- Best
Available
Copy

PR dE U

ADA114513

OMC FICE TOPY

SOSAP-TR-20 A

THE META DESCRIPTION SYSTEM:

A System t©o renerate Intelldpgent
infcrmation Systems.

PART TI: THE MDEL SPACE

by

C.V. Srinivasan

Dept, of Cumputer
Hill Centre,

Science
Busch Campus, Nutzers,
The State University or Neday

New Brunswick, N.J. 08903,

This work was supperted by Grant

DAHCIS - 73 .. G6 of the Advanced
Research Projects Agency.
AFPROVED ™™ ™1131,7 2 REaAlgl}

o DISTRIGU. .u UNLINLIED 23

g2 05 17

din

July 1977

DTIC

ELECTE
MAY 18 1982 |

05

D

Lo P T—v———a

Accession For

[NTIS GRARI]
DTIC TAB 0
Unannounced]

Justification . . |

By

THE META DESCRIPTION SYSTEM: _Distridution/
Availability Codes

A SYSTEM TO GENERATE INTELLIGENT = (avail amdfor —

INFORMATION SYSTEMS - PART T, Dist | Special

THE MODET, SPACE.* g[
| }

k u\\ By Chitocr V. Srinivasan**

: ABSTRACT: This paper discusses the architecture of a

meta-system, which can be used to generate intelligent
information systems{cr different domains of discourse.

Tt points cut the kinds cf knowledge accepted by the

O N e

; system, and the way the kncowledge 1s used to deo nen-
trivial problem solving., The crganizaticn of the system

makes it possible for it tc function in the cmtext of

an expanding mcdel space., The problem solving systems

in the meta system ccmmnicate with the model space in

the language defined for the domain. They have the
capability to improve their performance, based on the
kncwledge gained from this communication. The meta-
system provides a basis for the definition of the ccncept
of machine understanding in terms of the models that the
machine can build in & dcmain, and the way it can use

the models.
———————————— \.—__\

* This werk was supported by 2 grant from the Advanced
Research Prcjects Ajency (grant number DAHCIS-73-G6),
of the Gevernment of the United States cf America,

#%Departient of Computer Sciencc, Hill Centre, Busch Campus,
Rutgers University, New Brunswick, N.J. 08903.

LA~ |

T

(1)
Table of Contents Pages
Intrcduction i
1.1 Central Cencepts and the MDS paradim 3
1.1.1 Relaticnal Systems, Descriptions
and M:del Space 3
1.1.2 The Problem Solving Systems of MDS 7
1.1.3 The MS Paradigm 11
1.2 Relationship tc Other Systems 14
MDS Mcdel Space and the ASSIMILATOR 1
2.1 Intrcducticn Wy
2.2 Knowledge Reresentation: Fceus cn Objects
and classcs 17
2.3 The Structure (f Descriptions 18
2.3.1 Descripticn Schemas and Templates 19
2.3.2 The ASSIMILATOR Control 25

2.3.2.,1 The Domain Compiler and
asscciated Facilitics in MDS 25

2.5.2.2 Examples of Representations,
Access Functions, and the Basic
Commands of the ASSIMILATOR 30

2.3.3 The Compilation Process 34
2.4 Consistency Cenditions or Sense Definitions i

2.%.1 The Natupe of Constraints:

Soume Examples o7

2.4.2 Wnhat shculd sense Definition do, 39

2.5 Representation and Uses of Constraints 4o
2.5.1 Use cf Bounded Quantifiers 4o
2.5.2 Use . f Relaticn Paths 43

2.5.32 Use «f Definitional Anchops Ly

2.6.

(11)

2.5.4 Use of Ivocaticn Anchors
2.5.5 Usc of Set Constructs

2.5.6 Uses of CC[X r] as a function and a
rredicate ; Examples of Commonsense
Refsohlfig ...»

2.5.7 Internction Between Relaticns:
Their Recognition and Eaxibrol ...

2.5.7.1 DONLISTS and DETLISTS...

2o Dimensionality of a cC..

2.5.7.2 Censtruction of DONLISTS
and DETI.ISTS

2.5.7.% Definitional Filters

2.5.8 Focus Lists and Updating Prccesses
2.5.9 IMnchored Transformation Rules

Objcet Based Representaticn:
Bundles.,,

ITT. Residues, Commonsense Reasoning and
CC-evaluations

3.1
52
3.3

Syntax of consistency Cenditicns
The Mini-scupe Form

Residues and Partiticns

Pages

Iy
bs

48

57

57
59

61
63

T2

92
92
95
97

3.2.1 Resldues and partitions cf Propesitions 99

3.3.2 Residues and partitions cf redicate
expressions

3.32.2.1 Substitution Ranges, Their

Partitions and Sclutions of P

5.3.2.2 E-solutions: of p

100

100
103

(111)
bPapges
3.5.3 Elementary Forms 108
%.3.4 Propesiticnal Forms 109
3.,3.5 Mnisccre Expressicons 111
3.%.5.1 Universal Quantifier 111
3.%5.5.2 Existential Quantifier 113
3.4 Computaticn of Residues and Partiticns:
An QuelEview . .. 115
3.4.1 The Evaluaticn Algcrithm 116
3.4.,1.,1 Single Universal Quantifier 116

3.4.1,2 Single Existential Quantifier 119
%.4.1.3 General Predicate Expressicns 121

3.4.2 cCumputaticn of Scluticns for Pro-

pesitional Expressions 1235
3.4.3 Cunments «n the Evaluation Prccess 127)
3.5 Commensensc Reascning and Prcblem Solving 129
3.5.1 Basic Thecrems 129
3.5.2 Updoting and Learning The crems 130
3.,5.2.1 Basis for simplification cf
ccnsistency checks 3
3.5.2.2 Basis for Learning 13%
3.5.2.3 Use of Fceus Lists to guide
Intelligent ccnversation: 139
3.5.2.4 Use of Focus Lists to guide
Recognition 140
3.5.3 Basis fcr Theorem Proving 142
3.5.3.1 Gentzen's System of Logic and
the calculus cof sequents 142
3.5.3.2 A Proof Example 145
3.5.4 Bosis for Means-end Analysis 150
IV. Concluding Remorks 152
V. Ackncw ledgements 155

VI. References

2% Appendix I:

Aprendix I:

Appendix I75:

M- aification tc¢ the Description
Structure

Representatiocn of Collections and
s¢ts in the Mcdel Space

daybation ¢f Gentzen's System of
li.diec t¢ Thecrem Proving in MDS...

Pages
158

A1

A-2

A=10

r_— ———ﬁ

1. INTRODUCTION

The Meta Descripticn System (MDS) 1s a system for
describing knowledpe in a domain to a ccomputer. MDS can
be used to generate intelligent infcrmation systems, autc-

matically frem deseripticns of kncwledpe in a demain of

discourse. The dcmain cculd be diverse as for example,
Medical Diagmesis [Irwin % Srinivasan 19757, Modelling

Psychelopidical Systems [Sridharan, Schmidt & Sridharan

1976, 1977] or Mana cment Information System [Srinivasan
19747, The majcr application of MDS has heen sc far
in modelling psychcle ical systems. A brief discussion
of some of the features cof MDS appcars in Srinivasan

[1973a, 1976f].

This paper presents infermally the logical basis for
the organization and -peraticn of twe of the major subsystems
cf MS: Its MODEL SP.CE, and the problem sclving subsystem
called, ASSIMILATOR,* which is respcnsible for the consistency
cf mcdels in the MODEL SPACE. The ASSIMILATOR helps the
MODEL SPACE assimilate asserticns about mcdels, making
surce that the laws of 2 dema@in are not viclated, It is alsc
respensible for preducing reaScns that explain why certain
asserticns are accepted, cthers are not, and yet cthers are
accepted ccnditicnally cn certain hypothses. These reasms

anl hypctheses will cinstitute the systems cown understanding

* This 1s a new terminclegy. This subsystem was beilng called
INSTATIATOR-CHECKER in previous rep-rts.

T e A T T = A T T T it iiapubye R

e

-2~

of The assertions,. They also fcrm the basis for all problem
Solving and intellircnt activity in MDS. The reascns repre-
sent chunks of knowled;e that may be used in a problem sol-

ving process to muide search.

The crganizati - and cperation of the MODEL SPACE and
ASSIMILATOR are cenl:~l to the MDS concept of imonledge itself,

and its assceiated nctions of understanding, descripticn and

usc of knowledge., The vbjective of this paper 1s to mresent
an operaticnal view ¢f this knowledge as it pertains tc the

MODEL S PACE. |

The basic mcdelling ccneepts are presented in the
ccntext of a stylizeld dumain ¢f discourse: Transpcrtation
Systems and Problems like the MISSIONARIES & CANNIBALS
(MC), FARMER & SON (F&S), ete. This is done fop peda-

gopical reasons.

In Section 1.1 lclw we shall give a bricf outline cf
the central concepts in MDS, and introduce the MDS -paradignm
for intelligent operaticn. We shall alsc estahlish the

terminclogy used in the paper.

Implementation Status of MDS

There are now tw. partially implemented versions cof MDS .
One 1s MDS itself, which is implemented in INTERLISP., Only,
the so called domain accguisition part of 1S now cperaticnal,

This accepts definitions of domain knowledre in

-3=

the meta-language of DS, and represents them in the mcdel space
in a form suitable foer compilation and later use. Jcel Irwin,
John Ng and Tau Hsu participated 1n this implementaticn,
tocether with the auth-r. The second part «f MDS, namely the
cude for the domain compiler, which derives fr m demain defini -
ticns procedures appropriate for the ercati o and maintenance
of the model space, 15 ncw being written,

The cther versicn cf MDS 15 called AIMDS, Acticn Interpre-
teticn MDS. This 1s implemented in FUZZY [Le Faivre 1976]. There
are differences between MDS and AIMDS 1in syntax and certain cther
definiticnal ccnventions. AIMDS is an interpretive version of a

subset of MDS. It is nuww being used fer mcdelling "belief systems'.

1.1: Central Concepts and the MDS - Paradi om

1.1.1: Relaticnal Systems, Descripticn
Longuage and Model Spaces.

The Mcdel Space, Mp» * <of a demain 1is central tc the archi-

tecture of MDS, and its uses. The structures and prccesses in the

mcdel space are derived autcmatically by MDS from definiticns cf

a Relaticnal System, R, Rp itself 1s defined in the meta, language
|4

of MDS. Rp alsc forms the basis for the definition of the syntax

and semantics cf an ¢lementary degerdpticn language, Ly, which

is used tc. descri e, ccneepts and prchlems

* We shall throush ut use the subscript 1; @8 Yn Nb, to dencte
the prctctypic 1main, Transportaticn Systems.

e

(hereinafter calleq entities) in the domain,

Descripticn Lan uage, Ly

Every well-formed relation 4n HT may cceur as a phrase

(literal) in Lp. Thus, in our demain, cne may have rhrases
like "(p locaticnor D)"Y, "(v cangoto p)" etc., where pis a
PLACE, h Say, is a HUMAN, m is an ANIMAL ang VvV, @& VEHICLE.
Lp may alsc have, in addition, command phrases like (ASSERT
(b leccaticnef h)(n helding m)), (FROVE((ALL Humay h) (THERE-
EXISTS PLACE p)(p l.caticncr h))) ete. Thase are commands

to one cr mere prolien Sclving systems of Mmps, "INSTANTT ATE "

is a command to the /SSIMILATOR., "ASSERT" apq "GOAL" are
ccmmands to the DESIGNER, Which is a goal-directed Prcbhlem
Sclver [Srinivasan 1g976r, 1977¢c 1. Whereas, ASSERT and GOAL
mAy have preccnditicns, INSTANTTATE dces not. "PROVE" s
8 command t¢ the THECREM FROVER (TP) [Srinivasan 1976¢,
1977ax* 1,

Sentences in Lp may be of two types: Declarative
Cr Prccedural., The Sentential structure of declarative
sentences 1s a variant of the Sentential structure cf
the language of first order lcgic. Examples of declara.
tive sentences appedr in secticn 2. These are used tc

éxXpPress the static Lows_ of a dcmain;: The laws cf ccnsis-

tency that any glven state cof the model space shcyld satisfy,

*¥% In preparation,

oG

-5-

The prccedural sentences are used tc express the dynamic
laws: The laws of change in the mcdel space, Every
procedural sentence will have at least cne cecurrence

of a command phrase. Examples ¢f such sentences ceeur

in seetion 2.5.9.

The semantics ¢f Lp is entirely defined by the
semantics of the relaticns in Rp. For the relations in

Rp their semantics 1s defined by patterns cf interactions

that they may have in the model Space: How the consis-
tency of cne relaticn may depend on the consistency of
others. The forms of definiticns of Rp, the ra&ticnale
fer thelr cholce, their interpretaticns, ana the assump-
tions cn the contrcl structure of the ASSIMILATOR that

they entall, are all discussed in section 2,

Representations in the M.del Space: Bundles.

The structure cf Rp 1s also used by MDS to design
a system of representaticns for mcdels of entities in Mp.
These representaticns 2re like the "frame" representaticns,

Proposed Ly Minsky [1975]. Each mcdel is a data-structure

representing a pundle of interconnected pleces of infeor-
mation, where each picce has its own substructure. Each
bundle (mcdel) may have a name, will have references to
1tself and its definiticn, and will contain a set of slots.

Each slct is used t.. represent a property cf the bundle.

e

Each Property representaticn will itsellf consist cf a set
cf slcts : ope each fir the broperty value, reasons fcr

the value, QypctheSes, rules of tranSformatmans, and

Datterns cf interactions with cther bundles in the model

Space,

Each sueh bundle 1s a natural unit cf knowledge 1in
the domain, in the Sense that, as a unit, it barticipates
in all interacticns with cther such units in the model spacec,
From each bundle one nay .obtain a view of the entire mede 1
Space, as it pertajns te the bundle. Also, the bundle 1s
the focus cf attenticn in all brceessing done in the mcde 1
Space. As we shall Sec¢, the bundle Structure nct only
Intrcduces a "megulap ™ System design, but also, in a very
real sense makes intellipent Prceessing feasible, 1in

practice,

The mcst Significant aspect of MDS is that the bundle
representaticns ang all its assceiateqd processors: for
establishing and maintaining a consistent medel Space, are
compiled automatically Ly MDS from Schematic definitions of

the structure and semantics of RT. The ccmpiled pPrceedures

can supply the reascns fcr the event, in the language Lp.
The nature of this compilaticn process is brierly outlined

in secticn 2442 5

il T T et et et

=Te

The Model Space Logic

The model space works in a three-valued. logical system:
T(True), ?(Unknown) and NIL(False), T > ? > Ni1l, AT = NIL
and ~? = ?. The ability to instantiate schemas defined in
RT, update properties of bundles, and do model based reason-
ing and hypothesis generation, is primarily due to the use
of the 3-valued logic. We shall use the phrase, Common-

sense reasoning, to refer to the model based reasoning

done by the ASSIMILATICR. Examples of this reasoning process
are presented in section 2.5.6 through 2.5.8. The deductive
mechanisms used for this process are defined in section 3.

1.1.2 The Problem Solving Systems of MDS

The ASSIMILATOR iS the monitor for the model space.
A1l events in the model space are initiated and directed
by the ASSIMILATOR. It recognizes four kinds of commands :

Instantiator Commands, examples of which we saw before;

Recognition Commands, which are used to identify the class
membership of a bundle; Comparison Commands, which are used

to test for equality of bundles; and Retrieval Commands

which are used to identify the bundle or bundles associated

with a given name or phrase in Lp. The instantiator

commands may present at a time a set of relations, all of
which are to be instantiated in parallel, The assimilatcr

is responsible to translate the relations to their associated

representations, or mcdifications tco representations, in the

B e e O NS —‘

=8

medel space. For example, tc assimilate "(p locaticnof n)"
it might be necessary tc make several Seccndary changes in
the mcdel space, in .rder to maintain consistency. Thus,
if h was holding m, then the lccaticn of m should alsc be
set to p. Alsc, if h was initially at the place, g, then
~(g lecaticncf h) sheuld be made true in the new model
state. The ASSIMILATOR can reccognlze and lncarpcrate such

Seécondary changes,

The ASSIMILATOR dves not have the dcmain knowledge or
the contrcl structures necessary tc plan and execute a
sequence of actions in the medel space, Thus, it would
not know that h should have arrived at p using a VEHICLE,
1f suchvas the case., TItis the role of the DESIGNER to
recognize preccnditions fer actions and plan action sequen-
ces, that seek to aclieve given geals. Thus, in response
to (GOAL(p lceaticncf h)) the DESIGNER might construct the
sequence: For a vehicle, v,

(ASSERT (v holdingz h))

(ASSERT (p locatiinct v))

(ASSERT ~(v holdins h)),
and present to the ASSIMILATOR the correspending acticns
one by one. The reaswuns Supplied by the ASSIMILATOR for
the success cr failure f the acticns may be used by the

DESIGNER in the planning process itself, to modify a

-

ol

given plan. Thus, for example, the DESIGNER might recelve
the explanation "~(v loccation is lccaticnof h)", as the
roascn for the failure of the asserticn "(v holding h)".
Tc correct the errcr The DESIGNER might chcose another
VEHICLE, vi, Which is at the loccation of h, cr else have
v brought tc where h is. Also, the next time the DESIGNER
makes an asserticn like "(v holding h)" 1t would already
make sSure that v and h are at the same locatipbn. Thus,
the DESIGNER wculd have learnt an elementary fact of the
domain. The learned infcrmation waild be summarized as a
rule in the DESIGNER's own lccal state. Rules like this
will be used by the DESIGNER not only tc avold repeating
mistakes, but also t¢ make the righ‘c cholces, wherever
feasible. Examples ¢f these processes are discussed in
Srinivasan [1976f, 1977c¢]. The lcgical basis that makes
it possible to use reascns in this mamner is establlished

in secticn 3.

The DESIGNER will attempt to plan and achleve cnly
goals that are specified to cbjects that already exlst in
the mcdel space, cr obhjects that are expliclitly created,
using the INSTANTIATE (cr CREATE) commends. The DESIGNER
does nct have the ccntrcl structure necessary tco direct
and sequence through a construction process tc medel

predicate expressiwns. Fcr example, the DESIGNER cannct

prove an assertion like:

1B
((ALL HUMAN h) (THERE-EXISTS PLACE p)§ locationcf h)).

The THEOREM PROVER (TP) is used in MDS to prove assertions
like the cne above, assertions that hold universally true
in a dcmain., The TP uses Gentzen's system f natural
deducticn. It uses the mcdel space to discover the cons-

traints that given asserticns imply. The method of proof

1s like B th's Semantic Tableaux methcd [Srinivasan 1976c].

The prcof is attempted by seeking to build a mcodel for a

counterexample. Details of the TP are presented in Srinivasan

[1977d]. They are briefly discussed in section Dl s

These prcblem s.1lving systems determine the scope cf
the system's understanding for a given corpus of dcmain
knowledge. In some sense the concept of domain kncwledge
itself seems to exist unly because of the existence of
control structures that can do these various kinds of
problem sclving., The capability for understanding, exhi-

bited by MDS in the cintext of these oproblen solving

systclis, forms the basis for loncuage understonding in MPS,

In the rcalm of description languases, Lp, has the status .
that "asseubly languazes"™ have in prosgruwming systons.
Tizher level desceription langunge nay be defined and
processcd in MDS ueing tihc subsysten cnlléd, LINGUIST,

The formalisms and processes of the LINGUIST will be

P —

— B e

]l

deseribed in a futurc paper,

)
The LINGUIST is responsible to transilate sentences

to phrases, that ASSTIMILATOR can understand. As shown
in figure 1, the LINGUIST can use the DESIGNER and the

TP in this prccess. The hypctheses Supplied by the
ASSIMILATOR will be used by the LINGUIST, as expectations
in the ccntext of a discourse. The reasons for contra-
dictions in the model Space will be used to seek alter-
nate interpretaticns,

The ccllection of all reascns and hypotheses genera-
ted during the assimilaticn of a sentence will represent

the system's ocwn mnderstanding of the sentence.

1455 The MDS - Paradigm

The MS -Paradigm is Shawn in figure 1, It ccnsists
of two parts: The demain definition part and the demain
utilization part. In the demain definition part the meta.
language of MDS 1is used to¢ define Rp and Lp. These

defipitions are translated to representations in the model

Space by the Demain AcQuisition System (This part cf MDS
1s now cperational), These representations of Rp and L

are used by the domain cumpiler to generate code for the

cereaticn and maintenance of models in the mcdel Space .,

(This part 1is now being ccded),

in the dcmain utilization part, sentences in LT are

R e e e S SRR

-2 -
DEFINITIONS IN THE || DOMAIN ACQUISITION
META-LANGUAGE OF MDS A 5v STEM
I 5
e
+ META REPRESENTATIONS OF Lp & Ry H
-l
e I BUNDLE STRUCTURES: MCDELS e
MODEL SPACE Y A
g o
ot
«
Doman Dependent Procedures for the g
creation and updating of Models A
T =T o Sle e, S """‘“‘\Al/_ T i g L SR, | e e SRS '_*”"'
ASSIMILATOR CONTROL b t |
) 4 & & T M I L A T O R l “
8. I |
v , o i
Reasons & Phrases 1in Ly Reasons & f |
Hypotheses ~ Hypotheses | |V
;— V8
4 ! o ot
D-STATE || D-CONTROL % TP-STATE || To-CONTROL]l[
t (& |
DESIGNER - TP o
3 |
| 5
| 2 .
. 5 2
1 .L-STATE || L-CONTROL - B
LINGUIST

{ Sentences in LT

_/ Figure 1: The ¥DS - Paradigm

B e e e W — -J

13-

recelved by the LINGUIST, which 1s responsible to translate
them to phrases in Lp that ASSIMILATOR can understand. In
dcing this translaticn, the LINGUIST may make use of the
DESIGVER and the TP. Each cne c¢f these problem solving
systems has its cwn local state. These lccal states are
kept updated by the respective ccntrols of the problem
solving systems, with informaticn received from the
ASSTIMILATOR, namely the reascns and hypotheses gere rated

by the ASSIMILATOR 1in respcnse to the phrases at its input.
The problem sclving systems use the infcrmation in their
respective states to pgulde thelr cwn activities. This forms
the basis for learning in MDS,

The lccal state of a prcblem solving system may be

viewed as a mcdel of the system's own past activities.
Such mcdels may again be themselves described schemati-

cally in the peta-lan uage cf MDS. Thus in MS, one may

specify hcw a problem sclver shculd mcdel 1ts own activities.
The modelling schemas fcr the DESIGNER'S problem sclving
state are discussed in Srinivasan [1977c]. For a given
prcblem sclver like the DESIGNER 1its mcdelling schemas

ma&y be domain dependent, cr within a domain it may depend

on types of prcblems. Thus domain knowledge may appear

in bundles 1in M)S at various levels of the system's
activities: At the level of the model space it may
appear as the data-base for a domain. At the level of

the LINGUIST, 1t may appear as definitions of the syntax

14

of Ly or as decision processes associated with I, INGUIST.
In each problem solving system the bundles may appear in
the representation of the problem solving states and 1n
the decision processes of the problem solver.

The logical basis for learning and commensense

reasoning within this paradigm is established in Ssection 2

1.2, Relationship to other systems

MS incorporates in its organisation many of the
important concepts that have been developed in AI-systems

over the last two decades:

"Means-end analysis" [Newell, A, et. al. 19597 1s

used in model-space updating, and in problem solving by
DESIGNER; 'Theorem proving" is used to establish general
assertions in the dcmain; "Procedural specifications of
knowledge " is used [Hewitt 1972, Wincgrad 197571 to define
the dynamic laws of the domain, the laws of change in the
model space; 'pattern-based invocation" of procedures is
used by DESIGNER; "declarative specificatiocns of knowledge"

in first order logic is used to describe the static laws

of a dcmailn, the laws of consistency that a model space
should satisfy; knowledge in the model space is represented
in "frame" like bundles, which behave like molecules in

interacticns with each cther; finally, relational systems

are used as the basis for defining model spaces and

“15=

languages. MS provides the legical frame work and an

architecture in which these ¢ncepts function together,

MS dces not seck to define yet another precgramming
language c¢r seek to ccntribute to programming technigjes.

MS 1s a problem Solving system, which can _generate

proggams frcem definiticns of knowledge in a domain. It

proposes a view of kncwledge, and provides a formalism

for defining knowledpe., In defining this knowledge a user
need nct ccncern himself with pcssible interactions between
ccmpenents of his definitions, and prcvide procedures tc
process such interactions. As we shall see in secticn 2.5.7.
MDS itself can derive from the definitions the prccédures
necessary to anticipate and process interactions between
models., Thus, the definitions themselves are modular. We

Shall see examples cf these definiticns in secticn 2.

MS makes a clear distincticn between the model space
and its control structures, and the control structures cf
the various problem Sclving systems. The representations
and processes in the model Space are ccmpletely independent
cf the prcblem solving systems, like DESIGNER, TP and LINGUIST.

Because of the commensense reasoning paradigm each rroblem

Solver is able to get from the model Space new c anbinations
of domain knowledge specific to its own needs, Using these

chunks of knowledge each problem Sclver may develop 1its

-16-

cwn specific views c¢f the mcdel space. The ability and
efficlency of these i1interacticns between the problem
solvers and the model space i1s 1limlted only by the
primitives -- descriptive relaticns -- available in the
model space, Since tle relaticnal system determines the
description langua;e <«f a domaln, ¢this 1s the same as
saying that the prcblem sclving efficiency 1s dependent
on the ccncepts expressible in the descripticn language.
Thus, MDS brings tc¢ focus the kncwledge representaticn

1ssue as an issue of language design, and nct as an 1issue

of program design cr data-structure design.

Major innovaticns in the MDS architecture are:

(1) the use c¢f relaticnal systems as the basis ﬂ
for the design cf mcdel spaces and languages;

(11) The formalism used to describe knowledge, and
the control structures that can use the defined
kncwledge tou do useful wcerks

() The architecture c¢f the model space in 3-valwed
loglc and the commensense reasoning paradigm.

We present in this paper, the loglcal foundaticns cf this
architecture, and establish the basis for using MS tc do a ,
variety of problem sclving activities, activities such as ?
assimilation, gcal directed planning and problem solving, thec-

rem proving, recogniticn, understanding, etc, Detalls of these
problem solving activities themselves will be discussed in

future papers.

PR SR ¢ e T T

-17-

II. MDS MODEL SPACE AND THE ASSIMILATOR
2.1 Intrcducticn

In this chapter we shall Intrcduce the logic, architec-
ture, methcds and uses, and forms of definitions of the MS
mcdel space, We shall define Rp, and discuss interpretations
given to the various components cf the definiticns in the mcdel
Spage. We shall present examples c¢f Lp, and structures and

prccesses in Mp, that are implied by Rn.

The definiticns cof Rp will contain three compcnents;

structural, sense ang transformational. For each ¢ cmponent

We shall discuss the definiticnal forms, and the raticnale for
the chcice of the foirms shown, We shall also point out the
assumptions on the ASSIMILATOR cantrol that they entail,

We shall see examples of ccmmonsese reasoning in the
W
model space and the role it plays in the maintenance of
censistency. The lcde of this reascning prccess and the

associated deductive mechanisms are defined in chapter III.

2.2 Xnowledge Representaticn: Focus cn Objects
&nd classes

There are two extremes in knowledge representaticn: One
may be called Operatcr-based and the cther object-based.
operatcr-based representations objects are treated as uninter.

preted formal entities, which may appear as components of a

S e e — PP ——

|

-18-

medel-state., A mcdel-state itself 1is described in terms cf
how one might arrive there, starting from one or more dis-

tinguished initial states, by applying cne or more sequences

of transformations (Operatcrs). Examples of such representa-
tions appear in Algebra, Group Theory and in certain game
playing systems. They are useful in situations where total
knowledée is available, and the objects involved show certain

closure preperties with respect to the operators.

In MDS the bias is predominantly tcwards object-based

representations. Here cperators and functions are characte-
rized in terms of hcw they affect properties of classes of
objects over which they may operate. The representations
foeus cn interactions between preperties of cbjects. This
kind of representati.i: leads naturally to the so called
"frame systems". There 1S nc nction of mcdel-state. The
model, in fact, is likely to be always inccmplete. Object
based represent§tions have several advantages, We shall
discuss them in the last sectiun cf this chapter. It is
useful tc first develocp an intuitive understanding fcr the
nature cf representaticns in the mcdel space and their impli-

cations,

2.3. The Structure of Descriptions

The constructs discussed below cover most of modelling

ccencepts in MDS. Certain aspects pertaining to the specifications

“19=

of properties cf relaticns, relaticn hierarchies, and defi-

niticns cof ftuple and function schemas, as well as meta-schemas

are not discussed. Tihese are defined in Srinivasan [1976e].
In what follews, we sihall use square brackets, "[" ana ""
to enclcse tuples, chain brackets, "{" and "}" to enclese

sets, and parentheses, "(" and ")" to enclcse gollections. We

also use parentheses to delimit relational fcrms and express-
ions in LT. 3c alsc, we use, at times, the square brackets
in expressicns in the Way INTERLISP uses them, tc indicate
automatic clcesure of parentte ses in nested expressicns. But

these shculd not cause any confusicn.

2.3.1. Description Schemas and Templates

We shall use descriptive relation names like "locaticnof",

"eangoto", "candrive ", "holding", etc. to describe preperties
of objects like PLACES, VEHICIEs, HUMANS, ete. For each such
relation name we shall Speclfy the classes of objects which 1t
may relate. This will define the forms of the literals that

may appear in LT. Thus, we shall say that
[S1] (PLACE Lecaticnof ITEMS)

1s a description schema assceiated with "locaticner ", A phrase

like "(x lceaticnof s)" 1s saig to be dimensionally ccnsistent
only 1f x is a PLACE and s 1S an instance of ITEMS, say s=

(x4 xg...xn). Here, (x1 - SO xn) 1s called a collectim,

also at times, called 2 1list. We wlll say

B

(x locationcf) = (x1 S xn), (2-1)
or write this as functicnal,
(x lcecaticnof (Xﬂ B s xn)) (2-2)

with the iInterpretation,

(x lceaticnof x1) ~ (x lceaticnof x2) 4
.++ ~ (x lccationof x) (2-3)

Thus, by conventicn, relations distribute over collections.

We shall coanstrain the elements cof ITEMS to be instances of
HUMAN, ANIMAL, VEGETABLE or VEHICLE. A given instance cf
ITEMS may have an arbltrary number of instances of these 4

elements. In MDS, this is specified by the schema:

[S2]: (ITEMS elements (HUMAN ANIMAL VEGETABLE VEHICLE)),
where "elements" is a distinguished relation of MDS: This
relaticn may appear only with classes that are sets or

collections (lists). Collcction and sets in the model space

should be ccntrasted with ncdes like PLACE, HUMAN, etc. Every
node is an individual., "(x elements)" is dimensionally in-
cnsistent for a node, X.

For every relation name, r, we shall define an inverse,

r' such that

((rx)(#y)(xry) & (yr'x)) ! (2-4)

In our demain, "lccationcf" and Mocation" are inverses of

each other. To satisfy (2-4) we may nw define either,

[S3] (ITEMS lccaticn PLACE),

21 -

or for each possible element of ITEMS cne may define its
associated schema, a&s fcllaws:

[S4]: (HUMAN locaticn PLACE)

[S5]: (ANIMAL lccation PLACE)

[S6]: (VEGETABLE lccation PLACE) and

[S7T]: (VEHICLE lccation PLACE).
We shall chocse the seccond alternative, In MDS, a schema like
[S4] 1is interpreted to mean that for every HUMAN, h, there is
only one PLACE, p, such that (h lcce@tion p). This is
because PLACE is a ncde¢. Thus, 1t would be dimensicnally in-

consistent to say (h lccation (p?! p?)) or (h location NIL)

Another kind ¢f schema definitiocn cceurs in the case cf

the relaticn name, "heldby", which is the inversecf "holding"..

|
|

An object can be heldby a HUMAN or a VEHICLE, This may be

indicated by the schemas:

[S8] (ITEMS heldby HUMAN\VEHICLE)
[S9] (VEHICLE holding ITEMS)
[S10] (HUMAN holding ITEMS)

Here the phrase "HUMANVEHICIE" is interpreted as (ONEOF HUMAN

VEHICLE). In our domain an object can be heldby cnly cne object.

Structural ~chemas like S1 through S10 are declared in
MDS by using devices called, Templates. Each template will
define all the schemas associated with a given class of objects

in the dcmain. The temp.ates for PLACE and ITEMS are shown
below.

P

Here. "IDN:" is the "femplate DefinitionN" commard in the
exisbting implementaticn ¢f MDS. The words "RN" and i T
assceiated re spectiveély with PLACE am ITEMS, in the defi-
niticns belcw are flags that indicate Speclal representation

or interovretaticns assceiated with the templates. The flag "By "

IEMPLATHS FOR PLACE AND ITEMS:

[TDN: (PLACE RN)(locaticnof ITEMS)]

[IPN: (ITEMS $L)(heldby v) HUMAMNVEHICLE holding)
(elements HUMAN VEGETABLE ANIMAL VEHICLE)]

defines PLACE to be o 'regular ncde" template. Tt is a node,
and it 1s regular in tﬁe sense that every instance of PLACE
chould have a nawe. Nomes are used 1n the model space and in
Lp to dencte cbjects (models). A model without a name is
called a dummy model. The flag "$L" assceiated with ITEMS
defines i1tems to be gﬂ"dummy “ist". Thus, every instance of
ITEMS is a 1is% (oolléééion),‘and an instance, say (x1 X, ...xn),
may not have any name associated vith 1t. The only way of refe-
rring to such an jsnstance in Lp would be via an assceiated rela-
tlon, like say (p lceaticnof), wherpe (p.lccationof) might be
cqual o {x, Xy weo Xn)°

The form "(heldby V)" in the ITEIS template, declares
'heldby" to be a variable relation, in the context of ITEMS:

There may be items, t, such that [t heldby) = NIL. This temp-
late alsc declares "holding" tc be the inverse of "neldby". If
ne finverse is specified, as - the case of "locationor™ in the
PLACE template, then the inverse 1S obtained by deleting
(ccneatenating) the suffix "op" from (tc) the indicated name.

s . P ——

23

Thus, the inverse cof "lccaticnof " will be "locaticn ",

Templates definec the dimensicnaligy of relaticns: What
classes a relation name may relate, They alsc Specify the
descri ption structurc_of a class: Wnat relations are used te
describe an instance of a class, In addition, as we shall
later see, they implicitly define a representation scleme
for storing descriptions of instances of a class in the
model space., They alsou, of ccurse, define a language to
refer to the components of such descriptions,

The templates fep the various classes in cur domatn ape
Shown in Table T, It is suggested that the reader get famj-
liar with the various classes defined in Table I, and their
respective deseripticn Structures., Scme of the templates in I
this table contain labels, 01, oc2, ete., assoeiated with
certain relaticn Schemas., These labels indicate the presence

of Consistency Conditicns (CC's) assceiateq With the respec-

tive schemas. For an instance x ¢of X, the CC assoeiated with
(xry)will ccnstrain the instances, y of Y, which may

appear as valueé of the phrase (x r) in the model space:

(x r y) can be true ir and cnly if the CC asscciated with
(xry)is satisfied by x and y, The forms, interpretations,
uses, and properties of oC's are discussed in the ensuing
Séctlens of this chapter., The oo's define the sense of the
relatins in the model space, Theip forms and interpretations)
in fact, establish the basis for the use of MDS as a meta-
System tc gencrate intelligent information systems. We shall

enter intco a discussicn of CC's aftor introducing some of the

e B e

TABLE I:

['TDN ¢

[TDN:

['TDN ¢

[TDN:

[TDN :
[TDN @

[TDN :

[TDN :

24

Templates for the demain cof
Trans portaticn Systems

(HUMAN RN) (type HTYPE)

(candrive VEHICLES canbedrivenby)
(compatiblewith ITEMS compatiblewith, €C1)
(holding ITEMS heldby)

(locaticn PLACE],

(VEHICIE RN) (capacity INTEGER)
(canbedrcvenby HUMANS)

(holdingz ITEMS - CC2)

(location PLACE)

(canscte PLACES canbereachedby)].

(ANIMAT, RN) (type ATYPE)
(compatiblewith ITEMS - CC3)
(lccaticn PLACE)].

(VEGETABLE RN) (lccatiocn PLACE)
(compatiblewith ITEMS - cCU)]J.

(PLACE RN) (lccaticnof ITEMS - CC5)]

(ITEMS $L)
((heldby v) HUMANVEHICLE - CC6))
(elements HUMAN VEGETABLE ANIMAL VEHICLE)]

(HTYPE RN) (typecf HUMANS)]
(ATYPE RN) (typecf ANIMALS)]

=25.

ccmmands cof the ASSMILATOR, the nature of representations in
the mcdel space, some of the cther definitional facilities in
MDS, and the ecncepts of domain ccmpilaticn,

2.3.2 The ASSIMILATOR Ccntrcl

2.3.2.1: The Dcmain Compiler and assceilated
Facilities in MS.

A template, X, may be used as the basis for designing a
system cf representation for storing descriptions of instances
of X in the model space. The “crm of this representation may
depend a the characteristics of the storage medium. Thus,
the representatiocn scheme for storing descriptions in a
"secondary store" would be different from the representaticn
scheme for a "primary stcre". We shall here pestulate the

avajilability cf functicns Pi1, 1 =1,2,...,m,
Pi : {<templates>} 1—~1-> (<datatypes>) (2.5)

that map templates uniquely tc their correspending datatypes
in the stcorage medium, i, These functicns will bca part of

the, sc called, domain ccmpiler,

MDS has several definitiocnal facllities that assist the
domain ecmpiler to desiin representations and produce effi-
clent compiled code, Scme of these are reviewed below,

The flags '"RN" and "$L", that we menticned before, are
directly relevant to the design of representaticns. Scme of the

ther template flags currently used in M)S arc given below:

6=

RT and 4T: Regular and Dummy Tuple schemas. ThesSe are
used to define n-ary relations for n >1.
~In the examples discussed in this paper
cnly binary relaticns are used. We find
that in most domains binary relations are

the ones that are used predominantly.

RF and $F: Regular and Dummy Function schemas. These
are used tc define functions which may be
declared as part of a relatiocn definition
schema, Thus one may have a schema of the
form (X r F) where F is a functicn template.
In this case, for an instance x of X, the

value of (x r) will be obtained by exe-
cuting F on arguments which may themse lves
be determined by x. For examples of use cf
Function Scheme see Irwin & Srinivasan [1975].
Functicn Schemas may be used in MDS tc define

structures similar to semantic nets.

TI,T# ,TS,etec: These are the various Terminal Templates,

Terminal Integer, Terminal Number, Terminal

String, ete. In the current implementation

of MDS (which 1s in INTERLISP), all INTERLISP |
datatypes are also avallable as templates in

MDS, Alsov, every datatype used in the implemen-

tation cf MDS 1itself is available to MPS as a

o A

template. Thus, there are templates for repre-
senting templates, for representing names, rela-

tions, constraints, acticns, models, sets, ete.

scme .cf these are discussed in Appendix II.

MN,ML,MT,MF ,etc.: These refer to various kinds of meta-
templates. An instance of a meta-template is
itself o template. Thus, an instance of Meta
Ncde (MN) template will be a Node template. It
could be a Dummy Node or a Regular Node. For
examples of uses c¢f meta-templates see Irwin &

Srinivason [1975].

One may also associate flags with descripbion schemas cf
the form (X r Y). These flags fall into the following

categerles:

(1) Flags that define relation properties.

Properties like transitively, reflexivity, etc. inh the
context of an [X r] may be declared to the system by using
relation flags. These declared properties are used by the
demain compiler in generating codes asscciated with [X r].

(11) Flags that define interpretations for
Functicnals

In the schema (X r Z), where Z i1s a cocllecticn with

(Z elements Y), the normal interpretation given to (x r

(v4 ye.t.yn)L where x 1s an instance of X and (yy ye...yn)
1s an instance cf Z, is

-28.

(xr (3.9)0 r gy ol e y)rinlx e y). .. (2.6)

However, 1f the flag "S' is associated with [X r] then
the collection (y1 y2...yn) will be interpreted as a set,
{yy Yoeee¥n)s 1n the context of (x r): (X r { ¥q y2...yn])
does not necessarily imply (x r yi) for1 =1,2,,..,n. Thus,
Sets and collections have different interpretations in the
model space. Similarly, one may use the relation flag "B"
in the context of [X r], 1f (X r Y) 1s true and Y 1s a tuple-
template. In this case, instances of Y will be interpreted
as Bags in the context of (x r).

{111) Flags that specify storage control

Normally, for every (x r), 1f (x r) is dimensionally
consistent, then the value y such that (x r) =y 1s stored
in the model space in the form of representation of the
relation (x r y). However, one may specify by the use of

the, so called, dumy flag, that the value of (x r) is not -

to be stored. In this case, every time (x r) is requested
its value will be conputed using the function, CC's and
transformations associated with [X r]. The symbol "4" is
used for the dummy flag. If([X r] flag $) and X r Y)
are true, then ([Y r'] flag §) is implied, where r' is the
inverseof r. We shall see a use for the dummy flag in
section 2.5.9.

Other storage control flags may be defined to specify
storage of meanings, and action interpretations. There is

= == I e . - —— P ————
S e — R e, A=~ " o s

..29..

also a flag called the prompt flag®, The symbol "!" 4is used
for this flag in the current impiementation of MIS, If

([X r] flag !) is true then, evepry time a new jinstance x of
X, 18 created the appropriate value of (x r) should alcc be
instantiated. This may, a% times, nnceossitate the system to
prompt a user to supply a valus Tor (x v). rramples of use
of this flag appear in Irwin and Swinivasan [1975].

(1v) Protection Flags

These may either explicitly indicate the mrotectlicn
associated with the access and updating of »elation values.
or prefcnt conditions under which sush 22cezs i1s perminsiblin,
A commen proteetion flag is the "™ " flag, which indlcates
that the value of an (x r) cannoct be changed during a problem
solving process. |

(v) Cantext cr Mtentlon flaps

In MDS there may exist simultaneously several model
Spaces for a glven domain, each asscciated with a different
context. So also for an object. x, thore may exist several
mcdels of x, each associated with a different context. One
may expllcitly assceiate with a deseripticn schema, the mcdel
context, in which the ccnstraints associated with the schema
are evaluated.

In the current implementation of MDS there are facilities

for extending the repertoir of flags vied with the templaten

¥ The use of this feature was suggested by Swidharen.

=30 -

and relaticns. Each flag definition may itself be controlled

by flag templates. The definitions of these flags as per the

flag templates will enable the demain compiler to incorporate

these flags into the compiled code.

For each (X r Y) 'ne may alsc define in MDS an assceiated

action, called the Anchored Transformation Rule (ATR). This
rule will be invcked when necessary durlng the instantiation
of an (x r) fcr an Instance, x, of X. We shall see examples

of the use of ATR's 1in section 2.5.9,

It shculd be ncted that "nstance " and "nstancecf " are

dis:inguished relaticns 1in MDS, which are associated with every

template, Thus for a template, X, cne may have cC's and ATR 's
associated with [X instance] itself. These will be invcked every
time one attempts to create a new instance of X. Bcth the ¢C's

and the ATR's may be used during the decmain compllation process

discuss the details cr this compilation Prccess in another repcrt.

2922 Examples cf Reggesentations, Access Functions
and the Basic Commands cf the S IMILATOR.

The representation for an instance of PLACE might be

To definition L .
of PLACE Self -reference | Lccationof |elementor

and that of ITEMS,

T¢ definiticn

to prcduce efficient cunpiled codes for a domain. We shall
i
i
i
|
l
of TTHIS self -reference heldby|elements |elementscf i

-31-

By ccnvention, every gdata type may appear as the element
of one or more ccllecticns. Thus, we have the "elementof"
relaticn pcinter appearing in both the data types above. Since
ITEMS is a collecticn, it also has a pointer for the "elements "
relation. The first field in every data type will point tc the
representaticn of the template that is associated with the data
type. The second ficld is a pointer to the instance itself. The
remaining fields correspcnd tc the relations defined 1in the
template asscciated with the data type. For each relaticn its

assoclated field will pcint tc a, So called, descriptor unit

(DESUNIT). The DESUNIT will have slcts fcr the value of the

relations, reasons, hypctheses, etc., as mentioned before in

the descripticn of bundles. Each bundle in the mcdel Space will
ccerrespond to the representatinn of the medel of an entity in
the dcmain. A mcore detalled discussicn of these representations
appear in Srinivasan [1977c].

At this pcint let us take note of the basic ccmmands cof
the ASSIMILATOR. Fcr each data-type (template) there will be
four assceciated classes of commands:

[C1]: Reccgniticn Ccmmands
[C2]: Creation Commands, and
[C3]: Compariscn Commands .
[C4]: Retrieval Commands.

These are briefly described belcw. Let MACC be the accumulator
of the Mcdel Space. We will use the symbol "@" to denote the
Contents of MACC. We shall refer tc @ as the anchor of the
mcdel space, It 1s the current object of focus in the model
Space, Where ccnvenient we shall use sSymbols @X’ @Y.etc. for

R ————————

<30 -

pedagogical reasons to indicate anchors that are instances of
X, Y ete. respectively. For all the commands described below,
the anchor is cne of the argument of the commands,

[cl]: (DTYPE.d) # B T .

The result is T if the datatype of @ 1s d, 1s ? if it
1s unkncwn, else NIL,

[C2Ja. Instantiate Template

(IT dm) = x or NIL.

The result x is a pcinter te the newly crcecated instance
of data type, d, with nome, m, assigned to it, if m is given.
X 18 put in MACC if the instantiaticn is Successful, Else,
MACC will ccntain NIT..

[C2]b. Imstantiate Relaticn

(Rry)or (R=xz) =T, 2 cr NIL.

This will attempt tc make (@ r y) true -- 1if ¥y 1s not given

1t will attempt to find the appropriate y. The command will

Succeed cnly 1if therc is nc resultant contradiction in the model

Space. The result of this coperaticn is put in the MTEST reglster

of the ASSIMILATOR.

[C2] (c) Instentiate Relation Negative

(RNr y) or (RN) =T, ?, NIL.
This is similar tc¢ IR but attempts to make ~@r y) true.

Corresponding t. [C2] (b) and [C2] (¢) cne may also have

commands FR and FRN (F.rce relaticn and Porce relation negative),

33

These would attempt to force (@ r y) -- or ~(@r y) -- by
modifying the mcdel space appropriately, if necessary,
[C3] (EQUALS x) =T, ?, NIL

This checks (@ = x). The result 1s stored in MTEST,

[Ch4] Retrieval Commands

The abcve commands may be compilled for each domain, froum
the domain definiticns. Fcr each datatype the domain compiler
will alsc produce codes fcr the access functicns, (@r), fer
obtalning the value ¢f the field assccilated with the relaticn
rin @. If (@ r) is unkncwn, then the access functions may
invoke the cc's and ATR assceiated with (@ r) to find its
value. If (@ r) is dimensionally incensistent then the value
of (@ r) =NIL. Similarly, cne may also check the truth value

of (@r y) using the access functicons.

The ASSIMILATOR structure, presented above, has the form
of a machine. The cumands are like machine ccmmands. This
is deliberate. As discussed below, we do visualize a mach;ne
control, in which the demain de pendent processcrs are micro-
programmed, and the basic ASSIMILATOR centrol invekes and

executes them to manace the model space.

The nature of algorithms for scme of these processors, and
the associated data crganizations are discussed in section 2.5.
They are part of the forms and Interpretaticns of the descrip-

tion schemas, templates, cc's and ATR's.
—— e (RS- 5NN T

e e e

-3[,__

i 2.2.2: The Compilation Process

We shall assumc the availability of an asscmbly language

for the ASSIMILATOR with Ccmmands of the form:

(INSTANTIATE (x v ¥) ~(xy vy ¥4) oon (x 7 ¥,))

(xr), (xry), (RQUALS x y), (PTYPE x d), etc.

The asserticns in the INSTANTIATE ccmmand are to be assimi-
lated in parallel. The ccempilaticn of a command like this
weuld invelve fcur steps:

STEP (i): Determinaticn of all structures in the mcdel space
which need be changed in crder to accept the given collecticn of

asscrticns. This 1is determined by the structural kncwledge cf

a demain. Fuar each assertion, (x r y), depending upcn the
classes of x and y its assceciated structures may be directly
compliled from the templates of x and vV, and the relation flags
associated with r. All the structural changes, derivable frcom

the given assertions using the description structures of the

objects involved, will be hypcthesized te be true in this step.

STEP (ii): This step determines all the consistency conditions
associated with the hypcthesized structural changes, and

implied by the interactiocns of the hypctheses with other
relations in the model Space. FEach one c¢f these conditicns

(or reascns associated with the conditions) are evaluated for
appropriate bindings ¢f the free variables. The hypotheses

may be accepted only if ncne of the conditions evaluate to

NIL. This evaluaticn will also produce the combined reascn

for the acceptance, ccnditional acceptances or rejecticn of

the hypotheses.

Every cne of the consistency ccnditions involved in
Such a check may be compiled. Alsc, the procedures neces-
Sary te identify relaticon interactions caused by the hypo-
theses may be derived and ccmplled from domain definitions.
The cdetaills of this checking process are discussed in secticns

2.5.,7 Ehirough 2.5:9.

STEP (i1i) If the checks evaluate tc T or ? cr NIL then the
transformations asscciated with each asserted (x r y) fer s
asscciated truth value are executed. This might successfully
terminate the asrimilaticn prccess, and return the resultant
reasons fer the success. Or, it may terminate the process
With the truth value ? and an asscciated hypothesls for the
acceptance cf the asserticns., Op else, it may produce the
truth value NIL, indicating the presence of a contradiction
in the assertions, and gc¢ to STEP (iv). T this case, of
course, the reascns for the ccntradictions will alsc be made
available,

All the transformation rules may be compiled from the
dcmain definiticns. If no transfcimations exist then this

step will be skipped.

STEP (iv) This step is vsed only if 2 contradiction has

been recognized. The system would then tettempt to eliminate the

s

_36 =

reascns fer the contradicticns by prcposing possible Secondary
changes to the model Space. The analysis used for this pur pose
may alsc itself be canpiled., This analysis 1s based n the
reascns fcor the contradicticon, and certain definiticnal entities

called Focus Lists that are asscciated with the relaticns inv: lved,

The details of this updating process are discussed in secticn
2.5, in the context of specific examples. The access functicns for
xr) =(|[&xry))
and (xry) =T, 2 cr NIL
are compiled from the data-structures, cc's and ATR's assceiated
with each templates. Alsc, fcr each template the EQUALITY checking
routines for instances cf the template are ccmpiled from the domain

definitions. The details of this compilaticn process will be

discussed in a future repcrt,

The ASSIMILATOR itself is thus a pure camtrol Structure,

which would invcke the above menticned ccmpiled procedures where
necessary to execute the commands recelved by it. Fer a given
demain, with well understccd kncwledge representaticn Schemes, all
these dcmain dependent preccdures may be ccmpiled into "micrc.-
programs " from given domain definiticns., The contrcl structure

of the ASSIMILATOR is different froam the structure of the
"execution centrol”, we see in all Ven Neumann machines. It

SeemsS, fer intelligent cperation beth execution contrel and

assimilation centrol are essentlal. Details c¢f the assimila-

tion centrol ape discussed 1in [Srinivasan 197747,

_ ; M e
: e S e ———— -

..37..

2.4 Censistency Cenditicns c¢r Sense Definitions

Wt st £ B e

2.4.17 The Nature ¢f Censtraints: Some Examples

The schema [S1] doss nct specify all the restrictions
associated with what can be at a given PLACE, Not any combi-
nation of items may be at the lccation of a given PLACE, In

cur dcmain we would like the following to be always true:

[(¥vx) (Vy) (PLACE instance x)
((HUMAN instance y) V (VEGETABLE instance y)
V(ANIMAL instance y) V (VEHICLE instance y))

=>
((Vz) (x locaticncf z)(z holding y) =

(x locaticnof y))
((Vz) (x locationcf z)(x lccaticnef y) =
(SAFE Y z))] ... (2.7)

All the literals in (2.7) are dimensiocnally consistent with

respect to the definiti-ns in Table I. The predicate SAFE

‘ is as yet unde:fined, (2,7) asserts that if y and z are at
the same place x, then (SAFZ y z) should be true, and if z
1s holding y., and z is at x, then y should also. be at x. The
definitions of SAFE may be problem dependent. For the MgC
problem one may have.*

M&C-SARE,
[(Vx)(Vy) (SATE x v) <>
((v4) (vp) (s instanceof ITEMS)
(p instancc of PLACE)
(p Locationof s) =>
((({=07 MISSIONARY s)>(=}0F CANNIBAL s))
V_(({-0F MISSIONARY s) = 0)] ... (2.8)

* We assume implicit conjuncticn between parenthesized forms.

-38-

Here, (HOF x y) is a function that returns the number of items
of type X In a collectien y. For the domaln F&S, the definition
of SAFE might be:

F&S -S AFE
(vx) (vy) SAFE x y) <
((x compatiblewith y) V
((¥p) (p instancecf PLACE)(p lccationef (x y)) =
((3h) (h instnceof HUMAN)
(p locaticncef h)] ... (2.9)

I this case if x is not compatiblewith y then a HUMAN is
required to be at the same PLACE as x and y. The cmstraint

for (x ecmpatiblewlith y) in the case of HUMANS is Shown below:

[(vx) (HIMAN instance y) =
((¥y) (x compatiblewith y) <=>
(((vt)(x type t) <> (v type t))V
Similar defini "ons for this relation, for other clasees
of cbjects, are shcwn in Table III, For a glven HUMAN, h, (2.10)
may be used to find all y such that (h compatiblewith y) 1s true:
(y] (h compatiblewith y)). However, for a given PLACE, b,
(2.7) cannct be used tov find (v] (p locationef v)). But, if
a candlidate y 1s supplied then (2.7) may be used to checl: whether
(p locaticnof y) cculd be true for the candidate., We shall call

censtraints like (2.7), declarative constraints (not tc be

confused with declrative descrptions of knowledge). Constraints

WL e Syne !!.——-__—j

-39~

like (2.10) are called imperative constraints., A formal defi-

nition of these concepts 1s given in section 2.5.5.

The forms of (2.7) and (2.10) are not quite satisfactory
for the purpose of modelling in terms of object-based repre -
sentations. We shall state the constraints in a form, that
Wwould facllitate the realization of the goals discussed in

the next subsection.

2.4.,2. What should Sense Definitions do?

_Qbjective [0b1]: Ensure Model Space Consistency

In the three valued logical system. we shall reqQuire of
the model space only a week state of consistency: It should

be _at _all times contradiction free. Thus, the model space

may contaln relations whose truth values are unknown. This
may, at times, result in the following kinds of situations:

Consilder the chains

(a) Ery)=@ry)=...=xrv)

(b) (uwtv)=>(u & vy) = ... =alx, r v)
If the truth value of (xn B yn) 1s unknown (?) in the model
sSpace, then 1t can accept the assertion (x r y)(u.t V) == we

assume 1mplicit ccnjunction. This 1s because, ~ ? = 9
and accepting (x r y)(u t v) would not cause any contradiction.
We shall, however require that the model space be such that,

at a later time, if (x B yn) is asserted,the latent contra-

n
diction should surface.

alh@=

Objective [0b2]: Fcr each (@ r) find if possible cne
of the follwwing:

(&) The y such that (@ r y) is true if such a v exists

in the model spacad.

(b) The candigdates (31 y2"'yn) for one or more of which
(@ r y) may be btrue.

(c) The ccnstraints specific to @, that characterize

all y such that (@ r y) 1s true.

Objective [0b3]: Give Reasocns

If (ry) =T, ? or NIL then identify .and express the
reascms for this in Lp. This is the most important require-
ment. The ratisfacticn of this cbjective makes it possible
to do prcblem solving in MDS.

Objective [0b4]: Anticipate Interactions

For each (@ r y) identify the specific interactions that

take place in the model space with cther relations that may

exist in the model space.

Objective [0b5]: Aveild Combinatorial Explosions

In seeking to satisfy [0bl] through [0b4], and in using
the model space to sclve prcblems, 1t should be possible to

speclfy starategies and learn rules that contribute to mini-

mlzing combinatorial explosicns.

BT] T L e

W

A=

We shall present below the elements of a system archi-

tecture in which all the above objectives may be realized.

DIk

2.5, Representations and Uses of Canstraints:

~ L Use of Bcunded Quantifiers

The weak definition cf model space consistency makes it
Sufficlent to check for each (X r y) the relevent ccnstraints
only over the objects and relations that actually exist in the
model space, at the time (x r y) is asserted. It 1s not nece-
Ssary to resolve hidden centradictions because of unknown gquan-
tities. Thus all dQuantifications in our constraints will be
bounded, and general bPredicate expressions may be reduced to
cenjuncticns anq/Br disjunctions of propesitions, whese truth

values may be directly tested in the model space.

Further, one may nctice that variables range only over
Specified classes of objects in the model Space. Thus in (2.7),
X ranges only over PLACES, and y ranges only over what can
appear as elements of ITEMS. To take advantage of these °
categorized variables e shall modify the language of constraints
indicating explicitly, where feasible, the range of each quanti-
fled variable. We shall use

"(<classname> %) (B)"

tc denote

"((¥x)(<classname> instance x) = (Px...,))",

and use

"((SOME <classname> x)(Px...))"

3o

to dencte

"((3x) (<elassname> instance x) (P x...))",

where(P x...) 1s predicate expressicn in which x cceurs
free. Where appropriate we shall also use form,

"(<elass1> A&class2> /.. /<class> x)" to denote a

range that extends over a disjunctiocn of classes, and forms
"(<elass> x y)" for "(<class> x)(<class> y)", and

"(SOME <class> x y)" for "(SOME <class> x) (SOME <class> y)".

2.5.2 The Use of Relation Paths

We will use ":" to denote relaticn concatenation, and

call phrases "r,:r,...:r_", relation paths, We shall use
il "= n

"(x ry T, y)" to dencte "((x r,) r, y)". In view of (2-6)

and the convention, 5

(xr) = (z hGE & 2y .. (2.11) ‘
it follows that

(x ryir, y) @ ((¥2)(x vy 2) = (z 1, ¥)). (2.12)

I ré is the inverse of r,, and in the structural descrip- |
tion both (x ry) and(y r;) are constrained to be ncdes, or |

collecticns of equal cardinality then

(x vy y) & ((F2)(x vy 2) €(21, ¥)) .. (2.13)

For a2 relation path PyiTpi...T) its inverse path is

Tl o, i) ey r |
PPy _q%...T:iry. Using these conventions we may now u

rewrite (2.7) and (2.10) as follows: :

2 PR Wy ey g o D e, T .
- i - e 8 i Pakd o T A e e o e
- R T T W N S . S

iy

[(PLACE p)
(HUMANVEGATABLE ANIMAL/EHICLE x y)
((p locationcf (x y)) =» (SAFE x y))
(x heldby:lceaticn :lccationof B | e (2.14)

[(HMAY h)(y) (h compatiblewith y) <=>((n type:typeof y) v
~(y instancecf HUMAV)] 3 (2.15)

2,59 The Use_cf Definiticnal Anchcors

With every constraint we shall associate a distinguished

relaticn name, called the anchcr relation cf the constraint.
The anchor relaticn of (2.14) and (2.15) are "lccaticncr"
and "ccmpatiblewith) respectively. We shall anchor the

constraint itself at the, so called, definiticnal anchor, which

is a pair [<anchor class> <anchcr relation>], where the
<anchor class> is always a class name. The definltiocnal
anchor of (2.14) 1s [PLACE locationcf] and that of (2.15) is
[HUMAN compstiblewith] . We shall refef to the constraints
themeelves by the phrases CC[PLACE locaticnof | and

CC[HUMAN compatiblewith].

The use of definitional anchors and the assumptions in ‘
section 2.5.4 cn invocaticn of €C's, will enable us to write

constraints as set censtruction expressions, as discussed in

secticn 2.5.5,

2.5.4, The Use of Invocation Anchors

We shall assume that a CC[X r] for a class X and a

relaticn r will be invoked nly in the context of evaluating

v ” To} L= e ey T ——

e

or checking the truth value of an (@X r y), where @y 1s an
instance of X. We shall call [@¢ r] the invocation anchor
of CC[X r], and @X itself, the anchor. The invocation of

CC[X r] may thus occur under two condltions:

(a) When executing (IR r y) or (IRN r y) (or (IR r)
or (IRN r)), and MACC has an @y, and the truth

value of @y r y) (or the value of (@)(r)) 1s unknown.

-

(b) When executing (IR ry z) or (IRN ry z) for same z
and ry, and MACC has an @, such that (@Y ry z) 1s
dimensionally consistent. In this case CC[X r] may
@5 r) deperds m @By v3).
be invoked at an [@X r]L Thus, assigning z to
(@Y r1) might affect the value of (@X r). Therefore,
CC[X r] should be checked at @X under the hypothesis
@ ry 2).
In view of this invocation protocol we shall use in every

CC a distinguished free variable called, @, which will always

get bound to the anchor of the model space at the time of
invocation of the cC.

2.5.5., The Use of Set Cconstructs

The focus of attention during the evaluation of a

CC[X r] at an anchor @, 15 the set (s | (@X r s)). To realize

the objective [0b2] we shall seek constraints of the form

-46-

(sp @y 8), in which @y and ‘s occur free, and

@ rs) &>(SP@ s) .. (2.16)

SP 1s called the SET bredicate, since one may write, for a
description schema (X r Y),

CCXr] =({Ys)| (spes)) ... (2.17)

The set expression in (2.17) may be read as "the collectiocn

of all instances, s cf Y, such that (Sp @ s)1s true." Iry
1s a node, then the ASSIMILATOR will expect (SP@ s) tc return
a unique singleton collection, (s). On the other hand, 1f the
description schema is X r Z), where (Z elements Y) 1s true,
then the ASSIMILATOR will anticipate one or more members, s,
tnthe collection. One may also, cf course, put constraints on
the maximum and minimum numberp of candidates that (Sp @ S) may

return. We shall call S8 the set variable of the CcC.

As we shall see in the eénsuing sections, the abllity to
Specify ccnstraints in the for (2.17) with interpretaticn (2.16),
and the conventions we have adopted cn the invocations of cc's,
together will make it pocssible for us to realize the objectives
[oby] through [ob5], There 1s, however, a minor difficulty to
be overcome: It 1s not always possible to find constraints of
the form (2.16). Often one may have cnly a (Q @ s) such that

(ers) = Qe s). oes (2.18)

In cases like this we shall write

XCXr]=((rs) |[(ers)@es)) ... (2.19)

|

-U47-

Ccenstraints of this form are glven special interpretaticns in
the ASSIMILATOR. While evaluating (2.19) the system would expect
a candidate, s, to be supplied. If nc candidate is supplied then,
s =?and (@r s) = ? 1s assumed, and (Q @ ?) 1is evaluated. This
may result in the identification of a collection of candidates

(¥4 y2...yk) = (y | (SP@y) = ?), for cne or more cf which (er v)

may be true. Since (@ r s) = ?, in this case the set predicate
1tself will evaluate to ?, 1f (@ @ y) % NIL.

cC's of the form (2,19) are the declarative CC's and those

of the form (2.17) are the imperative CC's. Using these conven-
tions we may now rewrite (2.14) ana (2.15) as shown in (2.20)
and (2.21). These expressions are typical of the declarative
sentences* in Ly ¢

CC[PLACE locationof] =
[(HUMAN/VEGET ABLE/ANIMAL /VEHICLE s) |
((@ locationof s)(s heldby NIL) V
(s heldby:location @))
((y) (@1ocationof y) = (SAFEQ@ ¥)] ... (2.20)

CC[HUMAN Compatiblewith] =

[(y | @type:typeof y) V
~(y instanceof HUMAN)] Bk (2.21)

I (2.20) the phrase (s heldby NIL) is a functional,
Anterpreted as ((Vz) ~(s heldby z)). The phrase "(@ locationof

s)" indlcates that an s may be declared to the system. If

(s heldby NIL) is true then the proper s is specified by the

_____ - - - - -

* All cC's are constructed from declarative sentences in Lm.
However, not all CC's are declarative CC's.

¥ . e " s e & - = ~
S T, o A S S AT E o L S e TR Gee " PR T r— PoTpeTTIL e W T, mT T

[P =

b

T R e ——

-48-

predicate, functional, (s heldby:location @). Notice that
(2.20) 1s more compact than (2.14) and 1s oriented more
towards evaluation at a given anchor, @ , or given pair

[@ 8]. The constraint (2.21) {llustrates a case where it
may be more economical teo store in the medel S pace

(s]~(@ r s)) than (s|(ers)).

In the followin: sections we shall discuss the inter-
Fretaticns given tc the above CC's in the modelling context.
We shall see how the objectives [oby] through [ob5] may be

realized. We shall alsc present examples of commonsense

reascning that is used to supply reasons for the truth

values in the model space for the various relations.

2.5.6. Uses of CC[X r] as a function and a_predicate:
Examples of Cocmmonsense reasoning.

One may have two kinds of invccations of a CC[X r]:

(a) ccrx ri(@,) ang
(b) corx ri(e s.).

B ¥ O

In both cases CC[X r] 1s used as a function with lambda
variables @ and s, and an attempt is made to compute
(s | (@ r s)). In the first case (@x r) = ? is initially

assumed, and one of the follewing may result:

(1) (s | (@ r s)): This may happen if CC[X r1y) 1s
imperative,

:

-49.

(1) (s (@ rs)=2): Tnis will 1e interpreted
as a ccllectiocn of candidates for (@x r).

(111) 2?2 : Tn this case cné may also get a predicate
expression characterizing (s | @X rs)) for the
given @X

(1v) NIL.

In case (b) also the same four possibilities exist for
the result. But in cases (1) and (11) of the result the ’
returned ccllections may ineclude S0 thereby indicating the
truth value cf (@ rs_). In both these two invocations, the
Set predicate of CC[X r] may be used to explain why (g, r s,) =
Ty ? or NIL for a given S s or why (@X r) = (s | (SP@X s)).

Let us ccnsider a few examples.

Let us assume the model Space for the M&C problem. Iet
MISSIONARY and CANNIBAL be instances of HTYPE, types of HUMANS.
Let the model space have

(MISSIONARY typecf (m, m,, m3))
(CANNIBAL typeof (c1 c, 03)
(VEHICLE instance BOAT)

" (HUMAN instance (m, My My C4 C, 03)).

Far a missionary, m , then
CC [HUMAN compatiblewith] (mg) = (m, m, ms BOAT).. (2.22)
as per (2.21). The reason for this will be l

[(my type:typeof y) V ~(y instanceof HUMAN)] (2.23)

i
——

-50-

where y is the set variable. The expression in (2.23)
consists of the true literals of (2.21) for one or more
items in (my m, ms BOAT). In this case, there are no
literals that are falsc cr ? for all the elements in
(m, m, My BOAT). The reason for (m1 compatiblewith m2)
will be ‘

(m1 type:typeof m2) . (2.24)

In this case the second disjunct of (2.23) becomes false
and thus dces not appear as part cf the reason, We shall

call expressicns like (2.23) and (2.2%) True Residues:

(2.23) 1s the true residue of CC[HUMAN compatfiblewith] (m,),
and (2.2%) is the true residque of CC[HUMAN compatiblewith]
(m; my). For a gefinitional anchor [X r] we shall denote

its true residues by phrases of the form:
TR(CC[X r](@)) or TR(cC[X r](@ s)).

A true residue will exist for a CC, for given bindings
of @ and the set variable, s, only if the set predicate of
the CC evaluates to T, The true residue will consist of the
sub-expressicns cf the parent expression, that remain after
deleting all thcese that evaluated toxNIL or ?. In cases where
the set variable ranges cver a collection, we shall delete only
those sub-expressicns that evaluated to NIL or ? for all possible
bindings of s. We shall generally write resldue expressions
indicating explicitly the bindings of the variables. Thus, for
(2.23) and (2.24) we shall write:

4
E———— - S A e,
) N T S TR S, . Jm—— - - B ———

B -

[((HWMAY @) =m,)
((HIMAAERHICIE y) = (my my m; BOAT))
[@ type:typeof y) V ~(y instance of BOAT)1].. (2.23a)

[((HMAV @) = m) ((HMAV y) = m,) (o type:typeot y)]
(2.24n)
For a CANNIBAL, ¢y, the reason for (m1 compatiblewith c1)
NIL will be
[«.(m1 type itypecf c1)(c1 instanceof HUMAN)] (2.25)

which is ontained by taking the negatinn of the False Residue
of CC[HUMAN compatiblewith] (m_l c,). In this case, of course,
CC[HUMAN compatiblewith](m, ¢;) = NIL. The False Residue will
cosist of the sub-expressions that remain after delei:ing all
those that evaluated to T or 2. of course, the parent express-
ion itself should evaluate to NIL. We shall use phrases of the
form FR(CC[X r](@)) and FR(CC[X r](@ s)) to denote false

residues of CC's.

One may similarly define also Unknown Residues, R(CC[X r]

(6)) and W(CC[X r](ps)). These will exist aly when the

CC evaluates to ? and will be obtained by deletling all the sub-
expressions that evaluate to NIL or T in the set predicate, for
given bindings of @ and s. In the M&C problem, suppose there
were more that three MISSIONARIES. In this case the model

space will contain the functionai

(MISSIONARY typeof (m, My My ?)), (2.26)

-52.

where the ? 1n the collection indicates that there may be more.
In MDS, a new element may be added to a collection only if the
collection ccntained ?. Thus, cne could make it impossible to

have more than two HTYPES, by setting in the model space:
(HTYPE instance (MISSIONARY CANNIBAL)).

In the case (2.26), (2.21) will evaluate to T for o = m,
and y = (my my, ms BOAT). Hcwever, for y = ? both literals in

(2.21) will evaluate to 2, producing the unkncwn residue:

[[(o = m1)(y = ?) (@ type:typeof y) V ~(y instanceof HUMAN)]
(2.27)

This unkncwn residuc niay be viewed as characterizing
(x| (m1 ccmpatiblewith x)). In this case the residue expressiocn !
happens to be identical tc the set predicate. But in general,
the resildue expressicns will be subexpressicns of the set pre-
dicate. The residuc extraction prccess is a part of the common-
Sense reascning prccess. It 1s defined for both propositional
and quantified expressicns in chapter 3. The relationship

between residues and reasons i1s summarized below in Table II.

TABLE II: Residues and Reasons

TRUTH VALUE of Reascn for CC[X r](@) cr
CC[X r]é@) or CC{X r](©0s). The set variable
cciX rij(ps) 1s opticnal below.

¥ (TR (cC[X r](e --)

? (R(cCX r](p =-)

NIL ~(FR(CC[X r]1(p --)

b e Py

i —— G M AR B 4

5}

In the problem sclvin process the residues (reasons) are used

as the basis for 1earn1ng and domailn specific Speclalizaticn.

Let us now consider a Tew more examples .

Table III shows all the C's used in oup domain, and
Table IV shews the definiticns asscclated with SAFE, The
command (QSCC: <CC-exp> <definitional anchor>) is used to
define CC's in the current implementatioﬁfMDS. This command
1s part of the subsystem called QUEST, which is used for
defining the CC's and transformaticns in a domain. Predicates
like SAFE are called CC-macros. They are invcked as macros
within CC's and transfcrmaticns. Each CCMACRO has a neme,
declared arguments, the maero expressicn and a ccontext. Thus,
a COMACRO like SAFE ray have different definitions in different F
ccntexts. The definitions of SAFE in M&S . -and F&S contexts

are shown in Table IV. The ccmmand QSCCM: 1s used to define

CCMACRO's in MDS.

Let us now consider some of the possible residues
assceiated with CC[VEHICLE holding]. This gg 1s shown in
Table III, and is repr.duced below, for convenience:

CC[VEHICLE hclding]:
[(HUMAYAEGET ABLE /INTMAL x) |

(@ holding x)(p holding: ¥ : <: capacityof Q)

((v)(0 holding y) = (SAFE x y)] ... (2.28)

G T e . > B

-54.

TABLE III: Consistency Ccenditicns cf the
Transportaticn Domain.

cC1: CC[HUM/N ccmpatiblewith].
[(HUMAY AN IMALATEGET ABLE A FHICLE s) ,
(@/’cype:typeof s) V ~(s instancect HUMAV)]J.

CC2: CC[VEHICLE holding]
[(HuMAy 7N DAL Y EGETABIE s) |
(@ heldaing s) (0 helding:# : < :capacityof @)
((v)(€ helaing y) = (SAFEs y))]

CC3: CC[ANIMAL ccmpatiblewith]
[(HUM Ay A7 EGETABLE /AN IMAL AEHICLE s) l
(0 type:typect s) Vv (0 instanceof HUMAN) V
~(@ trre HERBIVORE) (s instancecf VEGETABLE)]

cCl : CC[VEGETABLE ccmpatiblewith]
[(s | (@ compatiblewith s) v
(s instanceof VEGETABLE)]

CC5: CC[PLACE lcecationof].
[(s | ((p lecaticnef s)g heldby NIL)} v
(s heldby:locaticn 0))((y) (@ lccationof y)
®» (SAFE s y)]

CCo: CC[ITHMS heldby]
(s | (© heldby s) ~(s elementor ©)1.

The CC has the form (2.19) and 1s thus & declarative gc:

It may be used to check a given (@ helding so) but cannot be
used to find (s | (@ holdlng s)). In the seccnd conjunet cf
(2.28) the relation name "#' cccurs in the path "holding : # :<:
capacitycf", This is used to get the qardinality of (0 holding).
In the context of 4, ccllecticns ape interpreted as, sets:

B e e T TP A ST =<~ = ! J

55

Table IV: COMACRCS in the domain.

[0SCCM: SAFE (X Y) "M&C"

[(X location:locationof Y) =

((SOME ITEMS s)(X location:locationof s)

(((4 OF MISSIONARY s) > (4 OF CANNIBAL s)) V
((4:OF MISSIONARY s) is 0)]].

Note: The third argument of QSCCM: is the context.

[qScCcM: SAFE (X v) "F&s"

[(X compatiblewith Y) V

(X location:locationof Y) =

(((SOME HUMAY h)(X location:locationof h)]].

((Xy x2...xn}#=) =n, and ({x, Xpee X 2}) > n but still the
relation ([x1 Xy aeX, ?}#n) has the truth value ?. Thus, in

a comparison like ([x1 X5 ?2}# :<2) 1ts truth value will be ?.
So also, ({xq X, 2?4 :>4) will be 2. But, ({x4 X, 2}k :>2)
will have truth value T.

Iet us assume that initially (BOAT holding ?) is true in
the model space. In this case CC[VEHICLE holding](BOAT) will

evaluate to ? with the unknown residue:

[(BOAT holding x)(BOAT holding: # :<:capacityof BOAT)
((y) (BOAT holding y) =>(SAFE x y)] ... (2 .29)

In the above expression we may ignore the literal "(BOAT
holding x)". since 1t is part of the declarative nature

of the CC: For every assertion (BOAT holding x) will be

either true or false by hypothesis. Let us now assert (BOAT
holding x_). This will cause the model space entry (BOAT
holding (x, ?)). The evaluation of CC[VEHICLE holding] (BOAT x)

~56 -

will evaluate to ?, because both (BOAT holding:# :<:capatityof

BOAT) and ((y)(BOAT holding y) = (SAFE x E v))* will evaluate
to ?, leading to the unknown residue:

[(BOAT holding:# :<: capacityof BOAT)
((y)(BOAT holding y)=> (SAFE x_ ¥))] 556 (2.30)

Notice that the set variable x in (2.29) has been replaced by
x, in (2.30). Thus, all future additions to the BOAT should
be SAFE with Xqe

Let us now suppose that (BOAT capacity 4) is true, and
when (BOAT holding x_) was asserted (BOAT holding (x, X, ?))
was 1n the model space. In this case, the unknown residue
will be the same as (2.29) for the collection (xo Xy X5 2
We have assumed that the SAFE predicate 1s not contradicted
Per % _a

o)
If the SAFE predicate was contradicted then for sane
element x, in (x1.x2), (SAFE X, Xx) would have been NIL. In

this case the model space would remain unchanged, and the

following residue would have been supplied for not accepting
(BOAT holding xo):

[(VEHICLE Q) = BOAT)
(HUMAy/ANIMAT, VEGETABLE y) = (x_ X, X, ?))
(SAFExoy)] (2.31)

The reason would be,

* In this case GAFE x4 Xxo)=T and (SAFE x4 ?)=?. The bound
variable y acQuires the binding ? because (BOAT holding
(%, ?)) exists in the model space.

T P —

=57 -~

[((VEHICLE (@)= BOAT)
((SOMEHUM Ay ATIMAL AEGETABLE y) = (x x. % 7))

(~(SAFE x_ v))] 5 (2.32)
which 1s the negation of (2.%1). In a problem solving context,
reasons like this may be made use of to avoid repeating same
kind of mistakes., Also, reasons explicating true residues may
be made use of to make the right choices based on past experience.
The mroperties of residues (and reasons) that make them useful in

a problem solving context are discussed in chapter III,

The reasms obtained from the CC's at a given anchor are
not sufficient to ecxplain or gulde an updating process. The
CC itself may supply only the necessary conditions. To consider
the complete updating process it is necessary also to analyze
the way relations interact in the model space., This 1s discussed

in the next section, where an example of canmansense reasoning

in the context of relatio interactions is presented. Again we
shall see that the form and interpretatioms of CC's play an

important role in identifying and cmtrolling the interactl ons.

2.5.7T. Interaction Between Relations: Their Recognition
and_Control

2,5, 7.1 DONLISTS and DETLISTS

Definition 1: Depends on

-58-

([Qx r] dependson [Cy t]) if there exist a z (z could
be ? or NIL) such that (G, t z) or (z t'.@Y)(or ~(Qy t z) or
ol E B @Y)) occurs in a true, false or unknown residue of
Cﬁkr]@k)orCWXr]K&so)fm'mmesy

In this case we shall say that [Y t] is an element of

DONLIST [X r].

Definition 2 : Determines

([oy t1 determines [0y r]) if ([0oy r] dependson <
(@Y t])}., In this case, we shall say that [X r] 1s an

element of DETLIST [Y t].

Notice that [X r] ¢ DETLIST [Y t] does not necessarily i
mean that for any given Oy and Oy ((@X r] dependsm [0y t]).
It only implies that there exist Oy and (y such that (REX r]
dependson [Qy t]). We have the following formulas:
(([gg v] dependsan [0y t]) <%>([@Y t] determlnes [Oy ri)) : |
(([X r] elementof DETLIST[Y t]) <> ([Y t] elementof DONLIST[X r]),

(([Y t] elementof DONLIST[X r]) <> ((SOME X 0y) (SOME Y @)
([r] dependson [e, t1)))
(([X r] elementof DETLIST[Y t]) <
((SME X Q) (SOME ¥ Oy) ([@, t] determines [¢y r])))
The DONLISTs and DETLISTs for the definition anchors may

be obtained by analyzing the forms of CC's in a domain. These

e —

may be used in a variety of ways to identify, anticipate, control

-

and respond to situations that arise in updating processes. We

shall present below an example of the kind of analysis that may

— i W e . PV b A

...59 -

be done to construct DETLISTs ,

We shall also iantrcduce the concept of definitional filters
that are used to direct search for all Oy such tﬁl: [0y r] }
dependsm[OY t] for a given OY. We shall discuss ways of using j

filters to minimize search and checking during updating
processes. :

2.5.7.2: he Dlmensionalitv of a CC and its
Dependcncv Craph

Let us consider again CC[PLACE locationof] shown in (2.20).
One may cmstruct for this CC a, so called, dependency graph as ’
Shown in figure 4. The arcs in this graph represent the relaticn
names that appear in the CC, with the associated negation signs,
if any. The nodes represent class names that are used in the CC
elther explicitly or implicitly.

i) : 'E
/{"‘"&L&Qﬂ_l_@ Mm\<\l/o:ati onof = m—
., 3
QESEtE HUMAMEGETABLE/ 2
51 / [ANIMAT, VEHTCLE
“HUMAN T |
VEHICL 45 |
D APH OF |
EE %MEC% e |
y A
AN 2] P i
heldby N HwAYAEGETABLE e ” {
ANIMAI/%EHICLE i ;
— This corresponds to |
Z : ~heldby } "(s heldby NIL)"
HM ANV EHICLE ’

Fig 4: Dependency Graph of CC PLACE locationof.

Bl

For example, the expressim

"((¥7)(0 locaticnor y) = (SAFE s y))"
that occurs in (2.,20) uses the class disjunction
(HUM AN VEGET ABLE/ANIM AL VEHICIE y) explicitly, because there
exlsts a bound variable ¥, that represents the instances of
these classes that are used in an evaluatim of the CC. This
expression 1s represented in figure 4 by nodes 1, 2, 3 and 4,
and the arcs "locaticnor" ang "¢ ->", where "¢ - 5" pepresents

connections to the dependency graph of (SAFE s 77
In the case of the expression
"(s heldby:lccaticn O)"

which alsc occurs in (2.2) the (HUMAN\VEHICLE y) such that
((s heldby y) = (y locaticn @)) 1s said to be implicitly used

in the CC. The CC hras no bound variable corresponding toc the y

above. Thus, node 5 appears in flgure 4 without an associated

variable,

The classnames used implicitly in a CC may be determined
from the relation paths used 1in the CC and the description
structures defined for the domain, We shall call the analysis
used to identify the impllicit and explicit class names in a CC,

the dimensional analysis. For a functional like l

"(s heldby:locaticn 0O)" we shall represent 1ts dimension as

61 -

[((HMAYAEGET ANLE/ANIMAL AEHICLE s) heldby)
((HWMANAEHICLE) locaticn) (PLACE € s (2.35)

This dimension is consistent with the description schemas
defined for the damain. A CC itself 1s said to be dimen- !
Simally consistent if all 1ts literals and functicnals are
dimensicnally cnsistent., The analysis of dimensiocnal

cnsistency may also be used to find missing relation names

in relation paths, missing ranges cf variables, and also

errors in a CC, The dimensional consistency checkigg Sub-

system of the current implementation of MDS was written by
Joel Irwin.

The dependency graph of a CC pertrays its dimensionality.
It may be used to ccnstryet DONLISTS, DETLISTS and definitional

filters. This is discussed in the next sectim.

25489 Censtruction of DONLISTS & DETLISTs

Let us for a mcment ignore the implications of the

"(SAFE s y)" predicatec in figure 4, The general rules for
constructing DON and DET 1lists from a dependency graph is

given belcw:

DONLIST - RULE

[Y t] e DONLIST[X r] if the class Y cccurs in a node in
in the dependency graph of CC[X r]; and the arc with label
t or at(t' or at') emanates (impinges) on the node Y in

the dependency graph CC[X r]. t' 1is the inverse of t.

52w

In this case [X r] e DETLIST[Y t].

From figure 4 one thus cbtains that there may exist a
PLACE, p, a HWMAY/VEHICLE, h, a HWM AYVEGETABLE/ANTMAL EHICLE
X, etec. such that

([p locatimof] dependson
([h holding] [p locaticnor)
[x location] ete, ...)) (2.36)

The symbol h in (2.36) denotes the implicit use of HUM A/
VEHICLE in "(s heldby:locaticn 0)". Expanding the disjunction
¢f classes over which the variables in (2.36) range, we get by
the DONLIST rule that

DONLIST[PLACE lccaticnof) =

([HMAN hclding J[VEHICLE holding]

[HIMAN locaticn J[VEHICLE location]
[PLACE l.caticn!] ete,) (2.37)

Thus we get

[PLACE locaticnaf] ¢ DETLIST[HUM AN holding]
DETLIST[HUMAN location]
DETLIST[VEHICLE holding]
ete, (2.38)

This implies that, when (h holding x) 1s asserted (by using an
IR Command, say) for a HWMAN, h, then CC[PLACE locaticnor)
should be checked for all places P such tlat ([h holding)
determines [p locatiom of]). During this checking cne may, for
example, discover that (h locaticn) = p and (x locaticn) =g

are not the same., Thus (h holding x) cannot be ancepted by

I i e i o

6%~

the mcdel space witlout violating CC[PLACE lccaticnof]. The
reason for this violaticn would be:
[(x heldby:lccaticn p)~(p location of. %) V
a{x heldby:locationof g) ~(x heldby NIL)
(g locationcf x)] 5o (2.39)
This reasc: 1s true under the hypothesis (h holding x). We
shall discuss in the next sectim the cammcnsense. reasoning

Process that may be used to identify treascns like (2.39)

We: shall alsc ccnsider efficient ways for directly
ldentifying for 2 given [h holding] all the PLACES, p, such

that ([p locatiencf] depends on [h holding]).

2.5.7.4: Definitiocnal Filters

For a given [X r] e DETLIST[Y t] and given(?Y our problem
is to find

Cx] ([eg] dependsen(0y t]1)).
This search may, of ccurse, be confined to cnly the instances
of X, 8¢ill 1t may be large search, In practice it is
necessary to have a better control over this search, and

where feasible eliminate the search altogether.

Ihe problem of devising schemes to efficiently control

énd direct this search 1s the so called "Frame Problem". The

sclutim cf this problem i1s not only domain dependent, Wt

gl W _—— P e e b e o

64 -

%

within a domain it is dependent on the particular collections
of objects that exist in the model space, It is not thus
pessible to specify a general soluticn to the "frame problem",
One may only Specify schemes where in the rroblem may be kept
under control, and unforeseen combinatorial explcesicns are
avolded. The forms <f ¢C and their invocatim control make
1t possible-to state genmral schemes to keep the "frame problem"
under check, What is mere, cne may have MDS itself compile the
necessary control structures from an analysis of the CC's of
the domain,

We shall discuss two ways of ccntrolling search in a

frame interaction:

(a) One is by the Definiticnal Filters which are
camplled by MDS, and

(b) the other is by the use of remresentational faci-
lities in the mcdel Space which a yser may use to

create appropriate remresentaticns foQ a domain,

Part (a) is discussed below and part (b) is discussed in
Sectimn 2.5,9, Normally, when an (x r y) is asserted, in order
to accapt it, 1t may pe necessary to make certain Secondary
changes in the model Space. This may, in general result in a
chain of updating processeé. It is essential to have facilities fcp
controlling Ehis Prccess, Devices called Foeus Lists are used

in MDS t¢ centrol these, These are discussed in sectim 2.5:8,

R T T e

-65-

Definlcicnal Filters

A definiticnal filter DF[X r]{Y t] is used to ccmpute
a set S§K}Y t] such that

Oy} Dsyley t1 D 0y| ([og *] dependsn[Cy £1)}. (2.39)

where [@X] is the sct cf all instances of X. A DF filters
out of {0y} all x such that [x rj dces not depend on [0y t1.

The DF may be stated as

DF[X r][Y t] = ((X x)|DFP (0, s x)) : (2 .40)

N
where(QY, s and X are the free variables of the Definitional
Filter Predicate, DFP, The DF is anchored at [Y t]. Thus,

@Y 1s the anchor variable cf the DF; x 1Is its set variable;

and s is the, so called, change variable: G@Y t s) is the
change that is being attempted at UQY t]. Using suwch a DF,
for a given Oy and s, cne may compute all the affected QX.
The dependency grap. of CC[X r] m&y be used to construct
DF[X r][Y t], 1f [X r] is in DETLIST[Y t]. The costructio

of these fillters is based n the following observatiom.

Let us assume that dependency graphs are always connected
graphs. Consider the graph in figure %, If [@ locationcf]
depends on some [@Y t] for a Y and t in the graph, then there
wlll be a path w, from O to OY in the graph., © 1tself may,
therefore, be reached from Oy via the inversc path w'. Suppose,

@Y =h for a HIMAN, h, and O 1s a PLACE, p. Let [p locationof]

-66 -
depend an [h hulding]. The paths in figure 4 that might lead
to h from p are (again we ignere (SAFE s y)):

|
[(p locationef 1) V (p loecaticnof $) ~(s heldby h) V
(p locationof s)(s heldby h)]J |

Thus p itself should be reachable from h via cne of the paths

in the disjunction

[(h location p) V ~(h holding s)(s location p) V
(h holding s)(s lccaticn p)] e (2.41)

Thus, at a given h, if (h holding 5) was the change at (h hold-

ing, then the places affected by 1t will be a subset of

(p[(h location p) V ~(h holding s)(s location p) v
(h holding s)(s location p)) 568 (2.42)

We may now write

DF[PLACE locaticnof J[HUMAN helding] =

[(PLACE p)| (0 leccation p) Vv ~(0 holding s)(s location p)
V(@ holding s)(s location p)] ... (2.43)

where @ 1s a HWMMAN, and s 1S the change variable., This DF will
be anchored at [HWMA! holding]. Thus, 1f (h holding x) was newly

asserted, then the system would evaluate the above DF fop (@=h) l

and (s=x), and find that 1t had to check CC[PLACE locationof]

at the places p = (1 lecaticn) and g = (s location), under the F

hypothesis (h holding x). At both these places, p and g, a

67 =
contradiction will be encountered for the following reasons.

We have the assumptions (h holding x), (h location) = p
and (x lccation) = . For the discussion below, we shall alsc
assume that the SAFE predicate is true, and altogether ignore
this predicate in tlic residues and reasons, At the PLACE, p,*

CC[PLACE locationcf] (p x) =T and

TR (CC[PLACE lucaticnof] (p x)) = (x heldby:locaticn p)
By (2.16) 1t, therefore, follows that (p locationof x) should
be true in the model space. This cmtradicts the assumptiom,
(g locationof x), The reascn for this contradiction will be

the negation of the ralse residue of
(p locationof x) <> CC[PLACE locaticnof J(p x).
The false residue of a form (u € v) 1s the same as the false

residue of the form (uv V ~uwv). In the abcve case u 1is

false and v 1s true. We have the following residue equation **
FR(W V aul av) = FR(uv) V FR(uv) =FR(u) V FR(av)

Since u 1s false and v 1s true. However, FR(w) = ATR(v).

Thus,. we get,that the reason for the contradiction is

¥ Please check with CC[PLACE locationof] shown in (2.20).

** These are discussed in chapter III.

68

[AJ(~FR(u)~TR (v)) = ~(p locationof x)(x heldby:locaticn p)
In the case of the PLACE, g, CC[PLACE lccaticnof](g) will evalua-
te to NIL and falsc residue will be:

FR(CC[PLACE lucationof](g x)) =

[(x heldby NIL) V (x heldby:locaticn g)l.

and (g locaticnof x) is true. Thus, in this case the reason
for the contradictici will be

[B]. [(g locatincf x) ~(x heldby:lceationof g)

~(x heldby NIL)J.

The resultant reascn will be the disjunction of [A] and [B],
namely the expressica in (2.39). To accept the assertion J
(h holding x) this rcascn should fow be made to disappear,
That 1s, it should bec made to evaluate to NIL or 2 in the
model space. In general, it is necessary to use a
"means -end analysis” scheme to realize this objective., We
shall present in thé next section a simple way of doing this,
that works for mcst of the cases arising in the model space.
Devices called, Fccus Lists (FL's) are used in the model
space for this purposc., We shall conclude this section with
a& summary of the properties and conventions associated with

interaction_checks (frame checks) in the model space,

Frame Cheeking in the Mudel Space

The DF's are used to identify interactims that are not

_69-

directly implied by the description structures in a domain,
The interactions directly implied by the description struc-
tures in a domain are illustrated by the following example.,

' Suppose (h holding x) waslnewly asserted, for an ANIMAL,
X, and at the time this assertim was made (m holding x)

J was true in the model space. In our domain we have the schema

[S8] (ITEMS heldby HUMAN\VEHICLE)

and thus only one HUMAN may hold an object.* Therefore, the
assimilator will postulate automatically all the following

rclatioms:

[(h holding x) (x heldby h) ~(m holding x) ~(x heldby m)]
— (2 ..44)
The assertims for "holding" and "heldby" appear together in
(2 .44) pbecause of the assumption (2.4), which 1s a part of the
bullt 1in structure of the model space. The negated assertims
appear because of the schema [S8], This knowledge will be a
part of the domain dependent processcrs complled for the domain.
To check for the cansistency of (2.44) the following CC's should

be checked:
CC[ANIMAL, heldby](x) (2.45a) .
CC[HWMAN holding](h) (2 .45b) !
CC[HWAN holding](m), (2.45¢)
cerx ri(e,), (2.454d)

*It 1s alsc true that while a VEHICLE is holding something nothing
else may hold the same cbject. A description Scheme where more than
me person or vehicle may hold an object 15 presented in Appendix I,

e k. T

—

STl

for every [X r] such that @X 1s a member of ne or more of
fhe following sets:

DF[X r][ANIMAL heldby]{x h)

DF[X r][ANIMAL h 1ldby](x m)

DF[X r][HUMAN 1:1ding](m x)
DF[X r][HUMAN hclding](h x) — {2 .46)

For each DF above the argument pair is (<anchord><change>).
The assertims in (2.44) may be accepted only if ncne of the

cc's above prcduce o cuntradicticn.,

In cur domain the cC's (2.45a) through (2.45¢) do not
exist, Where a CC dves not exist for an anchor [X r] we shall

assume that the cC is (y| (@, r y)), 1.e. any declared y is

acceptable. Thus, the only checks in the case of (h holding x)

wlll be these resulting from the interactions, namely those

implied by (2.454) and the DF's in (2.46).

In general, fcr any (Gk r y) the interacticn between r
and 1ts inverse, and r and itself, 1s part of the structural
knowledge bullt into a domain. We shall therefore ignore all

definitional filters of the forms:
DF[X r][X r] and DF[X r][¥ r']
for all Y for which (X r Y¥) 1s true -- i.e. the Scheme X rvy)

exlsts, We thus havé the following lemma characterlzing the

condlticns for the existence of DF's:

it L [L gy LI,

=71-

LEMMA 2.1 ¢

[(EXIST DF[X v][Y t]) <= (EXISTS CC[X r])
([Y t] elementof DONLIST[X r])
~IY £] = [X r]) (~(X r ¥Y) V ~(t inverseof r))]

Frame Filters

Besides definitional filters, DF[X r][Y t], one may

also have in MDS the so called frame filters (FF's), PRl ey €7,
An FF[X r][Y t] may exist only if DF[X r}[Y t] exists, and if

the FF exists then t.e subset

s)lz[@Y t] = (DX r][Y 1@y S)NFF[X r][Y t1(0, s))
(2.49)
Frame filters may be problem dependent and may be assigned to
an anchor during 2 problem solving process. It may also be
defined at the time of domain definition. Examples of use of

frame filters are not discussed in this paper,

The subsystem for building dependency graphs and defini-
tional filters was built by John Ng, in the current implementa-
tion of MDS,

“ The Unary predicate EXISTS is used here with the
obvious connotation.

T2

2.5.8. Pocus_Lists and the updating Process

Whereas DF's and FF's are used to identify and select

primary interactions, one may think of Focus Lists as contro-

1lling secondary changes, induced by an assertion (x r y).

The positive focus 1ist, PFL[X r], and the negative focus list,

NFL[X r]. From among all [Gy t] such that ([0 r] dependson

[ey t]1), the NFL[X r] 1s used to select those that should remain

unchanged in the updating process. Thus, NFL[X r] characterizes

|

With each [X r] one may associate two kinds of focus .lists: 1
%

tlke stable relations on which [QX r] may dependon. If there 1is ;
|

an inconsistency at [OX r] then none of the stable relatiocns
may be changed in order to resolve the Inconsistency. Similarly,

PFL[X r] characterizes all the unstable relations on which

[QX r] may depend cn. Thus, to resclve an inconsistency at an

[@X r], one or more of the unstable relations may be changed .

in element of PFL[X r]is of the form PFL[Y t1[X r]. So

also, an element of IIFL[X r] 1s of the form NEL[Y t][X r]. In

both cases, [Y t], should belcng to DONLIST[X r]. Each PFL[X r]

(NFL[X r]) is anchored at [X r]. Notice the ‘quality between

A DF 1s of the form DFIX rI[Y]
where [X r] ¢ DETLIST[Y t], where as an FI i1s of the form
FLIY ¢][X r].

DF's and FL.'s (Focus Lists):

Each element of an FL is itself again a set

construction expression cf the form.

B———

~7%-

FRLIY £]1[X r] = ([y z] ; (ngx r] dependson [y t])
(v t z)(PFLP 0, ¥ z))

NFL[Y £][(X r] = ([y z] , ([C& r] dependson [y t])
(v ¢ z) WFLP o, v z))

Clearly,
PFLIY £][X r](0,) n NFL[Y t][x ri(o,) =NIL (2.50)

We shall usually assume the conjuncts "([@X r] dependsonfy t])

(y t z)" ang Simply write PFL and NFL expressims as

PRY l&] = ([¥ 2] | (BeuP @, 7 2)) (2.51)
VLY)X 2] = (1 ¥ 2] | GFLP @y ¥ 2)) (2.52)
Also, when PFLP or NFLP 15 vaccucus =-- i.e. always T -~ then we

Shall simply say that [Y t] itself 1s a member of PFL[X r] or
NFL[X r]. Thus, 1f [Y t] 1s a member of NFL[X r] then for an
[G r] all (@Y.t) Such that([@xrq dependson [, t]) are stable.
So also, if [Y t] is a member of FFL[X r] then all (@ t) such
that ([Ck r] dependswun [0y t]) are unstable,

In cur domain we may have for example,

NFL[PLACE locaticnor] =
([HUMAN holding][VEHICLE holding]). (2.53)

indicating that when (@PIACE loccationof) changes then the perti -

nent "holding" andg "heldby " relatims shculd remain stable. Also,

we may have

. :.-u______________ﬁi
U e S e TR TR e e e e—

=T -

PFL[PLACE lccaticnof] =
([HUMAN l.caticn][VEGETABLE location]
[ANIMAL lication J[VEHICLE lccation]) (2.54)
Thus, if there 1S an inccnsistency at an (OPLACE locationcef)
then cne may attempt tc¢ resclve it by changing the location
of a HUMAN, ANIMAL, VEGETABLE or VEHICLE. Let us consider an
example.

Suppcse & HUMAN, h, is holding an ANIMAL, x, and h changes
location from p to g. Let us assume Fhat initially the fcllcowing
is true:

[(h location p)(x locatican p)(p lecaticnof (h x))

(h holding) (x heldby h)] | (2.55)
To move the HWMAN from p tc g the fellowing should be made true
in the model space (this 1s obtained directly from the description

structures involved):

[(h lecaticn g)(g locaticnof h)
~(h location p) ~(p locaticnef h)] (2.56)

To accept these the following checks should be dones

CC[PLACE lccaticnof](p)
CC[PLACE lccaticnof](g) (2.57)

and for every @x’ such that @x i1s a member of cne or more of

the following sets,

=75=-

DF[X r][PLACE lccaticnof](p h)

DF[X r][PLACE lccationcf](g h)

DF[X r][HUMAT lccaticn](h p)

DF[X T J[HUMAY lccation](h g) (2.58)

me has to check

cclX rle,). (2.59)

If we again ignored the SAFE Predicate, as we shall see below,
none of the above DF's would exist. In Table IIT cne may notice
that "lecation" and "lccationof" cccur enly in CC[PLACE loccationof]
and in CC[VEHICLE helcéing]. In the latter, it occurs via the
SAFE predicate. If we ignored SAFE -- assuming it to be always
true -- thén the only scurce of interaction with "lccation" ang
"leccaticnef " 1s CC[PLACE lecationof], Thus, in (2.58), r would
be elther "locatian" or "lccaticnof " and X would be HIMAY
VEGETABLM\NM‘MEI{ICLE. By lemma 1, such DF's cannot exist.
Thus, in this case wc have no relaticn interacticns to check.
The cnly Cé 's to cheek are those in (2.57). Let us suppcse that
TR(CC[PLACE locaticnof](p h)) =

((h heldby NIL)
((¥ y)(p locaticnef y) = (SAFE h v)) (2.60)

and,

TR(CC[PLACE locaticnof](p)) =
[(0C=p)(s = (x ... ?))
((s reldby NIL)V(s heldby:lccaticn O))
((¥ y) (O lccaticnof y) = (SAFE s ¥))] (2.61)

-

-76-

The residue (2.60) will evaluate to T under hypothesis (2.56),
but (2.61) will evaluate to NIL, because for (g=x), and (O=p)
the expression ((s heldby NIL)V(s heldby:locatin p)) will be
NIL, Thls now contradicts (2,16), namely (p locaticnof x) <&
CCIPLACE lccatianof](p x) producing the reason

[~(x heldby NiL)(p locationof x)

~(x heldby:lccation p)].. (2.62)
In the case of CC[PLACE locationof] (g) we have the .opposite

situation:

CC PLACE[lccrtianof](g x) = T but (g locationof x) is
false, because x 1s sti1ll at P in the model space. This will

produce the reason:
[(x heldby:locaticn g) ~(g locationof x)] (2.63)

The combined reason fur failure at the definitional anchor
[FLACE lcoationof] will be the disjunction of (2:62) ang (2 63):
Let (R x p g) dencte this disjunction:

(Rx pg) =

[~(x heldby NIL)(p lccationof x)

~(x heldby:lucaticn g) v

(x heldby: lecaticn g) ~(g locationof x)] (2.64)

To eliminate this cause for failure we shall try to make
Rxpg) = 2. To dc this one or more relations in (2.64) should
be set to ?. The values of the relations implied by
NFL[PLACE locationof] canmot be changed. Thus ncne of the

&=

"holding" cr "heldby" relations may be chahged (Please see NFL
in (2.,53)). Sc alsc, ncne of the relations in the hypothesis
(2.56) may be changed. Deleting from (2.64%) all the "holding"
("heldby") relaticns, and the relaticns of the hypothesis we
have left

[(p Locaticnef x) V ~(g locationof x)j (2.65)

as the ly candidates fcr change. Indeed, both these relaticn
values may be changed since they both belong to PFL[PLACE lccatimof -

i

Let us set

[(p leccationef x) = (g locationef x) =
(x location) = 7] (2.66)

in the model space, Then, uader the combined hypothesis (2.56)

and (2.€6) the reaswns for the contradicticn disappear., Also, !
in this case, the evaluation cf CC[PLACE locaticnof](g) will
automatically set (x lccaticn) = g and (g lccationof) = (h x..72).

This will complete the process of assimilating the assertion

(h locaticn g). |

In general, in the model space, we shall always attempt i
, to eliminate the reasoms for a contradicticn by foreing it to

evaluate to 7.

, The focus list should be made more sSclective than the

, mes shown 1n (2.53) and (2.54). It is quite possible that not

all "holding" relations should remain stable. Thus, for example, ﬁ

-7 8-

h may be hclding mcrc than one cbject, some may be FIXED objects
-- where FIXED 1s, say a type of cbject -~ and others may be
MOVABLE cbjects. One may then have the rule that FIED cbjects
camnot change locations, only MOVABLE cnes can. This rule may

be captured by the fcllcwing FL expressicns:

NFL[HUMAN hclding J[PLACE locaticnof] =

([Cqumay 2] | ~(z type FIXED)) (2.67)
Only for cbjects z that are not FIXED should (OHUMAN helding z) ;
remaln stable. Similarly, i
PFL[HUMAN hclding J[PLACE lccaticnof] =
([Oqymay 2] | (2 type FIXED)) (2.68)

i
For FIXED .cbjects (@HUMAN holding z) may be changed. Thus, when ;
z mwes, -z would let go his hold on FIXED objects and take with !
him only the MOVAELE wnes. |

Focus 1list conditions like this may be defined at domain
definiticn time c¢r at problem sclving time. The DF, FF and FL
mecharisms provide 2 practically unlimited and camtinucus ccontrcel
cf frame interacticns, and seccndary updating. The focus 1lists
not mly provide guidance for secondary updating, but also
provide a formalism to describe updating criteria. Thus, strate-

gles learnt in an updating process may be summarized as fccus

lists, for future use.

e

~-79-~

The fceus 1list mechanism will be automatically invcked
in an updating process t¢ dc means-end analysis, when necessary,
unless it is blceked cff by the, so called, filter switch, which

con be assoclated at scme time with invceation anchers, (O, T1-

If fer an [X r] there are no focus 1lists then it is assumed
that all the relaticns are stable in the cantext cf every [Cy T]-

Thus, if the filter switch is on feor an [Ox T], or if there are

no fccus 1lists for an [X r], then the means-end analysis step
will be skipped. The ccmmand FR, (Force Relaticn) is used ‘to
force the invececaticn of the means-end analysis processes during

updating.

In the next section we shall discuss scme representa-

timal shifts in the mcdel space that would enable the system to

R T W R T —

cempletely aveid the search for frame interactions and seccndary
updating, in cases where lccaticns of objects change. In effect

in the new representations, the cbjects carried by a HWAN/VEHICLE
will implieitly mcve with the HUMAN/ VEHICLE. This shift in

representation is achieved by the use of anchored transformaticn

rules and the dummy stcrage flag (which was discussed in secticn
2.3.2, item (1i1)).

e - B e VU ” T =
T e Ao . o S | - . T e R g i e k- -

-80-

2.5.9. Anchcred Transformation Rules

The Anchored Transformaticn Rule, ATR[X r] has the
general form:
[(NIL <NIL-2ctiwnd>)

(2 <2-acticns >)

(T <T-actioms >) (2.69)
where NIL, ? and T are the possible cutecmes of all the consis-
tency and interacticns check at an [py r], If the checks result
in NIL then the <NIL-acticns> will be executed. Hopefully, these
acticms will remove the cause of the ccntradiction. If the checks
evaluate to ? then the <?-actiond> will be executed, These may
find scme cr all of the unkncown values in an updating process.,
The <T-acticns> when executed may cause the “side effects”
necessary in the dcmain when (OX r) is updated. In this section
we shall discuss two kinds of uses c¢f ATR's. One is a prescrip- -
tion for the kind ¢f updating that was discussed in the previous
secticn. The other is a shift in representation that eliminates

the need for seccondary updates,

Each ATR may, by ccnventicn, use impliditly the following

arguments :

i) @y @ the anchcr
i1) s : the change at (QX r)
111) OLDVAL : 01d value of (@y Tr)
iv) NEWVAL : New value of (Qx r), and
v) REASONS: The reasons cbtained from all the checks.

=G&
Let us asscciate with [PLACE lccaticncef] the following ATR:

ATR[PLACE lccatlcncf] =
(NIL ((x | (s hclding x) ~(x type FIXED))
(ASSERT (x locaticn ?)))
((x | (s hclding x)(x type FIXED))
(ASSERT ~(s holding x)]. (2.70)

The first compcnent cf <NIL-actiocn> asserts (x location) = ? fer
a1l x that in effect satisfy (2.67). The secand compcnent asserts

~(s hclding x) for all x that satisfy (2.68). The command phrases 1
follcw the syntax:

<ccmmand phrase> :: = <actlon> | <commandphrase> ...
<command phrase> | (<bindingeonditicn> ‘
<c cmmandphrase))

o o

The binding ccndition is used tc bind variables which participate
in the <acticn>. The acticn itself will be executed anly if the
<binding cndition> is successful. In (2 oL the binding
conditicns are set expressims. In cases like this the indicated

action 1s performed c<n all the elements of the set.

The above ATR gives a prescription for using the fccus list
predicates assceiated with [PLACE lccaticnof]. This may result in
avolding some Search and decision at the updating time, at the |
expense of flexibility. The use cf ATR 's tc change representa- i

tions in the mcdel space is shawn below:

Let us asscciate with [HUMAN holding] and [VEHICLE helding]

Bl i i B e, B, A

the follewing ATR, and muodify ATR[PLACE lccatimeof] as shown in

(2.7%). These ATR's and their operaticns are discussed below:

ATR[HUMAN hclding] = ATR[VEHICLE holding] =

[(T ?)

(((SOME PLACE p)(0Q locaticn p))
((vy | (v clementof NEWVAL) ~(y elementof CTDVAL))
(ASSERT ([y locaticn] flag $)(y lccation ?)

([Plecationcf] flag §)))

((y | (v elementof OLDVAL) ~(y elementof NEWVAL))
(ASSERT (v lccaticn p) ~([y lcecation] fiag ¢))
(((¥z) (pilccaticnof z) ==>(z holding NIL))
(ASSERT ~([p .lccaticncf] flag $)] (2.72)

ATR[PLACE 1lccaticnof] =
[((T 2)(((¥y)(y elementcf NEWVAL) = (y hclding NIL))
(ASSERT ~([@ lccatienof] flag §))
= (((s elementcf NEWVAL) ~(s hclding NIL))
(ASSERT ([@ locaticncf] flag $))))

(NIL ((x | (s holding x)(s elementof NEWVAL)
(x type FIXED))
(ASSERT ~(s holding x)) &.75)

Also, let us assoclatc with [Y leccaticn] for ¥ = HUMAN, VEHICLE,

VEGETABLE, ANIMAL, the following CC:

CC[HUMAN locaticn] = CC[VEGETABLE lccation] =

CC[ANIMAL lccatiaj = CC[VEHICLE lccaticn] =

[(PLACE p) | (O lccaticn p)(Q heldby NIL) V
(0 heldby:lccaticn p)] (2.74)

The ATR in (2.72) d.es the follcwing:

T sl oy - = g

o -
P T L (P LI T S TSRS

-83-

For all y such that O has just gotten hold of the vy -- 1.e.,
(v elementof NEWVAL) ~ (y elementof OLDVAL) ~- the dummy flag,
$, 1s asserted for the invocation anchor [y location]. Also
(v location) = ? is set, and for the PLACE, p, such that
(@ location p), ([p locationof] flag $) is asserted. As discussed
in section (2.3.2), item (111), the $ flag has the following
interpretation: Every time (y location) 1s called for, 1ts value
will be computed using the CC ang/or ATR associated with
[y location]. In our case, this would cause the cC in (2,74)
to be evaluated, and (@ heldby:location) to be returned. In the
case of [p locatio%ﬁ, the value of (p locationof) may be,
(x1 Xy ees ?), where the ? indicates the pPresence of possibly
more elements in the collection. The CC associated with
[p locationof] will le evaluated to find these additional ele-
ments, namely the elements that are being held by Xqs Xy eee
The second part cf the ?-T-actions in (2.72) takes care
of the case when an object is just let g0 off by O -=--1.e.
~(y elementof NEWVAL)(y elementof OLDVAL). For all these y,
(y location p) is asserted. That 1s, y i1s put at the place at
which @ is located. The $ flag on [y location] is removed, and
if none of the objects at P is holding anything then the & f;ag
at [p locatiocnof] is also removed. This sets the representati on
back to old form,
The ATR[PLACE lccationof] keeps track of moving the
flag as an cbject at a PLACE, that is holding something, moves

1
: Sl J
T g RSN e o B e ey -

-8l

to ancther place., If x 1s at p, and (x hclding m) is true, thren
by (2.72), ([p locaticncf] flag $) will be true. Now, 1if x moves
tu g, then ([g locationcf] flag $) is asserted, and if p dces nct
have any more objects that hold something then ~([p lecationof]

rlag ¢) is asserted.

The selective associaticn of these $§ flags now completely
eliminates the need for secwndary updating in the model space, as
locations change., Thus, a VEHICLE may be holding a hundred
passengers, But as it moves, the cnly secondary change in the
model space will be the movement of the §§ flag asscciated with
[p lccaticnef], The lccaticns of the passengers themselves need
not be changed.

In the example we discussed, fcrtunately, there was no
propagation of secwndary changes in the updating process. The
propagaticn characteristics at an [X r] are goerned by the, sc
called CLOSURE([X r]), 1\

CLOSURE([X r]) =

(DONLIST[x r] U DETLIST[X r] U
(CLOSURE(DONLIST[X r] y DETLIST[X r])) (2.75)
where the clcsure ¢f an union is the union ¢of the closures of its

elements. In the case cf [PLACE lccaticnof] , we had

CLOSURE([PLACE lccaticnof]) = DONLIST[PLACE locaticnof],
(2.76)

This was the reascn, why we had no propagaticn of secondary changes,

-85~

One may define the depth of an [X r] to be the number of
applicaticns of the CLOSURE operator in equation (2.75). For
[PLACE lccaticncf], its depth is 1. In general, the defini-
ticnal filters and the focus lists may be ordered at an [X r]
in Iincreasing order ©of the depth of [Y t], for [Y t] ¢ DETLIST
(X r], and [Y t] ¢ DONLIST[X r]. In an updating process, me
may chcose the secondary changes, in increasing order of their
depths, preferring those with smaller depths over thcse with
larger depths.

CLOSURE[X r] may be ccmputed from domain definiticns. One
may alsc, of course, cimpute a CLOSURE[Cy r] for an instance

oy r] of [X r], at "run time" by using the definitianal filters,]
Cx

This completes the discussion of the basic mcdelling
concepts in MDS, We shall conclude this secticn with 2 review of ‘

what we have done sc far, }

+86-

2:4; Object Based Representatimms: Bundles.

We have propcsed a way of defining relaticnal systemg, R,
and using them for two purposes: One 1s to define the syntax

and semantics ¢f elementary description languages, L, that are

based on R. The cther is to define the structures and prccesses

of mcdel spaces, M,

The bundle structures are obtained by viewing the rela-

- ticnal schemas and their consistency from the peint of view of

classes, X, that naturally cccur in the domain: what relatios
may ccceur with X, and cn what classes, Y, d¢ the relations of X
depend on., The bundle ¢f an entity, X, 1s a representaticn in
the mcdel space, of the description of x in the language L. It

1s a medel of x not cnly in the sense that it 1s a representation

cf X, but alsc in the sense that it satisfies within the 3-valued

loglcal system all the properties cf logical c mmsistency, that

instances c¢f the class X should themselves satisfy, in the

relaticnal system R.

Slots in the bundle not only have values, but alsc the
reasons and hypotheses asscciated with the values. Where a
value 1s unknown, it may be characterized by cond ticns,
expressed in L. Most importantly, all the potential interactims
¢f a bundle with cther bundles in the modél space may be derived
economically using the DF and FF filter Schemes, The depth of
such interacticns may be ccntrelled at problem sclving time by

the use of frame fllters, and the filters switch.

-87-

The schematic definiticn of the properties of a class X
in R, 1s alsc the definiticn of the bundle scheme, used to
represent members of class X, What makes these schematic defi-
nitions useful and interesting 1s that they are instantiable.
Thus, the bundle paradigm, which is essentially a descriptio
paradigm may also be used as a programming paradigm: What is.
described as a bundle schema may alsc be instantiated in the
mcdel space. Of ccurse, it is assumed that the schema defini-

tions themselves are cwnsistent.
To instantiate, X, cne may first create a new instance

f the data-type that is associated with X, 1f the CC[X instance]
and ATR[X instance] asscciated with X, admit cf such an instance.
Initially, all the slcts of Oy will ccntain, ?, indicating that
their values are all unknown. The slots may be filled by issuilng
(INSTANTIATE (@k r)) ccmmands for each relatim r, that is assc-
ciated with @X. If CC[X r] 1s imperative, then this may succeed
in finding the (y | (§ r y)), or characterizing this value by

a condition, Otherwise, it may find the candidates fop (QX r).
The chcices cof y fer (QX r y) would then have .o be made by the
DESIGNER, TP c¢r a user, depending on the context of creation of
Oy «

Mcdification +t¢ the model space are dane by the INSTANTIATE,

FORCE and DELETE commands. The problem solving systems or a user

that 1ssue these commands need nct, hcwever, he toc domain specific.

The ASSIMILATOR can use the dcmain knowledge to understand

oo R —

-88-

the consequences of a given assertion, and where there is an
inconsistency, provide the reasons for it. This frees the
programmer or the problem solver from a whole class of details

of the domain characteristics, namely all those that pertain

to the consistency of the model space. Thus programs can be

vague or may even contain errors. The system can respond intelli-
gently to unexpected situations. We shall refer to this kind of

programming as Knoiledge Based Programming Srinivasan [1973b,

1977c], a programming methodology in which a user or a system
need not be aware of all the relevant domain laws. The paradigm

for knowledge based programming is illustrated in figure 3. The

program control uses the reasons and hypotheses supplied by the

ASSIMILATCR to decide on the next step in program execution.
Also, these reasons and hypotheses are used to update the program
execution state. It should be noted that in this paradigm the |

‘ VAGUE SPECIFICATION

OF PROCRAM !
PROHR AM . PROGRAM
CONTROL EXECUTION
STATE

Hypctheses

Next command
Reascns ~1-7 .

£
=,

ASSIMILATOR

!

|
|
R, -
i MODEL SPACE J

Fig. 3: Paradigm for Knowledge Based Programming

B T —— n..ﬁ?'*ﬂﬂw-m"-num——;J

F—__-—_—ﬂ

_89-

"next command" generated by the program control, may not be
bresent in the vague specification of the program, It may be

one that is generated by the control.

The organization of the program control and the program

execution state is a characteristic of the kind of problem

Solving that is dcone by the program, to decide cn the next

command. In MDS we distinguish between three general schemé@s

for doing this: The gcal directed schema of DESIGNER, the model i

ccnstruction schema of THEOREM PROVER, and the understanding

Schema of LINGUIST, Thus, in the MDS paradigm, an intelligent

machine will have f: ur executicn coentrols, with associated data §

crganizations: Those ¢f ASSIMILATOR, DESI@VER, TP and the

LINGUIST. f
This kind of use cf mcdel Space is made possible largely

because of the choice cof cbject-based representations, as the

basis for defining relaticnal systems, and the use of

ancliored CC's for constraint specification. Tn this schema the

CC's are used both as functions and as predicates. The advantages
of object-~based representations, as contrasted with operator-

based representaticns, are summarized belcow:

(a) Local Isclaticn: The effects of an inconsistency at

& definition ancher is lccalized to itself, and other relati-ns

that interact with it., The interactions themselves are predict-

i
able and smcothly ¢mtrcllable, using filters and focus lists. |

Errors can be characterized in terms of the static properties of

=30 -

of the model space., In cperatcr-based representaticns, errcr
propcgaticn characteristics cannct cften be easily stated in
terms cof the static prcperties of a model space., They may be
characterized cnly in terms of cperator sequences, or a grammar.,

These are not convenient entities with which one may reascn.

(b) Immediacy and Fccus: The items that participate

in a predicate, functicn or a problem Solving process can

prcvide immediate access to all properties, ccnﬁ%aints, trans -~
A

formatins, and combinaticns cf reasons, that might be relevant

to the context of thelr use. In cperator-based representati s,

the interactions amcng items will depend cn the operator sequence
involved, and combinations cf prcperties relevant tc a task may
only be indirectly chtained via the effects produced by the

cperatcr sequences.

(c) Flexibility: This is partly & consSequence of (a)
above. Changes and extensicns tc definitions of classes in a |

domain may be intrcduced moxe gracefully in gbject-based schemas,

than in ¢perator-based cnes. Changes and extensicns in an opera-

tcr-based scheme may call for a change cf the entire system.

(d) Inccmpleteness: In cbject-based Schemes, incomplete
data result in partitiining of properties into kncwn and unknown
categories, where the 3-values logical system may be uniformly

used tc characterize a mod:l space. In cperatcr-based schemes,

unless the operatcrs are defined a priori to account for every :

T T

RSP BER e : = o e ——.

e e s P —— - = = - m—try

“91 =

pcssible combinaticn f unknowns, it is not possible tc
characterize conveniently the state of a mcdel space, Unknowns
1

in operator-based systems will result in "ncn-determinism",

which may ccntribute tc¢ combinatcrial explosicns.

In the next chapter we shall present the basis fcr

ccmmensense reasoning and briefly discuss algorithms for

CC=evaluation, and residue extracticn,

=GP

III Residues, Commonsense Reasoning and CC-evaluations

In this chapter we shall define the syntax of CC's, define
the f-calculus that is used to compute residues and prove the
properties of residues that make them useful for commonsense
reasoning. The CC-evaluation process and associated representa-
tions are discussed in section 3.4, Some of the representation
Schemes in the MDS model space, that faciiitate CC-evaluation
are discussed in Appendix II.

The methods discussed in this section. are not unique in
any sense. They are included here only to make the definitions
precise and to point cut the feasibility of using the commonsense
reasoning paradigm. In a subsequent paper we shall discuss the

complexity of CC evaluation processes, in the context of the MDS

model space.

el Syntax of Consistency Conditions
<cc> -~ <set-exp>

<set-exp> > (<set-var> "|"<P>)
<set-var> > <vard | <tuple> |
(<sccpe>| j<var))
(<scope>|_<tuple>)
<scope> > <class> | <class> / <scoped>
<class>\ <scope> | A
<class> 1s used to denote the name of a class in a domain., It
is also the name of template that defines the class. The Symbol

ft n

1 1S used for blank,) is used for null String. It is also

-93 -

later used for denoting null sets

s e s 1 Y
<> >0 [1]2] s
<v> » <var> | <tuple> | <fn-call>

<tuple> > [<segment>]
<prarg> > var > [(Kv> LK) | (> L v>)
dsegmenty > <p-arqy [<segment > Lp-arg>
<rd> > <relname> | <relname>:{r>
<relname> is used to denote a relation name in the domain.

<fn-call> = (<fn-name>| |<args>)

<fn-named> denctes the name of & function defined by using

the function template schema. TFunctions appearing in a CC are

required not to change the model space during CC evaluation.

<args> > <segment> | <set-exp> |
<args>| I<args>
<quantifier>> (<scope>| |<b-vars>) |
(<a~type> L1l <sc ope> Ll <b-vars>) |

(SOMEL_I<scope> [_I<var> L1<i>L1<1>)
<q-type> - ALL|SOME|THE

Tn our discussicns in this chapter we will use "(¥x)"
and "(3x)" as the symbols for quantification. This is done
only for convenience, All quantifiers in CC's are required to
be as specified by <quantifier>. In the existential quantifi-
cation, "(SOME ... <i> <i>)" the integers are used to indicate

lower and upper bounds on the number of solutions.

e i L

-9 .

<b-vars> > <vard | <vard |_l<b-vars> |
<P> > (<p-arg>) < U<p-arg>) | |
(<tuple-name>L"J<segment>) , |

e |

<p> is the elementary predicate., We shall use symbols

with or without negation.

P, q, P, Q1, ete. to dencte these. Notice that <p> can appear |
The <tuple-name> denotes the name of |
|

& tuple template. Tuple templates are used in MDS tc define

h-ary relaticns for n > 1,

<&-seg> > <P> | <P> ~ <&-seg>
<&-8xp> > (<x-sep>) | <P |

<P> <&=-exp>
<V-seg> - B> | <PV V-seg>
<V-exp> =+ (KV-seg>)
<-exp> > (<KP> = <py)
<& -exp> > (KPY &> <ps)
<rexp> > KPS | (KPY)
<q-seg> -

<quantifier> <p> |
<quantifier> <g-seg>

We shall use the Symbol <q> to denote a Quantifier.

<L-exp> > <p> | <&-exp> j <V-exp>;
< = -exp>|&=>-exp) [<~exp>
<P> > <L-exp> | (<a-seg>).

The followinz special symbcls are used, whenever

convenient

-95..
* > v ’ ~
L > A
<> - <B
A L<p> » P
& = TfU|F

Thus fR will denote IR, R and FR, ¢ 1s used throughout
&s the evaluation functicn, and ¢ is used to denote a substitu-

tion list cf the form

a=[(xa)y ») ...j]
indicating Substitution of a fop X, b for y, ete. [a]P 1s the
predicate expressiu: P with substitutiom g, ?[a]P 1s the truth

value of [a]P. By convention}i = ?, ¢& will dencte T, ? or NIL.

Ccnsistency cunditicns are represented in the model space
in their mini-seope forms. This form is defined in the next
Section, and rules g converting an arbitrary P to its mini-

Scope form are presented ,

3.2 The Mini -Scope Form

Let <¥> dencvite a string of universal <Quantifiers>, and
<3, a string of existential {quantifiers>, Let PX be a predi-
cate expression in which x cceurs free, and PX be one in which
X does not occur free, Then, the definitim of the Mini-Scope
Form (MSF) may be stated as follows:

(F1) pis in MSF
(F2) If P ang q are in MSF then so are (p v Q), PQ,
(PQ), (P~Q) and p~q.

e

(F3)

-96-

If P is in MSF then ((Vx)P) is in MSF only if x
cccurs free in P, and P is nct of the form P1P2,

(P1 i PQ)

If P is in MSF then ((3x)P) is in MSF mly if x

cececurs frece in P, and P is not of the form
(py v By).

The fcllowing rules may be used to ccnvert an arbitrary

P tc its MSF., The prvpcsitional rules given helcw are to be

applied first.

be used.

The rules are applied until no more rules can

Propositicnal Rules

~ ~P > P

(p= Q) » (~PVQ)

(P& Q)> (PQV ~P ~R)
~(PR) = (AP V ~R)

~ (pPVQ) -> ~P AR

Quantificaticnal Rules

~((¥x)P) » ((3x)~P)
~((3x)P) » ((¥x)~P)
(
(

Vx) Pi» P

(
(
((3x) Px)»>P

Here Px indicates that x dces not occur free in P.

v)
vi)
viii)

-‘_— i i e i

(K¥>2Q » (K¥>P) (<¥>Q)
(<3>(pvR)) > ((K3>P) V (KDR))
((¥x) <& (Px V Qx)) -»

(<v> (((¥x)P) V Q)

-97 =

viil) ((¥x)<¥> (PX V Qx) -
(<v> (P V ((wx)Q)))
1x) ((3x)<3> Px Q% » (K> {(3x)P)Q)
2) (Ee2s 7rlox =
(<

D> P ((3x)Q)).

We shall assume that the variables in a predicate
cxpression are all distinct. In the current implementaticn
of MDS, the program for transforming CE's to their MSF was
written by Tau Hsu.

In the next scctiwn the residues are defined and the

t-calculus that 1s used for residue extraction is introduced.

5.5 Besidues and partitions.

We shall first define residues for propositicnal express-

icns, As menticned befcre, let o be a substitution 1list of the

form:

a=[(xa)lyv)...,] (3.1)

If xis in «, then we shall let
[a]((¥x)P) = [a]((3x)P) = [q]P. (3.2)

If x is free in P and x dces nct cceur in o then we

shall assign x = ? in p. Alsc we have,

(@) o(xr 2) =2 for all x for which (x r) 1s dimen-

sicnally Consistent.

R T g p—

-98-

(b) Fer 2 tuple name R,

A & 2 =
o a, a, ... 7 .., a) =T if
(VX)G1a1 2, ...x...an))

)

— N

1]
=

= NE 47
(;‘((VX)(R aul a2locxo.-an)) =N]IJ

() o(2r) =¢(r 2) =2

where r 1is a pelaticn path

Fer a funeticn, £, il cne cr more of its arguments is unknown
then 1ts value is ?, unless the function itself returns ancther
value. Thus, in the “-valued logical system ¢[q]P 1is always

well defined.

We shall require that expressicns of the ferm, (P = ?),
do nct ceecur in CC's. This is consistent with cur view that
in a dcmain itself, there is nc cencept of a relation having
value, ?: Every relaticn is NIL or T in scme model space, How-
ever, there may exist P, fcor which it may be impcssible to cons-
truct the model space in which P = T or NIL, In MDS, such pre-
d.cates may have value ?, and ccemputations attempting tc assign
a T or NIL value to them, may never terminate, This view is
comsistent with Semi-decidability cof sentences in first order

legle.

..99 -

% Ty Residues and Partitims of Propositicns
We shall assume that all prcpesitions are in mini -scope

form: 1i.e. negations appear cnly in the elementary forms p, and

~ and V are the Mmly connectives. We shall cconsiger below, cnly

grounding substituticns, i.e., P has no variables in ¥%.

Definiticn 3.1: Residues of Elementary Forms

(BRlalp=0) 1if olalp = ¢F, else y (3.4)

TRlc]~P = A~FR[a]D
FRla]~vp = ~TR[a]p

W[a]vD = ~WR[a]p (3.5) |

Let * be ~ cr v, Then

i.

Defindticn 3.2: Residues of Conjuncticns and_Disjuncticns I
|

|

|

Rlal(py*B* L. *p) = i*’z (ER[‘oc]Pi) (3.6) l
PEE .'!
(o[alP X 9E) = (fR[a]P = a) (3.7) '
Lerma 3.2 |.
(ER[aIPX 1) = (olal(ER[a]P) = of) (3.8) f‘

Proofs of these lemmas are by inducticn cn the structure

of P: P1s a <p> ¢r P is (P1 TAlE . woas ka) or Py By ... P

= T B At B, B | - 5 oy o s

-100-

We shall hereafter indicate explicitly the bindings

assccilated with a resildue, by writing the rcsidue in the

fcorm
[a](gR[a]P)o

3D .2 Residues and Partitions of

Predicate Expressicns

5.3.2.1 Substituticn Ranges, Their
Partitions and Solutions cof p

A substitution range 1s a list of the form

g = (' & ... q" (3.9)
Where each
@ = 0l Gy ey) (e, 22+++))
A T (3.10)

in which aﬁk are ccnstants, For 1 = 142,.4045n, Wwe shall say J

that
(Range oy xJ.) = (a}‘1 a‘j]:2)| (3.11)
Definiticn 3.5: (a Jeg) and (q e al.

(1)

(a € gi) if « and g_i have the same variables, ang fop

each x in q,

(Range o x) C (Range gi x).

e T e U U ——————— A oty B T T

-101-

(11) (o € @) 1if there exists an 1 such that (gb memberct g)

and a € g}.

(111) (@ Dp) or (pC a)if
((#5)(6 e g) = (6 € g)) (3.12)

In the context of predicate expressims, we shall at

times distinguish between three kinds of substitution ranges.
1) Range of Universals: gu(P)

gu(P) is of the foerm

(P) = ([(x(24850..)) (7 (oyDyenn))ens val]) (3.13)

Q
=Xl

and it specifies the range of values fcr the universally
quantified variables of P.

(11) Free Range: P)

ae (

ae 1s of the form (3.9), and 1t specifies the range cf

values fcr the frec variables <f P, If P has no free variables,

then g.(P) = 2.

(111) Sclutiwn Range: gs(P gf)

g 1s of the form (3.13) and 1t specifies the solution fer
the existentially quantified variables of P, for the given

) a 3
free range Qe

102 -

Since we have assumed that all variables in P arc

dlstinect clearly, %,» 2 and 2 W1ll not have any common

variables, By definiticn, let us set
[AJP =P ana (A ¢ 1)
We shall cfien use g¥ cr o tc dencte a substituticn
|
range in which x 1s the cnly variable. We shall use ggs(P gf)

to dencte the t-scluticn ¢f P for the free range Qo o Alsc, we

shall generally usc cXpressicn ¢f the fcrms:

([Egp 10 Eg, 1[0, 1P)

with the interpretatiom |

(Va)(a e £an) (V) (pe ta,) = |
((38)(6 e v) (olal[p][8]P = &) (3.14)

irrespective cf, whether the variables in 2, 9re universally

quantified, ahd thcse 1n Qs are existentially dQuantified. But,

always %, and Qe arec used to Speclfy ranges for the bound ’

variables of P,

We will consider residues cf predicates, P, only in the
context of a given Gpe+ We shall make use of the fact that p :
is in mini-scope ferm, and define the residues only for

expressionscf the forn «VX)(P1VPéV...VPk)) and ((3x)(P1P2...Pk)),
amng quantirfied expressions,

. : = ,,_,,.._,,._—_M—J
T — . =

-1 03~

Every predicate expression P, may be reduced to its
equivalent prcpesitional form in the model space, since P
is evaluated only ever the models that exist in the model
space. Thus, residues ¢f P are eQuivalent to residues of
their asscciated prcpusiticnal forms, But, propcsiticnal
residues of this kind are likely to be very large expressions.
They are hard to generalize. They camnot easily be used in
new situaticns, when the bindings of the variables change.,
The expressive power of the sentential fcrms of P is completely
lest in the propesitional residues., We shall discuss below a
way of extracting the residues in which the sentential forms of
P are not lcst. We shall express the residues in terms of

exXpressios of the forms:

ER(P) = [<scope c¢f bindings for variables in Q>1Q.

where Q would be a subexpressicn of the parent expression P,
and the bindings specify the context for Q. TIf the model
Space changes and the bhindings change, then Q may be easily

re-evaluated in the cuntext of the new bindings. Since Q is,
in general, a sub-cxpression of P, the re-evaluaticn of Q will

always be a simpler task, than the re-evaluation of p,.

5.32.2.2. E-Soluticns of P

Definiticn 3.4: Partitions Induced by P

Every predicate eXpression, P, induces a partition of the

O S —

-104-

range of 1ts free variables, gf(P) into threec parts
Eae (P) for & =1T,U and F:

EaP) = (a | (a ¢ g (P)) (o[alP = &) (3.15)

Alsc, 1f z 1s the ly bound variable of P, then we shall say
that,

€2(P a) = (u | (o[a][(z W) JP=oE)) (3.16)

and

z{P a) = [Tz(P o) Uz(P o) Fz(P a)] (3.17)

If P 1is an elementary predicate, p, then z(p ¢) may be
computed using the mcdel Space. For binary relations, the
storage cf relaticn values in terms of collections (See
Appendix II), facilitates the direct retrieval of z(p o) from
the medel space, ruorp n-ary relaticns, n > 2, the partition
z(p a) will be computed when called for.

We shall present the residue derinitions in such a maénner,
that 1t makes apparent i1ts computation, Besides computing
residues, we shall alsc ccmpute the, sc called, partitions of
P for a given Qo o An example of a partition of P 1s presented

belcw s

Suppose ¢[a.]P = ? ang P = ((¥2)P;). Then by
definition

M.

!

-105-

((3a)(a e gf)(o[a]P =7?))
mHMhse%JmhﬂP=NE) e (3.18)

Thus, in this casc Fgf(P) =). However, Tgf(P) may exist,
Uge (P) would, of course, exist. The true residue will have

the form
WTee IP = [Tan (P)][Tg 1[Tg 10 ... (3.19)

for some sub-expression Q of P. For each ¢ in Ugf(P) the
universally quantified variable, z, may have its range parti-

tioned intc¢ two parts:

Uz(Pa) = (b o, ... b, ?) ang
Tz (P q) = (a; a, ... a)

Such that fer £ = U and T
(W e &z(P a)) = (o[a][(~ W] =) (3.20)
In this case, we shall say that

U (P) = ([a (z Uz(P)] l
(@ € Uy () (02 (P) 1)] (3.21)

and WRge]P = UR[U_@_I.(P)]P.l (3.22)

Alsc, UTEI'(P) = ([a (z Tz (P a)) ,
(a e Vg (P)) (T2 (P a) <)l (3.23)

and the true partition cf Bis

~106-

HT[QfJP ha (meﬁf(P)]P & m[UTEf(P)]P1)

In this case ne may alsc

Whe

part) cf P, when P cvaluates t¢ 9 (NIL). Thus, p = P, P,

Ay evaluate to ? for an as but some E&, for

be such that ¢[aJRi =ity

We shajl throu-hout use the ccnvention that

RIAIP = mE[Ar =y (3.25)

Alsc, in binding Specifications we shall omit ¢

he value ranges
for universally quanti

fied variables,

if the range is equaj tc
all the instances in the secpe of the variable., 1In cases like
this we shall usually say, "the range of x is equal to the Scope
gf B

In the Subsection belw we define the, so called,

&=
caleulus that is used to compute ER ~resi dues ang [IE- partitions
of P for gliven ran;es c¢f Gp - The caleuluys 1s defineq inductively
¢nh the Structure cof P

(1) Pisa P or a ap,

-

“107-

(11) P = (B = By #,, Pls k=21, * =aorv,

or (ii1) P

((VY)(P1 vV EPyv..w Pk)) or
((37) P4Bpee. B), k21,

where Pi’ 1 <1 < k are general predicate expressions in mini-

Scupe fcrm,

Definiticn 3.5: Truth Value of [op]P.

((o[gp1P
((pLag 1T

T) € ((Fa)(a e go) = (9[a]P =T)) (3.26)

) © ((1)la e ar) (e[a]P = 2))
~(3)(e € go)(ols]P =NIL)) (3.27)

(0lgp 1P = NIL) «=>((32)(a € go)(p[alP =NIL)) (3.28)

In what follows we shall consider all propositicns and
predicate expressicng to be (n+2)-ary predicates for n > 0:
Elementary forms (P Xy eeoX) Y z), propositicns (M XpoeaX ¥ z)
Mgy o.M), (N Xpeeeky ¥ 2), (Nj V N,y V..V Ny, ete. We shall

thrcughcut assume that the soluticns

((p(Z X.] X2...Xny Z) = (p&) (3-29)
1s available t¢ us fur a general expression Z, In section

25 we shall briefly cutline a prccedure for cbtaining ggf(Z)

fer a prepesition Z, using the relaticn values Stored in the

model space,

-10 8-

2300 Elementary Form

-

B w (@ Xq eee XY z) or

w(p X1 oo Xn y Z) (3030)
gpf(P) may be cbtained from the mcdel space. For a given
a, £z(P a) may be dlrectly retrieved from the model space, as

also the partition =z (P o) (see equations (3.16) and (3.17)):
The partitions cf P,

ME[gp]P = [Ep. (P)]P (3.31)

W hg re

Epp(P) = ([a (2 £2(P a))]] (a €)
(2 (P a) = 1)) (3.31a)

RE'pp (P)IP = [Epp (P)IP 4f E' =& else A, (3.32)

We shall hercafter unifcrmly use the symbcl p tc dencte
a ovinding fcr [x1 «+e’, ¥ 2] €nd the symbcl, a, for a binding
cf the prefix [x1...xn ¥y]. Fcr any propesition, Z, we shall
hereafter use the scluticns defined below:

(A) Ege(Z) = (a] (22(2 2)% 1)) (3.33)

(B) Wi (2) = (o] (0 ¢ W, (2)) (Tz(z a)x2)) (3.3%)

il

(C) Wgp(Z) = (Vg (2) U Fg.(2)) (3.35)

D) Py (2)

]

(af (o € Fge(2))
(Uz(Z a) X 1)) (3.36)

e s S

-109-

Note that an ¢ can be in all of the sclutions £ge(2).

(B £pp(2) = (b (z 22(2 0))][(a e £ge(2))] (3.37)
(F) WEnpe (Z2) =([a (z Tz(zZ a))|(a e UF e (2))] (3.38)
(@) Fuep(@) = (& (2 02(2 0))|(a e Fuae(2))] (3.39)

All the abwve soluticns may be cumputed if ggf(Z) is knwn,

Fedulle Prepesiticnal Ferms

N =f' (N1 VN, V...V Nk) and
M =.M.] M2 Mk s With arguments

[3{1 XpeeoXy ¥ z].

We have the Fellewing definitions:

k
(a) Tz(N q) = U Tz(Ni a)

1=

k
(b) W q) =34 Uz(N, o) - Tz(v o)

() Fz(N q) = IFCI FZ(Ni a)

k

(d) Tz(M q) w. i, le(M1 @)

(e) Uz(M q) =1§1 UZ(M1 fgx) - Fz(M o)

(f) FzM q) = Ilj FZ(Mi a) (3.40)
11

-110-

Knawing the scluticns 1in (3.40) for each ¢ « g cne
ma&y then ccmpute all the sclutims (A) through (G) given in

|
the previcus section

Definiticn 3.6:

Reoldues of Propesiticns with mini
expressiwns.

=SC ope

If P = (P1 * P2 SN gl Pk), Where * = ~ or V, and each

Ri is a mini-sccpe exXpression, then let §
: i
ear (P) = (£qp (?) n £g, (2,) (3.41)

k \

Then ERlge]P = (1, (Rlgh(P))Ie,)) (3.42) *

B BER) a0 Hhcn 156 Retituakst P; will get dropped off the

residue expression,

Definiticn 3,7:

Partiticns ¢f Prcpesiticns

Again P = (p, = B * opet P)
UF g (P)

(Tge (By) n Wg (P)) (3.43)

Pyge () = (Ugy(2,) n Pg,(P)) (3.44) |

I

Mg lP = (x, (R{Tgh(P)Jp, [Woge (P)JR,) (3.45)

MU]P = (_-'%51 (UR[Ug%.(P)]Pi A HU[F.Jgfi(P)]Pi)) (3.46)
1=

ME[X] P % .

Using the scluticns in (3.40), and definitions 3.6 ang

5.7, the residues and partitions cf p may be computed. Even

~111 -

though the scluticn in

tions, they apply equnlly well fop ferms 1like

P = (P1 B Fo)

The ¢nly requirement is th

variables cf P,

0
1.2,
o

‘ea
el
»

245.6 Miniscipe expressions

P25 4% iversal Quantifier

——— s

where P has (n+1) free variables [x

free variables [x1...xr Y z]. We have the following:

Tge(P) = (a | (T2(@ o) =S,(2))]

(3.40) are stateq ¢nly fcr propoesi -

at [x1...xn Y Z] b¢ the free

1++4X, 3] and each Qi,(n+2)

(3.48)

where SP(z) is the range of values of z in the sccpe of z,

ST
We have here integrated cut the variable gz,

Uge (P) = (a | (J2(2 o))

Us (P)

[Vap (P)][Ug® (P)]

vwhere UgZ(P)

[(z (w] ((3 a)(u G’UZ(Q a)]

(3.49)

(3.50)

(3.51)

(3.52)

E

»

| -i——————————————————————————————"""""_________fI::!!"""""""""""""""'5!’

Atz
Fae (P) = (a | (F2(Q o) 1)) (3.53)
Fpp(P) = [Fa, (P)][Fg®(P)) (3.54)
| Pa(P) = [(z (u | ((30)(u ¢ Pz(R a)))] (3.55)

—

fcr Universal Quantifiers

Definiticn 3.8: Resldues ¢f Quantified EXpressicns

In:this casc, ncne of ¢ e Qe Will contain the variable

Z. We shall extend cach a tc include z, as follows:

Let TzL (P o) = Tz(Q, o) (3.56)
and Ror E =U ang F
' g2 (P a) = (22(@ o) 0 £2(Q, a)) (3.57) |

| g: () = ([a (z &2t (P a))] |

Then,

|
(o e €2, (P))(2 (P o) 1)) (3.58) {

k
RigelP = ((2) Vv (R[esp(p)1Qy)) (3.59)

i=

Definiticn 3.9: partition of p

P=((w2)(@, VO, V., v Q.))

In this casc UFTQ%,(P) and FUQ%‘(P) arc again as in (3.43)

and (3.44), with the excepticn that "59_{. (pi)" for ¢ =T and U,

:
respectively, should be replaced by "&;gf((Ez)Qi)". ,

<113

UETE%(P) = (]'(z (= TZi(P Ct))]l

(¢ ¢ Wy b (P)) (T2 (P o) £2) (3.61)
Fy 65 (P) = ([« (z uzt (P a))]
(o ¢ Fy gp (P)) (U2l (P o) 42) (3.62)
k
Migel® = (7, (32) (TR[T3 (P)1, ~ W[Wpek (P)1Q,)) (5.63)
k
Mufg,]P = (.vc (HZ)(UR[UQ_%(P)]Qi % UR[FUQ%(P)]Qi)) (3.64) |

i=l

In this mode ‘ot computing residues and partitions the
bindings specifyin: the E-solutions for each subexpression of
P is passed on to %{ie subexpression, past the quantifier. Ulti-
mately when the subexpression becomes an expression in ele-
mentary form, its recsidues and partitions will be computed
ag per equations (3.51) and (3.32). At a higher level, a
subexpression, Qi’ nay cet dropped off a residue, or parti-
tion expression, if iis associated bindlng is empty.

5.5.5.2: Exisbentlal Quantifier

P o= ((32)(9%...9)), k> 1,
Q = Q1Q2... Qk
where P has (n+1) free variables [xq...x, y] and each Q; has

N
28]

N
~

(n+2) free variables [x1,..xn v z]. We have the following:

~114-
Tap(P) = (a | (T2(2 «) £2)) (3.65)
Tpe (P) = [Tge (P)I[Ta”(P)] (3.66)
Ta®(P) = [(z (u | ((3a)(w e T2(Q a)] (3.67)
Uge (P) = (a [(T2(Qc) = 1) (Uz(Q) £ 2) (3.68)
Upe (P) = [Ug, (P)1[Uc" (P)] (3.69)

UgZ(P) = [(z(u | ((3a)(a e Ugf(P))

(U e Uz(Q a)] (3.70)
Filo (P) = (a | (a f Ta. (P))(a ¢ Uge (P)] (3.71)
Fpp(P) = Fa. (P) (3.72)

Definition 3.10: Residue of an Existentially
Qunatified Expression

Fz' (P a) = Fz(, o) ((3.73)
and for £E =U anq T
g2 (P a) = (220) N E2(Q, a) (3.74)
E.G_:fl-(P) = ([a (z 2 (2 a))] I

(@ € g0 (P)) (e2h (P o) X)] (3.75)
Rlge]P = ((32) 12 (RlEgs (P)1Q) (3.76)

Again, 1f 5@_%(13) =) then the corresponding Q, will drop off

the residue expression.

s 145«

Definition 3.11: Partitions cf Existentially
Quentified Expressicons

Q = ((Bz)Q1Q2...Qk), k=1,
Wpae (@) = (Fa, (@) 0 7g,(q,)) ...
Fygr @) = (Fay (@) 0 Ug, (@,))

Fper (@) = ([a T2(Q, a)] |
(@ ¢ wpak(Q))
(TZ(Qi a) 1))

Fuer @) = ([a 1z2(Q, a)] |

(o € Frog(Q))(Uz(Q, o))]
Mrfe.1Q = ((3z) 1;:1 ’('IR[UF‘T{Q‘%.(Q)]Q:[))
MU, 1R = ((3z) il_{\; (UR[FUQ% (@)1e,))

B.77)

®.78)

(3:79)

(5.85)
(3.81)

(3.8)

3.4: Compubation of Residues énd Partitions+An Overview

As presented above, the residue ang partition computa-

tions require for cach P, ng(P), to be known.

3
in mini-scope form, this would ultimately reduceAknowing

Since P is

ng for the propositions contained by the variocus miniscope

Subexpressions of P, We Shall review below the evaluation

algorithm impliegd by the definitions given in the previous

secticn, ang briefly outline the method for the computation

of ng(M) fer a proposition, M.

$116-

3.4, The Evaluation Algorithm

3.4.1.1, Sin le Universal Quantifier

P=(Fz)M), 11 = (M, Vv MV...Vi), k>1,

Each Mi is a propcsiticnal expression, which will contain z

as one of its variables. We have the following scluticns of M:

(M1): &2(My a) = (u [(o[a][(z u)M; = 9k))

k
(M): Tz2(M o) = uy TZ(Mi a)

1=

k
(B): vz(M o) =(u Uz (M; a)) - Tz(M o)

i=t
(Mt): Fz(M o) = % FZ(Mi a)

i=1
M5): Eqe (M) = (o | (£2(M) E2)) :
(M6): W (M) = (ug, (M) U Fg.(M))
(M7): Woe (1) = (Wgy (M) N1g, (1))
(M8): P (M) = (Fa, (M) N vg, (1))
M9): Ea (M) = [(z(u | ((3a)(a e Ege (M))

(u e Ez(M o))

i

(M0): UFq (M) [(z(u | ((3a)(a e Wy, (M))

(u e Tz (M a)]

(M11): Fly2e (M)

[(z(u | ((3a)(a e Flae (M))

(u e Uz(M q)]

117 -

The above Soluticns may be used tc obtain the E-solutions

cl P, as defined below ¢

(P1): T (P) = (a | (Tz(M q) =5 (2))) C g, (M)

where Sﬁ(z) 1s the tutal range of z in P,

(2): Uaa(2) = (@ |(a e Uy, (M) (Fz (u o) =2)) C Uy (m)

(F3): Fan(P) =Fg, ()

(P4): WFrge (P) = UPTgf(M)

(B5): Fran(?) =7 g, (M)

(B6): 2q (P) = [(z (u | ((3a)(a ¢ £gp (P))
(u e £z (M a)]

(P7): W (P) = Wog_ (M)

(P8): FU_qs(P) = F e (M)

We may write

(P9): Ep.(P) = (€2 (P)][Eg, (P)]

with the interpretation
(¥a)(a € £gn (P)) = ((36) (5 ¢ £25 (P)) (p[a][6]P = &)

We have the following identities:

-118-

(1) Tg_f(P) U UFTC_!_i,(P) = Ta, (M)
(11) Uge(P) UF g (B) = Ug, (M)

(111) T (P) = 8p(z)

To compute the residues and partitions of P, the soluticns of

P are redistributed ammng Mi’ for 1 €1 < k, as follows:
(P1o): Egp(P) = (£ (P) n Eg.(M;))
. i —

(P12): Fuap(?) = (Fyae (P) 0 Uge (M)

S
g
i

(13): &gl [(z (u | ((3)(a e Eak(P))
(u € EZ(Mi CY:)]

Similarly UFge. (P) and Fyol (P) are alsc defined. Using

these redistributed soluticns, the residues and partitions of

P may be computed as Shcwn below s |
(P¥): ER[Eq (P)]P = ((vz) k\Z (ER[EcE (P)I[EGE (P) I,)
(P15): TTap(P)Jy = (TR[Tb(P)][Ted (P) I, ~

TR[WFpap (P)][Wqal (P)Im,).

k
(v, ((32) mraem,))

(P16): HT[Qf]P

(P17): HU[Qf]Mi

il

(W[gy (P)1[Ugd (P) 0y,

UR[F yap (P)1[F @l (P) Jm,)

-119-

k
(P18) mufg.mu = (1Y1 ((3z) MUl (P) 1,))

Ir Eg%(P) =X Ior a given 1, then the corresponding Mi
Willl drop off the residue expressicn. Sc also, if UFTQ%(P)
or FUg%(P) 1s X then the ccrresponding My will drop off the
the partition eéxpressions, NT and o, respectively, TLet us
now consider the solutions for expressions with a single

existential Quantifier,

R Sin le Existential Quantifier

= ((3=2)v), v = g Ny cooN), k>,

Each Ni is a Propositional expression with z as one of its

free variables, We have then the following solutions :

(N1): Ez(N:.L a)

-
il

W | (ofal[(z w) Ny = ¢g))

k
(N2): Tz(n a) =iﬂ1 Tz(Ni a)
(N3): Uz(N @) = (Uz(Ni a)) - Fz(N q)

i=1

k
(N&): Pz o) = y FZ(Ni a)

i=1

it

(N5): &g, () (@ | (528 @) #2))

(N6): Eg. (N) [(z (| ((30)(a e 2q, ()
(u e ez(N a)]

Using these, the following solutinns for Q may be obtained:

.‘7—%

380

@) 1g.(C) = g ()

(Q): Ugf(Q) = (a [(Tz (N o) =2)(a € Ugf(N)))

(Q3): Fae(Q)

(a[Fz(a) = 84(z)))

(Q¥): - £a. (@) fz(u | ((3a)(a € Eae (Q))
(u e E2(N a)]
(@5): Wqpae Q) =F 0.(Q) = W g (@) =Fas @) =2
However, we will have the following solutions for each N, :
(@6): War(2) = (Wg, (@) n mg, (v,))

where g, (Q) = (Uae (@) U Far(Q))

@7): Fige(@) = (Fap (@) n Ug, ()

@8): Wagg (2) = [(z (u | ((3a)(a ¢ Wel(@))
(u e Tz(Ni a)
@) P @) = (| (k) e F@@)

(avg UZ(Ni a)]

(@10): Egp(@) = g, (@)
@11): £g2@) = g (@)

Using these, the residues and partitions may be written
as follows:

k
(Q12): R[Eg (@)1 = ((32) A (BRlEge ()]1Eg @),)

(@3): mlac vy = (mEw,gE @)W, ol (@),)

A2

—
-

W il = ((32) K (migm,)).

(Q15): MUl IN;

]

(WP g () 1[F @l @),)

(@16): mufg.10 = ((32) 151 (IRl IN,)

If P in 3.4%.1.1 and Q above have scveral quantifiers, then |
the redistribution of the bindings to M; (N;) will take place ‘

only after all the quantifier checks are completed. The organi-

zation of the binding for this casc is presented in the noxt

section, below,

3.4%.1.3: General Predicate Expressions

w%(ah I>=(me,Q=(Qﬂ%m.N%Q,k>1,w
case (b): Q = ((32)P), P = P4P,ueuPy, k > 1,

where each Py (and Qi) is itself a quantified expression with
z as onc of its free variables. After completing all the quanti-
fier checks for each P; (Q;), we will have the solution, in the

following forms:

(20 £8.(7;) = [Ep0(2y)1[Ee, (2,)],

where Z; is a Py or a Qyy for 1 <1<k, gqs(zi) will contain
the solutions for the quantified variables, that arc loecal to

Z It may be noticed that this form is the same onc, shown in

i.
(P9). Using Eap(24), the solution for case (a) and (b) above

may now be obtained,

*

=122~
For Case (a) one should use formulas (M1) through (M9)
and (P1) through (P18), after doing the follcwing substitutions:

Replace (M1) by,

(M17): 2(Q @) = (u | ([a (z u)] ¢ Eor(Q))))

and substitute throughout Q fer M and Q for M In formulas

i’
(P13) through (P18) the solutions Eai(P) Will contain not only
the bindings specificd fop z, but also the bindings Zag (Q)
Shown in (21) above, fcr Z ~Q That is, 9; Solutions will
Specify binding rances nct only fer z, but alsc for all the
local variables of Q;+ To indicate this, ggé(P) may be .

’

respecified as folleus:

€t (P) = (8, | ((30)(a € gal(p))
(@[a][5u1Q1=¢£)

where 6u Specifies the bindings for and all the other lceal
variables of Qi' Similar consideraticns apprly also fcr cther

gé Sclutions or P.

Similarly, fcr case (b) the scluticns may be obtained,
again by using Epf(Z) for Zy = P;» and the formulas (N1) thrcugh
(N6) ang (Q1) through (Q16), after the follewing changes:

Replace (N1) by

(N1'): gz(Pi a) = (u | (& {= u)] e ng(Pi)))

and substitute thrcughcut, P for N ang Pi for Ni‘

-123 -

As in case (a), ggé(Q) will be specified by

((3a)(a € o (Q))

(oall8,p; = oF)

where 6u specifies the binding ranges for z and all other

gz (@) = (5 |

local variables of Pie Again, similar considerations anrly

also to other ai

S solutions of Q.

The evaluation algorithm implied by the above definitions

may now be summarized as consisting of threc steps:

Step 1: Finding solutions for propositions like M0, My

and Ny that occur within mini-scope expressions,

Step 2: Doing quantification check for the mini-scope

expressions, proceceding outwards.

Step 3: After completing all quantification checks, re-
distributing the solutions of the mini-scope expressions, among
their propositional components. These redistributed bhindings
arc used for calculating the appropriate residues and partitions
of P. These residues and partitions will be computed, of coukse,
only after cvaluating an entire predicatec expression. In the
case of CC's, this will amount to the evaluation of the set

predicate, SP, of the CC.

The algorithm used for step (1) above, is briefly outlined

below:

=124~

3.4¢2, Computation of Solutions for Propositional

cxprcessions

For cach clementary form (p XjeeeX,) or ~(p XqeeeX,), Tor
n = 2, onc may casily obtain from the model space the solutions
x4 (P @), for giver ® and i, 1 <1 <n. The availability of the
anchor, @, in CC makes it possible to assign to cach elcmentary
form in a CC a free range «, and thus determine for each proposi~
tional form in a CC, its associated free rangc and solutions.

The scheme for doing this is briefly outlined below,.

The elementary forms in a CC arc ordered in a lcvel tree,
as shown in figurc 3. All binary rclational forms in which @
occurs appear at the top of the treec. At level 1 we have the

anchor @ At level 2 we have all variables, x, for which forms
it

it 5

(@ r x)" or "(x r @)" occur in the CC. At the third level,
onc has all the variables, y, for which "(x r y)" or "(y r x)"]

occur in the CC. Continuing in this manner, the various levels

of the tree are filled. It is possiblce that a given variable -
has morc than one arc impinging on it. Also, variables at the

same lcvel may have arcs between them,

Fige 3: The Level Tree of a ¢

~125.

A1l the rclations with "@" are evaluated first. This will
causc value ranges to be assigned to the variables at the second
level, These bindings may then bec used to eveluate the relations
at the next level, thereby fixing the ranges for the variables in
the ncxt level below, For each variable, its associated evalﬁa-
tion scquences will be repeate d until the maximal, in casc of
disjunctions, or mimimal, in case of conjunctions, solution to
the variable is obtaincd. Thoe tuples and function forms arc

evaluated last,.

The bindings obtained for the variablcs have to be organi=

zed to serve two purposes: |
(a) For usc in the quantifier checks, discussecd in the

previous section, and [
(b) For rccognition of conjunction or disjunction framecs

within which the bindings of a variable occur,

To serve the purpose (a), the variables in a mini-scope
expression are ordered in the order of their uantification: The
variable of the innermost quantifier appearing laets AL If &
variable, X;y Occurs in an ordering, XfeeeX;e00X 5 but docs
not occur in a miniscope form, P, with which the ordering is

associated, then by definition the scope of X; in P is universal,

To serve the purposc (b), for cach conjunction (disjunction)

e e T e ———————

P e - —1

~126~

in a CC, a conjunctive (disjunctive) frame is created. This
frame will contain thc variables that occur in the conjunction
(disjunction). Rach variablc will contain pointers to the
quantificr associated with it, to the rclations in the ¢C in
which it occurs, and to.the next variable in the ordcring out-
lined in the previous paragraph., Each variable will also contain
éiggs for storing the partitions of its range, induced by the
CCe We shall associatc with this frame, also the proeédures
neeessary to evaluate the relations in the frame, and updatc the
bindings. Any time the bindings associated with a variable is
changed, the rclevant relations of the varlable will be re-

cvaluated. 1In a conjunctive frame the minimal solution of a

variable will be obtaincd by stuccessive interscetions. In a i
disjunctive frame, the maximal soluticn is obtained by successive i

unions,

The framnc data structurcs created for the variables in a

CC would thus depend on the structure of the CC. The collection
of all such frames, crcated for a CC, is called the CC-

associative net, CCA-nct, The CCA-nct, the cvaluation order

for reclations, the updating rules for the CCA=nct, and the
procedurcs for quantification checks and residuc represcntations
may all be compiled from the CC-definition. The details of

thiz compilation process and the complexity of the procedurcs

involved will be discusscd in a future paper.

&2

A fully instantiated CCA-net will represent the égggggzé
;olutioh of a CC., All the information of the residues and
partitions of a CC may be obtained from this net. The repre-
sentations of residues and partitions of a CC-cvaluation
constitute a summary of the information in the CCA-nct, in a

form suitable for communication in the language of the CC.

3.4,3: Comments on the cvaluation process

To have an cffeetive model space, and do commensense
recasoning, it is cssential that CC-cvaluations be el Ticient,
In MDS organization this is facilitated by several features.
The most basic of these is the way the relation values are
stored in the model space, as discusscd in Appendik Tl, This
enables onc to fetch casily the partitions induced by a relation |
on the range of a variable, The sccond feature is paralleclisms 1
Onc may incorporate paralleclism in a CC evaluation process at |
various levels, At the level of relations, the clementary forms
at the same stage of a level trece may all be evaluated in parallel,
At the level of miniscope expressions, the conjunctive and dis-
junctive frames associated with diffcrent miniscope expressions
of a CC may be cvaluated in parallel. The casting of & GC in
mini-scope form reduccs the height of nested quantifications in
2 CC. This simplifies the structure and processing of the Tonjunc-
tive and disjunctive frames. The quantification checks associated

with miniscope forms may all be also executed in paraliel,

e R s ___‘a.J

e

~128~

Finally, the residuec and partition cxtraction for the mini-

scopc forms may be done in parallel. This cvaluation process f
avoids back tracking, This is partly becausc it attempts always
to obtain the complete solution, and partly because the rclation
cvaluation scquecnce ean be ordercd, as per the level trec, Also,il

for every binary rclation its complete solution may be obtained

casily from the model spacc,

The¢ possibility of compiling the CCA-nct and its associated

processors further enhances efficicney. Onc may, in fact, conceiv

of machine organizations in which the evaluation algorithm for a

L

CC may be micro-programmod, taking full advantage of the parallecl |
Proccssing possibilitics. We have presented here only the bare

outlines of the cvaluation process.,

-129-] |

5.5. Commonsensc_Reasoning and Problem Solving

3.5.1: The Basic Theorem

Let Q([ap]P M,) denote the truth value of [20]P in

model state, M, . So also, let ER ([gp 1P M,) and ME([gp JP M,)

denote the &-residuc and E-partition, respectively, in model

state, Mi' Let Aqf be the change in QLo in a new modgel state,

Mj, Such that the new free range is

[2p + Age]. For each
variable in a5 the change Ages may specify deletions and]or
additions to its ranrc of values,

Iet

Agf(&jR([gf]P 1)) and ag, (me ([ge 1P 1,)

denote the residues ang partitions with the changes in Agc_f 1

incorporated in them., The theorems in this ssction pertain h

to the inferences tl.a: may be drawn on the truth values of

o(lar + agp]P 1,)

B ———

based on the truth values of
¢ (dap (ER (g, IP ;) M) ana
o (Age (ME([p1P 1)) My).

The theorems arc bresented below. Their applications

are discussed in the next section,

_130..

Theorem 1 : ypﬂﬂtingl/ianrnigg_Theorem
e Wit s
For & =T apd 7

[((o(age (ER([ap1P 1)) M) = oF) &

(o([ge + dap]P M,) = 0E)]

e e =2] ‘

Proof is by induction on the Btructure of P: Pis a p

or a ~p, or P 1s (P1 *”P2 * o.. ¥ Pk)’ k>1, and «

or P is ((Vz)(P1VP2V... g Pk)) or ((3z)P1P2 ", Pk),

Theovem 2: DMcons-end Analysis Theorems

(A): [(o(agp ((R([gp1P M) ~
(T (Te. 12 M3)))) my)
= (o([ep + Agp]P My)
(B): o ((Agp ((FR([gp12 M,)) (MU([gp 1P My)) ~
(0T ([37 M3)))) M)

= (o(lgy + ogplP M),

~ or V,

(3.84)

(3.85)

Again, the proof is by induction on the structure of P.

3.5.2. Updating and Learning Theorem

Our discussion in this Section pertain mostly tc the T and F

rosidues. All stafements made here also apply to WR([g]P M),

if it exists, if the residue check included also IT([g]P M,)

that is the residuc checks evaluated the left side of (3.84), ?

wifd, -

instead of just the rosidues.

>.5.2.1: Bagis for Simplification of Consistency
.2heclss during Updating

When an anchor [CX r] 1s updated there will usually be

-

& 3et of inveeaticn anchors, at which the relation valuyes are

changed, Let this sct be

| B= (@ ry), (Ox*n B Fa)ies b (@Xn) (3.86)

For every relation irn By, the new relation value, Yy 1 &0 S

i8 mandatory .

| For an invocation anchop [Oy r] implied by B -- i.e,

| (@X ¥ 7)) 48 A B == i

¢ {4g, (FR (CO[x PH@) M) M) = WIL. ... (3.67)

(%

then there would exist

a subset, 81, of the new values of
(@, »), for which tic F-vesidue at [@y r] evaluates to NIL.
Then, by Theorem 1, it follows that the values in S1 may only
ne assigned as the complement solution of (@X r), i.e.

81 C (2 | ~igy v 2)), |

Similarly, if for a Subset 82 of the new values of

=3

(@ r), the truc-residue at [@x r] evaluates to T, 1

=
E N A

¢ (Age (TR (CO[X 2100y M) M) =, (3.88)

then the new values i 82 may he assigned as the true values of

JisEn

(@& r), provided thor nene of values in S, cause a contragic.

tion in the interaction checks associated with [y r].

If for £ =17 cr F,

*(4gp (&R (cex r1(e,) my) M) % ot (3.89)

then the entire CC[X r] should be re-evaluated at @X.

While evaluatin: olo] P r](@k), one need findnew Solutions,
ng(N), for the propositions in the ¢C, only ir they do not
appear in the E-residues of the CC for € =T anq F, Also, in
finding ng(N), the rewevaluation may be done only for the
changes specifieq by Agf and B. Thus, cC re~cvaluation using
residues may always be deone more economically than direct

ce evaluations.,

In the case or interacticn checks, the free range, Qe s
wWould remain unchanged, for every B@Y t] that depends cn an
[@X r] in B. But, some of the relatioms appearing in
CC[(@Y t] or its £-residues Wwould have changed their values,
To check for consistency, the E-residues at[@Y t] may be re-
evaluated with respect to these changes, The confradiction

check may be done as rer rules
[o (TR (cofyt) (G &) M) M) =1) =

0y t s)], (3.90)

and

13-

[¢(FR (CCY t1ey s) 1)) M) = NIL >
~(@y t s) (3.91)

Again, as 1in the prcvious case, the entire CC, CC[Y t](@Y)
1tself would be evaluated only 1f (3.89) is true for CC[Y t](@Y).

Thus, by direct application of Theoren 1, one may Simplify
consistency checks during an updating process, Other appli -
cations of this theorem arise in goal directed problem Solving.

They set the basis in MDS for learning. This 1s discussed below

ISR 020 The DBasis for Learning

Goals are staced in MDS in the form
(612 Feeik) & (<binding-conditions>
(GOAL <goal-conditions>)), (3.92)

where X,y,...,z are the free variables of <bind1ng-conditions>.

The binding corn "tions will Specify the initial conditions fop
the goal, ang the objects that may be used to achieve the goal,
The <goal-condition> will always be a conjunction of elementary
forms. The above zoal statement may be interpreted as follows:
"The <goal-conditions> are to be satisfied for the objects

satisfying the <bﬁnding—conditions>, for given ranges of the

free variables B g

Each free variable will, ef course, have an associated Scope.

- 134~

We shall refer to stalements like (3.92) as the dimensions
of goals. The dimension of a goal specifies the nature of
the goal. Thus, for cxample, the dimension.
((PEOPLE X) (PLACE P Q) (P location of X))
(GOAL(Q locationof X)) (3.93)

1s the dimension of a goal called, say (MOVE-PEOPLE P Q X).
It describes the nature of this action. This goal may have
associated with it & body, that specifies the action for
achieving the goal, namely
(XR Q X) = ((SOME VEHICLE V)
(ASSERT (V holding X))
(ASSERT (V location Q))

(ASSERT~(V holding X) (3.94)

dlif) generai, @ goal like MOVE-PEOPLE, ma&y have several trans-

formation rules asscciated with 1t. Each transformation rule,

XR, will have the form:

(XR x y...z) = (<bindlng-condltions> <actions>), (3.95)
where the <actions> may be subgoal statements or ASSERT,DELETE
or CREATE statements., An XR is said to match & goal, Gl; If there
is a subset of changes that the XR may cause, which matches with
a subset of the conjunects in the goal condition of @1, and the

solutions of the binding conditions of @1 do not contradict the

____________———————j----------"""""E’

-135-

binding conditions ¢ £ XR. The true residues of these binding
conditions of G1 and ¥R, will then characterize the context @t

inveeation of the XR called the dimensicn _of XR invocation, cor

the invocation dimensjons of the XR.

An invoked XR may be tried only if the preconditions
associated with the invocation dimension are satisfied, for the
objects involved in the XR. These pre-condition statements
will have the form,

(CANDO (<bindin: conditions> <actions)) . i

(<econditions> (TRY <actiond)
(<econditicns> (TRY <actions>)...

(<conditicns> (TRY <actions>)] (3.96)

A CANDO-statement is sa21d to matech an invecation dimension of

an XR 1if the "(<binding-condition> <actions>)" of the CANDO-
statement match witl, the invocation dimensicn of the . A
CANDO-statement is said to be satisfied if ncne of the <{conditicns> i
in the statement are ccntradicted, cor for every ccerditicn that
i1s contradicted its asscciated TRY-statement was executed success-
fully. Again, the satisfacticn or non-satisfactiocn of a CANDO-
statement woulg return residues that explain the reasons for
the outcome. We shall refer to these reasons as the
<precondition chec ks>,

Finally, the execution of the <actions> in an XR would

result in a collection of residues that explain the reasons for

=9 36_

the success, faillure of conditional Success of the actions, In
the invocation context of an XR, one might have had several
choices for the relaticns ang objects on which the <actions>
might be taken. For the choices made, the rcsidues returned
by the actions may be used to characterize the choices, in the

form of pcsitive and negative focus lists, associated with the

XR., Thus, for example, if the asserticn, (ASSERT (Vv holding X)),
in (3.94) failed for the reason, ~(X f: < : capacityof V),
then this piece of information may be summarized at the XR in
the form of a negative fcoeus 1list €lement,
NFL[V holding][XR] = ‘
([vX]| ~(X #: < : capacityct V)) (3.97)

On a later Invocaticn ¢f the XR, the same assertion will not be

tried for object ccanbinations, [V X], that satisfy the above
focus list element.
Similarly, the relations ang objects for which acticns

Succeeded may be characteri zeqd by positive focus lists associa-

ted with an XR. The fceus 1list bPredicates woulg consist of T
and//’cr U residues returned by the ASSIMILATOR, for the relaticns
and obgects involved. on a futupe invocation of the same action
the relations ang objects satisfying the positive focus 1list
will be preferen_tially chosen.

XR's in MDS may also a have post-conditions associated with
them. These have the Same form as the CANDO-statement . But the

~137 -

word "IFDONE" 1s used instead of "CANDO". Evaluation of these
post -condiéions also would return residques, We shall refer to
these as the <post-ccndition checks>,

The invocation and execution (also called the instantiation)

of an XR would thus result in residues that characterize the
instantiation, in terms of four compcnents:
I[XR] = [<dlmensicnd> <pre -c ondition checks)>
<focus list> <post condition checks>] (3.98)
The DESIGNER is responsible for gathering together the residues
and associating them in the right manner with the XR's and goals,

and thus maintain an updated problem Solving state. A brief

discussion of this Process appears in Srinivasan [1972]. A
more detailled discussion will appear in Srinivasan [1977c].

In (3.98) the <dimension> and <precondition checks>
together Specify the appropriateness of an XR in a given invo-
cation. The <focus lists> have validity only in the glven
<dimension)> ang <precondition check> context, In another invo-
cation of the XR, if the <dimension> ang <precondition cheek>
of the invocation match with those in (3.98) then the <focus
Ists> in (3.98) may e used to gulde search according to the
rules given below:

(1) Avoig choosing relations and object combinations that

satisfy elements in the negative focus list of matching

XR 1invocation,

-138-

(11) Choose preferentially the objects and relations that

satisfy the elements in the positive focus list of matching

XR invecations.

(111) If choices as per (1) ang (11) do not succeed then

update focus lists and repeat (1) and (11) for new untried

combinations,

By theorem 1, the objects that satisfy the true-residues
in the positive focus lists are likely to succeed again, and
those that satisfy the false-residues in the negative focus
lists are likely to fail again,

The focus 1lis:s associated with a goal dimension will
depend on all the XR's executed to achieve the goal, Again,
the DESIGNER is responsible for constructing the summarizing
focus lists for a goal dimension, based on t he focus-1lists
of the associated XR executions. As XR executions are repeatdd
in different execution contexts the DESIGNER will acQuire
pbrogressively more domain knowledge from the model Space,
in the form of residues. These residues, taken together and
Summarized as focus lists, would represent combinations of
chunks of domain knowledge unique to a goal (problem) or
task environment. The use of focus lists 25 per rules
(1), (11) ana (ii1) above sets the basis Tor learning
in MDS, Through its‘interactions with the model space, the
DESIGNER acquires for each problem, its own unique way of viewing

the model space ang using the domain knowledge. As mentioned

-139~

before, Theorem 1 sets the logical basis for this learning.
The focus lists are used in MDS for & variety of purposes.
Two other uses of focus 1lists are discussed below.,

2.5.2.,3: Use Bl focus 1lists to gulde Intelligent conversation

The predicate expressions in the characterization (3.98)
of I[XR], may be used Selectively by a system to conduct a con-

versation with a user, concerning the nature, appropriateness

and reasons for success,/%ailure etc., of an XR execution. For
a given goal, the residues associated with the goal may be large
and quite numerous. Tc maintain an intelligent conversation
there should then be scme rules available for judicious selec-
tion of residues ang predicates within the residues, which could
be used for the conversation. The positive and negative focus
lists may be used fcr dcing this selection.

In explaining the reasons for the failure of an action
the negative focus 1list 1is usually significant: The action
fajled because 1t contradicted Some of the fixed relations ang
values, While explaining the reasons for the success of an
acticn the positive focus 1list 1s usually significant: The
acticn succeeded because some of the secondary changes in the
positive fccus list of an XR, succeeded.

Thus, while explaining the reasons for the success of the
assertion, (ABSERT(V holding X)), the fact that
(X # : <:capacityof V)

]
|
|

“14g -

was true, would not hbe of much interest. Herc, the phrase
[VEHICLE capacity] might belong to the negative focus list of
the action. However, 1f the action failed, then the reason
~(X ¥ : < : capacityof V), becomes significant, and forms the
basis for corrective rcaction,

Similarly, suppose the action failed because--
~ (V location:locationof X). In this case [VEHICLE location]
may belong to the positive focus list of the action, Thus,
subsequent action might have been invoked to change (V location)
to (X location). In this case, part of the recason for the
success of fhe action, (V holding X), would be the reaction
to the initial fallure. The dimension of this reaction,namely:

[((PEOPLE X) (VEHICLE V) (PLACE P)

(X location P) ~ (V location P))

(GOAL (V location P)], (3.99)

would thus be a legitimate part of the reasons for the success

of the assertion.

3.5.2.4: Use of focus lists to guide Recognition

The transformation rules in MDS may be used in two ways. To
plan and execute actiocns to reach a given gc ", or to recognize
glven sequences of actions as constituting a familiar goal. The

recognition task may be posed to MDS as cne of ccmstructing the

~141 -

dimensions that may be associated with a gi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>