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STATEMENT OF THE PROBIEM

The response of a long rod penetrator striking armor is of

considerable military interest. The complete large-deformation three-

dimensional response, including fracture and erosion, is difficult and

expensive to model. The problem addressed here was to determine if the

part of the projectile behind the tip could be modeled in an approximate

way using beam theory.

SUMHARY OF KEY RESULTS

The two most significant results of this research are:

(1) Development of a theory for treating the thrust-
dominated plastic thrust-moment interaction in a beam
during loading and partial unloading.

(2) Insight to the local loading, unloading, and reloading
plastic response of a beam loaded axially and trans-
versely at the end.

A theory was developed for modeling the dynamic elastic-plastic

response of a beam-colmm under combined axial and lateral loading. The

theory is based on the Timoshenko beam equations and a new formalation

for the constitutive relations in the plastic regime. The constitutive

relations rely on the simplifying assumption that the state of stress is

dominated by the thrust as is the case for long rod penetrators Impact-

ing at small angles of attack. This simplifying assumption has three

implications: (1) bending, both in loading and unloading at a local

cross-section, is treated as a perturbation on the thrust; (2) the

degree of work hardening at a given cross section depends only on the

thrust at that cross section; and (3) the plastic shear strain can be

neglected.

The analysis is based on the Timoshenko beam equations. For

elastic response, the thrust-longitudinal strain and moment-curvature

relationships are linear and uncoupled. For plastic response during
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loading and unloading over a portion of the cross section (partial

unloading), the resultant thrust and moment at that cross section are

coupled. These resultants are found by applying the appropriate stress-

strain relation (elastic or plastic) at each point of the cross section

and integrating over the cross-sectional area. A single parameter can

be used to specify the location of the boundary between the elastic and

plastic regions. This approach was used to formulate the stress-strain

relations for loading and partial unloading, both of which are dominated

by thrust. The equations were solved by the method of characteristics.

We attempted to calculate the response of a penetrator-type beam

under a predominantly axial end load such that the dominant loading due

to thrust would be accompanied by partial unloading due to bending. For

small values of the angle between the direction of the resultant load

and the beau axis only loading, predominantly axial with small bending,

was produced. As this angle increased to values as small as 8 degrees,

partial unloading caused by the increased bending was produced over a

portion of the length of the rod. However, this portion soon became

reloaded.

We were unable to generate partial unloading at any location

without significant reloading. We attribute this effect to the fact

that partial unloading occurs along a steeper slope of the stress-strain

curve than the slope for plastic loading. Therefore, as unloading takes

place there is an increase in the effective local beam stiffness resist-

ing the superposed bending. This disturbance propagates away from the

initial point of partial unloading and causes reloading at nearby

points.

We conclude that any model of penetrator response must include at

least one cycle of loading, partial unloading and, reloading.
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ABSTRACT

A one-dimensional structural mechanics model is presented for

analyzing the elastic-plastic response of rods to slightly inclined end

thrusts. The theory is kept simple by restricting the development to

cases in which the axial thrust dominates, the bending moment being

considered as a perturbation that may grow. Partial unloading of a

cross section caused by excessive bending is included in the treatment

but requires further numerical study. Solutions are obtained using the

method of characteristics. The computer code describing the elastic-

plastic wave propagation is simple and may be useful for preliminary

design of rod penetrators.
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1. INTRODUCTION

Long-rod penetrators for defeating armor have been extensively

analyzed by finite-difference computer codes to obtain their axi-

symmetric elastic-plastic response to impact. If the end loads result

in stress waves that are not axisymmetric, the continuum code solutions

become three-dimensional and complex. As an aid to preliminary analyses

of rods, we present a one-dimensional structural mechanics approach that

is suitable for treating elastic-plastic wave propagation along rods for

cases Involving small departures from axisymmetry.

In this simple theory, we assume that plane cross sections of the

rod always remain plane, which allows us to formulate the problem in

terms of the axial and transverse velocities of the center of the cir-

cular cross section, the angular velocity of the planar cross section

about the appropriate diameter, and the stress resultants consisting of

the thrust, bending moment, and shear force acting on the section. The

derivation of the governing equations is based on the Timoshenko theory

of beams [1]. This well-known theory takes into account rotary inertia

and overall shear distortion of a beam element. However, our main

reason for using this theory as a basis is that the resulting equations

are hyperbolic and lend themselves to solution by the method of

characteristics [2].

Colton [3] has used this structural mechanics approach to analyze

the elastic response of earth penetrators, which my be considered long

rods. Good agreement was found between predicted and experimental

strains. Ranganath and Clifton [4) have also used this approach suc-

cessfully to analyze the elastic-plastic response of an infinite beam to

transverse impact.

We have intentionally restricted the theory so that the axial

thrust is supposed to dominate the bending moment. The axially applied

and load monotonically increases and it is kept at a small angle of

inclination to the rod axis. It Is also assumed that the shear force

2
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does not participate in the yield condition. These restrictions allow

us to assess the usefulness of the elastic-plastic theory in its sim-

plest form, after which the effects of relaxing restrictions can be

studied.

Figure 1 Illustrates the effect of a dominant thrust with the

bending moment regarded as a perturbation that can grow. Figure la

shows the end thrust NO inclined at a small angle a to the rod axis.

Let ACB be a cross section of the rod where A and B are the top and

bottom fibers and C is the fiber on the horizontal diameter or mid-

plane. If the curvature at the section has its concave side on top, the

compressive strain at A is larger than the compressive strain at C while

the strain at B is smaller than the strain at C. Also, while loading

increases, all strains increase provided the thrust dominates. The

stress-strain states at A, C, and B are shown in Fig. lb, with the

attached arrows indicating that the strains are increasing. At B, the

bending that is causing the stress-strain state to lag behind may grow

enough to cause strain-rate reversal, in which case partial unloading of

the cross section occurs. This eventuality is in fact included in the

theoretical development of the next section, in an attempt to prepare

for extension of the simplest form of the elastic-plastic theory. It is

also included to show how partial unloading introduces new wave veloc-

Ities, as in the work of Ranganath and Clifton [4).

2. GOVERNING EQUATIONS

Figure 2a shows a rod element with its attendant axial force, shear

force, and bending moment, which at an axial position x are represented

by N, Q, and K. Figure 2b shows the axial and transverse displacements,

C and v. the rotation *, and element overall shear strain y, all at

location x. Thus, the three equations of motion may be written as

Nx - P A 9tt (2.1a)

M + Q - P 1ett (2.1b)
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p A ntt (2.1c)

where p is the density of the rod material, A - %a 2is the cross-

sectional area, and I a4 /4 is the second moment of area. Subscripts

x and t denote partial differentiation.

Because we assume that the shear strains remain elastic, we may

take

Q - k' A G y (2.2a)

where k' is the cross section shear coefficient [5] and G is the modulus

of rigidity. For a circular cross section, we take k' - 0.827 [6]. In

terms of the rod element slope and rotation, the section shear strain is

y M -x -4, (2.3a)

When the compressive strains are increasing over the entire cross

section, as shown in Fig. lb, the incremental forms for the generalized

stress-strain relationships are

Nt  f A t  (2.4a)
t t.

Mt -H I Pt (2.4b)

where e C x is the cross section midsurface strain and K - * is the
curvature of the rod element. The modulus 1(e) is a constant only when

the strain is less than the yield strain, the case when H becomes

Young's modulus E.

In terms of the axial, transverse, and angular velocities u, v,

and w given by

u -t v n t  " 4t (2.5a)
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equations (2.1a), (2.1b), (2.1c), (2.2a), (2.4a), and (2.4b) can be put

in the form

pAu t -Nx -0

Nt -HAu -0

t x

M -HIw -0
t x

p A vt - Qx 0

Qt - k' A G vx -- k' A G w (2.6a)

To allow the theory to treat the case of partial unloading, which

starts with the onset of strain-rate reversal at the convex outer fiber

(at z - a when dic > 0), consider the strain and stress increment

distributions in Fig. 3 for d > 0 associated with a time increment

dt. Strain rate reversal occurs in the region -a < z < zl, so elastic

unloading occurs there. From Fig. 3a showing the strain increments, we

have

de - de + zdic (2.7a)

When we set de - 0, equation (2.1a) determines the value z1 that divides

the cross section into loading and unloading regions. In terms of

velocities

21 -ux/W (2.8a)

From Fig. 3b showing the stress increments, we have

do 1 (2.9a)

dE de a < z < zI

5



By integrating (2.9a) with dc given by (2.7a) over the rod cross

section, we can obtain the incremental thrust and bending moment in the

form

Nt no A u + Hp/i I (2.10s)

Mt W - VH u + H 2 I W (2.lOb)

where

H -0 + (E - H)i o

- (E - H)i1

H2 - H + (E - H)i 2  (2.10c)

I°  b dz

bzdz

i 2 -= bz2 dz -a < z 1 < a Kt > 0 (2.10d)

when it < 0, the thrust and moment rates are still given by (2.10a) and

(2.lOb) provided we change the lower and upper integration limits in

(2.10d) to z, and a. For a circular cross section, we have b 2(a 2 -

z2)1/2 so the integrals in (2.10d) become

1 1
i ° - (t - sin 2#

0 -. 1I 2 21

I.- 4 fin 3i
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1 - s in 401) t > 0 (2.lla)

where.

cos * 1 -z/a 0 < O1 
- 'M (2.llb)

When K < 0, we replace io, i1, and i2 by Jo- J1. and J2 where
t

Jo M i - l - il J2 1 12 (2.12a)

In Fig. 3a (Kt > 0), we see that partial unloading starts when

z, - -a, so whenever z < -a the integrals are set equal to zero. In

these cases (2.10c) gives H0 - R, H1 - 0, H2  H so the thrust and

moment rates (2.10a) and (2.lOb) reduce to (2.4a) and (2.4b) for the

fully loading section. If partial unloading continues with z1 mono-

tonically increasing until it reaches the value z1 - a, we reach the

stage of fully elastic unloading. When z1  a, we have io - 1, i 1 - 0,

and i2 - 1 from (2.10d) and consequently Ho - E, H1 - 0, and R2 - E from

(2.10c). Then the thrust and moment rates reduce to (2.4a) and (2.4b)

with H taking the special constant value E.

The governing equations that include monotonic partial unloading

are the set (2.6a) with the thrust and moment rate equations replaced by

the more general forms (2.10a) and (2.lOb). In matrix form, we have

Aw t + w - C w (2.13a)

in which

u P 0 0 0 0 0

N 0 1 0 0 0 0

S0 0 pl 0 0 0

M 0 0 0 1 0 0

v 0 0 0 0 ph 0

q o 0 0 0 0 1

- " • ° _ _ , . ... .. ._ _ .... . . . ... .... .. .. . ... . . T 7 7



0 -1 0 0 0 0 0 0 0 0 0 0

-HoA 0 -H1 AI 0 0 0 0 0 0 0 0 0

0 0 0 -1 0 0 0 0 0 0 0 1
B3 Cm

-H1AI 0 -H21 0 0 0 0 0 0 0 0 0

0 0 0 0 0 -1 0 0 0 0 0 0

0 0 0 0 -k'AG 0 0 0-k'AG 0 0 0

3. CHARACTERISTIC PROPERTIES OF THE EQUATIONS

Th governing equations (2.13a) form a system of quasi-linear

hyperbolic equations of first order (2.1b). The characteristic

velocities are the six roots of the characteristic equation

JA-  B - l 0 (3.la)

Expanding the determinant (3.1a) leads to

UPC2) _ (8 0 + H2)pc2 + (H082 - a 1 2 - k'G) - 0 (3.2a)

which has as roots the six wave velocities

cf *(+ + 1(2o- +)2 + 41j2'/2 (3.2b)rd 0, " 2 "+ ("o ",, 112 '

-* 2 + H 2 - - 22+ 4 (3.2c)

Cq-* (k--)1/2 (3.2d)

q ]
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The fast and slow wave speeds, cf and ca of (3.2b) and (3.2c)

govern the propagation of the thrust and moment in both directions along

the rod. The wave speed Cq given by (3.2d) governs the propagation of

shear.

Wave velocities associated with a fully loaded cross section are

found by setting Ho - H2 - H and H1 - 0 in (3.2b) and (3.2c). These

substitutions give

cf - c s M c - (H/p) 1/2 (3.3a)

If we determine the left null row vector I of the characteristic

matrix containing the corresponding characteristic value ci, that is, if

we solve

Ii(A- 1 B - ci i) - 0

we find the characteristic equations from

I I(w t + c I w )  A I A -1C w (3.4a)

Following this procedure leads to the set of equations

Pef ARf du R f dN + pcf I dw+ dM - cf Q dt
dx +

along +-- Cf

Pc. AR du I dN + I.s I dw M - c. Q dt

dx
along + cs

pcq A dv dQ - +k AG w dt

q tdx (3.59)

9



where
"1 (1/A 1/2 a 1 (I/A /2

Rf- 2 R2 (3.5b)
"cf Ho Pcs - R

Characteristic equations associated with a fully loaded cross

section are found by setting Ho - H2 - H and 1 - 0 in the governing

equations (2.13a) finding the roots (3.2d) and (3.3a) of the resultant

determinant (3.1a), and hence the resultant null left row vectors of the

characteristic metric for use in (3.4a). Another procedure is to find

the limits of (3.5b) The values of if and Re tend to different limits

as cf and cs tend to c. Hence the equations along the characteristics

become

PC A du + dN - 0

pC I dw d d-f c Q dt

along -. + c

pcq A d - dQ +k' A G dt (3.6a)

along dt . + Cq

4. NMIZRICAL SCHDM

To integrate the appropriate form of the characteristic equation

(3.5a) along the characteristics, we first chose a rectangular mesh In

the z-t plane consisting of intersections of the lines x - (I - 1)hx and

t - (i - 1)ht for i - 1,2... and j m 1,2.... We then adopted a scheme

for finding the values of the dependent variables at the mesh points P

along the line t - tj 1 from values Q already determined along line t -

tj. Figure 4 shows typical cells with linear segments of the backward

and forward characteristics required to determine values at P from the

values of Q., Q, and Q+ by solving the finite difference form of

10L



equations (3.5a). The cell size was determined by the elastic velocity,

that is, dx/dt - c where c - (E/p)11 2. The values along the line t - tj

at the points of intersection with the characteristics from P were

obtained from the mesh point values at Q_, Q, and Q+ by linear

interpolation, the initial slopes cf and ca of the plastic wave

characteristics from P being approximated by those at Q. After solving

the finite-difference form of the characteristic equations (3.5a) to

obtain the first estimate of the values at P, the dependent variable

values at the midpoints of the characteristic segments were used to

adjust the slopes for a second iteraction. At each time step, z, from

(2.8a) was calculated to determine the local loading state and hence the

appropriate form of the characteristic equation could be selected. If

reloading was detected by a reversal of the monotic progress of zl, the

calculations were terminated because the theory does not treat this

case.

5. NUMERICAL EXAMPLES

Calculations were performed for a rod having a radius of 1 cm, and

a length of 20 ca. We used the simplified stress-strain relationship

shown by the curve in Figure 5. The curve consists of a linear elastic

part smoothly joined to a linear work hardening part, and It is based on

a static tension test on uranium containing 3/4% titanium [7]. The

corresponding value of the material properties are:

Young's modulus 9 - 160 GPa

shear modulus G - 59.3 GPa (using v - 0.35)

hardening modulus H - 35 GPa

yield stress ay - 730 MPa

density p a 18.1 g/cm3 .

We used the bilinear loading history of Fig. 6 at one end of the rod

while maintaining the other end free of loading. Pure thrust loading

gives yielding at NY - 2.3 x 105 N. This loading history was chosen in

11



a simple form, suitable for evaluating the performance of the calcula-

tional procedure, rather than in a form based on experimental or con-

tinuum mechanics codes results. Also, performance evaluation was

restricted to the initial wave transit.

Before generating results for the complete rod problem, we compared

the results generated by our computer program with the analytic results

for the case of pure elastic-plastic thrust (normal incidence). In the

computer code, the bilinear stress-strain curve between points 1 and 2

in Fig. 5 was replaced by a smooth curve. In the analysis, this region

was replaced by a straight line. For this problem, a ramp loading of

0.786 x l05 N/isec was applied. Figure 7 show the distributions of

thrust along the rod when the applied thrust has reached 2.3 times the

yield thrust, N y . For excellent agreement, the code curve should pass

through point 2 as well as point I. Because of the different

representations of the stress-strain curve between points 1 and 2 in

Fig. 5, the solutions are different between these points in Fig. 7. The

plastic wave from the loaded end should pass through point 2. However,

propagation appears faster than it should because the interpolation

procedure is performed out within an x-t mesh sized for the elastic wave

propagation. Figure 7 gives a qualitative measure of the error

involved.

A similar comparison was made for propagation of bending moments.

A ramp shear load was applied at one end of the rod and the code, with

the yield stress set to zero, was arranged to produce plastic moment

propagation within an x-t mesh sized for elastic wave propagation along

dx/dt - (/p) 1/ 2. The result was compared with elastic wave propagation

by changing the mesh sie to dx/dt - (8/p)1/2. A comparison of the

moment distributions along the rod is provided by Fig. 8. The effect of

the interpolation for plastic waves with an elastic wave mesh is seen

with the solid line. It indicates that a signal is being allowed to

propagate faster than its true velocity, as in the case of plastic

thrust (Fig. 7).

12



Figure 9 shows the distributions of the thrust and moment along the

rod when the elastic wave has traversed the entire length of the rod

(20 cm). The stress-strain curve is that of Fig. 5 and the thrust

loading, applied at an angle of 2" to the rod axis, is that of Fig. 6.

We see that a bending moment is developing near the loaded end, so under

the ideal loading conditions of this example the end could soon break

off.

In this example, the code operated in a simple mode with fully

elastic-plastic loading throughout. Similar examples at larger angles

of attack (-8") cause partial unloatng of the rod cross section, but

for the few examples investiqated this partial unloading was soon

followed by reloading, for whbch the code mechanics do not apply.

Partial unloading increases tme section bending stiffness and hence the

resistance to the bending mamout. Associated with this increased

stiffness is an increased wave velocity, so that neighboring sections

become influenced. Further work is needed to define the limits of

applicability of the program in terms of the problem parameters, such as

angle of attack.

6. CONCLUSIONS

Our main conclusion is that the structural mechanics formulation

works well for analyzing the elastic-plastic response of rods under

thrust loadings inclined at small angles to the rod axis. The angles

allowable will depend on other parameters such as rod radius, but if the

bending moment is stimulated as a growing perturbation on the thrust,

useful results will be obtained by a simple computer code.

Further numerical investigations are needed to extend the code so

that useful results may be obtained when partial unloading occurs. Our

examples indicate that partial unloading is rapidly followed by reload-

ing. Raloading requires monitoring of the strain history and introduces

a complication that would remove the advantage of simplicity relative to
a finite-difference code.
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(a) Penetrator under almost normal impact

o A Slope H(e)

0
(b) Compressve stes-strain curve
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FIGURE 1 ROD CROSS SECTION STRESS-STRAIN STATES DURING LOADING
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(a) Resultant forces and moments on a rod element
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(b) Kinematics of a rod element
JA-1002-6

FIGURE 2 GENERALIZED FORCES AND DISPLACEMENTS FOR A ROD ELEMENT
(Sign convention: all quantities shown positive)
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FIGURE 3 PARTIAL UNLOADING (Case duc > 0)
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FIGURE 4 CHARACTERISTIC CURVES AND MESH POINTS
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FIGURE 5 STRESS-STRAIN RELATIONSHIP USED IN ROD CALCULATIONS
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FIGURE 6 SILINEAR LOADING FUNCTION
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FIGURE 7 COMPARISON OF THRUST RATIOS FROM ANALYSIS AND COMPUTER PROGRAM
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FIGURE 8 DISTORTION OF PLASTIC MOMENT DUE TO ELASTIC CELL SIZE
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FIGURE 9 THRUST AND MOMENT DISTRIBUTIONS AT ELASTIC WAVE TRANSIT TIME
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