DECOMPOSITIONS OF MULTIATTRIBUTE UTILITY FUNCTIONS BASED ON CONCEPT
DECOMPOSITIONS OF MULTIATTRIBUTE
UTILITY FUNCTIONS BASED ON CONVEX DEPENDENCE

Hiroyuki Tamura* and Yutaka Nakamura**

*Department of Precision Engineering
Osaka University, Suita
Osaka 565, Japan

**Graduate School of Administration
University of California, Davis
Davis, California 95616

Working Paper 82-1
March 1982

This research was supported in part by the Office of Naval Research under Contract #N00014-80-C-0897, Task #NR-277-258 to the University of California, Davis (Peter H. Farquhar, Principal Investigator).

Approved for public release; distribution unlimited.

All rights reserved. Reproduction in whole or in part is not permitted without the written consent of the authors, except for any purpose of the United States Government.
Decompositions of Multiattribute Utility Functions Based on Convex Dependence

Hiroyuki Tamura and Yutaka Nakamura

Graduate School of Administration
University of California, Davis
Davis, California 95616

Graduate School of Administration
Mathematics Division (Code 411-MA)
Office of Naval Research
Arlington, Virginia 22217

March 1982

March 1982

Multiattribute utility theory
Preference models
Decision analysis
Approximations
Convex dependence

We describe a method of assessing multiattribute utility functions. First, we introduce the concept of convex dependence, where we consider the change of shapes of conditional utility functions. Then, we establish theorems which show how to decompose multiattribute utility functions using convex dependence. The convex decomposition includes as special cases Keeney's additive/multiplicative decompositions, Fishburn's bilateral decomposition, and Bell's decomposition under the interpolation independence. Moreover, the convex decomposition is an exact grid model which was axiomatized by Fishburn and Farquhar.
DECOMPOSITIONS OF MULTIATTRIBUTE UTILITY FUNCTIONS
BASED ON CONVEX DEPENDENCE

Hiroyuki Tamura and Yutaka Nakamura†
Department of Precision Engineering
Osaka University, Suita, Osaka 565, Japan

ABSTRACT

We describe a method of assessing von Neumann-Morgenstern utility functions on a two-attribute space and its extension to n-attribute spaces. First, we introduce the concept of convex dependence between two attributes, where we consider the change of shapes of conditional utility functions. Then, we establish theorems which show how to decompose a two-attribute utility function using the concept of convex dependence. This concept covers a wide range of situations involving trade-offs. The convex decomposition includes as special cases Keeney's additive/multiplicative decompositions, Fishburn's bilateral decomposition, and Bell's decomposition under the interpolation independence. Moreover, the convex decomposition is an exact grid model which was axiomatized by Fishburn and Farquhar. Finally, we extend the convex decomposition theorem from two attributes to an arbitrary number of attributes.

†Presently at the University of California, Davis.
This paper deals with individual decision making where the decision alternatives are characterized by multiple attributes. The problem is to provide conditions describing how a decision maker trades off conflicting attributes in evaluating decision alternatives. These conditions then restrict the form of a multiattribute utility function in a decomposition theorem. In many situations, it is practically impossible to directly assess a multiattribute utility function, so it is necessary to develop conditions that reduce the dimensionality of the functions that are required in the decomposition.

Much of the research in utility theory deals with additive decompositions [5, 16]. Pollak [16], Keeney [11, 12, 13, 14], and others, however, develop a "utility independence" condition that implies non-additive utility decompositions. Although these decompositions have been applied to many real-world decision problems, there are situations, such as conflict resolution between pollution and consumption [17], where the utility independence condition does not hold. Fishburn [6] and Farquhar [3, 4] have investigated more general independence conditions that imply various non-additive utility decompositions. For example, Farquhar's fractional decompositions include nonseparable attribute interactions.

In this paper, we introduce the concept of convex dependence as an extension of utility independence. In our methodology, normalized conditional utility functions play an important role. Utility independence implies that the normalized conditional utility functions do not depend on different conditional levels. On the other hand, convex dependence implies that each normalized conditional utility function can be represented as a convex combination of some specified normalized conditional utility functions. Keeney [12] described interpolation in motivating utility independence. If we find that
the utility independence condition does not hold in the process of assessing normalized conditional utility functions, we can repeat the procedure [17] to test the convex dependence condition to derive the utility representations as approximations. The concept of the convex dependence covers a wide range of situations involving trade-offs. The convex decomposition includes as special cases Keeney's [12, 13] multilinear and multiplicative decompositions, Fishburn's [6] bilateral decomposition, and Bell's [1] decomposition under interpolation independence, which is the same as first-order convex dependence in this paper. Bell [2] has developed ways to reduce the number of constants to be assessed and has provided a generalization of additive and multiplicative forms in the multiattribute case. Moreover, the convex decomposition is an exact grid model as defined by Fishburn [7]. Our approach gives an approximation of utility functions but recently Fishburn and Farquhar [8] derived a preference axiom which provides a general exact grid model, and provided a procedure for selecting the normalized conditional utility functions.

1. PRELIMINARIES

Let \(X = X_1 \times \cdots \times X_n \) denote the consequence space which, for simplicity, is a rectangular subset of a finite-dimensional Euclidean space. A specific consequence \(x \in X \) is represented by \((x_1, \ldots, x_n) \), where \(x_i \) is a particular level in the attribute set \(X_i \). We consider \(Y \times Z \) as two-attribute space, where \(Y = X_{i_1} \times \cdots \times X_{i_r} \), \(Z = X_{i_{r+1}} \times \cdots \times X_{i_n} \) and \(\{i_1, \ldots, i_n\} = \{1, \ldots, n\} \). Throughout the paper, we assume that appropriate conditions are satisfied for the existence of von Neumann-Morgenstern utility function \(u(y,z) \) on \(Y \times Z \) [18]. Moreover, we assume that there exist distinct \(y^0, y^0 \in Y \)
which satisfy \(u(y^*, z) \neq u(y^0, z) \) for all \(z \in Z \). Similarly, we assume that there exist distinct \(z^*, z^0 \in Z \), which satisfy \(u(y, z^*) \neq u(y, z^0) \) for all \(y \in Y \).

DEFINITION 1. Given an arbitrary \(z \in Z \), a normalized conditional utility function \(v_z(y) \) on \(Y \) is defined as

\[
v_z(y) = \frac{u(y, z) - u(y^0, z)}{u(y^0, z) - u(y^0, z^0)}.
\]

From Definition 1 it is obvious that \(v_z(y^0) = 0 \) and \(v_z(y^*) = 1 \). Moreover, if a decision maker prefers \(y^* \) to \(y^0 \), then \(v_z(y) \) represents his utility, and if a decision maker prefers \(y^0 \) to \(y^* \), then \(v_z(y) \) represents his disutility.

To represent the decomposition forms and proofs simply, we need to introduce some notation. First, we define three functions \(f(y, z) \), \(G(y, z) \) and \(H(y, z) \) which will be used to represent the decomposition forms. We assume \(u(y^0, z^0) = 0 \) without loss of generality.

\[
f(y, z) = u(y, z) - u(y^0, z) - u(y, z^0), \tag{1}
\]

\[
G(y, z) = u(y^*, z^0)f(y, z) - u(y, z^0)f(y^*, z), \tag{2}
\]

\[
H(y, z) = u(y^0, z^*)f(y, z) - u(y^0, z)f(y, z^*). \tag{3}
\]

The two functions \(G(y, z) \) and \(H(y, z) \) are related to each other as follows.

\[
u(y^0, z^*)G(y, z) - u(y^0, z)G(y, z^*) = u(y^*, z^0)H(y, z) - u(y, z^0)H(y^*, z). \tag{4}
\]

We define \(F(y, z) \) as

\[
F(y, z) = u(y^0, z^*)G(y, z) - u(y^0, z)G(y, z^*). \tag{5}
\]

To represent the constants simply in our decomposition forms, three matrices \(G^n \), \(H^n \) and \(F^n \) are defined for \(y^1, \ldots, y^n \in Y \) and \(z^1, \ldots, z^n \in Z \). Let the \((i, j)\)
element of the matrix G^n be denoted by $(G^n)_{ij}$, which is defined as $G(y^i, z^j)$, where $z^n = z^*$. Similarly, define $(H^n)_{ij} = H(y^i, z^j)$, where $y^n = y^*$ and $z^n = z^*$. Let G^n_{ij} be the $(n-1) \times (n-1)$ matrix obtained from G^n by deleting the i-th row and the j-th column, and let "det" denote the determinant on square matrices. Define

$$|G^n| = \det(G^n), \quad G^n_{ij} = (-1)^{i+j}|G^n|, \quad i, j = 1, \ldots, n.$$

Let $|H^n|, \quad |F^n|, \quad F^n_{ij}$ be defined similarly. Moreover, for $n = 1$, we define

$$G^n_{ij} = H^n_{ij} = F^n_{ij} = 1.$$

We define an $n \times n$ matrix G for distinct $y_1, \ldots, y_n \in Y$, and distinct $z_0, z_1, \ldots, z_n \in Z$ as $(G^n)_{ij} = v_{z_i}(y_i) - v_{z_0}(y_i)$.

2. CONVEX DEPENDENCE AND ITS PROPERTIES

In this section, we define the concept of convex dependence and discuss some of its properties. In the following, let δ_{ij} be the Kronecker delta function.

DEFINITION 2. Y is n-th order convex dependent on Z, denoted $Y(CD_n)Z$, if there exist distinct $z_0, z_1, \ldots, z_n \in Z$ and real functions g_1, \ldots, g_n on Z with $g_i(z_j) = \delta_{ij}$ for $i, j \in \{1, \ldots, n\}$ such that the normalized conditional utility function $v_z(y)$ can be written as

$$v_z(y) = [1 - \sum_{i=1}^{n} g_i(z)] v_{z_0}(y) + \sum_{i=1}^{n} g_i(z) v_{z_i}(y) \quad (6)$$

for all $y \in Y$ and $z \in Z$, where n is the smallest non-negative integer for which (6) holds.
For $n = 1$, relation (6) implies "Y is interpolation independent of Z" in Bell's [1, 2] terminology. When Y and Z are scalar attributes, a geometric illustration of Definition 2 is in Figure 1. Suppose three arbitrary normalized conditional utility functions $v_{z_0}(y)$, $v_{z_1}(y)$, and $v_z(y)$ are assessed on Y. If $Y(CD_0)Z$, all the normalized conditional utility functions are identical as shown in Figure 1(a). If $Y(CD_1)Z$, an arbitrary normalized conditional utility function $v_z(y)$ can be obtained as a convex combination of $v_{z_0}(y)$ and $v_{z_1}(y)$ as shown in Figure 1(b). Moreover, Figure 1(b) shows that the preferential independence condition [9] need not hold (Note that $v_{z_0}(y)$ is monotonic and $v_{z_1}(y)$ is not).

Figure 1 goes here

We now establish several properties of convex dependence. Let $Y(GUI)Z$ denote Y is generalized utility independent of Z: see Fishburn and Keeney [10] for a definition.

PROPERTY 1. $Y(CD_0)Z$, if and only if $Y(GUI)Z$.

Proof. If $Y(GUI)Z$, the following equation holds

$$u(y,z) = \alpha(z)u(y,z_0) + \beta(z)$$ \hspace{1cm} (7)

for some $z_0 \in Z$. Setting $y = y^0$ and $y = y^*$ in (7) where $u(y^0,z) \neq u(y^*,z)$ for all $z \in Z$ by the assumption in section 1, we obtain

$$u(y^0,z) = \alpha(z)u(y^0,z_0) + \beta(z),$$ \hspace{1cm} (8a)

$$u(y^*,z) = \alpha(z)u(y^*,z_0) + \beta(z).$$ \hspace{1cm} (8b)
Therefore,

\[\frac{u(y,z) - u(y^0,z)}{u(y^*,z) - u(y^0,z)} = \frac{a(z)[u(y,z_0) - u(y^0,z_0)]}{a(z)[u(y^*,z_0) - u(y^0,z_0)]} = \frac{u(y,z_0) - u(y^0,z_0)}{u(y^*,z_0) - u(y^0,z_0)}. \]

(9)

From the Definition 1, (9) implies that \(v_z(y) = v_{z_0}(y) \) which shows that \(Y(CD_0)Z \).

If \(Y(CD_0)Z \), (9) holds. Rearranging (9), we obtain

\[u(y,z) = \frac{u(y^*,z) - u(y^0,z)}{u(y^*,z_0) - u(y^0,z_0)} u(y,z_0) + \frac{u(y^0,z)u(y^*,z_0) - u(y^0,z_0)u(y^*,z)}{u(y^*,z_0) - u(y^0,z_0)} \]

(10)

which shows that \(Y(GUI)Z \).

This property shows that the convex dependence is a natural extension of generalized utility independence except for null zones.

PROPERTY 2. If \(Y(CD_n)Z \), then there exist distinct \(y_1, \ldots, y_n \in Y \), and distinct \(z_0, z_1, \ldots, z_n \in Z \) which satisfy rank \(G_n = n \).

Proof. On the contrary, suppose rank \(G_n \neq n \) for all distinct \(y_1, \ldots, y_n \in Y \) and \(z_0, z_1, \ldots, z_n \in Z \). Then there exist real numbers \(h_i \) \((i = 1, \ldots, n) \) such that for all \(y \in Y \), we have

\[v_{z_n}(y) - v_{z_0}(y) = \sum_{i=1}^{n-1} h_i[v_{z_i}(y) - v_{z_0}(y)] \]

which implies \(Y(CD_{n-1})Z \).

Using Property 2, we can assess the order of convex dependence [17].

For \(n = 1, 2, \ldots \) sequentially we test the rank condition of \(G_n \) for arbitrary distinct \(y_1, \ldots, y_n \in Y \). Then if rank \(G_n = n \) and rank \(G_{n+1} = n \) for arbitrary distinct \(y_1, \ldots, y_{n+1} \in Y \), we can conclude \(Y(CD_n)Z \).
It is obvious that relation between G_n and G^n is as follows

$$\text{rank } G_n = \text{rank } G^n$$

for distinct $y^1, \ldots, y^n \in Y$ and distinct $z^0, z^1, \ldots, z^{n-1}, z^* \in Z$, because $G(y, z) = u(y^*, z^0)[u(y^*, z) - u(y^0, z)][v_z(y) - v_z^0(y)]$ from (1) and (2). Thus we immediately get the following property.

PROPERTY 3. If $Y(CD_n)Z$, then there exist distinct $y^1, \ldots, y^n \in Y$ and distinct $z^1, \ldots, z^{n-1} \in Z$ which satisfy $\text{rank } G^n = n$.

Obviously the same property of rank condition for H^n holds. Property 3 guarantees that the following property holds, which shows the relation of the order of convex dependence between two attributes.

PROPERTY 4. For $n = 0, 1, \ldots$, if $Y(CD_n)Z$, then Z is at most $(n + 1)$-th order convex dependent on Y.

Proof. See appendix.

A few aspects of these Properties deserve brief comment. If Y is utility independent of Z which is denoted $Y(UI)Z$, then Y is obviously convex dependent on Z; the converse is not true. The concept of convex dependence asserts that when Y is utility independent of Z, Z must be utility independent or first-order convex dependent on Y. Moreover, if Y is n-th order convex dependent on Z, then Z satisfies one of the three properties, $Z(CD_{n-1})Y$, $Z(CD_n)Y$, or $Z(CD_{n+1})Y$, because if $Z(CD_m)Y$ for $m < n - 1$, then $Y(CD_{m+1})Z$ at most and $m + 1 < n$.
PROPERTY 5. If rank $G^n = n$ for distinct $y^1, ..., y^n \in Y$ and distinct $z^1, ..., z^{n-1} \in Z$, then rank $F^n = n$.

Proof. By using (2), we obtain the following relation between G^n and F^n.

$$|G^n| = \sum_{i=1}^{n^*} u(y^i, z^0) \sum_{j=1}^{n^*} f(y^n, z^j) - u(y^n, z^0)|F^n|,$$

where summation $i = 1$ to n^* means $1, 2, ..., n-1, *$.

On the contrary, if rank $F^n \neq n$ for distinct $y^1, ..., y^{n-1} \in Y$ and $z^1, ..., z^{n-1} \in Z$, then,

$$|F^n| = 0$$

and

$$\sum_{j=1}^{n^*} f(y^n, z^j) = 0$$

for $i = 1, 2, ..., n$ because even if we transform one of $y^1, y^2, ..., y_{n-1}$ and $*^*$ into y^n in F^n, rank $F^n \neq n$ by the assumption.

3. CONVEX DECOMPOSITION THEOREMS ON TWO-ATTRIBUTE SPACE

This section uses convex dependence to establish two decomposition theorems and a corollary for two-attribute utility functions. We further discuss the relation of these results with the previous researches.

THEOREM 1. For $n = 1, 2, ..., Y(CD_n)Z$, if and only if

$$u(y, z) = u(y^0, z) + u(y, z^0) + v(y)f(y^*, z) + \frac{c_y}{|G^n|} \sum_{i=1}^{n^*} \sum_{j=1}^{n} f(y^n, z^j)G(y^n, z^j), (11)$$

where

$$v(y) = \frac{u(y^0, z^0)}{u(y^*, z^0)} , \quad c_y = \frac{1}{u(y^*, z^0)} .$$

Proof. See appendix.
THEOREM 2. For \(n = 1, 2, \ldots \), \(Y(CD_n)Z \) and \(Z(CD_n)Y \), if and only if

\[
\begin{align*}
\bar{u}(y,z) &= \bar{u}(y^0,z) + \bar{u}(y,z^0) + \frac{1}{|F^n|} \sum_{i=1}^{n^*} \sum_{j=1}^{n^*} \bar{f}_{ij} f(y^i,z^j) f(y^j,z) \\
&+ c \sum_{i=1}^{n^*} \sum_{j=1}^{n^*} \bar{g}^{n^*}_{ni} \bar{f}^{n^*}_{nj} G(y^i,z^j) H(y^j,z),
\end{align*}
\]

(12)

where \(c = \frac{c_y c_z}{|G^{nH}|} \left[f(y^n,z^n) - \frac{1}{|F^n|} \sum_{i=1}^{n^*} \sum_{j=1}^{n^*} \bar{f}_{ij} f(y^n,z^j) f(y^j,z^n) \right] \)

and \(c_y = \frac{1}{\bar{u}(y^*,z^0)} \), \(c_z = \frac{1}{\bar{u}(y^0,z^*)} \).

Proof. See appendix.

We have obtained two main decomposition theorems which can represent a wide range of utility functions. Moreover, when the utility on the arbitrary point \((y^n,z^n)\) has a particular value, that is, \(c = 0 \) in (12), we can obtain one more decomposition of utility functions which does not depend on the point \((y^n,z^n)\). This decomposition still satisfies \(Y(CD_n)Z \) and \(Z(CD_n)Y \), so we will call this new property reduced \(n \)-th order convex dependence and denote it by \(Y(RCD_n)Z \). It is obvious that \(Z(RCD_n)Y \) when \(Y(RCD_n)Z \).

COROLLARY 1. For \(n = 1, 2, \ldots \), \(Y(RCD_n)Z \), if and only if

\[
\begin{align*}
\bar{u}(y,z) &= \bar{u}(y^0,z) + \bar{u}(y,z^0) + \frac{1}{|F^n|} \sum_{i=1}^{n^*} \sum_{j=1}^{n^*} \bar{f}_{ij} f(y^i,z^j) f(y^j,z) \\
&+ c \sum_{i=1}^{n^*} \sum_{j=1}^{n^*} \bar{g}^{n^*}_{ni} \bar{f}^{n^*}_{nj} G(y^i,z^j) H(y^j,z),
\end{align*}
\]

(13)

We note that when \(n = 1 \), (13) reduces to Fishburn's [6] bilateral decomposition,

\[
\begin{align*}
\bar{u}(y,z) &= \bar{u}(y^0,z) + \bar{u}(y,z^0) + \frac{f(y^*,z^0)f(y^*,z)}{f(y^*,z^*)} \quad \text{for } n^* = 1
\end{align*}
\]

(14)
In Figure 2, we show on two scalar attributes the difference between the conditional utility functions necessary to construct the previous decomposition models and our decomposition models. By assessing utilities on the heavy shaded lines and points, we can completely specify the utility function in the cases indicated in Figure 2. As seen from Figure 2, an advantage of the convex decomposition is that only conditional utility functions with one varying attribute need be assessed even for high-order convex dependent cases.

4. CONVEX DECOMPOSITION THEOREM ON N-ATTRIBUTE SPACE

There are many ways to extend the two-attribute convex decomposition theorems in Section 3 to n-attribute decompositions. In this paper, we extend Theorem 1 to n attributes in a way which might be useful in the practical situations discussed later.

We partition X into X_1 and X_\bar{1}, where X_1 \equiv X_1 \times \ldots \times X_{i-1} \times X_{i+1} \times \ldots \times X_n. When we consider Y = X_i and Z = X_1 \bar{1} in Theorem 1, all notation and definitions in the previous section are suffixed with i. The representation and its proof of n-attribute convex decomposition theorem requires some additional terminology and notation as shown in Farquhar [3]. First, we define the following function for i = 1, ..., n,

\[G_{i,k_1}^m \equiv \sum_{k=1}^{n} G_{i(k_1,k)}(x_1 \times X_{i(k_1,k)}) \tag{15} \]

where \(G_{i(k_1,k)} \) is \((j,k)\)-cofactor of \(G_{i}^m \) and \(x_j \in X_j \), \(x_i^k \in X_i\bar{1} \). The delta operator \(\Delta \) is defined as follows. Suppose \(X = X_{i_1} \times X_{i_2} \times \ldots \times X_{i_r} \) for some \(1 \leq r \leq n \) and \(I_1 \subseteq \{1, \ldots, n\} \). Let \(y \in X_{i_1} \) and \(\alpha = \{5 \in I_1\} : i \in I_1\}, \alpha_1 \in \{1, \ldots, m, *, \text{blank}\}. \)
Then delta operator Δ is defined as

$$ u(x_{I_r}^{\Delta}, y) = \sum_{J \subseteq I_r} \{(-1)^b \prod_{i \in I_r} u(x_i^{a_i}, \ldots, x_i^{a_i}, y): a_j = 1 \text{ if } j \in J, $$

$$ a_j = 0 \text{ and } c_j = 0 \text{ if } j \notin J \}, \quad (16) $$

where $b = r + \sum_{j=1}^r a_j$.

We shall often omit attributes that are at the level x^0, when it will not be confusing. For instance, $u(x_1) = u(x_1^0, x_1^0)$. The utility function is always scaled so that $u(x_1^0, \ldots, x_n^0) = 0$. From the definition of the delta operator and (1), $f_j(x_j^{a_j}, x_j, y)$ for all $j \in I_r$, $J = I_r \setminus \{j\}$ are equal each other. Using the relation of $f_i(x_i^{a_i}, y) = f_i^\Delta(x_i, y)$ for $i = 1, \ldots, n$, we can get the following notation

$$ f_i^\Delta(y) = f_i(x_i^{a_i}, y) \text{ for all } i \in I_r. \quad (17) $$

The coefficient function $\Delta(I_r, \beta)(y)$ for $I_r \subseteq \{1, \ldots, n\}$, $\beta = \{\beta_i: i \in I_r\}$ and $\beta_i \in \{1, \ldots, \ast\}$ is defined as

$$ \Delta(I_r, \beta)(y) = \sum_{J \subseteq I_r} \{(-1)^b \prod_{i \in I_r} u(x_i^{a_i}, \ldots, x_i^{a_i}, y): a_j = \beta_j, \beta_j = \ast \text{ and } c_j = 0 $$

$$ \text{ if } j \in J, a_j = \ast \text{ and } c_j = 1 \text{ if } j \not\in J \}, \quad (18) $$

where $b = r + \sum_{j=1}^r c_j$ and $y \in x_{I_r}^\Gamma$.

The coefficient function has the relation with (2) as follows.
PROPERTY 6.

(i) \(\Delta_{(i, \beta_1)}(x_i) = G_1(x_i^\beta_1, x_1) \) for \(i = 1, \ldots, n \).

(ii) \(\Delta_{(i_r, \beta)}(y) = u(x_1^*) \Delta_{(J, \beta)}(x_1, y) - u(x_1^\beta_1) \Delta_{(J, \beta)}(x_1^\Delta, y) \)
 for \(i \in I_r \) and \(J = I_r \setminus \{i\} \).

(iii) \(\Delta_{(J, \beta)}(y) = \sum_{K \subset J} (-1)^{b} G_1(x_K, y) \prod_{j \in I_r} u(x_j^\alpha_j) \) if \(\alpha_j = \beta_j, \beta_j = * \) and
 \(\sum a_j = 0 \) if \(j \in K \), \(\alpha_j = * \) and \(a_j = 1 \) if \(j \notin K \),

where \(b = r + \sum_{i=1}^{r} a_i \), \(J = I_r + \{i\}, i \notin I_r \) and \(y \in X_j \).

Proof. (i), (ii), and (iii) are easily obtained from (2) and (18).

THEOREM 3. Suppose that for \(i \in \mathbb{N} = \{1, \ldots, n\} \), \(m_i \) are nonnegative integers.

For \(i = 1, \ldots, n \), \(X_i(\mathbb{N}, m_i)X_i \) if and only if

\[
u(x_1, \ldots, x_n) = \sum_{I \subset N} c_I \prod_{i \in I} v_i(x_i) + \sum_{I \subset N} \prod_{i \in I} d_i \prod_{j=1}^{m_i} G_{i, j}(x_i)[\Delta_{(i, \beta_1)} v_i(x_j)]
\]

where \(V_I(X_j) \equiv \sum_{J \subset N=I} [\Delta_{(i, \beta)}(x_j^\Delta) \prod_{j \in J} v_i(x_j)] \),
\(c_I \equiv u(x_i^\Delta) \),
\(d_i \equiv \frac{1}{|G_{i, j}| u(x_i^*)} \) for \(i = 1, \ldots, n \),
\(\beta = \{\beta_i: i \in I\} \) and \(\beta_i \in \{1, \ldots, m_i, *\} \).

Proof. See appendix.
Decomposition form in Theorem 3 gives a wide range of utility functions on n-attribute space because it is possible to allow for the various orders of convex dependence among attributes. The order of convex dependence is the number of normalized conditional utility functions which must be evaluated to construct a multiattribute utility function. Therefore, Theorem 3 provides the general decomposition form which has \(m_i \) conditional utility functions on each \(X_i \) to be evaluated. Nahas [15] discussed the order of conditional utility function on each \(X_i \) when utility independence holds among attributes. In this paper, we show the relation among orders of convex dependence on each \(X_i \), which is one extension of Nahas' discussion. As Property 4 holds with respect to the order of convex dependence between attributes, the following property holds with respect to the order of convex dependence in Theorem 3.

PROPERTY 7. When \(X_i(\text{CD}_m)X_i \) for \(i = 1, \ldots, n \), if \(m_2, \ldots, m_n \) are arbitrary orders of convex dependence, the order \(m_1 \) must satisfy the following two inequalities.

\[
\begin{align*}
(\text{i}) & \quad \prod_{i=2}^{n} (m_i + 2) \geq m_1 + 1 \\
(\text{ii}) & \quad m_1 + 2 \geq \max\{a_2, \ldots, a_n\},
\end{align*}
\]

where \(a_i = (m_i + 1) / n \) and \(\prod_{j=2}^{n} (m_j + 2), i = 2, \ldots, n \).

Proof: (i) When \(m_2, \ldots, m_n \) are arbitrarily given, we can obtain the upperbound of \(m_1 \) by the following term in (19).

\[
\prod_{i=1}^{n} d_i \prod_{j=1}^{m_i} G_{i,j}(N, \beta) (20)
\]
The upperbound of \(m_1 \) is determined by the number of normalized conditional utility function on \(X_1 \) included in (20). Then, it is sufficient to take into account the following term in (20).

\[
d_1 \sum_{j=1}^{m_1} G_{1,j}(x_1^0) \Delta(N, \beta)
\]

By Property 6 it is obvious that (21) is constructed by the linear combination of the following terms.

\[
d_1 \sum_{j=1}^{m_1} G_{1,j}(x_1^0) G_1(x_1^j, x_2^\beta_2, \ldots, x_n^\beta_n),
\]

where \(\beta_i \in \{0, 1, \ldots, m_i, *\} \), \(i = 2, \ldots, n \).

Substituting (15) into (22), we have

\[
d_1 \sum_{j=1}^{m_1} G_{1,j}(x_1^0) \sum_{k=1}^{m_1} G_1(x_1^k, x_2^\beta_2, \ldots, x_n^\beta_n).
\]

Setting \(x_1^{-j} = (x_2^\beta_2, \ldots, x_n^\beta_n) \) in (23), we have

\[
\frac{1}{u(x_1^0)} G_1(x_1^0, x_2^\beta_2, \ldots, x_n^\beta_n).
\]

Then, the decomposition (19) includes \(G_1(x_1^0, x_2^\beta_2, \ldots, x_n^\beta_n), \beta_i \in \{0, 1, \ldots, m_i, *\}, \)

\(i = 1, \ldots, n \), that is, \(\Pi (m_i + 2) \) normalized conditional utility functions

at most.

(i) When \(X_1(\text{CD}_m)X_1^{-1}, i = 1, \ldots, n \), the orders \(m_1, \ldots, m_n \) must satisfy the following inequalities by (i).

\[
\Pi (m_j + 2) \geq m_i + 1, \quad i = 1, \ldots, n
\]
Then for \(m_1 \) we have

\[
 m_1 + 2 \geq \max \{ m_2, \ldots, m_n \},
\]

where \(m_i = (m_i + 1)/n \)

\[
 \prod_{j=2}^{i} (m_j + 2), \quad i = 2, \ldots, n.
\]

In some decision problems, utility independence may not hold in one or more attributes. In such cases the convex decomposition theorem may give a representation of the utility function. We illustrate how the convex decomposition theorem decomposes the utility function when \(n = 3 \).

When \(m_1 = m_2 = m_3 = 0 \) in (19), we have obviously

\[
 u(x_1, x_2, x_3) = \sum_{I \subseteq \{1, 2, 3\}} c_I \prod_{i \in I} v_i(x_i).
\]

This decomposition is a multilinear utility function [11].

When \(m_2 \) and \(m_3 \) are arbitrary orders of convex dependence, we obtain the following inequalities from Property 7.

\[
 (m_2 + 2)(m_3 + 2) \geq m_1 + 1,
\]

\[
 m_1 + 2 \geq \max \{ \frac{m_2 + 1}{m_3 + 2}, \frac{m_3 + 1}{m_2 + 2} \}
\]

When \(m_2 = m_3 = 0 \) in (25), that is, \(x_2(CD_0)x_3 \) and \(x_3(CD_0)x_1 \), \(x_1 \) is at most third-order convex dependent on \(x_2x_3 \). In this case the decomposition form in Theorem 3 is reduced to

\[
 u(x_1, x_2, x_3) = \sum_{I \subseteq \{1, 2, 3\}} c_I \prod_{i \in I} v_i(x_i)
\]

\[
 + d_1 \prod_{i=1}^{m_1} G_{1,i}(x_i)[G_1(x_1^*, x_2, x_3^0) v_2(x_2)
\]

\[
 + G_1(x_1^*, x_2^*, x_3^0) v_3(x_3)] + G_1(x_1^*, x_2^*, x_3^0) v_3(x_3).
\]
Therefore, we can construct (27) by evaluating one conditional utility function on X_2 and X_3, m_1 conditional utility functions on X_1, where $m_1 = 1$, 2, or 3, and constants. When $m_1 = 3$, that is, $X_1(CD_3)X_2X_3$, (27) is reduced to

$$u(x_1, x_2, x_3) = c_1 v_1(x_1) + u(x_1, x_2, x_3) v_2(x_2)$$

$$+ u(x_1, x_2, x_3) v_3(x_3) + u(x_1, x_2, x_3) v_2(x_2) v_3(x_3).$$

This decomposition form is the same as the one which Keeney showed in [14] and Nahas discussed in [15] when $X_2(UI)X_1X_3$ and $X_3(UI)X_1X_2$. Keeney said nothing about what property holds between X_1 and X_2X_3 in this case. Convex dependence asserts that (28) holds if and only if $X_1(CD_3)X_2X_3$ as shown above. Moreover, from Property 7 (ii) convex dependence allows for $X_1(CD_2)X_2X_3$ or $X_1(CD_1)X_2X_3$ which are stronger conditions than $X_1(CD_3)X_2X_3$. In these cases, we could obtain decomposition forms easily as shown in (27) where $m_1 = 1$ and 2 are corresponding to $X_1(CD_1)X_2X_3$ and $X_1(CD_2)X_2X_3$, respectively.

5. SUMMARY

The concept of convex dependence is introduced for decomposing multiattribute utility functions. Convex dependence is based on normalized conditional utility functions. Since the order of convex dependence can be an arbitrary finite number, many different forms can be produced from the convex decomposition theorems. We have shown that the convex decompositions include the additive, multiplicative, multilinear and bilateral decompositions as special cases. A major advantage of the convex decompositions is that only single-attribute utility functions are used in the utility representations even for high-order convex dependent cases. Therefore, it is relatively easy
to assess the utility functions. Moreover, in the multiattribute case the
orders of convex dependence among the attributes have much freedom even if the
restrictions in Property 7 are taken into account. So even in the practical
situations where utility independence, which is the 0-th order convex depen-
dence, holds for all but one or two the attributes, the convex decompositions
produce an appropriate representation.

Our approach is an approximation method based upon the exact grid model
defined by Fishburn [7]. We note that Fishburn and Farquhar [8] recently
established an axiomatic approach for a general exact grid model and provided
a procedure for selecting a basis of normalized conditional utility functions.
ACKNOWLEDGEMENT

The authors wish to express their sincere thanks to Professor Peter H. Farquhar for his extensive comments on earlier drafts of this paper. This research was supported in part by the Ministry of Education, Japan, for the science research program of "Environmental Science" under Grant No. 303066, 403066, and 503066; by the Toyota Foundation, Tokyo, under Grant No. 77-1-203, and by the Office of Naval Research, Contract N00014-80-C-0897, Task #NR-277-258, with the University of California, Davis.
To represent simply an arbitrary linear combination of normalized conditional utility functions, we define the following notation
\[C[v_{z_1}(y), \ldots, v_{z_n}(y)] = \sum_{i=1}^{m} \theta_i v_{z_i}(y), \]
where \(\sum_{i=1}^{m} \theta_i = 1. \)

By using this notation, the following equations hold.
\[f(y,z) = f(y*,z)C[v_{z_0}(y), v_z(y)], \]
\[= f(y,z*)C[v_{z_0}(z), v_{y}(z)], \]
\[G(y,z) = G(y,z*)C[v_{z_0}(z), v_{y}(z), v_{y^*}(z)], \]
\[H(y,z) = H(y*,z)C[v_{z_0}(y), v_z(y), v_{z^*}(y)]. \]

Proof of Property 4: When \(n = 0, \) if \(Y(CD_0)Z, \) then \(v_{z}(y) = v_{z_0}(y). \)

Using (1), we have
\[f(y,z) = v_{z_0}(y)f(y^*,z). \]
Substituting (29b) into (30), we have
\[C[v_{y}(z), v_{y_0}(z)] = C[v_{y^*}(z), v_{y_0}(z)]. \]

This concludes \(Z(CD_Y)Y \) at most.

When \(n \geq 1, \) if \(Y(CD_n)Z, \) then for distinct \(z^0, z^1, \ldots, z^{n-1}, z^* \in Z \)
\[v_{z}(y) = [1 - \sum_{i=1}^{n^*} g_i(z)]v_{z_0}(y) + \sum_{i=1}^{n^*} g_i(z)v_{z_i}(y) \]
\[= \sum_{i=1}^{n^*} [v_{z_i}(y) - v_{z_0}(y)]g_i(z) + v_{z_0}(y). \]
(31)
By Property 2 we can select distinct $y^1, ..., y^n \epsilon \mathcal{Y}$ and $z^1, ..., z^{n-1} \epsilon \mathcal{Z}$ which make G_n a nonsingular matrix. Then, substituting these $y^1, ..., y^n \epsilon \mathcal{Y}$ into (31), we have the following matrix equation,

$$G_n \mathbf{x} = \mathbf{y},$$

where \mathbf{x} and \mathbf{y} are column vectors and these i-th elements are $g_i(z)$ and $y_i(z^i)$, respectively.

Using $G(y,z)$, (32) is transformed into

$$\overline{G} \mathbf{g} = \mathbf{u},$$

where $u(y^*,z) = u(y^*,z)$ for all $z \epsilon \mathcal{Z}$ from the previous assumption, and $(\overline{G})_{ij} = G(y^1, z^j) / [u(y^*,z^j) - u(y^0, z^j)]$, where $z^j = z^*$, and \mathbf{u} is a column vector and its i-th element is $G(y^1, z) / [u(y^*,z) - u(y^0, z)]$.

Solving (33) for $g_i(z)$ $(i = 1, ..., n)$ and substituting these $g_i(z)$ into (31), we obtain

$$G(y,z) = \frac{1}{|G^n|} \sum_{i=1}^{n} G(y,z^i) \sum_{j=1}^{n} \overline{G}_{ij} G(y^j, z),$$

where G^n is nonsingular by Property 3.

By $(29c)$ we have

$$G(y,z^*)C[\mathbf{v}_y(z), \mathbf{v}_z(z), \mathbf{v}_y^*(z)]$$

$$= \frac{1}{|G^n|} \sum_{i=1}^{n} G(y,z^i) \sum_{j=1}^{n} \overline{G}_{ij} G(y^j, z^*)C[\mathbf{v}_y(z), \mathbf{v}_z(z), \mathbf{v}_y^*(z)].$$

Summing up all the coefficients of $C[\mathbf{v}_y(z), \mathbf{v}_z(z), \mathbf{v}_y^*(z)]$ for $j = 1, 2, ..., n$ in the right hand side of (35) yields

$$\frac{1}{|G^n|} \sum_{i=1}^{n} G(y,z^i) \sum_{j=1}^{n} \overline{G}_{ij} G(y^j, z^*) = G(y,z^*).$$
which implies
\[v_y(z) = C[v_y0(z), v_y1(z), \ldots, v_yn(z), v_ys(z)]. \]

This concludes \(Z(CD_{n+1})Y \) at most. \(\Box \)

Proof of Theorem 1: Suppose \(Y(CD_n)Z \), and (34) holds. Substituting (2) into the left hand side of (34) and solving it with respect to \(u(y,z) \), then we have (11).

Conversely, suppose that (11) holds. By definition (2), it is obvious that \(Y(CD_n)Z \). \(\Box \)

Proof of Theorem 2: Suppose \(Y(CD_n)Z \) and \(Z(CD_n)Y \). Using Theorem 1, we get two equations,
\[u(y, z) = u(y^0, z) + u(y, z^0) + v(y)f(y^*, z) + c_z \sum_{i=1}^{n} G_1^n(y)G(y^i, z), \quad (36a) \]
and
\[u(y, z) = u(y^0, z) + u(y, z^0) + v(z)f(y, z^*) + c_z \sum_{i=1}^{n} H_1^n(z)H(y, z^i), \quad (36b) \]
where
\[G_1^n(y) \equiv \frac{1}{|G^y|} \sum_{k=1}^{n^*} G_{1k}^n(y, z^k) \quad \text{and} \quad H_1^n(z) \equiv \frac{1}{|H^z|} \sum_{k=1}^{n^*} H_{1k}^n(y, z^k). \]

Substituting (36b) into \(f(y^\alpha, z) \) for \(\alpha \{1, 2, \ldots, n, *\} \), we have
\[f(y^\alpha, z) = v(z)f(y^\alpha, z^*) + c_zH(y^\alpha, z), \quad (37) \]
where we use \(v(z^0) = 0, H(y, z^0) = 0 \) and \(H(y, z) = \sum_{i=1}^{n} H_1^n(z)H(y, z^i) \).

Substituting (36b) into \(G(y^\alpha, z) \), we have
\[G(y^\alpha, z) = v(z)G(y^\alpha, z^*) + c_z \sum_{i=1}^{n} H_1^n(z)F(y^\alpha, z^i). \quad (38) \]

Substituting (37) and (38) into (36a), and using (2) and (3), we have
\[u(y, z) = u(y^0, z) + u(y, z^0) + v(y)f(y^*, z) + v(z)f(y, z^*) \]
\[- v(y)v(z)f(y^*, z^*) + c_zc_{y^z} \sum_{i=1}^{n} \sum_{j=1}^{n} G_1^n(y)H_1^n(z)F(y^i, z^j). \quad (39) \]
We can assume that F^n is a nonsingular matrix because Property 5 holds.

Considering next equation and transforming it, we obtain

$$v(y)f(y^*, z) + v(z)f(y, z^*) - v(y)v(z)f(y^*, z^*)$$

$$= |F^n|^{-1} \sum_{i=1}^{n} \sum_{j=1}^{n} n^* F_{ij} [v(y)f(y_i^*, z^*)f(y_j^*, z)]$$

$$+ v(z)f(y^*, z^*)f(y, z^*) - v(y)v(z)f(y^*, z^*)f(y^*, z^*)]. 	ag{40}$$

By definition (2) and (3), the following relation holds.

$$v(y)f(y^*, i) f(y^*, z) + v(z)f(y^*, z^*) f(y^*, z^*) - v(y)v(z)f(y^*, z^*) f(y^*, z^*)$$

$$= f(y^*, z) f(y^*, z) - c_{y^* z} G(y^*, z) H(y^*, z) 	ag{41}$$

Substituting (40) and (41) into (39), we obtain

$$f(y, z) = \frac{1}{|F^n|} \sum_{i=1}^{n} \sum_{j=1}^{n} n^* F_{ij} [f(y^*, z) f(y^*, z) - c_{y^* z} G(y^*, z) H(y^*, z)]$$

$$+ c_{y^* z} \sum_{i=1}^{n} \sum_{j=1}^{n} G_i^n (y) H_j^n (z) F(y^*, z), 	ag{42a}$$

$$f(y, z) = \frac{1}{|F^n|} \sum_{i=1}^{n} \sum_{j=1}^{n} n^* F_{ij} f(y^*, z) f(y^*, z) +$$

$$c_{y^* z} \sum_{i=1}^{n} \sum_{j=1}^{n} \left[\frac{1}{|G^n H^n|} \sum_{k=1}^{n} \sum_{r=1}^{n} G_i^n H_j^n F(y^*, z) H(y^*, z) - \frac{F_{ij}}{|F^n|} \right] G(y^*, z) H(y^*, z). \tag{42b}$$

In (42a), setting $y = y^p, z = z^q$ for $p, q \in \{1, \ldots, n\}$, and solving it with respect to $c_{y^* z} F(y^p, z^q)$, and then substituting it into the following

$$\frac{c_{y^* z}}{|G^n H^n|} \sum_{k=1}^{n} \sum_{r=1}^{n} G_i^n H_j^n F(y^k, z^r) - \frac{F_{ij}}{|F^n|} c_{y^* z}$$

$$= \frac{G_i^n H_j^n}{|F^n G^n H^n|} \left[\frac{F^n}{|F^n|} f(y^*, z^*) - \sum_{p=1}^{n} \sum_{q=1}^{n} F_{pq} f(y^p, z^q) f(y^p, z^q) \right]. 	ag{43}$$
where we use the following relations

\[\sum_{p=1}^{n} \sum_{q=1}^{n} F_p f(y_k, z^q) f(y, z^r) = |F| \sum_{q=1}^{n} \delta_{rq} f(y_k, z^q), \]

\[\sum_{k=1}^{n} G_k f(y_k, z^q) = \delta_{q1} |G|, \quad \text{and} \quad \sum_{r=1}^{n} H_r f(y, z^r) = \delta_{jp} |H|, \]

where \(\delta_{ij} \) denotes the Kronecker's delta.

Substituting (43) into (42b), then we have (12). Therefore, sufficient condition is proved.

Conversely, suppose that (12) holds, then we assume \(G^n, H^n, \) and \(F^n \) are nonsingular matrices. Substituting (3) and (29a) into (12), we have

\[
\begin{align*}
 f(y, z^*) & C[v_0(z), v_j(z)] \\
 & = \frac{1}{|F^n|} \sum_{i=1}^{n} \sum_{j=1}^{n} F_{ij} f(y^i, z^i) f(y^i, z^j) C[v_0(z), v_j(z)] \\
 & + c \sum_{i=1}^{n} \sum_{j=1}^{n} G_i H_{ij} f(y^i, z^i) \frac{v_j(z) - v_0(z)}{u(y^i, z^i) - u(y^i, z^0)}.
\end{align*}
\]

Summing up the coefficients of \(C[v_0(z), v_j(z)], v_j(z) \) for \(j = 0, 1, 2, \ldots, n, * \) and \(v_0(z) \) of the right hand side of (44), we have \(f(y, z^*) \). Then, we conclude \(Z(CD_n)Y \), and the same procedure for \(Y \) concludes \(Y(CD_n)Z \).

Proof of Theorem 3: We can prove this theorem in the same way as Farquhar [3]. If \(X_i(CD_m X)_{m} \) for \(i = 1, \ldots, n \), then by Theorem 1, (15) and (18) the following equation holds.

\[
\begin{align*}
 u(x_1, \ldots, x_n) &= u(x_1) + u(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \\
 &+ v_i(x_i f_i(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \\
 &+ d_i \sum_{j=1}^{m} C_{i,j} \Delta_1(x_1) \Delta_{i}(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)
\end{align*}
\]
If $i = 1$ in (45), then we have

\begin{align*}
u(x_1, \ldots, x_n) &= u(x_1) + u(x_2, \ldots, x_n) + v_1(x_1)f_1(x_1, x_2, \ldots, x_n) \\
&\quad + d_1 \sum_{j=1}^{m_1} G_{1,j}(x_1)\Delta_{(1, \beta_1)}(x_2, \ldots, x_n). \quad (46)
\end{align*}

If $i = 2$ in (45), then we have

\begin{align*}
u(x_1, \ldots, x_n) &= u(x_2) + u(x_1, x_3, \ldots, x_n) + v_2(x_2)f_2(x_1, x_2, x_3, \ldots, x_n) \\
&\quad + d_2 \sum_{j=1}^{m_2} G_{2,j}(x_2)\Delta_{(2, \beta_2)}(x_1, x_3, \ldots, x_n). \quad (47)
\end{align*}

We consider to substitute (46) into (47). First, we substitute (46) into the following

\begin{align*}f_2(x_1, x_2^{\Delta_c}, x_3, \ldots, x_n) &= u(x_1, x_2^{\Delta_c}, x_3, \ldots, x_n) - u(x_2) \\
&= f_2(x_1, x_2, x_3, \ldots, x_n) + v_1(x_1)f_1(x_3, \ldots, x_n) \\
&\quad + d_1 \sum_{j=1}^{m_1} G_{1,j}(x_1)\Delta_{(1, \beta_1)}(x_2, x_3, \ldots, x_n), \quad (48)
\end{align*}

where $\Delta_c \in \{0,1, \ldots, m_2, *\}$, $K = \{1, 2\}$, $a = \{a_1, a_2\}$, $a_1 = \ast$, $a_2 = c$ and we use the relation (17).

Secondly, we substitute (48) into the following

\begin{align*}\Delta_{(2, \beta_2)}(x_1, x_3, \ldots, x_n) &= \Delta_{(2, \beta_2)}(x_1, x_3, \ldots, x_n) + v_1(x_1)\Delta_{(2, \beta_2)}(x_1, x_3, \ldots, x_n) \\
&\quad + d_1 \sum_{j=1}^{m_1} G_{1,j}(x_1)\Delta_{(K, \beta)}(x_3, \ldots, x_n), \quad (49)
\end{align*}

where $K = \{1, 2\}$, and $\beta = \{\beta_1, \beta_2\}$.

From (46) we obtain the following
\[u(x_1, x_3, \ldots, x_n) = u(x_1) + u(x_3, \ldots, x_n) + v_1(x_1)f_1(x_1^0, x_2, x_3, \ldots, x_n) + d_1 \sum_{j=1}^{m_1} G_{1,j}(x_1)A^*(1, \beta_1)_j(x_2, x_3, \ldots, x_n). \]
(50)

Substituting (48), (49), and (50) into (47), we have
\[u(x_1, \ldots, x_n) = u(x_1) + u(x_2) + u(x_3, \ldots, x_n) + v_1(x_1)f_1(x_1^0, x_2, x_3, \ldots, x_n) + v_2(x_2)f_2(x_1^0, x_2^0, x_3, \ldots, x_n) + v_1(x_1)v_2(x_2)f_2(x_3, \ldots, x_n) + d_1 \sum_{j=1}^{m_1} G_{1,j}(x_1)A^*(1, \beta_1)_j(x_2, x_3, \ldots, x_n) \]
\[+ d_2 \sum_{j=1}^{m_2} G_{2,j}(x_2)A^*(2, \beta_2)_j(x_1, x_3, \ldots, x_n) + v_1(x_1)A^*(2, \beta_2)_1(x_1^0, x_3, \ldots, x_n) \]
\[+ d_1d_2 \sum_{j=1}^{m_1} \sum_{k=1}^{m_2} G_{1,j}(x_1)G_{2,k}(x_2)A^*(K, \beta)_j(x_3, \ldots, x_n), \]
where \(K = \{1, 2\}, a = \{a_1, a_2\}, a_1 = *, \) and \(a_2 = * \).

This procedure is repeated for steps \(i = 1, \ldots, n \). Hence, we have (19) by using Property 6 and the following relation
\[f_i^a = u(x_i^a) \text{ and } u(x_i) = u(x_i^a) v_1(x_i) \text{ for } i = 1, \ldots, n, \]
where \(I_r = \{i_1, \ldots, i_r\} \subset \mathbb{N}, a = \{a_1, \ldots, a_r\} \) and \(a_i = * \) for all \(i \).

Conversely, if (19) holds, it is evidently that \(x_i^a(CD_{a_i})X \) for \(i = 1, \ldots, n \) by (29) and the property of convex combination.
REFERENCES

Figure 1. The relations among normalized conditional utility functions when the convex dependence holds.
Figure 2. Assigning utilities for heavy shaded consequences completely specifies the utility function in the cases indicated.
ONR DISTRIBUTION LIST

Mr. J.R. Simpson, Scientific Officer
Mathematics Group, Code 411-MA
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

Dr. Stuart Brodsky, Group Leader
Mathematics Group, Code 411-MA
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

Dr. Martin A. Tolcott, Director
Engineering Psychology Programs
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

Mr. Christal Grisham
ONR Resident Representative
University of California
239 Campbell Hall
Berkeley, CA 94720

Defense Documentation Center
Cameron Station, Building 5
Alexandria, VA 22314

Naval Research Laboratory
Code 2627
Washington, DC 20375

Office of Naval Research
Branch Office
1030 East Green Street
Pasadena, CA 91106

Professor Kenneth J. Arrow
Department of Economics
Stanford University
Stanford, CA 94305

Professor F. Hutton Barron
School of Business
311 Summerfield Hall
University of Kansas
Lawrence, Kansas 66045

Professor David E. Bell
Grad. School of Business Administration
Harvard University
Boston, MA 02163

Professor Samuel Bodily
The Darden School
University of Virginia
P.O. Box 6550
Charlottesville, VA 22906

Dr. Dean W. Boyd
Decision Focus, Inc.
5 Palo Alto Square, Suite 410
Palo Alto, CA 94304

Dr. Horace Brock
SRI International
Decision Analysis Group
333 Ravenswood Avenue
Menlo Park, CA 94025

Dr. Rex V. Brown
Decision Science Consortium
7700 Leesburg Pike, Suite 421
Falls Church, VA 22043

Professor Derek W. Bunn
Dept. of Engineering Science
University of Oxford
Parks Road
Oxford, OX1 3PJ
ENGLAND

Professor Soo Hong Chew
Department of Economics, Bldg. #23
College of Business & Public Admin.
The University of Arizona
Tucson, Arizona 85721

Professor Eric K. Clemons
Dept. of Decision Sciences, CC
The Wharton School
University of Pennsylvania
Philadelphia, PA 19104
Professor Jared L. Cohon
Dept. of Geol. & Environ. Engineering
Johns Hopkins University
Baltimore, MD 21218

Professor William W. Cooper
Graduate School of Business, 200E, BEB
University of Texas at Austin
Austin, Texas 78712

Professor Norman C. Dalkey
School of Engrg & Applied Sci.
Univ. of Calif. at Los Angeles
Los Angeles, CA 90024

Professor Morris H. DeGroot
Department of Statistics
Carnegie-Mellon University
Pittsburgh, PA 15213

Professor James S. Dyer
Department of Management
College of Business Admin.
University of Texas, Austin
Austin, TX 78712

Professor Ward Edwards
Social Science Research Institute
University of Southern California
950 West Jefferson Blvd.
Los Angeles, Calif. 90007

Professor Hillel J. Einhorn
Center for Decision Research
Grad. School of Business
University of Chicago
1101 East 58th Street
Chicago, IL 60637

Professor Jehoshua Eliashberg
Marketing Department
Grad. School of Management
Northwestern University
Evanston, IL 60201

Professor Peter H. Farquhar
Graduate School of Administration
University of Calif., Davis
Davis, CA 95616

Professor Gregory W. Fischer
Dept. of Social Sciences
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. Baruch Fischhoff
Decision Research
1201 Oak Street
Eugene, Oregon 97401

Dr. Peter C. Fishburn
Bell Laboratories, Rm. 2C-126
600 Mountain Avenue
Murray Hill, NJ 07974

Professor Dennis C. Fryback
Health Systems Engineering
Univ. of Wisconsin, Madison
1225 Observatory Drive
Madison, Wisconsin 53706

Professor Paul E. Green
Department of Marketing, CC
The Wharton School
Univ. of Pennsylvania
Philadelphia, PA 19104

Professor Kenneth R. Hammond
Center for Research on
Judgment & Policy
Institute of Behavioral Sci.
University of Colorado
Campus Box 485
Boulder, CO 80309

Professor Charles M. Harvey
Dept. of Mathematical Sciences
Dickinson College
Carlisle, PA 17013

Professor John R. Hauser
Sloan School of Management
Massachusetts Institute of Technology
Cambridge, MA 02139

Professor John C. Hershey
Dept. of Decision Science, CC
The Wharton School
University of Pennsylvania
Philadelphia, PA 19104
Professor Robin M. Hogarth
Center for Decision Research
Grad. School of Business
University of Chicago
1101 East 58th Street
Chicago, IL 60637

Professor Gordon M. Kaufman
Sloan School of Management, E53-375
Massachusetts Institute of Technology
Cambridge, MA 02139

Attn: Ms. Vicki Holcomb, Librarian
Decision and Designs, Inc.
P.O. Box 907
8400 Westpark Drive, Suite 600
McLean, VA 22101

Dr. Donald L. Keefer
Gulf Management Sciences Group
Gulf Science & Technology Co., Rm. 308
P.O. Box 1166
Pittsburgh, PA 15230

Professor Charles A. Holloway
Graduate School of Business
Stanford University
Stanford, CA 94305

Dr. Thomas W. Keelin
Decision Focus, Inc.
5 Palo Alto Square, Suite 410
Palo Alto, CA 94304

Professor Ronald A. Howard
Dept. of Engrg. Econ. Systems
School of Engineering
Stanford University
Stanford, CA 94305

Dr. Ralph L. Keeney
Woodward-Clyde Consultants
Three Embarcadero Center, Suite 700
San Francisco, CA 94111

Professor George P. Huber
Grad. School of Business
University of Wisconsin, Madison
1155 Observatory Drive
Madison, Wisconsin 53706

L. Robin Keller
Engineering Bldg. I., Room 4173B
University of California, Los Angeles
Los Angeles, CA 90024

Professor Patrick Humphreys
Dept. of Psychology
Brunel University
Kingston Ln.
Uxbridge Middlesex UB8 3PH
ENGLAND

Dr. Craig W. Kirkwood
Woodward-Clyde Consultants
Three Embarcadero Center, Suite 700
San Francisco, CA 94111

Professor Arthur P. Hurter, Jr.
Dept. of Industrial Eng/Mgt Sci.
Northwestern University
Evanston, IL 60201

Professor Paul R. Kleindorfer
Dept. of Decision Sciences, CC
The Wharton School
University of Pennsylvania
Philadelphia, PA 19104

Dr. Edgar M. Johnson
US Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Professor David M. Kreps
Graduate School of Business
Stanford University
Stanford, California 94305

Dr. Jeffrey P. Krischer
Health Services Research and Development
Veterans Administration
HSR 7 D (152), Medical Center
Gainesville, Florida 32602

Professor Daniel Kahneman
Dept. of Psychology
Univ. of British Columbia
Vancouver B.C. V6T 1W5
CANADA
Professor Detlof von Winterfeldt
Social Science Research Institute
University of Southern Calif.
950 West Jefferson Blvd.
Los Angeles, CA 90007

Professor Robert L. Winkler
Quantitative Business Analysis
Graduate School of Business
Indiana University
Bloomington, IN 47405

Professor Thomas S. Wallsten
L.L. Thurstone Psychometric Lab.
Department of Psychology
University of North Carolina
Chapel Hill, NC 27514

Professor Mustafa R. Yilmaz
Management Science Dept.
College of Business Admin.
Northeastern University
360 Huntington Avenue
Boston, MA 02115

Professor S.R. Watson
Engineering Department
Control & Mgmt Systems Div.
University of Cambridge
Mill Lane
Cambridge CB2 1RX
ENGLAND

Professor Po-Lung Yu
School of Business
Summerfield Hall
University of Kansas
Lawrence, KS 66045

Professor S.R. Watson
Engineering Department
Control & Mgmt Systems Div.
University of Cambridge
Mill Lane
Cambridge CB2 1RX
ENGLAND

Professor Donald A. Wehrung
Faculty of Commerce & Bus. Adm.
University of British Columbia
Vancouver, B.C. V6T 1W5
CANADA

Professor Stanley Zionts
Dept. of Mgmt Sci. & Systems
School of Management
State University of New York
Buffalo, NY 14214

Dr. Martin O. Weber
Institut fur Wirtschaftswissenschaften
Templergraben 64
D-5100 Aachen
WEST GERMANY

Professor Milan Zeleny
Graduate School of Business Admin.
Fordham Univ., Lincoln Center
New York, NY 10023

Professor Chelsea C. White
Dept. of Engrg. Sci. & Systems
Thornton Hall
University of Virginia
Charlottesville, VA 22901

Professor Robert B. Wilson
Dept. of Decision Sciences
Grad. School of Business Admin.
Stanford University
Stanford, CA 94305

Dr. Andrzej Wierzbicki
International Institute for
Applied Systems Analysis
Schloss Laxenburg
Laxenburg A-2361
AUSTRIA