FIBROUS ORGANO SILICON POLYMERS DERIVED FROM SILICATES (U)
MAY 82 J. HEFTER, M. KENNEY
N00014-75-C-0693
UNCLASSIFIED
CWRU/DC/TR10
Ladder Silicones, Inherently Fibrous Polymers, Trimethylsilylation, Vinyldimethylsilylation, Litidionite, Copper Silicates

Accepted for publication in "Soluble Silicates", edited by James S. Falcone and to be published by the American Chemical Society.

A new, inherently fibrous organosilicon polymer having pendent trimethylsilyl groups is reported. It has been made from the rare ladder or tube silicate litidionite using a Lentz-type extraction-substitution process. The constituent fibers of this polymer have very small diameters, often 40-60 Å, and are flexible and inert. They are believed to have frameworks closely related to that of the parent silicate ion. A polymer which appears to be the same as this one has been made from the synthetic silicate.
Na$_2$CuSi$_4$O$_{10}$, a close structural analog of litidionite. In addition a related polymer carrying dimethylvinyl groups has been made from litidionite by a like Lentz-type procedure. Both silicates have been made by simple thermal procedures.
OFFICE OF NAVAL RESEARCH
Contract NO0014-75-C-0693
Task No. NR 356-590
TECHNICAL REPORT No. 10

Fibrous Organosilicon Polymers Derived From Silicates

by

Jesse Hefter and Malcolm E. Kenney

Chapter
Accepted for Publication in

"Soluble Silicates"
James S. Falcone, Editor

Case Western Reserve University
Department of Chemistry
Cleveland, Ohio 44106

May 28, 1982

Reproduction in whole or in part is permitted for any purpose
of the United States Government.

This document has been approved for public release and sale;
its distribution is unlimited.
A new, inherently fibrous organosilicon polymer having pendent trimethylsilyl groups is reported. It has been made from the rare ladder or tube silicate litidionite using a Lentz-type extraction-substitution process. The constituent fibers of this polymer have very small diameters, often 40-60 Å, and are flexible and inert. They are believed to have frameworks closely related to that of the parent silicate ion. A polymer which appears to be the same as this one has been made from the synthetic silicate Na₂CuSi₄O₁₀, a close structural analog of litidionite. In addition a related polymer carrying dimethylvinyl groups has been made from litidionite by a like Lentz-type procedure. Both silicates have been made by simple thermal procedures.

Recently we have been seeking new types of organosilicon polymers with the hope of finding polymers having unique structures and interesting combinations of properties. Out of this work has come a new siloxane that is, at least in part, inherently fibrous. The fibers characteristic of it have very small diameters and are flexible and inert.

The technique used to make this siloxane is based on a well-known procedure for derivatizing silicates originated by Lentz (1). In this procedure the metal ions are extracted from the silicate and trimethylsilyl or other silyl groups are grafted on the silicate framework thus exposed. (Initially the procedure was used in structural studies of silicates containing monomeric and oligomeric ions (1). Later it was used for the synthesis of silicones from silicates containing polymeric silicate ions (2). Among the silicones yielded by this latter work are sheet and

* Current Address: Shell Development Company, Houston, TX 77001
scroll silicones carrying pendent trimethylsilyl groups (2, 3, 4). The scroll silicone, like the silicone described in this paper, is inherently fibrous. However, the fibers in it are an order of magnitude larger than those in the new silicone.)

The silicate which has been used most frequently for the synthesis of this new polymer is litidionite, NaKCuSi$_4$. This silicate, while occurring naturally, is very rare (so far it has been found only in the crater of Mt. Vesuvius) (5). The silicate ion in it (6), Figure 1, can be described as being a complex ladder ion or as being a tube ion (6, 7). Examination of its structure shows that it is constructed of fused 8- and 16-membered rings. The arrangements of the oxygens about the metal ions in it are those shown in Figure 2.

This silicate has been made by the hydrothermal technique (8, 9). However, relatively elaborate equipment is required for its preparation by this approach and, as a result, it is not well-suited to incorporation in a synthetic sequence requiring litidionite.

Results and Discussion

In the present work two syntheses for litidionite have been developed which are straightforward and require only simple apparatus. In one a sodium-potassium-copper silicate glass is made and then devitrified over a period of weeks at approximately 765 °C. In the other a mixture of sodium carbonate, potassium carbonate, cupric oxide, silicon dioxide, again with a Na:K:Cu:Si ratio of 1:1:1:4, is sintered at approximately 765 °C for a number of days.

The litidionite made by this latter procedure can be purified, after being powdered, by a process involving a combination of washing and decantation. Water buffered at pH 5 is used in this process. In practice the process is repeated a number of times.

As might be expected litidionite is a medium blue. A micrograph of a crystallite of this silicate obtained by crushing a sample of it made by the devitrification process is shown in Figure 3. From this micrograph it is clear that litidionite itself is not fibrous in nature. In accordance with expectations both the litidionite made by the sintering process and that made by the devitrification process are satisfactory for use in the synthesis of the polymer.

The polymer, as already indicated, is made by a Lentz-type procedure. In the version of this procedure used, the litidionite is treated with a mixture of chlorotrimethylsilane, water, and a solvent such as dioxane, tetrahydrofuran, or acetone. The reaction is run over a period of days at room temperature.

Purification of the polymer can be effected by repeatedly subjecting a suspension of it in a solvent such as tetrahydrofuran to sonication and settling, and then isolating the polymer in the
upper portion of the suspension. Generally multiple refractions of the residue are necessary in order to get a sufficient amount of material.

The polymer has a waxy texture and is insoluble in a wide range of organic solvents. It does, however, form gel-like materials with solvents such as tetrahydrofuran, dioxane and chloroform. Not surprisingly in view of this, a mixture of a small amount of it and a large amount of a 1000 cs dimethylsilicone oil forms a stiff, stable grease. When purified the polymer is a very pale blue.

The infrared spectrum of the polymer shows SiMe₃, SiOH, and SiOSi bands while its Si 2p₃/₂ X-ray photoelectron spectrum shows overlapping SiO₄ and SiOC₃ peaks, Figure 4. Micrographs of the polymer show that it is composed at least in part of fibers, Figure 5, and that these fibers are flexible, Figure 6. Fibers that are 40-60 Å in diameter are commonly seen. A few with diameters somewhat above 20 Å are seen.

One sample was found to contain 14.08, 14.27 %C, 3.47 %H, and 38.93 %Si. The Si 2p₃/₂ X-ray photoelectron spectrum of this sample indicated that the ratio of SiO₄-type silicon to SiOC₃-type silicon was 73:27, while the K 1s₁/₂, Na 1s₁/₂ and Cu 2p₃/₂ spectra of it gave evidence for the presence of a small amount of potassium but no sodium or copper. The same sample gave the differential thermal analysis thermogram shown in Figure 7.

It is concluded on the basis of the available physical and synthetic evidence that some of the fibers in the polymer have frameworks that are like those of its parent silicate ion except for the presence of additional crosslinks, i.e., are at least semi-tubular in nature. It is further concluded that the rest of the fibers have composite frameworks built up of frameworks which are similar to those just described. These component frameworks, it is believed, are joined by well-spaced oxygen bridges. In the case of the sample of the polymer examined in detail, it seems probable that about 37% of the backbone silicon atoms carried silyl groups.

Further work along these same lines has shown that a polymer of the same general type carrying dimethylvinylsilyl groups can be made using an analogous synthesis. This polymer is of interest because the vinyl groups provide a potential site for the attachment of a wide variety of groups.

Other work has shown that a polymer that is apparently the same as the trimethylsilyl polymer can be made from another silicate. This silicate is the synthetic species Na₂CuSi₄O₁₀. It contains the same ladder or tube ion as does lutidionite (9). As with lutidionite it has been made by the hydrothermal technique (10, 11, 12).
In the present work this silicate has been made by a procedure similar to the sintering procedure used to make litidionite. The polymer has been made from it by a route parallel to that used for making the trimethylsilyl polymer from litidionite.

Acknowledgment

We gratefully acknowledge the support of this work by Dow Corning Corporation and B.F. Goodrich Corporation Fellowships and by the Office of Naval Research.

Literature Cited

Figure Captions

Figure 1. Silicate ion in litidionite. Junctions represent silicon atoms; circles represent oxygen atoms (7).

Figure 2. Coordination arrangements of the metal atoms in litidionite. Junctions represent metal ions; circles represent oxygen ions.

Figure 3. Transmission electron micrograph of a litidionite crystallite.

Figure 4. Si 2p_{3/2} X-ray photoelectron spectrum of the trimethylsilyl polymer, and the SiO_{4} and SiOC_{3} curves into which it can be resolved.

Figure 5. Composite transmission electron micrograph of the trimethylsilyl polymer showing its fibrous nature.

Figure 6. Transmission electron micrograph of the trimethylsilyl polymer showing the flexibility of its fibers.

Figure 7. Differential thermal analysis thermogram of the trimethylsilyl polymer.
TECHNICAL REPORT DISTRIBUTION LIST, GEN

| Office of Naval Research Attn: Code 472
800 North Quincy Street
Arlington, Virginia 22217 | 2 | U.S. Army Research Office Attn: CRD-AA-IP
P.O. Box 1211
Research Triangle Park, N.C. 27709 | 1 |
| --- | --- | --- | --- |
| ONR Western Regional Office Attn: Dr. R. J. Marcus
1030 East Green Street
Pasadena, California 91106 | 1 | Naval Ocean Systems Center Attn: Mr. Joe McCartney
San Diego, California 92152 | 1 |
| ONR Eastern Regional Office Attn: Dr. L. H. Peebles
Building 114, Section D
666 Summer Street
Boston, Massachusetts 02210 | 1 | Naval Weapons Center Attn: Dr. A. B. Amster,
Chemistry Division
China Lake, California 93555 | 1 |
| Director, Naval Research Laboratory Attn: Code 6100
Washington, D.C. 20390 | 1 | Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko
Port Hueneme, California 93401 | 1 |
| The Assistant Secretary of the Navy (RE&S)
Department of the Navy
Room 4E736, Pentagon
Washington, D.C. 20350 | 1 | Department of Physics & Chemistry Naval Postgraduate School
Monterey, California 93940 | 1 |
| Commander, Naval Air Systems Command Attn: Code 310C (H. Rosenwasser)
Department of the Navy
Washington, D.C. 20360 | 1 | Scientific Advisor Commandant of the Marine Corps
(Code RD-1)
Washington, D.C. 20380 | 1 |
| Defense Technical Information Center Building 5, Cameron Station
Alexandria, Virginia 22314 | 12 | Naval Ship Research and Development Center Attn: Dr. G. Bosmajian, Applied Chemistry Division
Annapolis, Maryland 21401 | 1 |
| Dr. Fred Saalfeld Chemistry Division, Code 6100
Naval Research Laboratory
Washington, D.C. 20375 | 1 | Naval Ocean Systems Center Attn: Dr. S. Yamamoto, Marine Sciences Division
San Diego, California 91232 | 1 |
| Mr. John Boyle Materials Branch Naval Ship Engineering Center
Philadelphia, Pennsylvania 19112 | 1 | }
TECHNICAL REPORT DISTRIBUTION LIST, GEN

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mr. James Kelley</td>
<td>DTNSRDG Code 2803, Annapolis, MD 21402</td>
</tr>
<tr>
<td></td>
<td>Mr. A. M. Anzalone</td>
<td>Administrative Librarian, PLASTEC/ARRADCOM, Bldg 3401, Dover, NJ 07801</td>
</tr>
<tr>
<td>Name</td>
<td>Institution Details</td>
<td>Copies</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Dr. C. L. Shilling</td>
<td>Union Carbide Corporation, Chemical and Plastics, Tarrytown Technical Center, Tarrytown, New York</td>
<td>1</td>
</tr>
<tr>
<td>Dr. R. Soulen</td>
<td>Contract Research Department, Pennwalt Corporation, 900 First Avenue, King of Prussia, Pennsylvania</td>
<td>1</td>
</tr>
<tr>
<td>Dr. A. G. MacDiarmid</td>
<td>University of Pennsylvania, Department of Chemistry, Philadelphia, Pennsylvania</td>
<td>1</td>
</tr>
<tr>
<td>Dr. H. Alcock</td>
<td>Pennsylvania State University, Department of Chemistry, University Park, Pennsylvania</td>
<td>1</td>
</tr>
<tr>
<td>Dr. R. Lenz</td>
<td>University of Massachusetts, Department of Chemistry, Amherst, Massachusetts</td>
<td>1</td>
</tr>
<tr>
<td>Dr. M. David Curtis</td>
<td>University of Michigan, Department of Chemistry, Ann Arbor, Michigan</td>
<td>1</td>
</tr>
<tr>
<td>NASA-Lewis Research Center</td>
<td>Attn: Dr. T. T. Serafini, MS 49-1, 21000 Brookpark Road, Cleveland, Ohio</td>
<td>1</td>
</tr>
<tr>
<td>Dr. J. Griffith</td>
<td>Naval Research Laboratory, Chemistry Section, Code 6120, Washington, D.C.</td>
<td>1</td>
</tr>
<tr>
<td>Dr. G. Goodman</td>
<td>Globe-Union Incorporated, 5757 North Green Bay Avenue</td>
<td>1</td>
</tr>
</tbody>
</table>