ASYMPTOTIC NUMERICAL ANALYSIS FOR THE NAVIER-STOKES EQUATIONS. --ETC(U)

JAN 82 C FOIAS, R TEMAM

DAA629-80-C-0041

UNCLASSIFIED

MRC-TSR-2325

AD-A114 549 WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER F/G 12/1

END 7-82 ONC
MRC Technical Summary Report #2325

ASYMPTOTIC NUMERICAL ANALYSIS FOR THE NAVIER-STOKES EQUATIONS (I)

C. Foias and R. Temam

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53706

January 1981

(Approved for public release
Distribution unlimited)
UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

ASYMPTOTIC NUMERICAL ANALYSIS FOR THE NAVIER-STOKES EQUATIONS (I)

C. Foias and R. Temam

Technical Summary Report #2325
January 1982

ABSTRACT

Our aim in this work is to show that, in a "permanent regime", the
behaviour of a viscous incompressible fluid can be, in principle, determined
by the study of a finite number of modes. It is proved that the behaviour
for $t \to \infty$ of the solution to the Navier-Stokes equations is completely
determined by its projection on appropriate finite dimensional subspaces,
corresponding to eigenspaces of the linear operator, or more general
subspaces, including finite element subspaces. Some indications on the
dimension of such subspaces are given.

AMS (MOS) Subject Classifications: 35Q10, 65N30, 76F99

Key Words: Navier-Stokes equations, Galerkin method, Finite elements,
Asymptotic numerical analysis, Behaviour for $t \to \infty$

Work Unit Number 1 (Applied Analysis)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
SIGNIFICANCE AND EXPLANATION

If a viscous incompressible fluid is driven by time independent forces of sufficient intensity then, after a transient period, the "permanent" regime seems to be totally chaotic and unstructured. The present work is part of a set of articles which, however, tend to show that there may be some structure in such flows (at least in the case where the space dimension is 2), in particular that they are determined by a finite number of parameters.

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the authors of this report.
Introduction

Up to now the numerical analysis of the Navier-Stokes equations has been limited to the study of the approximation of time dependent solutions on a finite interval of time or to the approximation of stationary solutions (cf. among many other references [1,4,8,9]). In the presence of a turbulent flow driven by a steady excitation a different type of problem arises naturally: the study of the long time behavior of the solutions.

The present is an essay, the purpose of which is to show that for the 2-D Navier-Stokes equations and, under some circumstances for the 3-D Navier-Stokes equations, there is a theoretical basis for determining the qualitative long time behavior of a fluid by the study of a finite number of adequate modes. A typical result is the following one: Let W be a finite dimensional subspace of the natural function space V. If W satisfies a certain condition, then the behavior for $t \to +\infty$ of a solution u of the Navier-Stokes equation is completely determined by the behavior for $t \to +\infty$ of its projection on W.

Several results of this type are derived in this article. While this kind of problem was already discussed in [2], our present interest was aroused and inspired by the questions, conjectures and ideas due to O. P. Manley and Y. M. Treve [7,12,11], with whom we acknowledge fruitful discussions and correspondence. In this paper we did not try to produce the best constants, and we did not try to present the main inequalities in a nondimensional form. These improvements of the work, and other developments will appear in a subsequent work [13].

The plan is as follows:

1. Notations and recapitulation of results.
2. Approximation in the subspaces V_m.
3. Approximation in a general subspace.
4. Time periodic solutions.
5. Remark on Galerkin approximation.
1. Notations and recapitulation of results

Let Ω be a bounded domain of \mathbb{R}^k, $k = 2$ or 3, and let Γ be its boundary. We assume that Γ is a manifold of dimension $k-1$, of class C^4 with a finite number of connected components, and that Ω is locally located on one side of Γ. We shall firstly consider the initial value problem for the Navier-Stokes equations:

\begin{align*}
(1.1) & \quad \frac{\partial u}{\partial t} - \nabla p + (u \cdot \nabla) u + \nabla \cdot f = 0 \quad \text{in} \quad \Omega \\
(1.2) & \quad \nabla \cdot u = 0 \quad \text{in} \quad \Omega \\
(1.3) & \quad u = 0 \quad \text{in} \quad \Gamma \\
(1.4) & \quad u|_{t=0} = u_0 ,
\end{align*}

where $\nu > 0$ is the kinematic viscosity, $u = (u_1, u_2)$ or (u_1, u_2, u_3) is the velocity, a vector-valued function of $x \in \Omega$ and $t > 0$, and p is the pressure, $p = p(x,t)$, and f represents the external body force per unit of mass.

All what follows apply to the case where (1.3) is replaced by a nonhomogeneous boundary condition, which corresponds to more realistic physical situations (Couette-Taylor flow, [9]). We will refrain from treating this case to avoid purely technical difficulties.

We denote by $L^2(\Omega)$ the space of square integrable real functions on Ω and by $H^1_0(\Omega)$ the Sobolev space made of the functions which are in $L^2(\Omega)$ together with their first derivative and which vanish on Γ. We set, for u in $L^2(\Omega)$ or $L^2(\Omega)^k$ (resp. u in $H^1_0(\Omega)$ or $H^1_0(\Omega)^k$)

\[|u|^2 = \int_{\Omega} |u(x)|^2 \, dx , \quad \text{resp.} \quad \|u\|^2 = \int_{\Omega} |\nabla u(x)|^2 \, dx . \]

The space $L^2(\Omega)^k$ admit classically an orthogonal decomposition of the form $H \oplus G$, where

\[G = \{ v = v_0, q \in H^1(\Omega) \} \]

and its orthogonal H satisfies

\[H = \{ v \in L^2(\Omega)^k, \ div v = 0, v \cdot n|_{\Gamma} = 0 \} , \]

n the unit outward normal of Γ. Let also

\[V = \{ v \in H^1_0(\Omega)^k, \ div v = 0 \} . \]

It is clear that H and V are Hilbert spaces for the norms $|\cdot|$ and $\|\cdot\|$, and their corresponding scalar products. While $|v|^2$ is equal to the kinetic energy of the fluid
with velocity \(v \) (the density \(p = 1 \)), we recall that for \(v \in \mathcal{V} \), \(\|v\| \) too, reduces to a physical quantity:

\[
\|v\|^2 = \int_{\Omega} |\text{curl } v(x)|^2 \, dx .
\]

Let \(\pi \) denote the orthogonal projection of \(L^2(\Omega)^d \) onto \(\mathcal{H} \) and define the operators \(A \) and \(B \) by

\[
(1.5) \quad A u = -\pi u \quad \text{for } u \in D(A) = \mathcal{V} \cap H^2(\Omega)^d ,
\]

\[
(1.6) \quad B(u,v) = \pi((u,v)v), \quad \text{for } u,v \in D(A) .
\]

Then \(A \) is a self-adjoint operator in \(\mathcal{H} \) with an orthonormal basis \(\{ e_m \}_{m=1}^\infty \) of eigenvectors, such that

\[
(1.7) \quad A e_m = \lambda_m e_m , \quad m > 1, \quad 0 < \lambda_1 < \lambda_2 < \ldots ,
\]

\[
(1.8) \quad \mathcal{V} = D(A^{1/2}), \quad \|u\| = \|A^{1/2}u\| \quad \text{for } u \in \mathcal{V} .
\]

The operator \(A \) is an isomorphism from \(D(A) \) onto \(\mathcal{H} \) and from \(\mathcal{V} \) onto \(\mathcal{V}' \) (the dual of \(\mathcal{V} \) which one can identify to a superspace of \(\mathcal{H} \)). Concerning \(B \) we recall the following fact: \(B \) is a compact mapping from \(D(A) \times \mathcal{V} \) or \(\mathcal{V} \times D(A) \) into \(\mathcal{H} \) and from \(\mathcal{V} \times \mathcal{V} \) into \(\mathcal{V}' \). Furthermore we have the estimates:

\[
(1.9) \quad |B(u,v)| \leq \begin{cases} \sqrt{2} |u|^{1/2} |u|^{1/2} |v|^{1/2} |v|^{1/2} & \text{if } k = 2 \\ 6|u|^{1/2} |u|^{1/2} |v|^{1/2} |v|^{1/2} |v|^{1/2} & \text{if } k = 3 \end{cases}
\]

\[
(1.10) \quad |B(u,v)| \leq c_0 \begin{cases} |u|^{1/2} |Au|^{1/2} & \text{if } k = 2 \\ |u|^{1/2} |u|^{1/2} |v|^{1/2} |v|^{1/2} |v|^{1/2} & \text{if } k = 3 \end{cases}
\]

if \(k = 2 \) and if \(k = 2 \) or 3:

\[
(1.11) \quad |B(u,v)| \leq c_1 \begin{cases} |Au| |v| & \text{if } k = 2 \\ |u| |v| & \text{if } k = 3 \end{cases}
\]

The constants \(c_0 \) and \(c_1 \) depend only on \(\Omega \) but are not easy to determine since they involve the norm of the operator \(A^{-1} \) and Sobolev constants. All the above results can be found for instance in [6], [9].

We can now recall the functional formulation of (1.1)-(1.4): This is the functional differential equation
\begin{align*}
\frac{du}{dt} + Va + B(u,u) &= f, & u|_{t=0} &= u_0, \\
\text{where we shall assume for simplicity } u_0 &\in V \text{ and} \\
f &\text{is continuous and bounded from } (0,\infty) \text{ into } H, \\
f' &= \frac{df}{dt} \text{ belongs to } L^2_{\text{loc}}(0,\infty;V').
\end{align*}

It is well-known that, if \(\ell = 2, \) there exists a unique function \(u \) such that
\begin{equation}
\tag{1.14}
u \in C([0,\infty);H) \cap L^2_{\text{loc}}([0,\infty);V)
\end{equation}
satisfying the equation (1.12) in \(V' \) (cf. for instance \cite{9}). Moreover \(u \) is actually a continuous function from \((0,\infty) \) into \(D(A) \), which is bounded in \(D(A) \) as \(t \to \infty \). We set
\begin{align}
\tag{1.15}
|u(t)| &< c_2(|u_0|,|f|,1/\nu,c_0',\lambda_1) \quad \text{for } t > 0, \\
\tag{1.16}
|Au(t)| &< c_3(|u_0|,|f|,1/\nu,c_0',\lambda_1,1/\alpha) \quad \text{for } t > \alpha > 0
\end{align}
where
\begin{equation}
[f] = \sup_{0 < t < \infty} |f(t)|.
\end{equation}

The estimate (1.15) is given in \cite{2}; the estimate (1.16) is more recent and given in \cite{5} (cf. also \cite{10}).

If \(\ell = 3, \) there exists a weak solution of (1.12) bounded in \(H. \) Such a solution may or may not be bounded in \(V \). We will only consider such a solution if it is bounded in \(V \)
\begin{equation}
\tag{1.18}
|u(t)| < R \text{ for } t > 0.
\end{equation}

In this case it follows also from \cite{3, 5, 10}, that \(u(t) \) belongs to \(D(A) \) and is bounded in \(D(A) \) as \(t \to \infty \):
\begin{align}
\tag{1.19}
|Au(t)| &< c_4(R,|f|,1/\nu,c_1',\lambda_1,1/\alpha) \quad \text{for } t > \alpha > 0.
\end{align}

In the sequel we will let \(\ell = 2 \) or \(3, \) and consider solutions of (1.12) which are uniformly bounded in \(V \) on \([0,\infty); \) the existence of \(R < \infty \) is an assumption if \(\ell = 3, \) and is automatic if \(\ell = 2 \) (\(R = c_2 \) cf. (1.15)). See the comment in Remark 2.1.
2. Approximation in the subspaces V_m

2.1. An inequality

For $m \in \mathbb{N}$, we denote by V_m the space spanned by the eigenfunctions $\omega_1, \ldots, \omega_m$, of A, and by P_m the projector in V, H or V^* onto V_m. Finally $Q_m = I - P_m$. It is easy to see that

\[
|\psi| < \lambda_m^{1/2} |\varphi|, \quad \forall \psi \in V_m
\]

(2.1)

\[
|\psi| < \lambda_{m+1}^{1/2} |\varphi|, \quad \forall \psi \in Q_m V.
\]

(2.2)

Let $u(\cdot)$ and $v(\cdot)$ be solutions of the equation

\[
u' + \lambda_n \nu + B(u, u) = f, \quad t > 0, \quad u(0) = u_0,
\]

(2.3)

\[
v' + \lambda_n v + B(v, v) = g, \quad t > 0, \quad v(0) = v_0,
\]

(2.4)

where $v_0 \in V$ and g satisfies the same assumption (1.13) as f. We set

\[
w = u - v, \quad p_m = P_m w, \quad q_m = Q_m w, \quad e = f - g, \quad e_m = Q_m e.
\]

Then

\[
q_m' + \lambda_n q_m + Q_m B(v, w) + Q_m B(w, u) = e_m
\]

and consequently (1),

\[
\frac{1}{2} \frac{d}{dt} |q_m|^2 + |v| q_m'^2 = -(B(v, p_m), q_m) - (B(p_m, u), q_m)
\]

\[
- (B(q_m, u), q_m) + (e_m, q_m).
\]

(2.5)

The right-hand side of (2.5) can be bounded because of (1.11) by (2).

[1] We recall that $(B(\theta, \varphi), \psi) = -(B(\varphi, \theta), \psi)$ for θ, φ, ψ in V.

[2] c_1, c_1', c_1'', \ldots, denote various positive constants. The c_i's are the same all the time, c_1', c_1'', \ldots, may represent different quantities at different places.
\[
\lambda_{m+1}^{-1/2} |e_m| |q_m| + c_1 (|A u| + |A v|) |p_m| |q_m| + c_1 |A u| |q_m| |q_m|
\]

\[
< (\text{for } \epsilon > 0 \text{ arbitrary})
\]

\[
< \frac{\epsilon v}{2} |q_m|^2 + \frac{1}{2} |q_m|^2 + \frac{\epsilon v}{2} |q_m|^2 + \frac{c_1^2}{2 \epsilon v} (|A u| + |A v|)^2 |p_m|^2 + c_1 \lambda_{m+1}^{-1/2} |A u| |q_m|^2
\]

\[
< (\text{by (1.16), (1.19)})
\]

\[
< \epsilon v |q_m|^2 + \frac{1}{2} |q_m|^2 + \frac{2c_1^2}{\epsilon v} |p_m|^2 + c_1 \lambda_{m+1}^{-1/2} |q_m|^2
\]

for \(t > a \).

We have thus proved the following

Lemma 2.1

If \(m \) is large enough, so that (1)

\[
(2.6) \quad \lambda_{m+1} > \frac{c_1^2}{v^2},
\]

then, for \(t > a > 0 \),

\[
(2.7) \quad \frac{d}{dt} |q_m|^2 + v' |q_m|^2 < \frac{1}{\epsilon v} |e_m|^2 + \frac{4c_1^2}{\epsilon v} |p_m|^2,
\]

\[
v' = v - c_1 \lambda_{m+1}^{-1/2} > 0, \quad \epsilon = \frac{1}{2} - \frac{c_1 \lambda_{m+1}^{-1/2}}{2v}.
\]

2.2. The main result

We introduce the following weak mode of convergence: we will say that \(\psi(t) \) converges essentially to 0 as \(t \to \infty \) (and we write \(\psi(t) \to 0 \) as \(t \to \infty \)) if:

\[
(2.8) \quad \text{there exists } \delta > 0, \text{ such that for every } \delta > 0, \text{ there exists } t_0 \text{ satisfying}
\]

\[
\text{meas} \{t \in (t_0, t_0 + 1), |\psi(t)| > \delta \} < \delta, \text{ for every } t > t_0.
\]

(1) We need \(\lambda_{m+1} > \frac{3c_1^2}{v^2} \) (sup \(|A u(t)|^2\)) and actually it is sufficient to have

\[
\lambda_{m+1} > \frac{c_1^2}{v^2} \lim sup_{t \to a} |A u(t)|^2.
\]

-6-
It is easy to see that if $\phi(t) \geq 0$ for $t \geq m$, then $\phi(t) \xrightarrow{c.e.} 0$, for $t \geq m$. Also if $\phi \in L^1(0,\infty)$ then $\phi(t) \xrightarrow{c.e.} 0$ as $t \to \infty$.

Theorem 2.1

We assume that $k = 2$ or that $k = 3$ and that u and v are solutions of (2.3), (2.4) uniformly bounded in V. We assume also that (2.6) is satisfied. Then:

1) If $|P_m (u(t) - v(t))| \to 0$, then $((1 - P_m)(f(t) - g(t))) \to 0$, for $t \geq m$, then

(2.6)

$$|(1 - P_m)(u(t) - v(t))| \xrightarrow{c.e.} 0 \text{ for } t \geq m.$$

(2.10)

$$|u(t) - v(t)| \to 0 \text{ for } t \geq m.$$

ii) If $|P_m (u(t) - v(t))|^2 \xrightarrow{c.e.} 0$, then $(1 - P_m)(f(t) - g(t))^2 \xrightarrow{c.e.} 0$, for $t \geq m$, then

(2.9) still holds but instead of (2.10),

(2.11)

$$|u(t) - v(t)|^2 \xrightarrow{c.e.} 0 \text{ for } t \geq m.$$

Proof

We infer from (2.2) and (2.7)

$$\frac{d}{dt} |q_m|^2 + \nu \lambda^{1/2} |q_m|^2 \leq \frac{\lambda^{-1}}{m+1} |e_m|^2 + \frac{4c_1^2}{c} |P_m|.$$

Whence for $t > t_0 > a$:

(2.12)

$$|q_m(t)|^2 \leq |q_m(t_0)|^2 e^{-\nu \lambda^{1/2} (t-t_0)} + \int_{t_0}^{t} \frac{\lambda^{-1}}{m+1} |e_m(t)|^2 + \frac{4c_1^2}{c} |P_m(t)|^2 e^{-\nu \lambda^{1/2} (t-t')} dt.$$

There exists $\kappa, \kappa' > 0$ such that for every $\delta > 0$, there exists δ_0 which satisfies for $t > t_0$:

$$\text{meas} \{ t \in (t, t + 1), |P_m (u(t) - v(t))|^2 > \delta \} < \kappa \delta.$$

$$\text{meas} \{ t \in (t, t + 1), |P_m (f(t) - g(t))|^2 > \delta \} < \kappa' \delta.$$

For a fixed integer M we take $t > t_0 + M$, $t_0 > \max(t_0, a)$. Then (2.12) implies...
\[
|q_m(t)|^2 < c(u,v) e^{-\nu \lambda^{1/2} \left(t - t_0 \right)} + \delta \left(\frac{\lambda^{-1}}{\epsilon v} + \frac{4c^2/4}{v} \right) t e^{-\nu \lambda^{1/2} \left(t - t_0 \right)} dt
\]

\[
+ \left[\frac{\lambda^{-1}}{\epsilon v} c(f,g) + \frac{4c^2/4}{v} c(u,v) \right] \cdot \left(\int_{t_0}^{\infty} e^{-\nu \lambda^{1/2} \left(t - t_0 \right)} dt \right)
\]

\[
+ M \delta \left(\frac{\lambda^{-1}}{\epsilon v} c(f,g) + \frac{4c^2/4}{v} c(u,v) \right)
\]

where

\[
c(u,v) = \sup_{t \geq 0} |u(t) - v(t)|, \quad c(f,g) = \sup_{t \geq 0} |f(t) - g(t)|
\]

Therefore, as \(t \to \infty \),

\[
\lim_{t \to \infty} \sup_{t \geq 0} |q_m(t)|^2 < \delta \left(\frac{\lambda^{-1}}{\epsilon v} + \frac{4c^2/4}{v} \right) e^{-\nu \lambda^{1/2} \left(t_0 \right)}
\]

\[
+ \left[\frac{\lambda^{-1}}{\epsilon v} c(f,g) + \frac{4c^2/4}{v} c(u,v) \right] \delta e^{-\nu \lambda^{1/2} \left(t_0 \right)}
\]

\[
+ M \delta \left(\frac{\lambda^{-1}}{\epsilon v} c(f,g) + \frac{4c^2/4}{v} c(u,v) \right)
\]

We let \(\delta \to 0 \) and then \(M \to \infty \), and we obtain (2.9).

Remark 2.1

This result which is contained in a slightly weaker form in [2], when the dimension of space is \(\ell = 2 \), is reproduced here for the convenience of the reader.
3. Approximation in a general subspace

In the applications the utilization of the basis \(\{ w_m \} \) formed by the eigenvectors of \(A \) is not practical since these functions are not easy to determine. Therefore we shall now show how the preceding theorem can be extended when \(V_n \) is replaced by a general finite dimensional subspace \(W \) of \(V \).

3.1. Assumptions

Let \(W \) be a finite dimensional subspace of \(V \) and let \(P(W) \) be the projector in \(H \) onto \(W \), \(Q(W) = I - P(W) \). Since \(P(W) \) is not a projector in \(V \), it may happen that \((\varphi, \psi) \neq 0 \) if \(\varphi \in W \) and \(\psi \in V \), \(P(W)\psi = 0 \). However, one can show (cf. Lemma 3.2 below) that there exists \(\rho(W) \), \(0 < \rho(W) < 1 \) such that

\[
(3.1) \quad |(\varphi, \psi)| \leq \rho(W) \| \varphi \| \| \psi \|, \ \forall \varphi \in W, \forall \psi \in V, \ P(W)\psi = 0.
\]

We associate also to \(W \) the two numbers \(\lambda(W), \mu(W) \)

\[
\lambda(W) = \inf \{ \| \varphi \|^2, \varphi \in V, P(W)\varphi = 0, |\varphi| = 1 \}
\]

\[
\mu(W) = \sup \{ \| \psi \|^2, \psi \in W, |\psi| = 1 \}
\]

so that

\[
\lambda(W) = \inf \{ |\varphi|^{-1/2} \varphi, \varphi \in V, P(W)\varphi = 0, |\varphi| = 1 \}
\]

\[
\mu(W) = \sup \{ |\psi|^{-1/2} \psi, \psi \in W \}
\]

When it is not necessary to mention the dependence on \(W \), we will write simply \(P, Q, \rho, \lambda, \mu, \) instead of \(P(W), ..., \)

3.2. An inequality

We consider as in Section 2, the solutions \(u(\cdot), v(\cdot) \) of (2.3), (2.4) and we set

\[
w = u - v, \ p = Pw, \ q = Qw, \ e = f - g.
\]

We have

\[
q' + vQ\varphi + QB(v,w) + QB(w,u) = Qe
\]

and taking the scalar product in \(H \) with \(q \), we get

\[
\frac{1}{2} \frac{d}{dt} |q|^2 + v|q|^2 = -(B(v,p),q) - (B(p,u),q),
\]

\[
-(B(q,u),q) + (Qe,q) - v((p,q)).
\]

Using (1.11) and (3.1)-(3.3) we find that the right-hand side of this inequality is less than

-9-
\[\lambda_1 \left(|q| |p| + |v_p| \right)^{1/2} |p| |q| + c_1 |(Au + |Av|) |p| |q| + c_1 Au |q| IqI \]

(by (1.16), (1.19))

\[\leq \frac{c \nu}{3} IqI^2 + \frac{3\lambda_1 c_1}{4\epsilon v} |q| |p| |q| + \frac{3v}{3} |p| |q| \]

\[+ \frac{3c^2}{3} \frac{1}{4\epsilon v} |(Au + |Av|) |p| |q| + c_1 \frac{1}{\lambda_1} \frac{1}{\epsilon} |q| IqI \]

\[\leq \frac{c \nu IqI^2 + \frac{3\lambda_1 c_1}{4\epsilon v} |q| |p| |q| + 3v c^2 |p| |q| + c_1 \frac{1}{\lambda_1} \frac{1}{\epsilon} |q| IqI \text{ for } t > a > 0. \]

If

\[(3.4) \]

\[\lambda(W) > \frac{\epsilon c_2^2}{v^2} \]

then we set

\[(3.5) \]

\[v' = v - c_1 \frac{1}{\lambda_1} \frac{1}{\epsilon} \lambda(W)^{-1/2} > 0, \quad \epsilon = \frac{1}{2} \frac{c_1\lambda(W)^{-1/2}}{2v} \]

and we have established:

Lemma 3.1

If (3.1), (3.4) hold, then for \(t > a > 0, \)

\[(3.6) \]

\[\frac{d}{dt} |q|^2 + \nu' IqI^2 < \frac{3\lambda_1 c_1}{2\epsilon v} |q|^2 + \frac{3\lambda_1 c_1}{2\epsilon v} + \frac{3v c^2}{2\epsilon v} |p|^2, \]

\[v', \epsilon \text{ as in (3.5)}. \]

3. Statement of the result

As in Section 2.2, we have

Theorem 3.1

We assume that \(\ell = 2 \) or that \(\ell = 3 \) and that \(u \) and \(v \) are solution of (2.3),

(2.4) uniformly bounded in \(V \). Let \(W \) be a finite dimensional subspace of \(V \) such that

(3.4) is satisfied. Then

1. If \(|P(u(t) - v(t))| + 0, \quad |(I - P)(f(t) - g(t))| + 0 \) for \(t \to \infty \), then

\[(3.7) \]

\[|(I - P)(u(t) - v(t))| + 0 \] for \(t \to \infty \),

\[(3.8) \]

\[|u(t) - v(t)| + 0 \] for \(t \to \infty \).

1. If \(|P(u(t) - v(t))|^2 \to 0, \quad |(I - P)(f(t) - g(t))|^2 \to 0 \) for \(t \to \infty \), then
(3.7) holds and, instead of (3.8):

(3.9) \(\|u(t) - v(t)\|_{C^0} \to 0 \), for \(t \to +\infty \).

The proof, starting from (3.8), is essentially the same as that of Theorem 2.1.

In the rest of this section we give examples and show that (3.1) is always satisfied, while assumption (3.4) is satisfied if \(W \) is "sufficiently large".

3.4. Assumption (3.1).

Lemma 3.2

Under the assumptions of Section 3.1, there exists \(\rho = \rho(W), 0 < \rho < 1 \) such that

(3.1) holds.\(^{(1)}\)

Proof

If (3.1) was not true, we could find two sequences \(\{\varphi_j\}, \{\psi_j\}, \varphi_j \in W, \psi_j \in V, \)

\(P \psi_j = 0, \) such that

\[\|\varphi_j \psi_j\| > |(\varphi_j, \psi_j)| > (1 - \frac{1}{j}) \|\psi_j\| \psi_j. \]

Setting \(\varphi_j = \frac{\varphi_j}{\|\varphi_j\|}, \psi_j = \frac{\psi_j}{\|\psi_j\|}, \) we find

(3.10) \[1 > |(\varphi_j', \psi_j')| > (1 - \frac{1}{j}). \]

We can extract a subsequence (still denoted \(j \)) such that \(\varphi_j \) converges to some limit \(\varphi, \)

\(1 : 1 = 1, \varphi \in W \) (\(W \) has finite dimension), and \(\psi_j' \) converge weakly in \(V \) to \(\psi, \psi \in V, \)

\(P \psi < 1, P \psi = 0. \) At the limit, (3.10) gives

\[|(\varphi, \psi)| = 1, 1 \psi = 1, 1 \psi < 1, \]

so that \(1 \psi = 1, \psi = \lambda \psi \neq 0, \) by contradiction with \(P \psi = 0. \)

3.5. Assumption (3.4) - example

We consider the following situation which is classical in the numerical analysis of
partial differential equations and in particular of Navier-Stokes equations (cf. [9], Chap.
1, §4):

\(^{(1)}\) Actually the fact that \(\rho < 1 \) which is important in other developments, did not play
any role in the proof above. The inequality (3.1) with \(\rho(W) = 1 \) is trivial.
We are given a family \(\{W_h\}_{h \in H} \), of finite dimensional subspaces of \(V \). The set of indices \(H \) is arbitrary, but is equipped with a concept of limit\(^{(1)}\), which we denote for simplicity \(\lim \). For example, in the Galerkin method, \(H = 1/\infty, h = 1/\infty \), and we pass to \(h \to 0 \) the limit \(n \to \infty, h \to 0 \). For finite element methods (cf. [9]), \(H \) is a family of regular triangulations of the domain \(\Omega \), and we let the diameter of the largest triangle go to 0.

The main assumption on the spaces \(W_h \) is the following one

\[
(3.11) \quad \forall \psi \in V, \quad \inf_{W_h} |\psi - \psi| = 0 \quad \text{as} \quad h \to 0.
\]

In the case of an increasing sequence of subspaces \(W_m \) of \(V \) (Galerkin method), assumption (3.11) means simply that

\[
(3.12) \quad \bigcup_{m \in \mathbb{N}} W_m \text{ is dense in } V.
\]

Then we see that assumption (3.4) is satisfied for \(h \) "sufficiently small".

Lemma 3.3

Under assumption (3.11),

\[
(3.13) \quad \lim_{h \to 0} \lambda(W_h) = +\infty,
\]

and (3.4) is satisfied for \(h \) sufficiently small.

Proof

The proof consists in showing the more precise following statement

\[
(3.14) \quad \text{For every integer } m, \text{ there exists } h_m \text{ and, for } h < h_m, \lambda(W_h) > \lambda_m - 1.
\]

For given \(m \) and \(\delta > 0 \), the assumption (3.11) written with \(\psi = \omega_j, j = 1, \ldots, m \), shows that there exists \(h_m \) such that

\[
\inf_{W_h} |\omega_j - \psi| < \delta, \quad \text{for } j = 1, \ldots, m \text{ and for every } h < h_m.
\]

\(^{(1)}\) A filter \(F \) with a denumerable basis; \(\lim \) means roughly speaking \(\lim_{h \to 0} \).
Thus for every $h < h_m$, there exists $\tilde{w}_1, \ldots, \tilde{w}_m$ in W_h, with $W_j - \tilde{w}_j < 5$. Therefore

if $\psi \in V$, $(1 - P(W_h))\psi = 0$, we have

$$I\psi^2 = \|P_m \psi\|^2 + \|I - P_m\|\psi^2$$

$$\geq \lambda_{m+1} |(I - P_m)\psi|^2 + \lambda_1 |P_m \psi|^2$$

$$\geq \lambda_{m+1} |\psi|^2 - (\lambda_{m+1} - \lambda_1) |P_m \psi|^2$$

$$= \lambda_{m+1} |\psi|^2 - (\lambda_{m+1} - \lambda_1) \sum_{j=1}^m (\psi, w_j - \tilde{w}_j)^2$$

$$\geq (\lambda_{m+1} - (\lambda_{m+1} - \lambda_1) \lambda_1 m^2) |\psi|^2.$$

This implies

$$\lambda(W_h) \geq \lambda_{m+1} - (\lambda_{m+1} - \lambda_1) \lambda_1 m^2,$$

and the result follows by taking δ small enough.

It is also useful for later purposes to establish

Lemma 3.4

Under assumption (3.11),

(3.15)

$$\lim_{h \to 0} \mu(W_h) = +\infty.$$

Proof

Due to (3.11), for every $\psi \in V$ and for every h, there exists $\psi_h \in W_h$, with

$$\lim_{h \to 0} \|\psi - \psi_h\| = 0.$$

Due to (3.3), $\|\psi\| \leq \mu(W_h)^{1/2} |\psi_h|$, and if the family $\mu(W_h)$ does not converge to $+\infty$ for $h \to 0$, $\liminf \mu(W_h) < K < +\infty$, we would have at the limit: $I\psi \leq K |\psi|, \psi \in V$, and this is impossible.

-13-
4. Time periodic solutions

The notations are the same as in Section 3. If the assumption (3.4) is satisfied, we infer from Lemma 3.1 that there exist two positive constants, $c_5 > 0$, $\eta > 0$, independent of u and v such that

\[(4.1) \quad \|(I - P)(u(t) - v(t))\|_2^2 < c_5 \{e^{-\eta(t-t_0)}
\]

\[+ \int_{t_0}^t e^{-\eta(t-s)} \|(I - P)(f(s) - g(s))\|_2^2 ds\]

for $t > t_0 > a > 0$.

We can now prove the following:

Theorem 4.1

We assume that $k = 2$ or that $k = 3$ and that u is a solution of (2.3) uniformly bounded in V. Let W be a finite dimensional subspace of V such that (3.4) is satisfied. Assume moreover that there exist periodic functions $f_\infty(\cdot), p_\infty(\cdot)$ with value in H and W and period $T > 0$, such that

\[(4.2) \quad \lim_{t \to \infty} |f(t) - f_\infty(t)| = \lim_{t \to \infty} |Pu(t) - p_\infty(t)| = 0 .
\]

Then there exists a periodic solution u_∞ with period T of the equation

\[(4.3) \quad u'_\infty + VAu_\infty + B(u_\infty, u_\infty) = f_\infty ,
\]

such that

\[(4.4) \quad \lim_{t \to \infty} |u(t) - u_\infty(t)| = 0 .
\]

Proof

Apply (4.1) to u and $v, v(t) = u(t + jT)$. Then for $lt \geq t_0$, we obtain at time $t + lt$:

-14-
For \(\epsilon > 0 \) given, let \(t_\epsilon > t_0 \) be such that for \(t > t_\epsilon \)
\[
|Pu(t) - p_m(t)| < \epsilon, \quad |f(t) - f_m(t)| < \epsilon.
\]
Then from (4.5) we obtain that
\[
|P(u(t + jT) - u(t + (j + L)T))| \leq c_5 e^{\frac{-n(t+L-T-t_0)}{t}} e^{\frac{\epsilon}{T}}
\]
\[
+ c_5 c(u,f) \int_{t_\epsilon}^{t} e^{\frac{-n(t+L-T-t_0)}{t}} e^{\frac{t+L-T}{t}} dt + \delta \epsilon e^2 \int_{t_\epsilon}^{T} e^{\frac{-n(t+L-T-t_0)}{t}} dt
\]
so that
\[
\sup_{t \geq t_0} |P(u(t + jT) - u(t + (j + L)T))| \leq c_5 e^{\frac{-nL}{T}} + \frac{c_5 \epsilon^2}{T},
\]
for every \(j \geq 0 \) and \(L \geq \frac{t_0}{T} \). Therefore \((u(t + jT)) \) is a Cauchy sequence in the space of continuous founded functions from \([t_0, \infty)\) into \((I - P)W\). Thus there exists a continuous bounded function \(u_m \) from \([t_0, \infty)\) into \(W \), such that
\[
(4.6) \quad u(t + jT) \to u_m(t) \text{ as } j \to \infty \text{ in } W, \text{ uniformly in } t \text{ on } [t_0, \infty).
\]
Since \(|Au(t + jT)| \leq c_4 \) for all \(t > a, \quad L > 1 \), we see that \(|Au_m(t)| \leq c_4 \) for all \(t > a \), and
\[
(4.7) \quad u(t + jT) \to u_m(t) \quad \text{in } V, \quad t > a.
\]
It is then easy to see that \(u_m \) is a solution, bounded in \(V \), of (4.3), and \(u_m \) is periodic of period \(T \), just because of (4.6). The convergence
\[
(4.8) \quad \lim_{t \to \infty} |u(t) - u_m(t)| = 0,
\]
follows immediately from (4.6) as well as the T periodicity of $u_\circ(*)$. The convergence (4.4) follows from (4.8) and the fact that $|Au(t) - Au_\circ|_r$ remains bounded (by $2c_\circ$) as $t \to \infty$.

We then deduce the following result for stationary solutions

Theorem 4.2

The assumptions are similar to those of Theorem 4.1. We assume that there exist $f_\circ \in H$ and $F_\circ \in \mathbb{W}$ such that

$$|f(t) - f_\circ| + 0, \quad |Pu(t) - P_\circ| + 0, \quad \text{for } t + \infty.$$

It follows that there exists $u_\circ \in D(A)$ such that

$$|u(t) - u_\circ| + 0 \quad \text{for } t + \infty,$$

where u_\circ is a (stationary) solution of the Navier-Stokes equation

$$\nabla u_\circ + B(u_\circ, u_\circ) = f_\circ.$$

Proof

We apply Theorem 4.1 with $T > 0$ fixed, arbitrary, and we obtain (4.3), (4.4). Now $T > 0$ can be chosen arbitrarily small and since u_\circ must be independent of T in (4.4), we conclude that u_\circ has period 0, i.e. u_\circ is independent of t.

-16-
5. Remark on Galerkin approximation

We now assume that the dimension $k = 2$.

For simplicity we restrict ourselves to a Galerkin approximation of Navier-Stokes equations based on the spaces V_m, i.e., the family w_j of eigenfunctions of the Stokes problem. We will show that if m is sufficiently large, the behavior as $t \to \infty$ of the Galerkin approximation u_m, is completely determined by the behavior as $t \to \infty$ of a certain number m_* of its modes, i.e., of $P_{m_*}u_m, m_* < m$. This number m_* does not depend on m.

5.1. Galerkin approximation

For fixed m, the Galerkin approximation u_m of the solution u of (2.3) is defined by:

$$
\begin{cases}
 u_m' + \nu A u_m + P_m B(u_m, u_m) = P_m f, & t > 0, \\
 u_m(0) = P_m u_0.
\end{cases}
$$

It is classical to derive a priori estimates independent on m on u_m: for example, for every $t > s > 0$:

$$
|u_m(t)|^2 + \nu \int_s^t |u_m(s)|^2 ds \leq |u_m(s)|^2 + \frac{\lambda_1(t-s)}{\nu} [f]
$$

and

$$
|u_m(t)|^2 \leq |u_0|^2 e^{-\nu \lambda_1} t + \frac{(1-e^{-\nu \lambda_1 t})}{\nu^2 \lambda_1} [f]^2.
$$

The following a priori estimate is verified by u_m:

Lemma 5.1.

$|u_m(t)|$ is bounded independently of m and t for $t > a > 0, m > 0$.

Proof.

Taking the scalar product of (5.1) with $A u_m$, we obtain

$$
\frac{1}{2} \frac{d}{dt} |u_m|^2 + \nu |A u_m|^2 = (u_m, A u_m) = (B(u_m, u_m), A u_m).
$$

Because of (1.10), (1.17), the right-hand side of this expression is majorized by
\[|f| |A_n| + c_{ij} |u_m|^{1/2} |u_n|^{3/2} < \frac{\nu}{4} |A_n|^{2} + \frac{1}{\nu} |f|^{2} + \frac{\nu}{4} |A_n|^{2} + c^{*} |u_m|^{2} k_{m} |t|^{2}. \]

Therefore, with (5.3)

\[\frac{d}{dt} |u_m|^{2} + v|A_n|^{2} < c^{*}(1 + k_m |t|^{2})^{2}, \]

and for \(0 < s < t \), we can show by integration that

\[c^{*} \int_{s}^{t} (1 + k_m |t|^{2})^{2} \, dt < \left(1 + \frac{k_m |s|^{2}}{1 + k_m |s|^{2}} \right) e^{c^{*}(t - s)}. \]

If \(t > \alpha > 0 \), we integrate in \(s \) from \(t - \alpha \) to \(t \) and we find

\[c^{*} \int_{t - \alpha}^{t} (1 + k_m |t|^{2})^{2} \, dt < \left[e^{c^{*}(t - t - \alpha)} - 1 \right]. \]

Using (5.2), we see that the right-hand side of this inequation is bounded by a constant depending on \(\alpha \) but independent of \(t \) and \(m \) and the Lemma follows.

5.2. Behavior as \(t \to +\infty \) of the Galerkin approximation

Let \(v_m \) be the Galerkin approximation of the solution \(v \) of (2.4)

\[\begin{cases} \dot{v}_m + v A v_m + P_m B(v_m,v_m) = P_m g, & t > 0, \\ v_m(0) = P_m v_0, \end{cases} \]

and, as before, \(u_m \) denotes the Galerkin approximation of the solution \(u \) of (2.3).

We set for \(m < m \),

\[w_m = u_m - v_m, \quad P_m = P_m v_m, \quad q_m = Q_m w_m, \quad e = f - g, \quad e_m = Q_m e. \]

Then

\[\frac{dq_m}{dt} + \nu q_m + Q_m P_m B(v_m,w_m) + Q_m P_m B(w_m,u_m) = Q_m e_m, \]

and consequently,

\[\frac{1}{2} \frac{d}{dt} |q_m|^2 + \nu |q_m|^2 = - (B(v_m,w_m),P_m q_m) - (B(w_m,u_m),P_m q_m) + (Q_m e_m, P_m q_m). \]

The right-hand side is equal to

\[\begin{align*} & (Q_m e_m, P_m q_m) - (B(v_m,P_m q_m),P_m q_m) - (B(v_m(I - P) q_m),P_m q_m) \\ & - (B(P_m,v_m),P_m q_m) - (Q_m e_m, P_m q_m), \end{align*} \]

and because of (1.10) and Lemma 5.1, this quantity is bounded by
\[|Q_m| + c\sqrt{V} \frac{1}{\sqrt{2}} |q_m| + c|v_m| \frac{1}{\sqrt{2}} |p_m| \frac{1}{\sqrt{2}} 1/\sqrt{2} |k_m| \]

\[+ c\sqrt{V} \frac{1}{\sqrt{2}} |q_m| + c\sqrt{V} \frac{1}{\sqrt{2}} |p_m| \frac{1}{\sqrt{2}} \sqrt{2} + c\sqrt{V} \frac{1}{\sqrt{2}} |p_m| \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} |k_m| \]

\[+ c|q_m| \frac{1}{\sqrt{2}} \sqrt{2} |k_m| \]

\[\leq \lambda_{m+1}^2 |Q_m| + c^n \lambda^{1/4} m_{m+1} + |p_m| |q_m| + c^n \lambda^{1/4} m_{m+1} q_m^2 . \]

If

\[(5.6) \quad \lambda_{m+1} > \left(\frac{n^4}{2} \right) \]

we set

\[(5.7) \quad v^* = 2(v - c^n \lambda^{1/4}) > 0, \quad \epsilon = \frac{1}{2} - \frac{c^n \lambda^{1/4} m_{m+1}}{2v} > 0 , \]

and we bound the last quantity above (5.6) by

\[\frac{\epsilon v}{2} |q_m|^2 + \frac{\lambda^{1/2}}{2v} |Q_m|^2 + \frac{\epsilon v}{2} |k_m|^2 + \frac{(c^n)^2 \lambda^{1/4} m_{m+1}}{2v} |p_m|^2 + c^n \lambda^{1/4} m_{m+1} q_m^2 \]

and we find

\[(5.8) \quad \frac{d}{dt} |q_m|^2 + v^* |q_m|^2 \leq \frac{\lambda^1}{\epsilon v} |Q_m|^2 + \frac{c^n \lambda^{1/2} m_{m+1}}{\epsilon v} |p_m| \]

As for Theorem 2.1 we obtain

Theorem 5.1

we assume that \(t = 2 \) and that \(m > m, m \) sufficiently large so that (5.6) is verified. Then:
i) If
\[|P_m(u_m(t) - v_m(t))| = 0, \quad |(I - P_m)(f(t) - g(t))| = 0 \]
for \(t = w \), then

\[(5.9) \quad |(I - P_m)(u_m(t) - v_m(t))| = 0 \text{ for } t = w, \]

\[(5.10) \quad |u_m(t) - v_m(t)| = 0 \text{ for } t = w. \]

ii) If
\[|P_m(u_m(t) - v_m(t))| \to 0, \quad |(I - P_m)(f(t) - g(t))| \to 0 \]
for \(t = w \), then (5.9) holds and instead of (5.10),

\[(5.11) \quad |u_m(t) - v_m(t)| \to 0, \quad \text{for } t = w. \]

Remark 5.1

This theorem will take its full interest if we can relate the behavior for \(t = w \) of the Galerkin approximation \(u_m \) of \(u \), to the behavior for \(t = w \) of \(u \) itself. This question will be considered in a subsequent work.
REFERENCES

Title: Asymptotic Numerical Analysis for the Navier-Stokes Equations (I)

Authors: C. Polas and R. Temam

Performing Organization: Mathematics Research Center, University of Wisconsin, Madison, Wisconsin 53706

Controlling Office: U. S. Army Research Office, P.O. Box 12211, Research Triangle Park, North Carolina 27709

Contract or Grant Number: DAAG29-80-C-0041

Report Date: January 1982

Number of Pages: 22

Security Classification: UNCLASSIFIED

Distribution Statement: Approved for public release; distribution unlimited.

Abstract: The aim in this work is to show that, in a "permanent regime", the behavior of a viscous incompressible fluid can be, in principle, determined by the study of a finite number of modes. It is proved that the behavior of a part of the solution to the Navier-Stokes equations is completely determined by the projection on appropriate finite dimensional subspaces, corresponding to eigenvalues of the linear operator, or more general subspaces, including finite element subspaces. Some indications on the dimension of such subspaces are given.