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FOREWORD

This program is conducted by General Dynamics, Fort Worth Division
with George Washington University (Dr. J.N. Yang) and Modern Analysis Inc.
(Dr. M. Shinozuka) as associfate investigators. This program is being con-
ducted in three phases with a total duration of fifty (50) months.

This report was prepared under Air Force Contract F33615-77-C-3123,
"Durability Methods Development.'" The program is sponsored by the Air
Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Chio,
with James L. Rudd as the Air Force Project Engineer. Dr. B.G.W. Yee
of the General Dynamics' Materials Research Laboratory is the Program
Manager and Dr. S. D. Mamming is the Principal Investigator. This
is Phase I of a three phase program.

This report (Volume IV) presents the accomplishments of the task en-
titled "Initial Quality Representation" of fhis program. Four other vol-
umes are written to describe the summary of and the progress made in
Phase I. They are:

Volume I - Phase I Summary
Volume II - Durability Analysis: State-of-the-Art Assessment

Nolume III - Structural Durability Survey: State-of-the-Art
Assessment

Volume V - Durability Analysis Methodology Development
This report is published only for the exchange and stimulation of

ideas. As such, the views expressed herein are not necessarily those of
the United States Air Force or Air Force Flight Dynamics Laboratory.
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SECTION I
INTRODUCTTION

The initial fatigue quality of the durability critical
parts of an aircraft structure is one of the key input
parameters for the durability analysis to be performed in
the present investigation. Indeed, in the present investi-
gation, we consider that either the EIFS (Equivalent Initial
Flaw Size) or'TTCI (Time To Crack Initiaion) represents
such an initial quality that controls the durability of air-
craft. A statistical characterization of the EIFS data is
attempted by fitting various probability distribution func-
tions thereto. The EIFS data considered here are from the
"Fastener Hole Quality" program [1] and are listed in
Table 1. These data consist of data sets XQPF, XWPF and
WPF of size 37, 37 and 38, respectively.

To be more specific, these data sets are examined to
see if they fit (a) the distributions of the Johnson family
including the long-normal distribution, (b) the Weibull dis-
tribution, (¢) the distributions of the Pearson family,

(d) the asymptotic distributions of largest values and

(e) the TTCI compatible distributions. It is found that,
with respect to the data examined, the Weibull compatible,
log-normal compatible, and second asymptotic distributions

provide the best fit.




Table 1 Ordered Observations, Their Plotting Positions,

and Some Sample Statistics (EIFS in mils)

TEST SERIES = XQPF

EIFS CUM,PROB,

NO,

] 026
2 «031
3 o047
4 « 050
S + 058
6 « 059
7 . 060
8 «063
9 » 063
10 YY)
11 » 068
12 « 090
13 « 096
14 « 105
15 «110
16 .113
17 120
18 »130
19 «150
20 «170
21 «200
22 o220
'y ) «270
24 «300
25 «536
26 9306
el o011l
28 .612
29 «650
30 1,090
31 1,090
32 1.090
33 1.100
3y 1,140
35 1,240
36 3.000
37 7,700

MEANS

AMZ2=

AM3=

AMy=

SiDvs

SUrRT(Bl)=

g2=

Bi=

« 0263
« 0526
.0789
«1053
«1316
«1579
01842
2105
« 2368
«.2632
« 2895
«3158
«3421
« 3684
3947
4211
L4474
o 4737
«5000
e9263
«9526
+5789
«6053
6310
« 6579
6842
«7105
« 7368
o 1632
« 7895
«8158
JBu21
«8684
«8947
9211
«9474
29737

6233
1.7214
9.8704

68,7061
1.3120
4,3701

23,1853

19,0982

TEST SERIES = XWPF

NO, EIFS CuM,PROB.

1 «093 00263
2 145 «0526
3 « 145 20789
4 160 1053
S 175 «1316
6 180 1579 .
7 «180 1842
8 «190 «2105
9 190 2368
10 o210 2632
11 210 «2895
12 240 «3158
13 240 «3421
14 240 3684
15 240 3947
16 «250 4211
.17 290 <4474
18 295 s4737
19 295 5000
20 295 5263
el 0295 «5526
ee «330 «5789
23 «330 6053
24 330 «6316
es 420 «6579
26 «420 «6842
e7 420 7105
28 o470 «7368
29 470 «7632
30 540 « 7895
31 obl2 8158
32 700 «8421
33 «810 .8684
34 810 «8947
35 «870 9211
36 940 9474
37 1.280 «9737
MEAN= ,3868
AMZ2z L0694
AM3= L0285
AM4z= L0241
STDOv= .c634
SART(B1)= 1,5598
B2= 5.0060
Bl= 2.4351

TEST SERIES =

WPF

NO, EIFS CUM,PROB.

XN UL N -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

M

S
SGRT(

« 140
«236
«280
«280
«320
367
<367
420
«450
«450
<450
482
«518
«520
«520
«560
560
2600
o647
<647
0650
«698
«698
«698
«698
«698
«698
« 754
o754
817
1,040
1.140
1.250
1.250
1.490
1.640
2.730
3.830

EAN= ,7986
AMZ= sd660
AM3= 9179
AM4= 2,6276

TOV=s  .6826
Bl)s 2.8860
B2=12.1022
Bl1= 8.3292

.0256
.0513
0769
.1026
.1282
.1538
1795
.2051
.2308
2564
2821
«3077
.333%
«3590
. 3846
4103
L4359
L4615
JUB72
.5128
« 5385
.5641
.5897
6154
6410
6667
6923
7179
L7436
7692
.8205
.BU62
.8718
B974
.9231
.9UB7
9744



SEECTION I
STATISTICAL ANALYSIS PROCEDURES

2.1 Standard Measure of Skewness /EI and Standardized
Measure of Peakedness (Kurtosis) By

With respect to a random variable X, write p% for the i-th moment about
the origin and s for the i-th moment about the mean;

nt = By, u; = B - £ ) (1)

The standardized measures of skewness /EI and of peakedness B, are then gi-
ven by

By = uyl (Vi) By = g/ (1) (2)

The estimations of the moments can be made on the basis of the observed da-
ta consisting of a sample size n; X1 Xos sevs X In fact, introducing

the sample moments m% and m, as

n . n .
m = (Y x')/n m, = Y (x, - m)'/n (3)
i k=1 K LR k i
the population moments u% and u; may be estimated by their corresponding
sample moments m! and m, and also skewness VB, and peakedness B, respec-

tively by /EI and b,:
/by = m3/(VﬁE)3 b, ='m4/(m2)2 (4)

2.2 Use of the 81-62 Plane for the
Selection of Distribution Functions

A large number of distribution functions may be considered for the cur-
rent investigation to characterize the EIFS data. An engineering approach
has been used here to select from these distribution functions only those




distributions that have the prospect of passing further tests of goodness-
of-fit, while eliminating those that are obviously incompatible with the
given EIFS data. The approach is to use the 81-82 plane as shown in Fig,
1 [2] where each of these distributions may be identified either as a
point | curve, or region. Although Fig. 1 indicates the rela-
tionships between 81 and 62 of some of the Dbetter known distribution
functions, they have been established analytically and do not necessarily
indicate the relationships between the estimates b1 and b2 of Bl and 82.
Nevertheless, Fig. 1 and similar figures have been used, whenever appro-
priate, to single out those distribution functions which probably will
fit well to the observed data. This is done by examining whether the
point (bl,bz) plotted in the B;-B, plane is inside the region (or close
to the point or the curve) associated with the distribution function for

which the goodness-of-fit is to be considered,

2.3 Test of Goodness-of-Fit

Although there are a number of possible ways in which a test can be
performed on goodness-of-fit (for example, the x? test and the Kolmogorov-
Smirnov test), the w? method [3] is chosen for the present investigation.
Let F(x) = distribution to be tested and Fn(x) = empirical distribution
based on a sample of size n, and then form a statistic

wd =0 [ (F () - FO01F(R) (5)

This statistic is distribution-free and some of the percentiles of its
asymptotic’distribution are 1isted below [3] and are also plotted in Fig.
2.

Table 2 The w? Test

P{nw; < a} 0.80 0.85 0.90 0.95 0.98 0.99

a 0.241 0.285 0.347 0.461 0.620 0.743

For practical computations, the following simpler form of nw; has been used.
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Fig. 1 Regions of various distributions in the (61,82) plane




1.00

=1-q0

Cumulative Probability P{nw] < a}

0.2 0.3 0.4 0.5 0.6 0.7 0.75

Realization of nw;

Fig. 2 Probability Distribution of Statistic nuw?



nw

n
1/(12n) +.121[(21 - 1)/(2n) - F(x,)1?

n
(1zn) + [ 121 - 1)7(2n) - Flxgg) 2 (6)

where x(i) (i=1,2,...,n) are the observations arranged in ascending order;
X(1) is the smallest, X(Z) the second smallest, ..., X(n) the largest.

The preceding table indicates that the proposed distribution should
be rejected if the corresponding nw: value is larger than 0.461 (0.347)
for a significance level of 5% (10%).

2.4 Statistics of Observed Data

There are three sets of observed data: (i) XQPF, (ii) XWPF and (iii)
WPF, where X specifies "Load Transfer', W specifies '"Winslow Drilled", P speci-
fies "Proper Technique," F specifies "Fighter Spectrum" and Q specifies
"Quackenbush Drill and Ream." A1l data values are given in mils {10~

inch).

The observed data, XQPF, XWPF and WPF are arranged in ascending order
as shown in Table 1 with the cumulative probability or the plotting posi-
tion defined by '

Flxgqy) = 1/(n +1) (7)

Estimates of some fundamental statistics are also listed in Table 1. Sym-
bols used therein signify the following: MEAN = mi, AM2 = My AM3 = Mas
AM& =m,, STOV = s (unbiased standard deviation), SQRT(B1) = vb;, B2 = b,
and Bl = bl’ '




SECTION ITITI

FITTING TO THE JOHNSON
DISTRIBUTION FAMILY

3.1 Method of Translation

The Johnson distribution family was derived by Johnson [2] with the
aid of a method of translation which takes advantage of possible transfor-
mations of non-Gaussian random variables into Gaussian (normal) variables.
The method is outlined below. ‘

We say that a random variable X has been transformed to the normality
if a function G(-) transforms X into the standardized normal variable Z.

Z = G(X) (8)
with the density function of Z being
f,(z) = ¢(z) = 1//2r exp(-2%/2) (9)

Such a transformation can be performed in two steps. First, we perform a
1inear transformation of X into Y such that

Y= (X -¢€)/A (10)

with X being positive and then transform Y into the standardized normal
variable Z by

Z =G(X) =y + ng(Y) | (11)

where n is assumed to be positive. The density function of Y can then be -
shown to be

fy(y) = ng'(y)f;(y +ngly))

ng'(y)//2m exp[-{y + ng(y)}2/2] (12)

where g(y) has been assumed to be a non-decreasing function of y and g'(y)




= dg(y)/dy. We note that there are four parameters e, A, v and n involved
in the transformation Z = G(X).

Since X and Y are linearly related through Eq. 10, it is easy to show
that the density function of X is given by :

fy(x) = n/(V2m)g' ( XEY expl-{y + ng( E)12/2] (13)

The transformation Z = G(X) = v + ng(Y) and the relationship between fZ(z)
and fx(x) are schematically illustrated in Fig. 3. Beyond the obvious fact
that the analytical form of g(-) precisely determines the distribution func-
tion of Y when n =1 and vy = 0, we observe from Fig. 3 that the skewness

and the kurtosis of the distribution of Y are greatly influenced by Yy and

n respectively.

3.2 The Johnson Distribution Family

Different distribution functions can be generated by using different
functions for g(y). In fact, Johnson [2] proposed three different types
of distribution functions referred to as the Johnson SL’ SB and SU distri-
butions by respectively employing the following three functions for g(y):

(a) g(y) = #n(y) for y > 0 (14)
(b) gly) = n(%) = 2tanh™! (2y - 1) for 0 <y <1 (15)
(c) gly) = sin h'l(y) = an{y + ¥y +'1}  for -0 < y < w (16)

3.2.1 The Johnson SL Family

The density function of the Johnson SL family can be defined with the
aid of Eqs. 13 and 14 as

fo (X) = n/(/2m(x - €)1 exp{-[y + nan(355)1%/2) for x > ¢
(17)

where

n>0, [yl <o x>0, [ <o

10
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Setting
Y*¥ =y - neni (18)
we can rewrite Eq. 17 in the following form:

fSL(X) = n/IV2r (x - €)1 exp{-3n%[y*/n + an(x - €)12},
X > € (19)

where
n>0, |[y*| <o, |g] <o

We can recognize Eq. 19 as the three-parameter log-normal distribution. In-
deed, introducing o and u so that

n=1/c and Y*¥ = -p/o (20)

we can derive the familiar form of the three-parameter log-normal density

function:

fo (x) = 1/1v2m0-(x - €)1 exp{-[en(x - €) - u1?/(20%)} (21)

With the form of the transformation function given in Eq. 14, we can
show that the i-th moment about the origin u% of variable Y is given as

u%(y) 1/(/27) ! exp{i(z ~ v)/n} exp(-z%/2)dz

exp{(i/n)?/2 - v(i/n)} (22)

It then follows that By (square of skewness) and B, (peakedness) are given

by

By = (w=-1){w+2)*

(23)

By =3+ (W~ 1)(w’ + 3w? + 6w + 6)

' 2
where w = e with o indicating the standard deviation of the log-normal
distribution. When this relationship is plotted on the 81-82 plane, we
obtain a curve indicating those values of 81 and B, that represent the

C12



log-normal distribution as shown in Fig. 4,

3.2.2 The Johnson S, Family

B

On the basis of the function g(:) defined by Eq. 15, we can construct

fg(X) = 1//21 - M{x - €)(h - x + €)} expl-Iy + nan(522)12/2)

fore < x< e+ A (24)
where

n >0, |Yl<°°,>‘>0’ lel<°°

The probability distributions with the density function given by Eq. 24 are
said to belong to the Johnson SB family. These distributions involve four

independent parameters and consequently Bl and 82 that represent this fam-

ily of distributions can take on those values within the domain designated

by "dJohnson Sg distribution" in Fig. 4. Indeed, this domain is bound by

the curve representing the log-normal distribution and a straight line 62-

By - 1 = 0. Above this straight 1ine is the domain representing those val-
ues of By and 62 that are not realizable.

It follows from Eq. 12 that the density function of Y = (X - €)/A is
given by

fysg(y) = n/IV2my(1 - y)1 exp{-ly + nin(3%)12/2)
for 0 <y <1 (25)

It also follows from Eq. 11 that Y is expressed in terms of Z as
Y = {1 + expl-(Z - y)/n1}! | (26)
Hence, the median value ¥ of Y is |
§= 11+ expley/n)1 7t (27)

The necessary and sufficient conditions for bimodality irrespective of the
sign of y are

13
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n< 12, |y| < (/A - 2n® - 2ntanh™t A - 2n? (28)

3.2.3 The Johnson SU Family

Use of Eq. 16 in Eq. 12 inmediately results in the density function
of Y:

Fygyy) = Wn(y” + 1) expl-Ty + nin(y #/47 + 1)1%/2}

for -» < y < o  (29)

Similarly, use of Eq. 16 in Eq. 13 produces the density function of X:

fSU(x) = n/v2n{(x - )2 + A%}

x exp{-[y + nen{(x - €)/x + Ax - €)2/A% + 112}

for - < X < (30)
where
n>0, ~<y<o, A 0, < g< ®

The probabiTity distributions having the density function given by Eq. 30
are said to belong to the Johnson SU family. As in the case of the John-
son SB family, the values which 81 and 82 of the distributions of this
family can take are confined in a domain below the log-normal curve as
designated by "Johnson SU distribution" in the 31-82 plane in Fig. 4.

3.3 Fitting Data to Distributions of the Johnson Family

Observed experimental data can be fitted to the distribution functions
of the' Johnson family by proceeding with the following steps:

(1) Determine which of the three distribution families is to be used.

(2) Estimate the parameters of the selected distribution.

(3) Compute the expected cumulative frequencies of the fitted distri-
bution.

(4) Perform a goodness-of-fit test using the w? method.
The objective of Step (1) can be accomplished by plotting on the 81-82
plane the estimates b1 and b2 of 81 and Bz,respectively,eva]uated with the

15




aid of Eq. 4. Observe whether or not the point is in the Sg domain,
Sy domain, or close to or on the Sj curve. ‘It appears. prudent to
assume that the data fit  the Sy (SU) distributions if the point (b,,b,)
falls in the SB (SU) domain, and that the log-normal distribution is a like-
1y candidate if the point falls on or close to the SL curve. Indeed, for
the observed data listed in Table 1, all three points representing (bl’bz)
for XQPF, XWPF and WPF fall in the SB domain. Therefore, these data are
expected to fit well to the SB distribution. Also, while the three points
are not particularly close to the SL curve, their general proximity

to the curve suggests that reasonable fits may be expected between the da-
ta and the three-parameter log-normal distribution. In fact, the data plot-
ted on the log-normal probability paper (assuming that the minimum flaw

size = 0) in Fig. 5 suggests that a more than satisfactory fit may be ob-
served particularly for XWPF and WPF if the three-parameter log-normal dis-
tribution is used.

For the reasons described above and for a greater familiarity with the
log-normal distribution on the part of engineers, the Johnson SL (three-
parameter log-normal) distribution is considered first for the purpose of
fitting the observed data in Table 1. Then, a fitting procedure will be
described for the Johnson SB distribution.

3.3.1 The Johnson SL (Three-Parameter Log-Normal) Distribution

Expressing the log-normal probability density function in the form of
Eq. 21 with parametersu, o and €, we can establish the parameter estimation
procedure in one of the following mammers, depending on whether or not the
location parameter ¢ 1is known. The mmber of unknown parameters is equal
to two when ¢ is known; otherwise it is equal to three.

(a) When e is assumed to be known

Since an(X - €) is a normally distributed random variable with mean u
and standard deviation o, the estimates a and ; of 1 ando, respectively, can
be obtained in a manner analogous to that for estimating the parameters of
the normal distribution:

16
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N n
yo= (l/n)iz1 X (31)
o= [{}) (x¥-pu)?¥nl2=17 x**}/n - (u)?1° (32)
=1 ! j=1 1
or
n A 1 ~
s = [{} (x? -2 - D12 = /w/n -1 o (33)

i=1

where x? = Qn(xi - ) and s is the unbiased estimate of standard deviation.
The estimates of n and y* in Eq. 20 are then obtained as

A

1/5 or m,=1/s (34)

A

]

and

A A

-p/o or Y3 = -u/s (35)

A*

"
Because of the general theoretical advantage, s in Eq. 33 is used more frequent-
1y than o in Eq. 32 for an estimate of the standard deviation. For a large
value of n, however, there is Tittle difference between these two as Eq. 33
indicates. In the present section, however, both o and s are used for com-

parison.

As is well known, the estimate ﬁ in Eq. 31, when realizations xi's are
replaced by corresponding random variables Xi's, becomes an estimator and
will vary from sample to sample. Therefore, it is standard practice that
the adequacy of ; as an estimate for the unknown parameter p is indicated
in terms of the confidence interval given by

Hy ~
Hy = U * (tl-a,n~l)s/‘/ﬁ (36)
where u and s are obtained from Eqs. 31 and 33, respectively, and tl-a n-1
is the two-sided 100(1-a) percentile of the Student's t distribution of (n-1)
degrees-of -freedam. The quantity (1-o0) is referred to as the confidence le-
vel and has the following significance.

18



Pu - (b o o )S/R<p<m+ (b o )s//d =1 - a (37)

l-a,n-

" From the (two-sided) 100(1-a)% confidence Inteirval of u = E[&n(X - €)]
given in Eq. 36, we can obtain the lower bound XL and upper bound XU of the
corresponding interval for X from

W o= Q,n(XL - €), Wy = SLn(XU - €) (38)
as

Hom ek explu - (b g q)s/ /) (39)

Xy =€+ exp{;/+ (tl_a,n_l)s//ﬁ} (40)

(b) When € is assumed to be unknown

It follows from Eqs. 11, 14, and 18 that
Z=v* + nan(X - ¢€) (41)

where Z is the standardized normal variable. The three parameters v*, n

and € in Eq. 41 can be estimated in the following manner as suggested by Hahn
and Shapiro [4]: choose three probability values p, q and r, find A = @(zA)
- where &(-) = standardized Baussian distribution function, with A = p, q and
r, estimate Xa such that P{X §=XA} = A, construct three equations of the

form

2, = v* + nan(x, - ¢) (A=p, qand r) (42)

and finally solve Eq. 42 for the estimates y*, n and €. In practice, the

quantity Xp defined above is estimated with the aid of the ordered sample
< i... < oy i i- i

X(1) < x(z) x(n) where x(]) is the i-th smallest in the sample of

size n with the plotting position i/(1+n). Indeed, if it so happens that

A = i/(14n) (43)
then

Xp = x(i) (44)
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while 1f
/(1 +n) <A< (1 +14)/(1 +n) (45)
then by interpolation
Xp = X(q) * {x(1+1) - x(i)}{(l +n)A - i} (46)

In the present study, we choose p = 1-0, q = 0.5 and r = o with o being
i/(1+n) (4=1,2,...,8). Then, 1t 1s a relative1y simple matter to derive
the following expressions for y R n and e

v = nan{(1 - e'z'/“)/(xo.5 - x )} (47)
a = z'/zn{(xl_a - x0.5)/(x0.5 - xa)} (48)
e = Xg 5 " exp(-?*/ﬁ) (49)

Obviously, these values are different for different values of a. In the
analysis that follows later, we use as our estimates those values of ;*,
a and g that produce the smallest value of nw;. In Eqs. 47 and 48, z' =
2y 4 = "% represents the 100 x (1-a)-th percentile of the standardized
Gaussian distribution.

(c) Results of estimation

First, we consider the case where the location parameter ¢ is assumed
to be known. In this case, we perform the estimation presuming that ¢ is
a fraction of the smallest observation X(1)s €= X(1) i/10 (i=0,1,2,...,
9). Using Eqs. 31-35, we then estimate n and y* based on both o and s for
each of these ten different values of ¢; =0, 0. 1x(1), , 0. 9x(1)

For each set of n and y* thus estimated, Eq 6 is used to evaluate nwn,
and .we choose as our best estimate the set of ¢, n and y that produce
the smallest va]ue of nw Tab]e 3 Tists estlmated parameters W (writ-
ten as ETA 1), Yl (GAMMA 1), n2 (ETA 2), Y2 (GAMMA 2) and nm2 (NWN2) for
the. data XQPF, XWPF and WPF under ten different cases of ¢ Case 1 for
e = 0, Case 2 for € = 0.1x(1), ..., Case 10 for ¢ = O.9x(1). The nw:

values are considerably larger for XQPF than for XWPF and WPF. The nw;
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Table 3 Values of n, vy and nm: as Functions

of ¢ (The Johnson $

FOR DATA SERIES XQPF

CASE

(13

DOD® NN DN -

3

0000
«0026
. 0052
,0078
«0104
«0130
«0156
.0182
.0208
0234

ETAS

736
725
o714
.702
«689
676
«661
644
623
«595

FOK DATA SERIES XwWPF

CASE

=3

FUk DATA SERIES

CASE

i

S OX~NT N L NN -

S O @ N N W e

E

0000
.0093
0186
«0279
0372
« 0465
0558
«0651
«0744
.0837

E

«0000
0140
0280
« 0420
« 0560
«0700
0840
. 0980
1120
1260

ETAL

1.671
1.621
1.569
1.516
1.460
1,402
1,340
1.271
1.191
1,085

wWPF
ETAL

1,586
1.548
1.507
1.465
1.420
1,372
1.320
1,260
i.188
1.085

L Distribution)
GAMMA L NWN2
1.119 1.630
1.120 1,673
1.120 1.720
1.120 1.771
1,120 1.828
1.118 1.892
1.115 1.965
1,110 2,050
1,101 2.155
1,083 2.300
GAMMA1 NWN2
1.905 LUS1
1.904 U471
1.901 JU93
1.895 «516
1.886 +548
1,872 . 582
1.851 622
1,822 «673
1.776 oTUl
1.691 «Bde
GAMMA 1 NWN2
<714 e 330
« 7138 « 343
o161 « 358
«783 « 374
+802 «393
+820 L4415
«834 U443
84Uy JUTT
sBUb «525
.828 <606
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F O P

ETA2

o726
715
704
692
«680

«652
635
615
587

ETAZ2

1.648
1.599
1.548
1.495
1.440
1.383
1.321
1.254
1.175
1,070

ETAZ

1.565
1.527
1.487
1.445
1.401
1.354
1.302
1.243
1.172
1.07%

GAMMA 2

1.104
1,105
14105
1.105
1.104
1.103
1.100
1.095
1.086
1.069

GAMMAZ

1.879
1.879
1.876
1.870
1.860
1.846
1.826
1.797
1.751
1.668

GAMMA2

«704
728
751
o772
792
«809
823
0833
«835
817

NWN?

1.646
1.690
1.738
1.790
1.849
1,914
1.988
2.075
2.182
2.331

NWN 2

« 455
475
2497
«523
553
«587
628
«680
o748
.854

NWNZ2

$333
.347
.362
.378
.398
L421
JUu8
.483
.532
J614



values for the Tast two sets are not significantly different. Hence, the
three-parameter . log-normal distribution can be used for the XWPF data with
approximately the same level of goodness-of-fit as for the WPF data, while at
a considerably less satisfactory level for the XQPF data, a trend that can
easily be observed from Fig. 5. Table 3 also shows that within each set of
data, the nw: values decrease as € decreases thui 1nd1§at1ng the choice of
e = 0 together with the corresponding values of n and y* as statistically
the best. The value of nm: associated with the significance level of 5%

is 0.461 from Table 2. Therefore, observing from Table 3 that the nw:
values for € = 0 are smaller than 0.461 for XWPF and WPF, we may accept

the hypothesis (with a significance level of 5%) that XWPF and WPF data
have been taken from the three-garameter log-normal populations with € =

0 and corresponding values of n, and ;I (or 32 and ;3). However, we must
reject (with the same level of significance) the hypothesis that XQPF da-
ta have been taken from the three-parameter log-normal populations since
the smallest nm; value associated with € = 0 is in this case larger than
0.461., It is of interest to note that if the significance level is raised
to 10%, only WPF data will survive the test. These results are summarized
in Table 4.

Figures 6-8 show the values of ;I, ;5, 81 and ;2 as functions of the
location parameter ¢ for XQPF, XWPF and WPF data, respectively. We ob-
serve from these figures that the difference between the estimates based
on o and s are neglibibly small. Fig. 9 illustrates how the values of
31 and ;{ compare "data set by data set" as functions of e when 8 is used,
while Fig. 10 illustrates the same when s is used. These two figures al-
so show that the values of both a and ;* are generally largest €or XWPF,
larger for WPF and smallest for XQPF over practically the entire range
of € considered. Table 4 also lists the upper and lower bounds, XU and
XL’ corresponding to the confidence bounds Wy and u with a confidence
level of 0.9, while Table 5 Tists the bounds corresponding to confidence
levels of 0.9, 0.95 and 0.99. Fig. 11 plots the nwg values as functions
of € respectively for XQPF, XWPF and WPF and in essence reiterates the
result of the teit of hypothesis mentioned earlier. Note that the nw;
values based on o and s are indistinguishable in Fig. 11 for the same

22



Table 4 Best Estimates (The Johnson SL Distribution with € = 0)

A A* 2*
Data € n . Y nwp XL** XU**
XQPF 0 .726 1.10 1.65 .163 .294
XWPF 0 1.65 1.88 .455 .281 .364
WPF 0 "1.57 .704 .333 .557 .730

* 5% (10%) significance level = .461 (;347)

**  90% confidence bounds in mils

Table 5 Lower and Upper Bounds XL and XU in mils Corresponding to
. and Hy for Several Confidence Levels 1-a (When € = 0)

FOR DATA XQPF (N=37)

1=ALPHA XL XU
0.90 1627 »2938
0.95 «1492 «3204
0.99 «1260 3793

FOR DATA XWPF (N=37)

1=ALPHA XL xu
0.90 .2808 3643
0,95 «2703 «3785
0.99 «2509 4077

‘FOR DATA WPF (N=38)

1=ALPHA XL Xy
0.90 5571 «7299
0.95 «5354 « 7595
0.99 «4957 «8203
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data sets.

We now turn to the case where e is assumed to be unknown. In this case,
Eqs. 47-49 are used to estimate ¢, ; and Y As mentioned earlier, differ-
ent sets of e n and y will be obtained depending on the values of o to be
used in Eqs. 47 and 48, In the present study, we choose the following eight
different values for a; a = i/(1+n) (i=1,2,...,8). Making use of either
Eqs. 43 and 44 of Eqs. 45 and 46, the values of Xyr X1 and xo.é are eval-
uated and 1isted in Table 6 for each case of these o values; Case i for o
= 1/(1+n2. Table 7Alists, for each data set, the estimated parameters 3
as ETA, y* as GAM, ¢ as E and it further 1ists the value of nwﬁ computed
with the aid of Eq. 6. The values of n, y* and € for XQPF, XWPF and WPF
are plotted respectively in Figs. 12-14 as functions of the probability
level a. Fig. 15'p1ots the value of nw; for each data set as a function of
o and shows that, as in the case of Fig. 11, the values are largest for
XQPF, larger for XWPF and smallest for WPF, again reflecting the degrees of
"goodness-of-fit" observed in Fig. 5. Fig. 15 further shows that the nwﬁ
values assume minimum at a = 3/38 = 0.0789 for XQPF, at a = 1/38 = 0.0263
for XWPF and at o = 5/39 = 0.1316. The set of g, a and ;* corresponding
to each of these o values is chosen as the best estimate for the respec-
tive data set. If we use the best estimate of ¢ thus obtained in place of
e in Eqs. 39 and 40, the lower and upper bounds, XL and XU’ will iesu]t as
listed in Table 8. In evaluating XL and XU from Eqs. 39 and 40, u and s
are needed and they are computed with the aid of Eqs. 31 and 33.

It is concluded from Table 7 and Fig. 15 that with the significance
level of 5% we may accept the hypothesis that the WPF data have been taken
from the three-parameter log-normal population but we must reject the oth-
er two data sets as taken from the three-parameter log-normal populations.
For the WPF data, the best estimates are a = 1.855, ?* = 0.624 and ; =
-0.067. Incidentally, the WPF data will also pass the hypothesis testing
under the significance level of 10%. These results are summarized in
Table 9.
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Table 6 Values of X 500 ’_(a and X1
(The Johnson S; Distribution)

XQPF XWPF

X( .50) 0150 295
CASE 1 X( ,03) 026 « 093
X( +97) 7.700 1.280
CASE ¢ X( ,05) «031 0145
X( +95) 3,000 #9440
CASE 3 X( ,08) « 047 «145
X( ,92) 1,240 «870
CASE 4 X( ,11) « 050 «160
X( .90) 1.140 «810
CASE S5 X( ,13) 058 o175
X( .87) 1.100 +810
CASE 6 X( .16) « 059 «180
X( .85) 1,090 «700
CASE 7 X( .18) « 060 «180
X( .82) 1.090 612
CASE 8 Xx( ,21) T e063 «190
X( +79) 1.090 540
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 WPF
.647

o140
3.830

236
2,730

«280
1.640

«280
1.490

«320
1,250

0367
1.250

0367
1.140
L420
1,040




Table 7 Values of n, ¥, € and nw}
(The Johnson*SL Distribution)

DATA XQPF XWPF WPF

ETA J472 1.223 1.061

CASE 1 GAM 0977 1.676 .537
£ ,024 L0u1 .044

ETA .510 1.111 1.006

CASE 2 GAM 1,064 1.813 w673
3 .026 .100 .135

NWiV2 2.898 .838 2517

ETA .599 1.051 1.433

CASE 3 GAM 1,301 1.676 .175
E .036 .092 . 065

NWN 2.408 .872 . 340

ETA 546 .935% 1.524

CASE 4 GAM 1.200 1.588 . 656
E .039 12 «,003

NWN2 2.600 ,999 .322

ETA L479 .768 1.855

CASE S5 GAM 1.095% . 1,425 .624
3 .0U8 .139 -, 067

NWN2 2.717 1.190 .278

ETA . 430 .797 1.330

CASE 6 GAM .986 1,457 .863
3 L0049 134 .124

NAN2 2.940 1.178 .359

ETA .383 - .887 1.622

CASE 7 GAM " ,885 1.519 .703
E . 050 115 -,001

NWN2 3,299 1.059 .306

ETA .338 .950 1.500

CASE 8 GAM ,793 1.609 .932
t .054 i1t .110

NWN2 4,077 .983 .322
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Table 8 Lower and Upper Bounds xL and XU in mils Corresponding to
u and Wy for Several Confidence Levels 1-a (The Johnson

SL Distribution; When € is Assumed to be Unknown)

FOR DATA XQPF (N=37)

1=ALPHA XL Xu
0.90 « 1655 2988
0.95 1528 3276
0.99 .1314 3929

FOR DATA XWPF (N=37)

1=ALPHA XL XU
0,90 .2737 .3546
0,95 .2637 .3687
0.99 .2455 .3978

FOR DATA WPF (N=38)

1=ALPHA XL Xy
0,90 «5673 e 7425
0,95 5450 7721
0.99 5039 8325

Table 9 Best Estimates (The Johnson S, Distribution With Unknown €)

L
A ~ A 2
Data n Y* € nwy * XL** XU**
XQPF .599 1.30 .036 2.41 .166 .299
XWPF 1.22 1.68 .041 719 274 .355
WPF 1.86 .624 -.067 .278 .567 .743

f-; 5% (10%) significance level = .461 {.347)

X%  90% confidence bounds
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3.3.2 The Johnson Sp Distribution

The Johnson SB variable is 1imited between the Tower bound € and the
upper bound € + A as indicated in Eq. 24, Therefore, the following four
possibilities arise with respect to the upper and lower bounds: (i) Both
bounds are known, (ii) only the upper bound is known, (iii) only the
lower bound is known and (iv) neither bound is known. In the present
study, we formulate the procedures of parameter estimation assuming that
ejther case (iii) or case (iv) will prevail, although actual estimations
are performed only for case (iii). It is noted in this connection that
the flaw size can never be negative and therefore the lower bound may be
assumed to be zero, an assumption that generally produces a conservative
result. While such an assumption offers a considerable mathematical con-
venience, there is no definite reason, physically or otherwise, to believe

that the Tower bound of the initial flaw size distribution must be equal

to zero.

(a) When e is assumed to be known

In this case, we estimate the parameters A, n and y assuming that € =
X(1) ° i/10 (i=0,1,...,9) as was done when dealing with the . distribution.
Following then the same method that produced Eqs. 47-49 from Eq. 42, we qb-
tain the three equations below for the estimates ;, a and ;.

-z /2

(XO.S -e)(e + A - xl-a')] o "1-a! _ (xa - e)(e + X - XO.S)
(6 + 2 = xg 5)(x)_0 - €)] (e + % -x)(xg g5 - €)
(50)
A (%, 1 = ¢e)e+A-x)
n = (Zl_al - Za)/zn 1-a = < (51)
(xa -e)(e + X - Xl-a')
A N Xl-a' - €
Y = Z].-(XI -n an (52)

€ +A - Xl—al

where, as before, zp and X, are such that Zp = o(A) and P{X é:XA} = A with
o(-) denoting the standardized normal distribution function. If a # o',
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these three equations must be solved by trial and error. If, however, we

take an identical value for o and o' (o = a'), then Eq. 50 can immediately
™

be solved for A producing

A=

(xg 5 - e)lxg 5 - e)lx, - €) + (XO.S - e)(x;_, - ¢€)

a2(xa

e)(xy_q - W lxg 5 - €)% - x - e)lxy_, - €)
(53)

A A

The estimates n and y are then given by

=3
1]

22,/ 1an{(x)_, - )& + X - x )} - gnl(x, + €)le + A - x)_ )]

(54)

=2y 4 " n{zn(xl_a -€) - (e + ) - xl_a) (55)

<>
[}

We point out again that the estimated values of these parameters depend on
the value of o and that the set of estimated values producing the smallest
nw; value will be considered as the best estimate.

(b) When neither upper nor lower bound is known

It follows from Eqs. 11, 15 and 18 that the Johnson SB‘variab1e X and
the standardized normal variable Z are related by

Z=vy+nwm{(X-¢e)/(ec+2r-X)} (56)

With the aid of zp and x,, we then derive the following four equations

A

from which the estimates €, A, y and n can be solved.
zg =y +nanilxy - e)/(e +1-x) (Apq,randu)  (57)

The similarity between Eqs. 56 and 57 and Eqs. 41 and 42 is obvious. As
before, depending on the probability levels p, g, r and u to be used, dif-
ferent sets of estimates will be obtained.

However, we have not pursued this avenue of investigation since the

preliminary result indicated that the fit of the observed data to the Sg
distribution with four unknown parameters would probably not be particu-
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larly better, if not worse, than the fit to the same distribution with three
unknown parameters. In this connection, we recall the SL distribution re-
sult where considering € as an unknown does not really improve the goodness-

of-fit.

(¢c) Confidence Interval

A ~

Using the estimated parameters A, y, n and € (e in case it is assumed
to be known), write the following equation

2=y +n (X - €)/(e + A - X))} (58)

Since Z is the standardized normal variable, the unbiased estimates of its
expected value u and standard deviation o are respectively given by

n
p = 121 z;/n (59)
n A 1
s = [{ig1 (z; - wW2*H(n - 117 (60)
where
A ~ n A A A
zo =y +nx ) oanllx, - e)/(e+x-x)} (61)
i=1

The upper bound Wy and the lTower bound W of the confidence interval of ;

can then be established on the basis of the Student's t distribution as in the
case of the SL distribution. Indeed, they are also given by Eq. 36. The
corresponding bounds XL and XU are obtained from

A

X = e+ A expllu - ¥)/mI/01 + exp{(u - ¥)/n}] (62)

L

™

X

1
m

5= e+ expllyy - Y/ + exp{uy - ¥)/n)] (63)

(d) Results of estimation

Dealing with the case where € is assumed to be known, we 1ist in Table
10 the estimated values of A, n and y of the SB distribution. In this table,
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Table 10 Results of Estimation for the Johnson S,
Distribution When € is Assumed to be Known

‘FOR DATA SERIES XWPF

CASE

L

FOR DATA SERIES

CASE

(S

DO~ U E N =

OV NN =

E

20000
0093
0186
« 0279
.0372
<0465
« 0558
0651
0744
0837

E

«0000
0140
0280
0420
« 0560
«0700
. 0840
«0680
1120
«1260

ETAL

6AMMA L

L e—

4,774
3.454
2,703
2.182
1,791
1.484

GAMMA |

3.568
3.143
2.787
2.484
2.221
2.8%2
2.“80
2.185
8,033
4,907

41

RAM

7.503
6.187
5.253
4,555
4,012
5.838
4,852
4,140
119.569
17,577

NWN2

c664

669
«675
«683
«692
o703

NHN2

283
«285
«287
289
«291
316
319
322
«322

 .323




Case 1 1ndicates the use gf € = x(l)ﬁ' (1-1)/10, and E is written for e,
ETA 1 for n, GAMMA 1 for v, RAM for A and NWN2 for nw?. As mentioned
earlier, the Sy variable 1s limited between ¢ and ¢ + A (A > 0). We

have found, however, that the estimation procedure used here produces
negative values for the estimate X depending on the assumed values of €.
For example, the values of the estimate X have turned out to be nega-
tive for all ten cases of € with respect to XQPF data and for the first
four cases with respgct to XWPF data. If an assumed value of &, say Y
produces a negative A, we interpret that to be an indication of the un-
acceptability of the SB distribution with ¢ = €9 for the data considered.
Therefore, the results of the estimation for XQPF data have not been
listed in Table 10. Also, the results for the first four cases of ¢ val-
ues with respect to XWPF data have been indicated by bars (-).

Based on the nwﬁ values listed in Table 10, we conclude that the best

estimates are obtained from Case 5 for XWPF:
e = 0.0372, A = 9.009, n = 1.354, v = 4,774

and from Case 1 for WPF:
e = 0.000, A = 7.503, n = 1.512, v = 3.568
Figures 16 and 17 plot the values of estimates A, n and y as functions
of €, respectively for XWPF and WPF. Fig. 18 plots nw: values as functions
of € for both XWPF and WPF. This figure shows that the SB distribution can
be accepted for WPF data but not for XWPF data if the significance level of
%% is assumed. Table 11 1ists the values of X, and XU for XWPF and WPF with

L
the aid of Eqs. 62 and 63. These results are summarized in Table 12.
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Table 11 Lower and Upper Bounds XL and XU in mils Corresponding to
W and Hy for Several Confidence Levels l-a (The Johnson
Distribution; When € is Assumed to be Known)

Sg

FOR DATA XQPF (N=z37)

1-ALPHA
0.90
0.95
0.99

XL

« 9587
«9485
9289

FOR DATA XWPF (N=37)

j=ALPHA
0.90
0.95
0.99

FOR DATA wPF

Table 12 Best Estimates (The Johnson Sg Distribution)

t=ALPHA
0.90
0.95
0,99

XL
5270
4892
Ju232

(N=38)

XL
«5613
.5189
«44sSSsS

XU
1.0314
1.0425
1,0645

XU
8752
9429

1.0898

xu
9586
1,0370
1.2079

A

>

T 2% ok ok
Data A n Y € nw, XL XU
XQPF A is negative; uhacceptable
XWPF 9.01 1.35 4.77 .0372 .664 .527 .875
WPF 7.50 1.51 3.57 .00 .283 .561 .959

%

sk

5%'(10%) significance Tevel = ,461 (.347)

90% confidence bounds
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SECTION IV

FITTING TO THE WEIBULL
DISTRIBUTION FUNCTTION

An attempt is made to fit the data shown in Table 1 to the Weibull dis-
tribution. For the present investigation, we consider the following three-
parameter Weibull distribution.

Fy(x) =1 - exp{-[(x - €)/A1"} for x > € . (64)

where n = shape parameter, A = scale parameter and € = location parameter.

It is often a practice to use the maximum 1ikelihood method to esti-
mate these parameters. Its use for the three-parameter Weibull distribu-
tion, however, not only creates numerical problems requiring possibly high-
1y expensive iterative procedures but also may produce an awkward result in
which the estimated location parameter € is larger than the smallest obser-
vation x(l).

~ In the present study, therefore, a convenient curve fitting procedure
described below is used in conjunction with the least square method under
the assumption that the location parameter is known.

Transforming Eq. 64 into the form
gngn{1/(1 - Fyfx)} = nian(x - €) - &nd} (65)

and setting

y = 2nen{l/(1 - Ex(x)}
u = 2n(x - ¢€) (66)
A* = -nni

we can reduce Eq. 64 into

y =nu + A% (67)
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which is a linear relationship between y and u. Using the observations x(i)
and corresponding cumulative probabilities F(x(i)) = §/(1 + n) Tisted in
Table 1, we can compute u, and Y3 which are the values of u and y in Eq. 66
with x replaced by X(i)' These uy and y; are used to construct the square
error EZ of the form

n
E2 = T Ay; - (g +2a%))° (68)
i=1
The parameter values n and A* which produce the least value of E% are then
chosen as our estimates. Explicit expressions for these estimates can be
obtained by solving the equations 3E2/9n = 3E2/9x* = 0 as

A

n
n=1{n ] uy, -

nNe~13
—

n n n
u )Ty )W §oud - (] ug)® (69)
i i=1 i=1

i=1 i i=1
o] (] v - (] e ) 1w
A* = {( u? yi) - () uy)( uy ) MAn Y ui - () u,)*}
S L = B = AL = L = B
(70)
The scale parameter X is then estimated from Eq. 66 as
A = exp (-A*/n) (71)

The results of such estimations are presented in Tables 13, 14 and 15
respectively for the samples XQPF, XWPF and WPF. 1In deriving these Eesults,
we have assumed that the location parameter € = 0, 0.2x(1), 0.4x(1), 0.6x(1)
and 0.8x(1). Figs. 19, 20 and 21 plot 2 against us (although the probabil-
ity and the logarithmic scales are used) respectively for XQPF, XWPF and
WPF. Each data point in these figures represents Xy - € along the abscissa
and i1/(1 + n) along the ordinate. Therefore, at each probability level
i/(1 + n), we see five points corresponding to five different values of .
For each assumed value of €, we eviluate the value of nw; from Eq. 6 using
the corresponding estimates n and A. In Tables 13, 14,and 15, we also
T1ist the values of least square error as well as the values of nwﬁ. Both
of these values decrease as € increases. This suggests that the goodness-
of-fit is more satisfactory if we assume larger ¢ values. However, it is
apparent from Fig. 2 as well as Table 2 that all the Weibull distributions
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Table 13 Statistical Anélysis o'f Data
. ¥QPF for Wefbull Distribution- L

- "-l

ANALYSIS OF EQUIVALENT INITIAL FLAW SIZE DISTRIRUTION
IN THE CASE OF WEIBULL DISTRIBUTION

FOR DATA SERIES XQPF

WEIBULL SHAPE = ,76818E+400
WEIBULL SCALE = L44256E+00
WEIBULL LOCATION = ,L,00000E400

LEAST SQUARE ERROR = ,72664E+01
GOODNESS=0F«FIT TEST STATISTICS NWN2= ,24760E+00

WEIBULL SHAPE =z L75091E+00
WEIBULL SCALE = LU2B24E+00
WEIBULL LOCATION = ,52000E-02

LEAST SGUARE ERRNR = ,66314E+401
GOODNESS=0F=FIT TEST STATISTICS Nwh2= ,23008E+00

WEIBULL SHAPE = LT73159E+00
WEIBULL SCALE = LUJ314E+00
WEIBULL LOCATION = ,10400E~01%

LEAST SQUARE ERROR = ,S8844E+01
GOODNESS=0OF«FIT TEST STATISTICS NWN2= ,21037E+00

WEIBULL SHAPE = LT0R78E+00
WETBULL SCALE = 397058400
WEIBULL LOCATION = ,L15600E=01

LEAST SQUARE ERROR = ,49732E+01
GOODNESS=OF=FIT TEST STATISTICS NWN2= ,18742E+00
'

WEIBULL SHAPE = ,6778SE+00

WEIBULL SCALE S ,3798BE+00

WEIBULL LOCATION = ,20800E=01

LEAST SQUARE ERROR = ,37987F+01

GOODNESS=0F=FIT TEST STATISTICS NwN2= ,15869E+00
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Table 14 Statistical Analysis of Data
XWPF for Weibull Distribution

ANALYSIS OF EQUIVALENT INITIAL FLAW SIZE DISTRIBUTION
IN THE CASE OF WEIBULL DISTRIBUTI]ION

FOR DATA SERIES XwPF

WEIBULL SHAPE «17920E401
WEJRULL SCALE «U3272E400
WEIBULL LOCATION «00000E+00
LEAST SOUARE ERROR = _50286FE+01

GOODNESS~OF~FIT TEST STATISTICS NwNe= _23084E+00

WEIBULL SHAPE «16945E+01

WEIBULL SCALE = L40981E+00
WEIBULL LOCATION = L1B600E=-01
LEAST SGUARE FRROR = ,4u4298F+01

GOODNESS=0F=FIT TEST STATISTICS NWN2= .20895E+00

WEIBULL SHAPE «1SR91E+01
WEIBULL SCALE «38653E+400
WEIBULL LOCATION «37200E-01
LEAST SOGUARE ERROR = ,37610E+01

GOODNESS~0F=FIT TEST STATISTICS NwN2= ,1R43TE+00

WEIRULL SHAPE «14695E+01

WEIBULL SCALE «36297F+00

WEIBULL LOCATION = ,55800E-01

LEAST SQUARE ERROR = ,30437E+01 .
GOODNESS~OF=FIT TEST STATISTICS NWN2= ,15642E+00

i "

WEIBULL SHAPE = L13150E+01
WEIBULL SCALE = L,34009E+00
WEIBULL LOCATION = ,74400E~-01

LEAST SQUARE ERROR = ,24880E+01
GOODNESS=0OF=FIT TEST STATISYICS NWN2= ,12513E+00
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Table 15 Statistical Analysis of Data
. WPF for weippll Distribution

ANALYSIS OF EQUIVALENT INITIAL FLAW SIZE DISTRIBUTION
IN THE CASE OF WEIBULL DISTRIBUTION

FOR DATA SERIES WPF

. WETIBULL SHAPE = L16945E+01

WEIRULL SCALE = LB87823E+00

WEIBULL LOCATION = ,00000E+00

LEAST SQUARE ERROR = ,S7231E+01

GOODNESS«0OF=FIT TEST STATISTICS NWRN2z ,30361E+00

WEIBULL SHAPE «16208E+01

WEIBULL SCALE «B434SE+00

WETBULL LOCATION = L,28000E~01

LEAST SGUARE ERROR = ,S1375E+0}

GOOONESS~0F«FIT TEST STATISTICS NWN2= ,28299E+00

WEIBULL SHAPE = L15373E+01
WEIBULL SCALE s L,80884E+00
WEIBULL LOCATION = ,56000E=01

LEAST SQUARE ERROR = ,U45602E+01%
GOODNESS=0F«FIT TESY STATISTICS NWN2= _26271E+00

WEIBULL SHAPE = L14362E+01
WEIBULL SCALE T LT7523E+00
WEIBULL LOCATION = L,BU400OE=01

LEAST SQUARE ERROR = L40810E+01
GOOQNESS-OF-FIT TEST STATISTICS NWN2= ,24514E+00

WEIBULL SHAPE B L12923E+01

WETRULL SCALE = LT46UBE+00

WEIBULL LOCATION = ,L,11200E+00

LEAST SQUARE ERROR = _40969E+01

GOODNESS=0F«FIT TEST STATISTICS NWN2= _24091E+00
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with estimated shape and scale parameter values and with assumed location
parameter values (including those with € = 0) can be accepted as the pop-
ulation distribution if the significance level o (for rejection) is 0.10.
Indeed, all but one (WPF with € = 0) can be accepted even under o = 0.15,
These results are summarized in Table 16.
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Table 16 Best Estimates

(The Weibull Distribution)

Data n A nw;* gt €
.768 .443 .248 7.27 O**
XQPF "
.678 .380 .159 3.80 .0208
1.79 .433 .231 5.03 Q**
XWPF T
1.32 .340 .125 2.49 .0744
1.69 .878 .304 5.72 O**
WPF .
1.29 .746 241 410 112
* 5% significance level = 461
10% significance level = ,347

** Assumed minimum value of €

+ .
Assumed maximum value of ¢

++
Least square error

56




SECTION V

FITTING TO THE PEARSON
DISTRIBUTION FAMILY

5.1 The Pearson Distribution Family

The probability distribution functions with the following twelve types
of density belong to the Pearson family [5, 6, 7].

Type Density Origin Range
I f(x) = ¢ xP(1 - x/a)8 x =0 D<x<a (72)
11 f(x) = c{l - (x/a)2}P Mean(=Mode) -a < x < a (73)
111 £(x) = ¢ xP exp(-x/a) x =0 0<x<ow (74)
Iv f(x) = c{l + §x/a)2}-p Mean o<y < o (75)
x exp{-b tan™"(x/a)} + 3ab/(p-1)
v f(x) =c x°P exp(-a/x) x=0 0<x<w (76)
VI f(x) = ¢ x31 + x/a)7P x =0 0<x<o (77)
VII f(x) = c{1 + (x/a)2}°P Mean(=Mode) —© < X < (78)
VIII f(x) = c(1 + x/a)7P X =0 a<x<0 (79)
IX f(x) = c(1 + x/a)P x =0 -a <x<0 (80)
X f(x) = ¢ exp(-x/o) X =0 0<x<w (81)
XI f(x) = c x7P x =b b<x<w (82)
VB, 7(3+8,)
0(/375; + ,/3‘1) + ,q 1 1
XI1 f(x) = ¢ ~o(/3+8; + VB;).
(/37 - /By - ]

Mean <x< (83)

O'(V 3+81 - /—BI)
Each of these distribution functions is identified either as a point,
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a curve {possibly a straight 1ine) or a region in the Bl and Bz plane as
shown in Fig. 22 which is constructed by extending the work presented in
[5, 6, 71. Fig. 22 plots the (bl’bz) points for the data XQPF, XWPF and
WPF and suggests that the Pearson distribution function of Type I is sup-

posed to represent all these data well.

‘Following the procedures suggested in [5, 6, 7], four parameters c,

a, p and q of Type I written in the form

f£(x) = ¢ xP(a - x)9 (84)
are estimated as

a = Llu,r,)* (85)

P -

. =%{ry - 2 % r(ry; +2)(8/r,)"} (86)

c = a'(p+q+1)r(p +q+ 2)/{T(p + 1)T(q + 1)} (87)
where

ry = 6(8, - 8, - 1)/(6 + 38, - 28,) (88)

ro = Bl(r‘1 +2)% + 16(?‘1 + 1) (89)

and u,, B and B, are given by Eqs. 1 and 2 while I'(-) indicates the gamma

function.

5.2 Results of Estimation

The parameters a, p, q and ¢ of the Type I distribution function are
estimated and used in Eq. 84 resulting in the following density functions.

For XQPF,  f(x) = 0.0358x"0+9%6(9 g5 - x)0.0503 (90)
For XWPF,  f(x) = 0.351x70-562(1 a4 . x)1-%3 (91)
For WPF ,  f(x) = 0.0187x°9-83%(5 o7 . x)1-29 (92)
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Unfortunately, the resulting values of nwﬁ are large: 6.64 for XQPF, 3.02
for XWPF and 6.03 for WPF. These large values of nw; clearly indicate that
the Pearson distribution of Type I cannot apply to either of those data.
These density functions are plotted in Figs. 23-25 together with the cor-
responding normalized histograms for comparison.
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SECTION VI

FITTING TO THE ASYMPTOTIC
DISTRIBUTIONS OF LARGEST VALUES

6.1 Asymptotic Distributions of Largest Values

The following three asymptotic distributions of largest values are
tested for their goodness-of-fit with respect to the observed EIFS data.

(a) The First Asymptote
Fx(x) = e-e -0 < X < o (93)

where a1(> 0) and 81 are the parameters to be estimated.

(b) The Second Asymptote
-az
Fx(x) = exp[-(x/xz) ] 0 < x (94)

in which o, (> 0) and Xo (> 0) are the parameters.

(c) The Third Asymptote

*3
Fy(x) = exp[—(‘*x; %) ] (95)

with the parameters a3'(> 0), X3 (> 0) and w(> 0).

For each of these asymptotic distribution functions, we can find the
appropriate transformations of the probability scale and of the random var-
jate so that the relationship between the transformed is linear, although
the upper bound w in the case of the third asymptotic distribution must be
known .

6.2 The First Asymptote

Using a procedure similar to that fér:the 'Weibull distribution fit,
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transform Eq. 93 into the form

y 'alx = 81 (96)

where

y = anen{l/F,(x)} (97)

Using the observations x(i) and the corresponding cumulative probabilities
F(X(i)) = §/(1 + n) as listed in Table 1, we can construct Y(q) from Eq. 97

as
(i) = anan{(1 + n)/i} (98)

and construct the square error E? as

n
2 . - - - 2
The parameter values aq and Bl which produce the least value of E? are cho-
sen as our best estimates. Explicit expressions for these estimates can be
obtained by solving the equations 8E2/3a1 = 8E2/881 = 0 and are given by

My (3 x)(] yowin T %% - (7 x)%
= - . - . /1 z . .)?
R A R R
(100)
~ n ) n n n n ) n )
By = -{(iz1 x1-)(1Z1 ;) - (izl x1)(1z1 x;¥:)}/{n izl X§ - (izl x;)%}
(101)

in which X5 and y; are written in place of x(i)zand y(i) for simplicity of

notation.

The results of the parameter estimation and test of goodness-of-fit
are summarized in Table 17 which Tists the values of the least square E2
and nm: as well as the best estimates of the two parameters for the data
sets XQPF, XWPF and WPF. The results clearly indicate that neither of
the data sets fits to the first asymptotic distribution at the signifi-
cance level of 5% or 10%. Fig. 26 plots these data sets on the Gumbel
probability paper.
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(a) The First Asymptote

Table 17 Best Estimates (The Asymptotic Distributions)

Best Estimates

~ A 2* B 2+
Data oy 61 nmn E
XQPF .642 142 1.48 21.3
XWPF .415 -.106 2.63 3.41
WPF .147 -.629 .697 10.9
(b) The Second Asymptote
Best Estimates
- o 2% 2t
Data O X5 nwp E
XQPF .822 113 .0672 1.44
XWPF 1.87 240 .0306 1.03
WPF 1.76 .469 .140 2.13
(c) The Third Asymptote
Best Estimates
Data o X W nw?2* g2t
3 3 (MIL) n
XQPF 16.3 30.3 30 1.62 23.0
XWPF 105.4 29.8 30 .370 4.33
WPF 40.0 29.6 30 779 11.7
* 5% significance level = .461
10% significance level = .347

Least square error

67




san|ep 3sabue] 40 uoLinqlalsiq o1303dwAsy 3suid 03 bulldld 9z ‘64

(SLLW)

'y

i

X 3ZiS MRl4 (BL3Lu] JudleAinb]

-

L, J

-y

A
+

b 4

ddM e
4dMX ¥
4d0X ®

XXRRS S

»

e e b
TRy s
£l

oo

co’
S0’
ot

o2’

TIRE:

86"

9= (X)Xj A3L1LqeqOoUd dAL3R|NWNY)

o~

(*s + xlo)-

68



6.3 The Second Asymptote

For the second asymptotic distribution, consider the following trans-
formation of the random variable X into Y

Y=2anX (102)

Then, the distribution function of Y can be written as
-0,Y-B,

e

Fyly) = e (103)

where
By = -0y AN X, (104)

Analytically, Eq. 103 is identical with Eq. 93 and therefore the same method
of estimation as used for the parameters of the first asymptotic distribu-
tion can be employed inAthis case as well: Egs. 100 and 101 can be sg1ved
for the best estimaEes a, ind B, for a, and B, if in these equations o and
By are replaced by o, and 82 and also X; = x(i) by u; = n X5 = an x(i).

Once a, and 82 are found, the best estimate x2 for x2 can be evaluated
as N
~ 'B /a
= e 2' 2

X, (105)

The estimated parameters and the values of the least square E? and nw;
are listed in Table 17 which indicates that all the data sets fit extremely
well to the second asymptotic distribution: Observe the very low values of
nm;. Fig. 27 plots these data sets on the Gumbel probability paper.

6.4 The Third Asymptote
Using'laitransformation similar to Eq. 102;
Y = an(w - X) (106)

the distribution function of Y can be obtained from Eq. 95 as
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-e053y+33
.F;(y) =1-e (107)

where

Transforming Eq. 107 further into the following form

Z = azy + By (109)

with

z = 2 n[1/{1 - FY(y)}] (110)

we can construct the square error E? as

£ = 1 Gagy) - oy + 8)) (111)
in which

z(5) = 0 n[(1+n)/(14n-1)] - (112)
and

(i) © in(w - x(i)) (113)

The best estimates &3 and §3 respectively for the parameters ag and 83 can
then be obtained as those values of Qg and 63 that minimize the square er-
ror E2 in Eq. 111. Hence, these bgst estimates can again be obtained from
Eqs. 100 and 101 by replacing ;1, Bl’ X4 andAy1 respectively by ~0i35 =B

Yi =Y and 23 = iy The best estimate X3 of x5 can then be evaluated
as o

L B3/ag

X3 = (114)

This estimation procedure requires, however, the knowledge of the up-

per bound w. In the present study, we assume that the upper bound is w =

. ,» 1. s sees 3. . 2 i -
1 lx(n) 2x(n) 3 0x(n) The nw values associated with these as
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sumed upper bounds are computed after the corresponding parameter values
are estimated and 1isted in Table 18, The table indicates that the nwﬁ
values are smaller as the upper bound w gets larger. Therefore, for the
upper bound w, we assume a crack size of 30 mils, a value to be used in
Section VII as the (smallest visible) crack size at the time of crack in-
jtiation. The values of the estimated parameters, nw; and E? under the
assumption of w = 30 mils are then 1isted in Table 17. The table indi-
cates that, for the data sets XQPF and WPF, the nw; values are smaller
under the assumption of w = 30 mils than those listed in Table 18; this
is consistent with the trend observed in Table 18 that the nw; values are
smaller for larger values of w. However, the nw: value for the data set
XWPF under the assumption of w = 30 mils is larger than those associated
with w = 2'3X(n)’ cees 3'0X(n) in Table 18 against the trend.

The following conclusions can be drawn from these observations: The
third asymptotic distribution fits to neither of the WQPF and WPF data
sets, whether at the 5% or the 10% significance level. However, the dis-
tribution fits to the XWPF data at the 5% significance level under the
assumption of w = 1.6x(n) v 3.0x(n) and w = 30 mils while at the 10% sig-
nificance level under w = 2.7x(n) " 3'0X(n)’ How well the third asympto-
tic distribution fits to the XWPF data under the assumption of w > 3.0x(n)
sti1l remains to be investigated. No further study has been pursued, in
this respect however, in view of the generally poor degree of goodness-
of-fit exhibited by the distribution for the current data sets.

Figs. 28-30 plot respectively the data sets XQPF, XWPF and WPF on
the probability paper for FY(y) =1 - exp[-exp(a3y + 83)] when w = 1.1x(n),
2.0x(n) and 3.0x(n). Note that the abscissa of the probability paper
plots &n(w - x).
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Table 18 Values of nmﬁ as a Function of w (The Third Asymptotic Distribution)

W XQPF XWPF WPF
1.1 % X0y 2.28 0.813 1.64
1.2 2.14 0.648 1.43
1.3 2.05 0.566 1.31
1.4 1.98 0.516 1.22
1.5 1.93 0.480 1.16
1.6 1.89 0.454 1.11
1.7 1.86 0.434 1.07
1.8 1.83 0.418 1.04
1.9 1.80 0.404 1.01
2.0 1.78 0.393 0.985
2.1 1.77 0.384 0.966
2.2 1.75 0.375 0.948
2.3 1.73 0.368 0.933
2.4 1.72 0.362 0.920
2.5 1.71 0.356 0.908
2.6 1.70 0.352 0.899
2.7 1.69 0.347 0.887
2.8 1.68 0.343 0.879
2.9 1.67 0.339 0.870
3.0 1.67 0.336 0.864

X(n) = 7.70 mils for XQPF, 1.28 mils for XWPF and 3.83 mils for WPF
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SECTION VII

FITTING TO TTCI COMPATIBLE
EIFS DISTRIBUTIONS

7.1 Compatibility Between EIFS and TTCI Distributions

We now follow Shinozuka [8] to demonstrate the existence of compatibil-
jty between the EIFS distribution function Fx(x) and the TTCI distribution
function FT(t). The key to the establishment of such compatibility is the
interpretation that the crack size ag = a(T) at time T of crack initiation
is specifiable (say, ag = 0.03") and that the crack size a, is reached as
a result of crack growth from the initial crack size X = a(0). Assuming
that the crack growth is governed by

da(t)/dt = Qfa(t)]® (115)

and integrating from t = 0 to t = T, we obtain the following relationship

among X = a(0), a = a(T) and T.
X = a(0) = ap/(1 + a5 cqn)'/° (116)
where ¢ = b-1 > 0, With a, specified, Eq. 116 provides the transformation

necessary to establish the compatibility. Indeed, we can derive on the
basis of Eq. 116

Fx(x) =1 - F.'r{(x"c - aac)/(cQ)} (117)

A number of distribution functions have been used for FT(t). Partic-
ularly notable are the log-normal and Weibull distribution functions. It
is well documented that both of these can usually describe the observed
fatigue data reasonably well, especially in the central range of scattered
fatigue data. They represent, however, widely differing underlying me-
chanical-statistical models: The log-normal distribution impliies a fail-
ure rate that increases at first and decreases after reaching a maximum,

while the failure rate associated with the Weibull distribution is a mon-
otonically increasing function with time provided that the shape parameter
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is larger than unity. Since monotonically increasing failure rates are
more amenable to physical interpretation, the Weibull distribution is often
preferred to the log-normal distribution. This preference is sometimes re-
inforced further by the fact that the Weibull distribution has an analyti-

cal form that is mathematically easy to manipulate,

7.2 Weibull Compatible Distribution

Shinozuka [8] applied Eq. 117 to the two-parameter Weibull (TTCI) dis-
tribution and computed the probability density and distribution functions
under the assumption that Q = 2.0 x 10'8, ay = 0.04" and ¢ = 4.0. Yang
suggests that the same equation be applied to the three-parameter Weibull

distribution
Fr(t) =1 - expl-[(t - €)/81%) t>e (118)
in which case, the Weibull compatible distribution is obtained as

-C
- a, - cQe
0 ] } X <
cQB

(119)

X
Fx(x) = exp{-[ Xy

with

-C

4 cqe) /e (120)

In the present investigation, the following values of b and Q are assumed,

based on -some experimental evidence.

Table 19 Values of Crack Propagation Parameters

DATA XQPF XWPF WPF
b 1.26 1.26 1.22
Q 2.33 x 1073 2.33 x 1073 9.25 x 1072

Note: c=bH -1
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As in the case of the three-parameter Weibull (EIFS) distribution, the
parameter € is assumed to be known and the shape and scale parameter, o and
B, of the parent Weibull distribution are estimated using the fo1low1ng~es—
timation procedure. First, transfer the random variable X = a(0) into

Y = X = {a(0)}~¢ (121)

then the distribution function of Y can be written in the form of a three-~
parameter Weibull distribution:
o

Fyly) =1 - exp{-(x—:¥1)“} ; Y2y (122)
; 2
where
y = X;C = aac + ¢Qe (123)
and
§ = cQB (124)

Realizations of X, X(l) < x(z) < ... < x(n), are transformed through Eq.
121 into realizations of Y, Y(n) = le) > Y(pa1) = ng) > > Yy =
ng). Note that the largest, the second largest, ... of the X sample be-
come respectively the smallest, the second smallest, ... of the Y sample
as shown below:

Observations of EIFS Corresponding Y
Largest a(O)(n) Smallest Y1) = {a(O)n}'C
Second largest a(O)(n_l) Second smallest Y(2) = {a(O)n_l}-C
Smallest a(O)(l) Largest Y(n) = {a(O)l}'C

Defining Ay as
by = (y(y - 3 )/5 (125)

we assume that the Tocation parameters e of the TTCI (Eq. 118) and vy of the
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distribution of Y (Eq. 122) take respectively the following values

™
1t

(i - 1)Ay/(cQ) (i=1,2,...,5) (126)

and

¥; =3 + (3 - Dy (3=1,2,...,5) (127)

Taking advantage of the same procedure as used in the case of the Weibull
distribution fit, we introduce

z =ov + &% (128)
where

z = 0 an{1/(1 - Fy(y))} (129)

v=2an(y-vy) (130)
and

§* = -a &n & (131)

By means of the least square method, we can then eva1uate the best estimates
a and 6* of o and 6 from Eqs. 69 and 70 by replacing n, A*, us and ¥y there
respectively with o, 6*, ¥ and Z, where

V. = Qn(y(.

i)~ Y) (132)

and

gn en{(1 +n)/(1 +n - i)} (133)

Z

The best estimates B and § of B and § can be found respectively from Egs.
124 and 131:

8/£c02 (134)
- ¢"8Ma (135)

o> >

Table 20 indicates the values of nw; corresponding to Yj (j=1,2,...,5)
for each of the three data sets. In all cases, they are smaller for smaller
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Table 20 Values of nw; as a Function of Y5
(Weibull Compatible Distribution)

Data XQPF
] Yj
1 2.49
2 2.70
3 2.91
4 3.12
5 3.33

Data XWPF
J Yj
1l 2,49
2 3.12
3 3.75
4 4,39
5 5.02

Data WPF
J Yj
1 2.14
2 2.38
3 2.62
4 2.86
5 3.10

0.869 x 10

0.941
1,06
1.29

1.89

0.345 x 10~

0.381
0.449
0.588
0.950

3.14

n

n

X

X

X

X

wz
n

1

X 10-1

X 10-1

x 1071

x 1071

W

S

1

x 1071

x 1071

x 1071

x 1071

10~

81

o B
2.04 0.133 x 10°
o B
4.89 0.103 x 10°
o B
4.33 0.155 x 10°




values of y and hence for smaller values of € indicating that the best fit
is obtained when € = 0. (Table 20 shows only the values of o and B for ¢

= 0).

This implies, by virtue of Eq. 120, that the best fit is observed when
ag (in this case 0.03") is taken as the upper bound of the distribution of
the initial crack size a(0).

The results of estimation are given in Table 21 where the best estimates
of a and B and the corresponding values of nwﬁ and € are listed.

Table 21 Best Estimates (Weibull Compatible EIFS Distribution)

Data € & é nwﬁ
XQPF 0 2.08 1.33 x 10 0869
XWPF 0 4.89 1.03 x 10% 0345
WPF 0 4.33 1.55 x 107 .0151

Extremely small values of nw; above indicate that the Weibull compatible
EIFS distribution fits superbly well to all the data sets.

Figures 31-33 plot z; against Vs using the Weibull probability paper
respectively for the data sets XQRF, XWPF and WPF. As in the case of Figs.
19-21, each data point in these figures represents Yy =Y along the abscis-
sa and i/(1+n) along the ordinate and therefore at each probability level
i/(14n) we see five points corresponding to five different values of .

7.3 Log-Normal Compatible Distribution

If the TTCI distribution F (t) is a log-normal distribution of the form

1

F (1) - ®{%n(t - <) -'p} t5e (136)
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then, the corresponding EIFS distribution Fx(x) can, by virtue of Eq. 117,

be written as

(137)

(x) = Q[_ an((x™° - ¥)/(cQ)] -E} X < x

g

F

X U

where vy and Xy are the quantities defined in Eqs. 123 and 120, respectively.
Performing then the same transformation as shown in Eq. 121, we can derive
the distribution function of Y as

Fyly) = el{an(y - v) - g}/0] (138)
where

g = an(cQ) +n (139)

Using the same b and Q values given in Table 19 and following the same
procedure as used in the case of the Weibull compatible distribution, the
parameters £ and ¢ are estimated under the assumption that the parameter €
is known. Once, these estimates E and 3 are found, the estimate a of u
can be found from Eq. 139 as

"= £ - an(cQ) (140)

The location parameters € and y are assumed to take exactly the same
values as given in Eqs. 126 and 127. Then, as in the case of the three-
parameter log-normal distribution fit in Section 111 (see Eqs. 31 and 32),

we evaluate the estimates £ and o respectively of £ and o using the fol-
lTowing expressions:

A n
£ = (lln)ig i (141)
~ n - 5 n PR
o=[] (y¥-8)?2/m1%=1] yWn- (£)17 (142)
i=1 i=1
with
yi = alygy - v) (143)
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Table 22 indicates the values of nw: corresponding‘to'yj (j=1,2,...5)

for each of the three data sets. As in the case of the Weibull compatible
distribution, the table indicates that (a) the nw: values are smaller for
smaller values of y and hence for smaller values of €, suggesting that the
best fit is obtained when € = 0 and (b) the best fit at € = 0 implies that
the upper bound of the EIFS distribution is a, (in this case 0.03").

The results of estimation are summarized in Table 23 where the best
estimates of p and o and the corresponding values of nw: and € are listed.
This table indicates that the goodness-of-fit is highly acceptable; the
nw; values are much smaller than 0.347, the value associated with the 10%
significance level, although the Weibull compatible distribution has re-

sulted in even smaller nw; values,

Figure 34 plots the three data sets on the Gaussian probability paper
after they are transformed into zn(y(i) -v) = 2n(ng) - aac).

The upper and lower bounds EU and EL of the confidence interval for
the expected value £ of an(Y - y) in Eq. 138 can be written as

.
=g (ty_ o q)s/m (144)
5L
where £ = ﬂ + #n(cQ), tl-a Nl = two-sided 100(1-a) percentileof the Student's

t distribution of (n-1)degrees-of-freedanand s = unbiased standard devia-
tion. The lower bound YL and upper bound YU of the corresponding interval
for Y are then obtained from

EL = ,Q,H(YL = Y)’ EU = Q'n(YU - Y) (145)
as
Yo =¥+ explE - (ty o 4)s/v) (146)
Yy =y + explE + (t;_ \ 1)s/vi) (147)
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Table 22
Data XQPF:
J Yj
1 2.49
2 2.70
3 2.91
4 3.12
5 3.33
Data XWPF
J Y5
1 2.49
2 3.12
3 3.75
4 4.39
5 5.02
Data WPF
J Y;
1 2.14
2 2.38
3 2.62
4 2.86
5 3.10

nw
0.184
0.191
0.201
0.218
0.256

nw
0.109
0.121
0.139
0.168
0.224

nw
0.181
0.200
0.229
0.275
0.369

88

Values of nw? as a Function of Y
(Log-Normal Compatible Distribution)

9.12

9.52

0.23

0.26



Table 23

Data
XQPF
XWPF
WPF

Best Estimates (Log-Normal Compatible Distribution)

€ H

0 9.23
0 9.12
0 9.52

>

0.55
0.23
0.26

nw

0.184
0.109
0.181

Table 24 The Lower and Upper Bounds XL and XU (in mils)

Corresponding to Those HL and Hy for Several Confi-

dence Levels 1-o (Log-Normal Compatible Distribution)

Fer Data XQPF (N
1-ALPHA

0.90
0.95
0.99

For Data XWPF (N
1-ALPHA

0.90
0.95
0.99

For Data WPF (N
1-ALPHA

0.90
0.95
0.99

37)

177
161
132

37)

.286
.275
.254

38)

573
.549
.504

89

.340
373
.444

373
.388
417

762
794
.858




Fyly) = ollan(y - v) - g}/0]

Cumulative Probability;

99.9 / /

99.8 |- DATA / ,l
XQPF ——O— ; /
XWPF — = —- / Il

-C

winly - v) y and y in (inch)

Log-Normal Compatible Distribution

Fig. 34 Fitting the Data to Log-Normal Compatible
Distribution
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Then, finally, the upper and lower bounds XU and XL of the corresponding
interval for X = a(0) are evaluated as

X = Y-l/c

-1/c
U" Y

L s XL =Yy (148)

Table 24 1ists these upper and lower bounds for all the data sets at the
90, 95 and 99% confidence levels.

91




SECTION VITITI
CONCLUSIONS

Distribution functions of the Johnson family, (including log-normal
distribution functions) Pearson family, Weibull, Asymptotic (the First,
Second and Third), and TICI compatible EIFS (Weibull and log-normal
compatible EIFS) have been examined by means of the- w method for their
acceptability in descrihing the statistical characterlstlcs of EIFS.
The results are sunnarlzed in Table 25 belew where ' unacceptable‘
'harglnal" acceptable" and ""highly acceptable" 31gn1fy the follow-

ing unless other significances are indicated in the notes.

Unacceptable: nw; > 0.461; unacceptable even at the 5% signifi-
cance level

Marginal: 0.461 i="w; > 0.347; acceptable at the 5% significance
level but unacceptable at the 10% significance level

Acceptable: nw; < 0.347; acceptable at the 10% significance le-
vel.

Highly acceptable: acceptable at the significance level higher
than 20%.

Notes (see Table 25):

1. This is the result when a number of values are assumed for the
location parameter ¢ and corresponding values of two other par-
ameters are estimated. When we treat all three parameters as
unknown and perform parameter estimations, resulting nw: val-
ues indicate that the Johnson SL distribution is "unacceptable"

for XQPF and XWPF. The distribution is "unacceptable" for WPF,

however, in the sense that the estimated location parameter ¢
is negative (thus physically unacceptable), although the cor-

responding nw; value is in the statistically "acceptable" range.
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This 1s the result when a number of values are assumed for the
Tower bound € of the distribution and corresponding values of
the three other parameters are estimated. This distribution

is "unacceptable" for XQPF in the sense that the estimated val-
ues of the upper bound XA are negative for all assumed values of

€.

This is the result when the location parameter € is assumed to

be zero. When we assume that ¢ = 0.8x(1), this distribution is

"highly acceptable" for all the data sets.

Only Type I has been tested. Other types are eliminated on the

basis of poor comparison between (bl’bz) and (81,82)

Use of these distributionsrequires the knowledge of parameters
b and Q in the crack growth model da/dt = Qab.

Table 25 Summary of Goodness-of-Fit Tests

Data XQPF XWPF WPF Notes
Johnson SL unacceptable marginal acceptable 1
Johnson SB unacceptable unacceptable acceptable 2
Weibull acceptable acceptable acceptable 3
Pearson unacceptable unacceptable unacceptable 4
Asymptote I , unacceptable unacceptable unacceptable
Asymptote II{ highly ac- highly ac- highly ac-

ceptable ceptable ceptable
Asymptote III | unacceptable acceptable unacceptable
Weibull highly ac- highly ac- highly ac-
Compatible ceptable ceptable ceptable 5
Log-Normal highly ac- highly ac- highly ac-
Compatible ceptable ceptable ceptable 5
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