ON THE NONLINEAR CONDUCTIVITY TENSOR FOR AN UNMAGNETIZED RELATI--ETC(U)

FEB 82 H E BRANDT

END
On the Nonlinear Conductivity Tensor for an Unmagnetized Relativistic Turbulent Plasma

Howard E. Brandt

Harry Diamond Laboratories
2800 Powder Mill Road
Adelphi, MD 20783

U.S. Army Materiel Development and Readiness Command
Alexandria, VA 22333

Approved for public release; distribution unlimited.

The symmetry properties of the second-order nonlinear conductivity tensor for an unmagnetized, relativistic, and weakly turbulent plasma are important in the analysis of the collective bremsstrahlung instability. This tensor has some exact symmetries that, if resonant wave-particle interactions are neglected, become the widely known symmetry related to the Manley-Rowe relations, crossing symmetry, and the nondissipative nature of the
20. ABSTRACT (Cont'd)

Nonlinear current. Using the well-known expression for the conductivity from plasma turbulence theory, a polynomial representation for the tensor is obtained in which all derivatives are removed and the pole structure is clearly exhibited. The exact symmetries are obtained by a lengthy algebraic reduction using this representation.
CONTENTS

1. INTRODUCTION ... 5

2. POLYNOMIAL REPRESENTATION OF SECOND-ORDER NONLINEAR CONDUCTIVITY TENSOR ... 6

3. THE EXACT SYMMETRIES .. 10

4. CONCLUSION .. 19

LITERATURE CITED .. 20

DISTRIBUTION ... 23
1. INTRODUCTION

The nature of the collective bremsstrahlung instability and its possible importance to plasma astrophysics and relativistic beam-plasma systems has been explored in considerable detail by Tsytovich and Akopyan.1-5 For an unmagnetized plasma, the photonic growth rate depends on the collective bremsstrahlung probability. Nonlinear bremsstrahlung associated with the three-plasmon dynamic polarization vertex has been shown to make an important contribution to the bremsstrahlung probability.1,2 In vacuum quantum electrodynamics, because of Furry's theorem,6 the analogous diagram is vanishing and is therefore absent in the standard Bethe-Heitler bremsstrahlung cross section.7 In plasma turbulence theory, the collective bremsstrahlung probability depends on the nonlinear bremsstrahlung amplitude through the second-order nonlinear conductivity tensor. The symmetry properties of this tensor are especially important in reducing the complex expression for the collective bremsstrahlung recoil force in a relativistic, weakly turbulent nonequilibrium plasma. The latter is needed to determine the collective bremsstrahlung probability.1,2 The symmetry properties were documented to some extent by Tsytovich and were shown to be related to the approximate nondissipative nature of the nonlinear current and also to crossing symmetry in three-plasmon interactions.1,8,9

The symmetry properties of the nonlinear conductivity tensor have been investigated also in other work. For nonrelativistic, weakly turbulent plasmas, they were established long ago.10 For relativistic plasmas in which the fields and the particle distributions are such that resonant wave-particle interactions can be ignored, the symmetry relating principal parts only has been demonstrated to all orders.11-13 Others have investigated also the relationship between the approximate symmetry and the fact that the total energy dissipated by the nonlinear current is vanishing.6,13,14 The relationship to crossing symmetry was also investigated in analyses of three-wave coupling between Langmuir, sound, and transverse waves.11,15 The relationship to generalized Onsager relations also has been addressed.11 The symmetry properties have been related to those of the Poisson brackets in a perturbation-theoretic Hamiltonian formulation.10,11 Moreover, in coherent three-wave interactions and the weak turbulence equations, it follows from the symmetry properties that wave energy and momentum are approximately conserved, and the Manley-Rowe relations obtain.10,16-21 To a limited extent, symmetry-breaking effects associated with violation of the Manley-Rowe relations have been addressed.16,21,22

*See references in Literature Cited section.
This paper reports two exact symmetry properties of the nonlinear conductivity tensor for an unmagnetized, relativistic, weakly turbulent plasma. The symmetries are not limited to the principal part. Their principal parts reduce to the well-known approximate symmetry. One of the exact symmetries was obtained previously by using the standard expression for the second-order conductivity tensor in plasma turbulence theory, resulting from straightforward iteration of the Vlasov equation. However, this symmetry was defined in an unphysical region of wave vector space, at least in its relationship to the second-order nonlinear current density. Another exact symmetry defined in the physical region is developed here. The iterative approach furnishes a new polynomial representation of the second-order conductivity tensor in which all derivatives are removed and the pole structure is clearly exhibited. It is hoped that the present elaboration of these symmetries will facilitate deeper understanding of the collective bremsstrahlung instability and the dissipative properties of the three-plasmon vertex.

In section 2, the polynomial representation of the second-order nonlinear conductivity tensor is presented. In section 3, the exact symmetries and their derivations by means of the polynomial representation are discussed. It is also shown that, ignoring resonant wave-particle interactions, the exact symmetries are reducible to the well-known symmetry relation for the nonrelativistic longitudinal case. In section 4, the results are briefly summarized.

2. POLYNOMIAL REPRESENTATION OF SECOND-ORDER NONLINEAR CONDUCTIVITY TENSOR

The second-order nonlinear conductivity tensor $S_{ijl}(k,k_1,k_2)$ in plasma turbulence theory is defined by

$$S_{ijl}(k,k_1,k_2) = e^2 \int \frac{d^3p}{(2\pi)^3} \frac{v_j}{\omega - \mathbf{k}_1 \cdot \mathbf{v} + i\delta} \left[\frac{3}{\partial p_j} \right]$$

and is related to the second-order nonlinear current $j^{(2)}_k$ by

$$j^{(2)}_k = -e \int \frac{dk_1 dk_2 \delta(k-k_1-k_2)}{(\omega_1 + i\delta)(\omega_2 + i\delta)} S_{ijl}(k,k_1,k_2) E_{k_1} E_{k_2 l}.$$
It should be mentioned here that the tensor defined by equations (18) and (20) of Akopyan and Tsytovich\(^2\) differs implicitly from equation (1) here in that, instead, the first complex denominator \(\omega - \mathbf{k} \cdot \mathbf{v} + i\delta\) in equation (1) is implicitly \(\omega - \mathbf{k} \cdot \mathbf{v} - i\delta\) there. The notation of equations (1) and (2) corresponds more directly to equations (10) and (12) of Tsytovich.\(^7\) The symmetries discussed here pertain to the two symmetrized forms

\[
\mathbf{s}_{ijl}^{\pm}(k,k_1,k_2) \equiv \mathbf{s}_{ijl}(k,k_1,k_2) \pm \mathbf{s}_{ijl}(k,k_2,k_1) .
\]

The tensor \(\mathbf{s}_{ijl}^{\pm}(k,k_1,k_2)\) is the same as \(\mathbf{s}_{ijl}(k,k_1,k_2)\) of earlier work.\(^{14,24,26}\) It is convenient also to define the antisymmetrized form \(\mathbf{s}_{ijl}(k,k_1,k_2)\) above.

First integrating equation (1) by parts, dropping surface terms, then using the relativistic kinetic relations, performing the differentiations, and combining terms, one obtains

\[
\mathbf{s}_{ijl}(k,k_1,k_2) = \epsilon^2 c^2 \int \frac{d^3p}{(2\pi)^3} \left\{ \mathbf{R}(0) \right\} \frac{1}{\epsilon^2} \left[\frac{\alpha_1 + \bar{\alpha}_1 \Omega_1}{\Omega + i\delta} + \frac{\alpha_2 + \bar{\alpha}_2 \Omega_1}{(\Omega + i\delta)(\Omega_2 + i\delta)} \right. \\
+ \left. \frac{\alpha_3 + \bar{\alpha}_3 \Omega_1}{(\Omega + i\delta)(\Omega_2 + i\delta)^2} + \frac{\alpha_4 + \bar{\alpha}_4 \Omega_1}{(\Omega + i\delta)^2} \right] \\
+ \frac{\alpha_5 + \bar{\alpha}_5 \Omega_1}{(\Omega + i\delta)^2(\Omega_2 + i\delta)} + \frac{\alpha_6 + \bar{\alpha}_6 \Omega_1}{(\Omega + i\delta)^2(\Omega_2 + i\delta)^2} \\
+ \frac{\alpha_7 + \bar{\alpha}_7 \Omega_1}{(\Omega + i\delta)^3} + \frac{\alpha_8 + \bar{\alpha}_8 \Omega_1}{(\Omega + i\delta)^3(\Omega_2 + i\delta)} \right] ,
\]

where

\[
\epsilon = \left(m^2 c^4 + p^2 c^2 \right)^{1/2} , (5)
\]

\[
\{ \Omega, \Omega_1, \Omega_2 \} = \{ \omega - \mu, \omega_1 - \mu_1, \omega_2 - \mu_2 \} , (6)
\]

\[
\{ \mu, \mu_1, \mu_2 \} = \{ \mathbf{k} \cdot \mathbf{\hat{v}}, \mathbf{k}_1 \cdot \mathbf{\hat{v}}, \mathbf{k}_2 \cdot \mathbf{\hat{v}} \} , (7)
\]
and where \(\{\alpha_n, n = 1, 8\} \) and \(\{\tilde{\alpha}_n, n = 1, 8\} \) are complicated tensor polynomials in the components of \(\vec{v}, \vec{k}, \vec{k}_1, \) and \(\vec{k}_2. \) They are simply a renaming of the coefficients \(C_{n1}^{x}. \) For notational convenience, the tensor indices of the \(\alpha_n \equiv \alpha_{nijkl}(k, k_1, k_2) \) and \(\tilde{\alpha}_n \equiv \tilde{\alpha}_{nijkl}(k, k_1, k_2) \) are suppressed. Explicitly, the \(\alpha_n \) are given by

\[
\alpha_1 = \left(c^2 k_{i1} - u_1 v_1 \right) \delta_{j1} - \left(c^2 k_{i2} - u_1 v_1 \right) \delta_{ij} - u_1 v_j \delta_{i1} \\
- 2k_{1i} v_j v_1 + 3c^{-2} u_1 v_1 v_j v_1 \\
(8)
\]

\[
\alpha_2 = \left(u_1 u_2 - c^2 k_1 \cdot k_2 \right) v_1 \delta_{ij} + 4c^{-2} u_1 u_2 v_1 v_j v_1 \\
+ c^2 k_{1i} v_j k_{21} + c^2 k_{1j} k_{21} v_1 - u_1 k_{21} v_j v_1 \\
(9)
\]

\[
\alpha_3 = \left(c^2 k_{2j} - u_2 \right) k_{i1} v_j v_1 + \left(c^2 u_1 v_2 - u_1 k_{2j} \right) v_j v_1 \\
(10)
\]

\[
\alpha_4 = \left(c^2 \cdot k_1 - u u_1 \right) \left(v_i \delta_{j1} + v_j \delta_{i1} \right) - c^2 v_i k_j k_{11} + u_1 v_i k_j v_1 \\
- 2u_1 v_i v_j k_1 - u k_{1i} v_j v_1 + c^2 k_{1i} v_j k_1 \\
+ \left(5c^{-2} u u_1 - 3k \cdot k_1 \right) v_j v_1 \\
(11)
\]

\[
\alpha_5 = \left(-c^2 k_1 \cdot k_2 + u_1 u_2 \right) v_i k_j v_1 + \left(c^2 k_1 \cdot k_1 - u u_1 \right) v_j k_{21} \\
+ \left(c^2 k_1 \cdot k_1 - u u_1 \right) v_i k_{2j} v_1 + \left(c^2 k_1 \cdot k_1 - u u_1 \right) k_{2j} v_j v_1 \\
+ \left(c^2 k_1 \cdot k_2 - u u_2 \right) k_{1i} v_j v_1 + 2 \left(3c^{-2} u u_1 u_2 - 2k \cdot k_1 u_2 \right) \\
(12)
\]

\[
- k \cdot k_2 u_1 v_j v_1 \\
\]
\[\alpha_6 = \left(c^2 k_1^2 k_2^2 - \mu v_1 k_2^2 - k_1^2 \mu_2^2 + c^{-2} \mu v_1^2 \mu_2^2 \right) v_1 v_j v_1, \]

(13)

\[\alpha_7 = 2 \left(c^2 k_1 - \mu v_1 \right) v_1 v_j k_1 - 2 \left(k_1^2 \mu - c^{-2} \mu_2^2 v_1 \right) v_1 v_j v_1, \]

(14)

\[\alpha_8 = 2 \left(c^2 k_1^2 k_2 - k_1^2 \mu_1^2 - k_1^2 \mu_2 + c^{-2} \mu_1^2 \right) v_1 v_j v_1. \]

(15)

The \(\tilde{\alpha}_n \) are given by

\[\tilde{\alpha}_1 = -v_1 \delta_{j1} - v_j \delta_{11} - v_1 \delta_{ij} + 3c^{-2} v_1 v_j v_1, \]

(16)

\[\tilde{\alpha}_2 = \left(c^2 k_2 - 2 \mu_2 v_1 \right) \delta_{ij} - k_2 v_j v_1 - v_1 k_2 v_1 - v_1 v_j k_2 + 4c^{-2} \mu_2 v_1 v_j v_1, \]

(17)

\[\tilde{\alpha}_3 = \left(c^2 k_2^2 - \mu_2^2 \right) v_1 \delta_{ij} + \left(c^{-2} \mu_2^2 - k_2^2 \right) v_1 v_j v_1, \]

(18)

\[\tilde{\alpha}_4 = \left(c^2 k_1 - \mu v_1 \right) \delta_{ij} + \left(c^2 k_2 - \mu v_1 \right) \delta_{ij} - \mu v_1 \delta_{ij}, \]

(19)

\[\tilde{\alpha}_5 = \left(c^2 k_1 k_2 - \mu \mu_2 \right) v_1 \delta_{ij} + 2 \left(3c^{-2} \mu_2 - k_1^2 \mu_2 \right) v_1 v_j v_1 \]

\[+ c^2 k_2 k_1 v_1 + c^2 v_1 k_2 v_1 + c \]

\[- \mu v_1 k_2 v_1 - \mu v_1 k_2 v_1 - \mu k_2 v_1 v_1 - 3 \mu_2 v_1 k_2 v_1, \]

(20)
\[\sigma_6 = (c^2 k_2^2 - u_2^2)v_1 k_j v_1 + (c^{-2} mu_2^2 - \mu k_2^2)v_1 v_j v_1, \]

(21)

\[\sigma_7 = 2c^2 v_1 k_j k_1 - 2\mu v_1 k_j v_1 - 2\mu v_1 v_j k_1 + 2c^{-2} \mu^2 v_1 v_j v_1, \]

(22)

\[\sigma_8 = 2(c^2 k_2^2 - \mu u_2)v_1 k_j v_1 - 2(k^2_2 \mu - c^{-2} \mu^2_2)v_1 v_j v_1. \]

(23)

The polynomial representation given by equation (4) contains no derivatives, and the explicit pole structure is clearly exhibited. In section 3, equation (4) is used to obtain the exact symmetries.

3. THE EXACT SYMMETRIES

In this section, the polynomial representation, equation (4), of the nonlinear conductivity tensor is used to explicitly establish the following exact symmetries in wave vector space:

\[\sigma_{ijl}(\pm k_1 \pm k_2, k_1, k_2) = \sigma_{ijl}(k_1, \pm k_1 \pm k_2, k_2). \]

(24)

The one involving \(\sigma_{ijl}(-k_1 - k_2, k_1, k_2) \) was obtained previously. The one involving \(\sigma_{ijl}(k_1 + k_2, k_1, k_2) \) occurs in the physical region of wave vector space of equation (2) and is therefore of greater interest.

First replacing \(k \) by \(\pm k_1 \pm k_2 \) in equation (4) and then combining terms, one obtains

\[\sigma_{ijl}(\pm k_1 \pm k_2, k_1, k_2) \]

\[= e^2 c^2 \int \frac{d^3 p}{(2\pi)^3} \frac{\xi^{R(0)}_p}{e^2} \sum_{n=1}^{24} \beta_n \frac{\xi^{R(0)}_n(\Omega_1 + i\delta)^3(\Omega_2 + i\delta)^3}{\Omega_1 + i\delta + \Omega_2 + i\delta}, \]

(25)

where
\{ n, n = 1, 24 \} = \{ \Omega_1 \Omega_2, \Omega_1 \Omega_5, \Omega_1 \Omega_6, \Omega_1 \Omega_2^3, \Omega_1 \Omega_2^5, \Omega_1 \Omega_2^6, \Omega_1 \Omega_2^5, \Omega_1 \Omega_2^6 \}

\Omega_1 \Omega_2^3, \Omega_1 \Omega_2^5, \Omega_1 \Omega_2^6, \Omega_1 \Omega_2^5, \Omega_1 \Omega_2^6, \Omega_1 \Omega_2^5, \Omega_1 \Omega_2^6, (26)

\Omega_1 \Omega_2^5, \Omega_1 \Omega_2^5 \}

and where \(\{ \beta_1, n = 1, 24 \} \) are complicated tensor polynomials in the components of \(\nabla^r, \kappa_1, \) and \(\kappa_2 \). The latter are given by

\[
\beta_1 = (c^2 k_1^2 k_2^2 + c^2 k_1 \cdot k_2 k_1^2 - \mu_1^2 k_1^2 - \mu_1 \mu_2 k_1^2 - \mu_1^2 k_1 \cdot k_2
- \mu_1^2 k_2^2 + c^{-2} \mu_1^2 \mu_2^2 + c^{-2} \mu_1^3 \mu_2) v_1 v_3 v_1 ,
\]

\[
\beta_2 = (c^2 k_1^2 - \mu_1^2) k_1 v_1 v_3 + (c^2 k_1^2 - \mu_1^2) k_2 v_1 v_3 + (c^2 k_1^2 - \mu_1^2) k_2 v_1 v_3
+ (c^2 k_1^2 - \mu_1^2) k_2 v_1 v_3
+ c^{-2} \mu_1^2 v_1 v_3 v_1 ,
\]

\[
\beta_3 = (c^2 k_1^2 - \mu_1^2) v_3 \delta_{11} - (c^2 k_1^2 - \mu_1^2) v_3 \delta_{11} ,
\]

\[
\beta_4 = [3 c^2 k_1^2 \mu_2 + 2 c^2 k_2^2 k_1 \cdot k_2 + 2 c^2 (k_1 \cdot k_2)^2 + 3 c^2 k_1^2 k_1 \cdot k_2
- 3 c_1^2 \mu_2 - 3 c_1 \mu_2 \mu_2 - 2 k_1 \cdot k_2 \mu_2^2 + 4 k_1 \cdot k_2 \mu_1 \mu_2
- 2 k_2^2 \mu_2 - 3 k_2^2 \mu_2 - 3 k_1 \cdot k_2 \mu_2^2 + 2 c^{-2} \mu_1 \mu_2
+ 3 c^{-2} \mu_1 \mu_2 + 3 c^{-2} \mu_1 \mu_2] v_1 v_3 v_1 ,
\]
\[\beta_5 = (2c^2 k_1 \cdot k_2 k_{11} + 3c^2 k_1^2 k_{11} - 2u_{11} u_{21} k_{11} - 3u_{11}^2 k_{11} \\
+ c^2 k_1 \cdot k_2 k_{21} - u_{21}^2 k_{11} - u_{11} u_{21} k_{21} + c^2 k_2^2 k_{11} \\
+ 3c^2 k_1^2 k_{21} - 3u_{11}^2 k_{21}) v_1 v_j \\
+ \left(c^2 k_1 \cdot k_2 k_{11} - u_{11}^2 k_{11} + c^2 k_2^2 k_{21} - 3u_{11}^2 k_{21} \right) v_j v_1 \\
+ \left(c^2 k_1 \cdot k_2 k_{11} - u_{11}^2 k_{11} + c^2 k_2^2 k_{21} - 3u_{11}^2 k_{21} \right) v_1 v_1 \] (31)

\[\beta_6 = \left(-3u_{11}^2 + 3c^2 k_1^2 \right) v_j \delta_{11} + \left(c^2 k_1 \cdot k_{11} + c^2 k_1 \cdot k_{11} \right) v_1 \\
+ \left(c^2 k_1 \cdot k_{11} + c^2 k_1 \cdot k_{11} + c^2 k_1 \cdot k_{21} \right) v_j + c^2 k_1 \cdot k_{11} v_1 \\
+ \left(-2u_{21}^2 k_{11} - 4u_{11} k_{11} - 3u_{11}^2 k_{21} \right) v_i v_j \\
+ \left(-2u_{21} k_{11} - u_{11} k_{11} \right) v_i v_1 + \left(-2u_{21}^2 k_{11} - u_{11} k_{11} - 3u_{11} k_{21} \right) v_j v_1 \\
+ \left(-4k_1^2 + 10c^2 u_{21} + 8c^2 u_{11}^2 - 2k_1 \cdot k_2 \right) v_i v_j v_1 \] (32)

\[\beta_7 = \left(-2u_{11} v_j + c^2 k_1 \cdot k_{11} \right) \delta_{11} - k_{11} \bar{v}_j v_1 - k_{11} \bar{v}_i v_j \\
- k_{11} \bar{v}_j v_1 + 4c^2 u_{11} v_i v_j v_1 \] (33)
\[\beta_8 = \left[3c^2k_1^2k_2^2 + 2c^2k_1^2\mathbf{k}_1 \cdot \mathbf{k}_2 + 3c^2k_2^2\mathbf{k}_1 \cdot \mathbf{k}_2 + 2c^2(\mathbf{k}_1 \cdot \mathbf{k}_2)^2
ight. \\
- 3k_1^2\mu_1^2 - 3k_2^2\mu_1^2\mu_2 - 2\mathbf{k}_1 \cdot \mathbf{k}_2\mu_1^2 - 4\mathbf{k}_1 \cdot \mathbf{k}_2\mu_1\mu_2 \\
- 2k_1^2\mu_1\mu_2 - 3k_2^2\mu_1^2 - 3\mathbf{k}_1 \cdot \mathbf{k}_2\mu_2^2 + 2c^{-2}\mu_1^3\mu_2 \\
+ 5c^{-2}\mu_1^2\mu_2^2 + 3c^{-2}\mu_1^3\mu_2 \right] v_i v_j v_1 . \\
\]

\[\beta_9 = \left(3c^2k_1^2k_2^2 + 2c^2\mathbf{k}_1 \cdot \mathbf{k}_2k_1^2 + 3\mathbf{k}_1^2k_2^2 - 2\mu_1^2k_2^2 - 2\mu_1\mu_2k_2^2
ight. \\
+ 2c^2k_1^2\mu_1^2 + 2c^2\mathbf{k}_1 \cdot \mathbf{k}_2\mu_1^2 - 2\mu_1^2k_1^2 + c^2k_2^2k_1^2 \\
- 2\mu_1\mu_2k_1^2 - \left(\mathbf{k}_2 \cdot \mathbf{k}_2 \right) v_i v_j + \left(\mathbf{k}_1 \cdot \mathbf{k}_2 \right) v_i v_j \\
+ 2c^2k_1^2k_2^2 - \mu_1^2k_2^2 - 2\mu_1\mu_2k_2^2 - 2\mu_2^2k_2^2 + 2c^2\mathbf{k}_1 \cdot \mathbf{k}_2k_1^2 \\
- 2\mu_1\mu_2k_1^2 + 3c^2k_2^2k_1^2j - \left(3\mu_1^2k_1^2 \right) v_i v_1 \\
+ \left(2c^2\mathbf{k}_1 \cdot \mathbf{k}_2k_1^2 - 2\mu_1\mu_2k_1^2 - 3c^2k_2^2k_1^2 - 3\mu_2^2k_1^2 \\
+ 3c^2k_1^2k_2^2 + 2c^2\mathbf{k}_1 \cdot \mathbf{k}_2k_2^2 - 3\mu_1^2k_2^2 - 2\mu_1\mu_2k_2^2 \right) v_j v_1 \\
+ \left(-10\mathbf{k}_1 \cdot \mathbf{k}_2\nu_1 - 9k_1^2\nu_2 - 10\mathbf{k}_1 \cdot \mathbf{k}_2\nu_2 + 19c^{-2}\mu_1^2 \mu_2^2 \\
+ 19c^{-2}\mu_1^2\mu_2^2 - 2\mu_2^2k_2^2 + 2c^{-2}\mu_2^3 - 9\mu_1k_2^2 - 2\mu_1k_2^2 \\
+ 2c^{-2}\mu_1^3 \right] v_i v_j v_1 . \\
\]
$$\beta_{10} = \left(c^2 k_1^2 + 2 c_2 k_1 \cdot k_2 - \mu_1^2 - 2 \mu_1 \mu_2 + c^2 k_2^2 - \mu_2^2 \right) v_i \delta_{ij}$$

$$+ \left(-3 \mu_1^2 + 3 c^2 k_1^2 \right) v_j \delta_{ij} + \left(c^2 k_2^2 - \mu_2^2 \right) v_i \delta_{ij}$$

$$+ \left(2 c^2 k_1 k_1 k_{1j} + c^2 k_2 k_{2j} + 3 c^2 k_{1j} k_{2j} \right) v_i$$

$$+ \left(2 c^2 k_1 k_{1i} + 2 c^2 k_2 k_{2j} + 3 c^2 k_{2j} k_{1i} \right) v_j$$

$$+ \left(c^2 k_1 k_{1j} + c^2 k_2 k_{2i} + 3 c^2 k_{1j} k_{2i} \right) v_i$$

$$+ \left(-3 \mu_1 k_{1j} - 8 \mu_1 k_{2i} - 8 \mu_2 k_{2j} - 4 \mu_2 k_{1i} \right) v_i v_j$$

$$+ \left(-2 \mu_1 k_{1j} - 7 \mu_2 k_{1i} - 8 \mu_1 k_{2i} - 2 \mu_2 k_{2j} \right) v_j v_i$$

$$+ \left(-3 \mu_1 k_{2j} - 2 \mu_1 k_{1j} - 7 \mu_2 k_{1j} - 4 \mu_2 k_{2j} \right) v_i v_1$$

$$+ \left(14 c^{-2} \mu_1^2 + 32 c^{-2} \mu_1 \mu_2 - 8 k_1 \cdot k_2 - 6 k_1^2 \right)$$

$$- 3 k_2^2 + 7 c^{-2} \mu_2^2 \right) v_i v_1 v_1 \right) ,$$

$$\beta_{11} = \left(c^2 k_1 + c^2 k_2 - 2 \mu_1 v_i - 2 \mu_2 v_j \right) \delta_{ij}$$

$$+ \left(c^2 k_2 - 2 \mu_2 v_j \right) \delta_{ij} + \left(c^2 k_1 - \mu_1 v_j \right) \delta_{ij}$$

$$- 2 \left(k_{2j} + 2 k_{1j} \right) v_i v_j - 2 \left(k_{1j} + 2 k_{2j} \right) v_j v_i$$

$$- 2 \left(k_{2j} + 2 k_{1j} \right) v_1 v_i + 8 \left(k_2 + 2 \mu_1 \right) c^{-2} v_i v_j v_i$$

$$\beta_{12} = \left(-v_i \delta_{ij} - v_1 \delta_{ij} - v_j \delta_{ij} + 3 c^{-2} v_i v_j v_1 \right) ,$$
\[e_{13} = \left(c^2 k_1^2 k_2^2 + c^2 k_1^* k_2^2 - u_1^2 k_1^2 - u_1 u_2 k_2^2 - u_2^2 k_1^* k_2 \right. \\
\left. - u_2^2 k_1 + c^{-2} u_2^2 u_1^2 + c^{-2} u_1 u_3^2 \right) v_1 v_3 v_1, \]

\[e_{14} = \left(c^2 k_1^* k_2^* k_1 - u_1 u_2 k_1^2 + 3c^2 k_2^2 k_1^2 - 3u_2^2 k_1^4 - c^2 k_1^2 k_2 \right. \\
\left. + c^2 k_1^* k_2^* k_2^* - u_1^2 k_2^2 - u_1 u_2 k_2^2 \right) v_1 v_1 \\
\left. + \left(c^2 k_1^2 k_2^2 + u_1 u_2 k_2^2 + c^2 k_1^* k_2^* k_1 - u_1^2 k_2 \right) v_1 v_j \\
\left. + \left(c^2 k_2^2 k_2^2 + 2c^2 k_1^* k_2^* k_2^2 - u_1^2 k_2^2 - 2u_1 u_2 k_2^2 + c^2 k_1^* k_2^* k_1 \right) v_1 v_j \\
\left. - u_1 u_2 k_1^2 + 3c^2 k_1^2 k_2^2 + 3c^2 k_2^2 k_2^2 - 3u_2^2 k_1^2 - 3u_2^2 k_2^2 \right) v_1 v_1 \\
\left. + \left(-6k_1^* k_2^* u_2^2 - 4k_1^2 u_2^2 + 8c^{-2} u_1^2 u_2^2 - 7k_1^2 u_1^2 - 3k_2^2 u_2 \\
\left. + 13c^{-2} u_1 u_2^2 + 3c^{-2} u_2^2 - 4k_1^* k_2^* u_1 \right) v_1 v_3 v_1, \]

\[e_{15} = \left(-u_1^2 + c^2 k_1^2 \right) v_3 v_1 v_1 + \left(-3u_2^2 + 3c^2 k_2^2 \right) v_1 v_3 v_1 \\
\left. + \left(-u_1^2 - 2u_1 u_2 + c^2 k_1^2 - 2c^2 k_1^* k_2 - u_2^2 + c^2 k_2^2 \right) v_1 v_3 v_1 \\
\left. + c^2 \left(k_1^2 k_1^* + 3k_1^* k_2^2 + 2k_2^2 k_2 \right) v_1 \\
\left. + c^2 \left(k_1^2 k_1^* + 3k_1^* k_2^2 + k_2^2 k_2 \right) v_1 \\
\left. + c^2 \left(2k_2^2 k_2^2 + 3k_2^2 k_2^2 + 2k_2^2 k_2 \right) v_1 \\
\left. + \left(-7u_1 k_2^2 - 2u_2 k_2^2 - 4u_1 k_1^2 - 2u_2 k_1^2 \right) v_1 v_3 \\
\left. + \left(-u_1 k_1^2 - 8u_2 k_1^2 - 8u_2 k_2^2 - 4u_1 k_2^2 \right) v_1 v_1 \\
\left. + \left(-u_1 k_1^2 - 8u_2 k_1^2 - 2u_2 k_2^2 - 7u_1 k_2^2 \right) v_3 v_1 \\
\left. + \left(7c^{-2} u_1^2 + 32c^{-2} u_1 u_2 + 14c^{-2} u_2^2 - 3k_1^2 - 8k_1^* k_2 \\
\left. - 6k_2^2 \right) v_1 v_3 v_1, \right. \]
\[\beta_{16} = 2 \left(c^2 k_{11} + c^2 k_{21} \right) \delta_{11} + 3c^2 k_{21} \delta_{1j} + 3c^2 k_{1j} \delta_{i1} \\
- 6u_1 v_j \delta_{11} - 6u_2 v_1 \delta_{i1} - 4(u_1 + u_2) v_1 \delta_{j1} - 5(k_{11} + k_{21}) v_1 v_j \\
- 5(k_{1i} + k_{2i}) v_j v_1 - 5(k_{1i} + k_{2i}) v_i v_1 \\
+ 20 \left(c^{-2} u_1 + c^{-2} u_2 \right) v_i v_j v_1 , \]
(42)

\[\beta_{17} = -3v_1 \delta_{j1} - 3v_1 \delta_{ij} - 3v_1 \delta_{i1} + 9c^{-2} v_1 v_j v_1 , \]
(43)

\[\beta_{18} = \left(c^2 k_{21} k_{1j} + c^2 k_{2j} k_{21} - u_2 k_{1j} - u_2 k_{2j} \right) v_1 v_1 \\
+ \left(2c^{-2} u_1 u_2^2 + c^{-2} u_2^3 - 2u_1 k_2^2 - u_2 k_2^2 \right) v_1 v_j v_1 \\
+ \left(c^{-2} k_2^2 - u_2^2 \right) k_{1j} v_j v_1 , \]
(44)

\[\beta_{19} = c^2 k_{11} k_{21} v_j + \left(c^2 k_{11} k_{2j} + c^2 k_{1j} k_{2i} + c^2 k_{2j} k_{2i} \right) v_1 v_1 \\
+ \left(c^2 k_{1j} k_{21} + c^2 k_{2j} k_{21} \right) v_1 v_1 + \left(3c^2 k_2^2 - 3u_1^2 \right) v_1 \delta_{i1} \\
- \left(u_2 k_{21} + 2u_1 k_{2j} \right) v_1 v_j - \left(u_2 k_{2j} + 2u_1 k_{2j} + 3v_1 k_{1j} \right) v_j v_1 \\
- \left(2u_1 k_{2j} + 3v_1 k_{1j} + 4u_2 k_{2j} \right) v_1 v_1 \\
+ 2 \left(5c^{-2} u_1 u_2 - 2k_2^2 + 4c^{-2} u_2^2 - k_1 + k_2 \right) v_1 v_j v_1 , \]
(45)

\[\beta_{20} = \left(3c^2 k_2^2 - 6u_2 v_1 \right) \delta_{1j} + \left(c^2 k_{1j} - 2u_1 v_j \right) \delta_{11} \\
+ \left(c^2 k_{1i} + c^2 k_{2i} - 2u_1 v_i - 2u_2 v_i \right) \delta_{j1} \\
+ 8 \left(c^{-2} u_1 + 2c^{-2} u_2 \right) v_1 v_j v_1 - 2 \left(k_{1j} + 2k_{2j} \right) v_1 v_1 \\
- 2 \left(k_{1i} + 2k_{2i} \right) v_1 v_j - \left(2 k_{1i} + 2k_{2i} \right) v_j v_1 , \]
(46)
\[
\beta_{21} = -3v_1^2 \delta_{11} - 3v_j^2 \delta_{11} - 3v_i^2 \delta_{ij} + 9c^{-2} v_1 v_j v_1, \\
\beta_{22} = (c^2 k_2^2 - \mu_2^2) v_1 \delta_{ij} + (c^{-2} \mu_2^2 - k_2^2) v_1 v_j v_1, \\
\beta_{23} = (-2u_2 v_1 + c^2 k_2) \delta_{ij} - k_1 v_j v_1 - k_2 v_i v_1 \\
- k_2 v_1 v_j + 4c^{-2} u_2 v_1 v_j v_1, \\
\beta_{24} = -v_1^3 \delta_{11} - v_j^3 \delta_{11} - v_i^3 \delta_{ij} + 3c^{-2} v_1 v_j v_1.
\]

Similarly, by reducing \(\sigma_{ii}((-k_1, +k_1, +k_2, -k_2)) \), comparing the result with equation (25) term by term, and then using the reality property of the current and the electric field, the exact symmetry relations given by equations (24) follow.

The principal parts of equations (24) correspond to the well-known symmetry of the second-order nonlinear conductivity tensor. This correspondence results from ignoring resonant wave-particle interactions. In that case, the well-known symmetry relation for the nonrelativistic longitudinal case, equation (2.83) of Tsytovich, also follows. To see this, one first notes that the pure longitudinal nonrelativistic second-order conductivity \(S_{k_1 k_2} \) is given by

\[
S_{k_1 k_2} = \frac{e^3}{|k_1| |k_2|} \int \frac{k_1 \cdot \mathbb{v}}{\omega - k_1 \cdot \mathbb{v} + i\delta} \left(\sigma_{k_2 \mathbb{v}} \right) \frac{1}{\omega_2 - k_2 \cdot \mathbb{v} + i\delta} \\
\times \left(k_2 \cdot \mathbb{v} \right) \frac{d^3 \mathbb{p}}{(2\pi)^3}.
\]

Comparing equation (51) with equation (1) then yields

\[
S_{k_1 k_2} = -e \frac{k_1 \cdot k_1}{|k_1|} \frac{k_2 \cdot k_1}{|k_2|} \frac{1}{\omega_1 \omega_2} S_{ij1}(k_1, k_1, k_2).
\]

By using equation (3) and equation (52), it follows that
\[
\frac{1}{\omega_2} \left(S_{k_2, k_1+k_2, -k_1} + S_{k_2, -k_1, k_1+k_2} \right) = -e \frac{(k_{1j} + k_{2j})_{j=1}^2 \alpha_{1jl}^+ (k_{2j}, k_1+k_2, -k_1)}{|k_1 + k_2| |k_1| |k_2| (\omega_1 + \omega_2) \omega_1 \omega_2} \tag{53}
\]

\[
and \quad - \frac{1}{\omega_1 + \omega_2} \left(S_{-k_1-k_2, k_1, -k_2} + S_{-k_1-k_2, -k_2, -k_1} \right) = -e \frac{(k_{1j} + k_{2j})_{j=1}^2 \alpha_{1jl}^+ (-k_{2j}, k_1-k_2, -k_1)}{|k_1 + k_2| |k_1| |k_2| (\omega_1 + \omega_2) \omega_1 \omega_2} \tag{54}
\]

If one ignores the imaginary part \(\delta \) in equation (1), then using equation (3) one immediately obtains the following approximate relation:

\[
\alpha_{1jl}^+ (-k, k_1, k_2) = -\alpha_{1jl}^+ (k, k_1, k_2) \tag{55}
\]

By using equation (55) together with one of the exact symmetry relations equations (24), it follows that

\[
\alpha_{jl}^+ (-k_1-k_2, -k_2, -k_1) = \alpha_{jl}^+ (k_2, k_1+k_2, -k_1) \tag{56}
\]

Substituting equation (56) into equation (54) and comparing the result with equation (53), one obtains

\[
\frac{1}{\omega_2} \left(S_{k_2, k_1+k_2, -k_1} + S_{k_2, -k_1, k_1+k_2} \right) = - \frac{1}{\omega_1 + \omega_2} \left(S_{-k_1-k_2, k_1, -k_2} + S_{-k_1-k_2, -k_2, -k_1} \right) \tag{57}
\]

Equation (57) is the well-known symmetry relation for the nonrelativistic longitudinal case (eq (2.83) of Tsytovich\(^9\)). Ignoring the imaginary part \(\delta \) in equation (55) is equivalent to ignoring resonant wave-particle interactions and including only the principal part. The approximate symmetry can also be shown to follow from the other exact symmetry of equations (24).
4. CONCLUSION

In conclusion then, the following exact symmetry relations hold for the second-order nonlinear conductivity tensor of an unmagnetized relativistic weakly turbulent plasma:

$$\sigma^\pm_{ijl}(\pm k_1 \pm k_2, k_1, k_2) = \sigma^\mp_{jil}(\pm k_1 \pm k_2, k_2),$$

(58)

where $\sigma^\pm_{ijl}(k,k_1,k_2)$ are defined by equations (1) and (3). Also, a polynomial representation, equation (4), for the tensor has been obtained in which all derivatives are removed and the pole structure is clearly exhibited. The principal part of the exact symmetries, equation (58), is the well-known approximate symmetry that applies when resonant wave-particle interactions are negligible, the Manley-Rowe relations obtain, and the nonlinear current is nondissipative.

The symmetry properties are especially useful in the calculation of the bremsstrahlung recoil force in a relativistic nonequilibrium plasma. The latter is necessary to determine the collective bremsstrahlung probability and to investigate the conditions for the occurrence of a bremsstrahlung instability.28
LITERATURE CITED

LITERATURE CITED (Cont'd)

DISTRIBUTION (Cont'd)

WESTERN RESEARCH CORP
ATTN R. O. HUNTER
225 BROADWAY, SUITE 1600
SAN DIEGO, CA 92101

THE AUSTRALIAN NATIONAL UNIVERSITY
DEPT OF THEORETICAL PHYSICS
ATTN D. B. MELROSE
PO BOX 4
CANBERRA A.C.T. 2600
AUSTRALIA

UNIVERSITY OF CALIFORNIA
DEPT OF APPL. PHYS. & INFORMATION SCIENCE
ATTN H. ALFVEN
LA JOLLA, CA 92039

CALIFORNIA INSTITUTE OF TECHNOLOGY
JET PROPULSION LABORATORY
ATTN J. C. HUBBARD
IRVINE, CA 92717

UNIVERSITY OF CALIFORNIA
ELECTRICAL ENGINEERING DEPT
ATTN C. K. BIRDGLASS
BERKELEY, CA 94720

UNIVERSITY OF CALIFORNIA
PHYSICS DEPT
ATTN A. N. KAUFMAN
BERKELEY, CA 94720

UNIVERSITY OF CALIFORNIA, DAVIS
APPLIED SCIENCES
ATTN J. DEGROOT
DAVIS, CA 95616

UNIVERSITY OF CALIFORNIA IRVINE
DEPT OF PHYSICS
ATTN G. BENFORD
ATTN N. ROOSTER
ATTN M. MAYER
ATTN A. RAY
IRVINE, CA 92717

UNIVERSITY OF CALIFORNIA, LOS ANGELES
DEPT OF PHYSICS
ATTN K. NOZAKI
LOS ANGELES, CA 90025

UNIVERSITY OF CHICAGO
LAB FOR ASTROPHYSICS & SPACE RESEARCH
ATTN E. PARKER
CHICAGO, IL 60637

CHALMERS UNIV. OF TECHNOLOGY
INST. OF ELECTROMAGNETIC FIELD THEORY
ATTN H. WILHELMSSON
S-41296 GOTHENBURG, SWEDEN

UNIVERSITY OF COLORADO
DEPT OF ASTROPHYSICS
ATTN M. GOLDMAN
ATTN D. SMITH
BOULDER, COLORADO 80309

CORNELL UNIVERSITY
ATTN R. LOVELACE
ATTN R. N. SUDAN
ATTN, J. MATION
ATTN D. HAMMER
ITHACA, NY 14853

DARTMOUTH COLLEGE
PHYSICS DEPT
ATTN J. E. WALSH
HANOVER, NH 03755

UNIVERSITY OF ILLINOIS AT
URBANA--CHAMPAIGN
DEPT OF PHYSICS
ATTN N. IWAMOTO
URBANA, IL 61801

ISTITUTO DI FISICA DELL' UNIVERSITA
VIA CELORIA 16
ATTN P. CALDIROLA
ATTN C. PAZZI
ATTN E. SINDONI
20133 MILANO, ITALY

ISTITUTO DI FISICA DELL' UNIVERSITA
ATTN A. CAVALIERE
ATTN R. RUFFINI
ROME, ITALY

ISTITUTO DI FISICA GENERALE DELL' UNIVERSITA
CORSO M. D'AZEGLIO
ATTN A. FERRARI
46 TORINO, ITALY

UNIVERSITY OF MARYLAND
DEPT OF ELECTRICAL ENGINEERING
ATTN M. REISER
ATTN W. DESTLER
ATTN M. T. RHEE
COLLEGE PARK, MD 20742

UNIVERSITY OF MARYLAND
DEPT OF PHYSICS AND ASTRONOMY
ATTN H. R. GRIEM
ATTN K. PAPADOPOULOS
ATTN J. WEBER
COLLEGE PARK, MD 20742
DISTRIBUTION (Cont'd)

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY
PLASMA FUSION CENTER
ATTN G. BEKEFI
ATTN J. BELCHER
ATTN T. CHANG
ATTN B. COPPI
ATTN R. DAVIDSON
ATTN C. LIN
ATTN S. OLBERT
ATTN B. ROSSI
CAMBRIDGE, MA 02139

UNIVERSITY OF NAGOYA
DEPT OF PHYSICS
ATTN S. HAYAKAWA
NAGOYA, JAPAN

OXFORD UNIVERSITY
DEPARTMENT THEORETICAL PHYSICS
1 KEBLE RD
ATTN D. TER HAAR
OXFORD OX1 3NP, ENGLAND

QUEEN MARY COLLEGE
DEPT OF APPLIED MATH
MILE END ROAD
ATTN D. BURGESS
LONDON E1 4NS, ENGLAND

PRINCETON UNIVERSITY
ASTROPHYSICAL SCIENCES
PARKS ROAD
ATTN L. N. WICKENS
ATTN J. E. ALLEN
OXFORD, UNITED KINGDOM

SPECOLA VATICANA
ATTN W. STOGER, S. J.
I-00120 CITTÀ DEL VATICANO
ITALY

STANFORD UNIVERSITY
INST. PLASMA RES
ATTN P. A. STURROCK
STANFORD, CA 94305

STERRENWACHT-LEIDEN
ATTN C. A. NORMAN
ATTN P. ALLAN
2300 RA LEIDEN, THE NETHERLANDS

TEL-AVIV UNIVERSITY
DEPT OF PHYSICS & ASTRONOMY
ATTN G. TAUBER
TEL AVIV, ISRAEL

INSTITUTE FOR THEORETICAL MECHANICS-
KRIJGSLAAN 271-89
ATTN F. VERHEEST
B-9000 GENT, BELGIUM

UNIVERSITY OF TENNESSEE
DEPT OF ELECTRICAL ENGINEERING
ATTN I. ALEXEFF
KNOXVILLE, TN 37916

UMEA UNIVERSITY
DEPT OF PLASMA PHYSICS
ATTN L. STENYLO
S-90187 UMEA
SWEDEN

UNIVERSITY OF WASHINGTON
DEPT OF PHYSICS
ATTN M. BAKER
SEATTLE, WA 98195

WEIZMANN INSTITUTE
DEPT OF NUCLEAR PHYSICS
ATTN AMRI WANDEL
REHOVOT, ISRAEL

US ARMY ELECTRONICS RESEARCH
& DEVELOPMENT COMMAND
ATTN TECHNICAL DIRECTOR, DRDEL-CT

28
DISTRIBUTION (Cont'd)

HARRY DIAMOND LABORATORIES
ATTN CO/TO/TSO/DIVISION DIRECTORS
ATTN RECORD COPY, 81200
ATTN HDL LIBRARY, (2 COPIES) 81100
ATTN HDL LIBRARY, (WOODBRIDGE) 81100
ATTN TECHNICAL REPORTS BRANCH, 81300
(2 COPIES)
ATTN LEGAL OFFICE, 97000
ATTN CHAIRMAN, EDITORIAL COMMITTEE
ATTN MORRISON, R. E., 13500
ATTN CHIEF, 21000
ATTN CHIEF, 21100
ATTN CHIEF, 21200
ATTN CHIEF, 21300
ATTN CHIEF, 21400
ATTN CHIEF, 21500
ATTN CHIEF, 22000
ATTN CHIEF, 22100
ATTN CHIEF, 22300
ATTN CHIEF, 22800
ATTN CHIEF, 22900
ATTN CHIEF, 11000
ATTN CHIEF, 13000
ATTN CHIEF, 13200
ATTN CHIEF, 13300
ATTN CHIEF, 13500
ATTN CHIEF, 15200
ATTN CHIEF, 20240
ATTN GRAYBILL, S., 22300
ATTN STEWART, A., 22900
ATTN KERRIS, K., 22900
ATTN BROWN, E., 00210
ATTN WORTMAN, D., 13200
ATTN BROMBORSKY, A., 22300
ATTN HEHS, A., 22300
ATTN GILBERT, R., 22800
ATTN VANDERMALL, J., 22800
ATTN CONWAY, T., 22300
ATTN BLACKBURN, J., 22800
ATTN MEYER, O., 22800
ATTN OLDHAM, T., 22300
ATTN MCLEAN, B., 22800
ATTN SILVERSTEIN, J., 13300
ATTN BRUNS, H., 15400
ATTN KUPPLIN, G. A., 22900
ATTN SOLM, J., 22300
ATTN LEAVITT, R., 13200
ATTN CROWNE, F., 13200
ATTN MORRISON, C., 13200
ATTN GERLACH, H., 11100
ATTN LEVITT, L., 21400
ATTN BRANDT, H. E., 22300 (40 COPIES)