CONTRACTOR REPORT ARLCD-CR-82004

ANALYTICAL MODEL DESIGNED TO PREDICT THE PROBABILITY OF EXPLOSION PROPAGATION BETWEEN ADJOINING SINGLE AND GROUPED PROJECTILES

FREDERICK E. Sock
NORVAL DOBBS
AMMANN AND WHITNEY, CONSULTING ENGINEERS
TWO WORLD TRADE CENTER
NEW YORK, NY 10048

RICHARD M. RINDNER
PROJECT LEADER
ARRADCOM

MAY 1982

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
LARGE CALIBER WEAPON SYSTEMS LABORATORY
DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by or approval of the U.S. Government.

Destroy this report when no longer needed. Do not return to the originator.
Analytical Model Designed to Predict the Probability of Explosion Propagation Between Adjoining Single and Grouped Projectiles

Title and Subtitle
ANALYTICAL MODEL DESIGNED TO PREDICT THE PROBABILITY OF EXPLOSION PROPAGATION BETWEEN ADJOINING SINGLE AND GROUPED PROJECTILES

Authors
Frederick E. Sock and Norval Dobbs, Ammann and Whitney
Richard M. Rindner, Project Leader, ARRADEC

Performing Organization Name and Address
Ammann and Whitney, Consulting Engineers
Two World Trade Center
New York, NY 10048

Contract or Grant Number
DAAK-10-77-C-0134

Report Date
May 1982

Number of Pages
85

Distribution Statement (of this Report)
Approved for public release; distribution unlimited.

Abstract
This report contains the information for the development of a model to predict the probability of explosion propagation between adjoining explosive items; namely, high explosive projectiles. The development of this model is based on the sensitivity of an encased charge to primary fragment impact.

The original work done under contract to Arthur D. Little, Inc., was extended to provide a method of predicting the effectiveness of shielding on (cont)
20. ABSTRACT (cont)

projectile spacing requirements and also to predict the probability of
detonation at a higher confidence level. The potential practical use of the
model is judged to be adequate to warrant further investigation. When used
in a generalized way, the model can be a valuable tool in the design and
layout of facilities for the manufacture and storage of explosive items.
SUMMARY

This report describes a model to predict the probability of explosion propagation between adjoining explosive items. The model was first developed by Picatinny Arsenal under contract to Arthur D. Little, Inc., of Cambridge, Massachusetts. However, the reliability of that model was lower than the desired level. After certain modifications had been made, the model was improved to predict probabilities at 90 to 95 percent confidence level. The model was further extended to consider cases when projectiles were grouped together, funnels attached to the noses of the projectiles and shields placed between them.

The development of the model was centered on the assumption that the sensitivity of a projectile to detonation depended on the following properties of the striking fragment:

1. Velocity
2. Presented area
3. Angle of impact
4. Amount of charge in projectile
5. Casing thickness of the acceptor.

The model was finally used to predict the probability of detonation propagation between individual 81mm, 105mm, 155mm and 8-in projectiles, and also between groups of projectiles on pallets. Some of the results obtained using the models, especially for those cases involving individual projectiles, compared favorably with test results. In the case of grouped projectiles, parameters designed for single and groups of four projectiles were used in the model to predict the probability of detonation propagation between two similar groups of sixteen and seventy-two 105mm and 81mm projectiles, respectively. This approach was taken merely to determine the adequacy of the model. Further tests have to be carried out to determine the values of the parameters in question.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Objectives</td>
<td>1</td>
</tr>
<tr>
<td>Format and Scope of Report</td>
<td>2</td>
</tr>
<tr>
<td>Description of the Model</td>
<td>4</td>
</tr>
<tr>
<td>General</td>
<td>4</td>
</tr>
<tr>
<td>Areas of Modification</td>
<td>4</td>
</tr>
<tr>
<td>Fragment Characteristics</td>
<td>4</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>8</td>
</tr>
<tr>
<td>Effect of Obliquity</td>
<td>9</td>
</tr>
<tr>
<td>Computation of Probability of Detonation for a Given Spacing</td>
<td>13</td>
</tr>
<tr>
<td>Probability of Detonation as a Function of Distance</td>
<td>13</td>
</tr>
<tr>
<td>Procedure for Computing the Probability of Detonation as a Function of Spacing</td>
<td>14</td>
</tr>
<tr>
<td>Discussion of Results</td>
<td>16</td>
</tr>
<tr>
<td>Grouped and Shielded Projectiles</td>
<td>18</td>
</tr>
<tr>
<td>General</td>
<td>18</td>
</tr>
<tr>
<td>Characteristics of Fragments Emitted from a Group of Projectiles</td>
<td>18</td>
</tr>
<tr>
<td>Initial Fragment Velocity</td>
<td>19</td>
</tr>
<tr>
<td>Fragment Mass Distribution</td>
<td>20</td>
</tr>
<tr>
<td>Effect of Shields</td>
<td>21</td>
</tr>
<tr>
<td>Effect of Funnels</td>
<td>26</td>
</tr>
<tr>
<td>Development of Model to Predict Probability of Detonation for Stacked Projectiles</td>
<td>27</td>
</tr>
<tr>
<td>Probability of Detonation as a Function of Distance and Shielding</td>
<td>27</td>
</tr>
<tr>
<td>Procedure for Calculating Probability of Detonation Propagation Between Stacked Projectiles</td>
<td>30</td>
</tr>
<tr>
<td>Section</td>
<td>Page No.</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Discussion of Results</td>
<td>34</td>
</tr>
<tr>
<td>Conclusions and Recommendations</td>
<td>35</td>
</tr>
<tr>
<td>References</td>
<td>37</td>
</tr>
<tr>
<td>Appendix A, Example Problems</td>
<td>39</td>
</tr>
<tr>
<td>Appendix B, Input Format for Computer Program</td>
<td>54</td>
</tr>
<tr>
<td>Appendix C, Different Projectile Configurations</td>
<td>73</td>
</tr>
<tr>
<td>Distribution List</td>
<td>83</td>
</tr>
</tbody>
</table>
INTRODUCTION

Background

An analytical model to predict the spacings between adjoining projectiles necessary to achieve any given level of probability that a detonation will not propagate from one to another was developed by Arthur D. Little, Inc. (ref. 1).

This model is based on theoretical and empirical information that has been compiled by previous investigators (refs. 2 to 6). A limited number of experiments were then performed by ADL to test some assumptions made and to evaluate the overall adequacy of the model.

The development of the model was centered on the assumption that the sensitivity of an acceptor projectile to detonation (50 percent of the time) depends on the following parameters:

1. Presented area of fragment
2. Velocity of fragment
3. Obliquity angle at impact
4. Casing thickness of projectile
5. Type and size of charge in projectile.

Using this model, safe separation distances between projectiles, which will result in the detonation being propagated 50 percent of the time, were calculated for the 81mm, 105mm and 8-in projectiles, each filled with Composition B. These spacings were compared with test data obtained from safe separation from tests performed, and a good correlation was obtained between the two sets of data after some necessary refinements had been made.

Objectives

The overall purpose of this study is to develop a more reliable model to predict safe separation distances between explosive items.

The objectives of this report can be summarized as follows:
1. To review the ADL model and incorporate modifications in it so as to extend its applicability to various practical situations common to AAP facilities.

2. To apply the modified model to a series of explosive propagation cases of such current interest as
 a. Four (2 x 2) 155mm projectiles
 b. Individual 8-inch projectiles
 c. Twenty-four (6 x 4) 155mm projectiles
 d. Sixteen (4 x 4) 105mm projectiles

 and to compare the results with available experimental data.

3. To increase the level of reliability of the present (ADL) model and extend its applicability to include the following situations:
 a. Multiple projectiles - The probability of explosive propagation between pallets loaded with projectiles.
 b. Shielding between pallets.
 c. Loading funnels - Funnel filled with Composition B attached to the nose of each projectile.

4. To pinpoint areas where additional information, theoretical and/or experimental, is required in order to further refine the model.

Format and Scope of Report

The entire report is divided into two parts which are further subdivided into three sections each. The first part of the report describes the modified (and more reliable) model, considering the pertinent topics of fragmentation and sensitivity. These include initial fragment velocity, fragment mass distribution, effect of fragment shape on velocity, sensitivity of encased charge and the effect of the angle of obliquity on the sensitivity of the charge. The probability of detonation for a given distance, a procedure for calculating this probability, and a discussion of the results obtained by such a procedure are also presented in the final section of the first part of the report.
The second part of the report, which begins under the section "GROUPED AND SHIELDED PROJECTILES", deals basically with the extension of the model (described in the first part of the report), to include such factors as the number and velocity of fragments emitted from a group of projectiles. The first few sub-sections deal with the description and the development of the model that had been modified to predict the probability of explosion propagation between grouped and/or shielded projectiles. The final section is a brief discussion of the results that can be obtained from the new model. In addition, appendix A contains sample calculations incorporating ideas developed in both parts of the study. Appendix B provides the format of the input data cards and also the program listing and, finally, appendix C presents recommended steps to follow when projectiles are grouped in a configuration other than that dealt with in this study.
DESCRIPTION OF THE MODEL

General

The evaluation of the adequacy of the ADL model was achieved through tests that were performed by James Dobbie et al (ref. 1). Such tests were not possible for this study and, as such, all modifications and extensions to the ADL model were achieved through the analysis of experimental and theoretical information collected from different sources. In the following paragraphs, the ADL model is reviewed and, where warranted, changes are made accordingly.

In the course of this study, it was necessary to develop a computer program to automate the prediction calculation at each stage of its development. The program was written to run on the IBM 1130 computer system and, since the programming of the analytical procedure is not a difficult task, the program can be modified to run on any system.

Areas of Modification

An alternate failure criterion as expressed by the Feist equation (ref. 7) was defined by Picatinny Arsenal. The penetration of the steel casing of the projectile, even without detonation, was a mode of failure that had to be considered. As a result, the sensitivity equation and factors affecting the critical velocity had to be re-examined.

The influence of certain assumptions and coefficients (inherent in various empirical relationships for fragment characteristics in the ADL model) on the predicted separation distances was examined and alternate formulations were considered. For example, the value for Gurney's constant for Composition B used in the ADL model is approximately 11 percent higher than the value cited in reference 6.

Fragment Characteristics

1. Initial Fragment Velocity

The average initial velocity of fragments from an exploding container can be estimated using the Gurney equation which assumes that the charge consists of an evenly distributed explosive in a cylindrical metal case:

\[V_0 = (2E)^{1/2} \frac{1}{[(C/M)/(1 + C/2M)]^{1/2}} \]

(1)
where \((2E)^{1/2} = 8,800\) fps (Gurney's constant)

\[
\begin{align*}
C &= \text{weight of charge} \\
M &= \text{weight of casing} \\
V_0 &= \text{initial velocity at center polar zone.}
\end{align*}
\]

The \(C/M\) ratio takes into account only the metal in the walls of the casing (ref. 6). Therefore, this equation is applicable to the cylindrical segment of the projectile (the sidewalls), and the nose and base area have to be excluded. Bearing this in mind, the above equation can be rewritten as:

\[
V_0 = (2E)^{1/2}[2Q/(2 + Q)]^{1/2}
\]

(2)

where

\[
Q = C/M = \left[\rho_C(D - 2x)^2/\rho_m(D-x)\right]
\]

(3)

\[
D = \text{outside diameter of casing (inches)}
\]

\[
\rho_C \text{ and } \rho_m = \text{densities of charge and metal, respectively}
\]

\[
x = \text{thickness of casing (inches)}.
\]

Tests performed by Gurney with TNT-filled projectiles showed a fairly good correlation with the formula when \((2E)^{1/2} = 8,000\) ft/sec was used. It is generally agreed that Composition B has a higher density than TNT and since Gurney's constant varies almost linearly with the density of the explosive, some researchers have used \((2E)^{1/2} = 8,800\) fps for Composition B. As will be observed later, this value gives a better result than that quoted in reference 6.

2. Variations of Fragment Velocity and Mass with Polar Angle

When a projectile detonates, fragments are projected in many directions and at different velocities. Experiments have shown that for cylindrical projectiles, the greatest density of fragments is contained in a narrow beamspray generally located in the central polar zone. The fragments with greatest velocities are also found in this region which is centered at the 90-degree mark from the nose of the projectile.
Tests done with TNT-filled 155mm projectiles show this narrow region to be centered about the 95-degree mark, reinforcing the idea that the beamspray is generally slightly displaced from the 90-degree mark away from the point of initiation. Using these test results, a formulation for the initial velocity of fragments as a function of the polar zone was achieved:

\[V_i = V_0F_V(\theta) \] \hspace{1cm} (4)

where \(F_V(\theta) = 0.6474 - 0.02636\theta + 0.0006095\theta^2 \)
\[- (3.08 \times 10^{-6})\theta^3 \] \hspace{1cm} (5)

\(50^\circ \leq \theta \leq 95^\circ \)

For \(95^\circ < \theta < 185^\circ \), \((190^\circ - \theta)\) is substituted in the equation above.

The same formulation can be obtained for mass of fragments. Again, using the same test results, the weight of fragments in any polar zone centered at \(\theta \) degrees from the nose of the projectile can be approximated as:

\[M(\theta) = CF_m(\theta) \] \hspace{1cm} (6)

where \(F_m(\theta) = 2.74326 - 0.094875\theta + 0.00097694\theta^2 \)
\[- (2.388 \times 10^{-6})\theta^3 \] \hspace{1cm} (7)

\(50^\circ \leq \theta \leq 95^\circ \)

and similarly, \(95^\circ < \theta < 185^\circ \), use \((190^\circ - \theta)\) in equation above.

\(C = \) total weight of sidewalls of casing (oz).

To determine the average weight of fragments ejected from a fragment projectile, the equation developed by R.I. Mott can be used (ref. 8):

\[L_n[N(m)] = L_n[C'M_A] - M/M_A \] \hspace{1cm} (8)

where \(M = m^{1/2} \) (oz)

\(C' = C/2M_A^3 \)
\(M_A \) = is a fragment distribution parameter expressed as
\[
B x^{5/6} (D - 2x)^{1/3} [1 + x/(D - 2x)]^{1/3}
\] (9)

\(N(m) \) = no. of fragments with weight \(> m \)

\(B \) = explosive constant (approximately 0.283 for Composition B)

\(m \) = weight of fragment (oz)

\(x \) = casing thickness (in)

\(D \) = average outside diameter of casing (in)

\(C \) = casing weight (oz).

It should be noted that Mott’s equation assumes the projectile casing to be a cylinder with a uniform casing thickness. Although this is hardly the case, satisfactory results have been obtained with this equation (ref. 3).

Mott’s equation can be re-written as:
\[
\ln[N(m)] = \ln[C/2M_A^2] - m^{1/2}/M_A
\]
\[
\ln[2M_A^2 N(m)/C] = e^{-m^{1/2}/M_A}
\]

For total number of fragments, \(m = 0 \) and therefore
\[
N = C/2M_A^2
\]

Average fragment weight
\[
m_0 = C/N = 2M_A^2
\] (10)

The ADL expression for average fragment weight is based on Heppner’s formulation (ref. 4). This formulation \((m_0 = 2(K_0 D_c/V_0)^2) \) gives a value for average mass of fragment (for the 155mm projectile) that is 40 percent higher than that predicted by the Mott equation which compares well with test results (ref. 9).
3. Effect of Fragment Shape on Velocity

The velocity of a fragment of known mass and presented area at a distance \(R \) feet from point of initiation can be approximated by:

\[
V_S = V_0 e^{-k'R/m^{1/3}} \tag{11}
\]

where \(k' = (A/m^{2/3})p_a C_D \)

\(V_S \) = striking velocity of fragment at distance \(R \) (ft)
\(V_0 \) = initial velocity of fragment (fps)
\(R \) = distance from source (ft)
\(A \) = presented area of fragment (in²) or fragment impact area
\(p_a \) = air density (oz/in³)
\(C_D \) = drag coefficient.

The above equation can be rewritten as:

\[
V_S = V_0 e^{-0.0025Sm^{-1/3}} \tag{12}
\]

\(S \) = distance from donor source (in)
\(m \) = mass of fragment (grain)

Sensitivity

The sensitivity equation given by ADL is based on the original work of Slade and Dewey (ref. 11) in which cylindrical fragments were fired against bare and cased charges (tetryl and Composition B). It was concluded that the velocity for 50 percent initiation was a function of contact area and not the mass of the striking fragment, and this velocity increased approximately linearly with the thickness of the cover plate of charge. Experiments carried out by Picatinny Arsenal (ref. 12) tend to disprove Slade and Dewey's theory. However, enough data was not available to reach a decisive conclusion.

To be able to design the model to predict the 50 percent velocity, ADL used the same criteria used by Slade and Dewey; that is, the 50 percent velocity which was defined as the velocity at which break-up and total detonation of charge were
equally probable. This velocity was calculated whenever possible by taking the arithmetic mean of the highest velocity for break-up and the lowest for detonation.

Since it is an objective of this study to improve the reliability of the model, it was necessary to re-analyze the Slade and Dewey data using the lowest velocities at which some deflagration occurred. By considering these velocities as critical, and also considering the linear variation of these velocities with the thicknesses of the cover plate, a formulation was achieved defining the velocity required for partial detonation (see figs. 1 and 2).

For a cylindrical fragment of diameter \(d \) striking at zero impact angle, the required velocity can be expressed as:

\[
V_s = (1 + K_1x/d)Jd^{-a}
\]
\[(13)\]

\[
J = \begin{cases}
(1820.74 \text { Composition B} \\
(1030.77 \text { tetryl}) \\
(0.61 \text { Composition B} \\
(0.42 \text { tetryl}) \end{cases}
\]

\[a = \begin{cases}
(0.6 - 0.8) \end{cases}
\]

\(V_s \) = striking velocity (fps)
\(x \) = thickness of acceptor plate (in)
\(d \) = diameter of fragment (in)
\(K_1 \) = ADL constant (0.6 - 0.8)

\(J \) and \(a \) are proportionality constants

Velocity predicted by the above formula is less than that predicted by ADL's sensitivity equation, but greater than the velocity required to just penetrate a steel cover plate of thickness \(x \) (in).

Effect of Obliquity

Analyses of data from Slade and Dewey showed that the lowest velocity required for partial detonation varied approximately the same way as the 50 percent velocity varies with the angle of impact of the fragment. Therefore, any analysis here would be identical to that presented by ADL (see fig. 3).
FIGURE I. VARIATION OF VELOCITY WITH FRAGMENT DIAMETER

(from Slade & Dewey, BRL Report No. 1021)
FIGURE 2. VARIATION OF BOUNDARY VELOCITY WITH PLATE THICKNESS
(from Slade & Dewey, BRL Report No. 1021)
FIGURE 3. VARIATION OF VELOCITY WITH IMPACT ANGLE
(from Slade & Dewey, BRL Report No. 1021)
Probability of Detonation as a Function of Distance

From information available in ADL's report, we can estimate the expected number of fragments in any zone. We can also calculate the expected number of effective hits (i.e., hits capable of causing detonation) at an acceptor at some distance S from explosion:

$$N_i = N_{ifi}F_{a_i}F_{zi}$$ \hspace{1cm} (14)

where

$$F_{a_i} = (D_i - 2x_i)/2S$$ \hspace{1cm} (15)

$$F_i = k_3 \exp[-(m_i)^{1/2}/M_A]$$ \hspace{1cm} (16)

$$N_i = CF_{m}(\theta)/m_0$$ \hspace{1cm} (17)

D_i = average outside diameter of acceptor (in)

x_i = average case thickness of acceptor (in)

m_i = critical mass in polar zone

F_{zi} = fraction of the ith 10-degree zone

M_A = fragment distribution parameter (eq. 9)

F_{a_i} = fraction of the 360-degree azimuthal angle intercepted by the acceptor

F_i = fraction of fragments that strike acceptor that are supercritical

N_i = expected number of fragments in the ith zone

\bar{N}_i = expected number of supercritical hits in the ith zone

The total number of supercritical hits is

$$N = \sum_{i=1}^{\text{zone}} \bar{N}_i$$ \hspace{1cm} (18)
and the chance of at least one supercritical hit at the acceptor is

\[P = 1 - e^{-N}. \]

(19)

The relationships discussed above supply us with a method for predicting the probability of detonation propagation for a given distance. The derivation of these equations was done by ADL. There was no need to repeat the derivations here, and since this study is an extension of that done by ADL, the interested party should consult the ADL report.

Procedure for Computing the Probability of Detonation as a Function of Spacing

All the equations presented in the earlier sections have been collected here in order to design a procedure for calculating the probability of detonation. The derivation of some of these equations can be found in the report prepared by Arthur D. Little, Inc. The probability of detonation of acceptor shall be calculated from the following steps:

Step 1:
Measure from a scaled drawing of the projectile:

- \(D \) = the average outside diameter at the middle section
- \(x \) = the average casing thickness.

Step 2:
Calculate the initial velocity of fragments using equation (2):

\[V_0 = \sqrt{(2E)^{1/2}[2Q/(2 + Q)]^{1/2}}. \]

For this velocity, the charge-to-metal ratio has to be calculated. This is achieved by using equation (3). Gurney's constant should be taken as 8,880 fps for Composition B.

Step 3:
On a scaled drawing as shown in figure A.1, with donor and acceptor projectiles spaced \(S \) (in) center to center and their bases on the same level, lay off the dividing rays for polar zones of 10 degrees centered at integral multiples of
10 degrees. Determine the zones in which fragments can hit the acceptor, ignoring the base plate and fuze section. Estimate the fraction F_{z_i} of the zone over which the vulnerable part of the acceptor extends. $F_{z_i} = 1.0$ for zones completely spanned. If S is large enough that only the central zone is involved, then

$$F_z = 18H/\pi S$$

where $H =$ height of vulnerable portion of projectile. Also, estimate the average outside diameter (in) and thickness of casing (in) in each zone.

Step 4:

For each zone, compute the critical mass m_j (grain) by iteration from the following equations:

$$F_{D_i} = e(-0.0025S_{m_i}^{-1/3})$$ \(20\)

$$V_i = V_0F_{V_i}F_{D_i}$$ \(21\)

$$d = (4F_A/\pi)^{1/2}(m_i/k)^{1/3}$$ \(22\)

$$V_i = (1 + K_1X/d)Jd^{-a}$$ \(13\)

Starting with $m_j = m_0$, calculate F_{D_i} and V_i using equation (5) to calculate F_{V_j}. For this same value of m_j, calculate d from equation (22) above, and finally calculate V_i using equation (13). Repeat this until the V_i's given by equations (21) and (13) do not differ significantly. F_A, the fraction of the contact area of the fragment that is effective, is taken as 0.50.

Step 5:

For each zone, compute the total number N_j of fragments, the azimuthal factor F_{i_j}, and the fraction f_i of the striking fragments that have mass exceeding the critical mass m_j using the following operations:

Equation (22) was derived by ADL for the sensitivity equation to take into account the mass of the striking fragment. The iterative process in this section can be time-consuming unless one of the advanced numerical techniques, for example, the secant method, is used.
\[\begin{align*}
N_i &= \frac{C F_m(\varnothing)}{m_0} \quad (6) \\
F_{\alpha i} &= \frac{(D_i - 2X_i)}{2\pi S} \quad (15) \\
\overline{f_i} &= F_1 e^{-\left(2m_i/m_0\right)^{1/2}}
\end{align*} \]

\(F_m(\varnothing) \) is calculated from equation (7). \(F_1 \), another factor derived by ADL, considers the effect of non-normal impacts and it is estimated to be 0.2 for Composition B. \(C \) is the total weight of the casing sidewalls (grain).

Step 6:

The probability of detonation can now be calculated using the following:

\[N = \sum_{i=1}^{z} N_i F_i \overline{f_i} \quad (18) \]

\[P = 1 - e^{-N} \quad (19) \]

\(z \) = number of zones involved.

Discussion of Results

To improve the reliability of the ADL model, calculations were done for the 81mm (M374A1 Comp B) projectiles and results compared with those presented in reference 13. The calculations were performed on the computer and the input and output data are presented in appendix A.

Certain notable changes made in the ADL model were:

1. The value of the shape factor \(k \) (or ballistic density):
 This value expresses the relationship between fragment mass and projected areas. A \(k \) factor of 660 grains per cubic inch was found to yield a more accurate value of the separation distance than that quoted in the ADL report (640 grams/cu in). Reference 9 makes use of the same value.

2. Area Factor \(F_{\alpha} \):
 Calculations showed that a value of 0.5 provided better results than 0.75 as presented in the ADL report. Tests showed the average fragments had at least one pointed side, thus reducing the ratio of the effective area to the presented area.
3. Protection Coefficient K_q: A closer examination of the results presented in reference 3 indicated $K_q = 0.8$ to be a better approximation.

With the above changes made, the necessary parameters and dimensions of the projectile were input into the program in the format shown in appendix A. For a distance of 21.08 inches between individual 81mm projectiles, the probability of detonation propagating from one to the other was found to be 6.4 percent. Tests performed by Picatinny Arsenal (ref. 13) gave a probability of 5.1 at 95 percent confidence level for the same separation distance. The insignificant difference between the values predicted by the updated model and experiments is a consequence of the conservative assumptions made in the model.

Calculations were also performed for the 155mm projectiles with separation distances of 1.68 m (66.1 in) and 2.29 m (90.1 in). For both distances, the model predicted a probability of detonation of 12.7 and 3.7 percent, respectively. These predictions were compared with the test results documented in reference 14. For a separation distance of 2.29 m (90.1 in), one out of 12 projectiles resulted in a high order detonation which is equivalent to a probability of 8.3 percent. However, for a confidence level of 95 percent and 11 observations with no reactions, the probability of explosion propagation will fall between zero and 28.5 percent.

For a separation distance of 1.68 m (66.1 in) and a confidence level of 95 percent, the true value of the probability of explosion propagation was between the zero to 45.9 percent interval. This relatively wide interval is based on six observations, as the number of observations increases, the confidence level increases (the interval decreases).

Calculations were again performed for the same projectiles and separation distance, but this time the new alternate failure criterion (perforation of casing even without a high order detonation) was considered. The model predicted a probability of detonation of 36 percent for a separation distance of 21.08 inches between individual 81mm projectiles. The accuracy of this prediction could not be determined due to the unavailability of test data in which perforation of casing was considered a failure criterion.
GROUPED AND SHIELDED PROJECTILES

General

The reliability of the model developed by ADL was improved in part 1 of this report. The model designed to predict the probability of detonation propagation between adjacent explosive items was refined to incorporate the alternate failure criterion proposed by ARRADCOM.

As part of the overall objective of this study, the model is extended to predict "safe distances" for a much broader range of practical configurations such as:

1. Four (2 x 2) 155mm projectiles on pallets
2. Twenty-four (6 x 4) 155mm projectiles on pallets
3. Sixteen (4 x 4) 155mm projectiles on pallets.

Certain elements that influence the safe separation distance are examined. These include situations when plate or bar shields are placed between stacked projectiles and when funnels are attached to the noses of the projectiles on the pallets.

The depth and accuracy of this portion of the study is adversely limited by the unavailability of experimental data. Most of the equations and discussions presented in this section are based entirely on the analysis of data available in Technical Report No. 3664, "Fragment Hazard Program", by Richard T. Ramsey, et al (ref. 9).

Characteristics of Fragments Emitted from a Group of Projectiles

In the case of an individual projectile, it was assumed that the source of the emitted fragments was rotationally symmetric about the longitudinal axis and thus the properties of the fragments were functions of the polar angle only. Test results show that this assumption is not valid for grouped or stacked projectiles. Properties of fragments emitted from such a group are functions of the polar and azimuthal angles.

However, when the projectiles are grouped in a "square matrix" arrangement, it can be conservatively assumed that rotational symmetry for such a group exists. Tests documented in reference 9 show the above assumption to be fairly accurate.
Due to the limited availability of data on group projectiles, consideration would be given to the square matrix arrangement. Extension of the model to include any stack configuration should not be a difficult task.

Other assumptions that have to be made for group projectiles in a square matrix arrangement include:

1. The metal in the shaded region in figure 4 does not enter the fragment mass distribution.

2. Targets 1, 2, 3 and 4, situated at the same distance from the donor, have equal probabilities of being hit by fragments emitted from the group (this follows from the assumption that the source is rotationally symmetric about its longitudinal axis).

It should be emphasized that the above assumptions would lead to results that are very conservative and they are also only valid for the arrangement shown in figure 5. When a number of projectiles other than four (2 x 2) are grouped together in a configuration other than that described above, the steps described in appendix C have to be followed. Again, it should be emphasized that the accuracy of these steps could not be determined due to insufficient experimental data.

Initial Fragment Velocity

The velocities of fragments emitted from a group of four (2 x 2) projectiles were found to be twice those from an individual projectile between the 60- and 120-degree polar angles. Outside this zone, the fragment velocities were approximately 1-1/2 times those for a single projectile (ref. 9).
The beamspray was also found to be centered around the 103-degree mark unlike the 95-degree mark in the case of a single projectile. This 8-degree shift affects the velocity parameter $F_v(\theta)$. To determine $F_v(\theta)$ for a group of four projectiles, $(\theta - 8)$ should be used in equation (5) for $13 \leq \theta \leq 103$ and for polar angles between 103° and 198° ($198 - \theta$) should be used.

Fragment Mass Distribution

From assumption 2, the distribution parameter $F_m(\theta)$ defined in equation (7) can also be used. However, due to the 8-degree shift in the location of the beamspray, $(\theta - 8)$ should be substituted for θ in equation (7) for $13 \leq \theta \leq 103$ and $(198 - \theta)$ is used for angles outside this limit. The mass of fragments emitted from a stack of projectiles in a polar zone centered at angle θ can be expressed as:

$$M(\theta) = CA F_m(\theta) \quad (6)$$

where CA is the fraction of the total weight of metal involved in the mass distribution.

Figure 6 below shows how this value can be estimated. Test results show this method to provide estimates that are within the tolerance limit of this study.

Tests performed with 155mm projectiles in reference 9 showed also that the total weight of fragments from an individual projectile, collected in an area bounded by 45- to 135-degree polar zone was 61,378 grains. The average weight of metal collected in a similar area for a group of 4 projectiles was 175,747 grains (giving a ratio of approximately 3). From figure 6, the model shows 3/4 sectors of projectile metal available in a 90° azimuthal sector. This gives a ratio of 3 (3/4 projectile from a group of 4 and 1/4 from a single projectile).
The slopes of the curves in figure 7 show that the average weight of the fragments emitted from a single and group projectiles was the same. This is the expected result as predicted by Mott's equation presented in the first part of this report (eq. 10).

Effect of Shields

1. Plate Shield

Perforation data for steel impacting on several metallic materials including steel and aluminum was collected and analyzed by Ballistic Research Laboratories as part of project THOR (ref. 2). These test results showed that the residual velocity of a fragment after perforation of a medium could be expressed as:

\[V_r = V_s - 10^c(tA)^{\alpha}m_s^{\beta}(sec \theta)^{\gamma}V_s^{\lambda} \] \hspace{1cm} (23)

where

- \(V_r \) = fragment residual velocity (fps)
- \(V_s \) = fragment striking velocity (fps)
- \(t \) = thickness of target (in)
- \(A \) = average impact area (in²)
- \(m_s \) = initial weight of fragment (grain)
- \(\theta \) = obliquity angle

\(c, \alpha, \beta, \gamma \) and \(\lambda \) are constants and these values are listed below in table 1 for mild homogeneous steel and Aluminum Alloy 2024T-3.

<table>
<thead>
<tr>
<th>Target Material</th>
<th>c</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\gamma)</th>
<th>(\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild homogeneous steel</td>
<td>6.399</td>
<td>0.889</td>
<td>-0.945</td>
<td>1.262</td>
<td>0.019</td>
</tr>
<tr>
<td>Hard homogeneous steel</td>
<td>6.475</td>
<td>0.889</td>
<td>-0.945</td>
<td>1.262</td>
<td>0.019</td>
</tr>
<tr>
<td>Aluminum Alloy 2024T-3</td>
<td>7.047</td>
<td>1.029</td>
<td>-0.072</td>
<td>1.251</td>
<td>-0.139</td>
</tr>
<tr>
<td>Cast iron</td>
<td>4.840</td>
<td>1.042</td>
<td>-1.051</td>
<td>1.028</td>
<td>0.523</td>
</tr>
</tbody>
</table>
FIGURE 7. MOTT PLOTS FOR ONE (1), FOUR (2x2) & EIGHT (4x2) GROUPS OF PROJECTILES
(from R.T. Ramsey, Fragment Hazard Investigation Program)
By setting the residual velocity $V_r = 0$ in equation (23), a good approximation of the protection velocity can be obtained.

$$V_0 = 10^{C_1(eA)a_1m_s^b_1(sec \theta)Y_1} \quad (24)$$

where V_0 = protection velocity (fps)

e, A, m_s and θ have been defined previously.

c_1, a_1, b_1 and γ_1 are constants whose values are listed in Table 2.

The protection velocity V_0 is defined to be the highest striking velocity below the ballistic limit for which probability of perforating a given target is zero.

<table>
<thead>
<tr>
<th>Target Material</th>
<th>c_1</th>
<th>a_1</th>
<th>b_1</th>
<th>γ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum Alloy 2024T-3</td>
<td>6.185</td>
<td>0.903</td>
<td>-0.941</td>
<td>1.098</td>
</tr>
<tr>
<td>Mild homogeneous steel</td>
<td>6.523</td>
<td>0.906</td>
<td>-0.963</td>
<td>1.286</td>
</tr>
<tr>
<td>Hard homogeneous steel</td>
<td>6.601</td>
<td>0.906</td>
<td>-0.963</td>
<td>1.286</td>
</tr>
<tr>
<td>Cast iron</td>
<td>10.153</td>
<td>2.186</td>
<td>-2.204</td>
<td>2.156</td>
</tr>
</tbody>
</table>

After perforation, the mass of the fragment varies and again an estimate of the residual mass of the fragment can be obtained by:

$$m_r = m_s - 10^{c(tA)a_1m_s^b_1(sec \theta)Y_1}V_s^{\lambda} \quad (25)$$

Table 3 below lists the value of the constants in equation (25).
Table 3

<table>
<thead>
<tr>
<th>Target Material</th>
<th>c</th>
<th>α</th>
<th>β</th>
<th>γ</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild homogeneous steel</td>
<td>-2.507</td>
<td>0.138</td>
<td>0.835</td>
<td>0.143</td>
<td>0.661</td>
</tr>
<tr>
<td>Hard homogeneous steel</td>
<td>-2.264</td>
<td>0.346</td>
<td>0.629</td>
<td>0.327</td>
<td>0.880</td>
</tr>
<tr>
<td>Aluminum Alloy 2024T-3</td>
<td>-6.663</td>
<td>0.227</td>
<td>0.694</td>
<td>-0.361</td>
<td>1.901</td>
</tr>
<tr>
<td>Cast iron</td>
<td>-9.703</td>
<td>0.162</td>
<td>0.673</td>
<td>2.091</td>
<td>2.710</td>
</tr>
</tbody>
</table>

The critical mass (weight of fragment to cause detonation) is calculated as a function of the residual velocity and mass. A decrease in the velocity and weight of fragment after perforation would reduce the probability of such a fragment being critical.

2. Bar Shields

Available test results with bar (or pipe) shields are not sufficient enough to be able to establish empirical relationships. However, tests performed by C. Anderson and R. Rindner of Picatinny Arsenal (ref. 14) with steel and aluminum rods placed between single and multiple 155mm projectiles (M107 Comp B) provided the following observations:

a. The fragments from the donor projectile which are "head-on" to the critical region (a portion of the area of the projectile containing the charge) of the acceptor are deflected by the bar shield, while those fragments which miss the shield would only have a grazing impact on the projectile. However, in the case of multiple projectiles, these grazing fragments might strike normal to other projectiles in the group.

b. Aluminum, besides being lighter and less expensive, absorbs more energy per unit weight during deformation (plastic) and behaved more uniformly than steel.

The existence of shields (bar or plate) between donor and acceptor projectiles reduces the probability of an acceptor projectile being hit by a fragment. A very
Table 4. Parameter values

Shape Factor (Ballistic Density) K (grain/in3) = 660.0

Sensitivity Parameter B = 2,140.0

Area Factor $FA = 0.5$

Constant J (sensitivity) = 1,820.74

Constant A (sensitivity) = 0.61

Constant B (Mott's equation) = 0.283

Average Mass Coefficient $K_0 = 4,500.0$

Protection Coefficient $K_I = 0.8$

Impact Angle Factor $F_I = 0.2$

Gurney's Constant V_C (ft/sec) = 8,800.0 for Composition B
= 8,000.0 for TNT

Charge Density (lb/in3) = 0.058 for Composition B
= 0.056 for TNT

Table 5. Various explosive constants used in calculations

<table>
<thead>
<tr>
<th>Explosive type</th>
<th>Gurney's Constant (V_C, fps)</th>
<th>Explosive Constant B (eq. 9)</th>
<th>Constant J (eq. 13)</th>
<th>Constant A (eq. 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNT</td>
<td>8,000.00</td>
<td>0.300</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Composition B</td>
<td>8,800.00</td>
<td>0.283</td>
<td>1,820.74</td>
<td>0.61</td>
</tr>
<tr>
<td>Tetryl</td>
<td>7,460.00</td>
<td>0.240</td>
<td>1,030.77</td>
<td>0.42</td>
</tr>
</tbody>
</table>

25
conservative estimate of such a probability can be obtained from the model developed in this study.

Effect of Funnels

The extra weight of funnels attached to the noses of projectiles enter the fragment weight distribution. The assumption inherent in Gurney's equation, namely, the projectile casing is cylindrical, can no longer be considered valid here. However, if the following assumptions are made, the effects of funnels can be dealt with but the validity of these assumptions cannot be justified due to insufficient experimental data.

1. The extra weights of the casing of the funnel and enclosed charge are taken into account when the C/M ratio (eq. 3) is calculated, and initial velocity is a function of this ratio and not of the outside diameter and thickness of casing.

2. Perforation of any funnel in the group will cause detonation of the entire group of projectiles.
DEVELOPMENT OF MODEL TO PREDICT PROBABILITY OF DETONATION FOR STACKED PROJECTILES

Probability of Detonation as a Function of Distance and Shielding

All of the extensions to the old model discussed in the previous section are grouped here to facilitate the development of the new model. The probability of detonation can be computed using the following equations:

1. Fragment initial velocity:

\[V_0 = (2E)^{1/2}[20(2 + Q)]^{1/2}. \] \hspace{1cm} (2)

For a group of four (2 x 2) 155mm projectiles, initial velocity of fragments in a polar zone centered at \(\theta \) is:

\[V(\theta)_{IN} = nV_0FV(\theta) \] \hspace{1cm} (4)

where \(n = \begin{cases} 2.0 & 60 \leq \theta \leq 120 \\ 1.5 & \text{otherwise} \end{cases} \)

where \(F_V(\theta) = 0.6474 - 0.02636(\theta - 8) + 0.0006095(\theta - 8)^2 - (3.08 \times 10^{-6})(\theta - 8)^3 \) \hspace{1cm} (5)

for \(130 \leq \theta \leq 1030 \).

For \(1030 \leq \theta \leq 1980 \), use \(198 - \theta \) in the equation above.

2. Number of fragments:

\[\ln[N(m)] = \ln[C*M_A] - M/M_A \] \hspace{1cm} (8)

where \(M = m^{1/2} \) (oz)

\[C^* = C_A/2M_A^3 \]

\[M_A = Bx^{5/6}(D - 2x)^{1/3}[1 + x/(D - 2x)] \] \hspace{1cm} (9)

The notations used above have been defined previously. The new constant \(C_A \) was also defined earlier.
3. Average mass of fragment:

Total number of fragments involved in fragment mass distribution:

\[N = \frac{C_A}{2M_A^2} \]

Average fragment weight: \(m_0 = \frac{C_A}{N} = \frac{2M_A^2}{N} \)

4. Striking velocity at a given distance from donor:

\[V_S = V_0 e^{-K'R/m^{1/3}} \] \hspace{1cm} (11)

\[V_S = V_0 e^{-0.0025Sm^{-1/3}} \] \hspace{1cm} (12)

where \(S = \) distance (in)

\(m = \) mass of fragment.

When a shield is present between donor and acceptor projectiles, striking velocities at surface of shield and at acceptor should be calculated.

For a plate (bar) shield, striking velocity is:

\[V_{SP} = V_{IN} e^{-0.0025S1m_s^{1/3}} \] \hspace{1cm} (12)

where \(V_{SP} = \) striking velocity of fragment at surface of plate shield (fps)

\(V_{IN} = \) initial velocity of fragment at donor source (fps)

\(S_1 = \) distance between donor and surface of shield next to donor (in)

\(m_s = \) initial fragment mass (grain)

Assuming the shield is perforated by the fragment, striking velocity of fragment at acceptor surface is:

\[V_{SR} = V_r e^{-0.0025S2m_r^{-1/3}} \] \hspace{1cm} (12)

where \(V_{SR} = \) striking velocity of fragment at acceptor (fps)
\[V_r = \text{residual velocity of fragment at shield (fps)} \]

\[S_2 = \text{distance between shield and acceptor projectiles (in)} \]

\[m_r = \text{residual weight of fragment (oz)} \]

It should be noted that \(S_1 \) is the maximum distance (in) between the donor pile and the shield that would result in the most effective use of the shield. Figure 8 shows how this distance can be calculated. A basic assumption here is that any fragment that does not perforate the shield is either blocked by it or deflected away from the acceptor projectile.

Figure 8.

5. Minimum striking velocity of a fragment of mass (m) to cause detonation:

\[V_S = (1 + K_1 x/d) J d^{-a} \] \hspace{1cm} (13)

\[d = (4 F_A / m)^{1/2} (m_i / k)^{1/3} \] \hspace{1cm} (22)

where \(F_A \) = constant of proportionality between impact and effect areas of the fragment.

The striking velocity at the surface of the acceptor projectiles \(V_{S1} \) is calculated as a function of the residual velocity after perforation of shield, taking into account the drag effects.
After perforation of the shield, the mass of the fragment changes and so does its diameter. Equation (19) should be changed to:

\[
d = (4F_A \pi)^{1/2} (m_{ir}/K)^{1/3}
\]

(22)

where \(m_{ir} \) = residual mass in the \(i \)th zone (grain).

The equations presented here would now be used to determine the probability of detonation for grouped projectiles.

Procedure for Calculating Probability of Detonation Propagation Between Stacked Projectiles

The probability of detonation propagation between stacked projectiles (4 in a group) can be determined from the following steps:

Step 1.

From a scaled drawing of a single projectile (as shown in figure A.1), determine the following:

\[D = \text{outside diameter of projectile (in)} \]

\[x = \text{average casing thickness (in) should be measured around the center of the projectile.} \]

If funnels are involved in the stack, then determine:

\[M = \text{total weight of casing (oz). This includes weight of the funnel casing and the sidewalls of the projectile.} \]

\[C = \text{the total charge weight (oz) both in projectile and funnel.} \]

Step 2.

Calculate initial velocity of fragments from a single projectile (with or without funnel) from the following equation:

\[
V_0 = (2E)^{1/2} [2Q/(2 + Q)]^{1/2}
\]

(2)
where \(Q = \rho_C (D - 2x)^2/[\rho_m^4 (D - x)] \)

for a cylindrical projectile without a funnel

or where \(Q = C/M \)

for a projectile with a funnel.

Step 3. (If shields have to be used.)

On a scaled drawing with donor and acceptor stacks in a horizontal position, space the distance \(S \), and determine the maximum distance between the shield and donor stack. Figure 9 below shows how this is done.

![Diagram](image)

Figure 9

\(D_s = \) diameter of shield (bar) or width of shield (plate)

\(t = \) thickness of shield

\(S_1 = \) distance of shield from donor source (as shown)

\(S_2 = \) distance of acceptor group from shield (as shown)

\[(S_1 + t + S_2)/(S_1 + t/2) = \text{TWDTH}/D_s \]

\[S_1(\text{TWDTH} + D_s) = D_s(S_2 + t) - t/2(\text{TWDTH}) \] (25)
Step 4.

On a scaled drawing (as shown in figure A.1) with donor and acceptor stacks spaced the distance S and their bases on the same horizontal plane, lay off the dividing rays for polar zones of 10° centered at integral multiples of 10°. Determine zones in which fragments can hit the acceptor projectiles, ignoring the base plate and fuze section if no funnels are involved. As stated earlier, estimate the fraction F_{Zj} of the zone over which the vulnerable part of the acceptor extends. $F_{Zj} = 1.0$ for zones completely spanned. If S is large enough that only the central zone is involved, then

$$F_z = 18H/\pi S$$

where H = height of the vulnerable portion of the projectile.

If funnels are involved, then H is the combined height of the projectile and funnel, ignoring only the base plate.

Also estimate the average outside diameter of projectile (in), casing thickness (in), and the angle of impact at the surface of the shield for each zone.

Step 5.

Assuming that there is no decrease in the weight of a fragment after perforation, the iterative process is greatly simplified. For each zone, compute the critical mass m_{ri} (grain) by iteration from the following equations:

$$F_{Di} = e(-0.0025S_2m_{i}^{-1/3})$$ \hspace{1cm} (20)

$$C_{Di} = e(-0.0025S_1m_{i}^{-1/3})$$ \hspace{1cm} (26)

$$V_{IN_i} = V_0F_{Vi}$$ \hspace{1cm} (27)

$$V_{sp_i} = V_{IN_i}C_{Di}$$ \hspace{1cm} (28)

$$A = (m_i/k)^{2/3}$$ \hspace{1cm} (29)

$$V_{pi} = 10C_1(tA)^{a_1}m_i^{b_1}(sec \theta)^{y_1}$$ \hspace{1cm} (30)

$$V_{ri} = V_{sp_i} - 10C(tA)^{a_2}m_i^{b_2}(sec \theta)^{y_2}V_{sp_i}$$ \hspace{1cm} (31)

$$V_{sri} = V_{ri}F_{Di}$$ \hspace{1cm} (32)
\[
d = \left(\frac{4F_A}{\pi}\right)^{1/2}(m_i/k)^{1/3}
\]

\[
V_{sr_i} = (1 + K_1x/d)Jd^{-a}
\]

Starting with \(m_i = m_0 \), if \(V_{d_i} > V_{sp_i} \) for any value of \(m_i \), then the fragment does not perforate the shield. By setting \(m_i \) to be equal to a large value (5,000 grains), the probability of such a fragment with zero residual velocity causing detonation is automatically set to zero.

Step 6.

For each zone also, compute the total number of fragments \(N_i \), the azimuthal factor \(F_{ai} \) and fraction \(f_i \) of the striking fragments that have mass exceeding the critical mass \(m_i \) using these equations:

\[
N_i = C_AFm(0)m_0
\]

\[
F_{ai} = 2(D - x)/2 \left(S_1 + \epsilon + S_2\right)
\]

\[
\tau_i = F_{le}^{-\left(2m_{ri}/m_0\right)^{1/2}}
\]

Step 7.

The probability of detonation is calculated as follows:

\[
N = \sum_{i=1}^{Z} N_iF_{ai}F_{zif_i}
\]

\[
P = 1 - e^{-N}
\]

The notations above have been defined previously in an earlier section of the report.
DISCUSSION OF RESULTS

Although the second part of the report dealt mainly with stacked projectiles, calculations were done to predict the probability of detonation propagating between adjoining individual 155mm (M107 Comp B) projectiles with and without plate shields between the projectiles.

With no shield present, the model predicted a probability of detonation of 49 percent for a distance of 0.61 m (24.1 in), but the confidence level could not be determined. However, when a 0.5-inch thick steel plate was placed between the two projectiles, the probability of detonation was zero for the same distance. Tests were done with the same projectiles, same thickness of shield and same spacing between projectiles, and out of 48 trials, no detonation of the acceptor projectile was observed (ref. 14). The number of tests is enough to give a high confidence level. Sample calculations are presented in appendix A.

Calculations were also done for groups of 81mm and 105mm projectiles to determine the adequacy of the model. No favorable correlations were expected since parameters designed for single and groups of four (2 x 2) projectiles were used in the model to predict the probability of explosion propagation between groups of 16 (4 x 4) 105mm and 72 (6 x 12) 81mm projectiles.

For a separation distance of 109.7 m (360.0 in) between two groups of 16 (4 x 4) 105mm (M1) projectiles, the model predicted a probability of detonation of 20.6 percent compared to 10 percent at a 95 percent confidence level provided by test results. Similarly, the model predicted a probability of detonation of 2.4 percent for a separation distance of 0.914 m (36.0 inches) between two groups of 72 (6 x 12) 81mm (M374A1) projectiles. Test results gave a probability of 6.8 percent at a 95 percent confidence level (refs. 13 and 15).

Finally, the model was used to predict the probability of detonation for individual 8-in (M106) HE projectiles spaced at a distance of 0.305 m (12 inches) with a 3-inch diameter aluminum bar placed between the donor and acceptor projectiles. The model came up with a probability of zero. Test results show that out of 50 observations, no propagation was observed thus providing an upper limit of 7.1 percent for a confidence level of 95 percent (ref. 16).
CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The model and procedures described in this report provide a rational basis for determining the probability of detonation propagation between adjoining explosive items. From the analysis of available data and calculations provided in this report, the following conclusions have been reached:

1. When used in a generalized way, the model can be a valuable tool in the design and layout of facilities for the manufacture and storage of explosive items.

2. To compute the required separation distance \(S \) between projectiles for a given probability, the model can be used to determine the probability of detonation for trial values of \(S \) until a correct value is found. This was determined to be the most accurate means.

3. Certain approximations and assumptions made affect the accuracy of the model, especially when stacked projectiles are involved. The accuracy would be enhanced by appropriate experiments such as those recommended below.

Recommendations

The following recommendations are made:

1. Perform further analyses of this modified model in the areas that cover shields, funnels and stacked projectiles.

2. Design a test plan covering areas which should be further investigated experimentally such as arena, fragmentation and sensitivity tests.

3. Perform arena tests for projectiles stacked in configurations of interest, with the view of collecting information on velocity, polar and azimuthal distribution of the fragments.

4. Perform fragmentation tests to determine the number of fragments emitted from different configurations of stacked projectiles (and the distribution of these fragments).
5. Perform sensitivity tests (similar to the ones begun in ref. 12) to accurately determine the relationship between boundary velocity and each of the following:

 a. Fragment mass

 b. Presented (or impact) area of fragment

 c. Thickness of acceptor plate.
REFERENCES

Sample Calculations

1. 81mm (M374A1) Projectile with No Shields

Average Outside Diameter \(D_i = 3.04 \) inches
Average Casing Thickness \(x_i = 0.29 \) inch
Height of Charge in Projectile \(H = 7.2 \) inches
Density of Enclosed Charge (Comp B) \(\rho_c = 0.058 \text{ lb/in}^3 \)
Density of Metal (Steel) \(\rho_m = 0.283 \text{ lb/in}^3 \)
Mass of metal (Sidewalls) \(M = 5.0 \text{ lb} = 35,000.0 \text{ grains} \)

Input Table (A.1). 81mm Projectiles

<table>
<thead>
<tr>
<th>Zone</th>
<th>Polar angle (deg)</th>
<th>FZ</th>
<th>FV</th>
<th>FM</th>
<th>Casing thickness (in)</th>
<th>Outside diameter (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>0.57</td>
<td>0.862</td>
<td>0.183</td>
<td>0.29</td>
<td>1.91</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>1.00</td>
<td>0.967</td>
<td>0.377</td>
<td>0.29</td>
<td>3.04</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>0.43</td>
<td>0.969</td>
<td>0.377</td>
<td>0.29</td>
<td>3.08</td>
</tr>
</tbody>
</table>

Note: The casing thickness and outside diameter for each zone are measured at the point where the centerline of that particular polar zone intersects the centerline of the projectile.
Input Format - Example 1

Card Type 1
NCASE = 0
NPROJ = 1

Card Type 2
Title: 81-mm (M374A1) Projectiles (Comp B)

Card Type 3
Type of Shield: None

Card Type 4 (Needs decimal points)
VC = 8800.0
DENC = 0.058
DENM = 0.283
SK = 660.0
XM = 35000.0
H = 7.2
XD = 0.29
DD = 3.0

Card Type 5
CO = 4500.0
SB = 2140.0
Cl = 0.8
FA = 0.5
\(\text{FI} = 0.2 \)

\(\text{PLATE} = 0. \)

Card Type 6 (A blank card can be substituted)

\(\text{ALPHA} = 0 \)

\(\text{BETTA} = 0 \)

\(\text{GAMMA} = 0 \)

\(\text{CONST} = 0 \)

\(\text{XLAMD} = 0 \)

Card Type 7 (A blank card can be substituted)

\(\text{ALPH1} = 0 \)

\(\text{BETA1} = 0 \)

\(\text{GAMA1} = 0 \)

\(\text{CONT1} = 0 \)

Card Type 8

\(\text{SA} = 0.61 \)

\(\text{CB} = 0.283 \)

\(\text{XJ} = 1820.74 \)

Card Type 9

\(S = 21.08 \)

\(\text{NZONE} = 3 \)

\(\text{NMIS} = 1 \)

\(\text{TWDTH} = \text{blank}. \) This value can be left out since it only applies to stacked projectiles.
Card Type 10 (Values are taken from Input Table A.1). One card required for each zone.

<table>
<thead>
<tr>
<th>Zone</th>
<th>FZ</th>
<th>FV</th>
<th>FM</th>
<th>XR</th>
<th>DR</th>
<th>ETTA</th>
<th>THETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>0.57</td>
<td>0.862</td>
<td>0.183</td>
<td>0.29</td>
<td>1.91</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>2nd</td>
<td>1.0</td>
<td>0.967</td>
<td>0.377</td>
<td>0.29</td>
<td>3.04</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>3rd</td>
<td>0.43</td>
<td>0.967</td>
<td>0.377</td>
<td>0.29</td>
<td>3.08</td>
<td>1.0</td>
<td>-</td>
</tr>
</tbody>
</table>

Card Type 11 (End of Data Indicator)

A blank card.

2. 155mm (M107) Projectiles with 0.5-Inch Steel Plate Shield.

![Image](image_url)

Average Outside Diameter \(D_i = 6.0 \) inches
Average Casing Thickness \(X_i = 0.29 \) inch
Height of Charge in Projectile \(H = 7.20 \) inches
Density of Charge in Projectile (Comp B) \(\rho = 0.058 \text{ lb/in}^3 \)
Density of Metal (Steel) \(p = 0.283 \text{ lb/in}^3 \)

Mass of Metal (Sidewalls) \(77.5 \text{ lb} = 542,500.0 \text{ grains} \)

Input Table (A.2). 155mm Projectiles with shielding

<table>
<thead>
<tr>
<th>Zone</th>
<th>Polar angle (deg)</th>
<th>FZ</th>
<th>FV</th>
<th>FM</th>
<th>XR</th>
<th>DR</th>
<th>n</th>
<th>(\theta) (deg)</th>
<th>(\theta) (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>0.07</td>
<td>0.732</td>
<td>0.07</td>
<td>0.68</td>
<td>4.09</td>
<td>1.0</td>
<td>20</td>
<td>0.35</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>1.00</td>
<td>0.862</td>
<td>0.18</td>
<td>0.68</td>
<td>5.45</td>
<td>1.0</td>
<td>10</td>
<td>0.17</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>1.00</td>
<td>0.967</td>
<td>0.377</td>
<td>0.68</td>
<td>6.09</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>1.00</td>
<td>0.967</td>
<td>0.377</td>
<td>0.82</td>
<td>6.00</td>
<td>1.0</td>
<td>10</td>
<td>0.17</td>
</tr>
<tr>
<td>5</td>
<td>110</td>
<td>0.87</td>
<td>0.862</td>
<td>0.18</td>
<td>1.36</td>
<td>6.54</td>
<td>1.0</td>
<td>20</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Input Format - Example 2

Card Type 1

NCASE = 0

NPROJ = 1

Card Type 2

Title: 155mm (M107) Projectiles with 0.5-inch Steel Plate Shield

Card Type 3

Type of Shield: 0.5-inch Steel Plate

Card Type 4

VC = 8800.00

DENC = 0.058
FIGURE A.2
155-mm (M107) projectiles with 0.5-inch steel plate.
DENM = 0.283
SK = 660.0
XM = 542500.13
XD = 0.68
DD = 6.09

Card Type 5
CO = 4500
SB = 2140
Cl = 0.8
FA = 0.5
FI = 0.2
PLATE = 0.5

Card Type 6 (From Table 1)
ALPHA = 0.889
BETTA = 0.945
GAMMA = 1.262
CONST = 6.390
LAMDA = 0.019
(Beta values are entered as positive values always)

Card Type 7 (From Table 2)
ALPH1 = 0.906
BETAIL = 0.963
GAMA1 = 1.280
CONT1 = 6.52

Card Type 8
SA = 0.61
CB = 0.283
XJ = 1820.74

Card Type 9
S1 = 7.5
S2 = 16.1
NZONE = 5
NMIS = 1
TWDTH = (blank)
Card Type 10 (From Input Table A.2). One card for each zone.

<table>
<thead>
<tr>
<th>1st Zone</th>
<th>2nd Zone</th>
<th>3rd Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>FZ = 0.07</td>
<td>FZ = 1.0</td>
<td>FZ = 1.0</td>
</tr>
<tr>
<td>FV = 0.732</td>
<td>FV = 0.862</td>
<td>FZ = 0.967</td>
</tr>
<tr>
<td>FM = 0.07</td>
<td>FM = 0.18</td>
<td>FM = 0.377</td>
</tr>
<tr>
<td>XR = 0.68</td>
<td>XR = 0.68</td>
<td>XR = 0.68</td>
</tr>
<tr>
<td>DR = 4.09</td>
<td>DR = 5.45</td>
<td>DR = 6.09</td>
</tr>
<tr>
<td>ETTA = 1.0</td>
<td>ETTA = 1.0</td>
<td>ETTA = 1.0</td>
</tr>
<tr>
<td>THETA = 0.35</td>
<td>THETA = 0.17</td>
<td>THETA = 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4th Zone</th>
<th>5th Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>FZ = 1.00</td>
<td>FZ = 0.87</td>
</tr>
<tr>
<td>FV = 0.967</td>
<td>FV = 0.862</td>
</tr>
<tr>
<td>FM = 0.377</td>
<td>FM = 0.18</td>
</tr>
<tr>
<td>XR = 0.82</td>
<td>XR = 1.36</td>
</tr>
<tr>
<td>DR = 6.0</td>
<td>DR = 6.54</td>
</tr>
<tr>
<td>ETTA = 1.0</td>
<td>ETTA = 1.0</td>
</tr>
<tr>
<td>THETA = 0.17</td>
<td>THETA = 0.35</td>
</tr>
</tbody>
</table>

Card Type 11 (End of Data Indicator)

A blank card.
3. 105mm (M1) Projectiles - Sixteen (4 x 4) on Pallets

Average Outside Diameter \(D_i = 4.133\) inches

Average Casing Thickness \(X_i = 0.489\) inch

Height of Charge in Projectile \(H = 11.8\) inches

Density of Charge (Comp B) \(\rho_c = 0.058\) lb/in\(^3\)

Density of Metal (Steel) \(\rho_m = 0.283\) lb/in\(^3\)

Mass of Metal (Sidewalls) \(M = 25.5\) lb = 178,500.0 grains

Determination of \(C_A\)
For an azimuthal zone bounded by 0 and 180° line, the shaded regions show the portions of projectiles that are not involved in the fragment mass distribution. The equivalent weight of 5 projectiles is involved in fragment mass distribution:

\[C_A = 5 \times \text{Wt. of single 105mm projectile (grains)} \]
\[= 5 \times 178,500.0 \text{ grains} \]
\[= 892,500.0 \text{ grains}. \]

Determination of FZ:

For a separation of 360 inches, only the middle (90-degree) zone is involved.

\[FZ = \frac{18H}{\pi S} = \frac{(18 \times 11.8)}{\pi} \times 360 = 0.188 \]

Input Table

Table A.3. 105mm (M1) Projectiles

<table>
<thead>
<tr>
<th>Zone</th>
<th>Polar angle (deg)</th>
<th>FZ</th>
<th>FV</th>
<th>FM</th>
<th>XR (in)</th>
<th>DR (in)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90</td>
<td>0.188</td>
<td>0.886</td>
<td>0.206</td>
<td>0.489</td>
<td>4.133</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Separation distance = 360 inches

(See notes at bottom of Table A.1)
Input Format - Example 3

Card Type 1
NCASE = 0
NPROJ = 1

Card Type 2
Title: 105mm (M1) Projectiles Grouped 16 (4 x 4) on Pallet

Card Type 3
Type of Shield: None

Card Type 4
VC = 8800.00
DENC = 0.058
DENM = 0.283
SK = 660.0
XM = 892500.0
H = 11.8
XD = 0.489
DD = 4.133

Card Type 5
CO = 4500.0
SB = 2140.0
C1 = 0.8
FA = 0.5
FI = 0.2
PLATE = 0.0

Card Type 6
ALPHA = 0
BETTA = 0
GAMMA = 0
CONST = 0
LAMDA = 0

Card Type 7
ALPH1 = 0.0
BETA1 = 0.0
GAMA1 = 0.0
CONT1 = 0.0

Card Type 8
SA = 0.61
CB = 0.283
XJ = 1820.74

Card Type 9
S = 360.0
NZONE = 1
NMIS = 4
TWDTH = 19.53
Card Type 10 (From Input Table A.3). One card required for each zone.

1st Zone

FZ = 0.188
FV = 0.886
FM = 0.206
XR = 0.489
DR = 4.133
ETTA = 2.0

Card Type 11 (End of Data Indicator)

A blank card.
APPENDIX B
INPUT FORMAT FOR COMPUTER PROGRAM

Introduction

This section presents the formats used for specifying the various input parameters. Each type of card is described below in terms of data format, definition and field locations. The numbers above the graphic representation of each card identify the last column in each data field of that card. The letters below designate the format for the data. In fields designated "I", the quantity entered must be right-adjusted to the last column in the field and cannot contain any decimal point. In the fields designated "F", a decimal point is required; however, the number can be located anywhere in the field. Fields designated "A" are alphanumeric fields and have to be left-adjusted, beginning at the first column of the field.

Data Cards

Card Type 1

```
   10  20
   NCASE  NPROJ
```

"I" FORMAT

NCASE = 0 if high order detonation is the failure criterion

= 1 if perforation of the projectile casing is the failure criterion

NPROJ = number of times the program is to be used. If, for example, calculations are required for the 81mm and 155mm projectiles, then NPROJ = 2. Note that NPROJ does not mean the number of projectiles in a stack.

Card Type 2

```
   TITLE
```

"A" Format
Card Type 3

'SHIELD'

'A' FORMAT

If no shields are present, write "None". If this card is left out, when no shields are present, erroneous results will be obtained.

Card Type 4

<table>
<thead>
<tr>
<th>VC</th>
<th>DENC</th>
<th>DENM</th>
<th>SK</th>
<th>XM</th>
<th>H</th>
<th>XD</th>
<th>DD</th>
</tr>
</thead>
</table>

"F" Format

VC = Gurney's constant (fps)
DENC = Density of charge (lb/in\(^3\))
DENM = Density of metal (lb/in\(^3\))
SK = Shape factor (grain/in\(^3\))
XM = Weight of metal (grain)
H = Height of charge in projectile (in)
XD = Average casing thickness (in) measured at middle of projectile
DD = Outside diameter of projectile (in) measured at middle of projectile also.

Card Type 5

<table>
<thead>
<tr>
<th>CO</th>
<th>SB</th>
<th>CI</th>
<th>FA</th>
<th>FI</th>
<th>PLATE</th>
</tr>
</thead>
</table>

"F" Format

CO = Average mass coefficient
SB = Sensitivity parameter
CI = Protection coefficient
FA = Area factor
FI = Impact factor
PLATE = Thickness of shield (in)

Card Type 6

<table>
<thead>
<tr>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA</td>
<td>BETA</td>
<td>GAMA</td>
<td>CONST</td>
<td>XLAMD</td>
</tr>
</tbody>
</table>

"F" Format

These are constants obtained from table 1 of the report.

Card Type 7

<table>
<thead>
<tr>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA</td>
<td>BETA</td>
<td>GAMA</td>
</tr>
</tbody>
</table>

"F" Format

Constants taken from table 2.

When no shields are present, the constants of card types 6 and 7 should contain zeros. An erroneous result will be obtained if these cards are left out entirely.

Card Type 8

<table>
<thead>
<tr>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>CB</td>
<td>XJ</td>
</tr>
</tbody>
</table>

"F" Format

Constants used in equations 9 and 13.

CB = B in equation 9.

SA = a) equation 13

XJ = J)

If no shields are present, then card type 9 would be

<table>
<thead>
<tr>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>NZONE</td>
<td>NMIS</td>
<td>TWDTH</td>
</tr>
</tbody>
</table>

"F" Format

If shields exist between donor and acceptor projectiles, then card type 9 becomes

<table>
<thead>
<tr>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>S2</td>
<td>NZONE</td>
<td>NMIS</td>
<td>TWDTH</td>
</tr>
</tbody>
</table>

"F" Format
S = Center-to-center spacing between donor and acceptor projectiles (in) for no shields present.

S1 = distance from centerline of donor projectile to inner face of shield (in)

S2 = distance from outer face of plate to centerline of acceptor projectiles.

NZONE = Number of zones involved (see Sample Calculations).

NMIS = Number of projectiles in a row or column facing the donor source.

TWDTH = Length of the row or column of projectiles facing the donor source.

Card Type 10 (one required for each zone)

<table>
<thead>
<tr>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>FZ</td>
<td>FV</td>
<td>FM</td>
<td>XR</td>
<td>DR</td>
<td>ETA</td>
<td>THETA</td>
</tr>
</tbody>
</table>

FZ, FV and FM are parameters defined in the report. XR and DR are the casing thickness and outside diameter in inches of acceptor projectile. The value of ETA can be obtained from the second part of the report. THETA is the fragment impact angle of the face of the shield.

End of Data Indicator

A blank card is required at the end of data.

Program Listing

The PODS Program is written in FORTRAN language for the IBM 1130 Computer. Modifying it to run on any system should not be a difficult task.

The program is structured to predict the probability of detonation using either of the following:

1. Perforation of projectile casing as a failure criterion (NCASE > 0).
2. High order detonation as failure criterion (NCASE = 0).
Because of the dimensional constraints, only twenty 10-degree zones can be involved. This imposes a restriction to how close one projectile can be to another; however, the distances involved in ammunition facilities are within the limits.

As explained under "DESCRIPTION OF THE MODEL" in the main body of the report (on page 4), the computer program is presented below.
WRITE(5,2009)DD,XD
2009 FORMAT(8X,2SHOTSIDE DIAMETER(INS.)=,F10.3)
WRITE(5,2011)
2011 FORMAT(1D,32X,41HRECEPTOR PROJECTILE AND SHIELD PROPERTIES)
WRITE(5,2012)
2012 FORMAT(32X,42H)**********
WRITE(5,2013)
2013 FORMAT(50X,56HHEIGHT OF CHARGE 1: PROJECTILE(INS.)=,F10.3)
WRITE(5,2014)
2014 FORMAT(1D,50X,10HTABLE ONE*)
WRITE(5,2015)
2015 FORMAT(1D,19X,TARGET MATERIAL CONSTANT ALPHA
1BETTA GAMMA LAMDA)
WRITE(5,2016)V1,V2,V3,V4,CONST,ALPHA,BETTA,GAMMA,XLAMDA
WRITE(5,2017)
WRITE(5,2018)
2018 FORMAT(1D,50X,10HTABLE TWO*)
WRITE(5,2019)
2019 FORMAT(1D,19X,TARGET MATERIAL CONSTANT ALPHA
1BETTA GAMMA)
WRITE(5,2020)V1,V2,V3,V4,CONT1,ALPHA1,BET1A,GAMMA1
WRITE(5,2021)
WRITE(5,2022)
2021 FORMAT('1',45X,7HRESULTS)
WRITE(5,2023)
2022 FORMAT(4X,9H)************
WRITE(5,2024)
2023 FORMAT(1D,29X,24HCHARGE-TO-METAL RATIO Q=,F10.5)
WRITE(5,2025)
2024 FORMAT(30X,35HINITIAL VELOCITY OF FRAGMENTS(FPS)=,F10.3)
IF (VCASE=1),101,101,101
100 XM0=2.0*(DD-CO/V0)**2
GO TO 200
101 XMD=(DD-2*XD)**2/(DD-2*XD)
XMA=CX*(XD)**0.8333*XMD
XMO=2.0*(XMA)**0.5
200 WRITE(5,2025)XMD
2025 FORMAT(30X,30H AVERAGE FRAGMENT MASS(GRAINS)=,E12.3)
IF (VCASE=1),103,104,104
103 CALL ADLRP(FINAL,SX)
DIST=SX
GO TO 11
104 CALL ADRPT(XFINA,SUX)

COLUMN 1 10 20 30 40 50 60 70 80
DIST=5X
WRITE(5,3000)DIST,XFINA
GO TO 11
11 WRITE(5,3000)DIST,FINAL
3000 FORMAT('0',29X,17HFOR A DISTANCE OF, F8.2, 394(INS), THE PROBABILITY
1 OF DETONATION IS, E12.5)
1 CONTINUE
CALL EXIT
END
SUBROUTINE ADLRP(XPROB,DIST)
DIMENSION FZ(20),FV(20),FM(20),XR(20),DR(20),ETTA(20),THETA(20)
COMMON C1,C0,SB,SK,FA,FI
COMMON VO,BO,PLATE,XM
COMMON ALPHA,BETA,GAMMA,XLAMD,CONST
COMMON ALPH1,BETA1,GAMA1,CONT
COMMON SA,XJ,XM
PI=3.1416
WRITE(5,4000)
4000 FORMAT('0',15X,'ZONE ' FZ FV FM CASE THICKNESS
15(INS) OUTER DIAMETER(INS))
C
C **********
C
C SUBROUTINE ADLRP CALCULATES THE PROBABILITY OF DETONATION AS FUNCTIONS
C OF DISTANCE AND SHIELDING. HOWEVER, PERFORATION OF THE PROJECTILE
C CASING IS NOT CONSIDERED A FAILURE CRITERION. HIGH ORDER DETONATION
C IS THE FAILURE CRITERION CONSIDERED
C
C **********

IF (PLATE=0.0)1,2
1 READ(2,1000)S,NZONE,NMIS,TWOTH
1000 FORMAT(F10.5,2I10,F10.5)
DO 747 I=1,NZONE
747 READ(2,3001)FZ(I),FV(I),FM(I),XR(I),DR(I),ETTA(I),THETA(I)
3001 FORMAT(8F10.5)
XNBAR=0.0
DO 201 L=1,NZONE
201 XM1=XMO
NL=L
WRITE(5,4001)NL,FZ(L),FV(L),FM(L),XR(L),DR(L)
DO 202 K=1,200
FD=EXP(-0.0025*54*(1/(XM1**0.3333)))
V=VO+FV(L)*FD*ETTA(L)
Y=1-((SB**2)/((27+C1*XR(L)+V**2)))**0.3333
XM3=SK*(((PI/(4*FA))**1.5)*((SB*C1*XR(L)/(V*(Y**3))))**2)
TIX=XM3-XM1
IF (AS(C1)-0.1).203,203,107
107 IF (K-100)108,108,119
108 XM1=XM3

COLUMN 1 10 20 30 40 50 60 70 80
101 102 103 104 105 106 107 108 109
110 111 112 113 114 115 116 117 118
119 120 121 122 123 124 125 126 127
128 129 130 131 132 133 134 135 136
137 138 139 140 141 142 143 144 145
146 147 148 149 150
COLUMN 1 10 20 30 40 50 60 70 80

EAM=4*FA/P1**0.5
0 0 0
DAM=(Y1M/SK)**0.3333
0 0 0
DIAM=EAM*DAM
0 0 0
VOTE=C1*XR(L)/DIAM
0 0 0
VUT=S8*(1/(DIAM**0.5))
0 0 0
VSRT=(1/VOTE)*VUT
0 0 0
BLT=VSR-VR
0 0 0
IF (ABS(BLT)=50.)206,206,3
0 0 0
3 IF (K=1000)4,109
0 0 0
Y1=M+J*11.5
0 0 0
17 CONTINUE
0 0 0
GO TO 206
0 0 0
109 WRITE(5,1007)
0 0 0
GO TO 222
0 0 0
206 XY=XM*FM(L)/XM0
0 0 0
IF (NMIS=1)333,333,334
0 0 0
333 FALFX=(DR(L)-2*X(R(L))/(2*PI*ST)
0 0 0
GO TO 335
0 0 0
334 FALFX=(TWDH-NMIS+2*X(R(L))/(2*PI*ST)
0 0 0
401 XM1=XM1+XM2*(XY*FALFX*FL(Z)*FS)
0 0 0
DIXT=ST
0 0 0
XPRIE=1-EXP(-XM1)
0 0 0
1007 FORMAT('11',3N1,'ITERATION PROCESS DOES NOT CONVERGE')
0 0 0
4001 FORMAT('17X,12,4,X,6.3,4,X,6.3,4,X,6.3,8,X,F10.3,17X,F10.3')
0 0 0
222 CONTINUE
0 0 0
RETURN
0 0 0
END
0 0 0
SUBROUTINE AWRPT(ZPROM,DUET)
0 0 0
DIMENSION F2(20),F2(20),F2(20),XR(20),ETA(20),THETA(20)
0 0 0
COMMON C1,C0,S8,SK,FA,FI
0 0 0
COMMON V0,Q,XM,PLATE,XM
0 0 0
COMMON ALPHA,BETA,GAMMA,XLAMD,CONST
0 0 0
COMMON ALPH1,BETA1,GAMMA1,CONT1
0 0 0
COMMON SA,X,J,XMA
0 0 0
PI=3.1416
0 0 0
4000 FORMAT('10X,15X,ZONE FZ FV FM CASE THICKNESS')
0 0 0
15(S INS) OUTER DIAMETER(INS)
0 0 0
C
0 0 0
*
0 0 0
C SUBROUTINE AWRPT CALCULATES THE PROBABILITY OF DETONATION AS FUNCTIONS
0 0 0
OF DISTANCE AND SHIELDING. IT CONSIDERS PERFORATION OF THE PROJECTILE
0 0 0
CASING SUFFICIENT FOR FAILURE OF ENTIRE PROJECTILE.
0 0 0
C
0 0 0
C
0 0 0
IF (PLATE=0.0)1,1,2
0 0 0
1 READ(2,1000)SOT,1,1,1.ZONE,VMIS,TW0TH
0 0 0
<table>
<thead>
<tr>
<th>COLUMN</th>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DO 747 I=1,ZONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>747 READ(2,3001)FZ(I),FV(I),FM(I),XR(I),DR(I),ETTA(I),THETA(I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>301 FORMAT(4F10.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XNBAR=0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO 2:0 L=1,ZONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM3=XMO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRITE(5,4001)NL,FZ(L),FV(L),FM(L),XR(L),DR(L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO 7 K=1,2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JK=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUD=EXP(-0.0025SOT(1/(TM3**0.3333)))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC=V0+EXP*(FUD)*ETTA(L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3BA=VK/XJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIAI=(1.275*FA)**0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIAM=(TM3/SK)**0.3333</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIAM=RIAM*CIAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAP=1+SA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAM=CI+XR(L)+(1/(DIAM**JAP))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAM=1/(DIAM**SA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAM=FAM+EAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAM=GAAM+ARBA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF ABS(HAM)<0.05 203,203,107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107 IF (K<1500)100,100,119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108 TM3=XMO+.95=JK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 CONTINUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119 WRITE(5,1007)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO TO 201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203 XN=XM*FM(L)/XMO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF (NMIS=1)330,330,331</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330 FALFA=(DR(L)-2XR(L))/(2PI*SOT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO TO 332</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>331 FALFA=(TWOTH-NMIS2XR(L))/(2PISOT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>332 SF=FIEXP(-((TM3**0.5)/(XM120.9165)))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201 XNBAR=XNBAR+(KN*FALFA+FZ(L)*SF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUCT=SOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZPROM=1-EXP(-XNBAR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO TO 222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 2 READ(2,3002)S1,S2,ZONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 READ(2,3002)S1,S2,ZONE,NMIS,TWOTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>302 FORMAT(2F10.5,2110,F10.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SJ=S1+S2+PLATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO 747 I=1,ZONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>747 READ(2,3003)FZ(I),FV(I),FM(I),XR(I),DR(I),ETTA(I),THETA(I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>303 FORMAT(8F10.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XNBAR=0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO 401 L=1,ZONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y1=XMO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL=L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLUMN</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>WRITE(5,4001)NL,FZ(L),FV(L),FX(L),XR(L),DR(L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO 17 K=1,1500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JK=K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOD=EXP(-.0025S2(1/(Y1**0.3333)))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COD=EXP(-.0025S1(1/(Y1**0.3333)))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIN=ETTA(L)+V0+FV(L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSP=V1+COD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPP=V1**0.6667</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIN=(10.D)**CON1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUN=(PLATE+CAPP)**ALPHA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAX=(1/Y1)**BETA1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANGX1=1/COS(THETA(L)))**GAMMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XVEL=VSP*XLAMO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRI=VSP-TAME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSR=VRI+FOD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAM=(4*FA/PI)**0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIAM=(Y1/1)**0.3333</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOTE=C1*XRL(DIAM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VUT=S1*(1/(DIA**0.5))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSR=(1/VOTE)*VUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOT=VSR-VSR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF (ABS(BLOT)<0.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF (K-1000)<4.4,109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Y1=100000.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO TO 206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 CONTINUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIN=(10.D)**CONST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUN=(PLATE+CAPP)**ALPHA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAX=(1/Y1)**BETA1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANGX1=1/COS(THETA(L)))**GAMMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XVEL=VSP*XLAMO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRI=VSP-TAME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSR=VRI+FOD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAM=(4*FA/PI)**0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIAM=(Y1/1)**0.3333</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOTE=C1*XRL(DIAM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VUT=S1*(1/(DIA**0.5))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSR=(1/VOTE)*VUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOT=VSR-VSR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF (ABS(BLOT)<0.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF (K-1000)<4.4,109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 CONTINUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO TO 206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109 WRITE(5,1007)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO TO 222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206 XY=XM+FM(L)/XMO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF (NMIS=1)=333,333,334</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333 FALFX=(DR(L)-2XRL)/((2PI)+SJ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO TO 335</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>334 FALFX=(TWDTH-NMIS=2XRL)/((2PI)+SJ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO TO 335</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>335 FS=FI/EXP(-(Y10.5)/(XMA0.9165))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401 XBAR=XBAR+(XY=FALFX+FZ(L)*FS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUCT=SJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZPRED=1-EXP-(X*M3AR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1007 FORMAT('1*3H ITERATION PROCESS DOES NOT CONVERGE')</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COMPUTATION OF PROBABILITY OF DETONATION AS FUNCTIONS OF DISTANCE AND SHIELDING
M133 PROJECTILES - NO SHIELDS - H.C. DETONATION

PARAMETER VALUES

SHAPE FACTOR K (GRAINS/ CU. INS) = 660.000 AVERAGE MASS COEFFICIENT K0 = 4500.000
SENSITIVITY PARAMETER b = 2140.000 PROTECTION COEFFICIENT K1 = 0.400
AREA FACTOR F = 0.500 IMPACT ANGLE FACTOR F1 = 0.200
CONSTANT J (SENSITIVITY) = 1820.740 CONSTANT K (SENS) = 9.670 CONSTANT (MOTT'S EQN) = 0.283

DONOR PROPERTIES

GURNEY'S CONSTANT V (FPS) = 8800.00 CHARGE DENSITY (LBS/ CU. INS) = 0.058
WEIGHT OF METAL (GRAINS) = 35000.007 DENSITY OF METAL (LBS/ CU. IN) = 0.283
OUTSIDE DIAMETER (INS) = 3.000 AVG. CASING THICKNESS (INS) = 0.200

RECEPTOR PROJECTILE AND SHIELD PROPERTIES

HEIGHT OF CHARGE IN PROJECTILE (INS) = 7.200

TABLE ONE

<table>
<thead>
<tr>
<th>TARGET MATERIAL</th>
<th>CONSTANT</th>
<th>ALPHA</th>
<th>BETTA</th>
<th>GAMMA</th>
<th>LAMDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO SHIELDS</td>
<td>0.000E 00</td>
<td>0.000E 00</td>
<td>0.000E 00</td>
<td>0.000E 00</td>
<td>0.000E 00</td>
</tr>
</tbody>
</table>

* NOTE THAT ANY NEGATIVE SIGNS THAT SHOULD APPEAR IN THE TABLE HAVE BEEN/ OR SHOULD BE TAKEN CARE OF IN THE PROGRAM.

TABLE TWO

<table>
<thead>
<tr>
<th>TARGET MATERIAL</th>
<th>CONSTANT</th>
<th>ALPHA</th>
<th>BETTA</th>
<th>GAMMA</th>
<th>LAMDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO SHIELDS</td>
<td>0.000E 00</td>
<td>0.000E 00</td>
<td>0.000E 00</td>
<td>0.000E 00</td>
<td>0.000E 00</td>
</tr>
</tbody>
</table>

* NOTE THAT ANY NEGATIVE SIGNS THAT SHOULD APPEAR IN THE TABLE HAVE BEEN/ OR SHOULD BE TAKEN CARE OF IN THE PROGRAM.
RESULTS

CHARGE-TO-METAL RATIO Q = 0.38160
INITIAL VELOCITY OF FRAGMENTS (FPS) = 4982.725
AVERAGE FRAGMENT MASS (GRAINS) = 0.145E 02

<table>
<thead>
<tr>
<th>ZONE</th>
<th>FZ</th>
<th>FV</th>
<th>F4</th>
<th>CASE THICKNESS (INS)</th>
<th>OUTER DIAMETER (INS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.570</td>
<td>0.862</td>
<td>0.193</td>
<td>0.290</td>
<td>1.910</td>
</tr>
<tr>
<td>2</td>
<td>1.000</td>
<td>0.967</td>
<td>0.377</td>
<td>0.290</td>
<td>3.040</td>
</tr>
<tr>
<td>3</td>
<td>0.430</td>
<td>0.967</td>
<td>0.377</td>
<td>0.290</td>
<td>3.080</td>
</tr>
</tbody>
</table>

FOR A DISTANCE OF 21.08 (INS), THE PROBABILITY OF DETONATION IS 0.61140E-01
COMPUTATION OF PROBABILITY OF DETONATION AS FUNCTIONS OF DISTANCE AND SHIELDING
155MM PROJECTILES WITH 0.5IN ST'L PLT. H.O. DETON.

PARAMETER VALUES

SHAPE FACTOR K(GRAINS/CU.INS) = 660.000
SENSITIVITY PARAMETER B = 2140.000
AREA FACTOR FA = 0.500
CONSTANT J(SENSITIVITY) = 1820.740
AVERAGE MASS COEFFICIENT K0 = 4500.000
PROTECTION COEFFICIENT K1 = 0.800
IMPACT ANGLE FACTOR FI = 0.200
CONSTANT A(SENSY) = 0.610
CONSTANT B(MOTT'S EQN.) = 0.283

DONOR PROPERTIES

GURNEY'S CONSTANT VC(FPS) = 8800.00
WEIGHT OF METAL(GRAINS) = 542500.126
OUTSIDE DIAMETER(INS.) = 6.090
CHARGE DENSITY(URS/CU.INS) = 0.058
DENSITY OF METAL(URS/CU.IN) = 0.283
AVG. CASING THICKNESS(INS) = 0.680

RECEPTOR PROJECTILE AND SHIELD PROPERTIES

HEIGHT OF CHARGE IN PROJECTILE(INS) = 17.600

TABLE ONE*

<table>
<thead>
<tr>
<th>TARGET MATERIAL</th>
<th>CONSTANT</th>
<th>ALPHA</th>
<th>BETTA</th>
<th>GAMMA</th>
<th>LAMDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST'L PLT(0.5INS)</td>
<td>0.639E 01</td>
<td>0.889E 00</td>
<td>0.945E 00</td>
<td>0.12620E 01</td>
<td>0.190E-01</td>
</tr>
</tbody>
</table>

* NOTE THAT ANY NEGATIVE SIGNS THAT SHOULD APPEAR IN THE TABLE HAVE BEEN/OR SHOULD BE TAKEN CARE OF IN THE PROGRAM.

TABLE TWO*

<table>
<thead>
<tr>
<th>TARGET MATERIAL</th>
<th>CONSTANT</th>
<th>ALPHA</th>
<th>BETTA</th>
<th>GAMMA</th>
<th>LAMDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST'L PLT(0.5INS)</td>
<td>0.652E 01</td>
<td>0.906E 00</td>
<td>0.963E 00</td>
<td>0.128E 01</td>
<td></td>
</tr>
</tbody>
</table>

* NOTE THAT ANY NEGATIVE SIGNS THAT SHOULD APPEAR IN THE TABLE HAVE BEEN/OR SHOULD BE TAKEN CARE OF IN THE PROGRAM.
RESULTS

**

CHARGE-TO-METAL RATIO \(z = 0.31160 \)

**INITIAL VELOCITY OF FRAGMENTS (FPS) = 4569.200 **

**AVERAGE FRAGMENT MASS (GRAINS) = 0.719E 02 **

<table>
<thead>
<tr>
<th>ZONE</th>
<th>FZ</th>
<th>FW</th>
<th>FM</th>
<th>CASE THICKNESS (INS)</th>
<th>OUTER DIAMETER (INS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.070</td>
<td>0.732</td>
<td>0.070</td>
<td>0.680</td>
<td>4.090</td>
</tr>
<tr>
<td>2</td>
<td>1.000</td>
<td>0.962</td>
<td>0.140</td>
<td>0.680</td>
<td>5.450</td>
</tr>
<tr>
<td>3</td>
<td>1.000</td>
<td>0.967</td>
<td>0.377</td>
<td>0.680</td>
<td>6.090</td>
</tr>
<tr>
<td>4</td>
<td>1.000</td>
<td>0.967</td>
<td>0.377</td>
<td>0.820</td>
<td>6.000</td>
</tr>
<tr>
<td>5</td>
<td>0.870</td>
<td>0.862</td>
<td>0.180</td>
<td>1.360</td>
<td>6.540</td>
</tr>
</tbody>
</table>

FOR A DISTANCE OF 24.10 (INS), THE PROBABILITY OF DETONATION IS 0.000000 00
COMPUTATION OF PROBABILITY OF DETONATION AS FUNCTIONS OF DISTANCE AND SHIELDING
CALCULATION OF PROBABILITY FOR A GROUP OF 16 105M (.41) PROJECTILES TEST CALCS.

PARAMETER VALUES

SHAPE FACTOR K(GRAINS/CU.INS)= 660.000 AVERAGE MASS COEFFICIENT K0= 4500.000
SENSITIVITY PARAMETER B= 2140.000 PROTECTION COEFFICIENT K1= 0.830
AREA FACTOR FA= 0.500 IMPACT ANGLE FACTOR F1= 0.200
CONSTANT J(SENSIVITY)= 1820.740 CONSTANT A(SENSTY)= 0.610 CONSTANT B(MOTT'S EQU.)= 0.283

DONOR PROPERTIES

GURNEY'S CONSTANT VC(FPS)= 8200.00 CHARGE DENSITY(LBS/CU.INS)= 0.058
WEIGHT OF METAL(GRAINS)=892500.126 DENSITY OF METAL(LBS/CU.INS)= 0.283
OUTSIDE DIAMETER(INS.)= 4.133 AVG.CASING THICKNESS(INS.)= 0.489

RECEPTOR PROJECTILE AND SHIELD PROPERTIES

HEIGHT OF CHARGE IN PROJECTILE(INS)= 11.800

TABLE ONE*

<table>
<thead>
<tr>
<th>TARGET MATERIAL</th>
<th>CONSTANT</th>
<th>ALPHA</th>
<th>BETA</th>
<th>GAMMA</th>
<th>LAMDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>0.000E 00</td>
<td>0.000E 00</td>
<td>0.000E 00</td>
<td>0.00000E 00</td>
<td>0.000E 00</td>
</tr>
</tbody>
</table>

* NOTE THAT ANY NEGATIVE SIGNS THAT SHOULD APPEAR IN THE TABLE HAVE BEEN OR SHOULD BE TAKEN CARE OF IN THE PROGRAM.

TABLE TWO*

<table>
<thead>
<tr>
<th>TARGET MATERIAL</th>
<th>CONSTANT</th>
<th>ALPHA</th>
<th>BETA</th>
<th>GAMMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>0.000E 00</td>
<td>0.000E 00</td>
<td>0.000E 00</td>
<td>0.000E 00</td>
</tr>
</tbody>
</table>

* NOTE THAT ANY NEGATIVE SIGNS THAT SHOULD APPEAR IN THE TABLE HAVE BEEN OR SHOULD BE TAKEN CARE OF IN THE PROGRAM.
RESULTS

CHARGE-TO-METAL RATIO 2 = 0.28621
INITIAL VELOCITY OF FRAGMENTS (FPS) = 4403.375
AVERAGE FRAGMENT MASS (GRAINS) = 0.356E 02

<table>
<thead>
<tr>
<th>ZONE</th>
<th>FZ</th>
<th>FV</th>
<th>FM</th>
<th>CASE THICKNESS (INS)</th>
<th>OUTER DIAMETER (INS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.357</td>
<td>0.886</td>
<td>0.206</td>
<td>0.439</td>
<td>4.133</td>
</tr>
</tbody>
</table>

FOR A DISTANCE OF 360.00 (INS), THE PROBABILITY OF DETONATION IS 0.20645E 00
APPENDIX C
DIFFERENT PROJECTILE CONFIGURATIONS

Rotational symmetry at the source of explosion cannot be assumed when a group of projectiles are in a configuration other than the "square matrix" arrangement. Assuming that all required information is available, the following steps would help in predicting the probability of detonation for grouped projectiles:

1. Determine the fragment mass distribution in both Regions 1 and 2 (fig. 1).
2. Determine the fragment velocities in the same regions also. These distributions are taken as functions of the azimuthal angle only.
3. Determine the same distributions listed in 1. and 2. above as functions of the polar angle (fig. 2).
4. Resolve the distributions for each region to obtain parameters FV and FM which are now expressed as functions of two angles:

\[FV = f_1(\phi, \theta) \]
\[FM = f_2(\phi, \theta) \]
where ϕ and θ are polar and azimuthal angles, respectively.

5. Determine C_A, the fraction of metal weight involved in fragment distribution.

6. With these modifications, the overall model can now be used to predict probability of detonation for a group of projectiles in any configuration.

It should be noted that determination of the distributions mentioned in 1. and 2. above can only be achieved through field tests.
DISTRIBUTION LIST

Army Armament Research and Development Command
ATTN: DRDAR-CG
DRDAR-LC 1
DRDAR-LCM 1
DRDAR-LCM-S 12
DRDAR-SF 1
DRDAR-TSS 5
DRDAR-LCU-P 1
Dover, New Jersey 07801

Army Materiel Development and Readiness Command
ATTN: DRCDE
DRCIS-E 1
DRCIS-E 1
DRCPP-I 1
DRCIS-I 1
DRCG-S 1
5001 Eisenhower Avenue
Alexandria, Virginia 22333

USDRC Installations & Service Agency
ATTN: DRCIS-RI-IU
DRCIS-RI-IU 1
DRCIS-RI-IC 1
Rock Island, Illinois 61299

Army Armament Materiel Readiness Command
ATTN: DRSAR-LC
DRSAR-ASF 2
DRSAR-SF 3
DRSAR-LEP-L 1
Rock Island, Illinois 61299

Commander/Director
Chemical Systems Laboratory
Army Armament Research and Development Command
ATTN: DRDAR-CLJ-L
DRDAR-CLJ-PA 1
APG, Edgewood Area, MD 21010
Chairman
Department of Defense Explosives Safety Board
Hoffman Building 1, Room 856C
2461 Eisenhower Avenue
Alexandria, Virginia 22331

Project Manager for Munitions Production
Base Modernization and Expansion
ATTN: DRCPMLM-PBM-LA
 DRCPDM-PBM-T-SF
 DRCPDM-PBM-EP
Building 171
Dover, New Jersey 07801

Director
Ballistics Research Laboratory
U.S. Army Armament Research and Development Command
ATTN: DRDAR-BLE (C. Kingery)
 DRDAR-TSB-S
Aberdeen Proving Ground, MD 21005

Administrator
Defense Technical Information Center
ATTN: Accessions Division
Cameron Station
Alexandria, VA 22314

Commander
U.S. Army Construction Engineering Research Laboratory
ATTN: DERL-ER
Champaign, Illinois 61820

Office, Chief of Engineers
ATTN: DAEN-MCZ-E
Washington, D.C. 20314

U.S. Army Engineer District, Huntsville
ATTN: Construction Division-HAD-ED
P.O. Box 1600, West Station
Huntsville, Alabama 35807

Director
U.S. Army Materiel Systems Analysis Activity
ATTN: DRXSY-MP
Aberdeen Proving Ground, MD 21005
Commander
Indiana Army Ammunition Plant
ATTN: SARIN-OR
 SARIN-SF
Charlestown, Indiana 47111

2

1

Commander
Kansas Army Ammunition Plant
ATTN: SARKA-CE
Parsons, Kansas 67537

1

Commander
Lone Star Army Ammunition Plant
ATTN: SARLS-IE
Texarkana, Texas 57701

1

Commander
Milan Army Ammunition Plant
ATTN: SARMI-S
Milan, Tennessee 38358

1

Commander
Radford Army Ammunition Plant
ATTN: SARRA-IE
Radford, Virginia 24141

2

Commander
Badger Army Ammunition Plant
ATTN: SARBA
Baraboo, Wisconsin 53913

2

Commander
Holston Army Ammunition Plant
ATTN: SARHO-E
Kingsport, Tennessee 37662

1

Commander
Iowa Army Ammunition Plant
ATTN: SARIO-A
Middletown, Iowa 52638

1

Chief
Benet Weapons Laboratory, LCWSL
U.S. Army Armament Research and Development Command
ATTN: DRDAR-LCB-TL
Watervliet, NY 12189

1
No. of Copies

Commander
Joliet Army Ammunition Plant
ATTN: SARJO-SS-E
Joliet, Illinois 60436

Commander
Longhorn Army Ammunition Plant
ATTN: SARLO-0
Marshall, Texas 75607

Commander
Louisiana Army Ammunition Plant
ATTN: SARLA-S
Shreveport, Louisiana 71102

Commander
Newport Army Ammunition Plant
ATTN: SARNE-S
Milan, Tennessee 38358

Commander
Pine Bluff Arsenal
ATTN: SARPB-ETA
Pine Bluff, Arkansas 71601

Commander
Sunflower Army Ammunition Plant
ATTN: SARSU-0
Lawrence, Kansas 66044

Commander
Volunteer Army Ammunition Plant
ATTN: SARVO-T
Chattanooga, Tennessee 37401

Southwest Research Institute
6220 Culebra Road
ATTN: E.P. Bergmann
San Antonio, Texas 78291

Director
U.S. Army TRADOC Systems
Analysis Activity
ATTN: ATAA-SL
White Sands Missile Range, NM 88002