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1.0 (NTRODUCTION

The SEADYN computer program came into existence in 1974 as an
extension of efforts to model underwater electronic structures at the
Electronic Systems Division of the General Electric Company. The major
features of the program were developed as part of the author's doctoral
studies at Cornell University [1]. 1In 1975 the Naval Civil Engineering
Laboratory (NCEL) began evaluating SEADYN and the Chesapeake Division of
the Naval Facilities Engineering Command funded extensions to include
moored vessel options. The output of that funding was the SEADYN/DSSM

program and associated documentation [2-5]. Since 1977 the Naval Facilities
Engineering Command through NCEL has provided continuous development and
experimental verification of the program. This activity has led to
extensive modifications of the program and the addition of new capabilities.
These include:

A major reorganization of the program structure and the

1.
adoption of a free-field input format.

The addition « ° line payout/reel-in capabilities.

The addition of the strumming model of Skop, Griffin and Ramberg [6].

ro

3.

4. The development of the viscous relaxation solution for static
analyses [7].

5. The addition of the bottom-limited catenary element.

6. The addition of material internal damping models.

The addition of the time sequenced static solutions option.

8. The development of a plotting post-processor [8].

The addition of a body impact model (developed for U. S. Coast
Guard R&D Center).

The extent of these developments has prompted the production of a
new set of documentation. Three volumes have been written: the present
volume, a user's manual [9], and a programmer's reference manual [10].
The purpose of this manual is to summarize assumptions, equations, and

numerical solution methods used in SEADYN.



Finite element techniques based on the stiffness method are employed
in SEADYN. The hallmark of stiffness methods is the versatility of
structural form allowed. Quite complicated structural arrangements,
loads and boundary conditions are permitted. Unlike many special purpose
cable programs, SEADYN makes no restriction on connection topology or
geometric form. Multiple conrected redundant systems and networks are
modeled as readily as single line spans. Since the basic element is a
straight line segment, SEADYN can be used to model truss structures as
well as cable systems.

Specific physical characteristics which are important in cab’e and
mooring systems lead to nonlinearities in the equations. Some of them
are:

Geometric Nonlinearity - The system stiffness depends on preloading
and the deflections of the system.

Postion Dependent Loading -~ Loads delivered to the system depend on
the position and orientation of the system and they change as the system
moves. This is typical of fluid induced loadings for drag and inertia
loads (added mass).

Nonlinear Loading - Loads which depend not only on position, but
are a nonlinear function of the system state variables, e.g., fluid drag
loads depend on the square of the relative velocity and Reynolds' number.

Postion Dependent Constraints - The system must remain within
specified constraints, e.g., surface and hottom limits.

Nonlinear Materials - The load/strain relationship is dependent on
the amount of strain.

Physical Changes in the Structure - The structure itself may be
modified with time; snagging a body or payinyg out lines are in this
category.

Each of these phenomena are treated by SEADYN. This manual outlines
how this is done.



2.0 BASIC MODELING ASSUMPTIONS

The approach taken in the SEADYN computer program to model cable
and mooring systems can be described as a discrete element approach. It
can be cousidered as a combination of the finite element method and the
lumped parameter method in which lines are modeled by the finite element
method with bodies being lumped at the node points.

In its classical form, the finite element method seeks to represent
g vontinuous physical systems with a set of discrete or finite elements

which are formulated by assuming the character of the element response
in terms of a set of interpolating functions. In its usual form it is
evquivalent to a Galerkin form of the method of weighted residuals where
the weighting functions are defined individually on each element.
Viewed from another perspective, the finite element method is a form of
the Rayleigh~Ritz method in which the trial functions are defined only
on individual subregions (elements) of the system. The basic equations
tor cables, mooring lines and hawsers are obtained using a simple finite
element in the form of a straight line. The element is assumed to be
straight both before and after deformation of the system, but no restriction
is placed on the amount of stretch and/or rotation the element is subjected
to. Tt is further assumed that bending and torsional effects are negligible.
In the case of bending this means that the bending stiffness of the
cable has negligible influence on the global response of the system.
Neglect of the torsional effects does not mean that twist is unimportant.
It simply means that coupling between twist and extension is assumed to
have little effect on the overall shape and response of the system. An
obvious situation where this is an invalid assumption is in low temsion
conditions where a4 twist instability may result in kinking or hockling.
In addition to the straight line element, a catenary model is provided
tur bottom interaction. This element neglects fluid loads and roughly
appruximates mass redistribution with the bottom interaction.

The only deformable components in the system are assumed to be the
cahle elements. The material is assumed to be hyperelastic, i.e., non-
linear, time-independent with loading and unloading curves coincident.
The frequency domain allows proportional damping effects while the tran-
sient dynamic model allows various forms of material damping.

Any component of the system which cannot be modeled as an individual
line element or 3 set of line elements is assumed to be a rigid body.
These rigid components are assumed to be lumped at a single point in the
system. They may be assumed to have only a point effect or to act as a
v rigid connector for arbitrarily placed lines (e.g., a ship).

The system may be totally immersed in a fluid, suspended between two
- flusds (e.g., water and air) or fluid effects may be ignored. The treat-
nent ot tluid effects makes the fundamental assumption that the fluid and
structure problems are uncoupled. This means that except for specific
localized effects the overall fluid field characteristics are unaltered by
the presence of the structure. Thus, such things as flow alteration due
to structural movement and blockage effects are not dealt with. More
specifics on the assumptions and limitations of the fluid imnteraction
with the structural system are discussed in Section 3.5 and Reference 1.

3eost Available Copy ’



The Lagrangian approach 1s taken in describing the motion of the
system. In this approach all physical variables are expressed in terms
of their values at an intitial reference state. It is possible to
change the reference state by employing generalized coordinate transform-
ations which account for distortions and rotations. Analytical procedures
which begin from a reference statec and never change that reference are
valled total Lagrangian. Updated Lagrangian is an obvious title for
methods which periodically move or update the reference state. Either
procedure can be used and the results obtained should be equivalent. In
the developments which tollow the configuration of a system (or an
clement) is_ designated by the capital letter C and a pEe-superscript.
The symbol C means the reference configuration while "C means the
contiguration at some time, t. The definition of quantities like stress,
strain and displacement usually involve two configurations. A pre-lukscript
is used to denote the reference configuration for such cases. Thus, oC
means a quantity in C measured relative to C.

Details of the finite element method applicable to cable systems
are given in Reference 1. Only brief summaries of the results pertinent

to the SEADYN program are given here.



3.0 SUMMARY OF GOVERNING EQUATIONS

3.1 Global Equation Forms

The general form of the equations of motion for an element can be
written

Ml e} = e} - “g) = t(R) 31

where

t

R[M] is the element mass matrix

t{f} represents the external nodal forces in te

t{g} represents the nodal reactions in te

t'{R} is called the force residual

An incremental form of the motion equations can be written
“IM] {aq) = {af} - SIK.] {aq) - Flc) {4} 3-2
R 1 RT! 1898 7 g

where

t+At 9.3

{aq} = c{a} - pal

and

;[KT] is called the tangent stiffness matrix

;[C] is an incremental damping matrix

In many situations (e.g., fluid loading) the force is dependent on
the deflection. In this case

t t
{Af} = 3 Ef} At +-§—£{—f’- {aq} 3-4

{88} + (K] - {Aa)



The 1ncremental motion equations are then written
SIMD (g} + Hlc) {aq) + UKD fsq} = (aF) -
R al * g al + glky = 3-5

where

k) = RIK) - LK) 3-6

Equation (3-2) or (3-6) can be used to model small displacement
response about a steady deformed configuration, or it can be used in
nonlinear dynamics by recalculating the stiffness matrix at each step.

It should be noted that both equations neglect the position dependent
effects in the mass matrix. The incremental load rotation aatrix, (XR],

is nonsymmetric and csuses some problems in applying Equation (3-6).

Its effect when small increments are used is felt to be minimal and is
ignored in SEADYN. The incremental damping matrix may be difficult to
obtain in the more general situations. A simplified treatment is discussed
in Section 3.3.

An alternative form of the incremental equations is obtained from
Equation (3-1) by expanding only the internal loads in a Taylor series
and neglecting higher order terms. The result is

CAL ) t*ANiq) + K] faa) = C*RR(f) - g}

This equation is linearized by approximating t*tAt{f} and t"A"'[H]
ith their values at t+At while remaining in the origg&etion defined by
C. Any damping effects are assumed to included in {f}.

The contributions from each of the elements in the system (cables,
lumped bodies, and rigid bodies) can be combined in a very simple and
direct manner once they have been generated and transformed to the
global coordinate system. This is cone element by element by accumlating
the element contributions in the appropriate position of the global
arrays. An ordering of the degrees of freedom is implied in this procedure.
The order assumed in SEADYN is simply the three displacement components
(x,y,2z) stored in the order of the node number. Thus, the global nodal
displacement vector assumes the x component of node number one is first,
the y component of node 2 is fourth, etc. By requiring slave (movement
defined in terms of another node) nodes to be numbered after nodes which
have active degrees of freedom, the solution bookkeeping is greatly
simplified.

The assembled global equations have essentially the same form as
the element motion equations. The main distinction is that the order of
the equations is increased to include all of the active degrees of
freedom in the system. Noting this, the total nonlinear equations of
motion can be written



t

R
R {

1 ctal = {1} - el = Yym) 3-8

The two incremental forms are

RIMD {8q) + & [C] (a3} + SIR) {aq) = {aF) 3-9
LM YA q) ¢ RIKL] 18} = ETAY{e) - Yig) 3-10

It should be emphasized that these represent the assembled equations
for the system and that it is assumed that the constraints implied by
the boundary conditions and slave/master conditions are accounted for.
The dynamic equations reduce to the static equations when the time
dependent terms are dropped. Thus, the nonlinear static equation is

Yt} = o 3-11

and the incremental static equations are

alko) fac) {af} 3-12

t+At{

£} - “{g} 3-13

slK] {aq}

In the static case the parameter t is used to signify a load step rather
than a time step. The static equations presume a stable physical system
has been described by imposing adequate constraints on the system. If
this is not so, the stiffness matrices are singular and there is not a
unique configuration of the system which will satisfy the equation. In
case. of nonlinear systems (particularly those with surface ships and
mooring buoys) the static global equations may be ill-conditioned. This
meaus they are nearly singular and numerical errcrs in the solution pro-
cedure may lead to apparent singularities. This will be given more
attention in Section 4.2.

The classical approach for analyzing wave induced motions of plat-
forms and vessels is to transform the incremental equations into the
frequency domain and use linear superposition techniques. The linearized
small displacement equation form used is that of Equation (3-9). The
transforming assumption is that

(af} = R_ ({r}e“”‘) 3-14

Assuming quasi~linearity of Equation (3-9), the steady state response
has the form

{aq} = R, (EQ]eiwﬁ) 3-15
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Substituting (3-14) and (3-15) into (3~9) yields
2t Loty b o1 - tp -
(w R[P’l] + iw Rl(,l + RIKI> }Q} = {F} 3-16

Solution of this set of complex simultaneous linear equations
allows the computation of cthe response amplitudes and phase angles for
all degrees of freedom in the system. The magnitude of the response in
each degree of freedom is given by

Iy

|o

where Q? is the complex conjugate of the ith component of {Q}. The
ph:se angle between the incident loading (wave) and the response is
21l en by

3-18

oo | N

o = tanlom i)
1 Rf? (Q1
A phase angle of zero corresponds to the responce being in phase with
the incident loading.

2.2 Equations for Line Elements

Two line element models are available. The first is the one-dimen-
sional simplex element. This 1s a straight element using two nodes.
The second e lement also uses two nodes in its definition and is in the
form of a catenary.

3.2.1 The One Dimeusional Simplex Element

A finite element which has the form of a line (i.e., one-dimensional)
and uses only the field parameters at the two ends of the line in the
interpolating function is referred to as a one-dimensional simplex
element {11]. When the element is a straight line in 3D space and the
field parameters are the nodal (end point) displacements the element is
called a truss element in structural terminology.

Consider a single straight element which is defined by the position
of two nodes (onc at each end). Seiect a local coordinate system with
the x axis extending from the first node to the second. The other two
axes may be Chosen arbitrarily under the restricticn that they form a
right hanced cartesian referencg frame. When the element is in its
unloaded state it has a length .. Assuwme the material constitutive
relation has the form




where

f,s is the 2nd Piola-Kirchhoff stress in °C

t . . . .t
. 08 is the Green's strain in C

% . ;E is a nonlinear material modulus which may be a function of strain.
1
'

<
The incremental form of tEE‘ constitutive relation can be written for a
small strain increment, AG '

. ttAt, .t t t .
: 0S = OS + oET Aoc 3-20 ?
tE.. is the tangent modulus evaluated at t ;
where ¢ T C. E
Making the finite element assumption that the displacement at any é
position along the element is a linear function of the displacements of -
the nodes one can write E
rulj 5
r H 9 V1
u | x v
fu] = {v) = |[(1~-5) 1,2 1 J 1 } 3-21
R 3:R, 73
w L 1L u R
. 2
vy :
W "
oy
= pIN] {q}
i where i
' {u} represents the components of the displacement from RC
{q} represents the components of the nodal displacements #
i -
: R[Nj is called a shape function matrix =
I3 is the identity matrix of crder 3 e
The symbolic expression for the ﬁarge gisplacement kinematic relations E?
(Green's Strain) for a movement from € to C can be written [1] ﬂ
t t t
gled = gID] plu} 3-22

i e e 2




Substitution from Equation (3-21) yields

el = RIDI LIND ftab = [ 1Bl Ma 3-23

The mass matrix for the straight element can be written in two forms:

Consistent Mass Matrix

¥ 1
R_R, R 3 213
imp = L AL 3-24
3 11
213 13
Lumped Mass Matrix
R R. R I 0
M = L AL 3-25
2 o 1,

where Rp is the element material _density in RC, and RC, and RA is the

element cross-sectional area in C. With the assumption of conversion
of mass, the element mass matrix does not change with deformation. The
pre-sub and superscripts are used in Equation (3-1) since this is not
true of fluid added mass.

The consistent mass matrix is obtained from the kinetic energy and
Equation (3-21). The lumped form can be obtained by the intuitive pro-
cess of lumping half of the element mass at each node or by summing all
the terms on each row of the consistent mass matrix and assigning the
sum to the diagonal position.

The external forces may be due to point or distributed loads.
Point loads appear as specific entries in the global equations. Distributed
loads are usually from gravity effects and/or fluid loading. Fluid
loading effects are discussed in Section 3.5. The general form of the
gravity loading is

t

{f} 3-26

t

=
x
e

-3

=
o~
-3
A d
[
*

wvhere

R{T} represents the components of the element specific weight
(in fluid) relative to the local coordinate system

R[NlT is the transpose of R[N]

10



Substitution from Equation (3-21) into Equation (3-26) and noting
the orientation of the element with respect to the direction of gravity
leads to the conclusion that these forces are equivalent to placing one
half of the element weight acting in the gravity direction at each node.
It should be noted that Equation (3-26) assumes mass is conserved.

The internal forces of Equation (3-1) can be written [1}

t

te} = ;s Fa gt

3-27
L

where {A} is a unjt vector in the direction of the deformed element.
The stress term, RS' can be written

where tP is the element load in the deformed state. This allows the
force residual to be written

Ywio= tte - e 3-29

The stiffness matrix can be obtaingd from consideration of the second
variation of the strain energy in 'C. The result is [1]

X .
k -k k -k k -k
U N e N 3-30
R ~k° ko -k1 k1 -k2 k2
k -k
+ G G
-kG kG
where
‘b, ©A Rlz'loo
[k()] = p —6—'— 000
L L L 000
o (& \? [2e, 0,0,
(k,] = — 8, 0 0
1 or op 2 =
6,0 0
11
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3.2.2 The Bottom Limited Catenary Element

Quite often a mooring system will employ a line which must interact
. with the bottom as the moored body moves. The major feature of such a
l line is that significant lengths of line are lifted or laid down on the
bettom when relatively small movements are induced at the upper end of
the line. This is particularly true of shallow water moors. As an aid
in modeling such lines SEADYN provides a bottom-limited catenary element.

The element uses the classical catenary relations with a modifica~

| tion to account for length changes due to line stretch. The nature of

{ the catenary equations is such that it is not possible to solve explicitly
for stiffness terms. A perturbation procedure presented by Peyrot and
Goulois [12]) is used to circumvent this problem. The SEADYN implementa-
tion follows the developments of Reference 12 with two exceptions. The
first is that the tangential stiffness matrix produced by the perturbation
procedure was recognizea to be deficient since it did not recognize the
geometric stiffness resisting out of plane motion. This leficiency was
removed by adding a factor to the diagonal of the tangert stiffness

matrix at the degree of freedom corresponding the out-of-plane displacement
of each node. The factor added is the horizontal component of the
catenary tension divided by the horizontal distance between the nodes.

The second modification consists of the imposition of a bottonm
limit on the catenary. The limit is assumed to be a horizontal plane
passing through the lowest node on the catenary. The approach taken to
enforce this limit is an iterative process similar to the one proposed
by Peyrot [13].




—— i

The actual equations used are those of Reference 12 and will not be =
repeated here. The procedure relys on an algorithm which computes the
nodal forces on a sagged line when the unstretched length, nodal positions
and the distributed loading given. The tangent stiffness matrix is
obtained from the changes in nodal loads produced by perturbing the
nodal positions. Only cable weight loading is treated. Fluid drag
loads are ignored on this element.

The bottom-limited catenary element
which has its origin at the bottom node.
in the vertical plane containing the two
direction is toward the upper node. The

The z axis is chosen to form a right-handed cartesian system. Element

uses a local coordinate system
The local x axis is horizoatal
element nodes. The pesitive x
local y axis is vertical upward.

stiffness and contributions to the residual are first computed in the
local coordinate system and then transformed to the giobal system. The
transformation procedures are those discussed in Section 3.9.

3.3 Material Models, Elasticity

The line material is assumed to be nounlinear elastic in form. Two
functional forms are assumed which relate the line tension to the exten-
sional strain. The first is a tabular form which represents a sequence
of linear segments describing the relation. The second is a two parameter
curve fit form. It has been found effective in modeling cable
constructions [13]. The form is

_ tb -
tP = aob 3-31

where 1 and b ave curve fitting parameters. Note that this relation is
asstanel to be between the total tension and the total uniaxial Green's
strain. Thre relation between the customary uniaxial engineering strain
and uniaxial Green's strain is

o= (v se ) s L 3-32
o engineering’ “engineering

Nt

The diife-ence hetween these two strain measures is minor up to strains
Y10 . AU an engineering strain of 20% the Green's strain is only 22%.

The material constitutive relations are used in two situations in
SEADPYN.  7The first occasion arises in the case where an initial equili-
brium configuration is known (or guessed). In this case it is desired
to t.nd the unstrained length and the strain with the load and position
of thr nodes given.

[ the other case, the unstretched lexgth is known, the nodal posi-
1io.¢ are, given and it is desired to comp.:ie the straius and the tangent
modulus, E. °A. This situation occurs =7~h time a new estimate of the
state of £he system is made.
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In either case, it is necessary to use the expression for uniaxial
Green's strain

— -1 3-33

This form is used rather than accumulating strain increments to avoid
numerical round-off errors. The °L for each element is either gigen or
computed for each element at the beginning of the analysis. The L is
recomputed at each stage of the solution process where the strain is
necded. The computation of these two lengths can be a source of numerical
noise when "L ~ °L and low precision is carried in the computer. Two
situatéons aggravate the problem: (1) the material is very stiff, i.e.,
large oEt’ (2) the loading is small.

3.4 Damping Models

Damping enters the SFADYN analyses in various ways. First, there
is a certain amount of damping inherent or intentionally included in the
numerical algorithms for calculating transient res, onse. Such algorithmic
damping is treated in Section 5.2. Another form of numerical damping is
involved in the nonlinear static solutions. This is an artifice to aid
in obtaining convergent static solutions to highly nenlinear problems.
Discussion of numerical damping can be found in Section 5.1. A third
form of damping is due to the dissipative effects of the fluid interacting
with the structure as discussed in Section 3.5.

This section is concerned with material or physical damping models
for the dynamic response of the structure., Material damping is considered
to be an inherent characteristic of the line material and is distributed
throughout the line. It is appropriately treated in the material comnsti-
tutive relation. The result is that the material takes a viscoelastic
form. An alternative formulation presumes not enough information is
available to define all features and sources of dissipation and the
benavior is approximated through an estimated damping malvix. The form
assumed is

t t t
o= =34
g1€] a (M) + BplK] 3-3
The treatment of material damping follows a component approach.
Two components are used as building blocks: the elastic component which
relates forces to displacements and the dashpot which relates forces to
velocities,

These components may be used in two arrangements in SEADYN. These
are referred to as the Kelvin and the NOAA-Reid models (25]. They are
represented in Figure 3-1.
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a) Kelvin Model b) NOAA-Reid
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Figure 3-1. Material Models

The force constitutive relations are given by:

:
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. =

T = K06 + N/K1 (Ko + Kl) 6 - N/K1 T
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These relations can be written in terms of strains using the substitutions

K6
NS

[
o m
:—l o
™
&A
113
o
>
o™

Then

Kelvin Model .

T = EA_ e +CA ¢ 337

NOAA - Reid Model

; CA, . CA .
z T = EA08+E—A-1-(EAO*EA1)8-H-I-T 3-38

Equation (3-37) has been implemented in SEADYN by recognizing the
EAO term as the one discussed in Section 3.3. The CA term is taken as
an additional input parameter.

The more complicated form of equation (3-38) presents more problems
since it involves a tension rate term as well as a slrain rate term. As
with the Kelvin model, the EA term is identified as the basic mate-ial
elasticity relation and the ck, and FA parameters are provided as «ddi-
tional input. The tension rate is approximated by a backward difference
in time. As a result it lags the other paramcters. This approximation
is considered to be a reasonable compromise.

These material damping models have only been implemented in SFADYN
on the direct iterative (D1) method for transient dynamics (see Section 5.2).
This solution works directly with the global equations in the form of
Equation (3-8) and no global stiffness or damping matrix is used. The
DI method makes the use of proportional damping a little less direct.
In The case of proportional damping in transieni i namics using the DI
method it is assumed that for each element

Q

R 2 t.. o t: -
N = (am L° +8 OLS A) ot 3-39

vhere EES is the material secant modulus.
The frequency domain solutions treat damping by forming an incremental

damping matrix corresponding to the form of Equation (3-16). The material

damping forms have not been implemented, but the proportional damping in

the form of Equation (3-34) has. In addition, the dissipative terms :

from drag loading have been approximated using the approach presented in -

Appendix 1.
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Neither matevial uwor proportional damping is used in any transient
dynamic oplion besides the D]l method. No damping is used in the natural
frequency calculations.

3.5 VFluid Loads

. - The primary assumption regarding the effect of fluid immersion on
! the cable system as stated in Section 2 is that the fluid and structural '
| problems are uncoupled. The independence principle [14] is assumed in 1
! the treatment of fiuid loading on the cables., 1In brief, the independence
: principle asserts that the fluid loading can be treated as resulting

I from two separate flows: one normal and one tangential to the cable.

' The fluid induced loads can be separated into a part involving the
i relative velocity between the cable and the fluid and a part involving -
' the relative acceleration. The velocity related terms can be written

{w} = wy {n} + o {A} 3-40
where
wy = 12 pg Gy D Y2 3-41
‘ ‘ :
wp o 1/2 py €DV 3-42 g
i {n}, {A} are unit vectors in the directions of the normal

! and tangential components of the relative velocity -

CN‘ CT are normal and tangential drag coefficients 4
| D is the drag diameter of the cable E
Pe is the density of the fluid :

- VN’ VT ave normal and tangential rvelative velocities

The tluid loading vector for an clement is thean

)
L. "t T _
{r} = f {(N]" {w} dL
()
Assuming a linear variation of {w} over the length of the element

{w}
Yiey o= oo " 3-44 .
3 3 {w}2 .




The acceleration related portion of the tluid loading can be separated
' into a part due to flow field acceleration and s part due to structural
acceleration. The flow field acceleration part is neglected in the

cable loading and the structural accelerstion part is treated as an

added mass. The added mass matrix for a straight element can be written

M Pg RA RL 011
Myggeq) = —37—" °1l 3~45

where
; CM is an added mass coefficient.

] It should be noted that there is no added mass tangeantial to the cable
; which makes this a position dependent term.

_ In some of the solution procedures economies can be achkieved if the
{ mass matrix is diagonal. A lumped form cof the combined cable and fluill
added mass matrix can be written:

5 Ry Ry cy pe A R Poo
M) = BB Lyry - A — 10 3-46
| = (M ]+ INNLI
! where
|
: b= Rouc 3-47
i M Pt

This form still presents some difficulties which will be dealt with in
the discussion of the sclution proceduvres.

Fluid loads on submerged lumped bodies are estimated using an
approach similar to that used for the cable element. Two forms for
lumped bodies are considered: spherical and an end-fairved cylinder.
The drag loading on a sphere is given by

i

! t - . 2ty au
i {fspherc} = 1/2 Pg Cp DV {A} 3-48

S g b

where

D is the diameter of the sphere

D is the drag coefficient




e — — — o — 0

\) is the relative velocity between the fluid and the point
where the sphere is located,

{A} is a unit vector in the divection of relative velocity.

The added mass for a sphere is
Cy Pg 1 n
Moggead = g L4l 3-49

The end faired cylinder loading and added mass is assumed to hLave
the same form as that for a cable elemont except that the total effect

is placed at a single point rather than bheing distributed between two
nodes,

There arve specific fluid effects peculiar to surface buoys and ships
which are discussed in Sections 3.7 and 3.8.

3.6  Lumped Bodies

Two forms of lumped bodies are coasidered. The siwmplest form
treats the body as a single point with three displacement degrees of
freedom. The point is assumed to have mass but no rotational inectia.
No elasticity effects are attributed to the body, but it may be a means
of inducing tluid loads into the system (see Section 3.5). If the mass
of the body is m, then the mass matrix is siwply

.
ld]lumped m l 11 350

This body atfects only cne node in the system,

The second form i1s that of a rigid body with spatial dimensions.
The mass 13 still assumed to be concentrated at a single point but that
point has six degrees of freedom. The wass matrix assumed for this case
has specific forms only in the case of mooring buoys and surface ships.
The program generates the mass matrix tor mooring buoys and assumes the
mass matrix is defined by input from the ship's motion file for surface
ships. See Sections 3.7 and 3.8 for details., In either case the mass
matrix is a 6 X 0 matrix,

3.7 Surface Ships and Platforms

The rigid body element is used to model ships and platforms (the
term ship will be used to mean either one). A single node point is used
to define the position of the ship. Since the node must express the
angular as well as spatial position of the ship it is required to have
sixX degrees of treedom.  (The SEADYN program uses two consecutive nodes
of three degrees of freedom cach to define a ship.) Attachments of
mooring lines and/or working lines are handled through the slave/master
transformation.
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In static analyses the steady state effects of winds and surface
currents acting on the ship are treated as lateral and longitudinal
forces and a yaw moment which are assumed to act at the ship's reference
point. The values of these forces depend on the flow velocities and the
angle between the ship's heading and the flow direction. Empirical load
tables giving load coefficients versus heading or analytical load functions
may be used. The empirical approach is given in NAVFAC DM-26 [15] and
both approaches are summarized in !1e appendices of the user's manual.

The dynamic equations for the response of surface ships to waves
are usually given in an incremental linearized form. These equations
have the form

ting + Mc) fugh + leg) fig) + Lkl fug) = (£} 3-51

where

{ug} represents the six components of ship's motion
) (surge, sway, heave, roll, pitch, yaw)

:[MS] is the ships mass matrix including rotational inertial terms
E[MAS] is the added mass due to fluid acceleration effects

:[Cg] is an equivalent linerarized damping matrix
t
t{ SI

{fs} are the point equivalent forces representing the wave
induced exciting forces

K is the ship's hydrostatic restoring matrix

In order to obtain this linearization it is usually assumed that
the ship is driven by a simple harmonic wave. With this assumption, the
forces, added mass and damping are frequency and heading dependent. 1In
addition, the linearization of the roll damping term makes it dependent
on the magnitude of the roll angle. Equations of the form of (3-51) can
be obtained for slender bodies using strip theory [16]. A more general
theory is required for other forms [17]. The SEADYN program assumes the
values for these coefficients are provided through a data file. The
format of that data file is described in Appendix A of the User's
Manual and Section 5.3 of the Programmer's Reference Manual.

The element equation represented by Equation (3-51) can be manipulated

45 any other element equation and combined with the global equations of
the system. No new concepts are involved in these operations.

3.8 Mooring Buoys

Ship's moors often involve surface buoys which support the mooring

line and are connected to the ship through s hawser. This type of buoy
usually remains on the surface where it is subjected to the effects of
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w?nds,'currents and waves. The general form of the buoy motion equations
linearized to represent small excursions from a static reference state
can be written:

¢ Mgy {;sn’ + plCgp) ligg) + {IKgpl fugy) = {fsp) 3-52

where the various terms follow the previously established pattern. The
forcing term represented by {f..} deals only with wave excitation.
Static load effects on a moorigg buoy follow the same form as described
previously in Section 3.6.

In order to avoid a gruat deal of complexity, it is assumed that
the buoy is spherical in shape and that a local cartesian coordinate
system is selected which is vertical in the z direction and has the
incident wave traveling in the +x direction. No loss of generality is
incurred with this choice of coordinate system on a spherical buoy since
the character of the coefficients do not depend on the orientation or
attitude of the buoy. The problem is further simplified if it is assumed
that the buoy is homogeneous with the center of gravity at the geometric
center of the buoy and that the geometric center is located at the water
line in the reference state.

Attachments of hawser and mooring lines to the buoy can be readily
handled if their positions relative to the local coordinate system are
known. The rigid link transformation described in Section 3.11 is used
for this purpose. The positions of the attachments can be found from
the static solution.

Since it is assumed that the equations use tC as the reference con-
figuration, the configuration notation will be dropped for this discussion.

Transformation from the local to the global system for assembly of
the buoy equations with the rest of the moor system equations is a
straightforward process which follows the method outlined previously.
For this reason only the coefficients in the local coordinate system
will be given here. It should be kept in mind that the following equations
represent the incremental motion equations for a surface buoy in the
local coordinate system just described.

Given that the buoy has a mass designated by m and a mass moment of
inertia, Jm, the buoy portion of the mass matrix is

al 0
= 3 3-53
0 me 13

Mg

where I, is the identity matrix of order 3. The assumption of a homoge-
neous sghere should be recalled at this point. If the attachments
contribute significant mass, their effects can be treated by including
additional lumped masses at those nodes.
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- The added mass has the form 3
: !
’ A0 0 0 A
- XX x9
i A 0 A
yy yd
: M) = A 0O 0 0 3-54
- zz
E (5YM)
= A 0
| ¢ _
! H
Aoe ( n‘.
A B
Uy
- 1 = H -
- Mgyl (Mgl + (M,] 3-55
The wave damping matyrix has a form similar to the added mass matrix.
Specific values for the added mass and damping coefficients fov a sphere e
were given by Patton [20]. His values were obtained by curve fitiing o
the analytical results presented by Xim [18]. The nondimensional values -
ottained were
Mx = 1.089 + 0.052 a for 0 < a < 0.74 3-56 3
= 1/(-0.0318 + D.954 a ) for 0.74 < a < 3.4 3
M,oT 1.85 for 0 <a < 0.1 3-57 3
! s 1.02a 0P 0.1 <a < 3.4 :
- Y
; Nx = 0 for 0 <a < 0.1 3-58
= ~0.069 + 0.715 a  for 0.1 < a < 1.37
- :
i = 1.9Y9f for 1.37 < a < 3.4 .
N, = 0.126 + 1.7 a for 0 < a < 0.4 3-59
= 1.8 083 for 0.4 < a < 3.4
where a’ 1s the nondimensional irequency givean by g
' ° 2ma _ aw . 3
1 a = A - g 3 60
i
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and £
!
a = radius of sphere ’ 7 =
: A = wavelength E
E w = circular frequency of wave container ;
3 f
] These equations for the added mass and damping coefficients for i
P mooring buoys proved to be cumbersome for programming. A polynomial ,?5
curve-fitting of the original curves given by Kim [18] was used in the b
i program. The polynomial coefficients are given below. B
| i
i
i FUNCTION a, a, a, a, a, ag ag a, 4
; Hx 1.0620 -0.4090 5.3299 -10.0143  7.6387 -2.9089 0.5509 -0.0414
Nz 1.7945 1.3362 -10.9227 18.0521 -13.8920 5.5725 -1.1249 0.0902
Nx 0. -1.5252  7.2144 -8.6447 5.0535 -1.6218 0.2750 -0.0192 .
NZ ¢. 4.3747 -9.8378 10.7232 =-6.6657 2.3676 -0.4439 0.0339 'E
The equation form is %
7 -
| F = Z a,(a) 3-61 .
? i=0
\ The added mass terms are nondimensionalized by the factor pa3 d :
i the damping terms by the factor pa~w, thus P
| 3
{ A = A = pa’ M 3-62 E
i XX yy X =
é A= pa M
{ 22 : 2 G
! —:n
i _ - 3 ,
C = C = pawN 3-63 :
I »X yy x -
: _ 3
'; CZZ = pa’w N2
| 4
i The roll, pitch and yaw added mass terms arise from fluid viscosity 5
i and they can be written -
i :
; A = A = A = hnt paS 1+ Ba 3-64 f?':
( o0 CT:) Yol 3 1 + 2Ba + 252 a2
i 23
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where

N y
B = \J;v 3-65

and v = the kinematic viscosity of the f%uid, Since the kinematic
viscosity of water is of the order of 10 ft‘/sec, the rotational added
mass terms will be small compared to the buoy inertia texms. Damping
due to rotational motion is very small and will be neglected. Thus,

C¢¢ = COe = wa = 0 3-66

when the center of pressure does not coincide with the center of

gravity of the buoy, a coupling between lateral and rotational motion
exists. These terms can be written:

Axﬂ - Axx (ch B ch) 3-67
Mo T Ty (g T )
Cxﬁ = Cxx (ch B ch) 3-68
Cyp = "Cyy g 7 Zep)

With the origin of the local coordinate system at the geometric
center (also center of gravity), z, is zero. The center of pressure
for a half submerged sphere is obtii¥ned from

. ' -a e
IS “ nx d8 »{) z\a2 - zz dz 4a
Zcp - _f n. ds : =
g X

3 3-69

——————

-a
j; \\az - 22 dz

The dampiag terms presented above do not represent the effects of
viscous drag. The viscous terms involve the square of the relative
velocity between the buoy and the fluid aand are therefore nonlinear.
The viscous eftfects are generally of less importance than the wave
damping. Obviously, this is not the case for the rotational movement
since those terms are zero for wave damping. In a free-floating buoy
the viscous rotational terms would play an important part, but in a
mooring system where the hawser and mooring leg restrain the buoy the
rotation is limited. Therefore, all of the viscous terms will be
neglected rather than attempting to linearize them.

The only nonzero hydrostatic restoring force on a half-submerged

spherical bucy acts in the heave direction. Its value for small displace-
meats is

k22 = fla pg 3-70
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When the buoy provides a connection between a mooring line and a hawser

it develops an additional stiffness (resistance to motion) due to the
tensile force being transmitted across it. This is analogous to the

! geometric stiffness term, [K.], seen in the cable element stiffness

matrix in Section 3.2.1. Thils geometric stiffness effect is automatically
taken into account by the rigid link transformation of the elements
representing the attached lines.

The right-hand side of Equation (3-32) represents the forces due to
surface waves. Assuming the wave is harmonic in form, Kim [19) shows
that the wave induced forces can be written

; (s » o
; A X +C X 3
XX ‘W XK W 4
! »e 0 S ‘
1 _ S : . :3
: gl = ‘ﬁ Az bt Sty t I &y 3-71 3
0 2
S S . :
‘ ABG 6w M COBG w+ I 20 w
. 0 i
where %
S = pa3 S 3-72 E
X% X =
¢SS = paduwnd 3-73 ;
Xx X E
‘ - a’(z+ix) N | , _ é
I] = pg-é e n, ds ~ pg g cos (a'x) n, ds 3-74 ;
_ a' (Z'riX) ( - -
12 = pg-é e (xn, znx) ds 3-75
For the half submerged sphere
s _ s _ - -
ABO = 00 - 12 = 0 3-76
- The wave pressure component of the heave exciting force, 1., is

closely approximated by the pressure at the water surface distributed
over the cross section at the water surface. A plot of this function
versus the nondimensignalsfreguency gs given in Figure 3-1.

The values for M_, M, N° and N_ for a half submerged sphere were
by Kim (Ref 19). A pglyngmiaf curve fit of those functions plus the

curve for I1 are summarized in the following table. §
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Figure 3-1. Heave exciting force for half-submerged sphere.




SUMMARY OF WAVE EXCITING FORCE COEFFICIENTS

FUNCTION a, 4 a, a, a, ag ag a,

M: 0. 1.7586 -8.2171 12.0253 -~8.2882 3.0081 -0.5576 0.0416

Hg 1.7868 1.0552 -10.5792 17.2729 -13.2596 5.3272 -1.0781 0.0866 -
Ni 1.0833 0.0833 -1.4496 0.7753 =-0.0705 -0.0314 0.0055 0.

Nf 0. 4.2382 -8.5367 8.2743 -4.6849 1.5633 -0.2823 0.0211

l]/nang 1.0 -0.0004 -0.1218 -0.0026 0.0069 -0.0007 O. 0.

vhere the function form is:

N .
F = 3, a(a)t 3-77
‘ i
i=0
Thus all of the terms necessary for treating the small displacement i

behavior of a restrained, half-submerged spherical buoy are available.
The assumptions employed appear to be reasonable and should lead to a
good approximation of the buoy effects in a deep sea moor. Although
a spherical buoy has been assumed, a comparison of the curves presented
by Kim (Ref 18) for a sphere and those presented by Garrison (Ref 17)
for a half-submerged cylindrical buoy with an aspect ratio of 1.0 shows
that the added mass and damping coefficients are quite similar. There-
fore, it is reasonable to expect the sphere equations to give at least
an order-of-magnitude approximation of a cylindrical buoy.

The small displacement assumption deserves some further comment.
For wavelengths of the order of the buoy diameter one would expect the
buoy motion to be small. However, as the wavelength increases, the
buoy motions increase. Since most of the wave energy is expected in
the longer wavelengths, the buoy could be expected to see large motions
which would cause these equations to be inaccurate. When no ship is
in the system, this inaccuracy could be serious. Fortunately, the ship
motion becomes a significant effect in the longer wavelengths and the
buoy motion is dominated by the ship movement as transmitted through
the hawser and reacted by the mooring line. In this case the contri-
butions from the buoy itself (though in error) would generally be
insignificant. For the shorter wavelengths, the ship appears nearly
fixed, and the exciting forces due to wave action on the buoy become
important. It is fortuitons that this is the range in which the buoy
equations are most accurate.
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3.9 Coordinate Systems and Transformations

Equations for the cable element, as well as ships and mooring
buoys, are most readily developed in a local or intrinsic coordinte
system which is considered to move with the element. The development )
of a global set of equations which represents the behavior of the %
assembled system of elements requires a single global coordinate system.
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Transformations between the local coordinate system and the global
system in a reference configuration are accomplished by the usual
rotation of coordinates. The general form for the components of a
vector at a point is

t : _ ot -
R ocar = rIT) ji%g10bal 3-78

Columns of the transformation matrix are the components of a uunit vector
in the direction of the local coordinate axis expressed in the global
system. Since only right-hauded cartesian coordinates are considered,
the inverse transformation jis obtained with the transpose of _[T}. All
contributions from the external and internal loads, etc., must be
transformed to the global system before they are combined with other
components in the system.

It should be noted that these coordinate transformations apply only
to quantities expressed relative to a specific reference configuration.
As long as the reference configuration remains fixed the individual
coordinate transformations ﬁenain gnchanged regardless of how much
deformation occurs between "C and C.

Coordinate transformations involving nodal point displacements for
an element can be written

K

t - . -
R{q}local - 3-79
R

t - t
R{q}global = glT R{q}global

"he form for nodal forces is similar. When one transforms the incremental
aotion equations from the local to the global system the equations take
the form

t = - t= *
gIM] {8} g)gpay ¥ RICT 8adgy0p0

L= )
* R[KT] {Aq}global {At}global 3-80

where

t - Tt

gMl = QU] plH] ()

t,a _ T t,.

t, - Tt

RIKpl = RIT)T RIKL) LIT)

(£} =TT {af)

global R local
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Thus, it is seen that coordinate rotations do not alter the form of
the equations. Unless specitic emphasis is required, no further distince
tion between the local and global equation forms will be made. It is
assumed that the equations are written in a homogeneous system, i.e., all
displacements, forces, stiffnesses, etc., are in the same coordinate system.

3.10 Restraint Transformations

A generalization of the coordinate system transformation is useful
in modeling the effects of displacement restraints. Such restraints
represent boundary conditions where the value of the displacement is
specified. It may be zero or some finite quantity. SEADYN imposes
these restraints in static analyses after the global stiffness matrix
has been assembled. The process amounts to an imposition of a linear
relation of the form:

Ya ‘ - Iaa 0
Y i fud + 35 3-81

Here it is assumed the [d] represents known or specified displacement
components.

Consider a partitioned form of the static stifiness equations (the
indices are dropped for simpiicity)

Kma Kad {ua} {fa}
Lt = ! 3’82
Kda Kaal| (44 fa
Applying the linear transformation represented by (3-81) the following
results

(K0 fud = {6,) = (K ] {a) 3-83

The form of this equation suggests 3 procedure for imposing restraints
on the global equations. First assume the d-portion has only one component,
then take the column of the stiffness matrix that corresponds to that
degree of freedom, and subtract it times d from the force vector. Next,
set all entries in that row and column of the stiffness matrix to zero,
Finally, replace the entry in the force vector for that row to the value
of d and set the corresponding diagonal element of the stiffness matrix
to unity. This process is repeated for ecach degree of freedom where a
restraint is to be imposed. This process is valid for any value of d
(including zero). When d represents a large movement it will be necessary
te utilize some nonlidear solution algorithm to get an equilibrium solu-
tion. These methods «re discussed in Section 5.1.
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3.11 Slave/Master Transformations

The generalized rigid bodies used to model ships and mooring buoys
require some special manipulations to connect them to the rest of the
system. Their motions are assumed to be described by the six degrees of
freedom of a single point. The attachmonts, however, will not connect
to the rigid body at that node. S$Since the body is assumed to be rigid,
it is possible to express the motion of any point on the body in terms
of the motion of a single point and the relative positions on the body.
The node used to model the body is called a master node. Any other
point on the body is called a slave node. Given the six components of
motion at the master node, the translation components of & slave node
can be written:

10 0o A -ay| fa}
{4} ave 01 0} -Az 0  Ax ——— 3-84
I -
0 0 11! &y Ax 0 {0} master
or
;q}slave [TSM] {q}master 2

where Ax, Ay, Az are componeats of the distance between the two points
measured from the master to the slave, 1.e., Ax = x % , etc. .
' . ) . ) : sla¥c masteé. -
The matrix [rS“] can be viewed as a generalized form of the coordinate

transformation represented by Equation (3~78) and the transformation -
procedures of the previous sections can be employed. =

It. should be noted that the slave/master transformation involves an >
alteration of the number of degrees of freedom. When an end of a cable E
element connects to a slave node, the application of Equation (3-84) in -
the transformation indicated by Egquation (3-80) results in a stiffness
matrix {etc.) which is 9 x 9 jastead of 6 x 6. 1t should further be
noted that the slave/master transformation form assumes small displace-
ments and is therefore only applicable to the incremental equations.

t _ ot -
{X}slave - (X}master 3-85

t, - R R
* R[I] ( {x}slave N {x}master)

where L[T] is a rotation matrix of the form (3-78) which represeants the
total angle changes from C to C at the master node.
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4.0 MODELING CABLE AND HOORING SYSTEMS

4.1 General Approach

The SEADYN program utilizes a line element in such a way that it
can represent truss structures as well as cables and mooring lines. All
of these structures have a common feature in that the basic element is a
one-force member. Modeling a cable span with multiple line segments or
representing a truss structure involves essentially the same steps. Of
course, a segmented model of a curved span represeats some special
approximations not needed for trusses and the geometric nonlinearities

must be treated in cable spans while that may not be essential in trusses.

But once the approximations have been made, the building block, the
element, is one that can be used for either type of structure.

One should be aware that whenever only two line clements meet at a
node and the other ends of those elements are not Lotally fixed, the

geometric uwonlinearity must be treated. Without preloading and appropriate

external loads, such a system is a mechanisn. The stiffness matrix for a
mechanism is singular.

Although truss structures can be defined that have sufficient
rigidity and structural stability that small deformation assumptions can
give reasonable solutions, small deformation theory cannot be used on
cable spans unless large preloads are supported and the stiffening
effects of those preloads are included in the equilibrium equations.

In genceral, the modeling process for cable systems involves the
selection of appropriate subdivision of the spans. Since straight lines
are the precominant elements in SEADYN, it is necessary to make the sub-
division fine enough Lo capture the curvatures of the initial and final
states with acceptable error. Mere curvature requires more elements.
Other modeling assumptions relate to matevial variations and lumped body
approximations. Nodes must be located where materials change (only one
material per element) and where bodies are to be lumped, Nodes also
must be placed where limit conditions or other restraint/constraint con-
ditions may be specified. Liberal use of nodes and elements has various
economic impacts and good modeling practice leads to rational compromises
between cconomics and accuracy.

Proper modeling procedures requires some special understanding of
the loading environment. and the poxsible boundary conditions., It is

necessary to separvate loading conditions into categories. Three categories

dealt with in SEADYN are

DEAD - loads inherent with the structure (weight, buoyancy)
which have virtually no temporal variation. They must
be supported along with all and any other loads.

LIVE - Loads which are temporary in nature but applied slowly
enough to be assumed static. Current and wind loads
can be placed in this category. Various operationai o
working loads are of this type.
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Transient - Loads which excite or produce acceleration effects
leading to movement in a time scale short enough to
preclude static approximations. Generally this will
mean oscillatory respouses in which mass related forces
are not negligible.

SEADYN assumes all three of these conditions will be encountered
and since geometric unonlinearities are involved, the behavior in one
condition is likely to be dependent on the state induced by other conditions.
A typical situation is ome in which dynamic responses are highly seusitive
to the static state produced by a combination of gravity/boundary loads
aad current loading with negligible time variations but significant
space variations. [t is not appropriate to attempt dynamic analysis in
this case until the static solution is found. The structure of SEADYN
presumes a staged or sequenced analyxis process which applies new loading
conditions to the state obtained in the preceeding stage. Full account
is given for the geometric and property changes in this staging. A
typical analysis sequence would be to compute the equilibrium state for
DFEAD loads, apply the LIVE loads and finally induce the transient loads
on the combined static state.

The primary variables in the computations are the nodal displace-
ments and nodal velocities., Secondary information such as strains aund
tensions are comjuted from the primary data. Interpretation of results
should always be vempered with an understanding of the approximations
and methods used. Since the straight cleoments presume lincar functions
tor displacements between the nodes only a constant value for element
strain can be obtained. The consequence of this is a single value for
the element tension,

Care is needed in specifying initial data for highly flexible
structures with low preload. Such problems suffer from a tendency to
radically change shape when small variations are made in clement leagths,
initial node positions or element tensions. One often encounters great
difficulty in obtainiug numerically stable initial counfigurations for
dead loading. More is said of this in later sections and the various
references.

4.2 Shap Mooring Systems

The basic components required in modeling mooring systems for
surface ships arve:

a. surface ship

b. mooring lines (usually submerged)

¢. mooring buoys

d. hawser (usually in air and subjected to wind loads)

e. floats, sinkers and anchors
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Fach of these components have leen dealt with to some extent in the
previous discussion.  Unfortunately it is not possible to develop a

fully general nonlinear analysis of ship's mooring dynamics. The primary
reason for this is the highly complex nature of the interaction between
the sea and surface bodies such as ships and mooring buoys. The equations
presented for these bodies are linearized equations which address only

the response to harmonic, long-crested waves.

The theoretical approach used in dealing with mooring systems
follows through a series of approximations. The first step is to obtain
a description of the mooring system in the quiescent state where only
gravity loads are involved. This is called a dead load analysis. There
are some pitfalls in this step which are related to the geometric nonlin-
earity of the problem. One does not usually know, a priori, what the
dead load configuration of the system is and the terms in the static
equations are configuration dependent. This is the so-called initial
configuration problem and it is dealt with in sowe detail in References 1
and 7. Section 4.8 also discusses the problem.

The active loads on the mooring system are assumed to be winds,
surface and subsurface currents and surface waves. The effect of surface
waves is primarily a dynamic phenomenon while the static or steady-state
effects of winds and currents predominate. Therefore, it is assumed
that the active loads on the system can be separated into a static
effect, which is primarily due to winds and currents, and a dynamic
effect from surface waves.

The next step in the analysis is then a static analysis to obtain
the response to winds and curvents. This is veferred to as a3 live load
snalysis and it may include point loads representative of imposed work
loads. Nonlinearities in the sysiew also play an important part in a
live load analysis, The geowetric nonlinecarity is still present., A
significant new nonlinearity comes from the noncouservative, position
dependent loads. The flow induced loads are strongly depeandent on the
orientation of the various elements and the loads change direction and
magnitude as the system changes shape and position,

Material nonlinesrities also play an important part st this stage.
The most pronounced effect cemes from the fact that the lines cammot
support compressive loads. Should the imposed loads cause any of the
legs to ge slack (usually in taut moors with neutrally buoyant lines),
the material stiftness goes to zoro and the group of elements involved
with the leg are part of an unstable structure and the stiffness matrix
becomes singular.

Ai important feature in slack moors (negatively buoyant legs) is
thear ability to resist loads by changing shape and by lifting line or
laying it down at the bottom. Modeling this interaction with the bottom
using reasonably long cable elements produces some approximations that
must be kept. in mind while interpreting the results. An altermative is
to use the bottom limited catenary clement. This element alseo introduces
approximaticns that must be considered.
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In certain situations it is not possible (or feasible) to obLain a
dead load configuration and then proceed to the live load analysis.
Direct solution for the combined dead and live loads is usually required
in these cases. One example is the solution for a single point moor.

In this case the quiescent state is of little value and solution for the
combined effects is usually quite easy to obtain if one has a good esti-
mate of the total horizontal load to be supported by the moor. Another
situation where this procedure may be required is in dealing with taut

moors where legs go slack. In this case the slack legs could be ignored
(not included in the model) and the dead load included in the live load

analysis.

The analysis of wave induced dynamics begins with the static configu-
ratior developed by the wind and currents. Of necessity this is a fre-
quency domain analysis. The equations presented for the ship and mooring
buoy dynamics were obtained by assuming the excitation was from a harmonic
wave. The linearization process renders the equations frequency dependent
and limited to small motion amplitudes.

The harmonic loading input assumes a reference point which is the
defining node for the ship. Phase angles on the loading are induced in
the loading which are dependent on the harmonic wave length and the dis-
tance of the load point from the reference point. Response phase angles
represent shifts from loading applied at the reference point.

The dynamic tension response in each element is obtained by adding
the displacement increments to the nodal positions recalculating the
element tensions from the constitutive relations, using the new lengths,
and subtracting the tensions in the static reference state.

Wave loading produces mean and very low frequency forces which may
have significant magnitudes on moored vessels. These depend on the
responses and orientation of the vessel relative to the wave., These
wave induced drift forces lead to slowly varying loads on the system
which lead to shifts in the "static"” reference position. The treatment
of these forces requires at least two passes through the frequency
domain solution. After the first, the magnitudes of the drift forces
are estimated. Since these are predominately static loads, the static
analysis should be repeated with the additional loading. If this results
in significant movement, the frequency domain solution should be repeated

on the new reference state.
4.3 Statics

Various load inérementing options are provided with the static
analyses. In general, the gravity load will be increased in increments
in a dead load analysis. Fluid induced loads are increased in increments
during live load analyses. Both analyses allow point loads which are
incremented from zero to the specified value, held constant, or reduced
from the value to zero. It is usually assumed that gravity loads are
held fixed during a live load analysis, but an option is provided which
allows gravity load to be incremented during a live load analysis.
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When ships are used in a static analysis the ship is constrained to
remain on the surface. This normally means the ship is fixed in heave,
roll and pitch. It is possible to input stiffness terms to allow small
heave and angular motions out of the surface plane. No checks sre made
on the magnitude of those responses, so the user is warned to evaluate
the validity of his results when these stiffnesses are used.

ol e i

SEADYN provides computation options for dynamics in the time and
frequency formats. Transient dynamic analysis in the time domain presumes
all of the nonlinearities are active. It is further assumed that only
the line elements provide equations for the elastic strain energy.

Kinetic energy terms (mass related terms) are obtained from the lines
and lumped bodies. Dissipative terms come from material dsmping and the
drag loading. No equations are available within SEADYN for the rigid
bodies. These typically require major computations using fluid/solid
interaction equations which are beyond the scope of SEADYN.

A time domain solution is called for whenever the problem imposes
motions/loads which result in large movements, load variations producing
nonlinear material effects, compression of flexible lines (slack),
and/or modifications of limit conditions. The time domain form is the
only one capable of dealing with those nonlinearities. The restrictions
mentioned above on rigid bodies eliminate a very important area of
computation from transient analysis in SEADYN. On the positive side,
SEADYN provides a significant capability for analysis of difficult
dynamic problems: anchor deployment; array placement, adjustment and
response; towing of lines and bodies in irregular paths; mooring leg
response when attachment point motion is known, etc.

The frequency domain solution is a quasi-linear approach aimed
directly at the moored ship/platform/buoy problem discussed in Section 4.2.
It is applicable when the assumptions of DEAD, LIVE and wave loading are
appropriate. It is significant in that it provides the ability to treat
coupled responses between the mooring lines and the moored rigid bodies.
Highly restricted models for spherical mooring buoys are built into
SEADYN, but the body equations and loading functions must be provided
externally for ship/platform components.

The time domain and frequency domain forms can be used in tandem to
investigate mooring leg dynamics. The approach would be to follow the
combined mooring solution thkirough the frequency response tu define the
motion at the mooring line attachment. This motion is then converted to
a time sequenced description which is used to drive the top of a stati-
cally preloaded mooring leg. This produces a more reslistic definition
of the vessel motion and then allows assessment of the mooring leg non-
linearities.
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4.5 Natural Frequencies and Mode Shapes

SEADYN includes the option for computing natural frequencies and
mode shapes simply for informational purposes. It provides data to no
other option within SEADYN when the global structure is investigated.
The computation of strumming induced drag amplification uses this option
to get strum string mode shapes on subsets of the structure.

The computations for the global structure take the lumped (diagomal)
mass matrix without correction for the lack of tangential added mass
along with the tangent stiffness matrix for currently defined state.

The tangential added mass correction is not taken since it leads to a
non-diagonal mass matrix, and that requires additional storage. Co.puter
storage is a serious issue on this option since the Jacobi method is
used. The Jacobi method worke entirely in core and requires the storage
of a full uxn matrix.

4.6 Surface and Bottom Constraints

The foregoing discussion introduces the problem n»f constraining the
model of the system to responses which lie between the natural boundaries
imposed by the water surface and the bottom. One does not expect buoys
or lines to rise out of the water, or lines and anchors to go below the
bottom. The SEADYN program assumes the surface and bottom are flat and
parallel. Checks are made at each step of static and time domain analyses
to see if nodes of the system are within the imposed limits. To avoid
the costly operation of checking all nodes ia the system at 2very step,
checking is only done on points where special limit conditions are
specified. When one of the critical nodes is within a certain tolerance
distance of the surface or bottom, it is constrained. For buoys or
floats, this means that the node is held fixed in the vertical direction
but free in the lateral directions. All three components, or only the
vertical, may be fixed for anchors. Whenever the vertical resultant of
all of the element tensions connecting to the point exceeds the sum of
the external vertical loads at that point, then the constraint is released.
The external loads are assumed to include the distributed loads from the
elements and the weight or buoyant fsrce from the lumped body.

When a solution step allows a critical node to move past the limit
position, an overshoot procedure is activated. On incremental solutions
this consists of a step division in which the portion of the original
step which will satisfy the limit and the remainder of the step is done
with the limit restraint imposed. The iterative solution imposes the
limit by moving the over-shooting component to the limit state, seiting
flags to prevent immediate release of the constraint, and a continuation
of the iteration.

4.7 Line Payout and Reel-in

The treatment of line payout and reel-in presents a host of problems
not normally encountered in structural dynamics. The major problem is
that the mass and elastic properties change with time. Not only does
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this produce direct changes in the structure, there are more subtle
changes such as time step stability characteristics. For example,
during reel-in an element may become sufficiently short to require
reduction of the time step to obtain convergence. Other problems relat-
ing to peometry effects will be pointed out as this discussion proceeds.

b ey

The approach taken in SEADYN for payout/reel-in is based om incre-
mentally changing an element's unstretched length. Since the load
carried by an element is computed from element strain and element strain
is a function of the ratio of stretched and unstretched lengths, the
equilbrium state is unfluenced by this length change. It is also necessary :
to adjust the mass assigned to the nodes bounding the element. Except E
for some procedural bookkeeping details the process is quite simple.
First, it is assumed the payout/reel-in occurs only at points where the
i motion is defined. It may be fixed or given specific movements, Second,
j the incremental change in element length is computed from the time step

and the average payout velocity over that time. The node where the pay-

out occurs is assigned that velocity acting in the instantaneous direction
of the element. If the payout poiant is a moved point, the velocity ol
movement is added to the point. Mass adjustments are then made to the E
nodes bounding the element and the equilibrium iterations are pursued. '
At each stage of the iteration the velocity components at the payout
point are recalculated to reflect line ce-orientation.

)
1

AR

One of the bookkeeping problems arises when payout accumulates
large amounts .f length in the element, or reel-in removes a major portion
of the element. In either case, a process is initiated which modifies
the numoer of elements and nodes in the system. During payout the modi-
fication involves a subdivision of the element and the addition of a new
node. The process is called mitosis for obvious reasons. The subdivision
uses linear interpolation to locate the new node a preselected distance
from the payout point. That new nodal point is given the name (number)
of the payout node and a new name (number) is assigned to the payout
point to preserve the connectivity specifications. The subdivided

element then has a part which no longer grows and a part which continues
to grow.

The reverse process is still called mitosis even though that is a
misnomer. In the reel-in process the element which shrinks to a specified
length is removed from the system by adding its length and mass to the
next element down the line and assigning the interfacing node to the
reel-in point. The element thus removed is rendered inactive by giving
it a zero unstretched length. The node removed is assigned a fixed
status to avoid solution algorithm problems.

A further bookkeeping problem is encountered in mitosis when the
next element to be added or the one to be removed is not of the same
material as the one further dowa the line. This multi-material payout
problem is dealt with by an approximation as outlined below. Consider
a payout end with nodes and elements are inactive and awaiting payout
as represented in Figure 4-1.
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payout point (node)
’/
o-——@-—--@---@-=-
— ~ -/ active payout
reserved element
nodes
firss active node
material 2 ¢ beyond payout point
matetial 1
theoreticsl
interface
material 1

Figure 4-1. Multi-material Payout Configuration

At the beginning cf the payout sequence the active payout element is
entirely composed of material 1. The new length added to that element
is material 2 since the next element to be made active is defined to be
of material 2. Note that the reserved nodes are actually given the same
coordinates with fixed conditions on all components and the elements
connected to them are assigned an unstretched length of zero.

As the new length is added to the active element, two lengths are
maintained for the element. The first is the length at the beginning of
the sequence (i.e., the length of material 1) and the total length added
(i.e., the length of material !). Since there is no node at the theoreti-
cal interface the active element is treated as a composite element. The
composite EA and effective tension are calculated as follows:

1. Use current nodal positions to calculate element stretch, AL. %

2. Apportion AL: to AL]’ and AL, based on EA]’ and EA2 from the
preceeding time step or iteration.

3. Calculate T , T,, EA , EA_, from material properties using the
new sub-lengths“to calculate the strains.

4. Compare T} to Tz and repeat steps 2 and 3 until T, is sufficiently

close to 2 ! %f

The formulas used to apportion AL to materials 1 and 2 are based on the
small strain assumption as follovu:

L i
e s Nl
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Given:

O, %%, %L o+ %, T, EA

10 by ly 2’ EA
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AL, AE2
The same equations are used in reel-in. ‘The reel-in mitosis will assign

the length of the rcmoved e¢lement (material 2) to the ncxt clement down
the line (material 1) by a Al equal to the length involved. The continued
reel-in will then remove lengths of material 2 until the theoretical
interface point is reached.

Yet another complication is encountered when lumped bodies are
assigned to the nodes invelved in paycut/reel-in. When a lumped body is
assigned to the payout node the theoretical interface is again employed.
This is so even if no material change is indicated. Mass is then shifted
from the payout point to the first active node as line is paid out.

When payout mitosis occurs the mass is reassigned back to the payout

node as il is moved out to the new active position. The reverse of this
process is employed with reel-in of lumped bodies. The mass redistribution
formulas are:
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where
I refers to the first active node
0 reters to the payout node
_ 0
N] = Ll M)
. 0 \
.“12 - L2 n,‘i
"I = mass per unit of unstretched length, material 1
™2 = mass per unit of unstretched length, material 2
MB = mass of lumped body
A similar procedure is used to adjust the gravity loads.
The drag loads are apportioned as follows
0L2
Fir = o & 4-8
L
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Fo = B—L-—l-i 4-9

Where Fi represents the components of the body dragload.

Finally, another bookkeeping feature has been found to be necessary
vhen starting a payout sequence, Mitosis is defined t¢ occur when the
unstretched length ol an element exceeds a user defined mitosis length
plus a reference length. The reference length is the unstretched length
of the element at its payout initiation or the mitosis length. The
initial length is taken in those cases where there is multimaterials
involved or where no previous mitosis has occurred on the line (i.e., at
payout startup). The reference length is taken to be the mitosis length
in all other situations. This multiple choice reference length is
needed to avoid premature mitosis when starting with a long element, and

to retain a consistent definition of the theoretical interface on multi-
material payout.

4.8 Drag Awmplification Due to Line Strumming

A problem of considerable importance in the analysis of underwater
cable structures is the estimation of the forces induced by interactions
of the structure with the moving fluid. The assumptions and drag models
presented earlier neglected an important but ill-defined phenomenon.
When the cabie cross section is approximately round or when cable fairing
has negligible torsional resistance, the steady-state value of the lift
force is negligible. The foregoing developments have neglected this
torce. However, under appropriate combinations of flow conditions and
cable size, a significant oscillating lift force can be produced by
vortex shedding. JIf the frequency of this oscillatory lift force is
sufficiently close to the frequency of a structural vibration mode, then
significant structiral motions are possible. Just how much motion
results is a very difficult thing to predict.

There are many factors unfluencing the structural response of
flexible systems to vortex shedding. Not all of them are understood.
Undoubtedly such things as structural stiffness and orientation (both
local and global), the proximity of abrupt changes in structural features,
the coherence of vortex shedding, and the interaction between vortex
formation and structure movement play some role in determining the
response. A comprehensive theory which permits complete analysis is not
yet available. Rather than wait for the advent of a complete theory

(and in true engineering tradition), the analyst of cable structures
introduces an approximation.

In many situations it is noticed that vortex shedding results in
relatively small amplitude 1local responses. Rather than inducing direct
changes in global structural response, the cable strumming action has
indirect effects which are approximated quite well as an apparent increase
in cable profile. This is in effect an increase in the normal drag co-
efficient. Capitalizing on these observations, Skop, Griftin and Ramberg
[6] of NRL, formulated an approach to computing these drag amplifications.
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Briefly stated, the NRIL approach presumes a given segment of cable
which is a candidate for strumming will strum when the vortex shedding
frequency is in proximity of one_pf the cable natural frequencies.
Specificaily, strumming in the n  cable mode is assumed to occur when

< < - ::"
w o Sw o <w 4-10 -
where
W Wy, are two adjacent structural natural frequencies.

w is the vortex shedding frequency.

This presumes that the natural frequencies are closely spaced and
tha  no overlapping in responses occurs. When w_ iy below the lowest
naturcal frequency, it is assumed that no strumming occurs. The same
assumption is made when w significantly exceeds the highest natural
frequency.

Once the critical mode is identified a modal scaling factor is
computed by

L
4
Jo w  ds
So b, ds
th
where wn (s) represents the n mode shape.
The response amplitude along the string is estimated by
Y (s)
max _ -1/2 . -
d - Amax n ¢n(5) 4-12

The value, A , is a dimensionless modal response parameter obtained
from a least sguares curve fit of experimental data relacing it to a
strunming response parameter, SC'

J

S5

A = 1.29/(1 + 0.63 50)3'3 4-13

max

The parameter, S., is a function of the effective damping and the Vibra-
tory Reynolds number. The latter is written

w d2

_ n___ -
n 4 4-14

Where v is the kinematic viscosity of the fluid and d is the effective
cable diameter. The strumming response parameter is given by



o ——

S, =~ 2ms’K 4-15
G S

where § is the Strouhal number, 0.21, and

K = 1/2

s

22.2/Rn

The value of K_ reflects the neglect of internal cable damping and the
assumption that the fluid damping coefficient per unit cable length is

- 1/2 -
Cf-A.SnpoRn 4-17
where p is the fluid density,
The strumming response estimate of Equation (4-16) is then used to
calculate a wake response parameter as follows
W= (1+2 me/d) (w/w ) 4-18

Another curve fitting of experimental data leads to the following expression
tor the drag coefficient amplification

CD(S)/CDo 1.0 for Wr < 1.0

1.0 + 1.16 (wr - ].0)0'65 for Wr

IV

2 1.0 4-19

The integrated effect of the local drag amplification is then estimated
by

_ 1 , -
CDV/CDO = 1/1'_f CD(S)/CDO ds 4-20

)
The procedure requires the tollowing steps:

1. Identify a specific section of cable which is a candidate for
strumming.

2. Develop an approximate local model for the cable and select a
representative local fluid velocity.

3. Calculate ws

w =

2 nS v/d |Sin (ev-e) 4-21
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vhere

v = magnitude of local fluid velocity
Ov = velocity heading
0 = representative cable heading

4, Calculate natural frequencies and mode shapes for the cable
span.

%, Select critical mode.

6. 1f one is found, calculate drag amplification factor using
Equations (4-11) through (4-20).

7. Assign this drag amplification to all elements of the string.

This procedure is repeated each time it is determined that signifi-
cant changes have occurred in the flow or structural characteristics.

4.9 The Initial Configuration Problem

One of the frustrating features of cable amalysis is that most
cable systems do not have rigidity or spatial stability unless preloads
are imposed. The systems are usually sc flexible that small changes in
prelosds cause large shape changes. Noting that all of the static solu-
tion methods use a stiffness matrix, one is faced with a problem of
getting a realistic estimate of the stiffness matrix which is nonsingular.
In many situations it is necessary to have very accurate estimates of
the initial configuration before any of the solution methods will work.

Various facets of this problem are explored in Reference 1 and 7.

Some procedures which may help obtain stable starting configurations are
discussed in the User's Manual.

A technique that has proven of some use in overcoming ill-conditioning
and even singularities when using the MNR solution is the use of numerical

damping. Felippa [21] shows that nonsingular adjustment to the estimatox
matrix, [K] can be generated by adding a matrix of the form

W B (1] 4-22
where

B = {R} TIK] {RI/{R} T{R} 4-23

and s in a user specified numerical damping coefficient. This additional
term tends to "stiffen" the estimator matrix and increase the chances
for convergence.,
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The program also provides for aumerical damping to be used with the
iwcremental solutions,  1This teature should be used with extreme care :
since 1t alters the equations of equilibrium. If an appropriate value 2
can be¢ selected, it would be possible to compensate for some of the :
crror in the first incremental step. There is no rational way available
to estimate how much damping to usc in this case.
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The program provides a quick and convenient way of getting starting -
configurations when negatively buoyant lines are used. If a line between
two defined points is a catenary which reaches the bottom with a horizontal g -
tangent somewhere between the two points, then nodes can be generated
along that line. The well known catenary equations are used and one ox
more ot the generated nodes are assumed to be on the bottom if the lower
defining node is not at the tangent point. The element preloads for the
line are also generated and can be assigned to the line elements.

4.10 Component Adequacy Check

The SEADYN program provides a unique feature of checking the capacity
of the various components of the system against imposed loads. The three

types of checks provided are: B
¥

1. Anchors - the loads imposed on the aachor or fixed node are g
summed and the resultant is compared with the anchor holding §

power. ko

2. Buoys - the resultant of the loads in the lines connecting to ;

the buoy is checked against the buoy capacity.

3. Lines - individual cable elements are checked to see if they
are loaded beyond their capacities,

The component checks for buoys and anchors follow the procedures outlined
in NAVFAC DM-26 and discussed in Reference 22. The component capacities p
can be input or obtained from the inventory tables developed for the
DESMOOR program [22]. The inventories are described in Appendix D of
the User's Manual. ﬂ

All of the adequacy checks rely on estimates of the loads at the
eud of an element. The one dimensional simplex element has only one
value of tension associated with it regardless of how long it is, what
its weight is, and/or how much distributed load it is supporting. The
tension associated with the element can be thought of as being at the
midpoint of the element. The procedure for modeling distributed loads
must be recalled to see how to estimate element end loads. Equations
(3-26) and (3~43) both show that the nodal point equivalent loads for
distributed loads are estimated using the element shape functions.
These end loads represent the loads applied to the end nodes by the
eclement as 1t supported distributed loads. The total load at each end
of the element is then the vector sum of the element tension and the
element loads. The direction of the resultant load at each end gives an
estimate of the direction the cable lies at that point. In symbolic
form the total loads applied to the nodes by the element are
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Some ambiguity in the loads applied to anchors results when long elements
are used next to the anchor. 1f the line actually contacts the bottom
before the anchor connection (i.e., between the two nodes which define
the element), the SEADYN Program will not detect this in the solution.
When a line check is made the resultant of the forces at the anchors
will have a component pulling down indicating the line was hanging below
the anchor. This is duc to the model not being able to sense the bottom
contact and tronsfer the weight at that point. Detailed and accurate
modeling of the line interaction with the bottom requires short. elements
in that region. Fortunately the lack ot modeling detail at the bottom
of the line has little i1ufluence on the response at the top of the line,
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5.0 SOLUTION METHODS

5.1 Static Solutions

The SEADYN program offers four basic solution methods for static
analyses. The various features of each of them are discussed at length
in References 1 and 7 so only a brief description will be given here.

The first method is a sequence ot linear increments (SLI method).
The loads are divided into a sequence of increments and the basic incre-
mental Equation (3-12) is repeatedly applied. The SLI method requires
the regeneration of the incremental stiffness matrix at each step to
reflect the changes in position and constitutive relations. It has the
undesirable feature of drifting from the correct solution through accumu-
lating errors and small increments are required for accuracy.

The second method works with the incremental Equaiion (3-13). The
first step is identical to the SLI first step, but on each succeeding
step the force residual from the previous step is fed back as a corrector.
For this reason it is called the residual feedback method (RFB). Although
it is a non-iterative method it tends to be self-correcting. On responses
which are reasonably well behaved (particularly monotonic responses) the
RFB method gives accurate results with significantly fewer steps than
does the SLI method. The RFB method costs somewhat more per step because
of the residual calculation. The recalculation of the incremental
stiffness matrix is still required at each step.

A more general method which employs iterations to solve Equation (3-11)
is known as the modified Newton-Raphson method (MNR). It begins with an
estimated configuration and uses an estimate of the tangent stiffness
matrix to obtain successive displacement increments which hopefully lead
to a zero force residual. Being an iterative method it is by far the
most accurate of the three methods. This accuracy is not free, however.

In thé first place the method is not unconditionally convergent and the
size of the load step required to assure convergence is not easily
determined. In some cases it may be extremely small. In ill-conditioned
systems it may not be possible to get convergence without some special

auxiliary procedures.

The general form of the MNR method is
& (ag D = 5-1
) = @ ® v g

where the superscript i refers to the iteration step. The [i] matrix is
referred to as an estimator matrix. If [K] is the incremental matrix
(K..], and it is recalculated_at each iteration, the usual Newton-Raphson
procedure is obtained. If [K] is an approximation of [K.] and/or it is
not recalculated at each iteration one has a modified Newton-Raphson
method. When [K) is not changed and the response curve is monotonically
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increasing function the successive estimates will usually oscillate

about the correct solution. If the step size is small enough the estimates
will tend towards the solution (converge). If the step size is too

large the estimates will diverge.

Once oscillating estimates are detected, various accelerating pro-
cedures can be employed, and in some instances they will work even when
the oscillations are divergent. The program detects oscillations by
monitoring the degree of freedom(Yith the largest initial response
(i.e., largest component of {Aq} Oscillation is signalled by repeated
sign changes of the critical {Aq} component. The simplest acceleration
scheme averages the two alternating estimates using the sizes of the
critical components to weight the average. An optional procedure uses a
one-dimensional search to seek a close estimate of {Aq} which crosses
the correct solution. This search is initiated when the ithtﬁteration
signals a large oscillation. The search beginstﬂt the (i-1)  position
and takes small steps in the direction of the i increm=-t. A new step
is tried at each position until the new increment reverses direction.

At this point the last two positions are averaged to get a new starting
estimate for the iteration. The size of the step used in this 1-D
search is controlled by input. The input factor is the fraction of the
i step which is taken as the first step of the search.

Various options are provided to measure convergence of the itera-
tions. Reference 1 should be consulted for discussions of the convergence
criteria. The options are listed in Sections 7.1.14 of the User's Manual.

The fourth solution method is called a viscous relaxation method.
It is similar in =:ny respects to the damped Newton-Raphson method. The
major distinction is that the equations are cast into a transient dynamic
format where a pseudo-time is used to control load steps and iterations.
A pseudo-velocity vector is used in conjunction with the residual vector
to make modifications in the damping and/or time steps. This allows the
solution to be adapted to the character of the response. As damping
becomes negligible, the method becomes the Newton-Raphson method. Details
of the derivation are giver in Reference 7. The solution form is

(33t r(C) = giKp)) (8} = “*%%e) - “fq) 5-2

1-a\ t t,e
+ (13%) gl “ta)
; . t+At . s t s .
Approximating {f} at the geometric positions of C linearizes the
method. It is applied the same way as the RFB method except that the

time step, At, and the damping matrix are adjusted based on the process
of the solution. The response data for the step are computed from

tHtea} = t{q} + At b{q} + anr P*A(g) - g} 5-3
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a1 = o (T - M) - (B e 5-4

The damping matrix 1s computed from

;[cl = [}‘Qci] (diagonal) : 55

t _ ty,.= o=

RCI. - §(K + Cl) 5-6
where

t§ is a modifiable damping parameter

Ej is a response dependent term

>

is a representative stiffness

The value of K is taken to be the average extensional stiffness (AE/L)
or Equation (4-23). The C., term is included for special problems associated

with the angular responseslof rigid bodies.

The pattern of velocity changes and the residual norm are used to
adjust At and { in controlling the performance of the algorithm.

The form using Equation (5-2) is referred to as thet¥2§ method. A
form which avoids the residual calculation by replacing {£} - “{g}
by {Af} is referred to as the VRS method. Its performance is inferior

to the VRR method.

5.2 Time Domain Dynamic Solutions

The SEADYN program provides for four different time domain solution
methods. Each of them utilize the following set of forward difference
equations to develop the solutions:

2 .
Uty = Yyqj + A Y{q) + eg_ fq} + a ot (**3%q) - tah)  s5-7
+ ac? (**Atygy - tap
tHAtr = ta) + At Yqd + Tar (M*2%q) - tab)

where At is the time step and ¢, B, and T are integration parameters.
The usual Newmark formulas are obtained with a = 0.

49



When Equations (5-7) are augmented with a motion equation for the
system, one has three simultaneous differential gggations with the nodal
4 e . t
displacements, velocities and accelerations at C as unknowns.
Specific forms of the solution routines for this set of equations are
developed in Reference 1. Only the final forms will be presented here.

Direct Iteration Method (DIM)

This method uses Equations (5-7), (3-8), and (3-46) to obtain an
iterative formulation. The form is

t.+At.iq} (n+1) _ t+At{q} (h)+ (oaT4) Atz A(U-Atm;l'}(nﬂ)) 5-8
U‘Atj_-q}(n*'l) - t+At{é}(n) + TAL A(t+At{A;}(nﬂ))
(t+At{A;}(n+2)) - -L+L\t{;}(n+1) ¢ M ]-1 (t+AL{R }(n+l))

R t+At[MNL](n+1) t+At{;}(n+l))

The iteration can be started with Equations (5-7) with @ = B = T = 0 or
with the residual feedback solution to be described below. The DIM

methcd has been shown to be an accurate and cost effect approach. Since
it is an iterative method which retains all of the nonlinear terms it
readily deals with all of the important nonlinear effects such as pnsition
dependent icads, constraints, slack segments, and changing geometry.

Jf particular irterest is the ease with which problems with defined

motion are dealt with. When problems requive the imposition of a known
motion (e.g., cabie towing problems) the moved node is simply held at

the required dynamic staie during the iterations.

Sequence of Linear fncrements (SLI)

This method starts from Fquations (5-7) and uses the iuncremental
form (3-9). An iterative solution is also employed, but it has been
shown that this method costs essentially the same as the DI method and
1s much less accurate {1}. It, toe, is capable of solving the moving
boundary problem but an augmentsd giobal stiffness ma.rix involving the
moved degrees of freedom is required. This increases the storage require-
meats, reduces the speed and increases the numerical error potential.

Residual Feedback Method (RFB)

Equations (5-7) are inverted and substituted into the i1ncremental
form {3-10). The result is

' ’r“- = _\"" ‘Q
IK: flt I l'xli { eff} S -
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where
_ ] t
(Keggl = (KD + == [MCa])] 5-10
- ALTB
tHAL .t t t 1 t,e,
e oeh S0 {ad)) - gl + (M {qD] (mw {qj 5-11

- (-3 iah)

Fquation (5-9) is a linear algebraic eguation which can be solved by the
usual manner. No iteration is required and the method lLas a self-correcting
feature similar to the static RFR method. This method follows more

closely the traditional Newmark implicit integration form [23]. 1t has

the unconditional stability features Lhat have made the method so popular.
No provision is made for solving the moving boundary and payout problems,
however. The fact that the RFB method requires the formation of a

global stiifpess matrix, the evaluation of a residual, and the sclution

of simultaneous esquations reduces its cost effectiveness. This is
.sually compensated for by using larger time steps.

Modified Newton-Raphson Ferm (MNR)

This 1s an iterative method based on & procedure similar to the MNR
static solution. The form is

!KT] A (L+AL{Aq} (n+1)) . L+AI{R}(n) _ t+ALi”](n) tht{;}(n)

512
t*At{q}(n+) _ L+AL{q}(n) ' A(L+AL{Aq}(n+l))
LAt s (ntl) o tedt, -, (n) T ttit (nt1)
{a} = i1 A oy AC T Haad )
Lvﬂt{q}(nil} . L+At{q;(n) ) ij-j____“_& (t+AL{Aq}(n+l))
ALY (T f)
The 1teration is started with

+ AL . S 0
““{q}(o) = “{q} ¢+ M{Aqf( ! 5-13
t+at - (0) Yo lowtar, (), o T t®
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t+At{&}(o) - 1 .t+At{Aq}(0) - & (;T¥E3 {4

Atz_(oﬂ‘-tﬂ)
(1+2a) t,

where t+At{Aq}(o) is obtained from an RFB solution. As an alternative
to Equations (5-13) the iterations can be started from Equations (5-7)
witha =B =7T=0.

The accuracy of this method has been demonstrated but its cost per
time step does not appear competitive with the DI method [1]). Moving
boundary and payout solutioms have not been implemented with this solution.

It would appear from the studies done in Refecvonce 1 that the best
general purpose solution method of the four is the I method. On some
problems the method may encounter some difficulties, Lowever. The
iterations are convergent only for step sizes of the o-der it takes an
axial wave to traverse the shortest, stiffest element. When the imposed
forces are slowly varying the routine will attempt to increase the step
size beyond stable behavior iimits, because the motions are smali in
small time steps and the iterations converge rapidly. Controls are
provided to the user to prevent step size increases in this situation.

In some situations the RFB solution may be found very cost effective.
Generally this will be nearly linear systems, which are slowly varying.
The user is cautioned against using very large steps with the RFB method
since gross errors may result [1].

1t should be noted that the diagonal form of the mass matrix, [M ],
is used in each of the above methods. The advantages in storage and
solution effort are obvious. It has been shown that with pioper selec-
tion of the integration parameters, the errors introduced by the lumped
mass approximation tend to compensiate for those induced by the solution
algorithm to give more accurate results. Experience has shown that
=0, Bp=1/12 and T = 1/2 is good choice of parameters. Preliminary
observation [1] indicate that a small negative value for o may be benefi-
cial in controlling amplitude attenuations. Values of T > 1/2 introduce
oumerical damping of the higher frequency compcnents while T < 1/2
introduces negative damping.

5.3 Frequeacy Domain Solution

5.3.1 Solutions for Regular Waves

The response amplitudes, {Q}, for a given frequency are obtained by
solving the linear simultaneous algebrai.c equations represented by
(3-16). The coetficient matrices for mass and damping must be recalc:lated
for each frequency since the linearization procedure leaves them dependent
on the wave {requency.
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The damping terms present some further difficulty. In addition to
being frequency dependent, the linearized viscous terms are dependent on
the amplitude of the response. The ship's roll-damping depends on the
roll angle, the buoy rotational damping depends on the rotation angle,
and the cable and lumped body damping depend on the lateral displacement
amplitudes. Thus, it is seen that the incremental equations a -e not
strictly linear.

An approximation procedure is introduced to deal with this problem.
This involves iterative solutions of the Equatjon (3-16) for each frequency.
The first solution at a given frequency is calculated assuming a ship's
roll angle. The roll angle obtained from the solution is then used
along with the other pertinent response amplitudes to recalculate the
damping terms and obtain another solution. This procedure is repeated
until two successive estimates of ship's roll are within 1° of each
other. It is assumed that buoy ~nd cable damping are less important
than ship's roll and are thus converged when the roll has converged.
The response is then dependent not only on the wave frequency, but also
on the wave amplitude. This means that it is not appropriate to assume
a unit amplitude for a given wave frequency with the intent of obtaining
a Response Amplitude Operator (RAO) for that wave. It is necessary to
bave the correct wave amplitude at each frequency. Therefore, the sea
spectrum must be used in the calculation of the regular wave responses.
Once the steady state response for a given wave frequency and amplitude
15 cbtained, the RAO is estimated by dividing by the wave amplitude.

The program allows the mass matrix to be formed either with the

lumped or consistent form of the element mass. The lumped form is used
for the fluid added mass terms.

Provisions for internal damping effects are provided in the propor-
tional damping form. Thus

(] = o (M) + B (K] 5-14

where o and B are proportionally constants. The damping from fluid drag
effects on the cable elements must be linearized before it can be used
in Equation (3-16). This linearization is described in Appendix I.

5.3.2 The Steady-State Wave-Induced Drift Forces

Whenever waves euncounter a floating body there arises a set of

forces which tend to move the body in the direction the wave is traveling.
These forces are often neglected since they are usually small in magni-~
tude. These are the so-called second order wave-induced drift forces.
They are generally slowly varying compared to the frequency of the inci-
dent wave; however, they have an average or steady-state compnnent which
may be significant enough to cause an adjustment of the static position
of the ship. These forces are directionally dependent and are sensitive
to the amplitude of the ship's response to the wave. The DINSRDC Ship's
Motion File provides a table of coefficients which can be used to estimate
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the steady-state drift forces after the ship's dynamic response is
obtained. It should be noted that these forces do not estimate the

- dynamic effects, which are at a lower frequency than the incident wave.

The specific form for the drift forces is given in Appendix A of
the User's Manual in the discussion of the Ship Motion File. The result
is a set of forces for the lateral and longitudinal directions and a yaw
moment acting at the ships reference point for each wave frequeancy. It
is assumed that the drift forces are cumulative for the various wave
represented in a wave spectrum. Therefore, the drift forces for each of
the regular waves are accumulated. It is felt that this is a reasonable

approximation since the wave amplitude indicated by the wave spectrum is
used in response calculation.

These accumulated drift forces can then be used as an additional
static loading to adjust the static reference state. If it is felt that
this adjustment will affect the regular wave solutions significantly,
the user can request iterations on the regular wave solutions and the
drift force adjustments to the static reference until sufficiently small

changes are found. Either the MNR, VR, or RFB solutions can be used to
adjust the static reference.

5.3.3 Solution Procedure for Random Seas

The superposicion of the regular wave responses to represeat the
response to random seas follows the well established methods from the
theory of random vibrations [24]. The sea is assumed to be uni-directional
(long-crested) and is described in terms of & generalized spectral
energy density function having the following form:

4
Sw) = Afw’ e B/ 5-15

Typical values for the parameters A and B are given in Section 7.3.2 of
the User's Manual.

The frequencies to be included in the set of regular wave calculations
are determined by specifying a frequency increment, M, a lower bound w . ,
min

and upper bound, WA Regular wave responses are than calculated for

1 .
= 4+ =~ + -
w,y woin 3 aw + (i-1)Aw
w, < w
i max

At each frequency the incident wave height is determined from the sea
spectxum by the following:

= (] /2 . -
h(w,) = (55w, )ow) 5-16

(Note that the wave height is twice the wave amplitude.) This wave

height is then used to converge on a steady~state dynamic response using
the methods described in the previous section.
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Let H(mi) represent the response of one of the quantities (nodal
displacement component or element tension). The response spectral
density of this quantity is then given by

Sx(w) = HH* S(w) 5-17

The mean square of the response is
2 w [ ]

Blx“] ~ SHix sdw = s (wdw 5-18
0 0

The integral is evaluated numerically using the points obtained from
each of the regular wave solutions. Thus

2 N
Efx“] ~ Sx(w‘)Aw 5-19

i=1
where N is the number of regular wave componeuts used.

When the response quantities represent the dynamic excursions
relative to the static reference state, then their expected values
(i.e., their means) are zero. The magnitude of the response is then
treated as a static part plus a dynamic part. The amplitude of the dy-
namic part is assumed to follow a Rayleigh distribution with a mean-square
value which is a function of the area under the response spectrum curve.
Assuming the sea spectrum used is based on double the square of the wave
height, the mean-square of the response amplitude is the value obtained
(5-19) Jdivided by eight. It is possible, then, to make statistical
estimates of the maximum response by making statistical estimates of the
dynamic part and adding them to the static values obtained in the updated
reference configurations.

5.4 Natural Frequencies and Mode Shapes

The incremental Egquations (3-9) without damping or external forces
has the form

(M] fu} + [KG] {u} = 0 5-20
It it is assumed that simple harmonic motion occurs then
(-w® (M) + [Ky] {u} sinwe = 0 5-21

since {u} sin wt = 0 only in the trivial case of {u} = 0, this requires
that

det ([K.] - Wi M]) = 0 5-22
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Solutions to this equation lead to the natural frequencies and mode
shapes of the small displacement free oscillations about the configurations
used in expressing [M} and [K.]. An iterative solution is used which
obtains all of the natural fréquencies and mode shapes for the system.

The primary assumption made in getting the frequencies and mode
shapes is that the equations are linear and no significant dawping
exists. Both of these assumptions may be violated to some extent for
underwater cable structures. The option is provided since the frequencies
and mode shapes may still be indicative of the structural behavior.

5.5 Time Sequenced Static Solutions

Often the transient response problem involving boundary movement
and/or line payout can require considerable computer resources to evaluate.
In situations where impcsed velocities and/or payout rates are relatively
slow, approximate solutions can be obtained by a sequence of static
"snap shots." SEADYN has implemented an option to drive the static
solutions sequentially through boundary motion and payout conditions.
This option is called the Time Secquenced Static Selutions (TSSS). Time
is simply a parameter in this case which determines where the moving
boundary is and how long the unstretched payout elements are. Only the
iterative static solutions (MNR, VRR, VRS) are valid in this option.

The previous state is used as a starting guess for each iteratively
solved "snap shot." Time steps can be as large as the starting guess

wiil alliow; i.e., as long as the previous state remains a reasonable
guess for the next state.
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