NRC Technical Summary Report #2335

L∞-UPPER BOUND OF L²-PROJECTIONS
ONTO SPLINES AT A GEOMETRIC MESH

Rong-qing Jia

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53706

February 1982

(Received November 5, 1981)
ABSTRACT

For an integer \(k > 1 \) and a geometric mesh \((q^i)_{i=0}^{\infty}\) with \(q \in (0,\infty) \), let

\[
M_{i,k}(x) := k[q_i, \ldots, q_{i+k}]^{-1}(x)_k^{-1}
\]

\[
N_{i,k}(x) := (q_{i+k} - q_i)M_{i,k}(x)/k
\]

and let \(A_k(q) \) be the Gram matrix \((\int M_{i,k}^* N_{j,k})_{i,j} \). It is known that \(A_k(q)^{-1} \) is bounded independent of \(q \). In this paper it is shown that \(A_k(q)^{-1} \) is strictly decreasing for \(q \) in \([1,\infty)\). In particular, the sharp upper bound and lower bound for \(A_k(q)^{-1} \) are obtained:

\[
2k-1 < A_k(q)^{-1} \leq \frac{1}{2}(\sum_{j \in \mathbb{Z}} (1+2j)^{-2k})^{-1}
\]

for all \(q \in (0,\infty) \).

AMS (MOS) Subject Classification: 41A15

Key Words: splines, geometric mesh, least-squares approximation, Gram matrix, monotonicity, sharp upper bound.

Work Unit Number 3 - Numerical Analysis and Computer Science

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
SIGNIFICANCE AND EXPLANATION

Least-squares approximation by polynomial splines is a very effective means of approximation, particularly when the knot sequence can be chosen suitably nonuniform. The stability of this process can be linked to the norm of the inverse of the Gram matrix of a B-spline basis. For the special case when the knot sequence is geometric it is known that the norm of the inverse of that Gramian is bounded independently of the mesh ratio. Also, the sharp lower bound for the inverse of that Gramian is known.

In the present report, we continue these investigations and obtain, in particular, the sharp upper bound of the inverse of the Gram matrix.
1. Introduction

Let $x := (x_i)_{i=-\infty}^{\infty}$ be a strictly increasing bi-infinite sequence with $x_{i+1} := \lim_{i+1} x_i$
and $I := (x_{-\infty}, x_{\infty})$. Let further

$S := \mathcal{S}_{k}(I) := \{ f \in C^k(I) : f(\cdot, x_{i+1}) \text{ is a polynomial of degree } \leq k \}$

be the normed linear space of bounded polynomial splines of order k with breakpoint
sequence x and norm $\| f \|_S := \sup_{x \in I} |f(x)|$. We shall be concerned with P_S, the orthogonal
projector onto S with respect to the ordinary inner product

$$(f, g) := \int_I f(x)g(x)dx,$$

but restricted to $L_2(I)$. We want to bound its norm

$$\| P_S \| := \sup_{f \in L_2(I)} \| P_S f \| / \| f \|_2.$$

In 1973, de Boor raised the following

Conjecture [1].

$$\sup_{k} \| P_S \| < \text{const} \cdot \varepsilon.$$

This conjecture has been verified for $k = 1, 2, 3, 4$ (see de Boor [3] and the references cited there). de Boor [2] also obtained a bound of P_S in terms of a global mesh ratio.

In general, however, this conjecture seems hard to solve. For geometric mesh x, Höllig, K. [8] recently proved the boundedness of P_S. Later on, Feng, Y. Y. and Kozek, J. [6] reproved this result. Before recalling some results of theirs, we need to introduce some notations. For the mesh $x := (x_i)_{i=-\infty}^{\infty}$, let

$$N_{i,k}(x) := \left\{ t \in \mathbb{R} : x_{i+k-1} \leq t \leq x_i \right\}$$

$$N_{i,k}^-(x) := \left\{ t \in \mathbb{R} : x_i \leq t \leq x_{i+k} \right\}$$

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
Set
\[A_k(i,j) := \int_{M_{i,k}} M_{j,k} \quad \text{for } i,j \in \mathbb{Z}. \]

Let \(A_k \in \mathbb{R}^{\mathbb{Z} \times \mathbb{Z}} \) be the biinfinite matrix given by the rule:
\[(i,j) \mapsto A_k(i,j) \quad \text{for } (i,j) \in \mathbb{Z} \times \mathbb{Z}. \]

It was shown by de Boor [1] that
\[D_k^{-2} I_{A_k^{-1} L_e} \leq I_{P_S} I_{L_e} < I_{A_k^{-1} L_e}, \]
where \(D_k \) is a constant depending only on \(k \). Thus bounding \(P_S \) is equivalent to bounding \(A_k^{-1} \).

Let us restrict ourselves now to a particular case where \(x \) is a geometric mesh:
\[x := (q_i)_{i=-\infty}^{\infty} \quad \text{for some } q \in (1,\infty) \quad \text{(note that the case } q \in (0,1) \text{ is symmetric to the case } q \in (1,\infty); \text{ see [6] and [8]). Spline interpolation at a geometric mesh was first investigated by C. A. Micchelli [9], who based his argument on the properties of the so-called generalized Euler-Frobenius polynomials. Later on, Y. Y. Feng and J. Kozak [6] developed such a consideration. Earlier, and in a different way, K. Höllig [8] made a more precise investigation into the boundedness of \(L_2 \)-projections onto splines on a geometric mesh. In particular, he got the following elegant result (see Theorem 5 in [8]):

Theorem A. For a geometric mesh \(x := (q_i)_{i=-\infty}^{\infty} \) with \(q \in (0,\infty) \), let \(A_k(q) \) be the biinfinite matrix \((\int_{M_{i,k}} M_{j,k})_{i,j} \). Then
\[\|A_k(q)^{-1}\|_e = \|A_k(q)\|^{-1}, \]
where
\[A_k(q) := 2^{k-1} k \sum_{v=1}^{k-1} \left(\frac{q^{v+1}}{q^v} \right) \sum_{j \in \mathbb{Z}} \left(\frac{q^{v+1}}{q^v} \right)^j. \]

with \(t := \log q \). Moreover,
\[\lim_{q \to 1} A_k(q) = \left(\frac{2}{e^2} \right)^{k+1} \left(\sum_{j \in \mathbb{Z}} (1+2j)^{-2k} \right) \]
and
\[\lim_{q \to \infty} A_k(q) = \frac{1}{2k-1}. \]

Based on numerical evidence, de Boor raised the following
Conjecture. \(Q_k(q) \) is a monotone increasing function on \([1, \omega]\).

This conjecture was verified for \(k < q \) by Y. Y. Feng and J. Kozak [7]. They also showed that \(Q_k(q) < \frac{1}{2^{k-1}} \) in the same paper.

The purpose of this paper is to confirm the above conjecture. Thus we have

\[
2k-1 < \frac{4}{2} \left(2k \sum_{j \geq 0} (1+2j)^{-2k} \right) - 1.
\]

Note that \(Q_1(q) \equiv 1 \) and that \(Q_2(q) \equiv \frac{1}{3} \) in terms of a straightforward calculation.

Hence we can restrict ourselves to the case \(k > 3 \) from now on.

In section 2, we will give an alternative proof of theorem A. Section 3 and 4 will be devoted to proving the monotonicity of \(Q_k(q) \) for \(q \in [1, 20] \) and \(q \in [20, \omega] \), respectively.

2. The bound for \(A_k(q)^{-1} \).

As before, \(x = \frac{1}{q} \) is a geometric mesh with \(q \in (1, \omega) \) and \(t = \log q \). Consider

\[
\phi_0(x) := [0, 1, \ldots, (2k-1)] \frac{x}{q^{k+1}} \text{ for } x \in [1, q). \]

It is easy to verify that

\[
(6) \quad q^{\phi_0(x)} + q^{\phi_0(1)} = [0, 1, \ldots, (2k-1)] [z(z-1) \cdots (z-2k+1)] =
\]

\[
0 \text{ for } z = 1, \ldots, 2k-2
\]

\[
\quad = \text{1 for } z = 2k-1.
\]

Since \(\phi_0 \) is a polynomial of degree \(2k-1 \), \(\phi_0^{(2k-1)} \) is constant in \([1, q]\). Hence (6) yields that

\[
(7) \quad \phi_0^{(2k-1)}(x) = \frac{1}{q^{k+1} 2^{k-1}} \text{ for } x \in [1, q). \]

Now we extend the domain of \(\phi_0 \) to \((0, \omega)\) as follows:

\[
\phi(x) := (-q^k)^m \phi_0(q^{-m} x) \text{ for } q^{-m} x < q^{-m+1}, m \in \mathbb{Z}. \]

From (6) we assert that \(\phi \) is \(2k \)-periodic and that

\[
(8) \quad \phi(q^m) = (-q^k)^m \phi_0(1), m \in \mathbb{Z}. \]
It follows that
\[
[x_0, x_1, \ldots, x_{m-1}, x_m] \phi - [x_0, \ldots, x_{m-1}] \phi = \frac{x_m - x_0}{x_m - x_0} = \frac{-q^{m+1}}{q^m - 1} [x_0, \ldots, x_{m-1}] \phi.
\]

By induction on \(m \), we can obtain
\[
[x_0, x_1, \ldots, x_k] \phi = (-1)^k \left(\prod_{m=1}^{k} \frac{q^m + 1}{q^m} \right) \phi_0(1),
\]
From (8) we deduce that
\[
[x_i, \ldots, x_{i+k}] \phi = (-1)^i [x_0, \ldots, x_k] \phi.
\]

By Peano's theorem (see [4])
\[
[x_i, \ldots, x_{i+k}] \phi = \int M_{i,k}(x) \phi^{(k)}(x) \, dx.
\]
Now we get
\[
\int M_{i,k}(x) \phi^{(k)}(x) / \kappa! \, dx = (-1)^i (-1)^k \left(\prod_{m=1}^{k} \frac{q^m + 1}{q^m} \right) \phi_0(1).
\]

Obviously, \(\phi^{(k)}/\kappa! \in \mathcal{B}_k \), hence \(\phi^{(k)}/\kappa! \) may be expanded in a B-spline series:
\[
\phi^{(k)}/\kappa! = \sum_{j \in \mathbb{Z}} a_j N_{j,k}.
\]

However, \(\phi^{(k)} (qz) = \phi^{(k)} (z) \). Thus
\[
\sum_{j \in \mathbb{Z}} a_j N_{j,k}(x) = -\sum_{j \in \mathbb{Z}} a_j N_{j,k}(qz) = -\sum_{j \in \mathbb{Z}^+} a_j N_{j,k}(x).
\]

By the uniqueness of B-spline expansion we assert that
\[
a_j = a_{-j}, \quad j \in \mathbb{Z}.
\]

Thus we can write
\[
\phi^{(k)}/\kappa! = c \sum_{j \in \mathbb{Z}^+} a_j N_{j,k},
\]
where \(c \) is a constant to be determined. Now (11) and (12) together give
\[
\sum_{j \in \mathbb{Z}} \left((-1)^j \int M_{i,k}(x) N_{j,k}(x) \, dx = (-1)^i (-1)^k \left(\prod_{m=1}^{k} \frac{q^m + 1}{q^m} \right) \phi_0(1) \right.
\]

Let
\[
Q_k(q) := c \sum_{j \in \mathbb{Z}^+} (-1)^j \left(\prod_{m=1}^{k} \frac{q^m + 1}{q^m} \right) \phi_0(1).
\]
Then (see de Boor, C., S. Friedland and A. Pinkus [5])

$$I_h(q)^{-1} I_m = [Q_h(q)]^{-1}.$$

It remains to determine C. Differentiate (12) $k - 1$ times:

$$\phi(2k-1)/k! = C(\mathcal{E}(-1)^j N_{j,k}(k-1)).$$

One the one hand,

$$\phi(2k-1)(x)/k! = \frac{1}{k!} \cdot \frac{1}{q^k + q^{2k-1}} \text{ for } x \in (1,q) .$$

On the other hand (see [4]),

$$\left(\mathcal{E}(-1)^j N_{j,k}(k-1)\right)(x) = 2 * (k-1)! \cdot \frac{1}{q^{k-1} + 1} \cdot m+1 \text{ for } x \in (1,q).$$

Thus, for $x \in (1,q)$

$$\left(\mathcal{E}(-1)^j N_{j,k}(k-1)\right)(x) = 2 * (k-1)! \cdot \frac{1}{q^{k-1} + 1} \cdot \frac{k-1 m + 1}{m+1} .$$

From the above calculation we get

$$C^{-1} = k! \cdot (q^k + q^{2k-1}) \cdot 2 * (k-1)! \cdot \frac{1}{q^{k-1} + 1} \cdot \frac{k-1 m + 1}{m+1} .$$

(15)

$$= 2k! \cdot (k-1)! \cdot \frac{k-1 m + 1}{m+1} .$$

Finally, (14) and (15) yield that

$$\Phi(q) = (-1)^k \cdot 2 * k! \cdot (k-1)! \cdot \frac{k-1 m + 1}{m+1} \cdot \frac{k-1 m + 1}{m+1} \cdot \Phi(0)(1)$$

(16)

$$= (-1)^k \cdot 2 * k! \cdot (k-1)! \cdot \frac{k-1 m + 1}{m+1} \cdot \frac{k-1 m + 1}{m+1} \cdot q^k \cdot (0, 1, \ldots, 2k-1) \cdot \frac{1}{q^k + q^m} .$$

We follow the procedure in [9] and use a well-known formula for the divided difference to get

$$(-1)^k q^k [0, 1, \ldots, 2k-1] \cdot \frac{1}{q^m + 1} = \frac{(-1)^k q^k}{2k} \cdot \left[\sum_{j=0}^{2k-1} \int_{r_j} \int_{r_j} \frac{2k-1}{m} (z-m) \right] \cdot (e^{10gq_{-q}}).$$
where \(C_R \) and \(C_{r_j} \) stand for positively oriented circles with centers at 0 and \(j \) and radius \(R \) and \(r_j \) where \(R \) sufficiently large and \(r_j \) sufficiently small, \(j = 0, 1, \ldots, 2k-1 \).

Making \(R \to \infty, r_j \to 0 \) \((j = 0, 1, \ldots, 2k-1) \) in (17) and using the residue theorem we get

\[
(-1)^k q^{[0,1,\ldots,2k-1]} \frac{1}{q^{\cdot q}} = (-1)^k q^{\cdot q} \sum_{j \in \{x+2\pi j\}} \frac{1}{
\quad 2k-1 \quad \Pi (x+2\pi j) (x+2\pi j - \log q_k)
\vphantom{\Pi (x+2\pi j) (x+2\pi j - \log q_k)}\vphantom{\Pi (x+2\pi j) (x+2\pi j - \log q_k)}
\]

Thus (2) is proved by substituting the above equality into (16). Then it is straightforward to verify (3). As to (4), we have

\[
\lim_{q \to \infty} Q_k(q) = (-1)^k \cdot 2k! \cdot (k-1)!/(2k-1)! = \lim_{q \to \infty} \sum_{k=0}^{2k-1} (-1)^{k+1} \frac{1}{q^{\cdot q}}
\]

This ends the proof of Theorem A.

3. The monotonicity of \(Q_k(q) \) for \(q \in (1, 20) \).

Recall \(t = \log q \). Let

\[
f_k(t) := t^{2k-1} \cdot \frac{k!}{(k-1)!} \cdot \frac{\Pi \frac{e^{t+1}}{e^{t-1}} \cdot \Pi \frac{e^{t+1}}{e^{t-1}} \cdot \frac{1}{\Pi \frac{e^{t+1}}{e^{t-1}}}}{\Pi \frac{e^{t+1}}{e^{t-1}} \cdot \Pi \frac{e^{t+1}}{e^{t-1}} \cdot \frac{1}{\Pi \frac{e^{t+1}}{e^{t-1}}}}
\]

Then \(Q_k(e^t) = 2 \cdot k!(k-1)!f_k(t) \). Consider \(f_k(t)/f_k(t) \). We have
(18) \[
\frac{f_k'(t)}{f_k(t)} = \sum_{j=0}^{k-1} \frac{1}{v_{k,j}(t)} u_{k,j}(t) f_{k,j}(t),
\]
where
\[
u_{k,j}(t) := \frac{1}{v_{k,j}(t)} \left(\sum_{v=1}^{v_j} \frac{1}{(v + 2v_j)^2 + (vt)^2} \right)^{j-1}
\]

(19) \[
f_{k,j}(t) := 2k-1 + \sum_{v=1}^{v_j} \frac{v \tau}{v + 2v_j} (v \tau - v_{k,j}(t) - \sum_{v=1}^{v_j} \frac{2(v \tau)^2}{(v + 2v_j)^2 + (vt)^2}).
\]

If we can show that \(f_k'(t)/f_k(t) \geq 0\) for \(t \in [0,3]\), then \(Q_k'(q) \geq 0\) for \(q \in (1,20]\), because \(e^q > 20\). For this it suffices to show \(f_{k,j}(t) \geq 0\), since \(f_{k,j}(t) \geq f_{k,0}(t)\) for \(j = 1,2,...\) from (19). Let us first make the following observation.

Proposition 1. \(\frac{e^x}{x^2} > \frac{2xe^x}{x^2 + cx^2} \) for \(x \in (0,\infty)\) and \(c \in [1,5/4]\).

Proof. Each of the following inequalities is equivalent to proposition 1:
\[
e^x - 1 > \left(1 + c^x/n^x\right)2xe^x,
\]
\[
\sum_{n=0}^{\infty} x^n/(n+1)! > \left(1 + c^x/n^x\right)\left(\sum_{n=0}^{\infty} x^n/n!
ight),
\]
\[
\sum_{n=2}^{\infty} x^n/(n+1)! > \sum_{n=2}^{\infty} \frac{1}{n!} + \frac{c^x}{x} \frac{1}{x^2/(n-2)!} x^n.
\]

However, an induction argument on \(n\) shows that
\[
2^n/(n+1)! > \frac{1}{n!} + \frac{c^x}{x^2} \frac{1}{x^2/(n-2)!} x^n \]
for \(n \geq 2\) and \(c \in [1,5/4]\).

Therefore proposition 1 is true.

Proposition 2. \(\frac{e^x}{x^2 + (4x/3)^2} \geq \frac{y^2}{x^2 + (5x/4)^2} + \frac{y^2}{x^2 + (5x/3)^2} \).

Proof.
\[
2(x^2 + 25x^2/9)(x^2 + 25x^2/16) = 2x^4 + 1250x^2/144 + 625x^2/72
\]
\[
> 2x^4 + 1137x^2/144 + 625x^2/81 = (x^2 + 16x^2/9)((x^2 + 25x^2/9) + (x^2 + 25x^2/16)).
\]
Multiplying the above inequality by \(\frac{x^2}{(x^2 + \frac{16\, x^2}{9})(x^2 + \frac{25\, x^2}{16})(x^2 + \frac{25\, x^2}{9})} \), we obtain proposition 3.

Proposition 3. \(f_{x+1,0}(t) > f_{x,0}(t) \) for \(t > 0 \) and \(k > 3 \).

Proof. We shall argue by induction on \(k \). For \(k = 3 \), we have

\[
f_{4,0}(t) - f_{3,0}(t) = \frac{2x^2}{2 + (5t/4)} - \frac{2x^2}{2 + 3t} < 0
\]

Then \(\frac{x}{4} = 3t \). Then proposition 1 and 2 yield that

\[
f_{4,0}(t) - f_{3,0}(t) > \left(\frac{\frac{x}{4}}{2 + (5t/4)} - \frac{2x^2}{2 + 3t} \right) > 0
\]

Suppose now that \(k > 4 \). Then \(\frac{k+1}{k} < \frac{3}{4} \). We have

\[
f_{k+1,0}(t) - f_{k,0}(t) = \frac{2x^2}{2 + [(k+1)t]^2} - \frac{2x^2}{2 + (kt+e)^2} - \frac{2(k+1)t}{2} - \frac{2(k+1)t}{e^{2(k+1)t-1}}
\]

according to proposition 1. Thus proposition 3 is proved.

Consequently, \(f_{k,j}(t) > f_{3,0}(t) \) for all \(k > 3 \) and \(j > 0 \). The remaining task of this section is to elaborate the nonnegativity of \(f_{3,0}(t) \). For this we need some estimates.

Proposition 4. Let \(h(x) = \frac{(x^2 - \frac{1}{x})}{a^{x+1}} \). Then \(h'(x) < 0 \) for \(x > 0 \).

Proof. \(h(x) = \frac{a^{x-1}}{2x(e^x+1)} \) and

\[
h'(x) = \frac{1}{2} \cdot \frac{x(a^x+1) - (x^2 - \frac{1}{x})}{[x(a^x+1)]^2} = \frac{1 + 2x - x^2}{2x^2(a^x+1)^2},
\]

while

\[
1 + 2x - x^2 = 1 + 2x - \sum_{n=0}^{\infty} \frac{n^2 x^n}{n!} - \sum_{n=0}^{\infty} \frac{2^n x^n}{n!} - \sum_{n=3}^{\infty} \frac{2^n (n-1)!}{n!} x^n < 0, \text{ for } x > 0.
\]

Proposition 5. \(\frac{x^2}{a^{x-1}} > -\frac{1}{2} x - \frac{1}{12} x^2 \).
Proof. \((1 + \frac{1}{2} x + \frac{1}{12} x^2)(e^x - 1) - xe^x = \sum_{n=2}^{\infty} \frac{x^n}{n!} - \sum_{n=1}^{\infty} \frac{1}{2} x^{n+1} \sum_{n=1}^{\infty} \frac{x^n}{n!} \),

\[= \sum_{n=5}^{\infty} \frac{n-7n+12}{12} x^n > 0 \text{ for } x > 0 \text{.}

Now we are in a position to prove that \(f_{3,0}(t) > 0 \) for \(t \in [0,0.3] \). Write down

\[f_{3,0}(t) = 2(1 + \frac{te^t}{e^{t+1}} - \frac{t}{e^{t+1}} - \frac{1}{2} e^{-2t} + 2(\frac{2te^t}{e^{2t+1}} - \frac{2te^t - (2t)^2}{e^{2t-1}} - \frac{9t^2}{(2t)^2 + 9t^2}),

\[+ (1 + \frac{3te^t}{e^{3t+1}} - \frac{3te^t}{e^{3t-1}} - \frac{(3t)^2}{(3t)^2 + 9t^2} - \frac{9t^2}{(2t)^2 + 9t^2}).

It follows from proposition 4 that, for \(t \in [0,0.3] \),

\[te^t/(e^{t+1}) - \frac{t}{2} > h(0.3) t^2 > 0.248 t^2,

\[2te^2/(e^{2t+1}) - \frac{2t}{2} > h(0.6) (2t)^2 > 0.242(2t)^2,

\[3te^3/(e^{3t+1}) - \frac{3t}{2} > h(0.9) (3t)^2 > 0.234(3t)^2.

In connection with proposition 5, we obtain

\[2(1 + \frac{te^t}{e^{t+1}} - \frac{t}{e^{t+1}} - \frac{1}{2} e^{-2t}) > 2(0.248 - \frac{1}{12} - \frac{1}{8} t^2) > 0.126 t^2,\]

\[2(1 + \frac{2te^t}{e^{2t+1}} - \frac{2te^t}{e^{2t-1}} - \frac{(2t)^2}{(2t)^2 + 9t^2}) > 2(0.242 - \frac{1}{12} - \frac{1}{8} (2t)^2) > 0.458 t^2,\]

\[1 + \frac{3te^t}{e^{3t+1}} - \frac{3te^t}{e^{3t-1}} - \frac{(3t)^2}{(3t)^2 + 9t^2} > (0.234 - \frac{1}{12} - \frac{1}{8} (3t)^2) > 0.444 t^2,\]

\[- \frac{9t^2}{(2t)^2 + 9t^2} > - \frac{9t^2}{8} > 0.912 t^2.\]

As a conclusion,

\[f_{3,0}(t) > (0.126 + 0.458 + 0.444 + 0.912) t^2 = 0.116 t^2.\]

This shows that

\[f_k'(t) > 0 \text{ for } t \in [0,0.3].\]

The next case we are going to treat is that \(t \in [0.3,3] \). Let
Then \(f_{3,0}(t) = v(t) - w(t) \). It is easily seen that \(v'(t) < 0 \) for \(t \in [0, \infty) \). We claim that \(w'(t) < 0 (0 < t < \infty) \), too. This is guaranteed by the following proposition.

Proposition 6. Let \(g(x) = \frac{2x^3}{e^{2x} - 1} \). Then \(g'(x) < 0 \) for \(x > 0 \).

Proof. \(g'(x) = -\frac{2x^3}{(e^{2x} - 1)^2} (1 + x + xe^{2x} - e^{2x}) \), while

\[
1 + x + xe^{2x} - e^{2x} = (1 + x)(1 - e^{-x}) - \sum_{n=3}^{\infty} \frac{x^n}{n!} = \sum_{n=3}^{\infty} \frac{(n-2)x^{n-1}}{n!} x > 0 \text{ for } x > 0.
\]

Accordingly,

\[
(20) \quad f_{3,0}(t) = v(t) - w(t) > v(b) - w(a) \text{ for } t \in [a, b] \text{ with } 0 < a < b.
\]

To determine the positivity of \(f_{3,0} \) I wrote a Fortran program and found that

\[
v\left(\frac{n+1}{100}\right) - w\left(\frac{n}{100}\right) > 0.001 \text{ for } n = 30, 31, \ldots, 299.
\]

Thus by (20) we assert that

\[
f_{3,0}(t) > 0 \text{ for } t \in \left[\frac{n}{100}, \frac{n+1}{100}\right], \quad n = 30, 31, \ldots, 299.
\]

Therefore

\[
f_{3,0}(t) > 0 \text{ for } t \in \bigcup_{n=30}^{299} \left[\frac{n}{100}, \frac{n+1}{100}\right] = [0.3, 3].
\]

So far we have shown that \(Q_k(q) > 0 \) for \(q \in [1, 20) \).

4. **The monotonicity of** \(Q_k(q) \) **for** \(q \in [20, \infty) \).

Let

\[
f(q) := (-1)^{k+1}(2k-1)|q|^{0, 1, \ldots, 2k-1}\frac{1}{q^{k+q^k}}.
\]

Then

\[
f(q) = (-1)^{k+1}\frac{2k-1}{k} \sum_{l=0}^{k-1} (-1)^l (2k-1)^l \frac{(2k-1)^l}{l!} \frac{1}{q^{l+q^k}} = (-1)^{k+1} \frac{2k-1}{k} \sum_{l=0}^{k-1} (-1)^l (2k-1)^l \frac{1}{l+q^k}
\]

\[
= \sum_{k=0}^{k-1} (-1)^{k+l+1}(2k-1)^l \frac{2k-1}{k} \frac{1}{1+q^{k+1}} + (-1)^l (2k-1)^l \frac{1}{k} \frac{1}{1+q^{k+1}}.
\]
It follows that

\[
\frac{\partial f}{\partial q}(q) = \sum_{k=0}^{k-1} (-1)^k \frac{2k-1}{k!} \frac{(k-1)q - (k-1)}{(1+aq)^2} + \sum_{k=1}^{k-1} (-1)^k \frac{(k-1)q - (k-1)}{(k+1)^2} \frac{2k-1}{(1+aq)^2} + \frac{1}{(1+aq)^2}
\]

\[
= \sum_{k=1}^{k-1} (-1)^k \frac{(2k-1)q - (2k-1)}{(1+aq)^2} + \frac{1}{(1+aq)^2} \frac{2k-1}{(1+aq)^2}
\]

Now we need the following propositions.

Proposition 7. \((2k-1)(k+\frac{1}{2}) + \sigma \frac{q^k}{(1+aq)^k} \) decreases as \(k\) increases and \(q > 6\).

Proof.

\[
(2k-1) - (2k-1)\frac{q^k}{(1+aq)^k} = (2k-1)\frac{q^k}{(1+aq)^k} \] \((k+\frac{1}{2})! \) \((k+\frac{1}{2})!\frac{q^k}{(1+aq)^k} \)

We want to show

\[
(2k-1)\frac{q^k}{(1+aq)^k} < 2(1+aq) \frac{(2k-1)^2}{(1+aq)^2}
\]

It is easily seen that (24) is equivalent to

\[
\frac{1}{q} \left(\frac{(k+1)^2}{q+1} \right)^2 > \frac{k-1}{k+aq+1} \left(1 + \frac{1}{q} \right)^2
\]

However,

\[
\frac{1}{q} \left(\frac{(k+1)^2}{q+1} \right)^2 = \frac{q}{q+1} \frac{2k+2q+q+1}{q(q^2+2q+1)} > q - 2q^{-1} > q - 2q^{-1} > q^2 - 2q^2 - q^2 + 2q^2 + 2q^{+1} + 1
\]

Meanwhile,

\[
\frac{k-1}{k+aq+1} \left(1 + \frac{1}{q} \right)^2 < 4
\]

Therefore (24) holds for \(q > 6\), and proposition 7 is proved.

Proposition 8. For \(k > 2\) and \(q > 6\),

\[
f'(q) = \frac{2(2k-1)}{k+1} \frac{1}{(1+aq)^2} - \frac{4}{k-2} \frac{2q}{(1+aq)^2}
\]

In particular, \(f'(q) > 0\) and

\[
f(q) < \lim_{q \to \infty} f(q) = \frac{2(2k-1)}{k-1} \frac{1}{2(2k-1)}
\]
Proof. Suppose first k is even, $k = 2m$. Then (22) and (23) yield that

\[
f'(q) = \frac{(2k-1)}{k-1} \cdot \frac{2}{k+1} \cdot \frac{1}{(1+q)^2} - \frac{(2k-1)}{k-2} \cdot \frac{4}{k+2} \cdot \frac{2q}{(1+q)^2}
\]

\[
+ \sum_{j=2}^{m-1} \left[\frac{(2k-1)}{(k-2)(k+2)(k+1)} \cdot \frac{2(2j-1)q^{2j-2}}{(1+q^2)^2} \right]
\]

\[
= \frac{(2k-1)}{(k-2)(k+2)(k+1)} \cdot \frac{2(2j-1)}{(k+2)} \cdot \frac{2jq^{2j-1}}{(1+q^2)^2}
\]

\[
+ \frac{(k-1)q^k-2}{(1+q^2)^2} - \frac{kq^k}{(1+q^2)^2}
\]

By proposition 7 all the terms under the summation sign are positive. Moreover,

\[
q^{-2}(1+q^k)^2 > q^{-1}(1+q^k)^2 \quad \text{for } q > 1,
\]

and

\[
(2k-2)(k-1) \cdot \frac{q^{-2}}{(1+q^2)^2} > \frac{kq^{-1}}{(1+q^2)^2} \quad \text{for } (2k-2)(k-1) = k \quad \frac{q^{-1}}{(1+q^2)^2}
\]

For odd k, the proof is similar. Thus (25) holds. Furthermore

\[
f'(q) > \frac{4}{(1+q^2)^2} \frac{(2k-1)}{(k-2)(k+2)} \frac{kq^{k-1}}{(1+q^2)^2} > \frac{2}{(1+q^2)^2} \frac{(2k-1)}{(k-2)(k+2)} \frac{1}{(1-2)(1+1/2^2)} \geq 0
\]

for $q > 6$.

and

\[
f(q) < \lim_{q \to \infty} f(q) = \lim_{q \to \infty} \frac{(2k-1)}{k-1} \cdot \frac{1}{2} \cdot q^{-1}(1+q^k) = (2k-1) \cdot \frac{1}{2(2k-1)}
\]

Proposition 9. Let $S(q) = 4 \sum_{v=1}^{k-1} \frac{vq^{2v-1}}{(1+q^2)^2} + 2 \frac{q^{k-1}}{q^{2k-1}}$. Then

\[
S(q) < \frac{4q^2}{(q^{-1})(q-1)^2}
\]

for $q > 1$.

Proof. We have

\[
S(q) = 4 \sum_{v=1}^{k-1} \frac{q^{2v}}{q^{2v-1}} q^{-(v+1)} + 2kq^{-(k+1)} \cdot \frac{2k}{q^{2k-1}}
\]

Note that

\[
\frac{q^{2v}}{q^{2v-1}} \leq \frac{2}{q^{2v-1}} \quad \text{for } v > 1 \text{ and } q > 1
\]

Hence

-12-
Proposition 10. Let \(g_k(q) = \frac{2k-1}{k+1} [1 - \frac{4(k-1)}{k+2} \cdot \frac{q}{1+q}] \). Then

\[g_{k+1}(q) > g_k(q) \quad (k = 1, 2, 3, \ldots; q > 12) . \]

Proof.

\[g_{k+1}(q) = g_k(q) \cdot \frac{3}{(k+1)(k+2)(k+3)} \cdot [(k+3)-(3k-1) \cdot 4 \cdot \frac{q-1}{1+q^2}] \]

\[> \frac{3}{(k+1)(k+2)(k+3)} [(k+3)-(3k-1) \cdot 4 \cdot \frac{12q^2}{1+q^2}] > 0 \text{ for } q > 12 . \]

Now we are in a position to prove the monotonicity of \(Q_k(q) \) for \(q \in [20, \infty) \). From (16) and (21) we see that

\[Q_k(q) = 2^k \cdot \frac{q^k}{(k+1)!} \cdot \frac{k}{q} = \frac{k^m+1}{m} \cdot \frac{k-1}{m} \cdot f(q) . \]

Hence

\[\frac{Q_k'(q)}{Q_k(q)} = -\left(\frac{4}{k+1} \sum_{u=1}^{k-1} \frac{q^u}{q^2-u} + 2 \frac{k^2}{k+1} \cdot \frac{f'(q)}{f(q)} + f(q) \right) \]

By proposition 9 we have

\[S(q) < \frac{1}{q^2} \cdot \frac{2q^4}{(q^2-1)(q-1)^2} < \frac{1}{q^2} \cdot \frac{4q^4}{(20^2-1)(20-1)^2} < \frac{4.45}{q^2} \text{ for } q > 20 . \]

Moreover, proposition 8 and 10 tell us that

\[\frac{f'(q)}{f(q)} > \frac{1}{1+q^2} \cdot \frac{4(2k-1)}{k+1} \cdot \frac{k-1}{k+2} \cdot \frac{q^2}{1+q^2} = \frac{4}{(1+q^2)^2} g_k(q) \]

\[> \frac{4}{(1+q^2)^2} \frac{q^4}{5} \cdot \frac{7}{5} \cdot \frac{1}{(1-q^2)} = \frac{28}{5} \frac{(1-q^2)^2}{(1+q^2)^2} \frac{1}{1+1/q^2} \]

\[> \frac{1}{q^2} \frac{2q^4}{1+q^2} \frac{1}{1+1/20^2} > \frac{4.55}{q^2} \text{ for } q > 20 \text{ and } k > 4 . \]

Therefore

\[\frac{Q_k'(q)}{Q_k(q)} = \frac{f'(q)}{f(q)} - S(q) > 4.55 - 4.45 = 0.1 > 0 \text{ for } k > 4 \text{ and } q > 20 . \]

It remains to check the case \(k = 3 \). For this we shall make a straightforward computation:

\[-13 - \]
\[\Omega_3(q) = \frac{24}{120} (q+1)^2 \cdot \left(q^2 + 1 \right)^2 \cdot q^{3+1} \cdot q(-1)[0, 1, 2, 3, 4, 5] \frac{1}{q+q^3} \]

\[= \frac{24}{120} \left(q+1 \right)^2 \left(q^2 + 1 \right)^2 \frac{q^{3+1}}{q^3} \cdot q(-1) \left[\frac{1}{1+q} \right] - 5 \frac{1}{2} \frac{1}{q+q^3} + 10 \frac{1}{2} \frac{1}{q+q^3} - 10 \cdot \frac{1}{2} \frac{1}{q+q^3} + 5 \frac{1}{3} \frac{1}{q^3} - \frac{1}{3} \frac{1}{q^3} \]

\[= \frac{1}{5} \cdot \frac{q^2+1}{q^2+q+1} \]

Thus

\[\Omega'_3(q) = \frac{1}{5} \cdot \frac{q^2+1}{(q^2+q+1)^2} > 0 \text{ for } q > 1 \]

This completes the proof of theorem 1.

Acknowledgement

I am glad to thank Professor Carl de Boor for his valuable help. Especially, section 2 and 4 reflect on his suggestion.
REFERENCES

L∞-Upper Bound of L2-Projections onto Splines
at a Geometric Mesh

Rong-qing Jia

Mathematics Research Center, University of
610 Walnut Street
Madison, Wisconsin 53706

DAAG29-80-C-0041

February 1982

Approved for public release; distribution unlimited.

Splines, geometric mesh, least-squares approximation, Gram matrix, monotonicity, sharp upper bound.

For an integer \(k \geq 1 \) and a geometric mesh \((q_i)_{i=0}^{\infty}\) with \(q \in (0, \infty) \), let
\[
M_{i,k}(x) := \frac{1}{k(q_i+x)^{k-1}} k^{i+k}(q_i+x)^{i+k},
\]
\[
N_{i,k}(x) := (q_i + x)^k M_{i,k}(x) / k,
\]
and let \(A_k(q) \) be the Gram matrix \((M_{i,k}N_{j,k})_{i,j \geq 0} \). It is known that

(continued)
ABSTRACT (continued)

$\|A_k(q)^{-1}\|_\infty$ is bounded independent of q. In this paper it is shown that $\|A_k(q)^{-1}\|_\infty$ is strictly decreasing for q in $(1,\infty)$. In particular, the sharp upper bound and lower bound for $A_k(q)^{-1}$ are obtained:

$$2k-1 \leq \|A_k(q)^{-1}\|_\infty \leq \left(\frac{\pi}{2}\right)^{2k} \sum_{j \in \mathbb{Z}} (1+2j)^{-2k-1}$$

for all $q \in (0,\infty)$.
