aircraft number two, and so on. This procedure is identical to that
done in the original system. Since the targets were sorted before entering
this subroutine, the highest value target resides in TVALUE(1), the secomd-
highest in TVALUE(2) and so on down the line to the least-important
target (out of the twenty) in TVALUE(20), just as in the original system.

Target Selection. As stated in Chapter II, targets are assigned
to aircraft by reference to the target's marginal value. In other words,
each aircraft in turn is assigned against the target where it would do
the greatest amount of good. Thus, if it is more valuable to send a
second (or third, or ...) aircraft against a "high" value target already
assigned than to hit an unassigned target, this is done. As described in
Chapter II, the marginal value of target i (MVi) is given by the following
expression:

MV, - Psti(1 - psti)j v, (5)

where Ps = Aircraft probability of survival
Pk = Probability attacking aircraft kills target i
i
j = number of aircraft already assigned against target i

Since this research assumes Pk = 1,0 for all targets, the ex-
i
pression for marginal value simplifies to the following expression:

- _pyd
MV, Ps(1 Ps) v (25)

When the routine is entered, no aircraft have been assigned (j=0),
so all targets have a marginal value of MVi - PSV1 . Since Ps is
identical for all aircraft, the largest value target also has the largest
marginal value. Therefore, the first aircraft can automatically be

assigned against the highest value target. Then the marginal value
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of target one is updated { MV, = PS(1 - PS)1 v, ) and placed into
its location in the ordered marginal value vector. If V1 is much larger
than V2, it may be that target one still has the largest marginal value.
If so, aircraft two will also be assigned to target one. If, on the other
hand, MV2 = PSV2 >-Ps(1 - Ps) V1 = MV1 » then aircraft two will be
allocated against target two. Whichever path is taken, the marginal
value of the target against which aircraft two is assigned is then up-
dated and resorted into the marginal value array. Then aircraft three
is assigned against the target with the largest marginal value. This
procedure continues until all twenty aircraft are assigned to targets.

Sample Calculation. As an example, assume four aircraft and four
targets of value equal to one, three, four, and six. Thus, the highest
value target is worth six units and the least-important target is only
worth one-sixth as much or only one unit.

If we assume that P_ = 6 and P, = 1.0 for this example, the
initial residual and marginal values are given in Figure 18, Residual
value is the expected value of the target if no additional aircraft

attack it, and is shown only for illustrative purposes.

Target
1 2 3 L
Residual Value 6.0 L.O 3.0 1.0
Marginal Value 3.6 2.4 1.8 06

Figure 18, Initial Data for Sample Calculation

Note that since no aircraft have yet been assigned against any of the
targets, the residual value of each target equals its full value.

The marginal value is obtained by multiplying the probability of survival

- — e - ——

sminAiiie, .




times the target value and equals the change in residual value if one
more aircraft is assigned against that target. The first aircraft is
assigned to target one., Figure 19 gives the residual and marginal values
after this one assignment. The assignment status is shown in Figure

20,

hl

7 Target
1 2 3 L
Residual Value 2.4 L.o 3.0 1.0
Marginal Value 1.4 2.4 1.8 0.6

Figure 19. Post First-Assignment Values

Aircraft
1 2 3 L
Target 1 X x x

Figure 20. Post First-Assigmment Status

Note that both the residual and marginal values of target one are updated

by multiplication by (1 - PS) . Target two now has the largest marginal

value (2.4), so aircraft two is assigned against it. These results are

shown in Figures 21 and 22,

Target
1 2 3 L
Residual Value 2.4 1.6 3.0 1.0
Marginal V&lue 1 o)-dl» 096 1 08 006

Figure 21, Post Second-Assignment Values




Target 1 2 be b'd

Figure 22. Post Second-Assignment Status

Next, aircraft three must be assigned. Since target three has the
largest marginal value, aircraft three should be allocated to it. The

outcome of this assignment is shown in Figures 23 and 2L.

Target
1 2 3 L
Residual Value 2. 1.6 1.2 1.0
Marginal Value 1.L44 .96 72 0.6

Figure 23. Post Third-Assigmment Values

Aircraft
1 2 3 L
Target 1 2 3 b 4

Figure 2. Post Third-Assignment Status

After these three assignments, target one has the highest marginal
value so aircraft four is allocated to target one. The resulting final

assigmment for this simplified problem is given in Figure 25.

Aircraft
1 2 3 L
Target 1 2 3 1

Figure 25, Final Assignment Status
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Target 1 2 X b4

Figure 22, Post Second-Assigrment Status

Next, aircraft three must be assigned. Since target three has the
largest marginal value, aircraft three should be allocated to it. The

outcame of this assignment is shown in Figures 23 and 2.

Target
1 2 3 L
Residual Value 2.h 1.6 1.2 1.0
Marginal Value 1.44 .96 .72 0.6

Figure 23. Post Third-Assigmment Values

Aircraft
1 2 3 L
Target 1 2 3 X

Figure 24, Post Third-Assignment Status

After these three assignments, target one has the highest marginal
value so aircraft four is allocated to target one. The resulting final

assignment for this simplified problem is given in Figure 25,

Aircraft
1 2 3 L
Target 1 2 3 1

Figure 25. Final Assignment Status
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Although aircraft one and four are assigned against target one in the

final solution, this need not be the case. Any assignment which allocates

two aircraft to target one and one aircraft each to targets two and three
would yield an identical expected value and thus would be equally good.
As is apparent by referring to the marginal values in Figure 23, if
another aircraft was available, it would be allocated against target two.

Assignment Selection. Once the decision is made on the number of

times each target will be assigned in a given plan by the method demon-
strated above, an initial feasible solution is constructed. The result
of the algorithm just analyzed becomes plan one, The elements of this
target list are permuted and placed in the other plans by the same al=-
gorithm as in Phase I to serve as a starting point for the iterative
allocation scheme, Then, this initial assigmment is passed to sub=-
routine RULE1 which determines a final solution by the same method
described in Chapter IV,

{ Once the assignment is made, the simulation subsection takes over.

For each of the 1000 trials, subroutine SURV is called to determine
which aircraft survive the enemy attack, exactly as in the previous

Phase I system., Then an altered subroutine VALUE is called in order to

measure the target destruction capability of the MFEV, given the assign-

ment determined in RULE! and specific surviving aircraft selected
in SURV.

In order to make the Phase I and Phase II results even more come
parable, the same random number seed was used for each phase =- that is,

the same aircraft survived each trial in each phase.

Subroutine VALUE +

The duties of subroutine VALUE are unchanged from the previous
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system. Now that the same target may be attacked numerous times in

the same plan, full credit for destroying a target cannot be given to
each aircraft attacking it. Rather, the marginal value -~ the walue
expected to result from sending an additional aircraft against a target --
would be the appropriate measure. The following expression for the value
of a plan was derived in Chapter II for use in evaluating the contri-

bution of surviving aircraft at the target's marginal value:

n m .
E(Value of targets destroyed) = % X Z.J'(Pk (1 - Py )’]-1 Vi) (11)
ie1 Tyel K3 i

where n = number of targets

=
U

the number of surviving aircraft assigned against target i
in this plan

o
[]

K probability that an attacking aircraft destroys target i

<
u

value of target i

(e
[

1, if m, 31
i

0, otherwise

However, in this research, Pk = 1,0 for all i, Therefore, the
i

marginal value of the first surviving aircraft assigned against any
target i is Vi and any additional surviving aircraft assigned against the
same target do not increase the value of the plan (marginal value = 0,0).
So the value of a plan equals the sum of the values of the targets
assigned at least once to a surviving aircraft in that plan.

For example, assume the multiple-plan assigmment given in Figure 26
where a matrix element represents the target number assigned. Let four
(numbers two, four, five and six) out of the original eight aircraft
survive the enemy attack. Under these conditions and the assumption that

’\T1 > V2 > V3 = Vh b3 Vs 20 , it is easily verified that Plan 2 is the
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Aircraft 1

1 2 3 L 5 6 7 8 1

Plan 1 1 2 3 1 L 2 8 6 ‘3
Plan 2 5 1 2 1 b 2

Plan 3 2 5 L 6 3 1 2 i

Figure 26. Aircraft Assignment L

: Surviving Aircraft
2 L 5 6
’ Plan 1 2 1 L 2
’ Plan 2 3 2 1 6 4
h Plan 3 5 6 3 1 i
1
Value (Plan 1) = V2 + V1 + Vh +0 = V1 + V2 + Vh 3
h Value (Plan 2) = V3 + V2 + v1 + V6 = V1 + v2 + v3 + v6
Value (Plan 3) = V5 + v6 + V3 +V, =V, + V3 + v5 + V6 !
! Figure 27, Phase II Subroutine VALUE Example ]
| 1

preferred plan, as shown in Figure 27,

Once each plan is evaluated and the best one identified, subroutine
i VALUE returns control back to program SIM, Subroutine BASE is then called
and the same data collected as under the Phase I system. This entire

process is repeated over the 1000 trials and the same statistics cal-

culated and output as under the original design.
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VI Analysis

The 1600 datapoints from the simulation section, together with the

; : . target values which were used to create them, served as input for the

analysis. Four different approaches were taken to view the results

from slightly different angles. These approaches were: 1) to average

} the data over the ten random draws from each distribution which deter-

: mined the sets of target values; 2) to determine a multiple linear

. regression model relating improvement over the value of the basic solution

. to the aircraft survival probability (Ps) and number of preplanned MFEV
plans for a given target value distribution and targeting option;
3) to compare these findings against results derived from the best
possible solution -- perfect advance information about the state of
nature (specific aircraft surviving); and L) to compare the best possible

solution to the maximum value obtainable if all airecraft survived the

attack. 1

Data Averages
As was explained in Chapter III, ten independent sets of target

values were sampled from each of the five distributions. The different
target sets were then used as inputs to the model at a specific set of
parameter levels to obtain ten estimates of the same value, These

ten data points were averaged to obtain the 160 elements in Tables

I through X. These tables can be thought of as a four dimensional

matrix since four parameters vary among the tables: 1) the aircraft
survival probability (four levels); 2) the number of MFEV plans
(four levels); 3) target value distribution (five levels); and L)

targeting option (two levels). The values shown represent the average




Table I
Percent Improvement -- Integer Distribution, Phase I

Survival Probability
.2 .h '6 .8

2 19.53 11.96 7.96 L.89

i N“gger 3 23.22 15.%2 10.32 6.30
L 28,77 17.82 1. 7.21

MFEV Flans ¢ 31,05  19.24  12.85 7.80

Table II
i Percent Improvement -~ Uniform Distribution, Phase I

Survival Probability
.2 A .6 .8

2 20,67 12,64 8.42 5.15

N“gger i 27.38 16.52  11.09 6.gu
30.49 19.10 12.71 7.69

MFEV Flans ¢ 33.49  20.76  13.87  8.30

improvement over the base case for the ten sets of target values.

Tables I through V represent results when all targets were assigned
in each plan. The individual tables differ only in the distribution
from which the target values were sampled. The number of preplanned
MFEV options varies from two to five and the aircraft survival pro-
bability is sampled at .2, .4, .6 and .8. Tables VI through X repre-

sent the identical measures for Phase II of the research, where all

targets need not be assigned in each plan,
Survival Probability Effects. Within each of the ten tables, two
consistent trends are obvious, First (moving across any row), the value

of the MFEV decreases as survival probability increases. This is con-

sistent with intuition since as Ps increases, more and more aircraft

survive, so more and more of the higher value targets would be targeted

6L




Table III
Percent Improvement -- Low-Variance Normal Distribution, Phase I

Survival Probability

02 oh 06 08
Numb 2 6.82 L.22 2.80 1.70
i uzfer i 18.93 g.h9 i.é? 2.§2
0.17 .31 022 2.53
1‘ MFEV Plans ¢ 11,11 6.88 4.58 2,78
P Table IV

Percent Improvement -- High-Variance Normal Distribution, Phase I

Survival Probability

02 o)-l» 06 .8

2 16.59  10.23  6.80  L.13
bRl W
2. [ ] O. .9

MFEV Plans ¢ 27.02 16.77  11.2h  6.75

Table V
Percent Improvement -- Exponential Distribution, Phase I

Survival Probability
o2 A .6 .8

2 29,58 18,34 12,13 7.37
“‘”g‘;“ ﬁ );2.27 zs.gs 16,80 9.61;
0.59 29.82 19.20  10.7

MFEV Plans 5 55.26 32,71 20.90 11,58

in the base case, Therefore, there is less and less value in having

the flexibility to select from a variety of plans.

Number of Plans Effect. Secondly, as the number of plans is in-

creased, the value of the MFEV system also increases. This is consistent

! with preconceived notions, too, since increasing the number of pre-

planned options only increases the variety of plans available to the




Table VI
Percent Improvement -- Integer Distribution, Phase II

Survival Probability
02 oh n6 .8

2 46.3L 26,51 15,46 5,03
N“gger ﬁ 52.33 Bl'gﬁ 17.23 g.u7

® 3 o 9.0 .27

MFEV Flans ¢ 58.38  35.L5 19.8  8.57

Table VII
Percent Improvement -- Uniform Distribution, Phase II

Survival Probability

02 0)4 06 .8

2 50.10 29.40 16.71 6.70

Numer 2 .06 dso 19.67 8.
9.9 37.13 21, 9.17

MFEV Flans ¢ 61.85  38.77  22.56 9.88

decision maker, thereby increasing the expected value of the plan he
dées select.

Target Value Distribution Effect. A few other trends are less

obvious from viewing these tables, but exist nonetheless. Comparing
corresponding elements of the first five tables shows a remarkable
variance between values measured from different target value distri-
butions. Three of the tables show a similarly-sized value (integer,
uniform, and high-variance normal distributions), but the low-variance
normal and exponential distributions are much different. The low-
variance normal has smaller values than the other distributions and the
exponential has higher values. The magnitude of the difference varies
somewhat with the number of plans and survival probability, but the trend

remains intact. A similar effect can be found between the same elements

[ VTR




Table VIII
Percent Improvement -- Low=Variance Normal Distribution, Phase II

Survival Probability

02 Oh .6 .8
2 12.80 5.26 2.67 1.70
““ﬁger i :g.;g g.gg 3.66 2.23
. . .20 2,52
MFEV Flans ¢ 18.28 8.82 1.65 2.73
Table IX

Percent Improvement -- High-Variance Normal Distribution, Phase IT

Survival Probability
o2 A N .8

5 38.16  21.51  11.11 3.82

AN O -
. 27. . 4

MFEV Plans g 18.81 29,19 15.84L 7.00

Table X
Percent Improvement -- Exponential Distribution, FPhase II

Survival Probability
.2 Oh .6 08

2 94,00 50,72 26,05 10.71

N“gger a :?5.28 56.9? 30.22 12.33
0.22 0.0 31, 13,0

MFEV Flans ¢ 14,73 62,12 32,97  13.77

of the second five tables -- the Phase II results.

The discovery that the value of the MFEV system is highly dependent
upon the target velue distribution can be readily explained. In the
range (1, 20), the integer-valued distribution can be thought of as
almost uniform. The mean is 10.5 ( (1 + 2 + ... + 20)/20 ) which is

almost identical to a uniform (0, 20) distribution ( mean = 20/2 = 10 ),
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Also, the values are equally spread out in the region. Since the
integer-valued target distribution is wvery much similar to a uniform
distribution, it makes sense that the values measured for the two dis-
tributions would be very much alike. A similar argument can be used for
the high-variance normal distribution used in this study. As was shown
in the graph of the normal (50, 30) pdf in Figure 6 in Chapter III,

one would expect iwenty target values sampled from this distribution

to be fairly uniform also (with a slight central tendency). Thus, it
is not at all surprising to discover that the high-variance normal,
uniform, and integer distributions have similar value measurements.
Even the finding of slightly lower values for the high-variance normal
distribution is consistent with this argument, due to the central ten-
dency inherent in any normal distribution.

The scores achieved by the low=variance normal and exponential
distributions are also readily explained by comparison with the uniform
distribution. Since, in a normal (50, 10) distribution, most of the target
values are expected to be grouped in a small region near the mean,
little benefit can be achieved by exchanging a higher-value target for
a lower-value one. That is, gince one would expect little difference
between the values of two arbitrarily chosen targets, the benefit
earned by creating the flexibility to select between them is small.
Thus, the value of the MFEV system under the assumption of low=variance
normal target values is much smaller than under any other assumption of
target values (approximately one-third of the value measured under the
assumption of uniform target values).

The assumption of exponential target values, on the other hand,
yielded much higher scores than any other target value distribution

(about twice the value of uniform distribution). Under this distribution,
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most of the targets are expected to be of very low value ( <30 units),

a few in the medium range (value 30 to 70 units) and perhaps a very few

targets of high value. Therefore, for a given state of nature, most of

the aircraft which survive an enemy attack would be expected to be aimed

against medium or low-valued targets in the base case. Thus, the value

of the MFEV multiple-plan system under the assumption of exponential

target values should be higher than under any other distribution studied
in this research.

Targeting Option Effect. A targeting option effect becomes apparent

if one compares results between the two phases of this research., Holding
everything else constant, the Phase II results can be seen to be larger
than the Phase I findings (i.e. comparison of the same matrix element

of the same target distribution table between the two phases). This
effect is highly dependent on Ps, however. The difference is greatest
for small P_ (the value for Phase II was found to be on the order of
twice the Phase I value), but the values rapidly converge as Ps increases,
until they are very nearly equal at Ps = 8 . A strong interaction
between Ps and targeting option makes good intuitive sense. For large

Ps’ as discussed in Chapter II, the marginal value of any target i is

given by the following equation:

- 1 - J
MV, Pspkiu pspki) v, (9)

Thus, for Ps -‘.8 s the marginal value of a given target rapidly
becomes small as additional aircraft are allocated to it. (Since P, = 1,0

k
for all i, the marginal value is decreased by eighty percent each time

another aircraft is assigned to it). Therefore, at a Ps of .8, few

targets have more than one aircraft allocated to them. But Phase I




T

differs from Phase II only in that no target has more than one aircraft
assigned against it., Thus, at high Ps, the two phases will have similar
assignments and, therefore, should have similar values.

The fact that the Phase II values are consistently higher than the
Phase I measures is also comforting., Since Phase II is merely a more
flexible version of Phase I, multiple aircraft would not be assigned
against a target unless it would increase the expected value of targets
destroyed. Thus, the expected value of a Phase II solution should al=-
ways be greater than the expected value of a Phase I assignment. The
validity of the model would have been suspect had not this result been

confirmed.

Egg;ession Model

Tables of data, although informative, often fail to convey the
overall picture of any complex situation. Therefore, the same datapoints
from which the tables were compiled were used as inputs to the SPSS
Regression routines. The datapoints were used to fit a model of the

following form for each distribution/phase combination:
2
Percent Improvement = bO + b1Ps + b2PS + b3N

The least squares estimates of the above coefficients (bo, b,, b,,

and b3) are listed in Tables XI and XII, Table XI pertains to the Phase I
data and Table XII, Phase II. For both tables, the predictor (independent)
variables are number of preplanned MFEV options (N), the aircraft pros
bability of survival (P,) and the probability of survival squared (E7).

The criterion (dependent) variable is the expected percent improvement
over the base case (single-plan system with all targets assigned in each

plan).
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Table XI

Phase I Regression Coeffecients

> Coef of
N Py P Const Det (R2)
Integer 2,203 - 68.377 36.319 30.477 .96
Uniform 2.439 - 73.385 38.942 32.422 845
Low=Variance Normal 0.809 - 24,026 12,645 10.664 .8L6
High-Variance Normal 1.979 - 57.919 30.2Lk 25.831 .85L
Exponential L.366 -122,172 65 .uli6 50.735 .8L3
Table XII
Phase II Regression Coefficients i
> Coef of ;
N Py Py Const Det (R2)
Integer 2.368  =146.873 70.176  71.8L8 .990 ;
Uniform 2.L96 ~145.360 65,183 74545 .828
Low-Variance Normal 0.989 - 67.522 L5.177 24,098 .868
High-Variance Normal 2.150 -128.515 64177 56.950 .8L49
Exponential 3.416 -347.126 193.124 155.214 .887

As can be seen from the tables almost 85 percent of the variability
in the data can be explainéd by the regression equations in the four
random target value distributions. The deterministically-selected fifth

distribution (successive integer target values) has an % above 0.96

in each case.
Figures 28 and 29 are sample plots of four regression curves to-

gether with the data from which they were derived. Figure 28 contains

the Phase I curves from the exponential distribution at N = 3 and

N = 5 while Figure 29 contains the same information from the Phase II

YA
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data.

All the regression curves are shown in Figures 30 through 3k4. The

é solid lines represent Phase I data and the dashed lines are derived
from the Phase II results. Each figure represents 320 datapoints ~--
forty for each of the eight curves. A single curve shows the percent

; improvement over the base case for fixed target value distribution,

h ? targeting option and number of preplanned MFEV options as a function
of aircraft probability of survival,

Effect of Survival Probability. As can be seen from the graphs,

survival probability is the biggest determinant of MFEV value. For
small values of P ( P = .2 ), the value of the MFEV is about four
times as great as for large Ps values ( PS = ,8 ) under Phase I assump-
tions and about ten times as great when the Phase II figures are com=-
pared.
The value of the MFEV is strictly greater than zero for any Ps'< 1.0
% and any selection of factor levels. The slopes of the regression curves,
. however, as shown in Figures 30 - 3L, approach zero for large values
; of Ps' Under four of the five target value distributions, though,
3 as Ps decreases past .8, the value of the MFEV increases rapidly. Many

studies have attempted to estimate Ps (or a simialr measure of survival

J

!

! probability) with some variety of conclusions., The results of the

f research documented herein would indicate that, especially for PS'< b,
: the benefit of an MFEV system might very well outweigh the costs of

! implementing it. Of course, additional analysis invulving operational

targets and constraints would have to be cmducied, and some measure' of

quantifying the value added by the MFEV created, before a cost-benefit

b analysis to compare this value with the economic/political costs involved
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could be accomplished.

Effect of the Number of Flans. The number of plans in the MFEV

system was found to be only a minor factor in determining the value of

the MFEV. An increase in the number of plans did, in every case, increase
the value, but only by a few percentage points. Diminishing marginal
returns seemed to be present -- as the number of plans was increased

from two to three, three to four, and four to five; less and less value
seemed to be added by incorporation of another plan. A quadratic term (N2)
was added to the previously mentioned regression model to test for dim=-
inishing marginal returns of the number of plans. The addition of the
term, however, caused the variance of the coefficients of both N and N2
to become very large, indicating a high degree of collinearity between
the two terms. Thus, although N2 could explain some of the variance in
the data, it could not add much to the model when N was already included

linearly. Therefore, N was included in the model solely as a linear term.

Effect of Target Value Distribution. Essentially the same findings

can be seen inthe regression curves as were discussed in the Data Averages
section of this chapter, Target value distribution was found to be a
fairly important factor in approximating MFEV value. The corresponding
curves from all distributions had similar shapes. In fact, they seemed
to be the same curve plotted five times with a different scale factor
on the value.

The curves for three of the distributions (integer, uniform and
high-variance normal) were very much alike, for all levels of all
factors., The other two target value distributions tested in this
research were graphed as well above (exponential), and well below (low-

variance normal) the middle three curves,
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Thus far, this research has only compared the MFEV with a targeting
system similar to the SIOP. One might well ask how the MFEV compares with
an airborne retargeting system of even greater flexibility. The next

section does Jjust that.

Comparison with Best Possible Solution

The MFEV values were compared with the analytically-determined
expected values of the best possible solution (perfect prior-attack
information). Another way to look at this best possible solution case
is to assume all aircraf't have perfect command and control. Under
this assumption, any k surviving aircraft will be able to strike the
k highest-value targets. Thus, for a given state of nature (number of
aircraft surviving), such an assignment is the best possible solution. The
value measured is the percentage of this "best" solution which can be
achieved by the MFEV under the variety of conditions studied. This
measure utilizes the "percent of total value" measure of effective=-
ness introduced by Thomas in his commentary (Ref 9:2) of Dimon's original
work and is discussed in Chapter III and below.,

The results achieved by comparing the MFEV value with the best
possible solution are shown in Figures 35 - 39. Each figure represents
one target value distribution and graphs the percentage of the best
possible solution against aircraft probability of survival. The eight
datapoints at each level of Ps correspond to the four levels of the
number of plans factor for each phase == four from Phase I and four
from Phase II. The values which define the solid curve are the percentage
of the best possible solution achieved by the base case (as derived in |
Chapter II -- Eq (24)).

Since all MFEV values for a given distribution and Ps level are
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compared with the same best possible solution figure, the same relative
positions would be expected to hold as did in the percent improvement
over the base case measure. Thus, increasing the number of plans resulted
in an increase in the value of the system. Again, Phase II measurements
are always at least as good as Phase I values. After these similarities,
the pattern changes, however. The lows~variance normal value is slightly
higher than any other value which is the opposite of the percent ime
provement over the base case. Similarly, the exponential values tend
to be lower than values from the other distributions. The integer,
uniform and high~variance normal measures, however, are once again
very much similar to each other and are grouped between these two
extremes. The difference being that the two extremes switched positions.
The effect of Ps on percent best possible solution differs greatly
from the Ps effect on the percent improvement over the base case. In
the percent improvement measure, the effect was a quadratic, monotonically
decreasing function of Ps with a minimum near Ps = 1,0 for each phase
(Figure 30 = 3L). In the percent best possible solution, the Ps effect
for each phase is different and both differ from the effect of PS on the
percent improvement measure. The percent best possible solution Phase I
Ps effect is a monotonically increasing function of Ps. (The value of
the multiple-plan system increases faster than the value of the best
possible solution as PS increases, over the entir. range of Ps)‘ The
Phase II percent best possible solution dips as PS increases from .2
to .4, and then increases for Ps = ,6 and higher yet far Ps 2 8 e
a local minimum occurs somewhere near Ps = ,6 (Figure 35 = 39). (For
low Ps values, the Phase II targeting option dominates. A4s PS increases,

the value of the Phase II multiple-plan system decreases relative to

P
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the value of the best possible solution. For larger Ps values, however,
the effect of targeting option decreases. In this Ps range, the value
of the Phase II multiple-plan system increases faster than the value

of the best possible solution, resulting in an increasing measure. The
changeover point occurs somewhere around Ps = ,5 ). None of these
Phase II deviations, though, are large in magnitude.,

According to these results, the MFEV, with only two plans and the
Phase II targeting option, would be able to destroy at least 80 percent
of the value that the most flexible retargeting system could destroy,
for the values of Ps and target value distributions tested. If the
MFEV had five plans, around 90 percent could be destroyed. Thus, a
large proportion of the value of the total retargeting flexibility is
gained by any MFEV system. Whether the remaining ten to twenty percent
of the value would be worth the cost of a full inflight targeting system
is not considered in this paper.

But, one might ask, how well does the base case do compared to the
MFEV? What percent of the value of flexibility is supplied by the MFEV?
The value of flexibility is defined here as the difference between the
base case curve and one hundred percent of the best possible solution =--
in other words, the vertical measure between the line (representing the value
of the single-plan system) and the top of the scale in Figures 35 = 39.
For example, consider Figure 35, the integer distribution. At PS =L ,
the value of flexibility would be about forty percent (100 = 60).
Similarly, at Ps = ,8 , the value of flexibility would be about fifteen
percent (100 - 85), The Phase I data seems to indicate that the MFEV
supplies approximately one-third of the value of flexibility. Phase II

seems to do about twice as well or on the order of two=-thirds of the value
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of flexibility. In other words, fully flexible retargeting could increase

the expected value of targets destroyed by half again over the incremental

Phase II value.

Percent of Total Value

The percent of total value measure is shown in Figure 4O. (Note

the horizontal scale is reversed from Taylor's work (Ref 9:2) to re-

main consistent within- this paper). The set of four points from any
distribution represent the expected percentage of the total target value
destroyed by the best possible solution for each discrete value of Ps'
All five distributions are shown. Thus, one hundred percent could only
be achieved if all aircraft survived and zero would be the result if no
aircraft survived the enemy attack. The line is the lower bound for

any distribution of target values. It represents the percent total

value for a set of identical targets or the base case -- i.e. no inflight
retargeting capability. The quadratic curve is the percent of total

value achieved by aircraft attacking a set of n integer-valued targets,

as n approaches infinity, and is given by Eq (19). This curve represents
an upper bound on any central tendency distribution and could be considered

a middle value between extreme distributions.

As one would expect (because of the previous results from the
percent improvement over the base case measure), the results from the
exponential distribution lie above the results from the other distri-
butions. Similarly, the results from the low~variance normal distri-
bution lie below the other distributions. The other three distributions
(integer, uniform and high-variance normal) closely approximate the in-

finite integer case and are grouped together between the extremes.

Thus, in an operational enviromment, if one had the ability to retarget
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in flight, the greatest value would be gained if the set of targets
approximated an exponential distribution. Less value would be gained

if one were attacking an integer, uniform or high-variance normal dis-

tribution and even less value against a low~variance normal, Against

identical targets, retargeting ., of course, of no value,
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VII Conclusions ggg Recommendatlons

This chapter summarizes the results obtained and draws conclusions

about the estimated value of the MFEV. Several avenues for future

! ' study are suggested.

Conclusions

As was shown in Chapter VI, the value of the MFEV was found to
4 be sensitive to many factors. The impact of these factors on the re-

; sulting value will be summarized in this section.

Effect of Targeting Option. For values of P_ in the .8 and above
range, targeting option had only a minor effect. This trend seems
appropriate since, for Ps values in this range, almost all aircraft
would be allocated against different targets anyway, as discussed in
Chapters II, III and V. Thus, for Ps = ,8 , assignments under the
Phase I and Phase II targeting options are very similar and consequently

! have similar values.

For smaller values of Ps’ however, the value of the Phase II tar=
geting option becomes important. Thus, for smaller values of P_ ( P < b ),
the requirement that all targets be assigned in every plan becomes a
greater and greater liability. At Ps = ,2 , the Phase II targeting
option adds more than twice as much value to the base plan as does the
Phase I option. Under the assumption of an exponential target value
distribution, the effect is even slightly greater.

Target Value Distribution. The value of the MFEV varies greatly

depending upon the assumed distribution of the target values. If there

is very little range in the target values (i.e. the targets are nearly
homogeneous), it seems reasonable that the benefit gained by trading
the ability to kill a lower-valued for the ability to kill a higher-
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valued target would be small. Thus, intuition would lead one to believe
that the value of the MFEV under an assumption of low-variance normal
target values would be smaller than under most other distribution
assumptions. Such was found to be the case, as shown in Figure 29,

On the other end of the spectrum lies the exponential distribution.
With this distribution, the value of the MFEV was found to be much higher
than under any other distribution. This is intuitively appealing
because the gap in value between the "average" target and one of the
few higher-valued targets would be greater than that in any other dis-
tribution tested, Therefore, one might have expected target values
following an exponential distribution to yleld the highest value. This
was exactly what was found,

The other three target value distributions were found to lie be-
tween these two extremes. The integer-valued and uniform distributions
measured roughly one-half the exponential distribution, given the same
conditions. The high-variance normal distribution of target values
was slightly lower than these two. The low=variance normal distribution
yielded the lowest results, measuring only about one-sixth that of the
exponential target values.

Effect of gs. The probability of aircraft survival was found to
be the most influential factor in determining MFEV value. As the Ps
decreases, the value of additional plans (to supplement the basic, single-
plan assigmment) increases. In other words, as fewer and fewer aircraft
are expected to survive the initial enemy attack, it becomes more and
more important that those aircraft which do survive be allocated sgainst

higher-valued targets.

The value of the MFEV was found to be a nonlinear, monotonically
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decreasing (within the interval tested) function of the aircraft survival
probability. Under every assumption of target value distribution, the
value of the MFEV was found to increase by greater and greater amounts

as Ps is decreased linearly. Thus, if it is determined that the MFEV

is worth having at Ps = ,6 , the value of the MFEV at any Ps'< b is
even greater.

Improvement Due to the Number of Preplanned Options. The number of

plans in the MFEV system was not found to be a major factor. In all

cases, as one would expect, an increase in the number of plans did lead

to an increase in the value of the system. The addition of each additional
plan, however, only raised the value of the system by about two or three
percentage points -- a small improvement when compared with factors

such as target value distribution or aircraft survival probability. The
number of plans were found to contribute to the value of the system in

a linear manner over the range of plans considered. Diminishing mar-

ginal returns seemed to be present, but was not modeled due to a multi-
collinearity problem. Clearly, as the number of plans continued to in=-
crease, the marginal return per plan would decrease, eventually approaching
zero.

Comparison with Best Possible Solution. For all target value

distributions and all tested survival probability levels, a MFEV five=

plan system was found to deliver mearly 90 percent of the best possible
solution under the Phase II targeting option. This value varied only
slightly as a function of Ps’ number of plans and target value distribution.
The targeting option had a large impact on the value measured, especially
for P, <.b .

The value of the best possible solution was found to be somewhat




dependent upon target value distribution. The exponential scored
higher and the low-variance normal scored lower than the other target

value distributions compared. This relationship was found to be the

major source of their rankings in the percent improvement over the base
] case measure. Thus, for target distributions with very little variety

in target values, the MFEV adds little value to a single-plan assigmment.

Under target value distribution assumptions where a few high-value

targets far outweigh the bulk of the targets (such as the exponential)

the value of the MFEV can be quite large, especially for small Ps values.

Recommendations for Further Study

This research has attempted to explore a number of facets of the
MFEV value question. Many, many additional avenues for study remain,

This section will discuss some possible expansions,

Research into the MFEV question could follow at least three separate,
although not independent, paths. These could be thought of as the g ;

axes of a three-dimensional graph, as shown in Figure 41, with axes

labelled Plan Flexibility, System Flexibility and Realism. Each of ]
the directions can be explored to shed light on this seemingly-uncome 1

Plan Flexibility. The plan flexibility axis is characterized by

¥
;
i
plicated question of MFEV value. 2
i
the expansion of targeting flexibility at the plan level. For example, !

btk itabtiadliend it ad

this research was divided into Phase I and Phase II -~ Phase II allowed

multiple aircraft to be allocated against the same high-value target; 2"
vhile Phase I required distinct targets be selected for each aircraft, |
This could be considered a one unit movement on the X-axis. This research
though, required that each plan have exactly the same set of target

assignments -= if three different aircraft were assigned against target

|
. |
f
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seven in plan one, plan two (and any other plans) also had three aircraft
allocated to target seven., This may not be the best assignment scheme,
however, and varying the assignment rationale could be considered a
further move out the X-axis,

System Flexibility. Movement along the Y-axis includes all possible

variations to the standard assignment procedure which would increase

the flexibility of the system as a whole =~ changes which would increase
the effectiveness of the targeting system by restructuring the manner in
which things are done. Increasing the number of preplanned MFEV options
is an example of a movement in this direction.

Future research could utilize a different set of criteria to
determine the assigmment of aircraft to targets over all plans. As was
discussed in Chapters II and III, a heuristic algorithm was used in this
research to find a near-optimal solution to a problem that is similar
to the MFEV assignment problem. These results establish a lower bcund
on the value of the MFEV. Thus, another solution procedure may very
well discover different, higher values.

Assumptions of differing quality of command and ¢ mtrol systems
based on the MFEV could be the basis for much further research. For
example, if one were willing to assume highly effective command and
control, even after an enemy first strike, the destruction capability
of the bomber fleet could be even further enhanced by allowing full
inflight retargeting (subject only to geographical constraints). Thus,
surviving aircraft would be able to attack any high-value targets within
flying range. Alternatively, one could agsume a slightly more restrictive
case == that each aircraft carried a distinct set of target tapes. In

event of war, surviving aircraft could attack any target for which they
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had a tape and which was within their range. Research under this scenario
could include selection of assigmment criteria (which tapes to place on
board which aircraft) and the value of such a system,

Realism. A third direction future research could expand is the degree
to which the modeled assumptions simulate reality. For example, this
research assumed the same survival probability (Ps) for all aircraft.
Future research could relax this assumption and allow PS to vary between
bases (as a function of distance from the sea, for example -- different
missile flight times from enemy submarines) or even individually between
aircraft on each base. Relaxing the equal Ps assumption would probably
also require a different aircraft to targets assignment scheme.

This research assumed perfect knowledge about the aircraft which
survived the initial enemy attack. Another step farther out the infor-
mation axis could include assumptions about the quality and quantity of
Bomb Damage Assessment (BDA) data available in the hours after a return
U.3. missile strike but before the bombers reach their targets. The
BDA information could consist of reports concerning which targets re-
mained valuable (either were not targeted on the missile strike or were not
successfully attacked). This information would be very valuable in
retargeting bombers enroute to already destroyed targets, rerouting
bombers from low-value to high-value targets, and in deciding which of
the preplanned MFEV options should be selected.

Another possible expansion of this research could be in the area
of target damage. This research assumed all targets held their value
until attacked by a bomber at which time they were totally destroyed
with probability 1.0, In future research, a stochastic damage function

would be substituted to allow partial destruction and a corresponding




reduced target value., Also, target values which vary as a function of

time could be an interesting subject area,
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