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Abstract

The change in the destruction capability of a bomber force resulting

from the incorporation of the Multiple Force Employment Variation

(IMFEV) was estimated under a variety of conditions. The study varied

the distribution of target values, the bomber's base escape survival

probability, the number of preplanned options, and targeting philosophy.

The resulting value of targets destroyed under the MFEV were compared

with the value of targets destroyed under a single-plan system, under

identical conditions.

Targeting philosophy was found to be a major determinant of MFEV

value. The value when all targets must be assigned in every plan was

compared with the value with that requirement relaxed. The restriction

was found to be very important in estimating MFEV value, particularly

for survival probabilities lower than .6. Without the restriction

in effect, about two-thirds of the value of retargeting was aahieved

by the MFEV. The value of retargeting is defined as the difference between

full flexibility and a single-plan case as is now employed. When all

targets had to be assigned in each plan, only about one-third of the

value of retargeting was realized.

The value of retargeting was found to be very sensitive to the

aircraft probability of surviving an enemy surprise attack on bomber

bases. For low survival probabilities, the capability of retargeting was

found to be very important. As the survival probability increased, however,

the value of the MFEV decreased.

The distribution of target values also was found to be an important

determinant of MFEV value. Target values sampled from an exponential dis-

tribution resulted in the highest percentage FEV value. The lowest

vii



values occurred when the target values followed a normal distribution

with a strong central tendency. Ranked (integer) target values and

values following a uniform distribution resulted in a measure about

midway between the two extremes.

The number of plans above two was not found to be a strong deter-

minant of MFEV value. Any increase in the number of plans, however,

was found to increase the value of the system.

- viii
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I Statement of the Problem

Introduction

Presently, if an incoming attack were to scramble the United States

manned bomber force, no retargeting would be possible. Once the air-

craft were airborne, there would be no way to change the target set

assigned to each aircraft. Even if it were known, for example, that

same targets were no longer of value to the enemy (perhaps destroyed

by missiles shortly after the aircraft were airborne), nothing could

be done to redirect the bombers ordered against these targets. In

addition, if some bombers were destroyed by the enemy attack, failed

to rendezvous with a tanker for refueling, or had to abort their mission

for some other reason, their targets would not be attacked since air-

borne retargeting is not presently possible.

Statement of the Problem

Under the present targeting system, in the event of an enemy first

strike, many of the high value enemy targets would never be attacked

because the weapons targeted against them would be destroyed in the

initial attack. This deficiency in the capability of the United States

strategic forces reduces their effectiveness as a deterrent.

Background

At least three strategies could be used to increase the deterrent

capability of the U.S. forces. First, massive numbers of redundantly-

targeted weapons could be constructed. Then, in the event of an enemy

strike, enough weapon systems would survive to attack most enemy high-

value targets. Second, a defensive net could be constructed to protect

the strategic offensive forces from an enemy first strike, thereby



ensuring enough forces would survive to attack the "most important"

targets. Third, the U.S. targeting system could be adapted so that

those weapon systems which do survive an enemy surprise attack could

be retargeted against the "most valuable" targets. This thesis focuses

on one approach to the third strategy -- airborne retargeting.

Many adaptations to incorporate the retargeting into the Single

Integrated Operations Plan (S1OP) could be conceived. (The S1OP is the

plan which assigns strategic forces to their duties in time of war.)

Since the manned bomber once airborne is inherently more flexible than

ballistic missiles, any inflight retargeting scheme would pertain mainly

to penetrating bombers or their cruise missile payloads. The Multiple

Force Employment Variation (MFEV) is one such retargeting plan.

Consider a modification to the present assignment procedure.

Rather than a single SLOP, a set of plans are formulated, each plan

allocating aircraft to target sets differently. After an enemy attack,

when survival information was available, the commander could select

the best plan. He could analyze which aircraft remained operational

and which enemy targets retained their value through the U.S. missile

attack. He could then select that plan which would maximize the expected

value of the enemy targets to be destroyed under those specific conditions.

This flexibility option is known as the Multiple Force Employment

Variation. The idea of the MFEV could also be applied to the other legs

of the strategic triad. Multiple plans could be created in advance,

allocating missiles to targets differently in each plan, similar to the

procedure suggested for a bomber force. After an enemy attack, the

commander could select that plan which had the best assignment of missiles

to targets, for the specific missiles that survived the enemy attack.

2



Thus, the MFEV could also be used to increase the effectiveness of a

surviving second-strike missile force.

A flexibility option such as MFEV would increase the total value

of enemy targets destroyed in the event of a surprise attack against

the United States, thereby increasing the effectiveness of the U.S.

bomber force as a deterrent. But by how much is the deterrence in-

creased? Is the expected increase in the value of enemy targets killed

worth the costs, both hardware and software, of designing, developing

and implementing such a system? Could the money required for converting

the bombers and command and control systems be better spent on some

other weapon system? These questions can only be answered if the bene-

fits of such a system are known or have been estimated.

Objectives

The primary objective of this research is to obtain an estimate

of the value of the MFEV as compared with a system without airborne

retargeting. The cost and feasibility issues will not be considered.

Scope

Research into the value of the MFEV could follow at least three

separate paths, as illustrated in Figure 1. The three axes shown

represent the three directions. The inner, solid box represents the

work done by Dimon (Ref 3). The dashed lines enclose the region researched

by this thesis. The specific topic areas shown in this figure will

be discussed in the Recommendations section of Chapter VII.

The value of the MFEV is thought to be dependent upon a number of

factors:

1) differences in the probability distribution of target values,

-.-
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2) differing values of aircraft survival probability,

3) target selection criteria, and

4) the number of preplanned MFEV options.

The above factors will be varied and the MFEV values obtained under

differing assumptions will be compared to determine the sensitivity

of the value to each of them.

All aircraft are assumed homogeneous and have an equal probability

of surviving the enemy attack. Any aircraft which survives, kills its

target with probability one. That is, the conditional probability

that an aircraft destroys its intended target, given that the plane sur-

vived the enemy attack, is one.

Approach

The model begins with a given set of twenty aircraft and twenty

target sets. Each target set may consist of multiple targets, but the

set itself is considered as a single unit and evaluated as such. Thus,

in this thesis, the terms target and target set are used interchangeably.

Twenty samples are taken from each of five distributions to deter-

mine target values. The identical methodology is then followed for each

set of targets.

First, the assignment procedure is accomplish6d. This process

corresponds to the building of a multi-plan SLOP. The assignment of

aircraft to targets in multiple, complementary plans is not a trivial

task. The SIOP is essentially a constrained, two-dimensional assignment

problem, allocating aircraft to targets. The two-dimensional assignment

problem is considered a simple problem, as the difficulty of problems is

measured (Ref 4:50-53), yet thousands of man and computer hours are needed

each year to complete the SIOP. The allocation of aircraft to targets

5



in the MFEV, on the other hand, is thought to be a "hard" problem.

The MFEZV is closely related to a three-dimensional assignment problem

(allocating aircraft to targets and plans), and as such, is thought to

be inherently intractable; that is, the three-dimensional assignment

problem is a member of a class of over 300 hard problems for which

no polynomial time algorithm has yet been found to solve any of them

optimally (Ref 4:8, 50-53). Therefore, rather than exert an extensive

amount of time searching for an optimal solution, a heuristic technique

is developed and used to find a near optimal assignment. A heuristic

is a solution technique which, although not guaranteeing optimality, can

obtain "good" solutions to large problems with limited computational

effort (Ref 1:163).

Second, the enemy attack is simulated and surviving aircraft deter-

mined. For these surviving aircraft, statistics are collected on the

value of the MFE7 versus the value of the single-plan assignment

system, similar to the current SIOP. One thousand enemy attacks are

simulated.

The results of the simulation are analyzed by comparison with other

targeting strategies. The value of the MFEV is compared with a single-

plan assignment system and with a retargeting system which has the

highest possible flexibility -- the system which is able to attack the

j most important targets when only j aircraft survive the enemy strike.

Sequence of Presentation

Chapter II presents the theoretical basis for the results used

throughout this thesis. The difficulty of the MFEV assignment problem

is discussed and different single-plan assignment strategies proved

optimal under differing assumptions. The statistics to be collected

i6



in this research are derived.

The third chapter serves as the framework which holds the research

together. Here the overall design is discussed, together with specifics

on procedures and assumptions.

The fourth and fifth chapters explain the computerization of

the model. Chapter IV explains the Phase I version - all aircraft

allocated against distinct targets. Changes made to the system to allow

multiple aircraft to be assigned against the same targets are explained

in Chapter V.

Chapter VI presents and analyzes the data accumulated from the

simulation model. The results are viewed from several directions, and

compared with different measures. Conclusions are drawn about the value

of the MFEV and the sensitivity of the value measurement to changes

in the factor levels.

The seventh chapter swmrizes the conclusions made in Chapter VI.

Also, avenues for future research are recommended.
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II Theoretical Development

This chapter develops the theoretical base for the analysis docu-

mented in subsequent chapters. First the difficulty of the MFEV assign-

ment problem is discussed with emphasis on the obtainability of an

optimal solution in a reasonable amount of time. Then a variety of

general target assignment methodologies are presented and reference

made to the use that was made of the result. Finally, the measures of

merit utilized in this research are explained. A description of the

computer code based on these results can be found in Chapters IV and

V.

Mathematical Model

As mentioned in Chapter I, the allocation of aircraft to targets

in a MEV system is a three-dimensional assignment problem with a non-

linear objective function. A foimulation for the case when all aircraft

must be assigned to distinct targets is as follows:

Maximize: the expected value of targets destroyed

n
Subject to: E - 1 for i-l, ... , n; k- ,

J u l j k 
. . . , m

n

Xij k - 1 for J-l, ... , n; k-1, ... , m
i-I

where Xi - 1 if aircraft i is assigned to target j in plan kijk
- 0 otherwise

It should be noted that the three-dimensional assignment problem is

usually formulated with a third set of constraints, sumed over the

third index. Since these constraints were excluded, an aircraft could



conceivably be allocated against the same target in more than one plan.

The objective function is easily described in word& but is not so

easily described mathematically. The basic difficulty lies in the fact

that the goal "to maximize the expected value of targets destroyed"

is actually the largest order statistic from a set of dependent random

variables - the values of the m plans. The plan of largest value for

a given state of nature is the plan selected. So the system always takes

on the value of its largest element. The value of more than one plan

may be "large" for a given state of nature, but only one plan may be

selected. Therefore, having two plans of "large" value is wasteful

in that the value of both plans under other states of natire must be

correspondingly "small" (Ref 3:C23). Since no optimal formulation of

this objective function was discovered, a heuristic iterative improve-

ment procedure based on criteria suggested by Dimon was used to deter-

mine a near-optimal solution (Ref 3).

Heuristic solution techniques are used to obtain solutions to large

problems with only limited computational effort. Normally, they are

used in cases of diminishing marginal returns of cohputer resource -

they determine near-optimal solutions with much less computer effort

than would be needed to determine the optimal solution (Ref 1:163). The

heuristic procedure used in this research is described in Chapters

II and IV.

NP-Hardness

It appears that the MFEV assigment prblem, like the general three-

dimensional assigment problem, is NP-Hard (Ref 4:50-53). Although a

discussion of the class of NP-Hard problems lies beyond the scope of

this paper, a consequence of NP-Hardness drastically impacts the optimal

9 L .



solvability of this class of problems. No algoritm has yet been found

which can solve, in a reasonable mount of computer time, any but the

most trivial NP-Hard problem, (the solution time is normally an exponential

function of the size of the problem) (Ref h). For this reason, a heur-

istic solution technique was devised to find a near-optimal MFEV assign-

ment.

O Single-Plan Assignment

In this section, two different single-plan assignment methodologies

are proven optimal under differing criteria. First, the optimal allo-

cation when no two aircraft may be assigned against the same target will

be demonstrated. Second, the optimal assignment will be developed for

the case when the target assigment need not be distinctive.

Distinct Targets. In this research, the value of any system is

measured relative to the base case -- the single plan assignment which

allocated aircraft to targets in order to maximize the expected value of

targets destroyed while assigning exactly one aircraft against each

target. The following lamna describes the optimal assignment under

these conditions.

Lemma 1 -- Suppose the aircraft are ordered by non-increasing

probability of survival (i.e. Pi & P 8 "" Pn where Pi " pro-

bability of survival of aircraft i fa i - 1, 2, ... , n ). Also

suppose the targets are nubered such that V1 b V2  . n

where Vj - value of target j for J - 1, 2, ... , n and n is the

number of aircraft and targets. Then the assignment which maximizes

the expected value of targets destroyed associates aircraft i to target i,

for i - 1, 2, ... , n

10
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Aircraft 1, 2, ... , i, ... , k, *.., n

Target 1, 2, *.., j, *.., i, a.., 1

Figure 2. Initial Assmed Assignment (I)

Aircraft 1, 2, see, i, ..-e k, ..., n

Target 1, 2, *.., i, *.., j, ... , 1

Figure 3. Assigrment After a Single Interchange (I 2

Proof -- Lot the aircraft and targets be ordered as assmed in the

lamma ( P1 P 2 1 "e" I P n and VI  V 2 1 ... b V n  )o Let I be the

assignment suggested in the lemma and let 1 1 be some other assigment

of aircraft to targets such that I and 11 differ. Let i be the first

position in 11 such that I and 11 differ. Let j be the target assigned

to plans 1. in 1 1 and k be the plane which is assigned against target i

in I (See Figure 1 for an illustration). Now interchange targets

oi and j in I to form a new assignment I2 as shown in Figure 2.

The objective function values for 11 and 12 differ only in the

ith and kth positions and are given by

11) " P 1 V1 + P 2V2 + "'"+ PiVj + *.. + PkVi + *' + PV 1  (2)

EV(I 2 ) " P1 V 1 + P 2V2 + + Pii + .e + PkVj + + PnV (3)

Subtracting (2) frc Eq (3)

EV (I 2 ) EV(I) .PiVi + PkVj - (PiVj + PkVi)

a Pi(Vi " V j) + Pk(Vj - Vi )

" (Pi - Pk)(v - Vj)

since Pi PkVi V by definition
11
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Hence, the interchange cannot produce an inferior solution and may

produce a superior one. After at most n - 1 of these interchanges,

the resulting solution is identical to I. Hence, the assignment given

by Lemma 1 is optimal and the Lemma is accepted.

Distinct Targets Not Required. Phase I of this research reqt~fed

that each aircraft be assigned against a unique target in a given plan.

It may well be, though, that the best targeting strategy assigns more

than one aircraft against some of the targets and consequently, none at

all against some others. Phase II explores this approach and allows

multiple aircraft to be allocated against the sane target in any plan.

The targeting logic utilized in Phase II was to maximize the mar-

ginal value of each aircraft as it was assigned. Thus, each aircraft,

in turn, is allocated against the target where it would be expected to

do the most good -- where the marginal value is highest. Once the single-

plan assigment is determined, the number of aircraft assigned against

each of the targets in that plan determines the number of aircraft

assigned against each target in the other MFEV plans. Thus, the number

of aircraft assigned to each target is identical under all plans. The

following lemma describes the optimal solution for the single-plan

assignment when targets need not be distinct.

Lemma 2 - Let Vi be the value of target i, Ps be the probability

that a given friendly aircraft survives an enemy attack, and Pkj be the

probability that an attacking aircraft kills target J. The optimal

assignment of planes to targets allocates each aircraft, in turn,

against the target with the largest remaining marginal value. The

marginal value of target i (MVi ) represents the value of assigning one

more aircraft against target i when j aircraft have already been assigned

12



against it. It can be expressed inathematically by the following expression:

MVi- PsPki(1 - PsPki )J V. (5)

Proof -- This proof has two parts. First, the above expression

will be shown to represent the marginal target value. Secondly, it

will be shown that assigning aircraft to targets by means of remaining

maxim= marginal value does maximize the expected value of targets

destroyed, and thus is the optimal assignment for that objective.

The probability that aircraft m kills target i is just the inter-

section of the two events A and B, where A is the event that aircraft

m survives the initial enemy attack and B is the event that an attacking

aircraft successfully destroys target i, and A and B are assumed in-

dependent. The probability of the intersection of two independent

events is just the product of their probabilities (Ref 6 :42), so:

P(aircraft m kills target i) - P(A) P(B)

P Ps ki

where P O probability that aircraft m survives the initial attack
m

Pk probability that an attacking aircraft kills target i -
k i conditional probability of a kill given the aircraft

survives to attack

The probability that the target survives the aircraft's attack is just

the probability of the union of the complements or one minus the above

product, as shown below (Ref 6:15):

0(I- P sm ) + (I - - (- Psm)(1- Pki

13



The probability that target i survives two such aircraft targeted against

it is Just the product of two terms of the form given above (assuming

independence between aircraft)(Ref 6:24).

In this research, all aircraft are assumed to have an equal

probability of survival. Using this assumption ( P = P , for
si

all i), the probability that target i survives when j aircraft are

assigned against it is given by the following expression:

P(target i survives when targeted by j identical aircraft)

-r 0( - PsoPki)
m-I- (1 - PsA i

This sane probability is also the expected proportion of target value

remaining after j aircraft have been assigned against target i. Thus,

a residual value of (1 - PPk ) J V. remains out of the initial target

value of Vi -

The assigrment objective is to allocate each aircraft against

the target where it would do the most good. The marginal value of

target i (MVi ) is the value of assigning one more aircraft against

target i when J aircraft have already been assigned against it. Thus,

the best target to allocate an aircraft against is the one with the

highest remaining marginal value. The marginal value equals the diff-

erence between the residual value when j aircraft have been assigned

against target i and the residual value if j + 1 aircraft were

assigned. Thus,

14
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MV 0-PA jVi . s~ )j+1 V

(V - PA )3 ( (1 -sPk i1~ sk I ik

- (1-PsPk J (1- (1-sk Vi

1 1

. Pk (1 - s )j Vi  (9)

This expression will be referenced in Chapter V and was used in the

computer algorithm to determine how many aircraft to assign against

each target.

Now, it remains to show that this is the optimal assignment. Our

objective is to maximize the expected value of targets destroyed.

The expected value of targets destroyed is the sum of the expected value

contributed by each aircraft because the aircraft are assumed independent.

Since at each decision point, the marginal value was selected so that

it was as large as possible, the sum must be as large as possible.

Thus, if one wa. to replace any assignment with one that has a smaller

marginal value, the sum (expected value) would be reduced. Therefore,

assignment by largest marginal value is the optimal allocation scheme.

This completes the proof of Lamia 2.

Post-Simulation Value Measurement

Once the assignment procedure has been completed, the states of

nature are simulated by a Monte-Carlo simulation, as is discussed in

Chapter 171. These states of nature represent the specific aircraft which

survive a simulated enemy attack, given a cannon probability of survival

for each aircraft. The expected value of targets destroyed, given

perfect knowledge of the aircraft that survive, can then be measured as

the sum of the expected value of targets destroyed by each of the sur-

viving aircraft.
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When all aircraft are assigned to distinct targets, the expected

value contributed by each aircraft is independent of all other aircraft.

Therefore, the value of each plan is given by the following equation:

nE(value targets destroyed) X - PkV i  (10)
i-I ik 1()

where P - Probability that an attacking aircraft kills target i

Vi - Value of target i

Xi - 1 if the aircraft assigned against target i survives
- 0 otherwise

The measurement of the value of a plan is more complicated when the

distinct target constraint is relaxed. Under the Phase II case, multiple

surviving aircraft may be assigned against the same target. One must

insure that the same target is not counted as destroyed more than once.

Obviously, the value contributed by each target depends on the number

of planes assigned against it. The targets were evaluated at their

current marginal value as the contribution from each aircraft was deter-

mined, in turn. The rationale for this is actually just a special case

of the previously derived expression for the marginal value of a target,

Eq (9), when specific aircraft are known to survive with probability one

Ps W 1.0 ). The definition of j is slightly altered, however.

The expression shown below was used to evaluate the value of each plan

in Phase II of this research.
n m

E(Value of targets destroyed) - E X i(P (I - P )J1 Vi )  (11)i-i i k i

where n - number of targets

mi - the number of surviving aircraft assigned against target
i in this plan
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Pk. - probability that an attacking aircraft kills target i

V. - value of target i1

i - index of the target array

X. = 1 ifm. '1
1 1

- 0 otherwise

Obviously, if no aircraft assigned to target j survive, target j

c cntributes nothing to the value of the plan. As an example, let

mi " 3 for some i (three of the surviving aircraft are targeted against

target i in the plan being measured). Then the contribution of this

target to the expected value is given by the following term:

3 -
Contribution by target i - Z ( Pk (1 - i )

jul i I

M Pk. (1 - Pk. )0 Vi + Pk. (1 - Pk ) V.

+ Pk.(' - Pk.) 2 V i

- 1(1 +( ) +(1 1Pk.) )

Pi -kii i

( 1- k 2 ) V (2)

The distinct targets evaluation scheme mentioned earlier is really

just a special case of this marginal value measure (with mi  1 1 for

all aircraft). This can be seen by the following adaptation of Eq(11):

E(value aftargets destroyed, Phase I)

n I
z X i L (1 - P )k Vi )

i-I j-1 I

n

E XiPk VI (13)

where all variables are consistent with their previous definitions
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Derivation of Statistics Collected

Three measurements were created to compare the value of the MFEV

with different figures. The percent improvement over the base case

compares the MFEV against a single-plan assignment by a ratio of their

values. The percent total value demonstrates the maximum expected value

that any assignment could possibly approach, given an aircraft probability

of survival. The percent of the best possible solution compares the

value of the MFEV with the value of the optimal assignment (beat posdibe

solution) for given aircraft survival probabilities, where the optimal

assignment is defined as the allocation which attacks the j highest-

valued targets when exactly j aircraft survive.

Percent Improvement Over the Base Case. The basic measure of merit

throughout this research is the -srcent improvement over the base case

(P), a ratio of two values, each averaged over one thousand trials.

Data generated from this procedure drive most of the other measurement

procedures.

The following expression describes the data which was gathered:

P 100(+ - 1)
B

- 1oo( Z )

Si00( (Vi - Bi)
Z Bi

where Vi - value of the best plan, trial i

Bi - value of the base plan, trial i

B - average Vi over the 1000 trials

B -"averageB Bi over the 1000 trials

Note: all sums are taken over All 1000 trials.
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For a given trial i, Vi  Bi  , so the ratio of the averages has a

lower bound of one, which in turn implies P 1 0 , since one was sub-

tracted to shift this lower bound to zero. Multiplication by one hundred

was used to scale the value to percent.

The measure, P, mentioned above is the "ratio of the averages."

A similar estimator, the "average of the ratios" (Q), was considered

as an alternative measure of merit. This estimator is shown in the

following equation:

100 / 1000

Q has some unpleasant properties. First, it has a higher variance than

P since small deviations from the mean of V and from the mean of B can

interact to cause rather large deviations from the expected value of BA.

Second, if V and B are assumed to be independent, normal random variables,

Q is related to a Cauchy distribution, which doesn't have an expected

value. Also, the sample mean of random draws from a Cauchy distribution

does not converge as the number of samples increases - one samfle

is just as likely to be close to the true value of the ratio as is the

sample mean over 1000 trials (Ref 2:421).

P, on the other hand, has some valuable properties. Since V is

the best estimate for the expected value of V (the value of the best

plan) and f is the best estimate for the expected value of B (the value

of a single plan), N/V should be a good estimate for the true ratio of

B to V (Ref 10). For these reasons, P was selected as the measure of

merit for this research.

Percent Total Value. The percent total value measurement (T)

shown in Chapter VI is the value of the most efficient bomber attack,
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measured in percent of the total target value, that would be expected

for a given P s If all aircraft are expected to survive an attack

( P -1 ), T - 100 . For all other P values, the value is less.

The measure does not exist at P - 0 .
S

The values for T are calculated at each of five levels of P fors

each distribution in the following manner:

Step 1: For each level of Ps (.2, .4, .6, .8, 1.), determine

the expected number (N) of aircraft surviving out of

twenty. That is, N - 4, 8, 12, 16, 20, respectively.

Step 2: Set T equal to the average sum of the N largest target

values taken over all target sets drawn from a specific

distribution, multiplied by one hundred and divided by

the sum of all twenty target values.

For any distribution, T is a strictly increasing function of PS

such that any point (Ps, T) lies on or above the line connecting

(1, 0) and (1, 100). T would be linear only if all of the targets in

the set had the sane value. For any other distribution of target values,

the slope of the curve depends on P.0 For large values of P s only

the smallest targets fail to be counted. As P decreases through the

medium-size range, none of the smaller targets are included and only

the largest of the medium-size ones. For each incremental decrease

in P for P asmall, a larger and larger value target is not included

in the percent of total value sum.

Thomas produced an expression for the percent of total value for

ranked values consisting of targets of value equal to the first n pos-

itive integers (identical to the integer "distribution" used in this
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research) (Ref 9). Thus, the most important target has value n and the

least valuable target is worth one unit. The general expression for an

arbitrary number of aircraft is derived below. Specific expressions for

twenty and an infinite number are also given and graphed in Figure 40,

together with the linear expression (all target values equal). The

horizontal scale was reversed from Thomas' work to remain consistent in

this paper.

Z (n + 1 -i)

n

i-i

d d
E (n + 1) - Z iSi-I i-I

m Jul

n
Z i

d(n + 1) - d(d 2 1)

2

~d (2n -.d. +1(6
! " n(n + 1)

n.(2n - nPs +1

but E(d) -nP , so E(D) - nn + 1)

n + (17)

where n - amber of targets

d - number of targets attacked

substituting n 20 into Eq(17) gives the following result:

41P - 20P2

E(D) - s 1 (18)
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The limiting case, as the number of targets grows infinitely large, is

given by the following expression:

E(D) - (2 - P )Ps (19)

Percent of the Best Possible Solution. The percent of the best

possible solution measurement is derived from the two previously men-

tioned measures (percent improvement over the base case and percent

total value). The value of the MFEV obtained through simulation is

divided by the expected value of the best possible assigment. The

value of the best possible assignment for a given set of targets is

defined as the sum of the J largest target values when exactly j aircraft

survive the initial enemy attack. This value is estimated for each

distribution by the following procedure:

Step 1: Calculate the expected value of a single-plan, discrete

target assignment ( E(B) ) by the following expression:

10 n

E(B) - (20)
10

where V =jth largest target in target set i

n - initial number of aircraft

In other words, calculate the average total value of a

target set, averaged over the ten sets sampled from each

distribution.

Step 2: For each ofithe four levels of P5 (.2, .l, .6, .8),

determine the expected number of surviving aircraft (N)

N -nP (21)
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Step 3: Calculate the sum (S) of the largest N target values for

each level of P (averaged over the ten sampled sets of

targets). This is labelled the value of the best possible

solution.

10 N
V

S - i  
(22)

10

Step 4: Create the ratio (R) of the value of the 147EV to the value

of the best possible assignment. Since percent improve-

ment over the base case (P), derived in Eq(14), is the mea-

sure used to estimate the value of the MFEV, this figure

must first be converted back to a value before the ratio

can be taken. The conversion and division is done by the

following expression:

(P+ 100) E(B)~S

(10* -V - 1) + 100) E(B)
B

S

100 V (BL)
S B

- 100-.. (23)S

Although E(B) (simulated estimate not identical to analy-

tically derived exact result), the two were verified as very nearly equal.

The values were compared for this study and a difference of slightly over

two percent was the largest deviation discovered. Host differences
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were down in the one percent range. Therefore, although this mixing of

sources may introduce some error into the estimate of R, the figure out-

put from this algorithm should be close to the true value. Thus, R

should be a reasonable approximation to the percentage of the best

possible solution achieved by the MFEV.

The estimated percent best possible solution of the base case is

used to compare with the MFEV values in Chapter VI. The measure is

approximated by dividing the expected value of the base case by the

estimated value of the best possible solution, which were derived

earlier, as shown below:

EV E(B) (24k)
S

where E(B) and S are defined in Eq (20) and Eq (22).
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III Design of Experiment

The objective of this research is to measure the change in the

destruction capability of a banber force resulting from incorporating

the Multiple Force 1hployment Variation (MFEV). Also of great interest

is the sensitivity of this measure to changes in the distribution of

target values and the probhbility of aircraft survival. A model was

created to estimate the value of the MFEV at different levels of these,

and other parameters. The research was separated into two phases.

Phase I requires that all targets are assigned in each plan. Phase II

relaxes this requirement and allows multiple aircraft to be allocated

against a single target.

Initial investigation into this subject suggested the value of the

MFEV could be highly dependent upon many factors. The research therefore

had to be carefully designed to properly account for these variables.

As will be discussed in the Methodology and Target Value Distribution

sections, some factors were assumed constant, some included parametrically

and some had to be allowed to vary randmlj, in the model.

Scenario

This research will center on a simulation of a bomber force of

twenty aircraft and a target set list consisting of twenty targets with

known values. Twenty aircraft and targets were selected as a trade-off

between the desire for a large nunber of aircraft (to enhance the degree

of operational validity) and a number small enough to keep the problem

to workable proportions. Twenty was felt to be a reasonable trade-off

between the two arguments.

Implicit Assumptions. Throughout this research, all aircraft will
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be assumed homogeneous. Each aircraft has an equal probability of sur-

viving the initial enemy attack on its airfield and an identical pro-

bability of killing a given target, dependent only upon the target being

attacked. In addition, the survival probabilities for all aircraft and

probability of any target kill by any aircraft given launch survival are

assumed independent of one another.

The target values are assumed constant over time unless destroyed

by a bomber. Any aircraft which survives the simulated enemy attack

is assumed to destroy the target it attacks with probability one -- that

is, the conditional probability that a specific target is destroyed,

given that the aircraft assigned against it survives the enemy attack,

equals one. In Phase II, when more than one surviving aircraft may be

assigned against a single target in a plan, only one aircraft is cre-

dited with having destroyed the target -- i.e. no target is counted as

killed more than once.

Measure of Merit

Since the aircraft are assumed homogeneous, any single-plan assign-

ment which allocates a bomber against every target is equivalent, i.e.

has an identical expected value of targets destroyed. Therefore, an

arbitrary single-plan assignment was selected and labelled as the

"base case." This assigment served as the control, against which the

value of the MFEV under different conditions could be evaluated. Each

time a state of nature was simulated, both the value of the system under

the assumed conditions (Vi ) and the value of this base case (Bi) was

recorded. After 1000 states of nature (specific aircraft surviving the

enemy attack) were simulated, a ratio of the average values was cal-

culated to determine the average percent improvement in value over
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the average value of the base case. Thus a reading of 0.0 translates

into no improvement while 100.0 would mean twice as much value as the

base case (100.0 percent improvement). Improvement of more than 100.0

percent is possible. This percent improvement over the base case sta-

tistic served as the basic measure of merit for this entire project.

This particular measure of merit seemed most appropriate for

nunerous reasons. First, it is a scaleless quantity. No matter on what

scale the target values might be measured, percent improvement (additional

value) would just have a multiplier effect - measured in the same scale.

Secondly, this measure would be more directly applicable to a variety

of problems than any measure tied to a specific unit. In addition, it

maintains significance at any parameter level where many other measures

would not. For example, if a value-based measure of merit were in use,

an expected system increase of ten units of value might be an extremely

significant improvement if only a few aircraft were expected to survive

an enemy attack. If, on the other hand, most of the bomber fleet were

expected to survive, this ten units may be only a negligible improvement.

The only other research on this problem used two measures of

effectiveness. The basic measure was the value of an assigment given

that a particular number of aircraft were lost (comparable to a given

value of P s). The assigment which was optimal for every choice of number

of surviving aircraft was defined as the optimal assig ent. (Thus, in

order to be considered optimal, the assigrent also had to be suboptimal

for every possible number of sudying aircraft and every possible cm-

bination of specific aircraft surviving.) This definition proved to

be overly restrictive. Indeed, Dimon proved no such optimum exists for

system s of six aircraft and three plans or larger (Ref 3:C31- 1). The
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other measure of merit was an adaptation of this basic measure and

was utilized when no "optimal" assignment existed. It consisted of the

percentage by which the expected value a particular solution fell short

of the generally unreachable upper bound solution, for a given number

of surviving aircraft. This upper bound solution is the best possible

solution used in this research and described in Chapters II, III, VI,

and VII. Also, the percent improvement over the base case weights each

specific number of surviving aircraft by its probability of occurrence

through.the Monte Carlo simulation procedure mentioned later in this

chapter.

Target Value Distributions

The other investigation into the value of the MFEV assumed target

values equal to successive integers (Ref 3). This research expands the

scope of that study as well as relaxes the assumption of consecutive

integer-valued targets by treating the target values as random obser-

vations from a known probability distribution.

In order to test the robustness of MFEV effectiveness to changes

in target value distribution, identical methodologies were followed to

measure the value of the MFEV under a variety of distributions of target

values. The values were selected by Monte-Carlo sampling, a method

of producing random variates from the particular probability distribution

being sampled (Ref 8:65). The distributions selected cover a wide range

of possibilities and most lists of operational target sets could be

considered to approximate one of these. The five distributions from

which target values were sampled for use in this research are given

in the following sections.

Successive Integers. In the integer target list, target values are
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deterministically established as the first twenty successive integers.

Thus, the target of highest importance has value 20.0 and the target of

lowest importance is valued at 1.0 unit. This was the scheme utilized

by Dimon (Ref 3).

Uniform. Under the uniform target distribution, target values

were randomly selected from a uniform distribution between 0.0 and

100.0. Since all values in the range have equal probability of occurrence,

one would expect the most highly regarded target to be valued in the

90's and the target of least importance to be worth between 0.0 and

10.0 units. A sample graph of a uniform probability distribution

function (pdf) is shown in Figure 4.

Low-Variance Normal. Target values for the low-variance normal

distribution were sampled fram a truncated (0, 100) normal distribution

with mean 50.0 and a standard deviation of 10.0. This distribution

would be expected to result in a large number of medium-valued targets

and only a very f6w target values greater than 20.0 units away from

the mean. A graphical example of this pdf is shown in Figure 5.

High-Variance Normal. Under the high-variance normal target list,

target values were selected from a truncated (0, 100) normal distribution

with mean 50 and standard deviation 30. Thus, in sampling from this

distribution, one would expect a loose cluster around the mean with a

good percentage of the values more than 20.0 units away from the mean.

An example of a truncated high-variance normal pdf is given in Figure 6.

Exponential. Target values for the exponential targ e list were

obtained from a truncated (Z 100) exponential distribution with mean

25. (The expected sample mean is actually about 23.134 due to the trun-

cation at 100). This distribution approximates the case of a great
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proportion of low-valued targets, a few medium-valued targets, anc a very

few targets in a high-value (above 70) category. See Figure 7 for a graph

of this pdf.

Selection of Target Values. A set of two hundred random values

were sampled from each distribution for a total of 1000 observations.

The two hundred datapoints were divided into ten subsets of twenty in-

dependent, identically-distributed values each. Thus, a total of fifty

target lists were created -- ten from each of the five distributions.

(Actually all ten target lists from the integer-valued "distribution"

were identical since they are selected deterministically -- the integers

from one to twenty inclusive). A FORTRAN listing of the code used to

generate the ten subsets of target values for the high-variance normal

distribution is included as Appendix A. The target values for the other

distributions were created in a similar manner by calls to the appropriate

I1SL random deviate generator (GGUBFS for the uniform distribution, GGNQF

for the normal distributions and GGEXN for the exponential distribution

(Ref 5:G-1+)). All four sets of target values were sampled beginning with

the identical random number seed -- the value shown in Appendix A. This

was done to make target sets sampled fram different distributions more

camparable. With the identical initial random number seed for all

distributions, any possible bias in the random deviates (large percen-

tage of "big" samples, for example) would occur in all target distributions,

thus reducing its effect.

Methodblogy

The objective of this research, as mentioned earlier, is to es-

timate the value of the MFEV, determine the sensitivity of the measure

to changes in its input parameters and create a prediction model. Toward

34



that end, four factors were varied and the resulting measures of value

compared. A regression equation was constructed from this data to es-

timate the expected value of this retargeting option, given specific

values for the input parameters. All this was done twice -- once with

all aircraft assigned to different targets (Phase I) and a second time

when more than one aircraft is allowed to attack the same high-value

target (Phase II).

Input Parameters. Two factors were treated as parameters in this

research -- the number of plans in the assigment and the probability

that an aircraft survives the initial enemy attack (P s). (These variables

serve as the predictor (independent) variables in the regression model).

Each of these factors will be tested at four levels. Variations with

two, three, four and five IO'E plans will be compared with the base

case of one plan. In addition, Ps will be varied between 0.2, 0.4.,

0.6, or 0.8 for each run.

The other two factors included in the model were target value dis-

tribution (five levels -- discussed earlier in this chapter) and what will

be called the targeting option. This binary targeting option either

1) forces all aircraft to be allocated against different targets (and

therefore forces all targets to be targeted since the number of aircraft

equals the number of targets) - Phase I; or 2) allows multiple aircraft

to be assigned against the same target by the marginal value criteria

presented in Chapter I - Phase II.

Sixteen hundred datapoints resulted from 1600 runi of the model.

For each of the five target value distributions, ten sets of targets

were sampled. In other words, ten replications of a set of random

draws from each of the five distributions (that would be fifty runs --
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10 * 5) were taken. Each of these fifty divisions must be further

subdivided in three ways -- by targeting options (two levels), by the

number of plans (four levels), and by Ps (four levels). Thus, each

of those fifty divisions were split into another 32 ( 2 * 4 * 4 )

sections leading to 1600 ( 10 * 5 * 2 * 4 * 4 ) datapoints.

Once the level of each factor was determined (specific replication

from a specific target value distribution at specific value of P ands

number of plans for a given targeting option), two functions had to be

accomplished so the value corresponding to this block could be measured.

These two functions, assignment and simulation, are discussed in the

next two sections.

Assignment. The assignment function of the model corresponds to

the real-world task of building the SLOP. This portion of the model

determines which targets are assigned to what aircraft in which plan --

actually a three dimensional assignment problem, as discussed in Chapters

I and II.

The assignment section has one basic duty -- create a near optimal

allocation of aircraft to targets over all plans. As was mentioned

in Chapter I, this task is much more difficult than one might suspect

at first glance. Since finding an optimal solution would normally dic-

tate an unreasonable amount of computer resource, a heuristic solution

was selected to find a near-optimal solution -- an assignment which

would perform almost as well as the optimal solution, but which is more

easily obtainable.

In his paper on the subject, Dimon states that in order for an

assignment of targets to be optimal, the column sum of their values

should be as nearly equal as possible (Ref 3:C23). The rationale behind
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the concept is as follows. In order for the column sums throughout

the assignment to be nearly equal, they must be worth an average of

k/m where m is the number of plans. But this means the amount by which

the high-value targets in the column exceed k/m is about equal to the

amount by which the low-value targets fall short. Thus, for every ex-

tremely high-valued target in a column, there must be an extremely low-

valued target, or two (or more) low-valued targets. But since the same

targets are in every row, a high-valued target in one column means

there must be lower-valued targets in the other columns. But these

lower-valued targets must have higher-valued targets in the other rows

of the same column in order for the columns to all sum to about k.

Therefore, no matter what column might be deleted, high values will be

removed from some plans and low values from others. The specific columns

deleted is what determines which rows will have more high-valued targets

remaining and which rows will have more low-valued targets. That row

with the greatest proportion of high-valued targets would be the optimal

plan, given the specific columns deleted (state of nature). For a more

elaborate discussion of the rationale, see Dimon's paper (Ref 3:C7-C30).

Although Dimon's concept has great intuitive appeal and seems to

work under most conditions, making the column sums as nearly equal as

possible is not the best assignment in all cases. Consider, for example,

four targets of value 1, 5, 12, and 25 units. Let two MFEV assignments

be as shown in Figures 8 and 9. Figure 8 contains the allocation which

makes the column sums as nearly equal as possible, while the optimal

assignment is shown in Figure 9. The value of the two assignments is

identical under all but one of the possible states of nature. When

aircraft two alone is destroyed, however, the assignment obtained by

37

L-



Aircraft
1 2 3 4

Plan 1 25 12 5 1

Plan 1 12 25 5
Plan 3 5 12 1 25

Column Sum 31 36 31 31

Figure 8. Assignment Resulting From Dimon's Concept

Aircraft

1 2 3 4

Plan I 25 12 5 1

Plan 2 1 5 25 12

Plan 3 5 12 1 25

Column Sum 31 29 31 38

Figure 9. Optimal Assignment

making the column sums as nearly equal as possible (Figure 8) has a lower

value than the optimal assignment (Figure 9) (31 versus 38). Thus,

although intuitively reasonable, this concept can not be guaranteed to

produce the optimal assignment for any particular set of target data.

Dimon, in his research, used a branch and bound technique to find

the suboptimal assignment, given a specific state of nature. He then

attempts to generalize these results by observing patterns in the target

assignment matrix. For larger problems, even this indirect solution

methodology would take an unreasonable amount of computer time to operate.

Therefore, an element-interchange assignment-improvement heuristic

procedure was created.

Beginning with any assignment, the procedure tests pairs of same
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row elements to see if exchanging them would improve their respective

column sums, i.e. would make the column sums more equal. If the exchange

would be an improvement, the change is made. This test-interchange

procedure continues until no additional improving exchanges can be

made. At this stage, the assignment matrix is passed to the simuldtion

section. As shown in Chapters I and IV, this assignment need not be

optimal, but only near-optimal.

Simulation. Using the user supplied Ps, the simulation section

generated states of nature (specific aircraft surviving an enemy attack)

by means of a Monte-Carlo simulation. Once it is known which specific

aircraft have survived the attack, the value of the base case and of

each plan of the MFEV can be calculated. The best MFEV plan was ident-

ified and its value included in the measure of merit statistic dis-

cussed earlier in this chapter (along with the value of the base

case). One thousand simulated attacks were completed on each assign-

ment at given parameter levels. The same set of random numbers were

used in the Monte-Carlo simulation fdr each level of all four factors

(number of plans, probability of survival, targeting option and target

value distribution) in an attempt to reduce the variability in the

data.

Prediction. In order to create an MFEV value predictor, the 1600

datapoints created in the simulation section were used as input into

the SPSS regression statistical package to produce a-linear regression

model (Ref 7:320-368). Ten regression equations (160 datapoints input

for each)were formed, one for each of the targeting option/target value

distribution pairs. In order to use the model, one would select the

equation corresponding to the targeting option and target value dis-
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tribution that was appropriate. After substituting the correct values

for the aircraft probability of survival and the number of plans, one

could compute an estimate of the value of the MFEV, given those conditions.
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IV System Description -- Phase I

This chapter describes the algorithms and software package created

to measure the value of the MFEV when there are an equal number of

aircraft and targets and all targets must be assigned to an aircraft

under each plan. Initially, the chapter describes the design of the

computer model. The remaining portion of the chapter takes a step-by-

step walk through the software system.

System Design

The computerization of the model is partitioned into five sec-

tions -- target selection, initialization, assignment, simulation and

output. The target selection section was used to create the target

values whirh were used in this research. The initialization section

contains the program SIM which initializes variables, obtains the tar-

get values and calls all subroutines. The assignment section contains

subroutines ASSIGN and RULE1. This section creates an initial assign-

ment and iteratively improves the assignment as much as possible. The

simulation section generates one thousand independent states of nature

(specific sets of surviving aircraft). For each state of nature, the

value of the single-plan system and the multiple-plan variation are

calculated using the assignments provided by the previous section.

Statistics on these values are collected. Subroutines SURV, VALUE

and BASE perform the duties of this section. The output section

writes data to two files -- one for visual scrutiny by the analyst

and one for input into the SPSS statistical package.

The following summarizes the duties of each section, in order

of execution.
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Target Selection

Program MAKET was used to select the target values used throughout

the research. The routine creates ten sets of twenty target values each,

all sampled independently from the same distribution (one of the five

used by this thesis). Essentially the same program was executed five

times with only minor changes needed to control the pdf from which

the values were sampled.

As the samples were taken, they were sorted into decreasing order

by target value. After a set of twenty samples was taken, it was written

out to a disk file. Ten such independent identically-distributed samples

of twenty target values each were stored on the sane file. Values from

different distributions were placed on different files. Each of these

files, in turn, fed its values into the master program -- Program SIM.

Initialization Section

Program SIM. Program SIM serves as a master program, initializing

variables and generally setting up the remaining portion of the program

for execution. The number of aircraft (which equals the number of tar-

gets) and the probability that an attacking aircraft kills a given

target (PK), are always set to 20 and 1.0, respectively, for this research.

The number of preplanned MFEV options and the aircraft probability of

survival (PS) are then determined by user input. All of the previous

values remain constant for all sets of target values taken from the same

* distribution. Everything after this point, though, is repeated ten times,

* once for each of the ten sets of target values sampled from the particular

distribution. First, twenty target values are read from the data file

selected by the user. Since the values were sorted before they were

written on the file, the targets are entered into the target matrix
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(TVALUE) in non-increasing value order (the highest value target is

TVALUE(1) and the lowest TVALUE(20)). Control is then passed to the

assignment section to allocate the aircraft to targets.

Assignment Section

Subroutine ASSIGN. Subroutine ASSIGN begins by assigning the base

case -- the assignment against which all others are measured. Since

this research only investigates the case of homogeneous bombers with

identical probability of survival, the aircraft are indistinguishable.

Therefore, the base case can be assigned arbitrarily since all permutations

produce the identical expected value of targets destroyed. Arbitrarily,

therefore, target one is assigned to aircraft one, target two to aircraft

two, and so on. By the same reasoning, the first MFEV plan is identical

to the base case.

The MFEV assignment can be modeled as a matrix with rows representing

plans; and columns, aircraft. The value of an element stands for the value

of the target assigned to that aircraft in that plan. Thus, if element

(2,1) equals 17.3, then a target valued at 17.3 is assigned to aircraft

one in plan two. (In the computer model, the value of an element

actually representa a target number -- an index into the target value

array. For ease of discussion, though, the matrix will be treated as

defined above).

Once the first row (plan) has been initialized, the other rows

(plans) are given an initial assignment by a simple two-stage algorithm.

The first stage creates an assignment for the second row. All other rows

are assigned by the second stage.

Assume the general case of n aircraft and m plans, for m< n

In plan two, assign target n (the lowest value target) to aircraft one.
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Target n - 1 is then assigned to aircraft m + 1 (mod n) -- the

previous aircraft that was assigned (1) plus the number of plans (m),

modulus n. The third lowest target is assigned to aircraft 2m + 1

(mod n), the previously assigned aircraft, m + 1 , plus the number of

plans (m). This modulus arithmetic assignment system continues until

all targets are assigned, which is equivalent to ensuring that all air-

craft are allocated. If n - kn , where k is some integer, the modulus

arithmetic has to be modified slightly so that the remainder is incre-

mented by one when n is exceeded -- for example, n + 1 (mod n) becomes

2 rather than the expected 1.

Stage two of this initial assignment procedure allocates targets

to aircraft in all other plans, if there are any. Row three is created

by simply shifting the row two assignment to the right by one column

with wrap-around (wrapping the last column around to the first column).

Row four's assignment is shifted by one more column than row three's

assignment; and row five's assignment one more again. An initial assign-

ment of five aircraft and three plans is shown in Figure 10, assuming

target values of one to five, inclusive. Note that the column sums

are somewhat close, as one would hope. This method was found, in most

cases, to reduce run time significant.y over an assignment consisting

of all plans with an identical target/aircraft allocation. Consequently,

the effort to improve the initial solution was worth the time required

to accomplish it. Subroutine RULE1 is then called upon to improve upon

this initial feasible assignment.

Subroutine RULE1. As discussed in Chapter III, the objective of

the heuristic assignment procedure is to allocate the aircraft to targets

so that the column sums are as nearly equal as possible. Beginning
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Aircraft

2 3 4 5

Plan I 5 4 3 2 1

Plan 2 1 3 5 2 4
Plan 3 4 3 5 2

Column Sums 10 8 11 9 7

Figure 10. Sample Initial Assignment

with the initial assignment created in ASSIGN, RULE1 transposes same-

row elements to monotonically advance the solution toward this goal. The

column sum of column i is the sum of the target values assigned to air-

craft i over all plans, as was demonstrated in Figure 10.

The approach used is to first sort the columns by column sum and

then attempt to decrease the largest column sum. Elements of the column

of largest sum are compared with elements of the column of smallest

sum from top to bottom to see if an exchange of elements would improve

the state of the column sums. Since the aircraft are homogeneous, all

assignments can be made without working with row one. Therefore, row

two is the first one checked and then row three and so on until a bene-

ficial change is found. If no improvements can be made, the elements

of the largest column are compared with the elements of the column with

the second-smallest column sum (also in order of increasing plan number)

to see if any exchange will improve the sums. If this also fails, the

largest column is compared with the third smallest, the fourth smallest,

and so on until an improvement can be made. If no way of decreasing the

largest column sum can be found, the second largest column sum is com-

pared with the column of smallest sum. If this leads to no improvement

in sums, the second largest is compared with the second smallest and so
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on as before. This method (checking the column of largest sum first

against the column of the smallest and so on) was found to be more

efficient than a procedure which merely began comparing arbitrary

columns. However, there is no reason to suspect that this is the most

efficient approach.

Once an exchange is found which would improve the column sums, the

algorithm makes the exchange, .etermines the new column sums and resorts

them. The algorithm then shifts back to begin the entire proc'ess once

again (comparison of the largest column sum with the smallest). If no

improvement can be made after comparing all pairs of columns, the assign-

ment cannot be improved. This final assignment matrix and corresponding

column sums are written out for the analyst. Then RUE1 passes this

solution and operational control to the simulation portion of the program.

Sample Calculations. An example might be enlightening at this

stage. Assume the naive initial assignment in Figure 11 has been made.

The elements themselves represent target values, the rows -- plans and

the columns -- aircraft.

Aircraft
1 2 3 4

Plan i 1 3 4 6
Plan 2 1 3 4 6

Plan 3 1 3 4 6

Column Sum 3 9 12 18

Figure 11. Initial Assignment

The objective of this routine, as was previously mentioned, is to

make the column sums more equal. An element-interchange only improves

the state of the column sums if it passes both of the following tests:
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Test 1: The element of the column with the smaller sum is smaller

than the element of the column with the larger sum;

Test 2: The difference between the elements must be less than

the difference between the column sums.

Test 1 ensures that the larger sum doesn't get larger and, consequently,

that the smaller doesn't get smaller. Test 2, on the other hand, ensures

that the interchange isn't too much of a good thing. An exchange which

violates Test 2 would cause the smaller column sum to become as large

or larger than the large column sum and vice versa. Obvioudly, this would

not be an improvement in the state of the column sums.

The algorithm would first compare element (2,4) with element

(2,1) (the column with the largest column sum (column 4) and the column

with the smallest (column 1)). Since (2,4) is greater than (2,1) (Test

1) yet not too much greater (Test 2), the exchange would be made. Figure

12 demonstrates the status after this one interchange.

Aircraft
1 2 3 4

Plan I 1 3 4 6

Plan 2 6 3 4 1

Plan 3 1 3 4 6

Column Sum 8 9 12 13

Figure 12. Solution After First Interchange

Since an exchange was made, the entire procedure begins again

looking at the largest column sum (still column 4) and the smallest

column sum (still column 1). Comparing elements (2,4) and (2,1) shows

that (2,1) is greater so no exchange is made (Test 1 -- it would decrease
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the smaller column sum and increase the larger -- exactly the opposite

of the objective). Now try row 3. Element (3,4) is greater than (3,1)

so it passes Test 1. But is it too large (Test 2)? Would the exchange

cause the sum of column 1 to become greater than or equal to the present

sum of column 4? It turns out that (3,4) is just barely too much larger

than (2,1) so that, if the exchange were made, no improvement would be

seen, as shown in Figure 13.

Aircraft

1 2 3 4

Plan I 1 3 4 6
Plan 2 6 3 4 1

Plan 3 6 3 4 1

Column Sum 13 9 12 8

Figure 13. Example of Unprofitable Interchange

The algorithm now calls for a comparison of the largest column

(column 4) with the second smallest (column 2). Row two violates Test

1 but row three passes both tests. Therefore, elements (3,4) and (3,2)

are exchanged, with the result shown in Figure 14.

Aircraft

1 2 3 4

Plan I 1 3 4 6

Plan 2 6 3 4 1

Plan 3 1 6 4 3

Column Sum 8 12 12 10

Figure 14. Solution After Two Interchanges

The column which would be labelled as having the largest column sum

48



(column 2 or column 3) would depend upon the sorting algorithm used.

Assume column 2 was selected as largest. Since an exchange was just

accomplished, the algorithm reverts to comparing the columns with the

largest and smallest sums (columns 2 and 1 respectively). Row 2 fails

Test 1 and row 3 fails Test 2, so column 2 is compared with column 4

(the column of largest sum with the column with the second smallest).

No exchanges would be made between these columns either, because both

rows fail Test 2. Next, the algorithm calls for a comparison of columns

3 and 1, the columns with the second-largest and smallest sums, respectively.

Row 2 violates Test 1, but row 3 passes both tests. The exchange of

(3,3) and (3,1) results in the assignment in Figure 15.

Aircraft
1 2 3 4

Plan 1 1 3 4 6

Plan 2 6 3 4 1

Plan 3 4 6 1 3

Column Sum 11 12 9 10

Figure 15. Final Solution

Although this assignment is not optimal (other assignments exist

in which the column sums are more equal), the algorithm, as modeled,

would not perform any more exchanges. All possible interchanges would be

tested and none which would produce improvement would be found. There-

fore, this assignment would be passed to the simulation section.

A better solution could be achieved if one was willing to allow

either 3-element swaps or exchanges which do not directly further the

objective (i.e. do not change the magnitude of the column sums, but do

change which. particular column has a particular sum). For example,
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in Figure 15, the exchange of elements (2,2) end (2,4) would result in
the solution in Figure 16. Note that the column sums of column 2 and

column 4 are reversed.

Aircraft
1 2 3 4

Plan I 1 3 4 6

Plan 2 6 1 4 3

Plan 3 4 6 1 3

Column Sum 11 10 9 12

Figure 16. Final Solution After Unproductive Interchange

Although no improvement was made with regards to the objective function,

the optimal solution (shown in Figure 17) is obtainable in only one

more interchange.

Aircraft
1 2 3 4

Plan 1 1 3 4 6

Plan 2 6 1 4 3

Plan 3 4 6 3 1

Column Sum 11 10 11 10

Figure 17. Optimal Solution

This example was selected specifically to point out that this al-

gorithm does not always find the best solution. Under most conditions,

the two-way interchange procedure does eventually produce the best solution.

Therefore, exchanges were limited to the pairwise switches which improve

the objective function. The other types of interchanges were not allowed

since they would usually increase run time dramatically without appreciably
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improving the assignment determined. Besides, even the optimal solution

to this problem represents only a heuristic solution to the underlying

problem.

The total number of element interchanges was limited to 200 iterations

by a similar rationale. The number of single-plan assignments equals

the number of ways the n targets can be ordered -- ni. If there are m

plans, there are (n|)m ways the m * n assignment matrix can be arranged.

But the aircraft are assumed homogeneous, so just permuting the columns

should not be considered a different assignment. Similarly, if plan i

and plan j were interchanged, the assignment really hasn't been changed.

(n')m (n!)m- 1
Therefore, the previous result should be decreased to r = m!

possible different assignments. Although the number of possible assign-

ments is finite, it is extremely large, as shown above. The number of

possible improving exchanges, thus, although bounded, is also very large.

It was discovered during the software debug phase of the research that

run times were becoming excessively large for some data sets and initial

assignments. Consequently, the number of allowed exchanges was limited

to 200 based on the following rationale:

1) Mpirically, a bound of 200 iterations impacted only a few of

the assignments. The assignment iteration procedure halted in less

than seventy exchanges in most cases.

2) Since the algorithm concentrates on the maximum and minimum

column sums, any assignment changes made after 200 iterations should

have only minimal impact on the c6lumn sums. Experimental data

supported this hypothesis. When column sums derived from the

algorithm limited to 200 iterations were cunpared with column

sums from the algorithm limited to 500, the biggest change in samples
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taken was less than 1%.

Once subroutine RULE1 obtains the best solution it can, control

is passed from the assignment to the simulation section.

Simulation Section

The simulation section emulates one thousand independent enemy

attacks on bomber bases. Given the base escape probability (equal for

all aircraft in this research) defined during the initialization phase,

the specific aircraft surviving each simulated attack are determined.

Given this "state of nature" (specific surviving aircraft), the value of

the best plan is measured and compared with the value of the base case

under the same state of nature. The ratio of the averages over 1000

trials is the one data point created in the section.

The simulation section consists of three subroutines -- SURV, VALUE

and BASE; each of which is called for every trial. The following des-

cribes the operation of each module.

Subroutine SURV. The purpose of subroutine SURV is to determine

how many and which particular aircraft have survived the simulated missile

attack, The inputs consist of the probability of survival for each

aircraft defined by the user in the initialization section, and a set

of random numbers. The outputs are the number of aircraft surviving and

an array containing their aircraft numbers. Since the-aircraft are

assumed independent, the program merely compares a different uniform

(0,1) pseudo random variate obtained from an IMSL routine with each

aircraft's probability of survival to determine which ones live and which

are destroyed. If the random number is greater than the probability of

survival, that particualr aircraft is assumed destroyed. Nothing needs
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to be done since a dead aircraft contributes nothing to the value of

any plan. If the random number is less than or equal to the survival

probability, the number of survivors in incremented and the aircraft is

added to the surviving aircraft array. This procedure is accomplished

for all twenty aircraft. The surviving aircraft array serves as an

input for the next subroutine -- VALUE.

Subroutine VALUE. Subroutine VALUE measures the value of each plan

and determines which plan is best. The inputs for this routine are the

assignment generated from the assignment section and the surviving air-

craft array created in subroutine SURV. The program sums the value of

the targets assigned to surviving aircraft to get a measure of the value

of each option (plan). A pointer is set to the plan of largest value --

the plan which should be selected by the decision maker based on the

objective of maximizing expected target destruction.

Subroutine BASE. Subroutine BASE computes the value of the base

case assignent and a measure of the difference between the base case

and the best multiple plan value. Since plan 1 is identical to the

base case, the value of the base case is exactly the value of plan 1.

A non-negative measure of the improvement over the base case (delta

value) is created by subtracting the value of the base case from the value

of the beat option. Since one of the plans is identical to the base case,

a zero delta value is the worst that can be obtained. As was discussed

in Chapters II and III, the value of the base case and the delta value

are summed over all one thousand trials. After all the trials are

completed, control is passed to the output section.

Output Section

The output section uses as inputs the sums of the base case values
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I
and the values created by the simulation section. From these numbers,

a single statistic -- percent delta value (PCDVAL) is calculated by

Eq (14) derived in Chapter II. This value represents the expected in-

crease in the value of targets destroyed under the MFEV targeting system

as compared with a single-plan assignment.

PCDVAL, labelled as the "percent improvement over the base case"

is added to the previous output. In addition, PCDVAL, together with

two user determined parameters (the probability of aircraft survival

and the number of plans), are written to another file for eventual

input to the SPSS statistical package.

When all these procedures are completed for the ten sets of target

values for a particular distribution, the program is complete.
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V System Description -- Phase II

This chapter describes the changes to the computer software system

to allow for multiple aircraft assigned against some targets. The

chapter walks through the adapted program, giving examples to help ex-

plain the workings of the code. Emphasis is placed on differences

between this version and the single-aircraft/single-target version

described in the previous chapter.

The measure of effectiveness utilized in the multiple aircraft

versus one target version continued to be percent improvement over the

same "base case" (with all aircraft assigned against different targets),

as discussed in Chapter III. The initialization and output sections

were not changed at all from the previous version. In fact, only two

subroutines had to be modified to allow multiple assignments against

a target -- ASSIGN and VALUE. The following describes these changes and

their effect on the subroutines.

Subroutine ASSIGN

As in the Phase I system (described in Chapter IV), all the initial-

izations have been completed and the values of parameters set before

entering subroutine ASSIGN. For the Phase II scenario, the duties of

this module have been expanded to include the selection of targets

to be attacked. It still accomplishes the original purpose of creating

an initial feasible assignment. Recall that in the initial systemall

targets and all aircraft were utilized; i.e. every target was attacked,

so the target selection process was not needed.

The base case assignment is initialized by allocating the highest

value target to aircraft number one, the second-most-valuable target to

.... . .55



aircraft number two, and so on. This procedure is identical to that

done in the original system. Since the targets were sorted before entering

this subroutine, the highest value target resides in TVALUE(1), the secomd-

highest in TVALUE(2) and so on down the line to the least-important

target (out of the twenty) in TVALUE(20), just as in the original system.

Target Selection. As stated in Chapter II, targets are assigned

to aircraft by reference to the target's marginal value. In other words,

each aircraft in turn is assigned against the target where it would do

the greatest amount of good. Thus, if it is more valuable to send a

second (or third, or ... ) aircraft against a "high" value target already

assigned than to hit an unassigned target, this is done. As described in

Chapter I, the marginal value of target i (MV.) is given by the following

expression:

MV, - PsPk 0 - PsPk )J Vi  (9)
1 1

where P 0 Aircraft probability of survivals

Pk. - Probability attacking aircraft kills target i
1

j - number of aircraft already assigned against target i

Since this research assumes Pk 1.0 for all targets, the ex-

pression for marginal value simplifies to the following expression:

MVi . Ps(0 - P) j V. (25)

When the routine is entered, no aircraft have been assigned (j-0),

so all targets have a marginal value of MVi - PsVi . Since P iss

identical for all aircraft, the largest value target also has the largest

marginal value. Therefore, the first aircraft can automatically be

assigned against the highest value target. Then the marginal value
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of target one is updated ( MV1 - Ps(1 - P s ) V1  ) and placed into

its location in the ordered marginal value vector. If V1 is much larger

than V2 , it may be that target one still has the largest marginal value.

If so, aircraft two will also be assigned to target one. If, on the other

hand, MV2 = PsV2 >Ps(1 - Ps ) V1 - MV, , then aircraft two will be

allocated against target two. Whichever path is taken, the marginal

value of the target against which aircraft two is assigned is then up-

dated and resorted into the marginal value array. Then aircraft three

is assigned against the target with the largest marginal value. This

procedure continues until all twenty aircraft are assigned to targets.

Samjle Calculation. As an example, assume four aircraft and four

targets of value equal to one, three, four, and six. Thus, the highest

value target is worth six units and the least-important target is only

worth one-sixth as much or only one unit.

If we assume that Ps - .6 and Pk = 1. 0 for this example, the

initial residual and marginal values are given in Figure 18. Residual

value is the expected value of the target if no additional aircraft

attack it, and is shown only for illustrative purposes.

Target
1 2 3 4

Residual Value 6.0 4.0 3.0 1.0

Marginal Value 3.6 2.4 1.8 0.6

Figure 18. Initial Data for Sample Calculation

* Note that since no aircraft have yet been assigned against any of the

targets, the residual value of each target equals its full value.

The marginal value is obtained by multiplying the probability of survival
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times the target value and equals the change in residual value if one

more aircraft is assigned against that target. The first aircraft is

assigned to target one. Figure 19 gives the residual and marginal values

after this one assignment. The assignment status is shown in Figure

20.

Target
1 2 3 4

Residual Value 2.4 4.0 3.0 1.0

Marginal Value 1.44 2.4 1.8 0.6

Figure 19. Post First-Assignment Values

Aircraft

1 2 3 4

Target 1 x x x

Figure 20. Post First-Assignment Status

Note that both the residual and marginal values of target one are updated

by multiplication by (1 - P s) . Target two now has the largest marginal

value (2.4), so aircraft two is assigned against it. These results are

shown in Figures 21 and 22.

Target

1 2 3 4

Residual Value 2.4 1.6 3.0 1.0

Marginal Value 1.44 .96 1.8 0.6

Figure 21. Post Second-Assignment Values
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Aircraft

1 2 3 4

Target 1 2 x x

Figure 22. Post Second-Assignment Status

Next, aircraft three must be assigned. Since target three has the

largest marginal value, aircraft three should be allocated to it. The

outcome of this assignment is shown in Figures 23 and 24.

Target

1 2 3 4

Residual Value 2.4 1.6 1.2 1.0
Marginal Value 1..44 .96 .72 0.6

Figure 23. Post Third-Assignment Values

Aircraft

1 2 3 4

Target 1 2 3 x

Figure 24. Post Third-Assignment Status

After these three assignments, target one has the highest marginal

value so aircraft four is allocated to target one. The resulting final

assignment for this simplified problem is given in Figure 25.

Aircraft

1 2 3 4

Target 1 2 3 1

Figure 25. Final Assignment Status
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After these three assignments, target one has the highest marginal

value so aircraft four is allocated to target one. The resulting final

assignment for this simplified problem is given in Figure 25.

Aircraft

1 2 3 4

Target 1 2 3 1

Figure 25. Final Assignment Status
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Although aircraft one and four are assigned against target one in the

final solution, this need not be the case. Any assignment which allocates

two aircraft to target one and one aircraft each to targets two and three

would yield an identical expected value and thus would be equally good.

As is apparent by referring to the marginal values in Figure 23, if

another aircraft was available, it would be allocated against target two.

Assignment Selection. Once the decision is made on the number of

times each target will be assigned in a given plan by the method demon-

strated above, an initial feasible solution is constructed. The result

of the algorithm just analyzed becomes plan one. The elements of this

target list are permuted and placed in the other plans by the same al-

gorithm as in Phase I to serve as a starting point for the iterative

allocation scheme. Then, this initial assignment is passed to sub-

routine RULE1 which determines a final solution by the same method

described in Chapter IV.

Once the assignment is made, the simulation subsection takes over.

For each of the 1000 trials, subroutine SURV is called to determine

which aircraft survive the enemy attack, exactly as in the previous

Phase I system. Then an altered subroutine VALUE is called in order to

measure the target destruction capability of the MFEV, given the assign-

ment determined in RULEI and specific surviving aircraft selected

in SURV.

In order to make the Phase I and Phase II results even more com-

parable, the same random number seed was used for each phase -- that is,

the same aircraft survived each trial in each phase.

Subroutine VALUE

*The duties of subroutine VALUE are unchanged from the previous
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system. Now that the same target may be attacked numerous times in

the same plan, full credit for destroying a target cannot be given to

each aircraft attacking it. Rather, the marginal value -- the value

expected to result from sending an additional aircraft against a target --

would be the appropriate measure. The following expression for the value

of a plan was derived in Chapter II for use in evaluating the contri-

bution of surviving aircraft at the target's marginal value:

n m.
E(Value of targets destroyed) - S X. L(P (1 - P.) j 1 V.) (11)

i j 1 1

where n - number of targets

m. . the number of surviving aircraft assigned against target i
in this plan

Pk. = probability that an attacking aircraft destroys target i
1

V. - value of target i1

X. a 1, if m. & 1
1 1

= 0, otherwise

However, in this research, k. = 1 .0 for all i. Therefore, the
1

marginal value of the first surviving aircraft assigned against any

target i is V. and any additional surviving aircraft assigned against the

same target do not increase the value of the plan (marginal value = 0.0).

So the value of a plan equals the sum of the values of the targets

assigned at least once to a surviving aircraft in that plan.

For example, assume the multiple-plan assignment given in Figure 26

where a matrix element represents the target number assigned. Let four

(numbers two, four, five and six) out of the original eight aircraft

survive the enemy attack. Under these conditions and the assumption that

V1 , V2 > V3  V4  V 0 ,it is easily verified that Plan 2 is the
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Aircraft

1 2 3 4 5 6 7 8

Plan I 1 2 3 1 4 2 5 6

Plan 2 5 3 1 2 1 6 4 2

Plan 3 2 5 4 6 3 1 1 2

Figure 26. Aircraft Assignment

Surviving Aircraft

2 4 5 6

Plan I 2 1 4 2

Plan 2 3 2 1 6

Plan 3 5 6 3 1

Value (Plan 1) -V2 + V1 + V4 + 0 -VI + V2  + V4

Value (Plan 2) -V3 + V 2 + V1 + V6 -VI + V2 + V3  + V6

Value (Plan 3) -V5 + V6 
+ V3 

+ VI 1  V1  + V3  +V5 + V6

Figure 27. Phase II Subroutine VALUE Example

preferred plan, as shown in Figure 27.

Once each plan is evaluated and the best one identified, subroutine

VALUE returns control back to program SIM. Subroutine BASE is then called

and the same data collected as under the Phase I system. This entire

process is repeated over the 1000 trials and the same statistics cal-

culated and output as under the original design.
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VI Analysis

The 1600 datapoints from the simulation section, together with the

target values which were used to create them, served as input for the

analysis. Four different approaches were taken to view the results

from slightly different angles. These approaches were: 1) to average

the data over the ten random draws from each distribution which deter-

mined the sets of target values; 2) to determine a multiple linear

regression model relating improvement over the value of the basic solution

to the aircraft survival probability (P s) and number of preplanned MFEV

plans for a given target value distribution and targeting option;

3) to compare these findings against results derived from the best

possible solution - perfect advance information about the state of

nature (specific aircraft surviving); and 4) to compare the best possible

solution to the maximum value obtainable if all aircraft survived the

attack.

Data Averages

As was explained in Chapter III, ten independent sets of target

values were sampled from each of the five distributions. The different

target sets were then used as inputs to the model at a specific set of

parameter levels to obtain ten estimates of the same value. These

ten data points were averaged to obtain the 160 elements in Tables

I through X. These tables can be thought of as a four dimensional

matrix since four parameters vary among the tables: 1) the aircraft

survival probability (four levels); 2) the number of MFEV plans

(four levels); 3) target value distribution (five levels); and 4)

targeting option (two levels). The values shown represent the average
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Table I

Percent Improvement -- Integer Distribution, Phase I

Survival Probability
.2 .4 .6 .8

er 2 19.53 11.96 7.96 4.89
of 3 25.22 15.42 10.41 6.30
of 4 28.77 17.82 11.86 7.21

MFEV Plans 5 31.05 19.24 12.85 7.80

Table II

Percent Improvement -- Uniform Distribution, Phase I

Survival Probability
.2 .4 .6 .8

2 20.67 12.64 8.42 5.15Number 3 27.08 16.52 11.09 6.74
of 4 30.49 19.10 12.71 7.69

s 5 33.49 20.76 13.87 8.30

improvement over the base case for the ten sets of target values.

Tables I through V represent results when all targets were assigned

in each plan. The individual tables differ only in the distribution

from which the target values were sampled. The number of preplanned

MFEV options varies from two to five and the aircraft survival pro-

bability is sampled at .2, .4, .6 and .8. Tables VI through X repre-

sent the identical measures for Phase II of the research, where all

targets need not be assigned in each plan.

Survival Probability Effects. Within each of the ten tables, two

consistent trends are obvious. First (moving across any row), the value

of the MFEV decreases as survival probability increases. This is con-

sistent with intuition since as Ps increases, more and more aircraft

survive, so more and more of the higher value targets would be targeted
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Table III

Percent Improvement -- Low-Variance Normal Distribution, Phase I

Survival Probability
.2 .4 .6 .8

2 6.82 4.22 2.80 1.70

Number 3 8.93 5.49 3.67 2.22
of 4 10.17 6.31 4.22 2.53

MFEV Plans 5 11.11 6.88 4.58 2.78

Table IV

Percent Improvement -- High-Variance Normal Distribution, Phase I

Survival Probability
.2 .4 .6 .8

2 16.59 10.23 6.80 4.13

Number 3 21.66 13.50 9.05 5.44
of 4 24.84 15.44 10.24 6.19

MFEV Plans 5 27.02 16.77 11.24 6.75

Table V

Percent Improvement-- Exponential Distribution, Phase I

Survival Probability
.2 .4 .6 .8

Number 2 29.58 18.34 12.13 7.37
of 3 42.67 25.66 16.80 9.64
of 4 50.59 29.82 19.20 10.75

MFEV Plans 5 55.26 32.71 20.90 11.58

in the base case. Therefore, there is less and less value in having

the flexibility to select from a variety of plans.

Number of Plans Effect. Secondly, as the number of plans is in-

creased, the value of the MFEV system also increases. This is consistent

with preconceived notions, too, since increasing the number of pre-

planned options only increases the variety of plans available to the
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Table VI

Percent Improvement -- Integer Distribution, Phase II

Survival Probability
.2 .4 .6 .8

2 46.34 26.51 15.46 5.03Number 3 53.59 31.88 17.28 7.47
of 4 56.81 34.04 19.08 8.27

MFEV Plans 5 58.38 35.45 19.84 8.57

Table VII

Percent Improvement -- Uniform Distribution, Phase II

Survival Probability
.2 .4 .6 .8

2 50.10 29.40 16.71 6.70Number 3 56.16 34.50 19.67 8.27
of 4 59.98 37.13 21.65 9.17

5Plans 61.85 38.77 22.56 9.88

decision maker, thereby increasing the expected value of the plan he

does select.

T Value Distribution Effect. A few other trends are less

obvious from viewing these tables, but exist nonetheless. Comparing

corresponding elements of the first five tables shows a remarkable

variance between values measured from different target value distri-

butions. Three of the tables show a similarly-sized value (integer,

uniform, and high-variance normal distributions), but the low-variance

normal and exponential distributions are much different. The low-

variance normal has smaller values than the other distributions and the

exponential has higher values. The magnitude of the difference varies

somewhat with the number of plans and survival probability, but the trend

remains intact. A similar effect can be found between the same elements
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Table VIII

Percent Improvement -- Low-Variance Normal Distribution, Phase II

Survival Probability
.2 .4 .6 .8

2 12.80 5.26 2.67 1.70
3 15.74 7.05 3.66 2.23

of 4 17.28 8.05 4.20 2.52
MFEV Plans 5 18.28 8.82 4.65 2.73

Table IX

Percent Improvement -- High-Variance Normal Distribution, Phase II

Survival Probability
.2 .4 .6 .8

2 38.16 21.51 11.11 3.82
Number 3 43.91 25.49 13.52 5.51

of 4 46.96 27.73 14.85 6.14
MFEV rlans 5 48.81 29.19 15.84 7.00

Table X

Percent Improvement -- Exponential Distribution, Phase II

Survival Probability
.2 .4 .6 .8

Number 2 94.00 50.72 26.05 10.71
of 3 105.28 56.99 30.05 12.36

FEV Plan 4 110.22 60.01 31.66 13.08
a 5 114.73 62.12 32.97 13.77

of the second five tables -- the Phase II results.

The discovery that the value of the MFEV system is highly dependent

upon the target value distribution can be readily explained. In the

range (1, 20), the integer-valued distribution can be thought of as

almost uniform. The mean is 10.5 ( (1 + 2 + ... + 20)/20 ) which is

almost identical to a uniform (0, 20) distribution ( mean - 20/2 - 10 ).

67

|A



Also, the values are equally spread out in the region. Since the

integer-valued target distribution is very much similar to a uniform

distribution, it makes sense that the values measured for the two dis-

tributions would be very much alike. A similar argument can be used for

the high-variance normal distribution used in this study. As was shown

in the graph of the normal (50, 30) pdf in Figure 6 in Chapter III,

one would expect twenty target values sampled from this distribution

to be fairly uniform also (with a slight central tendency). Thus, it

is not at all surprising to discover that the high-variance normal,

uniform, and integer distributions have similar value measurements.

Even the finding of slightly lower values for the high-variance normal

distribution is consistent with this argument, due to the central ten-

dency inherent in any normal distribution.

The scores achieved by the low-variance normal and exponential

distributions are also readily explained by comparison with the uniform

distribution. Since, in a normal (50, 10) distribution, most of the target

values are expected to be grouped in a small region near the mean,

little benefit can be achieved by exchanging a higher-value target for

a lower-value one. That is, since one would expect little difference

between the values of two arbitrarily chosen targets, the benefit

earned by creating the flexibility to select between them is small.

Thus, the value of the MFEV system under the assumption of low-variance

nnrmal target values is much smaller than under any other assumption of

target values (approximately one-third of the value measured under the

assumption of uniform target values).

The assumption of exponential target values, on the other hand,

yielded much higher scores than any other target value distribution

(about twice the value of uniform distribution). Under this distribution,
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most of the targets are expected to be of very low value (:530 units),

a few in the medium range (value 30 to 70 units) and perhaps a very few

targets of high value. Therefore, for a given state of nature, most of

the aircraft which survive an enemy attack would be expected to be aimed

against medium or low-valued targets in the base case. Thus, the value

of the MFEV multiple-plan system under the assumption of exponential

target values should be higher than under any other distribution studied

in this research.

Targeting Optio Effect. A targeting option effect becomes apparent

if one compares results between the two phases of this research. Holding

everything else constant, the Phase II results can be seen to be larger

than the Phase I findings (i.e. comparison of the same matrix element

of the same target distribution table between the two phases). This

effect is highly dependent on Ps' however. The difference is greatest

for small P (the value for Phase II was found to be on the order ofS

twice the Phase I value), but the values rapidly converge as P increases,s

until they are very nearly equal at P. 0 .8 . A strong interaction

between P and targeting option makes good intuitive sense. For larges

Ps, as discussed in Chapter II, the marginal value of any target i is

given by the following equation:

MVi  I )J Vi  (9)

Thus, for Ps .8 , the marginal value of a given target rapidly

becomes small as additional aircraft are allocated to it. (Since P k 1.0

for all i, the marginal value is decreased by eighty percent each time

another aircraft is assigned to it). Therefore, at a P5 of .8, few

targets have more than one aircraft allocated to them. But Phase I
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differs from Phase II only in that no target has more than one aircraft

assigned against it. Thus, at high Ps, the two phases will have similar

assignments and, therefore, should have similar values.

The fact that the Phase II values are consistently higher than the

Phase I measures is also comforting. Since Phase II is merely a more

flexible version of Phase I, multiple aircraft would not be assigned

against a target unless it would increase the expected value of targets

destroyed. Thus, the expected value of a Phase II solution should al-

ways be greater than the expected value of a Phase I assignment. The

validity of the model would have been suspect had not this result been

confirmed.

Regression Model

Tables of data, although informative, often fail to convey the

overall picture of any complex situation. Therefore, the same datapoints

from which the tables were compiled were used as inputs to the SPSS

Regression routines. The datapoints were used to fit a model of the

following form for each distribution/phase combination:

Percent Improvement - b0 + bP + b2P2 + b N

The least squares estimates of the above coefficients (bo, bI, b2,

and b3 ) are listed in Tables XI and XII. Table XI pertains to the Phase I

data and Table XII, Phase II. For both tables, the predictor (independent)

variables are number of preplanned MFEV options (N), the aircraft proi

bability of survival (Ps) and the probability oi survival squared (P2).

'I The criterion (dependent) variable is the expected percent improvement

over the base case (single-plan system with all targets assigned in each

plan).

70

r



Table XI

Phase I Regression Coeffecients

Coef of
N P P2  Const Det (R2 )

Integer 2.203 - 68.377 36.319 30.477 .964

Uniform 2.439 - 73.385 38.942 32.422 .845

Low-Variance Normal 0.809 - 24.026 12.645 10.664 .846

High-Variance Normal 1.979 - 57.919 30.244 25.831 .854

Exponential 4.366 -122.172 65.446 50.735 .843

Table XII

Phase II Regression Coefficients

Coef of
N P P2  Const Det (R2 )

5 s

Integer 2.368 -146.873 70.176 71.848 .990

Uniform 2.496 -145.360 65.183 74.545 .828

Low-Variance Normal 0.989 - 67.522 45.177 24.098 .868

High-Variance Normal 2.150 -128.515 64.177 56.950 .849

Exponential 3.416 -347.126 193.124 155.214 .887

As can be seen from the tables almost 85 percent of the variability

in the data can be explained by the regression equations in the four

random target value distributions. The deterministically-selected fifth

2distribution (successive integer target values) has an R above 0.96

in each case.

Figures 28 and 29 are sample plots of four regression curves to-

gether with the data from which they were derived. Figure 28 contains

the Phase I curves from the exponential distribution at N - 3 and

N a 5 while Figure 29 contains the same information from the Phase II
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data.

All the regression curves are shown in Figures 30 through 34. The

solid lines represent Phase I data and the dashed lines are derived

from the Phase II results. Each figure represents 320 datapoints --

forty for each of the eight curves. A single curve shows the percent

improvement over the base case for fixed target value distribution,

targeting option and number of preplanned MFEV options as a function

of aircraft probability of survival.

Effect of Survival Probability. As can be seen from the graphs,

survival probability is the biggest determinant of MFEV value. For

small values of Ps ( Ps = .2 ), the value of the MFEV is about four

times as great as for large Ps values ( Ps = .8 ) under Phase I assump-

tions and about ten times as great when the Phase II figures are com-

pared.

The value of the MFEV is strictly greater than zero for any Ps < 1 .0

and any selection of factor levels. The slopes of the regression curves,

however, as shown in Figures 30 - 34, approach zero for large values

of P . Under four of the five target value distributions, though,

as P5 decreases past .8, the value of the MFEV increases rapidly. Many

studies have attempted to estimate P (or a simialr measure of survival

probability) with some variety of conclusions. The results of the

research documented herein would indicate that, especially for P < .6

the benefit of an MFEV system might very well outweigh the costs of

implementing it. Of course, additional analysis invA.iring operational

targets and constraints would have to be c cnducted, and some measure of

* quantifying the value added by the MFEV created, before a cost-benefit

analysis to compare this value with the economic/political costs involved
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could be accomplished.

Effect of the Number of Plans. The number of plans in the MFEV

system was found to be only a minor factor in determining the value of

the MFEV. An increase in the number of plans did, in every case, increase

the value, but only by a few percentage points. Diminishing marginal

returns seemed to be present -- as the number of plans was increased

from two to three, three to four, and four to five; less and less value

seemed to be added by incorporation of another plan. A quadratic term (N2)

was added to the previously mentioned regression model to test for dim-

inishing marginal returns of the number of plans. The addition of the

term, however, caused the variance of the coefficients of both N and N2

to become very large, indicating a high degree of collinearity between

the two terms. Thus, although N2 could explain some of the variance in

the data, it could not add much to the model when N was already included

linearly. Therefore, N was included in the model solely as a linear term.

Effect of Target Value Distribution. Essentially the same findings

can be seen in.the regression curves as were discussed in the Data Averages

section of this chapter. Target value distribution was found to be a

fairly important factor in approximating MFEV value. The corresponding

curves from all distributions had similar shapes. In fact, they seemed

to be the same curve plotted five times with a different scale factor

on the value.

The curves for three of the distributions (integer, uniform and

high-variance normal) were very much alike, for all levels of all

factors. The other two target value distributions tested in this

research were graphed as well above (exponential), and well below (low-

variance normal) the middle three curves.
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Thus far, this research has only compared the MFEV with a targeting

system similar to the SLOP. One might well ask how the MFEV compares with

an airborne retargeting system of even greater flexibility. The next

section does just that.

Comparison with Best Possible Solution

The MFEV values were compared with the analytically-determined

expected values of the best possible solution (perfect prior-attack

information). Another way to look at this best possible solution case

is to assume all aircraft have perfect command and control. Under

this assumption, any k surviving aircraft will be able to strike the

k highest-value targets. Thus, for a given state of nature (number of

aircraft surviving), such an assignment is the best possible solution. The

value measured is the percentage of this "best" solution which can be

achieved by the MFEV under the variety of conditions studied. This

measure utilizes the "percent of total value" measure of effective-

ness introduced by Thomas in his commentary (Ref 9:2) of Dimon's original

work and is discussed in Chapter III and below.

The results achieved by comparing the MFEV value with the best

possible solution are shown in Figures 35 - 39. Each figure represents

one target value distribution and graphs the percentage of the best

possible solution against aircraft probability of survival. The eight

datapoints at each level of P correspond to the four levels of the

number of plans factor for each phase -- four from Phase I and four

from Phase II. The values which define the solid curve are the percentage

of the best possible solution achieved by the base case (as derived in

Chapter II -- Eq (24)).

Since all MFEV values for a given distribution and P level are
s
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compared wth the same best possible solution figure, the same relative

positions would be expected to hold as did in the percent improvement

over the base case measure. Thus, increasing the number of plans resulted

in an increase in the value of the system. Again, Phase II measurements

are always at least as good as Phase I values. After these similarities,

the pattern changes, however. The low-variance normal value is slightly

higher than any other value which is the opposite of the percent im-

provement over the base case. Similarly, the exponential values tend

to be lower than values from the other distributions. The integer,

uniform and high-variance normal measures, however, are once again

very much similar to each other and are grouped between these two

extremes. The difference being that the two extremes switched positions.

The effect of P on percent best possible solution differs greatlys

from the P effect on the percent improvement over the base case. In5

the percent improvement measure, the effect was a quadratic, monotonically

decreasing function of Ps with a minimum near Ps - 1 .0 for each phase

(Figure 30 - 34). In the percent best possible solution, the Ps effect

for each phase is different and both differ from the effect of P on the

s

percent improvement measure. The percent best possible solution Phase I

P effect is a monotonically increasing function of P . (The value ofs 5

the multiple-plan system increases faster than the value of the best

possible solution as P increases, over the entir. range of P s). The

Phase II percent best possible solution dips as P increases from .2
s

to .4, and then increases for P - .6 and higher yet for P - .8 --5 S

a local minimum occurs somewhere near P s "  (Figure 35 - 39). (For

low P values, the Phase II targeting option dominates. As Ps increases,

the value of the Phase II multiple-plan system decreases relative to
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the value of the best possible solution. For larger Ps values, however,

the effect of targeting option decreases. In this P range, the value

of the Phase II multiple-plan system increases faster than the value

of the best possible solution, resulting in an increasing measure. The

changeover point occurs somewhere around Ps .5 ). None of these

Phase II deviations, though, are large in magnitude.

According to these results, the MFEV, with only two plans and the

Phase II targeting option, would be able to destroy at least 80 percent

of the value that the most flexible retargeting system could destroy,

for the values of P and target value distributions tested. If thes

EV had five plans, around 90 percent could be destroyed. Thus, a

large proportion of the value of the total retargeting flexibility is

gained by any MFEV system. Whether the remaining ten to twenty percent

of the value would be worth the cost of a full inflight targeting system

is not considered in this paper.

But, one might ask, how well does the base case do compared to the

MFEV? What percent of the value of flexibility is supplied by the MFEV?

The value of flexibility is defined here as the difference between the

base case curve and one hundred percent of the best possible solution --

in other words, the vertical measure between the line (representing the value

of the single-plan system) and the top of the scale in Figures 35 - 39.

For example, consider Figure 35, the integer distribution. At Ps .4 ,

the value of flexibility would be about forty percent (100 - 60).

Similarly, at Ps - .8 , the value of flexibility would be about fifteen

percent (100 - 85). The Phase I data seems to indicate that the MFEV

supplies approximately one-third of the value of flexibility. Phase II

seems to do about twice as well or on the order of two-thirds of the value
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of flexibility. In other words, fully flexible retargeting could increase

the expected value of targets destroyed by half again over the incremental

Phase II value.

* Percent of Total Value

The percent of total value measure is shown in Figure 4o. (Note

the horizontal scale is reversed from Taylor's work (Ref 9:2) to re-

main consistent within this paper). The set of four points from any

distribution represent the expected percentage of the total target value

destroyed by the best possible solution for each discrete value of P S

All five distributions are shown. Thus, one hundred percent could only

be achieved if all aircraft survived and zero would be the result if no

aircraft survived the enemy attack. The line is the lower bound for

any distribution of target values. It represents the percent total

value for a set of identical targets dr the base case -- i.e. no inflight

retargeting capability. The quadratic curve is the percent of total

value achieved by aircraft attacking a set of n integer-valued targets,

as n approaches infinity, and is given by Eq (19). This curve represents

an upper bound on any central tendency distribution and could be considered

a middle value between extreme distributions.

As one would expect (because of the previous results from the

percent improvement over the base case measure), the results from the

exponential distribution lie above the results from the other distri-

butions. Similarly, the results from the low-variance normal distri-

bution lie below the other distributions. The other three distributions

(integer, uniform and high-variance normal) closely approximate the in-

finite integer case and are grouped together between the extremes.

Thus, in an operational environment, if one had the ability to retarget
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in flight, the greatest value would be gained if the set of targets

approximated an exponential distribution. Less value would be gained

if one were attacking an integer, uniform or high-variance normal dis-

tribution and even less value against a low-variance normal. Against

identical targets, retargetin& --, of course, of no value.

'I
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VII Conclusions and Recommendations

This chapter summarizes the results obtained and draws conclusions

about the estimated value of the MFEV. Several avenues for future

study are suggested.

Conclusions

As was shown in Chapter VI, the value of the MFEV was found to

be sensitive to many factors. The impact of these factors on the re-

sulting value will be suwarized in this section.

Effect of Targeting Option. For values of Ps in the .8 and above

range, targeting option had only a minor effect. This trend seems

appropriate since, for P values in this range, almost all aircraftS

would be allocated against different targets anyway, as discussed in

Chapters I, III and V. Thus, for Ps a .8 , assignments under the

Phase I and Phase II targeting options are very similar and consequently

have similar values.

For smaller values of Ps, however, the value of the Phase II tar-

geting option becomes important. Thus, for smaller values of Ps ( P < .6 ),

the requirement that all targets be assigned in every plan becomes a

greater and greater liability. At Ps M .2 , the Phase II targeting

option adds more than twice as much value to the base plan as does the

Phase I option. Under the assumption of an exponential target value

distribution, the effect is even slightly greater.

Taraet Value Distribution. The value of the MFEV varies greatly

depending upon the assumed distribution of the target values. If there

is very little range in the target values (i.e. the targets are nearly

homogeneous), it seems reasonable that the benefit gained by trading

the ability to kill a lower-valued for the ability to kill a higher-
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valued target would be small. Thus, intuition would lead one to believe

that the value of the MFEV under an assumption of low-variance normal

target values would be smaller than under most other distribution

assumptions. Such was found to be the case, as shown in Figure 29.

On the other end of the spectrum lies the exponential distrtbution.

With this distribution, the value of the MFEV was found to be much higher

than under any other distribution. This is intuitively appealing

because the gap in value between the "average" target and one of the

few higher-valued targets would be greater than that in any other dis-

tribution tested. Therefore, one might have expected target values

following an exponential distribution to yield the highest value. This

was exactly what was found.

The other three target value distributions were found to lie be-

tween these two extremes. The integer-valued and uniform distributions

measured roughly ore-half the exponential distribution, given the same

conditions. The high-variance normal distribution of target values

was slightly lower than these two. The low-variance normal distribution

yielded the lowest results, measuring only about one-sixth that of the

exponential target values.

Effect of P . The probability of aircraft survival was found to

be the most influential factor in determining MFEV value. As the P

decreases, the value of additional plans (to supplement the basic, single-

plan assignment) increases. In other words, as fewer and fewer aircraft

are expected to survive the initial enemy attack, it becomes more and

more important that those aircraft which do survive be allocated against

higher-valued targets.

The value of the MFEV was found to be a nonlinear, monotonically
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decreasing (within the interval tested) function of the aircraft survival

probability. Under every assumption of target value distribution, the

value of the MFEV was found to increase by greater and greater amounts

as P is decreased linearly. Thus, if it is determined that the MFEVs

is worth having at P .6 , the value of the MFEV at any P < .6 is

even greater.

Improvement Due to the Number of Preplanned Options. The number of

plans in the MFEV system was not found to be a major factor. In all

cases, as one would expect, an increase in the number of plans did lead

to an increase in the value of the system. The addition of each additional

plan, however, only raised the value of the system by about two or three

percentage points -- a small improvement when compared with factors

such as target value distribution or aircraft survival probability. The

number of plans were found to contribute to the value of the system in

a linear manner over the range of plans considered. Diminishing mar-

ginal returns seemed to be present, but was not modeled due to a multi-

collinearity problem. Clearly, as the number of plans continued to in-

crease, the marginal return per plan would decrease, eventually approaching

zero.

Comparison with Best Possible Solution. For all target value

distributions and all tested survival probability levels, a MFEV five-

plan system was found to deliver mearly 90 percent of the best possible

solution under the Phase II targeting option. This value varied only

slightly as a function of Ps, number of plans and target value distribution.

The targeting option had a large impact on the value measured, especially

for P <.6

The value of the best possible solution was found to be somewhat
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dependent upon target value distribution. The exponential scored

higher and the low-variance normal scored lower than the other target

value distributions compared. This relationship was found to be the

major source of their rankings in the percent improvement over the base

case measure. Thus, for target distributions with very little variety

in target values, the MFEV adds little value to a single-plan assignment.

Under target value distribution assumptions where a few high-value

targets far outweigh the bulk of the targets (such as the exponential)

the value of the MFEV can be quite large, especially for small PS values.

Recommendations for Further Study

This research has attempted to explore a number of facets of the

MFEV value question. Many, many additional avenues for study remain.

This section will discuss some possible expansions.

Research into the MFEV question could follow at least three separate,

although not independent, paths. These could be thought of as the

axes of a three-dimensional graph, as shown in Figure 41, with axes

labelled Plan Flexibility, System Flexibility and Realism. Each of

the directions can be explored to shed light on this seemingly-uncom-

plicated question of MFEV value.

Plan Flexibility. The plan flexibility axis is characterized by

the expansion of targeting flexibility at the plan level. For example,

this research was divided into Phase I and Phase II - Phase II allowed

multiple aircraft to be allocated against the same high-value target;

while Phase I required distinct targets be selected for each aircraft.

This could be considered a one unit movement on the X-axis. This research

though, required that each plan have exactly the same set of target

assignments - if three different aircraft were assigned against target
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seven in plan one, plan two (and any other plans) also had three aircraft

allocated to target seven. This may not be the best assignment scheme,

however, and varying the assignment rationale could be considered a

further move out the X-axis.

System Flexibility. Movement along the Y-axis includes all possible

variations to the standard assignment procedure which would increase

the flexibility of the system as a whole -- changes which would increase

the effectiveness of the targeting system by restructuring the manner in

which things are done. Increasing the number of preplnned MFEV options

is an example of a movement in this direction.

Future research could utilize a different set of criteria to

determine the assignment of aircraft to targets over all plans. As was

discussed in Chapters II and III, a heuristic algorithm was used in this

research to find a near-optimal solution to a problem that is similar

to the 1MFEV assignment problem. These results establish a lower bound

on the value of the MFE. Thus, another solution procedure may very

well discover different, higher values.

Assumptions of differing quality of command and cantrol systems

based on the MFEV could be the basis for much further research. For

example, if one were willing to assume highly effective command and

control, even after an enemy first strike, the destruction capability

of the bomber fleet could be even further enhanced by allowing full

inflight retargeting (subject only to geographical constraints). Thus,

surviving aircraft would be able to attack any high-value targets within

flying range. Alternatively, one could assume a slightly more restrictive

case -- that each aircraft carried a distinct set of target tapes. In

event of war, surviving aircraft could attack any target for which they
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had a tape and which was within their range. Research under this scenario

could include selection of assignment criteria (which tapes to place on

board which aircraft) and the value of such a system.

Realism. A third direction future research could expand is the degree

to which the modeled assumptions simulate reality. For example, this

research assumed the same survival probability (P ) for all aircraft.
5

Future research could relax this assumption and allow P to vary between

bases (as a function of distance from the sea, for example -- different

missile flight times from enemy submarines) or even individually between

aircraft on each base. Relaxing the equal Ps assumption would probably

also require a different aircraft to targets assignment scheme.

This research assmned perfect knowledge about the aircraft which

survived the initial enemy attack. Another step farther out the infor-

mation axis could include assumptions about the quality and quantity of

Bomb Damage Assessment (BDA) data available in the hours after a return

U.S. missile strike but before the bombers reach their targets. The

BDA information could consist of reports concerning which targets re-

mained valuable (either were not targeted on the missile strike or were not

successfully attacked). This information would be very valuable in

retargeting bombers enroute to already destroyed targets, rerouting

bombers from low-value to high-value targets, and in deciding which of

the preplanned MFEV options should be selected.

Another possible expansion of this research could be in the area

of target damage. This research assumed all targets held their value

until attacked by a bomber at which time they were totally destroyed

with probability 1 .0. In future research, a stochastic damage function

would be substituted to allow partial destruction and a corresponding
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reduced target value. Also, target values which vary as a function of

time could be an interesting subject area.
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