NEW YORK STATE COLL OF AGRICULTURE AND LIFE SCIENCES --ETC
COMPUTER INSTRUMENTATION FOR RESEARCH ON THE COGNITIVE STRUCTUR--ETC(U)
MAY 82 D E STONE, H L MCMINN
N00014-80-C-0372
UNCLASSIFIED
TR-8-SER-B
END
DATE
RNGO
7 82
Research on the cognitive structures and processes required to execute procedures based on instructions has, until very recently, focused on the delivery of instructions in print. However, the advent of computer systems designed to deliver procedural training and job-aiding information has led us to conduct research on the use of computers for communicating procedures. The power of computers makes this type of presentation fundamentally different from print media and the growing use of computer-based training.
No. 20 continued

and job-aiding systems in the military also makes them worthy of study.

In this report we describe a system for displaying interactive computer
generated color text, graphics, and symbols and computer-controlled video
and videodisc displays for use in our research.

The computer system selected for use in our research is the TICCIT system.
This is a commercially available system now in widespread use in military,
industrial, and civilian educational settings. TICCIT is an officially
designated Navy device (Device 4E7).

This report is intended to provide a description of our instrumentation
and thereby make our subsequent reports of experiments more understandable
to the reader.
Research on the cognitive structures and processes required to execute procedures based on instructions has, until very recently, focused on the delivery of instructions in print. However, the advent of computer systems designed to deliver procedural training and job-aiding information has led us to conduct research on the use of computers for communicating procedures. The power of computers makes this type of presentation fundamentally different from print media and the growing use of computer-based training and job-aiding systems in the military also makes them worthy of study.

In this report we describe a system for displaying interactive computer generated color text, graphics, and symbols and computer-controlled video and videotape displays for use in our research.

The computer system selected for use in our research is the TICCIT system. This is a commercially available system now in widespread use in military, industrial, and civilian educational settings. TICCIT is an officially designated Navy device (Device 4E7).

This report is intended to provide a description of our instrumentation and thereby make our subsequent reports of experiments more understandable to the reader.
SYSTEM HARDWARE

The TICCIT system is driven by Data General (DG) NOVA 4 minicomputers.

TICCIT uses color terminals and specially designed keyboards and light pens. The TICCIT system hardware is modularly designed to allow users to configure systems that best meet their individual training needs. The TICCIT systems now in the field have one, two, three or more processors configuring from two to over five hundred terminals. Storage capacity ranges from 25 megabytes to 1000 megabytes, all with the same courseware and software capabilities. A DBMS interface at two TICCIT sites allows an interface between the TICCIT systems' computer-managed instructional software packages and other ONI packages written in COBOL, AOS, etc.
In addition, each system will support a variety of peripheral devices, including: a fixed-head disk for rapid data swapping, magnetic tape units for dumping and loading data, a graphic digitizer (for automatic scanning and entry of line drawings, charts, maps, etc.) and impact as well as electrostatic dot-matrix printers (for producing hard copy printouts, including copies of TICCIT screen images of both text and graphics). Other specialized peripherals can be added as options. They include optical mark readers, audio and/or videotape/videodisc systems, large-screen monitors for troubleshooting simulations, and specialized mock-ups of actual equipment used for part-task training and simulations. Therefore, each TICCIT system can be configured to meet the specific requirements of each individual user site.

The TICCIT system hardware and software have sophisticated "fall-soft" features built in to guard against data loss during unexpected fluctuations in power. The mini-computers and other standard peripherals were designed for wide-scale, industrial use in diverse training environments. They are extremely tolerant of normal variations in power.

TICCIT TERMINAL CHARACTERISTICS

The TICCIT terminal utilizes a raster display of 17 rows by 43 columns. Each character space is made up of a 10 x 12 dot matrix. Thus, the screen resolution is 430 x 204 picture elements.
The TICCIT terminal has two modes of operation: it functions as a color CRT when supporting computer-generated displays of text and graphics; it functions as a color television monitor when supporting full color/sound videotape and videodisc presentations. Since the TICCIT terminal is totally compatible with NTSC broadcast video, video materials can be utilized on TICCIT without any modification to the existing system hardware.

THE TICCIT KEYBOARD

The TICCIT keyboard is comprised of three keypads.

Center Keypad — Typing Keypad

The center keypad is for typing alphanumeric characters and for selecting color. Color is chosen by simultaneously depressing the ALT CODE key and any one of the numeric keys 1 through 7. The user can select "blink" mode by simultaneously depressing the ALT CODE key and numeric key 8. Having enabled the blink function, the user can then type blinking text or graphics. To turn off the blink function, the user simply repeats the ALT/ CODE 8 key presses.

Left Keypad — Cursor Control

The left keypad is for editing and cursor control functions. North, south, east, and west arrows are available for positioning the cursor to any desired location on the screen. In addition, each TICCIT terminal includes a light pen for one-step cursor positioning. The user simply touches the light pen to the TICCIT screen at the desired cursor location and the cursor automatically moves to that location. The left keypad also contains editing keys that allow the user to modify text being displayed on the TICCIT screen. The ERASE key allows the user to delete up to one entire line of text automatically. The INSERT key allows the user to insert additional spaces within existing text. The JUSTIFY key can be used to close up unnecessary spaces within existing text. The TAB key allows the user to move to predefined response boxes on the display.
Right Keypad — "Learner Control"

The right keypad is called the "Learner Control" keypad. It contains keys which allow the user to access the individual instructional components available on TICCIT. These keys are also author definable so that they can be used as end-of-message keys to be used to branch to other displays as the author desires.

CHARACTER SETS

The TICCIT system contains fourteen pre-programmed character sets, including Scripts, Computer, and Backlite. In addition, TICCIT users are able to define new character sets as desired. As many as 512 character definitions can be active on TICCIT at any one time. For our research, we have used this capability to store graphics representing the parts of a model indexed by keys on the keyboard. This has been of great help in allowing the rapid and cost effective production of the large quantity of graphics used in our research.

COLOR CAPABILITY

TICCIT displays can be in up to seven colors—red, green, yellow, blue, black, cyan, and white—and blink mode which provide authors with a capability to highlight specific areas of display text.

GRAPHICS CAPABILITY

In addition, the design of the TICCIT system software permits the use of graphics, artwork, drawings, cartoons, charts, sketches, etc. as an integral part of courseware displays.

These graphics can be constructed either using the graphics editor on any TICCIT terminal or through use of a graphics digitizer. The graphics digitizer consists of a Hamamatsu document camera that can be used to scan graphics drawn by artists off-line and then store them as consecutive bits in computer memory. Graphics (whether constructed or digitized) can be called up on any TICCIT terminal and can be modified as desired. Modifications may include enlargement or reduction in size of all or part of the graphic, rotation of all or part of the graphic, coloring of all or part of the graphic, integration of a digitizer graphic or integration of text with the graphic. These completed object graphics can then be incorporated into specific screen displays for student viewing.

VIDEODISC CAPABILITY

The TICCIT system's video technology also permits users to access full color video through the student terminal. This provides courseware developers and instructors with the capability of incorporating motion video into instructional sequences. The TICCIT keyboard and specialized software give the student full control over the positioning of videotape while viewing it (i.e. fast-forward, rewind, "freeze-frame"). TICCIT can also access videodiscs on a random access basis and display single video frames of video or motion video sequences under computer control.
AUDIO CAPABILITY

The TICCIT system also supports a sophisticated audio input and delivery system. Digitally-stored audio messages can be linked to any particular output display, so that textual material can be enhanced with an associated audio message.

SYSTEM SOFTWARE

TICCIT software is based on a general purpose time-sharing operating system, written totally in assembly language to minimize core requirements and maximize throughput.

The operating system has been designed to support interfacing with and controlling a variety of auxiliary terminal devices, including:

- Video tape players (standard and controllable)
- Videodisc players
- Video cameras
- Teletype/telephone
- Asynchronous interface with other computers
- Remote line printers
- Interactive computer control over television tuning

In addition to supporting the simultaneous delivery of instructional material to over 500 terminals, the operating system has also been designed to support on-line software and courseware development and revision, as well as a number of other on-line capabilities such as inter-terminal communications.

AUTHORING LANGUAGES

TICCIT supports two authoring systems. The first, Authoring Procedure for TICCIT (APT) is the original TICCIT authoring system (although revised) which reflects a particular Instructional design strategy.

The second, TICCIT Authoring Language (TAL) is a general purpose language. TAL permits the author to define the function of TICCIT's learner control keys in any way desired. The author, therefore, is not restricted to commands developed for Instructional applications or by a particular predefined model of the Instructional or learning process.

TAL EDITING

TAL provides the author with up to four specialized editor packages for each page the subject sees. This authoring system is the one that we have used in our research.
Base Page

The first editor the author sees is called a base page, upon which text is formatted and colored exactly as it will be presented to the subject. Here, the author simply types the display as the student should see it. An example of a base page is shown below.

Display Specifications Page

The second editor that the author may use is called the display specifications page. Here, the author may enter commands used to display additional text when specified conditions have been met or may identify a graphic and give its coordinates to display to the subject. This page may also be used to define windows that make use of the light pen possible. The following is an example of a display specifications page.

<table>
<thead>
<tr>
<th>Commands for Display Construction</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Mod</td>
<td>Data</td>
</tr>
<tr>
<td>RBOX</td>
<td>CALC</td>
<td>PM=FALSE</td>
</tr>
<tr>
<td>COLOR</td>
<td>IF</td>
<td>P1B1=TRUE</td>
</tr>
<tr>
<td>COLOR</td>
<td>WINDOW</td>
<td>1 1,16 36</td>
</tr>
<tr>
<td>COLOR</td>
<td>WINDOW</td>
<td>7 35,7 36</td>
</tr>
<tr>
<td>COLOR</td>
<td>COLOR</td>
<td>GREEN</td>
</tr>
<tr>
<td>COLOR</td>
<td>IF</td>
<td>P1B2=TRUE</td>
</tr>
<tr>
<td>COLOR</td>
<td>WINDOW</td>
<td>10 35,10 36</td>
</tr>
<tr>
<td>INPUT</td>
<td>SPEC</td>
<td>SINGLE</td>
</tr>
</tbody>
</table>
Branch Table

The third editor available to the author contains the branch table. This table is used to define direct branching by the TICCIT keyboard's learner control keys, which allow the student to branch to any other TAL page in the program, as the author specifies. An example branch table is shown below.

<table>
<thead>
<tr>
<th>Code</th>
<th>Label</th>
<th>Code</th>
<th>Label</th>
<th>Code</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>+</td>
<td>EXIT</td>
<td>+RETURN</td>
<td>ON</td>
<td>+</td>
</tr>
<tr>
<td>GO</td>
<td>$P2</td>
<td>SKIP</td>
<td>+</td>
<td>BACK</td>
<td>+</td>
</tr>
<tr>
<td>OBJ</td>
<td>+</td>
<td>MAP</td>
<td>+RETURN</td>
<td>ADV</td>
<td>$CHAR</td>
</tr>
<tr>
<td>HELP</td>
<td>+</td>
<td>HARD</td>
<td>+</td>
<td>EASY</td>
<td>+</td>
</tr>
<tr>
<td>RULE</td>
<td>+</td>
<td>EXAMP</td>
<td>+</td>
<td>PRAC</td>
<td>+</td>
</tr>
<tr>
<td>ENTER</td>
<td>+</td>
<td>TIMER</td>
<td>+</td>
<td>NEXT</td>
<td>+</td>
</tr>
<tr>
<td>CA</td>
<td>+</td>
<td>WA</td>
<td>+</td>
<td>UN</td>
<td>+</td>
</tr>
</tbody>
</table>

Response Analysis Page

The fourth editor available to TAL authors is the response analysis page. This page is used to specify how the TICCIT system will respond to student input, whether it takes the form of the touch of the light pen, a typed word or phrase, an algebraic expression, etc. It also allows the author to compute, display or store any variables needed for scoring, simulations, or other conditional functions. An example of a response analysis page is shown below.

<table>
<thead>
<tr>
<th>Command</th>
<th>Mod</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPARE</td>
<td>AREAS</td>
<td>INPUT=7 35,7 38 6 completed step 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CALC P121=TRUE</td>
</tr>
<tr>
<td></td>
<td>TO</td>
<td>SAMEPAGE</td>
</tr>
<tr>
<td>COMPARE</td>
<td>AREAS</td>
<td>INPUT=10 35,10 36 6 completed step 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CALC P122=TRUE</td>
</tr>
<tr>
<td></td>
<td>TO</td>
<td>$P2</td>
</tr>
<tr>
<td></td>
<td>GO</td>
<td>TO SAMEPAGE</td>
</tr>
</tbody>
</table>
Graphics

The authoring illustrations shown in the above paragraphs were all taken from the subject study. The figure below is an example of a graphic used in this study.

APPLICATIONS FOR BASIC RESEARCH

In our explorations of the cognitive structures and processes that come into play as adults perform procedures based on instructions, we have come to use many of the capabilities of the computer system described here. One application has been to implement the idea of hypertext in the procedural instructions used in our research. Hypertext in this particular application consists of a set of directions for putting together a small model. These directions have no illustrations and are written at the fourth grade level. On each page of the directions, in addition to text, there are green squares.

Persons reading the directions need only touch any word in the directions to see another display designed to explain more fully what that word means or what the operation described looks like. For example, if the word is "assemble", the branch might lead to a page that shows the parts of the model to be assembled and includes arrows and text designed to make the meaning of the word "assemble" unmistakably clear in its application at this stage of assembling the model.

If readers want to view the completed model, they need only touch the green box on each page of the directions. A graphic illustration of the completed model is then displayed. At this point readers have even more options. They can touch a part of the graphic of the completed model and then be shown a blown-up graphic of that part of the model. Touching this graphic reveals an illustration of the parts which are used to put it together and how they are assembled.
Subjects also have the ability to request different views of the model, its subassemblies and their parts in the graphics only mode. A touch of a key will show readers how the component looks from any of six different angles.

Although the hypertext research we are conducting is still in its early stages, some preliminary findings are of interest. For example, when the directions for this task are presented to people on paper (both text and graphics) about two thirds of the people make mistakes in doing the task which they never recognize to be mistakes. However, when people are asked to do the assembly task using the hypertext, they don't seem to make mistakes. In fact, no subjects in our research have made any mistakes on this task when hypertext was available. Even though this is a preliminary finding, we are encouraged to believe that this approach will be of particular value for presenting instructions for tasks that are extremely dangerous, such as working with equipment which carries high voltage.
<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commanding Officer</td>
<td>Dr. Ed Alven</td>
<td>Navy Personnel R&D Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td></td>
<td>Meryl Z. Peker</td>
<td>NAPDC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Code P106</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td></td>
<td>CDR Mike Curran</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Code 270, Arlington, VA 22217</td>
</tr>
<tr>
<td>Psychologist</td>
<td>Dr. Ed Alven</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 H. Quincy St.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Code 270</td>
</tr>
<tr>
<td></td>
<td>Dr. John Ford</td>
<td>Navy Personnel R&D Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td></td>
<td>LT Steven D. Harris, MSC, USN</td>
<td>Naval Air Station Memphis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Code 6021</td>
</tr>
<tr>
<td></td>
<td>Dr. Jim Hutton</td>
<td>Navy Personnel R&D Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td></td>
<td>Dr. Horman J. Kerr</td>
<td>Chief of Naval Technical Training</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naval Air Station Memphis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Code 1580</td>
</tr>
<tr>
<td></td>
<td>Dr. William L. Halog</td>
<td>Principal Civilian Advisor for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Education and Training</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naval Training Command</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Code 030</td>
</tr>
<tr>
<td></td>
<td>CAPT Richard L. Martin, USN</td>
<td>Prospective Commanding Officer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USS Carl Vinson CVN-70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Newport News Shipbuilding and Drydock Co</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Newport News, VA 22400</td>
</tr>
<tr>
<td></td>
<td>Dr. James M. Hodge</td>
<td>Navy Personnel R&D Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td></td>
<td>Dr. William Pontague</td>
<td>Navy Personnel R&D Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td></td>
<td>Ted M. J. Yellen</td>
<td>Technical Information Office, Code 201</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAVY PERSONNEL R&D CENTER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAVY POSTgraduate School</td>
</tr>
<tr>
<td></td>
<td>Library</td>
<td>Code P205</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAVY PERSONNEL R&D CENTER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>Safety Coordinator</td>
<td>Captain P. M.</td>
<td>USS Carl Vinson CVN-70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Newport News Shipbuilding and Drydock Co</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Newport News, VA 22400</td>
</tr>
<tr>
<td></td>
<td>Technical Director</td>
<td>Navy Personnel R&D Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego, CA 92152</td>
</tr>
</tbody>
</table>
Army

1 Technical Director
U. S. Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22332

1 Mr. James Baker
Systems Engineering Technical Area
Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22332

1 Dr. Bertrice J. Ferr
U. S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22332

1 DR. FRANK J. HARRIS
U. S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22332

1 Dr. Michael Kaplan
U. S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22332

1 Dr. Milton S. Katz
Training Technical Area
U. S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22332

1 Dr. Harold P. O'Neil, Jr.
Attn: FERT-OK
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22332

1 Dr. Robert Saxon
U. S. Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22332

1 Dr. Joseph Ward
U. S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22332

Air Force

1 U. S. Air Force Office of Scientific
Research
Life Sciences Directorate, ML
Rolling Air Force Base
Washington, DC 20322

1 Dr. Genevieve Haddad
Program Manager
Life Sciences Directorate
AFOSR
Rolling AFB, DC 20322

2 7700 TONTWITCH Shop 22
Sheppard AFB, TX 79107

Marines

1 H. William Gronesup
Education Advisor (EC-31)
Education Center, NMCDC
Quantico, VA 22134

1 Special Assistant for Marine
Corps Matters
Code 1001
Office of Naval Research
700 N. Quincy St.,
Arlington, VA 22217

1 DR. A. L. SLAADKOSKY
SCIENTIFIC ADVISOR (CODE RD-11)
HC, U. S. MARINES CORPS
WASHINGTON, DC 20270

Coast Guard

1 Chief, Psychological Research Branch
U. S. Coast Guard (G-P-1/2/TPAC)
Washington, DC 20573

Other DoD

12 Defense Technical Information Center
Cameron Station, Fldg 5
Alexandria, VA 22314
Attn: TG

1 Military Assistant for Training and
Personnel Technology
Office of the Under Secretary of Defense
for Research & Engineering
Room 2012C, The Pentagon
Washington, DC 20301

1 DARPA
1770 Wilson Blvd.
Arlington, VA 22209
Civil Gov

1 Dr. Susan Chipman Learning and Development National Institute of Education 1200 19th Street NW Washington, DC 20036

1 Dr. John Hayes National Institute of Education 1200 19th Street NW Washington, DC 20036

1 William J. McArthur 6666 Hoke Court Camp Springs, MD 20748

1 Dr. Arthur Melcer National Institute of Education 1200 19th Street NW Washington, DC 20036

1 Dr. Andrew R. Melcer Science Education Dev. and Research National Science Foundation Washington, DC 20550

1 Dr. Joseph Paolino National Institute of Education 1200 19th Street NW Washington, DC 20036

1 Dr. Frank Witherow U. S. Office of Education 400 Maryland Ave. NW Washington, DC 20002

1 Dr. Joseph L. Young, Director Memory and Cognitive Processes National Science Foundation Washington, DC 20550

Non Gov

1 Dr. John F. Anderson Department of Psychology Carnegie Mellon University Pittsburgh, PA 15213

1 Anderson, Thomas H., Ph.D. Center for the Study of Reading 174 Children's Research Center 51 Gerty Drive Champaign, IL 61820

1 Dr. John Annet Department of Psychology University of Warwick Coventry CV4 7LR ENGLAND

1 Psychological research unit Dept. of Defense (Army Office) Campbell Park Offices Canberra ACT 2600, Australia

1 Dr. Alan Baddeley Medical Research Council Applied Psychology Unit 16 Chaucer Road Cambridge CB2 2EF ENGLAND

1 Dr. Lyle Bourne Department of Psychology University of Colorado Boulder, CO 80309

1 Dr. John C. Brown EREC Palo Alto Research Center 3333 Coyote Road Palo Alto, CA 94304

1 Dr. Bruce Buchanan Department of Computer Science Stanford University Stanford, CA 94305

1 Dr. C. VICTOR NUNDESON NICAT INC. UNIVERSITY PLAZA, SUITE 10 31700 SC. STATE ST. BREN, UT 84007

1 Dr. Pal Carpenter Department of Psychology Carnegie-Mellon University Pittsburgh, PA 15213

1 Dr. John P. Carroll Psychometric Lab Univ. of Nc. Carolina Davie Hall 1174 Chapel Hill, NC 27514

1 Charles Myers Library Livingstone House Livingstone Road Stratford London PI5 2LJ ENGLAND

1 Dr. William Chase Department of Psychology Carnegie-Mellon University Pittsburgh, PA 15213

1 Dr. Michelle Chi Learning R & D Center University of Pittsburgh 3504 O'Hara Street Pittsburgh, PA 15213

1 Dr. Patricia Faggetter Department of Psychology University of Colorado Boulder, CO 80309

1 Dr. Jonathan Baron Dept. of Psychology University of Pennsylvania 3813-15 Walnut St. T-2 Philadelphia, PA 19104

1 Mr Avron Parr Department of Computer Science Stanford University Stanford, CA 94305

1 Liaison Scientists Office of Naval Research, French Office, London Box 30 FPN New York 00510

1 Dr. John P. Anderson Department of Psychology Carnegie Mellon University Pittsburgh, PA 15213

1 Anderson, Thomas H., Ph.D. Center for the Study of Reading 174 Children's Research Center 51 Gerty Drive Champaign, IL 61820

1 Dr. John Annett Department of Psychology University of Warwick Coventry CV4 7LR ENGLAND

1 Psychological research unit Dept. of Defense (Army Office) Campbell Park Offices Canberra ACT 2600, Australia

1 Dr. Alan Baddeley Medical Research Council Applied Psychology Unit 16 Chaucer Road Cambridge CB2 2EF ENGLAND

1 Dr. Lyle Bourne Department of Psychology University of Colorado Boulder, CO 80309

1 Dr. John C. Brown EREC Palo Alto Research Center 3333 Coyote Road Palo Alto, CA 94304

1 Dr. Bruce Buchanan Department of Computer Science Stanford University Stanford, CA 94305

1 Dr. C. VICTOR NUNDESON NICAT INC. UNIVERSITY PLAZA, SUITE 10 31700 SC. STATE ST. BREN, UT 84007

1 Dr. Pal Carpenter Department of Psychology Carnegie-Mellon University Pittsburgh, PA 15213

1 Dr. John P. Carroll Psychometric Lab Univ. of Nc. Carolina Davie Hall 1174 Chapel Hill, NC 27514

1 Charles Myers Library Livingstone House Livingstone Road Stratford London PI5 2LJ ENGLAND

1 Dr. William Chase Department of Psychology Carnegie-Mellon University Pittsburgh, PA 15213

1 Dr. Michelle Chi Learning R & D Center University of Pittsburgh 3504 O'Hara Street Pittsburgh, PA 15213

1 Dr. Patricia Faggetter Department of Psychology University of Colorado Boulder, CO 80309

1 Dr. Jonathan Baron Dept. of Psychology University of Pennsylvania 3813-15 Walnut St. T-2 Philadelphia, PA 19104

1 Mr Avron Parr Department of Computer Science Stanford University Stanford, CA 94305

1 Liaison Scientists Office of Naval Research, French Office, London Box 30 FPN New York 00510
<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dr. William Clancey</td>
<td>Department of Computer Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stanford University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stanford, CA 94305</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Allen H. Collins</td>
<td>Bolt Beranek & Newman, Inc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 Houton Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cambridge, MA 02138</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Lynn A. Cooper</td>
<td>LRDC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Pittsburgh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1939 O'Hara Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pittsburgh, PA 15212</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Meredith F. Crawford</td>
<td>American Psychological Association</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1200 17th Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, DC 20048</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Kenneth F. Cross</td>
<td>Ancestral Sciences, Inc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.O. Drawer C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Santa Barbara, CA 92102</td>
</tr>
<tr>
<td>1</td>
<td>LCCL J. C. Kegemburger</td>
<td>DIRECTORATE OF PERSONNEL APPLIED RESEARCH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NATIONAL DEFENCE HQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>101 COLONEL BY DRIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OTTAWA, CANADA KIA OX2</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Ed Feigenbaum</td>
<td>Department of Computer Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stanford University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stanford, CA 94305</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Richard L. Ferguson</td>
<td>The American College Testing Program</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.O. Box 165</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Iowa City, IA 52240</td>
</tr>
<tr>
<td>1</td>
<td>Mr. Wallace Fuerzak</td>
<td>Bolt Beranek & Newman, Inc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 Houton St.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cambridge, MA 02138</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Victor Fields</td>
<td>Dept. of Psychology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Montgomery College</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rockville, MD 20850</td>
</tr>
<tr>
<td>1</td>
<td>Dr. John R. Frederick</td>
<td>Bolt Beranek & Newman, Inc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 Houton Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cambridge, MA 02139</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Allida Friedman</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Alberta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edmonton, Alberta Canada T6G 2E9</td>
</tr>
<tr>
<td>1</td>
<td>DR. ROBERT GLASSER</td>
<td>LRDC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UNIVERSITY OF PITTSBURGH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3020 O'HARA STREET</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PITTSBURGH, PA 15212</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Daniel Gopher</td>
<td>Industrial & Management Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technion-Israel Institute of Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Haifa, Israel</td>
</tr>
<tr>
<td>1</td>
<td>DR. JAMES G. GREENE</td>
<td>LRDC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UNIVERSITY OF PITTSBURGH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3020 O'HARA STREET</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PITTSBURGH, PA 15212</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Barbara Hayes-Roth</td>
<td>The Rand Corporation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1700 Main Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Santa Monica, CA 90406</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Frederick Hayes-Roth</td>
<td>The Rand Corporation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1700 Main Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Santa Monica, CA 90406</td>
</tr>
<tr>
<td>1</td>
<td>Dr. James E. Hoffman</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Delaware</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Newark, DE 19713</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Merle Hooper</td>
<td>Clark Kerr Hall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of California</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Santa Cruz, CA 90400</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Anne Greenwold</td>
<td>"Human Intelligence Newsletter"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.O. Box 1163</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Birmingham, MI 48202</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Karl Hunt</td>
<td>Dept. of Psychology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Washington</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seattle, WA 98195</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Ed Hutchins</td>
<td>Navy Personnel Man Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Walter Kintsch</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Colorado</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boulder, CO 80302</td>
</tr>
<tr>
<td>1</td>
<td>Dr. David Kinder</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Arizona</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tucson, AZ 85721</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Robert Kinkade</td>
<td>Essex Corporation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7211 Jefferson Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego, CA 92110</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Stephen Konstyn</td>
<td>Harvard University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Department of Psychology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22 Kirkland Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cambridge, MA 02138</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Nancy Langman</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Washington</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seattle, WA 98195</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Jill Larkin</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carnegie Mellon University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pittsburgh, PA 15212</td>
</tr>
</tbody>
</table>
Nina Cost

1. Dr. Alan Lesgold
 Learning & Design Center
 University of Pittsburgh
 Pittsburgh, PA 15260

2. Dr. Robert Linn
 College of Education
 University of Illinois
 Urbana, IL 61801

3. Dr. Erik McWilliams
 Science Education Dev. and Research
 National Science Foundation
 Washington, DC 20550

4. Dr. Mark Miller
 T. Computer Science Lab
 C/O ITL-IPPE, Underplace Circle
 Plano, TX 75023

5. Dr. Allen Fumo
 Polhemus Technology Laboratories
 1845 Elma Ave., Fourth Floor
 Redondo Beach, CA 90277

6. Dr. Donald A. Norman
 Dept. of Psychology C-305
 Univ. of California, San Diego
 La Jolla, CA 92037

7. Dr. Jesse Orlosky
 Institute for Defense Analyses
 400 Army Navy Drive
 Arlington, VA 22202

8. Dr. Seymour Papert
 Massachusetts Institute of Technology
 Artificial Intelligence Lab
 45 Technology Square
 Cambridge, MA 02139

9. Dr. James A. Paulson
 Portland State University
 P.O. Box 751
 Portland, OR 97207

10. Dr. James J. Pellegine
 University of California, Santa Barbara
 Dept. of Psychology
 Santa Barbara, CA 93106

11. Dr. Luigi Petrillo
 2411 N. EDISON STREET
 ARLINGTON, VA 22207

12. Dr. Richard A. Pollak
 Director, Special Projects
 Minnesota Educational Computing Consortium
 2250 Broadway Drive
 St. Paul, MN 55117

13. Dr. Martha Polson
 Department of Psychology
 Campus Box 114
 University of Colorado
 Boulder, CO 80309

14. Dr. Peter Polson
 DEPT. OF PSYCHOLOGY
 UNIVERSITY OF COLORADO
 BOULDER, CO 80309

15. Dr. Steven E. Poltrock
 Department of Psychology
 University of Oregon
 Eugene, OR 97403

16. MTHBRT M. L. PAUCH
 P. O. B. 9
 FRIEDRICHBURG D E R V E R T E I D I G U N G
 POSTFACH 122
 D-52 BONN 1, GERMANY

17. Dr. Fred Reif
 RSEME
 c/o Physics Department
 University of California
 Berkeley, CA 94720

18. Dr. Lauren Reasick
 LITC
 University of Pittsburgh
 3010 O'Hara Street
 Pittsburgh, PA 15213

19. Mary Ploy
 LITC
 University of Pittsburgh
 3010 O'Hara Street
 Pittsburgh, PA 15213

20. Dr. Andrew H. Rose
 American Institutes for Research
 1001 Thomas Jefferson St., NW
 Washington, DC 20007

21. Dr. Ernst J. Rothkopf
 Fell Laboratories
 600 Mountain Avenue
 Murray Hill, NJ 07974

22. Dr. David Rumelhart
 Center for Human Information Processing
 Univ. of California, San Diego
 La Jolla, CA 92037

23. Dr. Alan Schoenfeld
 Department of Mathematics
 Hamilton College
 Clinton, NY 13323

24. DR. ROBERT J. SETTEL
 INSTRUCTIONAL TECHNOLOGY GROUP
 HUPRIO
 304 W. WASHINGTON ST.
 ALEXANDRIA, VA 22314

25. Committee on Cognitive Research
 S. Dr. Lonnie R. Thompson
 Social Science Research Council
 605 Third Avenue
 New York, NY 10016

26. Robert T. Siegler
 Associate Professor
 Carnegie-Mellon University
 Department of Psychology
 Schenley Park
 Pittsburgh, PA 15213

27. Dr. Edward F. Smith
 Polt Rennock & Newman, Inc.
 60 Poltson Street
 Cambridge, MA 02138
Dr. Robert Smith
Department of Computer Science
Rutgers University
New Brunswick, NJ 08902

Dr. Robert Smith
School of Education
Stanford University
Stanford, CA 94305

Dr. Robert Zemernig
Dept. of Psychology
Yale University
P.O. Box 118, Yale Station
New Haven, CT 06520

Dr. Albert Stevens
EGLT DERRICK & MEYER, INC.
50 WYKELTON STREET
CAMBRIDGE, MA 02138

Dr. Thomas C. Sticht
Director, Basic Skills Division
H ETTI
206 W. Washington Street
Alexandria, VA 22314

Dr. Patrick Suppes
INSTITUTE FOR MATHEMATICAL STUDIES IN
THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305

Dr. Kikumi Tatsuno
Computer Based Education Research
Laboratory
252 Engineering Research Laboratory
University of Illinois
Urbana, IL 61801

Dr. John Thomas
IBM Thomas J. Watson Research Center
P.O. Box 718
Yorktown Heights, NY 10598

Dr. Piers Torrence
THE RAND CORPORATION
1700 MAIN STREET
SANTA MONICA, CA 90406

Dr. Douglas Tonme
Univ. of Ca. California
Behavioral Technology Labs
185 S. Fleming Ave.
Redondo Beach, CA 90277

Dr. J. Unisner
Perceptronics, Inc.
5271 Variel Avenue
Woodland Hills, CA 91364

Dr. Gordon J. Underwood
Dept. of Psychology
Northwestern University
Evanston, IL 60201

Dr. David J. Weiss
Kennon D. Meall
University of Minnesota
70 E. River Road
Minneapolis, MN 5545

Dr. Dershow Welnin
PERCEPTIONS INC.
5271 WAREL AVE.
WOODLAND HILLS, CA 91367

Dr. Keith T. Wescourt
Information Sciences Dept.
The Rand Corporation
1700 Main St.
Santa Monica, CA 90406

Dr. Simon A. Whitely
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
Lawrence, Kansas 66045