STATISTICAL BIAS IN MAXIMUM LIKELIHOOD ESTIMATORS OF ITEM PARAMETERS

Frederic M. Lord

This research was sponsored in part by the Personnel and Training Research Programs Psychological Sciences Division Office of Naval Research, under Contract No. N00014-80-C-0402
Contract Authority Identification Number NR No. 150-453
Frederic M. Lord, Principal Investigator

Educational Testing Service
Princeton, New Jersey

April 1982

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.
STATISTICAL BIAS IN MAXIMUM LIKELIHOOD

ESTIMATORS OF ITEM PARAMETERS

Frederic M. Lord

This research was sponsored in part by the Personnel and Training Research Programs
Psychological Sciences Division
Office of Naval Research, under
Contract No. N00014-80-C-0402
Contract Authority Identification Number
NR No. 150-453
Frederic M. Lord, Principal Investigator
Educational Testing Service
Princeton, New Jersey
April 1982

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.
Statistical Bias in Maximum Likelihood Estimators of Item Parameters

Frederic M. Lord

Statistical Testing Service
Princeton, NJ 08541

Approved for public release; distribution unlimited.

Unclassified

Numerical results are given for a typical aptitude test for college admission.
Abstract

Formulas are derived for the bias in the maximum likelihood estimators of the item parameters in the logistic item response model when examinee abilities are known. Numerical results are given for a typical verbal test for college admission.
Statistical Bias in Maximum Likelihood Estimators of Item Parameters

This paper derives formulas for the statistical bias in the maximum likelihood estimators (MLE) of item parameters in item response theory (IRT) [Lord, 1980]. It will deal only with the three-parameter logistic model for dichotomously scored items. Available formulas for the sampling variance of these MLE are limited to the case where the examinee parameters are known; the present derivations are limited to this case also. Under the three-parameter logistic model, the probability of a correct answer to an item is the following function of examinee ability level θ:

$$P = P(\theta) = c + \frac{1 - c}{1 + e^{-A\theta - B}} \equiv 1 - \frac{1 - c}{1 + e^{A\theta + B}}$$

(1)

where A, B, and c are parameters describing the item.

In practical work, \hat{A}, the MLE of A, sometimes tends to become infinite. This suggests a positive bias, at least in some data for certain items. Is it possible to correct for this sometimes substantial bias in \hat{A}? Practical experience also suggests that

This work was supported in part by contract N00014-80-C-0402, project designation NR 150-453 between the Office of Naval Research and Educational Testing Service. Reproduction in whole or in part is permitted for any purpose of the United States Government.
when B is large and positive, \hat{B} tends to be positively biased; when B is large and negative, \hat{B} tends to be negatively biased. Practical experience has not provided any clear indications as to the bias in \hat{C}. Since \hat{C} values are most often less than the reciprocal of the number of choices in a multiple-choice item, it is of interest to determine whether this apparent anomaly could be due to a substantial negative bias in \hat{C}.

The method to be used here to derive formulas for the bias in estimated item parameters is the same method described in Lord [Note 1]. The reader is referred there for a more detailed discussion. The following derivation deals with a single fixed item administered to N examinees with known ability levels $\theta_1, \theta_2, \ldots, \theta_N$.

1. Likelihood Equations

Let i denote either A, B, or C. We assume, as in Lord [Note 1] that A, B, and θ_i are bounded and that C is bounded away from 1. Under these conditions, i is a consistent estimator of θ_i and $\sqrt{N}(i - \theta_i)$ is asymptotically normally distributed with mean zero and finite variance. It follows that $\delta(i - \theta_i)^8$ is at most of order $N^{-1/2}$.

Let $u_a = 0$ or 1 denote the score of examinee a ($a = 1, 2, \ldots, N$) on the given (dichotomously scored) item. Write $P_a \equiv P(\cdot_a)$ and $q_a \equiv 1 - P_a$. For $a = 1, 2, \ldots, N$ and $\cdot = A, B, C$, write
The likelihood equations are now

$$L_a = \frac{3p_a}{\beta_a}$$ \hspace{1cm} (2)

$$R_a^a = \frac{p_a}{p_a Q_a}$$ \hspace{1cm} (3)

$$\Gamma_a^a = (u_a - p_a) R_a^a$$ \hspace{1cm} (4)

$$L_a = \sum_{a=1}^{N} \Gamma_a^a$$ \hspace{1cm} (5)

The likelihood equations are now

$$\hat{L}_a \equiv 0 \hspace{1cm} (\alpha = A, B, c)$$ \hspace{1cm} (6)

where the caret denotes substitution of MLE for A, B, and c.

2. Taylor Series

Let the symbols $\beta (\alpha = A, B, c)$ and $\delta (\alpha = A, B, c)$ have the same meaning as a, so that \sum_{B} denotes a three-term sum with β taking on the values A, B, and c. Expanding (6) in a three-variable Taylor series and dividing by N, we have

$$0 = \frac{1}{N} \sum_{a} \left[\frac{3p_a}{\beta_a} + \sum_{\beta} (\hat{\beta} - \hat{\beta}) \Gamma_a^a \right]$$

$$+ \frac{1}{2} \sum_{\beta} \sum_{\delta} (\hat{\beta} - \hat{\beta})(\hat{\delta} - \hat{\delta}) \Gamma_a^a \hat{\beta} \hat{\delta} + ... \right] \hspace{1cm} (\alpha = A, B, c)$$ \hspace{1cm} (7)

where
For simplicity, write \(v, w, x, y, z \), or \(Z \) instead of \(\tilde{\beta} - \beta \) or \(\tilde{\delta} - \delta \). It will not be confusing to replace subscripts \(\alpha, \beta, \delta \) by \(v, w, x, y, \) or \(z \). The Taylor series is now

\[
0 = \frac{1}{N} \sum_{a} \left[\gamma_{a} + \sum_{xy} \gamma_{x} y + \frac{1}{2} \sum_{xyz} \gamma_{xyz} + \ldots \right] .
\]

(9)

Define

\[
\gamma_{a} = \delta_{a}, \quad \epsilon_{a} = \gamma_{a} - \gamma_{a}.
\]

(10)

It can be seen from (4) that

\[
\gamma_{a} = 0 \quad (x = A, B, c) .
\]

(11)

Equation (9) can now be written

\[
0 = \frac{1}{N} \sum_{a} \left[\epsilon_{x} + \sum_{y} \gamma_{x} y + \sum_{y} \gamma_{x} y + \frac{1}{2} \sum_{xyz} \gamma_{xyz} (\gamma_{x} y + \epsilon_{x}) + \ldots \right] .
\]

Let

\[
\gamma_{x} = \frac{1}{N} \sum_{a} \gamma_{a}, \quad \epsilon_{x} = \frac{1}{N} \sum_{a} \epsilon_{a}, \quad \epsilon_{xy} = \frac{1}{N} \sum_{a} \epsilon_{a} .
\]

(13)
and so forth. The Taylor series is now

$$0 = \epsilon_x + \sum_y y y_{xy} + \sum_y y_{xy} + \frac{1}{2} \sum_{yz} y_{xyz} + \epsilon_{xyz} + \ldots \quad (14)$$

Rewrite this in matrix notation,

$$r y = -\epsilon - E y - M y - H y - \ldots \quad (15)$$

where $\gamma \equiv \|y_{xy}\|$, $y \equiv \{A - A, B - B, c - c\}'$, $c \equiv \{\epsilon_x\}'$, $E \equiv \|\epsilon_{xy}\|$, $M \equiv \|\frac{1}{2} z y_{xyz}\|$, and $H \equiv \|\frac{1}{2} z e_{xyz}\|$. Premultiply (15) by r^{-1} to obtain finally

$$y = -r^{-1} \epsilon - r^{-1} E y - r^{-1} M y - r^{-1} H y - \ldots \quad (16)$$

The expectation of (16) gives the bias of the vector y of maximum likelihood estimators. First we will need to eliminate y from the right side of (16).

3. Solving for y

Premultiply (16) by $r^{-1} H$ to obtain

$$r^{-1} H y = -r^{-1} H r^{-1} - \ldots \quad (17)$$

In Section 5 it will become clear that the higher-order terms in (17) can be neglected. Equation (17) allows us to eliminate y from the last term in (16).
Similarly, to evaluate the next-to-last term in (16), premultiply (16) by $F^{-1}M$, obtaining

$$-F^{-1}My = -F^{-1}MF^{-1}c - \tag{18}$$

Likewise, premultiply (16) by $F^{-1}E$ to obtain

$$F^{-1}Ey = -F^{-1}E^{-1}c - \tag{19}$$

We eliminate y from the right-hand side of (16) by substituting (17) - (19) into (16):

$$y = -F^{-1}e + F^{-1}(E + M + H)F^{-1}c +$$

In scalar notation, this is

$$y = -\gamma^{VX}_{x} + \sum_{v} \sum_{w} \gamma^{VX}_{vwx} (\nu_{vwx} + m_{vw} + h_{vw}) \gamma^{WX}_{w} c_{x} + \tag{20}$$

where $\gamma^{VX}_{y} = \gamma^{VX}_{y}, \quad m_{vw} = \frac{1}{2} \sum_{y} y_{yvw} \gamma_{vw}, \quad \text{and} \quad h_{vw} = \frac{1}{2} \sum_{y} y_{yvw} \gamma_{vw}.$

To evaluate m_{vw}, multiply (20) by $\frac{1}{2} \gamma_{vwy}$ and sum over y to obtain

$$m_{vw} = -\frac{1}{2} \gamma_{vwy} \gamma^{VX}_{vwx} + \tag{21}$$

For h_{vw}, similarly

$$h_{vw} = -\frac{1}{2} \gamma_{vwy} \gamma^{VX}_{vwx} + \tag{22}$$
Substituting (21) and (22) into (20), we have

\[y = - \sum_{x} y^{x} e_{x} + \sum_{v,w} \sum_{y} y^{v} e_{v} e_{w} e_{x} - \frac{1}{2} \sum_{v,w,x,z} y^{v} e_{v} e_{w} e_{x} + \frac{1}{2} \sum_{v,w,x,z} y^{v} e_{v} e_{w} e_{x} + \ldots \]

(23)

The bias of \(A, B, \) or \(c \) is found by taking the expectation of (23). First we need formulas for various derivatives that appear in (23).

4. Derivatives

From (8) and (4)

\[\gamma_{\alpha \beta}^{a} = u_{\alpha \beta}^{u^{a}} - p_{\alpha}^{a} R_{\beta}^{a} - p_{\alpha}^{a} R_{\beta}^{a} \]

(24)

where \(R_{\alpha \beta}^{u^{a}} \) denotes a second derivative. From (24)

\[\gamma_{\alpha \beta}^{a} = u_{\alpha \beta}^{u^{a}} - p_{\alpha}^{a} R_{\beta}^{a} - p_{\alpha}^{a} R_{\beta}^{a} - p_{\alpha}^{a} R_{\beta}^{a} - p_{\alpha}^{a} R_{\beta}^{a} \]

(25)

To evaluate (24) and (25), various derivatives of (1) are required.

Dropping the affix \(a \), we find

\[p'_{c} = \frac{1}{1 + e^{A_{0} + B}} = \frac{Q}{1 - c} \]

(26)

\[p'_{B} = \frac{Q(P - c)}{1 - c} = (P - c)p'_{c} \]

(27)
Statistical Bias

5. Expectations

Since $\delta u = P$,

$$\gamma \equiv \frac{1}{N} \sum_{a} \gamma^a = 0$$ \hspace{1cm} (35)$$

From (24) - (25),
Statistical Bias

\[
\gamma_{xy} = -\frac{1}{N} \sum_a p_{r_a} R_{r_a} x y = -\frac{1}{N} \sum_u p_{r_u} x y, \quad (36)
\]

\[
\gamma_{xyz} = -\frac{1}{N} \sum_a (p_{n_a} R_{r_a} + p_{r_a} R_{n_a} + p_{r_a} R_{n_a})
= \frac{1}{N} \sum_a \left[2 p_{r_a} p_{r_a} \frac{Q_{a}}{a a} - \frac{P_{a}}{a a} - \frac{p_{n_a} p_{n_a}}{a a} - \frac{p_{r_a} p_{r_a}}{a a} \right], \quad (37)
\]

Writing

\[
t_a = \frac{u_a - P_{a}}{P_{a} a},
\]

we now have

\[
\varepsilon_x = \frac{1}{N} \sum_a t_a p_{r_a} x, \quad (38)
\]

\[
\varepsilon_{xy} = \frac{1}{N} \sum_a (u_a - P_{a}) R_{r_a} x y = \frac{1}{N} \sum_a t_{a x y} + \frac{1}{N} \sum_a p_{r_a} p_{r_a} (\frac{1}{P_{a} a} - t_{a}^2), \quad (39)
\]

To evaluate (23) we need

\[
\delta \varepsilon_x = 0, \quad (40)
\]

\[
\delta \varepsilon_{xz} = \frac{1}{N^2} \sum_{a b} p_{r_a} p_{r_b} \operatorname{Cov}(t_a, t_b) = \frac{1}{N^2} \sum_{a b} p_{r_a} p_{r_a} / p_{a a}
= -\frac{1}{N} \gamma_{xz}, \quad (41)
\]
Statistical Bias

This last result is obtained from (38), using the fact that \(\text{Cov}(t_a, t_b) \)
is zero when \(a \neq b \) and that \(\text{Var} t_a = 1/P_a Q_a \). Similarly, from (38)and (39), we find that

\[
\delta_{vw; x} = \frac{1}{N} \sum_{a,b} p_{vw; x} \text{Cov}(t_a, t_b) = \frac{1}{N} \sum_{a,b} p_{vw; x} \text{Cov}(t_a, t_b)
\]

\[
= \frac{1}{N} \sum_a (p_a p_p + p_{a a} p_{a - p_a}) \frac{p - Q_a}{p_a^2 a} \ . \quad (43)
\]

Also, from (25) and (37),

\[
\delta_{vwz; x} = \frac{1}{N} \sum_{a,b,c} p_{vwz; x} \frac{p_{b} p_{c}}{P_a P_b P_c} \ . \quad (42)
\]

Since \(\delta(u_a - P_a)(u_b - P_b)(u_c - P_c) \) vanishes unless \(a = b = c \),
(43) is of order \(1/N^2 \) and can be neglected in evaluating the expecta-
tion of (23). The order of magnitude of other terms neglected in
preceding sections can be found by the same method.
6. Bias in Item Parameter MLE

The bias in the MLE of an item parameter is now found by writing down the expectation of (23), dropping the last term, and evaluating the remaining terms on the right by (40), (41), and (42). The resulting formula for the bias, accurate through terms of order $1/N$, is

$$y = \sum_{v} \sum_{w} \sum_{x} \gamma_{vy} \gamma_{wx} g_{vwx} e_{vwx} + \frac{1}{2N} \sum_{v} \sum_{w} \sum_{x} \sum_{z} \gamma_{vy} \gamma_{vwx} \gamma_{wx} z \gamma_{zwx}$$

(since the sum over z equals 1 when $z = x$ and vanishes otherwise). The terms on the right are evaluated using (36), (37), and (42). The y on the left side of (44) is either $\hat{A} - A$, $\hat{B} - B$, or $\hat{c} - c$. The affixes on the right side denote either A, B, or c: $\|\gamma_{vy}\|$ denotes the inverse of $\|\gamma_{vy}\|$.

7. Reparameterization

The preceding sections derive the bias of \hat{A} and \hat{B} (for convenience), whereas the item parameters commonly used are $a = A/1.7$ and $b = -B/1.7a$. The bias of \hat{a} is clearly equal to the bias of \hat{A} divided by 1.7. The bias of \hat{b} may be found as follows. $\text{Cov}(\hat{a}, \hat{b}) = \ldots$
\[\hat{\delta}(\hat{a} - a)(\hat{b} - b) \equiv \hat{\delta}(\hat{ab} - ab) - b\hat{\delta}(\hat{a} - a) - a\hat{\delta}(\hat{b} - b). \]

Rearranging this identity, we find the bias of \(\hat{b} \):

\[\hat{\delta}(\hat{b} - b) \equiv \frac{1}{\hat{A}} \left[-\hat{\delta}(\hat{B} - B) - b\hat{\delta}(\hat{A} - A) - 1.7 \text{ Cov}(\hat{a}, \hat{b}) \right]. \] (45)

The required covariance on the right is obtained in the usual way, by inverting the information matrix \([\text{Lord, 1980, p. 191}].\)

8. Numerical Example

Figures 1, 2, 4, 6 show the bias in \(\hat{b} \), \(\hat{a} \), and \(\hat{c} \) for a set of 90 items selected to represent very roughly a typical verbal test for college admissions. This is artificial data, thus the true parameters are known. The number of examinees used to estimate the item parameters is 2995.

Because of the limitations of three-dimensional plotting, Figure 1 shows only those items for which \(\hat{b} \) is positively biased; Figure 2 shows the remaining items. Easy and medium-difficulty items are negatively biased; only difficult items are positively biased. Items with \(b = 1.5 \) to 1.8 have near-zero bias. For five items the bias is so large that it runs off the plot. The item parameters and biases for these five items are as follows:
Figure 1. Statistical bias in the maximum likelihood estimator b for items with $\delta b - b$.
Figure 2. Bias in b for items with $\delta b < b$.
The first two of these five items do not appear in the plots at all because the \(b \) values lie outside the plotted range. We see that low discriminating power and low difficulty (high easiness) give rise to large estimation errors for \(\hat{b} \), as might be expected.

Figures 3, 5, 7 show the standard errors of \(\hat{b} \), \(\hat{a} \), and \(\hat{c} \) for comparison. For clarity the \(a \) and \(b \) scales are oriented one way in Figures 1-3 and 6-7, the opposite way in Figures 4-5. Note that the vertical scales vary from figure to figure.

The bias in \(\hat{a} \) is positive for all items, the bias in \(\hat{c} \) is negative for all items. In general, an estimate that has a large standard error tends to have a numerically large bias.

For very easy items, \(\hat{b} \) and \(\hat{c} \) have numerically large biases and large standard errors. For hard items, \(\hat{c} \) has a numerically small bias and small standard error, \(\hat{a} \) has a large bias and large standard error. The bias and standard error of \(\hat{b} \) both increase for very difficult items. Highly discriminating items have numerically small bias and small standard error for \(\hat{b} \) and \(\hat{c} \). Poorly discriminating items tend to have low bias and low standard error for \(\hat{a} \).

The plots show the relation of bias (or of standard error) to \(a \) and \(b \). The relation to \(c \) is not easily made graphically.
Figure 3. Standard error of b for all items.
Figure 4. Bias in a.
Figure 5. Standard error of a.
Figure 6. Bias in c (all biases are negative).
Figure 7. Standard error of c.

Statistical Bias
obvious. If the value of \(c \) had an important effect on the bias and standard error of the MLE, neighboring items in Figures 1-7 would frequently have quite different biases or standard errors. The fact that neighboring items typically appear very similar in the figures indicates that \(c \) typically has a relatively minor effect on their bias and standard error.

Most typically the bias of an MLE is about one-tenth of its standard error. It is very seldom more than a fifth of its standard error.

The effect of the bias for individual item-parameter estimates is thus probably negligible. However, the invariably positive bias in the \(\hat{\alpha} \), for example, may have a cumulative effect over many items so that its effect is no longer negligible.

It is just this type of effect that makes the variance across examinees of the MLE of \(\theta \) a gross overestimate of the true variance of \(\theta \) across examinees [Lord, Note 1]. An unbiased estimate of \(\sigma_g \) is derived in the cited reference. Although theoretically possible, it will be more difficult to work out similarly unbiased estimators of equatings and other commonly computed functions of estimated item parameters.
Reference Note

Reference

DISTRIBUTION LIST

Navy

1 Dr. Jack R. Borsting
Provost and Academic Dean
U.S. Naval Postgraduate School
Monterey, CA 93940

1 Chief of Naval Education and Training Liaison Office
Air Force Human Resource Laboratory
Flying Training Division
Williams Air Force Base, AZ 85224

1 CDR Mike Curran
Office of Naval Research
800 North Quincy Street
Code 270
Arlington, VA 22217

1 Dr. Pat Federico
Navy Personnel R & D Center
San Diego, CA 92152

1 Mr. Paul Foley
Navy Personnel R & D Center
San Diego, CA 92152

1 Dr. John Ford
Navy Personnel R & D Center
San Diego, CA 92152

1 Patrick R. Harrison
Psychology Course Director
Leadership and Law Department (7b)
Division of Professional Development
U.S. Naval Academy
Annapolis, MD 21402

1 Dr. Norman J. Kerr
Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054

1 Dr. William L. Maloy
Principal Civilian Advisor for Education and Training
Naval Training Command, Code 00A
Pensacola, FL 32508

1 CAPT Richard L. Martin, USN
Prospective Commanding Officer
USS Carl Vinson (CNV-70)
Newport News Shipbuilding and Drydock Co.
Newport News, VA 23607

1 Dr. James McBride
Navy Personnel R & D Center
San Diego, CA 92152

1 Mr. William Nordbrock
Instructional Program Development
Building 90
NET-PDCD
Great Lakes NTC, IL 60088

1 Library, Code P201L
Navy Personnel R & D Center
San Diego, CA 92152
6 Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20390

1 Psychologist
ONR Branch Office
Building 114, Section D
666 Summer Street
Boston, MA 02210

1 Office of Naval Research
Code 437
800 North Quincy Street
Arlington, VA 22217

5 Personnel and Training Research Programs
Code 458
Office of Naval Research
Arlington, VA 22217

1 Psychologist
ONR Branch Office
1030 East Green Street
Pasadena, CA 91103

1 Office of the Chief of Naval Operations
Research Development and Studies Branch
OP-115
Washington, DC 20350

1 The Principal Deputy Assistant Secretary of the Navy (MRA&L)
46780, The Pentagon
Washington, DC 22203

1 Director, Research and Analysis Division
Plans and Policy Department
Navy Recruiting Command
4015 Wilson Boulevard
Arlington, VA 22203

1 Mr. Arnold Rubenstein
Office of Naval Technology
800 N. Quincy Street
Arlington, VA 22217

1 Dr. Worth Scanland, Director
Research, Development, Test and Evaluation
N-5
Naval Education and Training Command
NAS
Pensacola, FL 32508

1 Dr. Robert G. Smith
Office of Chief of Naval Operations
OP-987H
Washington, DC 20350

1 Dr. Alfred F. Smode
Training Analysis and Evaluation Group
Department of the Navy
Orlando, FL 32813

1 Dr. Richard Sorensen
Navy Personnel R & D Center
San Diego, CA 92152

1 Mr. J. B. Sympson
Naval Personnel R & D Center
San Diego, CA 92152

1 Dr. Ronald Weitzman
Code 54 WZ
Department of Administrative Services
U.S. Naval Postgraduate School
Monterey, CA 93940
1 Dr. Robert Wisher
Code 309
Navy Personnel R & D Center
San Diego, CA 92152

1 Dr. Milton S. Katz
Training Technical Area
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Harold F. O'Neil, Jr.
Attn: PERI-OK
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Martin F. Wiskoff
Navy Personnel R & D Center
San Diego, CA 92152

1 Mr. John H. Wolfe
Code P310
U.S. Navy Personnel Research
and Development Center
San Diego, CA 92152

1 Mr. Ted M. I. Yellen
Technical Information Office
Code 201
Navy Personnel R & D Center
San Diego, CA 92152

1 Mr. Robert Ross
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Mr. Robert Sasmor
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Mr. Ted M. I. Yellen
Technical Information Office
Code 201
Navy Personnel R & D Center
San Diego, CA 92152

1 Dr. James L. Raney
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Myron Fischl
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Mr. Ted M. I. Yellen
Technical Information Office
Code 201
Navy Personnel R & D Center
San Diego, CA 92152

1 Dr. Michael Kaplan
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Mr. Robert Ross
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Michael Kaplan
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 LTC Michael Plummer
Chief, Leadership and Organizational
Effectiveness Division
Office of the Deputy Chief of Staff
for Personnel
The Pentagon
Washington, DC 20301

1 Dr. Robert Sasmor
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Mr. John H. Wolfe
Code P310
U.S. Navy Personnel Research
and Development Center
San Diego, CA 92152

1 Mr. Robert Ross
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. James L. Raney
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Michael Kaplan
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Mr. Robert Ross
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Mr. Ted M. I. Yellen
Technical Information Office
Code 201
Navy Personnel R & D Center
San Diego, CA 92152

1 Mr. Ted M. I. Yellen
Technical Information Office
Code 201
Navy Personnel R & D Center
San Diego, CA 92152

1 Dr. Michael Kaplan
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Mr. Robert Ross
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Mr. Ted M. I. Yellen
Technical Information Office
Code 201
Navy Personnel R & D Center
San Diego, CA 92152

1 Mr. Robert Ross
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Michael Kaplan
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Mr. Robert Ross
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Mr. Ted M. I. Yellen
Technical Information Office
Code 201
Navy Personnel R & D Center
San Diego, CA 92152

1 Mr. Robert Ross
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Mr. Ted M. I. Yellen
Technical Information Office
Code 201
Navy Personnel R & D Center
San Diego, CA 92152

1 Mr. Robert Ross
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Mr. Ted M. I. Yellen
Technical Information Office
Code 201
Navy Personnel R & D Center
San Diego, CA 92152

1 Mr. Robert Ross
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Mr. Ted M. I. Yellen
Technical Information Office
Code 201
Navy Personnel R & D Center
San Diego, CA 92152
Air Force

1 Air Force Human Resources Laboratory
 AFHRL/MPD
 Brooks Air Force Base, TX 78235

1 U.S. Air Force Office of
 Scientific Research
 Life Sciences Directorate
 Bolling Air Force Base
 Washington, DC 20332

1 Dr. Earl A. Alluisi
 HQ, AFHRL (AFSC)
 Brooks Air Force Base, TX 78235

1 Dr. Genevieve Haddad
 Program Manager
 Life Sciences Directorate
 AFOSR
 Bolling Air Force Base
 Washington, DC 20332

1 Dr. David R. Hunter
 AFHRL/MOAM
 Brooks Air Force Base, TX 78235

1 Research and Measurement Division
 Research Branch, AFMPC/MPCYPR
 Randolph Air Force Base, TX 78148

1 Dr. Malcolm Ree
 AFHRL/MP
 Brooks Air Force Base, TX 78235

Marines

1 Dr. H. William Greenup
 Education Advisor (EO31)
 Education Center, MCDEC
 Quantico, VA 22134

1 Director, Office of Manpower
 Utilization
 HQ, Marine Corps (MPU)
 BCB, Building 2009
 Quantico, VA 22134

1 Special Assistant for Marine
 Corps Matters
 Code 100M
 Office of Naval Research
 800 N. Quincy Street
 Arlington, VA 22217

1 MAJ Michael L. Patrow, USMC
 Headquarters, Marine Corps
 Code MPI-20
 Washington, DC 20380

1 Dr. A. L. Slafkosky
 Scientific Advisor
 Code RD-1
 HQ, U.S. Marine Corps
 Washington, DC 20380

Coast Guard

1 Chief, Psychological Research Branch
 U.S. Coast Guard (G-P-1/2/TP42)
 Washington, DC 20593

1 Mr. Thomas A. Warm
 U.S. Coast Guard Institute
 P.O. Substation 18
 Oklahoma City, OK 73169

Other DoD

1 DARPA
 1400 Wilson Boulevard
 Arlington, VA 22209
12 Defense Technical Information Center
Cameron Station, Building 5
Attn: TC
Alexandria, VA 22314

1 Dr. William Graham
Testing Directorate
MEPOM/MEPCT-P
Ft. Sheridan, IL 60037

1 Director, Research and Data
OASD (MRA&L)
3B919, The Pentagon
Washington, DC 20301

1 Military Assistant for Training
and Personnel Technology
Office of the Under Secretary of
Defense for Research and Engineering
Room 3D129, The Pentagon
Washington, DC 20301

1 Dr. Wayne Sellman
Office of the Assistant Secretary
of Defense (MRA&L)
2B269 The Pentagon
Washington, DC 20301

Civil Government

1 Mr. Richard McKillip
Personnel R & D Center
Office of Personnel Management
1900 E Street, NW
Washington, DC 20415

1 Dr. Andrew R. Molnar
Science Education Development
and Research
National Science Foundation
Washington, DC 20550

1 Dr. H. Wallace Sinaiko
Program Director
Manpower Research and
Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314

1 Dr. Vern W. Urry
Personnel R & D Center
Office of Personnel Management
1900 E Street, NW
Washington, DC 20415

1 Dr. Joseph L. Young, Director
Memory and Cognitive Processes
National Science Foundation
Washington, DC 20550

Non-Government

1 Dr. James Algina
University of Florida
Gainesville, FL 32611

1 Dr. Erling B. Andersen
Department of Statistics
Studiestraede 6
1455 Copenhagen
DENMARK

1 Psychological Research Unit
Department of Defense (Army Office)
Campbell Park Offices
Canberra, ACT 2600
AUSTRALIA

1 Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08541
1 CAPT J. Jean Belanger
Training Development Division
Canadian Forces Training System
CFTSHQ, CFB Trenton
Astra, Ontario KOK 1BO
CANADA

1 Dr. Menucha Birenbaum
School of Education
Tel Aviv University
Tel Aviv, Ramat Aviv 69978
ISRAEL

1 Dr. Werner Birke
DezWPs im Streitkraefteamt
Postfach 20 50 3
D-5300 Bonn 2
WEST GERMANY

1 Dr. R. Darrell Bock
Department of Education
University of Chicago
Chicago, IL 60637

1 Liaison Scientists
Office of Naval Research
Branch Office, London
Box 39
FPO, NY 09510

1 Dr. Robert Brennan
American College Testing Programs
P.O. Box 168
Iowa City, IA 52240

1 Dr. C. Victor Bunderson
WICAT Inc.
University Plaza, Suite 10
1160 S. State Street
Orem, UT 84057

1 Dr. John B. Carroll
Psychometric Laboratory
University of North Carolina
Davie Hall 013A
Chapel Hill, NC 27514

1 Charles Myers Library
Livingstone House
Livingstone Road
Stratford
London E15 2LJ
ENGLAND

1 Dr. Kenneth E. Clark
College of Arts and Sciences
University of Rochester
River Campus Station
Rochester, NY 14627

1 Dr. Norman Cliff
Department of Psychology
University of Southern California
University Park
Los Angeles, CA 90007

1 Dr. William E. Coffman
Director, Iowa Testing Programs
334 Lindquist Center
University of Iowa
Iowa City, IA 52242

1 Dr. Meredith P. Crawford
American Psychological Association
1200 17th Street, N
Washington, DC 20036

1 Dr. Fritz Drasgow
Yale School of Organization and Management
Yale University
Box 1A
New Haven, CT 06520

1 Dr. Mike Durmeyer
Instructional Program Development
Building 90
NET-PDCD
Great Lakes NTC, IL 60088

1 ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014
Dr. A. J. Eschenbrenner
Dept. E422, Bldg. 81
McDonnell Douglas Astronautics Co.
P.O. Box 516
St. Louis, MO 63166

Dr. John R. Frederiksen
Bolt, Beranek, and Newman
50 Moulton Street
Cambridge, MA 02138

Dr. Benjamin A. Fairbank, Jr.
McFann-Gray and Associates, Inc.
5825 Callaghan
Suite 225
San Antonio, TX 78228

Dr. Robert Glaser
LRDC
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Dr. Leonard Feldt
Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242

Dr. Daniel Gopher
Industrial and Management Engineering
Technion-Israel Institute of Technology
Haifa
ISRAEL

Dr. Richard L. Ferguson
The American College Testing Program
P.O. Box 168
Iowa City, IA 52240

Dr. Bert Green
Department of Psychology
Johns Hopkins University
Charles and 34th Streets
Baltimore, MD 21218

Dr. Victor Fields
Department of Psychology
Montgomery College
Rockville, MD 20850

Dr. Ron Hambleton
School of Education
University of Massachusetts
Amherst, MA 01002

Univ. Prof. Dr. Gerhard Fischer
Psychologisches Institut der
Universitat Wien
Liebiggasse 5/3
A 1010 Wien
AUSTRIA

Dr. Delwyn Harnisch
University of Illinois
242b Education
Urbana, IL 61801

Prof. Donald Fitzgerald
University of New England
Armidale, New South Wales 2351
AUSTRALIA

Dr. Chester Harris
School of Education
University of California
Santa Barbara, CA 93106

Dr. Edwin A. Fleishman
Advanced Research Resources Organization
Suite 900
4330 East West Highway
Washington, DC 20014

Dr. Lloyd Humphreys
Department of Psychology
University of Illinois
Champaign, IL 61820
| Library | Dr. Robert Linn
| HumRRO/Western Division | College of Education
| 27857 Berwick Drive | University of Illinois
| Carmel, CA 93921 | Urbana, IL 61801
| Dr. Steven Hunka | Dr. James Lumsden
| Department of Education | Department of Psychology
| University of Alberta | University of Western Australia
| Edmonton, Alberta | Nedlands, Western Australia 6009
| CANADA | AUSTRALIA
| Dr. Jack Hunter | Dr. Gary Marco
| 2122 Coolidge Street | Educational Testing Service
| Lansing, MI 48906 | Princeton, NJ 08541
| Dr. Huynh Huynh | Dr. Scott Maxwell
| College of Education | Department of Psychology
| University of South Carolina | University of Houston
| Columbia, SC 29208 | Houston, TX 77004
| Prof. John A. Keats | Dr. Samuel T. Mayo
| Department of Psychology | Loyola University of Chicago
| University of Newcastle | 820 North Michigan Avenue
| Newcastle, New South Wales 2308 | Chicago, IL 60611
| AUSTRALIA |
| Mr. Jeff Kelety | Prof. Jason Millman
| Department of Instructional Technology | Department of Education
| University of Southern California | Stone Hall
| Los Angeles, CA 90007 | Cornell University
| Ithaca, NY 14853 |
| Dr. Michael Levine | Dr. Melvin R. Novick
| Department of Educational Psychology | 356 Lindquist Center for Measurement
| 210 Education Building | University of Iowa
| University of Illinois | Iowa City, IA 52242
| Champaign, IL 61801 |
| Dr. Charles Lewis | Dr. Jesse Orlansky
| Faculteit Sociale Wetenschappen | Institute for Defense Analyses
| Rijksuniversiteit Groningen | 400 Army Navy Drive
| Oude Boteringestraat 23 | Arlington, VA 22202
| 9712GC Groningen |
| NETHERLANDS | Dr. Wayne M. Patience
| | American Council on Education
| | GED Testing Service, Suite 20
| | One Dupont Circle, NW
| | Washington, DC 20036

1 Dr. James A. Paulson
Portland State University
P.O. Box 751
Portland, OR 97207

1 Mr. Luigi Petrullo
2431 North Edgewood Street
Arlington, VA 22207

1 Dr. Diane M. Ramsey-Klee
R-K Research and System Design
3947 Ridgemont Drive
Malibu, CA 90265

1 Mr. Minrat M. L. Rauch
P II 4
Bundesministerium der Verteidigung
Postfach 1328
D-53 Bonn 1
GERMANY

1 Dr. Mark D. Reckase
Educational Psychology Department
University of Missouri-Columbia
4 Hill Hall
Columbia, MO 65211

1 Dr. Andrew Rose
American Institutes for Research
1055 Thomas Jefferson St., NW
Washington, DC 20007

1 Dr. Leonard L. Rosenbaum, Chairman
Department of Psychology
Montgomery College
Rockville, MD 20850

1 Dr. Ernst Z. Rothkopf
Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

1 Dr. Lawrence Rudner
403 Elm Avenue
Takoma Park, MD 20012

1 Dr. J. Ryan
Department of Education
University of South Carolina
Columbia, SC 29208

1 Prof. Fumiko Samejima
Department of Psychology
University of Tennessee
Knoxville, TN 37916

1 Dr. Kazuo Shigemasu
University of Tohoku
Department of Educational Psychology
Kawauchi, Sendai 980
JAPAN

1 Dr. Edwin Shirkey
Department of Psychology
University of Central Florida
Orlando, FL 32816

1 Dr. Robert Smith
Department of Computer Science
Rutgers University
New Brunswick, NJ 08903

1 Dr. Richard Snow
School of Education
Stanford University
Stanford, CA 94305

1 Dr. Robert Sternberg
Department of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520

1 Dr. Patrick Suppes
Institute for Mathematical Studies in
the Social Sciences
Stanford University
Stanford, CA 94305
1 Dr. Hariharan Swaminathan
Laboratory of Psychometric and Evaluation Research
School of Education
University of Massacuusetts
Amherst, MA 01003

1 Dr. Kikumi Tatsuoka
Computer Based Education Research Laboratory
252 Engineering Research Laboratory
University of Illinois
Urbana, IL 61801

1 Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044

1 Dr. Robert Tsutakawa
Department of Statistics
University of Missouri
Columbia, MO 65201

1 Dr. Howard Wainer
Educational Testing Service
Princeton, NJ 08541

1 Dr. David J. Weiss
N660 Elliott Hall
University of Minnesota
75 East River Road
Minneapolis, MN 55455

1 Dr. Susan E. Whitely
Psychology Department
University of Kansas
Lawrence, KS 66044

1 Dr. Wolfgang Wildgrube
Streitkraefteamt
Box 20 50 03
D-5300 Bonn 2
WEST GERMANY