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Abstract

Forced motions of laminated composite plates are investigated using

a finite element that accounts for the transverse shear strains, rotary

inertia, and large rotations (in the von Karman sense). The present

results when specialized for isotropic plates are found to be in good

agreement with those available in the literature. Numerical results of

the nonlinear analysis of composite plates are presented showing the

effects of plate thickness, lamination scheme, boundary conditions, and

loading on the deflections and stresses. The new results for composite

plates should serve as bench marks for future investigations.

Nomencl ature

Aij, Bij, Dij extensional, flexural-extensional and flexural

stiffnesses (ij = 1,2,6).

a,b plate planform dimensions of x,y directions, n For

aoa l, etc. parameters in the time approximation (see eqn.(15))

E1,E layer elastic moduli in directions along fibers and tic'.

normal to them, respectively By-

G 2, G13, G23  layer inplane and thickness shear moduli - -iall o d s

G12 G3, 23Availabilit, oe
h total thickness of the plate Avail and/or

Dist Special

tProfessor, Department of Engineering Science and Mechanics.
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rotatory inertia coefficient per unit midplane area of

layer

ki  shear correction coefficients associated with the yz

and xz planes, respectively (i = 4,5)

Mi,Ni stress couple and stress resultant, respectively

(i=1,2,6)

P laminate normal inertia coefficient per unit midplane

area

01 shear stress resultant (i = 1,2)

Qij plane-stress reduced stiffness coefficients (i,j =

1,2,6)

R laminate rotatory-normal coupling inertia coefficient

per unit midplane area

u,v,w displacement components in x,y,z directions,

respecti vely

UI,Vi,W i  nodal values of displacements u,v,w (i = 1,2,...,n)

x,y,z position coordinates in cartesian system

(4} column vector of generalized nodal displacements

0190 parameters in the Newmark integration scheme

strain components (i = 1,2,...,6)

a orientation of m-th layer (m = 1,2,...,L)m
p(m) density of m-th layer (m - 1,2,...,L)

0i  stress components (I - 1,2,...,6)

0i finite-element interpolation functions (I = 1,2,...,n)

4,x, *y bending slope (rotation) functions
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Introduction

The transient behavior of isotropic and homogeneous plates has long

been a subject of interest (see Lamb1 for thin plates and David and

Lawhead 2 for thick plates). For many years, the classical (Poisson-

Kirchoff) plate theory (CPT), in which normals to the midsurface before

deformation are assumed to remain straight and normal to the midsurface

after deformation (i.e., transverse shear strains are zero), has been

used to calculate frequencies, static response, and dynamic response

under applied loads. Recent studies in the analysis of plates have

shown that the effect of the transverse shear strains on the static and

dynamic response of plates is significant. For example, the natural

frequencies of vibration predicted by the classical plate theory are 25%

higher, for plate side-to-thickness ratio of 10, than those predicted by

a shear deformation theory (SDT). In transient analysis of plates the

classical plate theory predicts unrealistically large phase velocities

in the plate for shorter wave lengths. The Timoshenko beam theory3 ,

which includes transverse shear and rotary inertia effects, has been

extended to isotropic plates by Reissner 4,5 and Mindlin 6 , and to

laminated anisotropic plates by Yang, Norris, and Stavsky 7. A

generalization of the von Karman nonlinear plate theory for isotropic

plates to include the effects of transverse shear and rotary inertia in

the theory of orthotropic plates is due to Medwadawski8 , and that for

anisotropic plates is due to Ebcioglu 9 .

With the increased application of advanced fiber composite

materials to jet engine fan or compressor blades, and in high

performance aircraft, studies involving transient response of plates

made of such materials are needed to assess the ability of these
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materials to withstand the forces of impact due to foreign objects

(e.g., the ingestion of stones, nuts, and bolts, hailstones, or birds in

jet engines). Previous investigations into the linear transient

analysis of composite plates include Mkon's lO'll investigation of the

response of infinite laminated plates subjected to transverse impact

loads at the center of the plate; Cow's 1 2 study of laminated plates

(with transverse shear and rotary inertia) using the Laplace transform

technique: Wang, Chou, and Rose's 13 investigation, by the method of

characteristics, of unsymmetrical orthotropic laminated plates; and Sun

and Whitney's1 4 ,1 5 study of plates under cylindrical bending. More

recently, the present author16 ,17 investigated the linear transient

response of layered anisotropic composite rectangular plates and

presented extensive numerical results for center deflection and

stresses.

Geometrically nonlinear transient analysis of isotropic plates was

considered by Hinton, et al.1 8-20 and Akay 21 . Hinton, et al. used the

Mindlin element while May used a mixed finite element in their works.

As far as the nonlinear (geometric) analysis of layered anisotropic

composite plates is concerned, there exist no previously reported

results in the open literature. The present investigation is concerned

with the geometrically nonlinear transient analysis of layered composite

plates under applied transverse loads. The shear deformable element

developed by the author17 for the transient analysis of layered

composite plates is modified to include the nonlinear strain-

displacement relations of the von Karman plate theory. Numerical

results are presented to show the effect of lamination scheme, plate

thickness, nonlinearity, boundary conditions, and loading on the



transient response of plates. The numerical results included here for

layered composite plates are not available in the literature, and

therefore should be of interest to designers of composite-plate

structures and numerical analysts and experimentalists in evaluating

their techniques.

Review of the Equations of Motion of Anisotropic Plates

The nonlinear theory of laminated anisotropic plates to be reviewed

is based on the combination of the Timoshenko-type theory and the von

Karman plate theory. The theory is known to be able to predict

accurately the global behavior. However, it is not accurate enough to

predict edge stresses and hence delamination. The theory assumes that

the stresses normal to the midplane of the plate are negligible when

compared to the inplane stresses, and normals to the plate midsurface

before deformation remain straight but not necessarily normal to the

midsurface after deformation.

$ Equations of motion

The plate under consideration is composed of a finite number of

orthotropic layers of uniform thickness, with principal axes of

elasticity oriented arbitrarily with respect to the plate axes. The x

and y-coordinates of the plate are taken in the midplane (o) of the

plate. As in all Timoshenko-type theories, the displacement field is

assumed to be of the form

Iu 1 (x,y,z,t) = u(x,y,t) + Zc x(X,yt),

u2(x,y,z,t) - v(x,y,t) + z ,y(x,y,t), (1)

u 3(x,y,z,t) - w(xyt).
,AL
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Here t is the time: Ul, u2 , u3 are the displacements in the x, y, z

directions, respectively; u, v, w are the associated midplane

displacements; and 4x and ,y are the slopes In the xz and yz planes due

to bending only. The strains in the von Karman plate theory (which

accounts for moderately large deflections and small strains) can be

expressed in the form

au 1 1w 2 'x 01= + ( 'w) + z e-- l € + zK1

+ 2 + 0

e u + v + + 'x y-o (2)
6- y + x 8 + by +Z z 6 x) +zc 6

E5 CIx + -  £4 = y + byW

wherein the squares of the first spatial derivatives of u, v,

1x and 4,y are neglected. The strain e3 does not enter the equations

because the constitutive relations, to be given shortly, are based on

the plane-stress assumption. Note that the transverse shear

strains, c4 and E5, are constant through the thickness. If a linear

distribution of the transverse shear strains through the thickness is

desired, one must add higher order terms in z to the displacements u1

and u2 , and/or u3: with each additional term, an additional dependent

variable is introduced into the problem.

Neglecting the body moments and surface shearing forces, we write

the equations of motion in the presence of applied transverse forces, q,

as
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N1, x + N6,y = Pu,t t + ROx,tt

N N Pv + R4,t
N6 ,x +N 2 y ,tt + R tt

01,x + Q2,y = Pwtt + q(x,y,t) + N(w,Ni) (3)

M1,x + M6,y -1 = Idx,tt + Ru,tt

M6,x + M2,y - 02 = 4,y,tt + Rv,t t

where P, R and I are the normal, coupled normal-rotary, and rotary

inertia coefficients,

(P,R,I) f (,z,z 2)pdz = z f (1,z,z2)P(m)dz (4)
-h/2 m zm

(mm

p(M) being the material density of the m-th layer, Ni, Oi, and Mi are

the stress and moment resultants defined by

h/2 h/2
(Ni'Mi) h/2 (1',z)idz . (QI'Q 2 ) h/2 (o5,a4)dz, (5)

and A(w,Ni) is the contribution due to the nonlinear terms,

bN1 + N6 + w bN6  + N2S(w'i , +N+ (6)
(6)

Here o, (i = 1,2,...,6) denote the in-plane stress components
(a 0  = ,0 = and =0 a

y = 2  y 4 zy L5 xz 6 xy

tIf one plane of elastic symmetry parallel to the plane of each

layer exists, the constitutive equations for the plate can be written in

the form (see Jones22),

,N) I il A ij PRiJ E 1 ; , '2t '144 '41I  4l ( 7)

F.M i LBji Oij 1Kj Q1 LA45 As 55 E
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The Atj , Bij , Dij (ij = 1,2,6), and -Aij (ij = 4,5) are the inplane,

bending-inplane coupling, bending or twisting, and thickness-shear

stiffnesses, respectively:

Z m+l Z m+l

(AIj'BIj'Dij) = E f j(m) (lzzl)dz - n f  kik (m)dz
m zm  j m zm  i i i 8(8)

Here zm denotes the distance from the mid-plane to the lower surface of

the m-th layer, and kt are the shear correction coefficients.

Variational Formulation

The variational form of Eqs. (3) and (7) is given by

0= f" {6u(Pu tt + R4x,tt) + 6u xNI + 6u yN6 + 6v(Pv, tt + R4ytt)
Q

+ 6v xN6 + 6vyN2 + 6w(Pw,tt) + 6WxQ, + 6WyQ2
y6w N +w 8Ww N+W W N)

- ( N1 + -y N6) + y- (-) N6

+ 6¢x(Ix,tt + Rut + 6¢x xM1 + 64x,yM6 + xQ1

+ 6¢y(lytt + Rvtt) + Iy,xM6 + 8 y,yM2 + 6yQ2 + 8wq}dxdy

+ f (6u nNn + 6usNns )ds + f 6wVds + f (4 nMn + 64sMns )ds,

(9)

wherein Ni, Mi and Qi are given in terms of the generalized

displacements by Eq. (7), and V, Nn and Nns, and Mn and Mns are the

shear force, normal and tangential in-plane forces, and normal and

twisting bending moments defined on the boundary r, respectively:

Qn+w n)w 8wV Qjnx + 02n y + (yx N I + .6- N6)n x + (- - N6 + -6y N 2)ny
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Nn nnN + 2nxnyN6 + nynyN2

N =n n -y(N2 N1+(n - nyny)N6

M nnM1 + 2nnyM6 + nn n 2n xi y6 yy2

Mns x nny (M2 - 1) + (nxnx - yny)M6P
A

where n = (nxny) is the unit vector normal to the boundary r. The

variational formulation indicates that the essential (i.e., geometric)

and natural boundary conditions of the problem are given by:

essential specify: Un, Us, w, 4n, ('s

natural specify: Nn, Nns, V. Mn , Mns. (11)

wherein un and us, for example, denote the normal and tangential

components of the inplane displacement vector, u = (u,v).

A Shear-Deformable Finite-Element for Laminated Plates

Here we present a finite-element model ,ssociated with the

nonlinear equations governing the motion of layered composite plates.

The element is an extension of the penalty plate-bending element

developed for the linear static and dynamic analysis of layered

composite plates by the present authorl7,23.

Consider a finite-element analog, ah' of the midplane of the plate,

Q. Over a typical element, 9e of the mesh oh' each generalized

displacement U is interpolated spatially by an expression of the form,

r
U = , U(t) i (x,y) (12)

i
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where Ui is the value of U at node i at time t, 0i is the finite-element

interpolation function at node i and r is the number of nodes in the

element. For the sake of simplicity, we use the same interpolation

function for each of the generalized displacements, (u,v,w,x, dy).x y
Specifically, the nine-node isoparametric rectangular element with five

degrees of freedom is used in the present study.

Substituting Eqs. (7) and (12) into Eq. (9), we obtain the

following equation:

[K]JA} + [M]{A} = {F} (13)

Here {A} is the column vector of the nodal values of the generalized

displacements, [K] is the matrix of stiffness coefficients, [M] is the

matrix of mass coefficients, and {F} is the column vector containing the

boundary and transverse force contributions. The elements of [K] and

[M] are given in Appendix A.

It should be pointed out that the element stiffness matrix [K] is

nonlinear and unsymmetric in the present formulation (see Appendix A),

the nonlinearity being due to the nonlinear terms appearing in the

variational formulation. The nonsymmetric nature of the stiffness

matrix needs some explanation. To this end consider the following terms

from the variational formulation,

+ A 86u au I 1 w 2 + w w au 1 w 2•"+A11 [F + -7 (TO + 11 a x ax [ -x + -1 (- ) + "

11 13

The first term contributes to the stiffness coefficients K1 1 and Ki

(see Appendix A), whereas the second term contributes to the stiffness

coefficients K3 and Ki3 . Note that

K 13 A1  1 w 1)  -dxdy +
e eiI
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01 f A1 () ---- dxdy +..

are not the same.

To complete the discretizatlon, we must now approximate the time

4 derivatives appearing in Eq. (13) Here we use the Newmlark direct

integration method24, with a = 0.5 and 0.25 (corresponding to the

constant-average-acceleration mehd) h scheme, although

unconditionally stable for linear problems, is not proved to be stable

* for nonlinear problems.

* Equation (13) can be expressed, after the application of Newmtark's

*integration scheme, in the form

[K]IAn+l = Fln,n+l (14)

where

[K] [ K] + ao[M], {F} = F~n+l + [M](ao{ }n + aj{Aln + a2Ad

a* = o~ l/p 2) ,a 1 = a At , a2  1 1. (15)

*Once the solution JAI is known at tn+l = (n+l)At, the first and second

derivatives (velocity and accelerations) of JAI at tn+l can be computed

from

JIn+l aofn+l nA 1 ajln a21 An

{1 1  = {Aln + a 3(')n + a 4{Aln+l (16)

where a3 ( a)At, and a4 =aAt.
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All of the operations indicated above (except for eqn. (16)) can be

performed at the element level, and the assembled form of eqn. (14) can

* be obtained for the whole problem:

[K] = [KL + KN (16n+0) (17)

where [KLI denotes the linear stiffness matrix and [KNi denotes the

nonlinear (geometric) stiffness matrix. Because [KN ] depends on the

unknown solution {Aln+l, the assembled equation must be solved

iteratively until a convergence criterion is satisfied at time, t =

tn+l. In the present study the Picard type successive iteration scheme

is employed. In this scheme, the nonlinear equations (14) are

approximated by the following equation

[K({A}n+l 1n+l = 1F1n,n+l (18)

where r is the iteration number. In other words, the nonlinear

stiffness matrix for the (r + l)-th iteration is computed using the

solution vector from the r-th iteration. Such successive iterations are

continued until the error

N r r+l 2 Nr 2E E[ r I 1 - I Z & 2] (19)
i =l i

for any fixed time t = tn+l, is less than or equal to some preassigned

value (say, one percent or less). The iteration at time t = tn+l is

started by using the converged solution at t - tn (at t = to 0 0, the

initial conditions are assumed to be known).
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Numerical Results and Discussion

In the present study the nine-node rectangular isoparametric

element was employed. The element has either three (W, x, y) or

five (u,v,W,P ,4y ) degrees of freedom (DOF) per node. Because the

element accounts for the transverse shear strains, reduced integration

was employed to evaluate the shear terms numerically. In other words,

the 2x2 Gauss rule was used to integrate the shear energy terms and the

3x3 Gauss rule was used to integrate the bending and inertia terms. All

computations were done in double precision on an IBM 3032. Due to the

biaxial symmetry of the problems discussed, only one quadrant of the

plate was analyzed. In all of the numerical examples considered here,

zero initial conditions are assumed and damping is neglected.

Because no estimate on the time step for the nonlinear analysis is

available in the literature, the critical time step of a conditionally

stable finite difference scheme was used as a starting time step, and a

convergence study was conducted to select a time step that yielded a

stable and accurate solution while keeping the computational time to a

minimum. The following two estimates were used in the present study:

At, < 0.25 (phD)1 2 (Ax)2 (20)

At2 ' [p(l - v2)E/{2 + 11 2 [1 + 1.5 ( )2}] 2AX (21)

2 IP 2

Here D = Eh3/[12(l - v 2)], and Ax is the minimum distance between the

element node points. Estimate (20), due to Leech 25, was derived for

thin plates, and estimate (21), due to Tsui and Pin Tong 26 , was derived

for thick plates.

First, in order to prove the validity of the present formulation,

.1 the results obtained in the present study for isotropic plates are
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compared with those available in the literature:

1. Simply supported rectangular plate under suddenly applied patch

loading (see Fig. 1 and Ref. [27])

a / , b = 1, h = 0.1 and 0.2, At = 0.1, q = qoH(t)

10- 2, 0 < x,y C 0.2
qo ={0  (22)

0 ,x,y > 0.2

E1 = E2 = 1.0, V12 = 0.3, p = 1.0.

2. Simply supported square plates under suddenly applied uniformly

distributed loading (see Fig. 2 and Ref. [21])

a=b = 243.8 cm, h = 0.635 cm, At = 0.005 sec., qo = 4.882 x 10 4 N/cm 2,

5 2 -6 2 4
E1=E2 = 7.031xlO N/cm , V12 = 0.25, p = 2.547 x 106 N sec /cm

(23)

3. Clamped circular plate under suddenly applied uniformly

distributed loading (see Fig. 3 and Ref. [19])

R(radius) = 100 in., h = 10 and 20 In., At = 2.5 sec., qo = 1.0 psi,

= E = 100 psi, V12 = 0.3, p = 10 lb sec. 2/inch 4 . (24)

1. Simply supported, rectangular, isotropic and orthotropic

plates. A 4x4 (nonuniform) mesh is used in the quarter plate with 3 DOF

per node. The center deflection and bending moments of the present

linear analysis are compared with the analytical thick-plate and thin-

plate solutions of Reismann and Lee 27 in Fig. 4. We note pronounced

difference between the solutions of the two theories. The deviation

between the solutions of the shear deformation theory and the classical

theory increases with plate thickness. The present finite element

solutions for the center deflection and bending moment are in excellent

agreement with those of Reismann and Lee 27.
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Figure 1. Finite-element mesh and boundary conditions
for isotropic rectangular plates under suddenly
applied pressure loading at the center.

'I

I-- x 8011~~

I. w-I

* ~243.8.... - -x

BCl: u(O,y)nv(xO)aO
BC2: u(y,O)amv(O,y)*O

Figure 2. Finite-element mesh and boundary conditions
for isotropic square plates under suddenly
applied pressure loading.
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Figure 3. Finite-element mesh and boundary conditions
for an isotropic clamped square plate under
suddenly applied pressure loading.
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0ond5menslotalzed time,II

o 0.
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N I

V . FEM (thick) , \
Analytical 1

(thick) ,
Analytical (thin)

- ' i i I l I L - -A i I i l , I I , , , t

1 1 2 3 4 5 6 7 8
: Nondimensionalized time, t

Figure 4. Nondimensionalized center deflection and bending moment d

versus nondimensionalized time for simply supported
rectangular plates (v = 0.3 ) under suddenly applied
pressure loading at the center square area (4x4 mesh).
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The center deflections obtained in the present linear and nonlinear

analysis are presented in Fig. 5. To show the effect of material

orthotropy on the center deflection, results of the linear analysis of

an orthotropic plate (EI/E 2 = 25, v12 = 0.25) are also included in Fig.

5. The effect of orthotropy and geometric nonlinearity on the amplitude

and period of nondimensionalized center deflection of orthotropic plates

(El/E 2 = 25, v12 = 0.25) is apparent from the plots presented in Fig. 5;

the effect of orthotropy is to decrease both amplitude and period of the

center deflection, and effect of the nonlinearity is to decrease the

amplitude, and smoothen the solution somewhat. The effect of the plate

thickness on the amplitude and period of the nondimensionalized center

deflection (linear) w = lOwE2h3/q0h4, can be seen from the plots in Fig.

6. The amplitude decreased about 30% for a decrease in thickness

from b 0.2 to b = 0.1.

2. Simply-supported square plates (BC1). A 2x2 (uniform) mesh is

used in the quarter plate with 5 DOF per node. Results of the present

nonlinear analysis (see Fig. 7) agree closely with the mixed finite

element results of Akay 21 . The plots of center deflection versus time

for various loads are shown in Fig. 7 along with the load-deflection

curve. Note that amplitude and period of the center deflection decrase

with increasing values of the load. Further note that the negative peak

also increases with decreasing load.

3. Clamped circular plates. Results of the linear transient

anlysis of the clamped square plate, for two different thicknesses, are

presented in Figs. 8a and b. The present results agree with those

reported by Hintonl9 . The effect of the decrease in thickness is to

increase the amplitude and period of the center deflection and stress.
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it Figure 5. Center deflection versus time for isotropic (see eqn. (22))
and orthotropic (E =25, E =1 V, 0.25, G G =0.5E
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f center square area(see Figure 1).
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Figure 6. Effect of plate thickness on the transient response of
orthotropic plates (see Figure 5 for material properties)
under suddenly applied patch loading (i.e., load on the
square area at the center of the rectangular plate).
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Figure 7. Nonlinear transient response of isotropic plates
(see eqn. (23) and Figure 2 for the data and finite
element mesh and boundary conditions)under suddenly

*ji. applied uniformly distributed loads.
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(a) Clamped circular pl ate, h *20".

K 400

300
%A

200 --- axe nonlinear
Uq 0 =1.0, h =10
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'4-

-5

50 100 150 200 250 300 350 400 450 500

Time, t

(b) Clamped circular plate, h *10".

Figure 8. Transient response of a clamped, isotropic, circular
plate under suddenly applied transverse load(see
Figure 3 for the finite-element mesh and boundary
cond iti ons).
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Figure 8a also contains plots of center deflection of the linear and

nonlinear analysis. The effect of the (von Karman type) nonlinearity is

to decrease the amplitude and period of the center deflection and

stress.

The results of the nonlinear analysis of layered composite plates

are presented next. Figures 9 and 10 contain plots of the center

deflection versus time for simply supported (BCl) two-layer cross-ply

[00/900] and angle-ply [4511/4501 plates, respectively. The same data

(except for the material properties) as in Eq. (22) is employed. The

effect of coupling between the inplane displacements and bending

deflections is to increase the amplitude of the center deflection in the

linear analysis. Figure 10 also contains the results of uniformly

loaded angle-ply plates. It Is apparent from this figure that as the

load is changed from uniformly distributed to patch loading, the

response curves change from a regular to irregular curve (and for point

loading the response becomes spiky).

The plots of the center deflection versus time for single-layer

(00), cross-ply [00/900], and angle-ply [450/-450] square plates under

suddenly applied uniform loading are presented in Figs. 11 and 12,

respectively; Wx (uniform) mesh with 5 DOF is used. The boundary

conditions used In this set of problems (MC) are different from the

simply supported boundary conditions (BCl) used earlier: the two types

of boundary conditions are shown in Fig. 2. The data used is the same

as that in Eq. (23) (except for the material properties). The effect of

the nonlinearity and the lamination scheme on the amplitude and periodI

of the center deflection is apparent from the results. Note that the

rate of increase in the amplitude of the center deflection decreases
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Figure 9. Transient response of two-layer cross-ply (00/900)
rectangular plates under suddenly applied patch
loading (see eqn.(22) and Figure I for the data and
mesh information; see Figure 5 for the material
properties).
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Figure 2 for the data and mesh); BC2 boundary
conditions were used.
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with increasing load. Further note that the maximum center deflection

for the cross-ply plates is about 10% larger than that of the angle-ply

[450/..4501 plates.

Lastly, the effect of boundary conditions (BCl and BC2) on the

center deflection of two-layer square plates under uniformly distributed

load was investigated; Figure 13 contains results of the

investigation. It is clear that the response of cross-ply as well as

angle-ply plates under BCl differ significantly from the results of

plates under BC2. Note also that suppression of the inplane degrees

freedom results in about 50% decrease in the center deflection of angle-

ply [450/-4501 plates.

* Summary and Conclusions

A shear flexible finite element that accounts for the von Karman

strains is employed in the transient analysis of layered composite

plates. The present results for isotropic plates are very close to the

analytical and other finite element solutions available in the

literature. The present results of layered composite plates should

serve as reference solutions for future investigations. Although the

paper contains results for certain geometries, loadings, lamination

scheme, and material properties, it should be pointed out that the

element developed herein can be employed to laminated plates of

arbitrary geometry, lamination scheme, material properties, boundary

conditions, and loading (only limitations are those implied in the

laminated plate theory used). The present analysis does not account for

material dampingq effects; studies of composite plates accounting for

material damping and material nonlinearities are awaiting attention.
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APPENDIX A: ELEMENTS OF STIFFNESS AND MASS MATRICES

stiffness matrix:

[K11 [K12 [K13 [K14 FK15 1
[K21] [K22]  [K23] [K24] [K25J

21 2? 23 24 25
[K4 1  [K] [K] [K 4] [K45

31 32 333 343 353
IQ rK 5 1 [K I [K ] [K5 1  [K55]

+ [K1 [1

P[] 02 [ 2 R2S 2O

r1 41 [K42 1 K43 1K44 1 K45

[ [I [K] [ ] R[K][

43
+ [K2  ]

[51 CK 2? [ 53 [K54 CK55

+ K53
+ K2 ]

mass matrix

P[S] [0] [0] R[S] [0]

[fn] P[s1 [0] [0] R[S]

[M] [0] [0] P[S] [0] [0]

R[S] [0] [0] I[S] [0]

f)] R[S] [0] [01 1[S]

The matrix coefficients K" are given by
13

[Ki1 1 1C xxI + A16([S XYI + [S5xy jT + 61yy[K 1] = A X [S + ) + A66[sY],

[K12 ] = A2[Sxy] + A1 6 [Sxx ] + A2 6 [SYY] + A6 6 [SXY]T

21 T
= [K- I

1K ]= xxy xy xv T
13 AI[Rxxi + AI2[Rx] + 6([Rx I + [Rx(

+ [RXX + A[R + A ([RYI + CR [K
26y 66 y X 2



[ 33

*[K 14] = B 1 [1 B 5 16(sy + [XY] T) + B6[Syy] [K 411T,

[K 15] =B 12[S'XY] + B161SXX] + B26[' 
31] + B 6 1SXY] T

[22 1 A21YY A,([S]Y T + IS ]y ) + A66[S ], 1

[K 23 ] = A [RXY IT + A [R')' + A26 X T + [RXY]
12 x 22?y 26(Ry-

+tRy)+A xx +A xy T + xx
+ Ai6[r' ] 66([R x I +R [R3 1)

1 CK 321T,

CK 24] B 812rsxYl T + R 26[SYYl + B16 [SxXl + 866jSxyi

= 42T

[K 25 1 B221S]y + B26([S y] +. [Sy T ) + B 66[S ]x

K5? T

[Kl3 I A551SXXI + A45([SXYI + ISXY T) + A4S1

33 1 -

2Re _6 ~~'a

+ -R 8 y 6

34 xoyo - 43 T[K1 ]A 55[So ]+ A4 5[S I [K1 I1

34 xx xy x
[K]+ B12[RxI] + B6([R l + BRr

+ B2[R]T 26[R)' + B 6(rRy)'1 + [R3' ])

43 T
=2[K2 I



[ 34

35 xoyo 53 TII[K 1 ]A 45[So 1+ A44[S I = K1 I]

[R- ~x 16 tR] x 22[Ryyy] + B26([R(3]T +

[Ryy] + [R'Y]) + B66 [RYT + [R~x] 2[K53]T,

[K5 44 D il[s 'x I + [ISx~Y] + D6[SxX]T + D 66[SY'] +

+ A 55S].

44

and

R F T) f 6 I 6 dxdyy ,z ,:O,x,y, S.

Re

11 ~ (7r-) + 12 (.) A16 R...,

1IA~ 2 ~ 2 2A aN2 12 ax~- + A 2  +-j 26 x~

N6 = A1  + A26 2 + 2A6 xy(-I-)' A w )

16 Fx 2 y6 xb
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