AD=A113 590

UNCLASSIFIED
| or 2

ag &

CARNEGIE-MELLON UNIV PITYSBURGH PA DEPT OF COMPUTER ~=ET:

A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION HgbgL}TG? 2
JUL 81 X CASTILLO» T D SMITH DAS660-80-C=0057
CMU~CS=-81-138 NL

R VA AR AT et s T AY e e T
M

CMU-CS-81-138

a2

Py XY
‘\.‘F‘;‘j{ ::‘ -zg"}&;
L

1
k)
53

o N R Ty
AL e g

’Mwwgvﬁj‘.ﬁﬁ‘f
ol 'fé

R A Compatible Hardware/Software

Reliability Prediction Model A

Xavier Castillo

22 July 1981

AD A113590

DEPARTMENT }
of

"=/ COMPUTER SCIENCE

BEHIRTON StATaa K S
. Appeoved for public 1eleane; ’

Carnegie-Mellon University
147
g2 04 19 J ‘.4

UNCLASSIFI®D
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUKENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACC T ON NO.] 3. RECIPIENT’S CATALOG NUMBER
CMU-CS-81-138 wb- A /7“ ,ﬁL?@
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
A COMPATIBLE HARDWARE/SOFTWARE RELIABILTTY PREDIC- Final Report
TION MODEL (U) por

6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Xavier Castillo
Thomas D. Smith A DASG60-80-C-0057
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Carnegie-Mellon University AREA & WORK UNIT NUMBERS
Department of Computer Science
Schenley Park, Pittsburgh, PA 15213
1. TCONTREELING UFFICE NAME AND ADDRESS 12. REPORT DATE
Rallistic Missile Defense Systems Adv Tech Center 22 Jul 81
ATTN: BMDATC-P/AOLIB 13. NUMBER OF PAGES
P. 0. Box 1500, Huntsville, AL 35807 148

4. MONITORING AGENCY NAME & ADDRESS(!f different from Controlling Office) 15, SECURITY CLASS. (of this report)

UNCLASSIFIED

1Sa, DECL ASSIFICATION/DOWNGRADING
SCHEDULE

None

16. DISTRIBUTION STATEMENT (of this Report)

"A" Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report) .

18. SUPPLEMENTARY NOTES

Suhmitted to Carnegie-Mellon University in partial fulfillment of the requiremen#s
for the degree of Doctor of Philosophy in Electrical Engineering.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Design standards

Gaussien distribution (density)

Software(computers)

Weibull distributions (density)

Performance reliability

20. ABSTRACT (Continue on reveras side if necessary and identity by block number)

(U) In this paper a new modeling methodology to characterize failure processes
in Time-Sharing systems due to hardware transients and software errors is
presented. The basic assumption made is that the instantaneous failure rate of
a system resource can be approximated by a deterministic function of time plus
a zero-mean stationarv Gaussian process, both depending on the usage of the
resource considered. The probability density function of the time to failure
obtained vnder this agsuiption has a decreasing hazard function, partially

DD 1 52:.73 1473 EDITION OF t NOV 68 IS OBSOLETE NCLASSIFIRD

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

- . Co. b T gl g oo A ke N
R L R e R o s

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Whan Dets Entered)

L R

BLOCK 20 continued: L.e %

explaining why other decreasing hazard function densities such as the Weibull
fit experimental data so well. The implications of this methodology are
discussed and some applications are given in the areas of Performance/Reliabili
modeling, software reliability evaluation, models incorporating permanent
hardware faults, policy optimization, and design optimization.

]

o

24

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

= Dt e S S o T

CMU-CS~81-138

A Compatible Hardware/Software

Reliability Prediction Model

Xavier Castillo

22 July 1981

Submitted to Camegig-Mellon University in partial
fuifiliment of the requirements for the degree of Doctor of C

Philosophy in Electrical Engineering. ﬂ— s \
Y

Copyright © 1981 Xavier Castillo

This research was supported in part by the Ballistic Missile Defengse Systems Command under
contract no. DASG60-80-C-0057 and the Fundacion I.T.P., Madrid, Spain.

The views, opinions, and/or findings contained in this document are those of the author and should
not be construed as an official Department of the Army pasition, policy, or decision, uniess so
designated by other official documentation.

~ A -

—

N~

A la Dolors, amb afecte i admiracio,
per la seva comprensio i paciencia.

Abstract

~\

In this paper a new modeling methodology to characterize failure processes in Time-Sharing
systems due to hardware transients and software errors is presented. The basic assumption made is
that the instantaneous failure rate of a system resource can be approximated by a deterministic
function of {ime plus a zero-mean stationary Gaussian process, both depending on the usage of the

" resource considered. The probability density function of the time to failure obtained under this

assumption has a decreasing hazard function, partially explaining why other decreasing hazard
function densities such as the Weibull fit experimental data so well. Furthermore, by considering the
Operating System kernel as a system resource, this methodology sets the basis for independent
methods of evaluating the contribution of software and hardware to system unreliability. The
modeling methodology has been validated with the analysis of a real system. The predicted system
behavior according to this methodology is compared with the predictions of other models such as the
exponential, Weibull, and periodic failure rate. The implications of this methodology are discussed
and some applications are given in the areas of Performance/Reliability modeling,software reliability
evaluation, models incorporating permanent hardware faults, policy optimization, and design
optimization.

i

Accession For

CNTIS GRART r

DTIC TA3 (!

Unanncuncod 0

Justification oo
e

e e e o e A

By e e]
Distribution/]
Avallahiiity Codes]
- C‘ -) Availl sndgjov
Dist . Special

f '

o

TABLE OF CONTENTS

Table of Contents

1. Introduction

1.1. Hardware/Software }e!iability prediction
1.2. The Weibull distribution '
1.3. Organization of the research

2. Background

2.1. Definitions
2.2. The problem of characterizing system reliability
2.2.1, Performance-Reliability evaluation
2.2.2. Causes of unrefiability
2.3. Hardware transient faults
2.3.1. Causes of hardware transient faults
2.3.2. Hardware transient faults modeling
2.3.2.1. Exponential distribution
2.3.2.2. Weibull distribution
2.3.2.3. Exponential distribution with periodic failure rate
2.3.2.4, Discussion :
2.4, Software Reliability
2.4.1, Fault-intolerant software reliability assessment
2.4.2. Fault-Tolerant Software
2.4.3. Discussion
2.5. Model verification requirements
2.5.1. The MULTICS Time Sharing system
2.5.2. A starting point
2.6. Summary

3. Mathematical formulation

3.1. Definitions and notation
3.2. The underlying failure process
3.2.1. The underlying intensity process
3.2.2. The central limit theorem for a random sum of dependent variables
3.2.3. Convergence to Wiener measure .
3.3. The observable process
3.3.1. The observable intensity process
3.4. The equivalent failure process
3.4.1. The hazard function
3.5. Summary

EE255620888 & BR

il A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

4. Specialization to systems under constant or periodic workload

4.1, Case | - Constant workload
4.1.1. Examples
4.1.1.1. Example 1. Exponentially decreasing hazard function - The doubly
exponential distribution
4.1.1.2. Example 2. The exponential distribution - white noise failure rate
4.1.1.3. Example 3. Pareto distribution
4.1.1.4.Example 4. An intensity process with infinite energy - The Weibull
distribution
4.1.2. Discussion
4.1.2.1. The distinctive property of white noise
4.1.2.2. The rate of convergence to a Wiener process
4.1.2.3. A different but equivalent conceptual framework
4.2, Case |l - Periodic workload (the Cyclostationary process)
4.2.1, Two important properties of the cyciostationary Poisson process
4.3. Summary

§. Failure process analysis of a real system

5.1. System characteristics and measuring tools
5.2. Model parameterization
5.2.1. Sampling the intensity process
5.2.2. Estimating the deterministic component
5.2.3. Autacorrelation function estimation -
5.2.4. Maximum likelihood estimation of model coefficients
5.2.5. Error correction
5.3. Characterization of the time to System Failure
5.3.1. The cyclostationary model
5.3.2. The stationary approximation
5.3.3. A turther refinement of the cyclostationary modet
5.3.4. A computational shortcut
5.4. Probability Distribution Function of the Time to Failure of a File System
5.5. Summary

8. Discussion

8.1. Reliability modeling
6.1.1. Numerical comparisons : statistical tests
6.1.2. Qualitative comparisons
6.1.2.1. Failure rate
6.1.2.2. Hazard function
6.1.2.3. Reliability Function
8.2. A possible new design parameter
6.3. Summary '

7. Applications

7.1. The impact of unrefiable software on the observed system reliability
7.2. Performance/Reliability evaiuation

7.2.1. The user’s viewpoint

7.2.2. The manager’s viewpoint
7.3. On the optimum checkpointing interval

3882 Y 2889988 &y ggad

~ ~
N o

88 & 88IBR2II

[*]
g%

102
103
108
107

11

112
118
116
120
121

TABLE OF CONTENTS

7.3.1. Constant workload
7.3.2. Periodic workload

123
124

7.4. Reliability modeling including transient hardware fauits, software fauits, and permanent 126

hardware {auits
7.4.1. Markov processes
7.4.2. Semi-Markov processes
7.4.2.1. Limiting behavior
7.4.2.2. Reliability prediction
7.5. Summary

8. Conclusions and suggestions for further rasearch

8.1. Reliabifity modeling
8.2. Performance/Reliability modeling
8.3. Software reliability evaluation and the design of reliable software

References

126
128
130
131
132

133

134
136
137

139

LIST OF FIGURES

Figure 1-1:

Figure 2-1:
Figure 3-1:

Figure 3-2:
Figure 4-1:
Figure 5-1:

Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure §-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:

Figure 5-10:
Figure 5-11:

Figure 5-12;
Figure 5-13:

Figure 6-1:

List of Figures

Instantaneous probability of failure as a function of operating time for a
computing system according to the Weibull distribution
Rings of protection in a typical Time Sharing system
Typical sequence of events relevant to the characterization of the reliability of
a Time Sharing computer system. System failures due to hardware transients
have different probability of leading to a system failure if the system operates
in kernel mode than if the system operates in user mode. Kernel software
faulits can oniy lead to system failures while parts of the kernel are executed.
Window function used to obtain the integral of X'
Three possible failure rates, all leading to the same statistics
Software packages used in the validation of the cyclostationary modeling
methodology.
Relationship betweer: x, and X
Fraction of time in kernel mode for five consecutive weekdays
Autocorrelation function of K, .
Fraction of time in kernel mode averaged over a one day period
Nuniber of system failures as a tunction of time of day
Variance of x, averaged over a one day period
Estimated and approximated autocorreiation function of the process X,
Hazard function of the equivalent nonhomogeneous Poisson process
describing the system failure process in both the Cyclostationary and
Stationary forms. The two dashed lines indicate the values of the hazard
function at zero and infinity.
Periodic failure rate component compared with a real histogram of failures
over a one day period.
Estimated and approximated value of md"(t_)
Histogram of disk failures as a function of time of day.
Hazard function of the equivalent non homogeneous Poisson process
characterizing the statistics of the time to failure of a file system. Both
hazard functions (according to the Cyclostationary and Stationary
approximations) have been plotted. The Mean Time To Failure is 7 minutes,
that would correspond to a constant hazard function of 0.7 according to the
Exponential model. The two dashed lines at the bottom of the graph enclose
the range of variabilitz of the hazard function due to the periodic component
of the failure rate m® (t). Note that this range of variation can be negiected
and that the main factor characterizing the hazard function is its decreasing
etfect due to the integral of the autocorrelation function R Ik dk(T).
Hazard functions predicted by Exponential, Weibuil, Periodic, and
Cyclostationary modeis for file system failures.

888 B

Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:

Figure 7-1:

Figure 7-2:
Figure 7-3:

Figure 7-4:

Figure 7-5:

Figure 7-6:

Figure 7-7:

A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

Hazard functions predicted by Exponential, Weibull, Periodic, and
Cyclostationary models for system failures.

Reliability functions according to the Exponential, Weibull and Stationary
models for file system transient failures.

Reliability functions predicted by the Exponential, Weibull, and Stationary
models for system failures (crashes).

Reliability functions obtained from the Stationary model by considering the
real autocorrelation function and white noise.

Probability that a crash is due to software or hardware as a function of the
time of day

Average number of jobs executing as a function of time of day

Typical system of events illustrating the unreliable behavior of a computmg _

system from a user viewpoint

Expected elapsed time required to execute a program at three different times
of day

Typical sequence of events in a system with checkpointing facilities. The total
added cost due to unreliability is the cost associated with the checkpoint
operation, plus the cost due to system unavailability due to failures, plus the
cost of recovering after each failure to the state given by the last checkpoint.
Characterization of the reliability of a nonredundant system subject to
permanent hardware faults by a Markov process. A is the rate at which
permanent failures occur and)\r is the rate at which repairs take place.
Characterization of a non redundant system subject to permanent and
transient hardware failures, and software failures

101

104

105

108

114

115
116

119

122

127

129

LIST OF TABLES vii

List of Tables

Table 2.1: Reliability experience of several commercial systems. MTTS is the Mean Time 11
to reStart. MNIR is the Mean Number of Instructions to Restart,

Table 4-1: Examples of different autocorrelation functions and the corresponding hazard 60
functions of the equivaient failure process

Table 5-1: Results of applying a X2 goodness-of-fit test for the Cyclostationary and 84
Stationary models for system failures (crashes). Both models give levels of
confidence larger than 0.05, therefore confirming their validity as accurate
system characterization tools

Table 5-2: Results of applying a X2 goodness-of-fit test for the Cyclostationary and 91
Stationary models with the file system failure data. The hypothesis that the
models are good abstractions for the system behavior is confirmed since the
level of confidence is larger that 0.05 in both cases.

Table 6-1: Reliability and Hazard functions of the five compared models.

Table 6-2: Results of a x2 goodness-of-fit test with the Exponential, Weibull, Periodic,
Cyclostationary, and Stationary models for file system failures. Only the
Cyclostationary and Stationary models give levels of confidence greater than
0.05. The Weibuil and simplified Stationary models give smaller lavels of
confidence but close to 0.05. The hypothesis that the time to failure can be
characterized with Exponential or Periodic models has to be rejected. The data
used was obtained from five weekdays of system operation during which 877
(transient) failures were detected. The MTTF value is 7 minutes. The file
system is composed of 8 RP06 disk drives totaling 1600 megabytes of on line
storage.

Table 6-3: Resuits of a X2 goodness-of-fit test with the Exponential, Weibull, Periodic, 100
Cyclostationary, and Stationary models for system failures (crashes). Again,
the cyclostationary and Stationary models give the best fit. The data used was
obtained from 6 months of system operation during which 243 crashes due to .
transients or software were detected (Nov. 1979 to Apr 1980). The MTTS i
(Mean Time To reStart) value is 8 hours. :

Table 6-4: Failure rates and hazard functions assumed by each of the five models 102]

Table 7-1: Different views of the impact of software in system unrefiability 115

Table 7-2: Four proposed models to evaluate the optimum checkpointing interval in a 123 1

transaction processing system

88

Acknowledgements

| would like to thank my advisor, Dan Siewiorek, and my thesis committee, Steve Director, Bob
Fontana, Floyd Humphrey, and Anita Jones, for all the help they gave me in making this thesis
reasonably coherent. Mickey Tsao and Steve Elkind also provided valuable critical feedback.
Conversations with Marcel Coderch from MIT were specially helpful in formulating certain

mathematical problems and their solutions.

The work presented in this thesis critically depends on some measuring tools rarely available in
most computing systems. Stephen McConnel, author and maintainer of SEADS, updated the
software package according to the needs of the present work._ Craig Everhart provided the core of
SYSMON, the program with which resource utilization functions have been measured. Howard
Wactlar allowed SYSMON to be running permanently on the CMU-10A for several months, even
though it meant the permanent loss of one job slot in an already overloaded sysiem. Luis Vidigal
wrote the APL program implementing the Powell algorithm used to compute the maximum likelihood
values of the parameters of several functions.

Also, | would like to thank my classmates and friends at CMU, who struggled alongside me during
these years, especially Mark Carlotto, Andrzej Strojwas and Karem Sakallah. Special thanks to Steve

Director for providing a stimulating working environment.

webe

r——"——.m_"m

INTRODUCTION

Chapter 1
Introduction

In the early 1950’s, the mathematician John Von Newmann studied problems in the design and
construction of digital computing machines. In particular, he was interested in the following problem:
assume that one has a collection of connected elements computing and transmitting information (an
automaton) and each element is subject to eventual malfunction. Can one arrange and organize the

elements so that the output is error free for an arbitrary period of time ?

Although encouraging, experience with digital computers in the 1950's had some drawbacks. The
ENIAC (Electronic Numerical Integrator and Computer), the first electronic digital computer, had been
operating since the mid 1940's. It had 18,000 electronic tubes, each tube having an expected life of
2,500 hours [Goldstine 72]. Von Newmann later proved the feasibility of a computer with 2,500
vacuum tubes and a Mean Time Between Failures of 8 hours, by muitiplexing all interconnections
14,000 times, a requirement "not wholly outside the range of our (industrial or natural) experience”

[Von Newmann 63].

The fact is that reliability was an overwhelming concern for the designers and users of first
generation computers. The components used were relays, vacuum tubes, and delay-line storage
devices. All had relatively high failure rates and were subject to transient faults. Hence, fault-tolerant
techniques were developed to cope with component unreliability. The use of parity in memories,
duplication or triplication and wvoting, instruction retry, and other hardware fault detection

mechanisms were familiar to the designers of those early computers.

The development of fault-tolerance was interrupted by the rather sudden appearance of
semiconductor circuits and ferrite cores as digital system components. Hardware suddenly became
so "good" that in the 1960's the responsibility of maintaining operation was relegated by defauit to
the system software. A typical example is the MULTICS system of M.1.T. [Corbato 74].

At present, it is clear that fauit-tolerant is a desirable attribute of computing systems. The cost

¢ o vl Ges s,

2 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

associated with a computer failure in say, a spacecraft, clearly justifies the use of fault-tolerant
techniques. But there are many other , more trivial, applications where unreliability is undesirable. In
transaction processing systems, airline reservation systems, or even in general purpose computation
centers a system failure or "crash" is associated with a user delay to finish one or several tasks.
Unreliability of current digital computing systems does not arise from poor quality of the components
but from the continuous growth in systems siie and complexity. Typical components reliability is
measured in failures per million hours. But the number of components used is usually very large and
component malfunction (either temporary or permanent) eventually leads to system failures (at least
once a day for typical Time Sharing systems). Furthermore, another factor appears now to be
specially relevant to system reliability - the correctness of the programs managing the use of system
resources, that is, software reliability.

This thesis deals with reliability characterization of digital computing systems. In particular, it is
concerned with the behavior that users will observe in their everyday use of Time Sharing systems,
and about quantifying the impact of unreliable behavior at the system level. The approach taken has
been motivated mainly by the following two facts:

o The desire to formulate a hardware/software reliability prediction model.

o The good fit of the Weibull distribution to experimentally obtained failure data of several
camputing systems [McConnel 79a].

These two points deserve some more explanation.

1.1. Hardware/Software reliability prediction

The following definition has been drafted by the Software Reliability Committee of the IEEE
Reliability Socisty '
Definition 1: A Compatible Hardware/Software Reliability Prediction Model is a

suitable interpretation of hardware and software mathematical relationships for combined
computation so as to make feasible prediction of system reliability (SRC 81].

Prediction models describe the mathematical relationships between certain system parameters. A
combined hardware/software prediction model would alfow the evaluation of the impact of each
cause of unreliability on the observed behavior at the system level. Prediction models can be used to
refine a design before actually implementing it, or to optimize the policies regulating the use of
systems already operational.

INTRODUCTION 3

At present, no such modeling methodology is available. As will be described in Chapter 2, current
hardware and software modeling efforts are unconnected, preventing the formufation of a unified

view of system behavior. Perhaps one of the reasons why more fauit tolerance is not found in systems
today is due to this lack of cost/benefit analysis techniques.

1.2. The Weibull distribution

If the expectation of having a combined hardware/software reliability prediction model is desirable,
the findings about the Weibull distribution are intriguing. After collecting failure data from several
systems, a research group at Carnegie-Melion University reached the following two conclusions :

e Hardware unreliability is mainly due to transients as opposed to permanent fauits
[Siewiorek 78],

o The Weibull distribution fits experin;iental data extremely well [McConnel 81].

The Weibull distribution was originally presented by Prof. Weibull in an article dealing with fatigue
resistance of steel [Weibull 51]. Prof. Weibull’s goal was to find a single distribution of wide
applicability that would comprise other distributions as special cases. The Prabability Distribution
Function (PDF) of the time to failure is given in the case of the Weibull distribution by

An®
e

Pit<r) =1- (1.1)

Note that for a = 1 the Weibull distribution becomes an exponential . For a = 2 equation (1.1) becomes
the Rayleigh distribution. For a<1 equation (1.1) has a decreasing hazard function, a concept which
will be formally introduced in Chapter 3 but that can be described intuitively as follows. If h(t) is the
hazard function of a system at time t, h(f)At is the instantaneous probability of observing a system

failure on the infinitesimal interval [t,t + At). For the Weibull distribution, .
h(t) = . (1.2)
(At)“'ﬂ

which, for a<1 is a decreasing function of time. Similarly, for a>1, h(t) is an increasing function of
t. [McConnel 79b] shows that the Weibull distribution with a<1 closely fits the distribution of the time
to failure of digital computing systems. Therefore, the instantaneous probability of observing a failure
in a computing system decreases as the system is operating.’

Figure 1-1 illustrates the behavior of the decreasing hazard function Weibull. The system is started
at time t and failures occur at times t The system is restarted immediately after each failure.

4 A COMPATIBLE HARDWARE/SOFTWARE RELIABSILITY PREDICTION MODEL

h{t)

Figure 1-1: Instantaneous probability of failure as a function of operating

time for a computing system according to the Weibull distribution
The instantaneous probability of system failure rises after each failure and decreases from then on
until the next failure. This behavior is surprising since computers are rarely switched off, therefore not
experiencing a warm-up transient period (a possible cause of early failure). Although combuter
folklore uses the words "cold start” and "warm start” to describe different software initialization
sequences, software is also believed to be temperature insensitive. Why should computing systems
exhibit such behavior? What are the implications of such behavior? Should ail users of a computation
center walk out of the terminal room every time that the system is restarted and come back later when
the probability of failure is sufficiently small? Or is this just a mathematical paradox irrelevant to
system characterization? All these questions will be answered in the following chapters.

1.3. Organization of the resea(ch

To quantify the impact of unreliability in a variety of situations, a compatible hardware/software
reliability prediction model will be created. This thesis deals with the formulation of such a model, its
validation, and the main conclusions draw from its predictions.

Chapter 2 is an overview of current techniques for reliability characterization, causes of
unreliability, and existing modeling methods.

e e e kM .

INTRODUCTION 5

In Chapter 3 the proposed modeling methodology is formaily developed. The emphasis is on the
generality of the results obtained. it is expected that some of these resuits will be applicable to the
characterization of the reliability of other complex systems besides digital computers.

The results presented in Chapter 3 are specialized in Chapter 4, were a study of systems under
constant or periodic workload is made.

Chapter 5 discuses the problems associated with model validation. A real system is modeled in
detail, and the necessary techniques for measuring and estimating the required model parameters are
also given.

Chapter 6 contains a comprehensive study of the similarities and differences between the model
presented in this thesis and other modeling efforts. Numerical comparisons between predicted and
observed behavior are also given.

Chapter 7 contains some applications derived from the new modeling methodology. Several
examples are given which show how to use the model in order to optimize operational policies or
quantify the impact of unreliability on the performance of a digital computer system. Although
through the Thesis the emphasis is on characterizing unreliability due to hardware transients and
incorrect software, an extension of the modeling methods incorporating permanent hardware faults is
also given in this Chapter.

Finally, Chapter 8 summarizes the resuits of the previous chapters and suggests directions for
further research,

6 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

BACKGROUND 7

Chapter 2
Background

The different approaches traditionally used to characterize system reliabiiity will be examined in
this chapter. After some definitions given in Section 2.1, the problem of characterizing computing
systems reliability is introduced in Section 2.2, Sections 2.3 and 2.4 describe the two major
contributions to system unreliability: hardware transients and incorrect software. The modeling
methodology presented in this thesis will be validated with a TOPS-10 Operating System. Section 2.5
presents the validation requirements. Amid the description of MULTICS like protection mechanisms
{of which TOPS-10 is an example) the new modeling methodology will be presented.

2.1. Definitions

The reliability of a system is a measure of how successfully a system conforms to some
specification of its behavior. A failure is any deviation of system behavior from its spéciﬁcations.
System specifications usually define the external state of the system, and failures will be detected as
anomalous external states. The following definitions apply only to operational systems, not to
systems undergoing development, debugging, or testing (this distinction is important in the case of
software reliability modeling). These definitions were first given by [Randeli 78].

Definition 1: An error is that part of the (internal) system state which is incorrect in the
sense that further processing within the specifications of use will lead to a failure.

Definition 2: A fault is the electrical, mechanical, or algorithmic cause of an error. A
potential fault is a fault that under some circumstances within the specifications of use will
cause an error.

Definition 3: A permanent hardware fault is an irreversible electrical or mechanical
cause of errors. The internal state of a system in the presence of permanent hardware
faults is continuously incorrect.

Definition 4: A transient hardware fault is a fault due to temporary environmental,
mechanical, or electrical conditions.

8 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

Detinition 5: A software fault is an algorithmic cause of errors.

Note that software and transient hardware faults are always potential faults since they will lead to
errors only under certain circumstances of use. For operational systems, transient hardware faults
and software taults are indistinguishable in the sense that they are irreproducible errors.

Definition 6: A system failure is the external state manifestation of an error such that
the entire computing system has to stop operating.

Since no repair takes place after system failures due to software faults or transient hardware faulits,
the time of system failure is essentially equal to the system restart time. This thesis is solely doncemed
in modeling hardware transient fauits and software faults. Thus, the words system failure and system
restart will be used interchangeably to describe the same event in time.

2.2. The problem of characterizing system reliability

Fault-tolerance has traditionally been characterized by relatively simple functions based on strict
assumptions. The Reliability function R(t) is defined as the probability of uninterrupted operation up to
time t given that alfl hardware was correctly operating at time t=0. R(t) may be used to characterize
either permanent or transient faults. The usual assumption is made that the failure rate is constant
and, for nonredundant systems, the reliability funcliui becomes e. t, where A is is the sum of the
failure rates of ail the components in the syster. A very common quantitative measure is the Mean
Time To Failure (MTTF)

w .
MTTF =/; R(t) dt (2.1)

The popularity of the MTTF stems mainly from the fact that, for nonredundant systems, it is easily
estimated by dividing the time a system is operational by the number of failures reported. Other
reliability indices used to compare two systems A and B, are the Reliability Improvement factor (RIF)
[Anderson 67)

BACKGROUND 9
1-R, (1)
RIF = e)
1-Rg(t) (2.2)

and the Mission Time Improvement Factor (MTIF) [Bouricious 69]

T
A
MTIF = - when R,(T,) = Rg(Ty) = R,

(2.3)

n

which are useful only when the system under study must be available for a predetermined period of
time T called "mission time".

The concept of coverage [Bouricious 69] is defined as the conditional probability of successful
recovery, given that a fault has occurred. Although mathematically attractive, coverage has proven to
be very difficuit to estimate for real systems. Finally, if the. Mean Time To Repair (MTTR) is also
known, an estimate of the system usefulness given by the Availability that for non redundant systems

is given by
MTTF y
A = STTETMTTR _ 24)

2.2.1. Performance-Reliability evaluation

The above measures do not take into account the performance of the system whose reliability is
being measured. Consider Table 2-1 which lists the results obtained from seven different experiments
whose goal was explicitly to gain experience on systems reliability. Data for the first system [Yourdon
72], was obtained from a summary of failure statistics on a Borroughs 5500 over a 15 month period
starting in April of 1969. Limited information about the cause of each failure is available. For instance,
one of the categories includes system failures due to unexpected 170 intercepts. These failures are
recorded whenever the software responds to an interrupt signifying that some 1/0 action has taken
place, but discovers that it has no record of having initiated such action. It is thus an indication of
some form of hardware or software error but the particular cause for the failure (hardware or

a

s ke et— =

10 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

saftware) remains unknown. The data for the second system was reported in [Lynch 75) and comes
from the first thirteen months in the life of an operating system called Chi/OS for the Univac 1108
developed by the Chi Corporation between 1970 and 1973. No explanation is given about how such
an accurate decomposition of failures due to hardware and software could be obtained. [Reynolds
75] reports three years of data obtained from a dual IBM 370/165 at Hughes Aircraft Company
installed to handle a mixed batch and time sharing load. The fourth system is at the Stanford Linear
Accelerator Center (SLAC) where the main workload is processed as multi-stream background batch.
The system consists of a foreground host (IBM 370/168) and two background batch servers (IBM
370/168 and IBM 36Q/91). The architecture is designed to be highly available and reconfigurabie.
The fifth system is the CMU-10A, an ECL PDP-10 used in the Computer Science Department at
Carnegie-Mellon University. The data for the CRAY-1 was reported in [Keller 76], and the data for the
three generic UNIVAC systems was reported in [Siewiorek 80].

Table 2-1 gives, when available, a Mean Time to reStart (MTTS) value in hours (that is, the Mean
Time to System Failure), a Mean Number of Instructions to Restart (MNIR) which is an estimate of the
mean number of instructions executed from system start up until system failure, and the percentages
of system failures that were caused by hardware faults, software faults, and faults whose cause could
not be resolved. The information about execution rates needed to compute the MNIR value was
obtained from [Phister 79).

Obviously, the figures shown in Table 2-1 do not carry much information. A MTTS figure alone does
not tell the impact of unreliability on system use. Compare for exampie the CRAY-1, [Russeil 78], with
the CMU-10A, [Bell 78). Although the CRAY-1 crashes twice as often as the CMU-10A, it can operate
continuously at rates above 138 Million Instructions Per Second (MIPS), while the CMU-10A operates
at 1.2 MIPS. Hence the CMU-10A executes ~10'0 instructions between crashes while the CRAY-1
executes ~10'2 instructions between crashes. Inconsistencies like this one suggest that reliability
modeling and measuring should be closely related with the characterization of the performance of the
system under study.

Integrated performance-reliability models have already started to appear in the literature. In [Meyer
79], a performance measure called "perfarmability” gives the probability that a system performs at
different levels of "accomplishment”. In [Gay 79], systems are modeled with Markov processes in
order to estimate the probability of being in one of several capacity states. This is a similar approach
to the one previously taken in [Beaudry 78], where the concept of "computation reliability" was
introduced as a measure which takes into account the computation capacity of a system in each

.'.

BACKGROUND 1
System MTTS (hours) MNIR % HW % SW % Unknown

B 5500 14.7 2610 39.3 8.1 52.6
Chi/05 17 6.7 10 as 55
Univac 1108
dual 8.86 2.8 10" 65 32 3
370/165
SLAC 20.2 2.310" 73.3 21.6 5.1
CMU-10A 10 4310"°
CRAY-1 4 19101
UNIVAC 51 a2 7
(Large)
UNIVAC 57 41 2
(Medium)
UNIVAC 88 9 3
(Small)

Table 2-1: Reliability experience of several commercial systems. MTTS is
the Mean Time to reStart. MNIR is the Mean Number of Instructions to
Restart.

possibie operational state. A Performance/Availability model for gracefully degrading systems with

critically shared resources is given in [Chou 80]. Finally, in {Moreira 80] a model is described which

predicts the cost reduction associated with different values of coverage, repair rate, and diagnosis

time. An example shows how the advantage of using a N-redundant system can be quantified

assuming only permanent hardware fauits.

12 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

2.2.2. Causes of unreliability

Most of the above models have been developed mainly for hard faitures, that is, stable failures that
reflect an irreversible physical change in the hardware. Unfortunately, as it has been repeatedly
reported ({Fuller 78], [McConnel 79b], [Morganti 78], [Siewiorek 78], [Ohm 79]), transient failures
occur at least an order of magnitude more often than hard failures. A cost effective analysis should

then consider transients as the main reason for system unreliability.

Simuitaneously with the developments described above, qualitative relationships between
workioad and unreliability have also been noted. The resuits published in (Beaudry 79] suggest a
strong dependency between workload and reliability of digital computing systems. And in the paper
by [Butner 80}, this dependency is stated explicitly claiming that a periodic, workload-dependent
failure rate is more appropriate to characterize the reliability of time-sharing systems than the
classical constant failure rate modei traditionally used. As reported in [Castillo 80a], if such a
dependency is taken into account it is possible to characterize the performance of digital computing
systems considering reliability as an inherent attribute. .

Another factor atfecting computing systems reliability is the reliability of the software managing the
use of system resources. Faults in the software which force a crash and restart operation are not
uncommon. They occur, in most commercial systems, much more often than permanent hardware
faults, and their effects are similar to the effects of hardware transient faults. The conditions under
which a software fault generate an error are usually impossible to determine (as soon as these
conditions are determined, the software can be corrected). Hence, the software faults remaining in an
operational system are obscure and manifest themselves only upon particular (but unknown)

conditions.

in summary, the problems currently relevant to computer reliability characterization are

1. Predominance of hardware transient faults over permanent hardware fauits.
2. Software unreliability

3. Disconnection between reliability evaluation and performance evaluation.

The following sections elaborate upon these issues in more detail.

B

BACKGROUND 13

2.3. Hardware transient fauits

Hardware transient faults are induced by temporary environmental, electrical, or mechanical
conditions. Their effects include flipping a single bit in the main memory of a computer (due to the
emission of an alpha particle by radioactive elements present in IC packaging), reading erroneous
information from a magnetic disk (due tb inaccurate positioning of the reading heads), resetting ail
CPU registers (due to a power glitch), or receiving erroneous information from a bus (due to

electromagnetic radiation received by a bus acting like an antenna).

Although a given transient may occur more than once in the lifetime of a computer, its effects are
essentially unpredictable. Consider a singie bit in memory that flips its value due to the emission of an
alpha particle. If that bit is not storing information at the time that the transient occurs, and the value
of the bit is overwritten before being read, the transient passes unnoticed. However, if the same bit is
part of a pointer to one of the operating system critical data structures, the entire computer system

may crash. 3

The physical processes generating transient faults generation are presumably sparse since,
according to Table 2-1 many commercially available systems are able of continued correct operation
for several hours in spite of being built out of a large number of components. Nevertheless,
sparseness is not equivalent to total absence and as computing systems become more complex the

impact of transient faults may become harder to evaluate uniess due attention is paid to this problem
during the design process.

2.3.1. Causes of hardware transient faults

Some causes of transients are :

e Limitations in the accuracy of electromechanical devices (such as the positioning
servomechanism for the reading heads of a disk drive).

e Electromagnetic radiation received by interconnections (such as long buses acting like
receiving antennas). L

o Power fluctuations or glitches not properly filtered by the power supply.

o Effects of ionizing radiation on semiconductor devices

This last cause is currently the most important chailenge to device designers and requires some

14 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

more explanation. It has been only recently that the effects of ionizing radiation have been recognized
as a source for "soft" faults in computer memories [May 79). "Soft" means that the information held
in a memory device has changed, but no irreversible change in the device has occurred. Information
in computer memories is stored as the presence or absence of charge in capacitors. When an
energetic particle creates electron-hole pairs in the vicinity of a capacitor, some of the added charge
carriers are collected by the capacitor. If the added charge is sufficiently large, the information stored
is changed. The amount of charge that represents a bit and the "critical” charge that is needed to
change it have decreased with miniaturization and the advent of VLSI technology. Transient failures
in semiconductor memories due to ionizing radiation were not significant until the introduction of 16K
bit and 64K bit memory chips.

Two main causes have been detected so far as sources of ionizing radiation which affect the
operation of digital computers

e Trace amounts of natural radioactive elements in metallic and ceramic packaging
materials [Geilhufe 79]

e The effect of cosmic rays [Ziegler 79]

Although the effect of radioactive materials in packaging materials can be reduced by further
purification and better system design, it is not clear how the effects of cosmic rays can be avoided
[Keyes 81].

Soft errors are sparse. The designer of a 16 bit 1M word system (built out of 16K dynamic RAM
chips) would observe a Mean Time To Soft Failure due to alpha particles of ~40 days [Geithufe 79].
For a system of the same size (built out of 64K dynamic RAM chips) the Mean Time To Soft Failure
due to cosmic rays would be of ~16 days at sea level, ~4 hours at 30,000 feet [Ziegler 79]. However,
a soft error is completely removed by the following write cycle. Thus, as pointed out in [Smith 81], the
observed soit failure rate depends on the frequency between writes or rewrites.

2.3.2. Hardware transient faults modeling

There are three basic approaches to hardware transient queling. In each approach, the
Probability Distribution Function (PDF) of the time to Failure is assumed to be either an Exponential

distribution, a Weibuil distribution, or an Exponential distribution with periodic failure rate.

BACKGROUND 13

2.3.2.1. Exponential distribution

The mast widely used mode! for failure process characterization assumes the failure process to be
a homogeneous Poisson process. The PDF of the time to failure is then given by

-)\ef

P(Kr)=1-e (2.9)

where A e is the (constant) failure rate. The maximum likelihood estimate of A e is obtained simply by
dividing the time that the system has been operational by the number of failures reported. All
functions and parameters related to this model will be noted with subindex “e” and from now on this

maodel will be referred to as the exponential model.

2.3.2.2. Weibull distribution

Empirical studies [McConnel 79b] have shown that a Weibull distribution gives a better goodness of
fit to experimentai data than a simple exponential. The Weibull PDF is given by

-O\wq-)“w

P (K<) = 1-e (2.6)

The Weibull distribution is characterized by two parameters :' Aw , the scale parameter, and « , the
shape parameter. For a,=1, the Weibull distribution degenerates to the exponential. For aw>1, the
Weibull distribution has an increasing failure rate. A decreasing failure rate corresponds to aw(1. All
reports published to date claim that a decreasing failure rate Weibull distribution fits experimental
data much better than a simple exponential model. Numerical procedures Have been developed to
find the maximum likelihood estimates of A w and a . These procedures are based on the works of
[Thoman 69, Berger 74, Romano 77] and FORTRAN programs implementing them are given in
[McConnel 79a].

2.3.2.3. Exponential distribution with periodic tailure rate

A workload dependent mode! has been presented in [Butner 80). A linear or quadratic dependency
between failure rate and workload is also assumed. The workload is characterized by a periodic
function of time. The proposed PDF becomes an exponential "modulated” by a periodic function

KT FU(T)
PiKr)=1-e P ePP (2.7)
where Fp is defined as the load induced failure rate, Up('r) denotes the instantaneous load value, and

K 0 is a workload independent failure rate. This model will be referred ta as the periodic model. all its

parameters having the subindex "p".

16 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MOOEL

Although it has not been used for reliability characterization, a periodic failure rate has been aiso
assumed in a model to determine the optimum checkpointing interval in a transaction processing
system by [Chandy 75a). The assumptions in this model are that transaction processing systems often
operate under periodic demand, leading to a periodic failure rate. The optimum checkpointing
interval is determined such that the cost associated both with checkpointing and recavering from

failures is minimized.

For systems operating under periodic workload an aiternative approach is to brake a period into M
discrete intervals. The system workload and failure rate are assumed to be constant in each interval.
This approach has been used by [Chandy 75b] to evaluate the optimum checkpointing interval in
transaction processing systems, and by [Beaudry 80) to characterize the reliahility of a multiprocessor
for avionics applications and the reliability of the SLAC system described in Section 2.2.1.

2.3.2.4. Discussion

The popularity of the exponential model arises mainiy from its simplicity. The exponential model
may be a useful abstraction to characterize how failurez occur. However the validity of the
exponential model is not sustained by the data coflected about how errors are detected. A Weibuli
distribution with a <1 seems a much better choice. On the other hand, for systems in steady state
operation, the periodic model tries to incorporate the fact that the observed unreliability should
depend on patterns of usage, not on a constant set of parameters as the Weibull model implicitly
implies. This apparent conflict will be solved in the present thesis, where it is shown that eacH of the

above three models is a special case of a more general characterization.

2.4. Software Reliability

The problem of software reliability assessment is part of the more géneral area of software quality
assessment {Mochanly 73]. Effective mechanisms for measuring software quality are required due to
the high cost of software development and maintenance. By 1985 torecasts indicate that over 90% of
the total computing dollars spent annually will be for software [Horowitz 75). The development of
techniques for measuring software refiability has been motivated mainly by project managers that
require models to estimate the man-power needed to develop a software system with a given level of
performance and measuring technigues to detect when this level of performance has been reached.
However, most software reliability models presented to date are far from satistying these two needs in
a general context.

BACKGRQUND 17

There are basicly two approaches dealing with the design of reliable software. The first approach
consists in specifying the desired software behavior as accurately as possible and to develop error
free software according to the specifications. Thus, this approach deals with the development of fault-
intolerant software, and it implicitly assumes that it is possible to develop software packages of
arbitrary size and complexity which are completely error free. The second approach acknowledges
the fact that to write completely error free software is either impossible or excessively costly. Thus,
fault-tolerant software is written which takes into account the possibility of software faults and
provides mechanisms for recovering from their effects.

Unfortunately, the words "software reliability model" usually refer to mathematical models dealing
with software reliability assessment during the design of fauit-intolerant software. This is a much more
restrictive concept than the general set of tools used to predict, calibrate, and characterize the
reliability of software in a variety of environments {(which is what the words "software reliability

model” would suggest to a novice).

2.4.1. Fault-intolerant software reliability assessment

Software reliability models (in the restricted sense described above) can be roughly grouped into
four categories. The first category would inciude models formulated in the time domain. These
models attempt to relate software reliability (characterized, for instance, by a MTTF figure under
typical workload conditions) to the number of bugs present in the software at a given time during its
development. Typical of this approach are the models presented in [Shooman 73], [Musa 75}, and
[Jelinsky 73]. Bug removal should increase MTTF and correlation of bug removal history with the time
evolution of the MTTF value may ailow the prediction of when a given MTTF value will be reached. An
example of the application of time domain models to the development of a real-time system is given in
[Miyamoto 75]. The main disadvantages of time domain models are that they do not usually take into
account that bug correction can generate more bugs, and that software unreliability can be due not
only to implementation errors (bugs) but also to design (specification) errors.

Another approach to software reliability modeling is based on studying the data domain. The first
model of this kind was described by [Nelson 73). in principle, if sets of all input data values upon
which a computer program can operate are identified, an estimate of the reliability of the program can
be obtained by running the program for a subset of input data values. A more detailed description of
data domain techniques is given in {Thayer 78]. In the paper by [Schick 78] the time domain and data
domain models are compared. However, different applications will tend to use different subsets of all

18 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

possible input data values, "seeing” different reliability values for the same software system. This fact
is formally take into account in [Cheung 80}, where software reliability is estimated from a Markov
model whose transition probabilities depend on a user profile. Techniques for evaluating the
transition probabilities for a given profile are given in [Cheung 75).

The third category includes models in which software reliability (and software quality in general) is
postutated to obey certain laws [Ferdinand 74], [Fitzsimmons 78)]. Although such models have
generated large amounts of interest, their general validity has never been proven and, at most, they
only give a figure for the number of bbgs present in a program.

Finally, there have been some attempts to characterize total system reliability (hardware and
software) in [Costes 78], and warnings about how not to measure software reliability [Littlewood 79].

What all the above models have in common is that none of them characterizes system behavior
accurétely enqugh so as to give the user a figure of guaranteed level of performance under general
workload conditions. They concentrate in estimating the number of bugs present in a program but do
not give any accurate method to characterize and measure operational system unreliability due to
software. There is a wide gap between the variables that can be easily measured in a running system
and the number of bugs in its operating system. However, a cost effective analysis should allow the
evaluation of software unreliability from variables easily accessible in an operational system, wi'thout
knowing the details of how the operating system has been written.

2.4.2. Fault-Tolerant Software

Fauit-tolerant software assures the reliability of the system by use of protective redundancy at the
software level. There are two main strategies for obtaining fault-tolerant software:

o Recovery Blocks

o N-Version programming.

The Recovery Blocks {RV) strategy [Randell 75, Lee 79] consists of three entities: A primary
alternate (A,), an acceptance test (AT), and a list of supplementary alternates (A.‘,......AN_1). Upon
normal execution, A1 is executed first. If AT is passed, normal computations proceed. If AT is not
passed, a purging of data is performed and a new alternate is called. Some modeling efforts for the
Recovery Blocks strategy have been reported in [Hecht 76).

BACKGROUND 19

The N-Version programming (NV) strategy [Avizienis 75, Avizienis 77] requires N > 1 independently
designed programs (versions) for the same function. The resuits after each stage of computation are
compared and in the case of disagreement, a preferred resuit is identified. If redundant hardware is
available, the N versions can be executed concutrently. Otherwise, a performance penalty is paid
since the N versions have to be executed serially on the same hardware. In{Grnarov 80] the

processing times and refiability performance of the RV and NV strategies are compared.

Because of development costs, fault-tolerant software can be found in only a few systems with
exceptional reliability requirements, such as space or military systems. Thus fault-toierant software
will not be modeled here since it is not available in the majority of commercial systems.

"2.4.3. Discussion

In [Glass 81] a study about "persistent” software errors is summarized. A software error is defined
to be persistent if it eludes early detection efforts and does not surface until the software is
operational. One of the findings of this study is that a large percentage of persistent software errors
are instances of the software not being sufficiently complex to match the problem being soived. It
seems as if the programmers were straining to comprehend the complex interrelationships of a
problem salution and failed. The analysis section of a Software Problem Report presented by [Glass
81] as a typical example literally describes the cause of a bug as "insufficient brain power applied
during design”. A large number of errors are the result of a predicate not having enough conditions,
or of a variable not being reset to some value after a major piece of code has finished dealing with it.

Unreliability due to software in operational systems is therefore mainly due to persistent errors.
That is, the complexity of the data to be processed has been oversimplified in some situations. When
one of these situations arise, a software error is generated. Since once it has been written the
sohtware does not change, one would be tempted to view the software and all its attributes as static
entities. However, this is not what is observed in most operational systems. Although the software is
static, the complexity of the data to be processed changes dynamically according to workload and
use of the system. Therefore, the view of sofware reliability as a static property may be useful for
software designers, but it is certainly inadequate for users wishing to evaluate the impact of software
unreliability in a variety of working environments. The observed software unreliability in an
operational system is a dynamic attribute depending (at least) on the following two factors:

e How much the software is used (number of executions per unit time)

e el £ i

20 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

¢ ln what way is the software used (what is the complexity of the data to be processed)

These two points will be eilaborated in Section 2.5.2. }

2.5. Model verification requirements

The previous sections have summarized some current problems associated with reliability
characterization ot digital computing systems. As stated in Chapter 1, the main goal of this thesis is to
provide a modeling methodology able of providing better reliability characterization, particuiarly
relating to the effects of hardware transients and software faults in operational systems. The following
constraints have also been imposed:

e The characterization should be user oriented. That is, it shouid provide users with a set of
tools to evaluate the impact ot unreliability due to software and hardware transients. This

contrasts sharply with most software reliability models, which are oriented to help the
designer to meet a static requirement.

o No matter how complex the model may be, the results should be easy to understand and
apply.

Model parametrization must be possible from easily measurable variables in operational
systems. Situations such as the ones created after the introduction of "coverage”
{conceptually attractive, but impractical to measure in real systems) should be avoided.

e The model must be validated by contrasting its predictions with the behavior of real
systems,

The fast restriction is particularly important since validation will be possible only with systems which
have the necessary measuring tools already incorporated. Because of its availability at CMU,
validation will be made with the TOPS-10 Operating System, a MULTICS like Time Sharing system.
Since most commercially available Time-Sharing systems have protection mechanisms based on the
original MULTICS design, this is not a particularly restrictive constraint. However, MULTICS
protection mechanisms themselves may give some hints about how the analysis should be started.

BACKGROUND 21

2.5.1. The MULTICS Time Sharing system

MULTICS (MULTiplexed Information and Computing Service) [Organick 72] was designed in the
mid 1960's as a prototype of a computer utility. Among other goals, it was to provide convenient
remote terminal access, continuous operation analogous to that of electric power or telephone
companies, and the ability to support different programming environments. Thus, one of the
requirements was to provide facilities for the protection of concurrently executing programs. The
protection mechanism proposed for MULTICS (and originally implemented in software) was named
rings of protection. Concepnially, an executing program segment in MULTICS is executing in one of a
set of concentric rings. A program can access programs and data in the rings outer to its ring. But
data in inner rings is only accessed through predefined "gates”. By subsetting the segments of a
process into rings and by eftectively controlling interactions and communication between segments
in different rings, MULTICS provides the potential to isolate trouble and limit damage. Ditferent rings
. are equated to different levels of damage.

Figure 2-1: Rings of protection in a typical Time Sharing system

Later systems have typically four rings of protection (Figure 2-1) and have the necessary hardware
mechanisms to enforce prbtection across them. The innermost ring or kernel is the most privileged
and the closest to the hardware. /0 interrupt routines, schedulers, pagers, and the most critical
operating system data structures reside in the kernel. The outer rings have different levels of privilege
and responsibility. In a typical partition, |/0 formatting and operating system services are executed in
the next ring or executive, command parsing and real-time jobs execute in the following ring or
supervisor and the last ring (the least privileged) is reserved for the execution of user processes and
run-time libraries.

Fm T

22 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MOODEL

2.5.2. A starting point

One of the nice properties of having rings of pfotectidn is that software singularities are readily
identified. Assuming perfect recovery from faults in the outer rings, the entire system collapses only
when the kernel software cannot execute. But the kernel software will always execute properly unless

o Hardware transient errors corrupt the kernel code or data structures

e The kernel software itself contains faults that under certain conditions corrupt itself or its
data structures

o Some hardware does not exist because of a permanent hardware fault

The observed reliability due to hardware transients and software fauits will therefore depend on
how much the kernel is used. Given that transients occur at random, the longer the systems executes
in kernel mode, the more likely is that a transient will affect the kernel software or its data structures.
Analogously, the probability that a software fault will manifest itself as an error will increase as the
kernel is exercised more and more. Thus, the observed unreliability due to hardware transient faults
and software fauits should be a function of kernel usage.

The assumption of having perfect recovery from faults in the outer rings is too strong and can be
partially relaxed. In fact, the two main assumptions on which the thesis is based are:

o Software faults in the kernel are more likely to lead to a system failure than software faults
in any of the outer rings :

e A transient affecting the operation of the kernel software is more /ikely to lead to a system
failure than a transients affecting other software.
These two assumptions are compatible with the presence of software faults in outer rings which may
abort single jobs, or even occasionally crash the system. The assumptions refer to the average
behavior of a system in steady state operation and do not negate the possibility of pathological
situations (such as the possibility of having a software fault that crashes the system in an aimost zero
load situation). These two assumptions only suppose that such pathological cases are rare.

In Chapters 3 to 7, the consequences of the above two assumptions will be rigorously formulated,
validated, and an investigation of their main implications will be made. At the end of Chapter 7, the
modeling methods derived from these two assumptions will be combined with traditional modeling
tools and the possibility of permanent hardware failures will be also taken into account. Thus, a
combined model taking into account the effects of transient hardware failures, software failures, and
permanent hardware faults will be introduced. '

BACKGROUND 23

2.6. Summary

This chapter has summarized some of the problems associated with the characterization of
computing systems reliability. In particular, it has been shown how independent reliability evaluation
and performance evaluation is iteelf a problem. The main causes of system unreliability (hardware

transients and software faults) have also been described, along with current modeling efforts.

Modeling methodologies for hardware transient faults and software faults are completely
independent, probably because these modeling methodologies are a response to designer's needs,
and component designers rarely interact with software designers.

The approach adopted in this thesis to characterize reliability at the system level is to put more
emphasis on what will be observed while paying less attention to how and why a given error occurs.
The main implicit assumption throughout the thesis is that reliability of complex systems can be
characterized by examining the patterns of usage of system singularities. The more a singularity is

used, the more likely it is that a failure will be observed.

For (ideal) Time Sharing systems, the main singularity is the kernel of the operating system. The
kernel can be damaged either because of transients or because of kernel software errors. The more
the kernel is exercised, the more likely that a transient will affect its operation or that a software fault
will generate an error. The formal framework for this approach is presented in the following chapter.

A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

MATHEMATICAL FORMULATION 25

Chapter 3
Mathematical formulation

This chapter gives the mathematical basis of a model capable of predicting the unreliability of
digital computers due to hardware transients and software faults. The results are essentially
thearetical and will be validated by means of analyzing real systems behavior in subsequent chapters.
Although the main goal is to develop a mathematical framewark suitable to the characterization of the
reliability of MULTICS like Time Sharing systems, the results obtained in this chapter are expected to
apply to a wider class of complex systems, namely, those systems with a failure rate that can be
approximated by either a stationary or cyciostationary Gaussian process. All the approximations and
specializations to computing systems analysis will be worked out in Chapter 4. The results presented
in this Chapter are closer to applied probability theory than to computing systems characterization.
For the reader not interested in strictly mathematical resuits the introduction to Section 3.2, Section
3.2.1, and the summary at the end of the chapter should be enough to give an idea of the main results.

in Section 3.1 the necessary definitions are given and the notation used through the thesis is
introduced. Section 3.2 is devoted to the description of the process underlying the unreliable
behavior of digital computer systems. The emphasis is not on why and how often faults are generated,
but on what the system is doing when an error is detected. The reliability of the system is shown to
depend on an integral converging to a Gaussian random variable and, more generally, to a Wiener
process. However, its evaluation requires some statistics which are impractical, if not impossible, to
evaluate from real systems. Thus, in Section 3.3 an approximation is given which depends only on
easily measurable variables. The Probability Distribution Function of the time to failure is shown to be
completely characterized by a single time function in Section 3.4, leading to a conceptually equivalent
but simpler description of the failure process than the description based on convergence concepts.

Finally, a summary of the results presented in this Chapter is given in Section 3.7.

26 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

3.1. Definitions and notation

A Probability Space (RQ,.4,D) is comprised of a sample space 2, a collection of subsets of { forming
a sigma field (written o-field) of events, A, and a probability measure ¥ An element w€fl is a possible
outcome of a random experiment. A subset of £ (a collection of passible outcomes) is called an event,
In general, not all collections ol outcome's are observable events. Probability theory gals only with
events in a a-field. A o-field of sets is a collection of sets closed under complementation, union, and
countable unions. The reason for associating observable events with a o- held is that whenever we
have a sequence of observable events {A} the fact that their complements {AC} and countable

union U are also observable events facilitates the proofs of many basic probability theory

is 1 i
results. Finally, the probability measure @ is a function that maps each set in A into the unit interval
[0.1].)
Definition 1: A random variable x(w) is a function with domain € and range the real line
R such that for every Borel set X in R, the set {w|x{w)€X} is in the o-fieid of events A.

The definition ensures that the probability of any event of the form P({w{x(w)€X}) is well defined for
any subset X of B, where the Borel sets B are the subsets of R belonging to the smallest o-field
generated by the set of all closed intervals. Sometimes it will be necessary to refer to all possible
events associated with a random variable or with a collection of random variables x,,....x,. Such
collection of events will be a o-field and will be denoted by "("1""'xk) meaning the smallest o-field

containing all the sets of the form
{olx, (@)X, X (W)X XjporuX, €B

Detinition 2: The Probability Distribution Function (PDF) of a random variable x is
defined as the function

P (x<8) = P{el(w)<EY

The POF of a random variable maps the real line R into the unit interval. It is a nondecreasing
function of £ and Px(xs-oo) =0, Px(ngO) = 1. [f there exists a nonnegative function px(u) such that

P(x<a) = /oo P (u) du

thep is said to be the probability density function (pdf) of x.

Of particular importance is the Gaussian or Narmal distribution. If a random variable x is Gaussian
(or normally) distributed, then

MATHEMATICAL FORMULATION 27
(u-m)?

a .

1 . ‘

Px<a) = ————n / e 22 du (3.1)
@m) V2 J®©

where m and o? are respectively the expected value and variance of x. The normalized Gaussian

distribution (with zero mean and variance 1) will be noted ¢(a)
1 a -02/2
d(a) = __—-/ e du (3.2)
.00 -

Definition 3: A stochastic process {x,(w); teT, w€2} is a family of random variables all
defined in the same probability space 3 and indexed by a real parameter t that takes
values in a parameter set T called the index set of the process.

The indexing parameter t will represent time in all the processes presented in this thesis and T will
always be equal to the real line R, that is, only continuous time processes wi!l be considered. For each
fixed t€R, x(w) as a function of w wiil be a real valued random variable. For each w€2, "t(“’) as a
' function of t will be a real valued function of time called a realization or sample function of the
process. The set of all these time functions is called the ensemble of the process. A sequence (or a
countable stochastic process) of random variables x,(w), Xo(w),... isa particular form of a stochastic
process in which the index set is the nonnegative integers N *. A

Stochastic processes will always be denoted such that time dependency will be expressed as a
subscript, while deterministic functions of time will have the argument in parenthesis. Thus, x, is a
stochastic process and h(t) is a deterministic function of *.

The following convergence concepts will be needed later in the chapter.

Definition 4: Convergence in probability. The sequence {x.l(u)} is said to converge
in probability to x(w) if for every e > 0

lim P lxn-xl>e) =0
n—>00

anc will be noted as

Jim x_ =x
pn-—ym n
Definition 5: Convergence in distribution. The sequence Xq X is said to

e
converge in distribution to x if

im P, (x <§) = P, (xZ$)
n

n—00
and will be noted as

28 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

(€)= P (§)

Convergence in distribution is weaker as it is implied by convergence in probability.

Definition 6: A ccunting process {N (w); t2t,} is a stochastic process having the set
N* ={0,1.2,..,90} of nonnegative mtegers as its state space.

For each we, Nt(“’) is a piecewise-constant function of t with jumps at t,(w). tz(w)....,tn(w). the
values of e b depending on the realization of the process. Counting processes are always
associated with point processes, the value of Nyw) fort < t<t ., being the total number of "points”
generated up to t,y All counting processes presented in this thesis will be associated with failure
processes of a given system, the value of Nt(“’) for t _<_t<ti o being the number of failures detected up
oY,

Definition 7: A renewal process is a counting process where the time durations

between consecutive events are positive, independent, identically distributed random
variables.

Renewal processes are commonly used for reliability modeling. In the case of permanent hardware
faults, it is assumed that after repair has been done the system is as good as new. Thus, the times
between successive permanent hardware faults verify the conditions given in the above definition and
the failure process is usually assumed to be a renewal process.

Definition 8: A Poisson process is a counting process {Nt ; tSto} with the following
three properties :

1. PT[N =O] =

'

2. Fort <s{t, the increment N =N:N_is Poisson distributed with parameter A A
where A is a nonnegative, nondecreasmg function of t.

3. {Nt>t,} has independent increments.

Property 3 is the distinguishing property. It means that for a Poisson counting process, the number
of points in nonoverlapping intervals are statistically independent random variables, no matter how
large or small the intervals are and no matter how distant or close they may be. The function At in
property 2 is termed the parameter function of the process. If At is an absolutely continuous function
of t, it can be expressed as

t
A= [200 . 33)
'

™y

e .

r-'-'—'——-_-"—-———ﬁ '

MATHEMATICAL FORMULATION 29

where :\T is a nonnegative tunction of t for tgto. The function)\T is termed the intensity function ot the
process Nr At any time t>t the intensity function A(r) is the instantaneous average rate at which

points occur. if Nt is a failure process A‘ is the failure rate of the process.

Definition 9: A Poisson process is said to be homogeneous when the intensity
function ,\t is a constant A independent of time.

For an homogeneous Poisson process, the PDF of the time to the next failure t, given that the
system is observed since time tg is given by the Exponential distribution

-A(-r-ts)

P,<Tit) = 1-e (3.4)

where A is the mean rate at which points (failures) are generated.

Definition 10: Whenever the intensity function At is not a constant but a deterministic
function of time A(t), the corresponding Poisson process is said to be nonhomogeneous.

For a nonhomogeneous Pgisson process, the PDF of the time to the first failure is given by

h{t) dt

Plt,STity) = 1-e 4 ‘ (3.5)

where h(t) is termed the hazard function of the process. Note that by property 2 in the definition of a
Poisson process, h(t)At is the probability of observing a failure in the infinitesimal interval ft.t+ At).
Thus, for a nonhomogeneous Poisson process, the probability of observing a failure in different
infinitesimal intervals evolves as a deterministic function of time.
Definition 11: Let x, be a stochastic process that is an "outside" process influencing
the evolution of a counting process {Nt;tzto}. Nt is a doubly stochastic Poisson process

with intensity process {A((x‘);tZto} if for almost every realization of the process x,, N, is a
Poisson process with intensity process function J\t(xt).

The process X, carries the information about how the intensity process varies, and for this reason is
sometimes called the information process.
Definition 12: A stationary process (in the strict sense) is a stochastic process {"t}

with the property that for any positive integer k and any points t,...... oty and hin T, the joint
distribution of .

30 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

Intuitively, a process is stationary if it has the same joint statistics regardless of where the time

origin is set. Hence, if x is a stationary Gaussian process, the joint distribution function of

t

{x‘ R ,x‘k .) is @ muitivariate Gaussian distribution whose covariance matrix is independent of h.
1

Definition 13: The Autocorrelation tunction Rxx(t1't2) of a process X, is defined as
R, (tty) = E[xt1x'2]

where E[..] stands for expected value.

If X, is stationary and real, Rm((t1 ,ta) depends only on the time difference r = |t ; -tzl and

R)0((7) = E{xt+‘rxt}

Definition 14: A stationary Gaussian process will be termed white noise if its
Autocorrelation function is given by

Re(7) = - 8(r) (3.6)

where §(x) is the Dirac delta function.

As will be discussed in the following sections, the main difference between white noise and any
other stationary Gaussian process is that of predictability. While a maximum likelihood estimate of
future values of a process exists for nonwhite noise processes, white noise is essentiaily
unpredictable.

Definition 15: A stochastic process x(t,w) is ergodic in the most general sense if all of
its statistics can be determined from a single realization x(t.uo) of the process.

Loosely speaking, a process is ergodic if time averages (the only ones that can be obtained from a
single realization of the process) equal ensemble averages (i.e. expected values). Obviously,
ergodicity can be defined with respect to certain parameters of the process. Only ergodicity with
respect to the autocorrelation function will be ne_edéd in this thesis, which is defined as follows :

Definition 16: A stochastic function is ergodic with respect to the autocorrelation
function if .

T
W 1
R“(‘r) = 7"_" © 5T /; Xy %t dt (3.7)

with probability one.

If ergodicity of the autocorrelation function is satisfied, the autocorrelation function can be
estimated by computing the above integral for a finite record of a single realization of the process X,

MATHEMATICAL FORMULATION 31

Definition 17: A real valued, continuous time stochastic process is defined to be a
cyclostationary process with period T it and only if [Gardner 75)

1. E{Xt} = E{xt+T}

2.E{xx.} = E{x, x5, 1} Vst
that is, it is a stochastic process with pericdic mean and autocorrelation functions.

Definition 18: A doubly stochastic Poisson process will be said to be a cyclostationary
Poisson process if its information process is cyclostationary.

Definition 19: A Wiener process is a stochastic process {WJtZto} such.that W, =0
and the joint distribution of 0

W)t DLt 20

is specified by the requirement that the random variables xkewt ‘W
independent, normally distributed random variables with ko k1

E[W‘u - Wtk.1] = plt-t,)

Var[wtk . wtm] = a’(tt,)

in particular, note that for fixed t, Wt is a normally distributed random variable with E[Wt] =put and
Var[Wt] =o%. The Wiener process is an interesting abstraction useful in describing certain physical
phenomenon such as the Brownian motion of a particle in a fluid. It has curious mathematical
properties such as the fact that although almost all sample functions are continuous, they are
nowhere differentiable. However, although being nowhere differentiable, if w, is white noise,

t
W, = 4 w_dr (3.8)
in the sense that the integral on the right side of the above equation has all the formai attributes of a

Wiener process. .

Let C denote the space of all real valued, continuous functions on [0,99) and let C denote the
smallest o-field of C where Wt is measurable. It can be shown that there exists a unique probability
measure W such that {Wt, t<1<00} is a Wiener process. By definition, # is such that Wl is a Gaussian
distributed random variable and #(t,a) wiil be used to note

Wta) = PW,<a)

1 a -12/2'
. —_— e dx (3.9) :
(2_”‘)1/2 No o))

32 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

3.2. The underlying failure process

The mathematical problem to be solved is summarized in Figure 3-1. As it has been explained in
Chapter 2, the problem is to characterize the unreliability of a MULTICS like Time Sharing System due

to hardware transient faults and software faults.

Figure 3-1 shows a situation in which hardware transient fauits occur in different components of

different subsystems (memory, CPU, bus) at times t,, t The sensitivity of the system to the

presence of a hardware transient fault depends on what fhe system is doing at the moment that the
transient occurs. if a transient occurs while the system operates in kernel mode the system will crash
with probability p,. It the system operates in user mode at the moment that the transient occurs, the
probability of a crash is P, It is assumed that pk>pu. The system may also crash while in kernel mode
due to the manifestation of a kernel software fault. The probability of such an event during time
interval At is assumed to be p ot (the assumption that Py is constant will be relaxed in the following

Chapter).

The probability of observing an error in a single component is extrémely small, and the number of
components, very large. The average Mean Time To Failure (MTTF) of a single component is on the
order of 10° hours (~10° years) for hard failures [Hodges 77]. The number of components varies trom
10° for a small minicomputer like the PDP-11/40 [Bell 78] to 10%1C packages for a supercomputer like
the CRAY-1 [Russell 78]. Hence the failure process due to transients is equal to the superposition of a
farge number of very sparse failure processes. It is proved in [Cinlar 72] that this type of superposition
converges to a Poisson process. Thus, the system failure process can be viewed as a Poisson
process with intensity

otherwise (3.10)

A { Py *+Pg it the system operates in kernel mode at time t
t Py
A‘ will be termed failure rate because it is the rate at which errors leading to a system failure are

generated.

3.2.1. The underlying intensity process

Let N[!,-t) be the counting process which counts the number of system lailures in the interval
[t,.tzl. Whether the system operates in kernel or user mode depends on user requests for program
execution and on program behavior. But it is certain that requests to the kernel will arrive at random
and that the duration needed by the kernel to satisfy each request will be aiso random. }\t is therefore

a stochastic process and N[' tyl becomes a doubly stochastic Poisson process.
1 L}

MATHEMATICAL FORMULATION 33

Instantaneous average number of requests to the
Kernel software per unit time

Time |

Operating Mode

et uon 00 1 00 0ogon

System Failure Rate due to Hardware Transient Faults

o o IOOMAOAO N [O 00 0 000

Hardware Transient Errors
i

cPU

% -
Y ta '
Memory ——
ty
Bus } 1
t 2 t 5

System failure rate due to Software Errors

1183111 T o O O T

Total System Failure Rate

e “PTIOOMINAO 0O 1 00 0 000

Time

Figure 3-1: Typical sequence of events relevant to the characterization of ;
the reliability of a Time Sharing computer system. System failures due to b
hardware transients have different probability of leading to a system failure if .
the system operates in kernel mode than if the system operates in user mede.

Kernel software faults can only lead to system failures while parts of the

kernel are executed. |

34 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

Let R be the number of requests received by the kernel in a time interval T. A common assumption
made in queuing theory is that RT is a Poisson distributed random variable,

PRy=n) = L1 o (3.11)

where PT(R = n) is the probability of receiving n requests in an interval T and » is the average number

of requests received per unit time.

Operational policies and human behavior guarantee that in most Time Sharing systems » is not
going to be a constant but a time varying function reflecting the workload of the system at each time.
Thus, more generally, the probability of observing n requests to the kernel in the interval [t,,t,‘,]

becomes t n
[/ (1) df] 2
PR, , =n) = —1 ¥ S 3.12)
((ot =" = = e :
where »(t) is the instantaneous average number of requests to the kernel per unit time and
t
2
ElRy, 1l = /t; v, dr (3.13)

is the expected number of requests in the interval [t1 .t2].
\

For a doubly stochastic Poisson process, the probability density function (pdf) of the time to the
first failure given that the systefm is started at time t= t, is given by [Snyder 75]
- A du
oy = €[o4 "] (3.14)
where the expectation is taken over the erisemble realizations of A_on [ts.r]. As shown in [Saleh 74)
the above expectation is equal to
[Al
p,(rlty = L e[et] (3.15)

where

T _
A[‘s"l = [At dt ' (3.16)
S
The statistics of A“ A are therefore required. Note that the problem of determining the statistics of
A[t 1) is equivalent to that of finding the distribution of the time that the server of an M/G/1 queue is
1‘
busy [Kleinrock 75]. The value of A[‘ 1l can be expressed as
1!

R
[t,.t
A['r' a = p(t,t) + (p-p, +Pg) E;,: 2]3‘ | (3.17)

where s, is the duration needed to serve the i-th request to the kernel. A[‘ tyl is equal to a term that
) .

MATHEMATICAL FORMULATION 35

grows linearly with time plus a random sum of the random variables s.. Intuitively, for large integra:ibn

intervals, the expected number terms in the interval will increase such that the distribution of A[t v
12
should approach a Gaussian distribution. This sum reminds one of the central limit theorem, which

roughly states that as the number of terms in a sum of independent and identically distributed random
variables approaches infinity, the distribution on the sum approaches the Gaussian distribution. Here
though, the number of terms in a time interval is not fixed, but a random variable, and the successive
summands may not be independent. However, as will be proved in the following Section, the central
limit theorem also holds for A-[t,.t
permit us to use the Gaussian distribution to compute expectations of the type shown in (3.15).

] (under some mild assumptions made precise below). This fact will

A stronger fimit theorem can also be proved for the distribution of A(t1-t2]' The integral of the failure
rate process canverges, in fact, ta a Wiener process. This result, proved in the Section 3.2.3, will allow
us to explain why the apparent hazard function of the failure process is a decreasing function of time

- and will permit us to compute its limiting value. Curiously, the rate at which A[‘v‘z] converges to a
Wiener process will be shown to be one of the parameters characterizing the reliability of such ’
complex systems as Time Sharing computers.) B

REMARK: If v is a constant independent of time, all the parameters characterizing the underlying
intensity process are constant and }\t will be stationary. Under this assumption, the failure process
becomes a renewal process. Indeed, no repair takes place after either transients or software fauits.
Therefore, after each failure the system is restarted and starts operating as new.

3.2.2. The central limit theorem for a random sum of dependent variables

A[t,.t) can be rewritten as]
ft,.t,]
Ay 1y = ol + BT s, (3.18)

where a=p_ and B = (PP, +p,) R is the number of requests to the kernel in the interval [t,,t,‘,]

and it is assumed to be a Poisson d[itggzauted random variable with pdf given in (3.12). s, is the timeg
required to satisfy the i-th request. The 5 will be assumed to be identically distributed. It cannot be
assumed, though, that they are mutually independent since requests to the kernel close in time are
likely to be related one way or another (e.g., only a process that has been recentiy activated can be
deactivated). However, it is reasonable to assume that requests to the kernel separated by a long time
are independent. Thus, the sequence {si} will be assumed to be stationary and a-mixing, two

concepts that are defined as follows :

g

36 A COMPATIBLE HARDWARE/SOFTVWARE RELIABILITY PREDICTION MODEL

Definition 20: Given a sequence {s;} of rancom variables, the sequence is said to be
a-mixing if there exists a sequence {a_} such that for each k,

|P(anB) - P(AIPB)| < @, and a,—0asn— (3.19)
A€o(s1.Sk)
i:i Bea(s,, 1 Scine 1)

Definition 21: A sequence {si} is said to be stationary if the distribution of the random
i vector (s.'. 8, ey, k) does not depend on i.

It is therefore assumed that 5, ands, , are approximately independent for large k and the statistics
of {si} are independent of the time origin. Define now
X, =s- E[slj . (3.20)

and let

k-
Sk = i=1 xi (321)

such that E[S,] = E[x] = 0. Without loss of generality assume t, =0, t,=t, a =8 =1. The integral of the
failure rate process can now be expressed as

A= t+ RElS] + Sg (3.22)

Let the following conditions be defined :

Condition 1: Convergence of {Sk}. If

S
P{—" <a} =0 (3.23)
n'""2g
k T:wez sequence {S,} is then said to satisfy the central limit theorem with norming factors
n''%g.

Condition 2: Uniform continuity of {Sk}. Given any small positive ¢ and 7, there is a
large n, and a small positive § such thatif n> n, then

P{ max IS_-S.[<en'20 }>1- ' (3.24
{ max 15,8, }>1m)

Condition 3: Convergence of R, Let Rt be a sequence of integer valued random
variables such that

MATHEMATICAL FORMULATION 37
Rt

plim —=yp (3.25)
n—>00 t

Anscombe has proved the following result [Anscombe 52]

Theorem 22: Suppose that {S) satisfies the central limit theorem with norming

factors n'/2¢ (Condition 1), that the convergence is uniform in probability (Condition 2)
and that R‘ is an integer valued random variable satisfying Condition 3. Then
SR
21 -—-——-< a } = o(a) (3.26)

That is, the central limit theorem aiso hoids for a sequence in which the number of summands is a
random variable provided that Conditions 1 through 3 are satisfied.

A proof that the {Sk} satisfies the central limit theorem when the x, form a stationary, a-mixing
sequence can be found in [Billingsley 79), a fact that is stated precisely in the following thearem.
Theorem 23: Suppose that {x} is a stationary, a-mixing sequence with a, = o 5)
and that E[x.] = 0 and E[x?]<co. If
k
Sk = i=1 Xi {3.27)
then {Sk} satisfies the central limit theorem with norming factors n'/2¢ where

Var(S | 2 2 o0
- I -6 = E{x1] + 2Zk=1 Elx,x,,J (3.28)

and the series converges absolutely. If ¢>0, then
P{

Thus, a stationary, a-mixing sequence satisfies Condition 1. A Poisson distributed random variable

<a} = da) (3.29)

obviously satisfies Condition 3 (provided that ¢(t) is bounded). To use Anscombe’s theorem it is
necessary to verify that a stationary, a-mixing sequence is uniformly continuous in probability
{Condition 2).

Lemma 24: Suppose {x} to be a stationary, a-mixing sequence with a =0(n %) and

let {S } be the sequence dehned in (3.27). Then, given any small ¢ and 7 there exits a
small posmve § and a large n such that if nn,

p{ max | 18 S< 20 } > 19 ' (3.30)

PROOF: It must be shown that given ¢,7>0 there is a >0 such that for mn,

l‘ 38 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL l

i
p{is,:82en"20 } <n foranyk such that [k-n|<én @.31)
In particular, it will be shown that

p{Is 8 />en"%} foranyksuch thatn<k<(1+8)n (3.32)

can be made arbitrarily small. A similar argument wouid apply to values of k where (1-§)n<k<n. By

Tchebyschev's inequality,

P { IZc=n+1 Xl Z en1/2 } Var[Z‘ nel X] (3.33) 3

e?no?
(1+8)n
(t+8)n Var[i+t x.]
P{|2micnai x| 220 } < o (3.34)
‘ e“no
f where, by stationarity
k k-n-1
Var 200 ey %] = RemED] + 2 2oy (kenei) Elx x, ,] (3.35)
1+ 8n-1 . .
Var[i=ns1%] = 8nE[xf] +2 Zi=1 (8n-i) Efx,x, ,] (3.36)
Thus,
(1+8)n
Var[i=n+1xi ar[z: n+1x]
-n- én-1
= (n+ n-k)E[xf] +2(8n+ n-k)2i= 1Bl % T+ ZZk_,,(<Sn-|')E[x1x1 ol (3.37)
Since n<k<(1+8n), letk'n =k, 1<k’'<1 + §. From the properties of an a-mixing sequence,
i Z&rﬂ .
::Tm ®-n (8'|/ﬂ)E[X1X1 +i] =0 (338)
and .
(1+8)n K
i Var[izn+ 1% 'Var[zi=n+1xi]
n—00 n
2 0
= (6 + 1-k')E[x1] + 2(6+1-k") Zi=1 E[x1x1+i] (3.39)

The series converges absolutely for the same reason that a2 converges absolutely in (3.28) (see
[Billingsley 79] for details). Thus, if 0>0, the above limit is also positive. Therefore, there exists an n

[fl:t):x] Var[zl n+1x]

Hence, for n>n°,

0
such that

>0 n>n, (3.40)

MATHEMATICAL FORMULATION 39
(1+38)n
k Var C_ X.
p{ |Zi=n+1xi| >en'20 | < (20 (3.41)
e2no?
But '
(1+38)n
Var Z 1 X én-1 H
(2] = BEL] + 221 (8-) Exx,] (3.42)
n +1i
which, given n>n0, can be made arbitrarily small by a proper choice of 8. In particuiar, chose § such
that
[(1 +8)n
Var X,
=n+! < neza"’ (3.43)
and (3.30) follows. 1

It is now possible to prove the following theorem :

Theorem 25: Let {x} be a stationary and a-mixing sequence of random variables with
=0/) and let N be a sequence of Poisson distributed random variables satisfying
Cond :on 3. Then,
SN
p{ .._72__ <a} = o) (3.44)
()
where ¢ has been given in (3.28).

PROOF : Condition 1 holds by Theorem 23. Condition 2 holds by Lemma 24. Condition 3 holids for a
Poisson distributed random variable if »(t) is bounded. Therefore, by Theorem 22 the limit of the

random sum converges to the Gaussian distribution. |

Corollary 26: LetN | be a doubly stochastic Poisson process with intensity process
A, as defined in (3.10). |¥ 1
t

piimw—:— [wnrdr = s (3.45)

then, the Probability Distribution Function (PDF) of the time to the first failure given that the
system is under observation since time ts is given by

Var[A[‘ '7]]

E[A[‘s-"')] + 3 3

P(t<rlt) = e (3.46)

E[A[ts.f]] - atrt) + BERy IEls]

Var[A[ts'ﬂ] = p2 (E[R[!,-ﬂ]az + E[si]2 \'ar[Rns,ﬂ])

40 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

PROOF : Remember that

Aoy = atzt) + B (Ry jEls] + St) (3.49)
K
where x, =s,-E[s]and §, = Zi =1X; Forlarge [t .t], by Theorem 25 S converges in distribution

.) . . {t, .t}
to a Gaussian random variable with zero mean and variance 172

var[s = E[R,, , Jo? 3.50

[Rh‘w) [Ry 1) (3.50)

where ¢ is given in (3.28). R[! 1) is a Poisson distributed random variable. Hence, for large [t1,t2] itis
»

also asymptotically normal with mean and variance

t
2

MRy) = VarlRy ,) = /t' v(r) dr (3.51)

Furthermore,
0

E[R[trt 2’SRIt,.:21] =, PRy =N EIS] = 0 (3.52)

Therefore, :
A -a(t, -t -BEfs.]JR -8S
e{e Mt} - o2 1)E‘[eﬁ' b ot} E{eﬁ R[t,.t,‘,]} (3.53)

2

Note that if z is a Gaussian distributed random variable with mean m, and variance o,

o0 . (z'mz)z

-z 1 -z -
Efe } = —mm8m8— / e e 2 dz
{e } (21')1/20 0 2":

Hence,
261 12
B“Els]"var[R

2

-BE[s,]
£{o 1) exp{-,ms[nnrt JEls] + byl)

. B%E(R, |,]o?
E{e Bsﬂ[t,.tzl} = exp {—2‘—'2]—- }
and (3.46) follows.

The distribution of {Sk} not only converges to the Gaussian distribution for a large (expected)

number of summands, but {Sk} also satisfies the so called invariance principle, a concept for which

some more elaborate mathematical tools are required and which is described in the foilowing Section.

e o i A

MATHEMATICAL FORMULATION M

3.2.3. Convergence to Wiener measure

Let C be the space of continuous functions on [0.1] and let C be its o-field of Borel sets. For each
w€Q let p(u) = p(u,w) be the function defined on [0,00) defined by

p(u) = S|, | + (wluxf,, (3.58)
Forn=1,2,.. define pn(u) = pn(u.w) for 0<t<1 by

p_(t) =R, (3.59)
n n1/20

Thus, p, () is that element of C which is linear on each interval [(k-1)/ n,k/ n] and satisfies

S k<n (3.60)
n24
Definition 27: If P (A) = P{p_€A} for A€C then we say that {x }-satisfies the invariance

principle with norming factors n'’ 2g if P (A)=W(A) where W() denotes Wiener measure.

p,(k/n) =

Now, for integers ¢,»,n define n, =jn/cj=0,1,....c and Nu= n{(-1)+u)/cr,j=1,..,.c n=01,..»

Definition 28: For any real numbers a, Bi let E be the setin @ where the relations
. S,
o< —— — < ,B if ni_1<|$n] (3.61)
n'‘eo
are satisfied for iKr but notfori=r.
Define the following two conditions :

Condition 4: For any integer ¢

lim P{S

n-+>00

e S a(00)%0 } = IT. e i=1.c (3.62)

in/¢ (|

Condition S: For any integer ¢, any set (a1....,ac,/3,,...,ﬁ) and each £>0
lim_im sup - p(, N{ls,8/2en"%}) =0 (3.63)
p=+00 n-»00

wherer’' = Mustis that integer such that n, <r<nl gt

The conditions under which the invariance principle holds for sequences of dependent random
variables are stated now. A proof of the following theorem can be found in [Billingsley 56]

Theorem 29: The invariance principle holds for the sequence {S,} if Conditions 4 and
5 are satisfied.

It will now be proved that the invariance principle holds for a stationary, a-mixing sequence of

random variables.

42 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

Theorem 30: Let {x,} be a sequence of stationary, a-mixing random variables with
-O(n 5) and E[|x|]<00 The invariance principle holds tor {S,} with norming factors
(nc) 24, where ¢ has been defined in (3.28)

PROOF : It must be proved that a stationary and a-mixing sequence satisfies Conditions 4 and 5.

Condition 4 will be proved tirst. By stationarity,

n/c
P{ Sin/t: : S(u)in/c Saq n1/20 } = p{znﬂ X, <o n ¢o } (3.64)
=p{ P x, < afme)2g } (3.65) |
. . i
Therefore, by Theorem 23
im_ P{ 8,0 Sg e < 40020} = oa) (3.66)
n-—>
Define now
C.) E[m/c (n 1)n/c) (Sjn/t:'s(j-i)n/o::)] (3.67)
Also by stationarity, assumingj>i,
. n/c {-i + 1)n/c
C) = E[(Zi.- ,xi) ((G-nsc) « 1 xi)] (3.68) 1
By the definition of an a-mixing sequence,
G-i+1)n/c :
C'l _<_ E[Z' R] E[-iin/c) +1 Xi] + a“.i)n/c (3.69)]ﬁ
and :
- \n/c G+ /e
C:;l 2 E[i=1 xi] E[Z«] -i)n/c) +1 X] a §-iin/e (3'70)

Since E[x] =0 and

::f_l':w aa o)n/c = 0 (371))
it follows that

im Ci=0 in (3.72)

n-+00
and

cY n/c)
im — = 1 X 3.73
r:-'w n [Zi 1 ‘)] () |
2 co2 . (3.74) . ~

Thus, as n— 0 the distribution of the random vector |

MATHEMATICAL FORMULATION 43

1 -
P (sn,.sﬂz.sn{ 'S"C'S"c.1) 079

approaches a multidimensional Gaussian distribution having as covariance matrix the identity matrix
and Condition 4 is satisfied. As for Condition 5, note that

p(Emﬂ{ lSr,-sr[> en'2g }) <P Emﬂ { |sr,.s | > en'20/2 })

rem
+P(g, N{ls,..5|2en"%s2}) (3.76)
As for the second term in the right hand of (3.76),

p{e Nls,, -sl2en"22} =p{|s,, S| >en"2%s2} (3.77)
=p{|2200x | > en''20/2) (3.78)
<2 tp{Ix > en*20/2m } (3.79)

- Hence,
P p{|s”m s|zen'20r2} <m2 oy P, 12 en1/20/2m} (3.80)
T gm(Emy*t - ror =1 EL, %) (3.81)

for any § > 0 by Tchebyshev's inequality. Chose now § =2 and m = O(n'/%) and
. n 172
im _ 2raP{ls, S| >en"2s2} =0 ‘ (3.82)

And now tor the first term in (3.76). By the properties of an a-mixing sequence and since € nr 1S
defined in o(x1,...,xr)

2Pl e, N{ls.s, |>en2%r2})
<2 PE,)P [s.S,, | 2 en 2072} + (3.83)

<(max p{[s,s, [2en"2r2}) +a, @.84)
(4

r+m

avar[|s.s,, 1])

< (max — a, (3.85)
e no
4 4m
< 4 + L (3.86)
szcv 82I‘ICV

where £, and .52 are bounded. The last inequality has been obtained taking into account that r'-r will

be at most n/cy and rewriting the variance of {S r.-S | as a tunction of o2. Therefore

r+m

m

44 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL
n 4¢
limsup 2, P(e, N{|s-s, |>en'%r2}) g (3.87)
n—0 ' eev

As n— 00, the second term in the right hand sidé of (3.76) goes to 0 by (3.82) .As v— 00 the first
term also goes to 0 by (3.87), and (3.63) follows. 1

Since the sequence {x,} satisfies the invariance principle it is now possible to use the following
theorem also due to [Billingsley 63]. Let F(t be a sequence of integer valued random variables. For a
realization of the sequence, Rt(w) let 51(«»), $2(w)..... be the successive discontinuities of Rt(“’) as a
function of t, so that Rl =iif 5'. gtggh "y Define now

t-§,

1§

Thus, R't is that function of t which is linear on each interval [£i,£i+ 1] and agrees with Rt at its jumps.

(3.88)

Ry =i+ if £, <IE

i+l

Define now q(t)=p(R't). where p(’) has been defined in (3.58), and qu(t)=q(ut)/(vu)’/ 25. Define a
measure on C by Q (A} = P{QUEA}.

Theorem 31: If {Si} satisfies the invariance principle with norming factors n'/2¢ and

R_-»1
p{i_rpw{sup,gl r—1} =0 (3.89)

Then {Sg, } satisfies the invariance principle, that is, Qu(A)==‘W(A).
t

it is now possible to prove the convergence of A[t ty) to a Wiener process.
T

Corollary 32: Let /\t be the failure rate process defined in (3.10). As the integration
interval approaches infinity, the integrated rate At converges in distribution to a Wiener

process W, with
E[W!] = {a+ BE[si]r)t (3.90)
Var(W,] = 82 (o + E[s]t _ (3.91)

PROOF : The proof is identical to that of CoroMary 26. Just note that R, converges also to a Wiener
process independent of SR . Further, note that (3.89) is satisfied since
t

R -»r l)e} < Var[R]

P{sup, | = 2 (3.92)
<2 (3.93)
e .
which goes to zero as t— 0, 1
e —— S

T

MATHEMATICAL FORMULATION 45

By the definition of Wiener measure,

S a 2

R XS/t

p{ W <q } = Wt,a) = —_ / e dx
(u)"za (2m)1/2 .00

Hence, the invariance principle implies the central limit theorem. However, the invariance principle is

a much stronger limit as it also implies that A has independent increments. That is, as u approaches
infinity the random variables
S and S
R”[’k-v‘k] R”[‘k"k o1
are independent, normally distributed random variabies. This resuit couid never be obtained from the
central timit theorem.

3.3. The observable process

In the previous section the PDF of the time to failure of a computing system has been characterized
by some convergence limits. The expressions obtained depend on some statistical properties of the
time that the kernel operates in kernel mode. In particular, they depend on the variance

o0
02 = E[] + 22, Elx X,] (3.94)

where the x, are the service times of successive requests to the kernel. Unfortunately, the
measurement of E[x1x1 +k] is not likely to be possible on real systems. The kernel is executed at least
once per line clock tick, 60 clock ticks per second. To estimate the above statistic, either a complex
hardware monitor is required or the entire kernel software has to be modified such that at the start
and end of each service a time stamp is recorded somewhere. Both approaches are cumbersome and
impractical for operational, commercially available computing systems. Since one of the premises of
the present work is that any mathematical characterization must be verifiable from easily measurable

variables in operating computers, an alternate way is required.

3.3.1. The observable intensity process

Let the process X, be defined as follows :

] t+W/2
X, = — / A_dr ' 3.95
vt W w7 (3.99)

that is, Xt is the result of averaging At over an interval of duration W. The question now is

P ?
/ X dr= / A dr
Y Y :

46 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

If the integral of)\t can be approximated by the integral of 7\t the situation is much better. Most
operating systems automatically measure the cumulative time in kernel mode, such that the values of
7\l can be easily sampled. Fortunately, the answer is affirmative. The exact value of the integral of Xt is

t ; t, ptews2
X dr = —/ / A drdt (3.96)
.[1 T w t, Jwaz 7
ty+W/2
- w
= l[wra VM AOT (3.97)
; !
where W‘(‘: t) is the window function shown in Figure 3-2,
T
ww t
Tty o1
W
I A
T V \\
0 /t }
1 2 t
Figure 3-2: Window function used to obtain the integral of Xt
That is,
L)
[X, dr =[A dr+e, (3.98)
1 1

The absolute value of the error term depends only on w. As the integration interval [t,,tz] increases,

the error term remains constant.

Given a realization of A, Xt is defined such that

t, .
~ 2
A[t1.t J = /‘; Xf dt (3.99)
can be used as an approximation of A[t ol Thus, the pdf of the time to failure can be approximated
1'
by

p(rity) = .3.3_ E{o i } (3.100)

MATHEMATICAL FORMULATION 47

Now let the value of the averaging window, w, be sufficiently large that the central limit theorem
holds for 7\:' For fixed t, X! can be approximated by a Gaussian random variable. This assumption is
consistent. Let w=10 sec. Xt is then equal to the sum of ~10° random variables. But typical MTTF
values are on the order of, at least, hours. Hence, the evaluation of 7\‘ will be based on an integral
over, say, 10 hours. The error term is equal to an integral over a period of 10 sec., and therefore can

be neglected.

7(t then becomes a Gaussian stochastic process, and K being the integral of a Gaussian

{0

process over a finite interval, will obviously be a Gaussian random variable. f ,\' is a Gaussian

stochastic process with mean E[A] and autocorrelation function RXX(s't) , K[t 1) is a Gaussian
»

random variablie with mean

t
~ 2
E[Alt,.t 2]] = [E[X] dt . (3.101)
1
and variance
~ 2 rt2
Var[A["'t 2]] =2 [/t; [RXX(s't) . E[T\S]E[Rt]] ds dt (3.102)
1

(see [Papoulis 65], pp. 323:325). Hence,

- Var[xl ']]
(A] ——

El A
P(t'('rlts) =@ 3 (3.103)

The difference between (3.103) and (3.46) is that the values of (3.101) and (3.102) are much easier to
estimate from an operational system than the values of (3.47) and (3.48). To estimate (3.101) and
(3.102) all it is needed is a sequence of sample values of the fraction of time in kernel mode. And this
is an easily observable sequence.

3.4. The equivalent failure process

Expression (3.103) gives the PDF of the time to the first failure given that the system is observed
starting at time t,. Given E[Xt] and Rgx(s\t) all the functions on which P(t, <rlt) depends are known
and deterministic. Expression (3.103) can therefore be viewed as the PDF of a nonhomogeneous
Poisson process.

REMARK : The fact the the PDF of the failure process introduced in Sections 3.2 and 3.3 is
equivalent to the PDF of a nonhomogeneous Poisson process with PDF given in (3.103) does not

2

48 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

mean that the two processes are indistinguishable. it only means that the statistics of the time to the
first failure are indistinguishable. However, if)\t is stationary such that the failure process is a renewal
process, then the process with stochastic intensity and the nonhomogeneous Poisson process are
truly equivalent.

A nonhomogeneous Poisson process is @ much simpler conceptual framework to work with than
the situation described in the previous sections of this chapter. A nonhomogeneous Poisson process
is completely characterized by its hazard function, a deterministic, time varying function. Thus, if
reliability characterization can be made based only on the distribution of the time to failure, the
hazard function of the equivalent failure process is all that is needed.

3.4.1. The hazard turction

A nonhomogeneous Poisson process is completely specified from its hazard function. From (3.5)
note that
h) = —PM .1
O = 35,29 (3.104)
Thus, from (3.103),

avar[A]
at

_ OE[A]

h(t) ot

(3.108)

L
2

From (3.90), (3.91), and (3.105) it can be seen that for large integration intervals the hazard function
becomes a constant independent of time. If the system has been started at t = 0, the quantity h{t)Atis
the probability that a failure will occur in the interval [t,t + At). Therefore, as the intégrated failure rate
converges to a Wiener process, the hazard tunction of the equivalent process converges to a
constant independent of time. In that case, the equivalent failure process degenerates to a
homogeneous Poisson process. For a homogeneous Poisson process, the number of points in
disjoint time intervais are statistically independent. This in turn implies that the random variables

Y4 2
A,-L \,dr and A2=[A, dr
1

are statistically independent. Therefore, the convergence to a co:istant hazard function could not
have been guessed from the central limit theorem alone since in general, A, and A, will not be
independent being the sum of an a-mixing sequence.

MATHEMATICAL FORMULATION 49

3.5. Summary

This chapter started with the assumption that the failure rate of a Time Sharing computer is
continuously switching between two states. While in each state, the system has a given sensitivity to
the presence of hardware transient faults and software faults. The PDF of the time to failure depends
on the integral of the failure rate. As the integration interval becomes much larger than the rate at
which transitions between states occur, the integrated failure rate converges first to a Gaussian
distributed random variable, and for longer integration intervals, to a Wiener process.

This description has been completed by an approximation where the failure rate is not a twb state
process, but a Gaussian process resulting from averaging the real failure rate over a short period of
time. In the case of digital computers this is just an approximation, but in other systems, a Gaussian
process may be the actual failure rate.

It has been then shown how tt;e statistics of the time to failure are completely determined by the
expected value and variance of the process 7\: , the integrated failure rate. Once these two moments
are known, the failure process can be viewed as a nonhomogeneous Poisson process since all the
functions on which the PDF depends are deterministic. The PDF and hazard function of the
equivalent failure process are given in (3.103) and (3.105). Both depend only on the expected value
and variance of the integrated failure rate since the system start time. These two moments depend in
turn on the frequency with which requests arrive to the kernel, and on some statistics about how the
requests are served. The following chapter specializes these results to two special cases of wide
applicability.

A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

SPECIALIZATION TO SYSTEMS UNDER
CONSTANT OR PERIODIC WORKLOAD 51

Chapter 4

Specialization to systems under
constant or periodic workload

in Chapter 3 the emphasis was on studying the more general properties of systems characterized
by a new modeling methodology. This chapter derives some important properties for systems for
which some more information is available. The system workload will be assumed now to be either
constant or periodic. Nevertheless, it should be clear that periodicity or invariance is only average
behavior. The actual failure rate is still assumed to be a stochastic process.

4.1. Case | - Constant workload

If the workload of the system is constant and the system is operating in steady state, it is reasonable
to assume that the expected number of requests arriving to the kernel per unit time, »(t) will be equal
to a constant ». In this case, the probability of observing n requests in a time interval (tz-t1) =T is given
by (3.11). Therefore, X' becomes a stationary Gaussian process with mean

1 t+w/2
E 2 ——F A 4.1
= e { [A0) (4.1)
= a + BrE[s] (4.2)
=a+fm : (4.3)

where m is the average fraction of time in kernel mode. Define then,

ElX]2q , (4.4)
and

E[A,] = at (4.5)

Since X‘ is stationary, its autocorrelation function Rxx(s.t) depends only on the difference r = |s-t| and,
from (3.102),

r-—-—-n

52 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL
~ t ’
varl[A,] =2 / (tr) [Reg(r)-a%] ar (4.6)
0
Let now
yt = X(-q . (47)

where Y, is a stationary, zero mean, Gaussian process, and

t
| var[4,] = 2 /0 ()R (r)dr (4.8)
The equivalent nonhomogeneous failure process has then the following important properties :

Corollary 1: Let N be a failure process with failure rate process as defined in (3.10)
with constant workload (#(t) =) such that the failure rate can be approximated by

A=a+y, (4.9)
where Y is a zero mean staﬁonary Gaussian process. Define

o0
stw Rw('r)d'r . . (4.10)

The statistics of the time to failure are then equal to the statistics of the time to failure of a
nonhomogeneous Poisson process with hazard function h(t) such that

1. h{0)=gqg
2. lim hit) =q-—¥ ,w>0
t-»00 2
3. KR W(-r) is nonnegative everywhere, then h{t) is nonincreasing.

PROOF : The hazard function of the equivalent process is given by (3.105). Substituting (4.6) and
(4.5) in (3.105), '

t
h(t) = q~/ R _(7)dr (4.11)
0 Yy
and h(0) = q. For real processes, the autocorrelation is even and
. W
lim ht) = q-— < h(0) (4.12)
-0 2
Note that W>0 because if S yy(“’) is the power spectrum of Yy
® R Jur .
S”(u) = /oo W('r) e dr (4.13)

then W= SW(O). which must be nonnegative for any phisicai process.

r.r- |

SPECIALIZATION TO SYSTEMS UNDER
CONSTANT OR PERIODIC WORKLOAD 53
Finally, if the autocorrelation function is nonnegative its integral is nondecreasing and h{t) as given

in (4.11) must be nonincreasing. |

4.1.1. Examples

A complete family of distributions can now be obtained for the case of constant workload but
different autocorrelation functions. The only restrictions are that being real processes, the
autocorrelation functions must be even, positive definite, with a maximum at r =0 and their integral
over the real line must be ndnnegative and bounded. The following examples iliustrate some types of

distribuiions that can be obtained under the assumption of constant workload.

4.1.1.1. Example 1. Exponentially decreasing hazard function - The doubliy exponential
distribution

w -Blr|)
then, the PDF of the time to failure is given by
(a- =) oo
{q-o—=—)r- .

PR<r) =1-e 2 28 . (4.15)
and its hazard function is

Mﬂaqmg[hé&l (4.16)

h(%) = q _;v_ 417

Note that, as for any nonhomogeneous Poisson process, the hazard function is the derivative of the

exponent in the PDF. In particular, ifq=8=1,W=2,

e Tt '
Pit,<r) = 1.2 (4.18)

h(t) = o ' ' (4.19)

which is the doubly exponential distribution, one of the three possible (maximum) extreme value
distributions (given that t, must be nonnegative). Maximum extreme value distributions are obtained
assuming that a system is formed by a collection of n identical modules operating in parallef. The
system fails only when all the modules fail and the distribution of the time to system failure becomes
the distribution of the maximum time to failure for the n modules. As n approaches infinity, the

L

54 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

distribution of the system time to falure converges in distribution either to an exponential, a Weibull
distribution, or to the distribution given in (4.18) [Barlow 75).

More generaily, if

k B.r
Ryy = i=1 Yie ! . (420)
then,
P = 1- (q = ‘B.) 2 ‘_{1 7 (4.21)
k . -B.t
h(t) = q-zm%'.n-e 1 (4.22)
i

This last distribution is commonly used in nuclear medicine to characterize the light pulses due to the
absorption of gamma radiation emanating from radioactive tracers. The ha;ard function reflects
physiological transport phenomena due to blood flow rate, metabolic exchange rates, and lung
ventilation [Sheppard 62].

4.1.1.2. Example 2. The exponential distribution - white noise failure rate

if 7\t is white noise,

w

R v = < &(r) (4.23)
where §(t) is the Dirac delta function, then
@y |

P(t,<7) =1-e 2 (4.24)

h) = q _2"! (4.25)

That is, the POF degenerates into an exponential distribution. Note that its parameter is not equal to
the mean failure rate (q) but to the mean failure rate minus the "power" of the process X‘, w/2.

4.1.1.3. Example 3. Pareto distribution

Assume that
2
R (1) = —9B8 (4.26)
7 Bl 1)?e
then

SPECIALIZATION TO SYSTEMS UNDER

CONSTANT OR PERIODIC WORKLOAD 55
{g-aB)r-ain(ft+1)
P,<r) =1-¢ (4.27)
«(q-afit
=1.8_ (4.28)
Bt+ 1)
In particular, if m = af8,
P = 1-—— ' (4.29)
(Bt+ 1N
- _9aB
hit) = At (4.30)

which is the Pareto distribution. The Pareto distribution is used to characterize clinical data relating to
the probability of survival of individuals belonging to some populations. For instance, the Pareto
distribution is postulated as the best distribution characterizing the probability that a patient waiting
for a heart transplant (because of unavailable donors or other reasons) will die before receiving the
heart transpiant [Turnbull 74}.

The chaice of the Péreto distribution or distributions of the type (4.15) far analysis of survival data is
common, and it is based mainly on heuristics. Hence, the present methodology justifies such choices
whenever the actual failure rate can be approximated by a stationary Gaussian process with
autocorrelation function given in (4.26).

4,1.1.4. Example 4. An intensity process with infinite energy - The Weibulil distribution

Consider now the following sequence of stochastic processes. y{“’ is a stationary Gaussian

process with mean

q, = _"75_7_ (4.31)
(A/n)" ¢ :
and autocorrelation function
2
R, (1) = {a)jad™ | (4.32)
Yn'n (At+1/n)%®

where a<1. Then,

AAlr+ 1/ + A/
e

P (<) =1- (4.33)

al
(At+1/n)te
Now let n go to 0 and

hn(t) = (4.34)

| 56 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

(A7)

Pn(t'sr) =1 -e. (4.35)
lim b (1) = —2A (4.96)
n—>00 (At)I-a

which is the Weibull distribution. Note that as n— o0 both the mean value and the variance of y{") also
go to ©0. Hence, the process

o = fim g (4.37)
is not physically realizable, since it has infinite energy. However, the fact that a limiting distribution
exists for P n(t'51») indicates that the Weibull distribution may be the right choice for characterizing
doubly stochastic Poisson processes with intensity processes that have very large mean and

variance.

4.1.2. Discussion

These and cther possible distributions are summarized in Table 4-1. The fact of considering the
faifure rate of a system to be a stationary Gaussian process is therefore a unifying method for
obtaining a complete family of distributions commonly used in reliability theorey. Some more insight
can be gained by careful examination of the similarities and differences between these distributions.

4.1 .2.1. The distinctive property of white noise

The main difference between white noise and any other stationary Gaussian process is that of
predictability. The best predictor (in a mean square sense) of y,basedony,, s (i, is E[y,|Y3= £l In
general, for a stationary Gaussian process,

Rw(t-s)
0y2
([Wong 79], p. 64). However, if y, is white noise,

Elyly =41 = ¢ (4.38)

Elyly,=¢l = Ely] =0 ifs2t (4.39)

White noise future values are totally unpredictable no matter how much information has been
accumuiated about its past behavior. On the other hand, for a nonwhite noise Gaussian processes
there always exist constants a{"’ such that [Breiman 68}

n
E[ytn+1lyt1 = 5,..--,ytn =$n] = Zk=1 aﬁ"’ ik (4.40)

SPECIALIZATION TO SYSTEMS UNDER
CONSTANT OR PERIODIC WORKLOAD 57

4.1.2.2. The rate of convergence to a Wiener process

As for the meaning of having a hazard function whose asymptotic value is smaller than the mean

failure rate, note that the function
t
f(t) = / R _(r)dr (4.41)
R .
is in fact the rate at which At converges to a Wiener process. In effect, note that
h(00) = q-—:’_ (4.42)

is the hazard function that would be obtained if y, were white noise and At were a Wiener process.

4.1.2.3. A different but equivalent conceptual framework

It is interesting to note how some of the distributions given in Table 4-1 can be obtained in a
completely different way. Assume that the PDF of the time to failure is exponentially distributed with
parameter A, but that A is a random variable. That is, once the system is started \ is chosen at random
from a known distribution and remains constant until the system fails. Every time that the system is
restarted, a new value of A is randomly chosen. The PDF of the time to failures is in this case given by

' At
P,<n = EPt, <IN} = E1.e) (4.43)

where the expectation is taken with respect the statistics of A. it was first derived by [Harris 68] that,

for instance, if A is Gamma distributed,

Pt = gy (@xf e (4.44)

then P(tfs-r) becomes the Pareto distribution. Similarly, other PDFs can be derived by assuming
different distributions for A.

if the failure process is a renewal process, the following three types of systems have identical
statistics:

o Systems for which the failure process is a doubly stochastic Poisson process, A =g+ Yy
and Rw(f) leads to an equivalent hazard function h(t).

e Systems with a random hazard function A such that p}‘(x) leads to the same equivalent
hazard function h(t).

o Systems for which the failure process is a nonhomogeneous Poisson process with hazard

function h(t).

A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

L e s T YW R - - iy e e bt 4 i A Fo 2 et i e

Figure 4-1: Three possible failure rates, all leading to the same statistics

‘Hmr
|_1..w|ll
=
||||| u\ﬂ»Vlmullllllllll L od P L R . L od o - - -
———e
e
w - - -
lllll e e — .o -~ B I R Rl i mdeiad - s Tl b
==
=
Iw
huuw e o =)
- L od -t

h(t)

N
hty

SPECIALIZATION TO SYSTEMS UNDER
CONSTANT OR PERIQOOIC WORKLOAD 59

Figure 4-1 ilustrates the three types of systems. Which of the above three conceptual framewdrks
is more appropiate to work with will have to be decided usually after practical considerations.
Probabilistically, the three types of systems are indistinguishable.

4.2. Case Il - Periodic workload (the Cyclostationary process)

Assume now that »(t) is a periodic function of t, that is

p(t) = »(t+T)) (4.45)
and
1 1
Rp=a+ ‘VTﬁE[si] Riewsztewsz) * 'W‘ﬁ SR[t_W J2teWr2) (4.48)
if »(t) varies slowly enough such that it can be considered constant in any time interval [t,t + w},
E[X] = a + Br(tE[s] (4.47)
2 q(t) v . (4.48)
where q(t) is also periodic with period T, and
. .
2
E[A = /) dt . 4.49
[[‘1't2]] 11 Q()] ()
Also,
Rxx(s.t) = E[Xth]
2
= qts)at) + BP— €[s S 4.50
afshact w2 [Riw/2t+ws2] Pls-w/2t+Wr2) (4.50)
where

[o o] wr(t i+n+ws(s)

E[SR] = Zn=0 P(R[s.t] = n) Zi=1 j=i+n Eixixi] (4-51)
Note that q(t) = q(t+ T) and that Rxx(s.t) = RXX(S +Tt+T). Thus, X is a cyclostationary process. As it
has been remarked by [Gardner 78), if N[t tl

, "
cyclostationary intensity process, N[t t) is itself cyclostationary, that is
»
LN 2]] - E[Nlt1 ”%m] (4.52)

(the remark in [Gardner 78] is for the more general concept of processes which are aimost

S
[t-W/2t+W/2) Pls-W/24+W/2)

is a doubly stochastic Poisson process with

cyclostationary in the wide sense). The fact that N is itself cyclostationary explains the data

Ity 4,
reported by [Butner 80), where the number of system failures as a function of time of day reflects the

A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

Autocorrelation function

Hazard function

W w
Ryl = < () hit) =q- -
m Exponential distribution
m-W/2
4
w Bl _ w -t
Ryl(r) = p—-e h) =q-—-[1-e]
m Doubly exponential distribution
mW/21=--T e TS s s e s e e
4
=W Ay =q-M . i
R (7) —f-[1 T Jif |7KT ht) = q T (1 _éT—]' KT
R_(7) = 0if lr[>T ml hQ) = q._‘%’_ T
m-W/2}-=-~-~~

Table 4-1: Examples of different autocorrelation functions and the
corresponding hazard functions of the equivalent failure process

SPECIALIZATION TO SYSTEMS UNDER

CONSTANT OR PERIODIC WORKLOAD 61
Autocorrelation function Hazard function
aW -at? h W
R, (7) = 7 e) =q — (t)
m-W/2|"~""""""TTT ST TsemmeT et
T H
Rxx(f):__\N.é__—-z_ h(t):q-—wé-—[1'-—t—1-T]
2(Blr|+ 1) Bt+
m Qibuﬁon
1B 7421 i
T t
R (7) = ﬂ.‘Lz”‘_ h(t) = “’: adi
Alrh™ (A
Weibuil distribution
T ¢

e

62 » A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

average workload variations over a one day period. This is a consequence of having a cyclostationary
intensity process and does not imply a strictly periodic failure rate.

Define now,
Y, = X,-al) (4.53)
and note that
o0 wr(t) i+n+wp(s)
Ry = 2nao PRy =) 2ot Deinivn EDXx] (459

By the properties of an a-mixing sequence, E[xixj] approaches zero as the difference |i-j| increases.
Thus, Rw(s.t) should approach zero as the difference |s-t| increases. Further, note that

2
R, () = o;‘:(t) = v(t).-%— ‘:Elsi]2 + 02] (4.5)

Thus,R W(s,t) can be expressed as

R, (8.) = o (s)a, (1) n(lt-s]) : (4.56)
where 7(x) is a function of x such that 1(0) = 1 and 5(%0) = 0. Therefore,
var[AX.] /'2['2R (shdsdt - (4.57)
(N SO SR ' : i '
L orh .
= / / o (s)o_(tn(ls-t]) ds dt {4.58)
, A VY .
which after some algebraic manipulations can be shown to be equal to
[] t2 t2
Var A[t,.t) = Ey(t1.t2) /; ay(t)‘q(lt,‘,-tl) dt- oy(t1) -/t; Zy(t1.t)n(t) dt (4.59)
where
t
20,0 = [o mar (4.60)

1

4.2.1. Two important properties of the cyclostationary Poisson process

Aithough not as simple as the case of stationarity intensity, closed form expressions for the hazard
function and PDF of the time to failure for cyclostationary failure processes can be obtained. The
only restriction is that now the hazard function and PDF are conditioned to the starting time value.

Corollary 2: Let Nt t be a doubly stochastic Poisson process with cylostationary
intensity process A, sucH that

SPECIALIZATION TO SYSTEMS UNDER

CONSTANT OR PERIODIC WORKLOAD 83
A= alt) + Y, {4.61)
R, (&t = ay(s)o,(t)n(ls-tl) :) (4.62)
at) = q(t+T) o) = o (t+T) (4.63)

The hazard function of the equivalent nonhomogeneous Poisson process given that the
system is started at time ty is

t
h(tlty) = a(t) - o (t) '/t. o.(7) n(t-7l) dr (4.64)
and its conditional PDF is)
Pt <rlt) = 1-exp{ f alt dt - X, (t,7) / o, (1) nljr-t) t
+ 0 (7) f Z) nit) it } _ (4.65)
PROOF: From (4.58), (3.101), and (3.103), after (substantial) algebraic manipulations. [|
The above .hazard function and PDF are conditioned to the starting time value t;. To obtain the

unconditional functions, the following expectations should be computed.
o]

h(t) = /0. P, () hett, =) du | (4.66)
0
P(th'r) = j)‘ p! (u) P(t,$7|t3=u) du (4.67)

where p, {u) is the pdf of the starting time. The following theorem gives the value of this distribution.
Its snmpllcuy has very important practical implications.
Theorem 3: Let N 2 be a doubly stochastic Poisson process with intensity given in

{4.61) through (4.63). A’sé’ume that the system is observed for n consecutive cycles and let
P"(tssf) denote the PDF of the system start time during these n cycles. Then

T
q(s) ds

P (<) = P(t<r) = —1 / qs)ds 0<r<T (4.68)
0

or, equivalently,

64 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

p‘ (u) = lim p" (u) = —;—%—u—)—— (4.69)

n-—>00 s
f q{s) ds
0

it

im — L £ c (s)c (t) n(s-tf) ds dt = (4.70)

n—»00 n

PROOF: Assume that 0 failures have been observed in n cycles. Then,

n 1=
p". (ulA0<t<NT; N[(J T = i=1,.,nf o (4.71)
' / A, dy
Since t, =t , the above deaqsity is also the pdf of o i=2,..0+1. Further, note that the Y are
I
mutually mdependent and that the above pdf is the same for any value of n >0 Thus,
p" (uly,.0<t<AT) = — a(u) + Yu (4.72)
t g =" ot T .

e nT] nT
' / q(s)ds+/ y ds A q(s) ds +/ yg ds
0 0 o

Sinceq(t) =q(t+T)

! Y
P, by OStnT) = — 0 oy (473)
where i n/o q(S)ds+/o' Y, ds n/OI q(s)ds+/; y,ds
u =u- [u/nTJ 4.74)
Hence,
R e
./o. q(s)ds + (1/n)L y,ds
y, /n
+{ T - = } (4.75)
Now, it ' l Q(S)ds*'(?/n%- Y, ds
nT
s, = (1/“)[y‘ds (4.76)

s, is a Gaussian random variable with

SPECIALIZATION TO SYSTEMS UNDER

{, CONSTANT OR PERIODIC WORKLOAD . 65
Els,] = 0 (4.77)
al ,nT
Varls,} = -1 / / o (s} (tn(ls-t]) dsdt (4.78)
n2 o o T 7

Therefore, if (4.70) holds, s, =0 with probability one as n— 0 and

. a{u’) _ q(u’)

::Too & { T nT } S (4.79)
/ qa(s) ds + (1/m) / Y, ds / q(s) ds
(] 0 0

As far the second term in (4.75), note that

nT
1 1
- E[ynsn] = -;5_ 4(; Rw(|v~u|) dv (4.80)

Since y A is a physical process, the integral in (4.80) remains bounded as the upper limit goes to 0.

Therefore Ya and s become uncorrelated and independent (both are Gaussian random variables) as

n— o0, Thus,
. y,/n i
lim € { - — }-=0 . (4.81)
[q(s)ds + (1/n) / ysds
o i o ,1
which completes the proot. _] 3
4.3. Summary

The analysis of systems under constant average workload has lead to a complete family of
distributions commonly used in reliability theory. The distinctive property between different
distributions is the autocorrelation function of the intensity process. The fact that all distributions
have fimiting hazard function values smaller than the average failure rate is of particular importance.
The limiting hazard function value is the value that would be obtained if the failure rate were white
noise. The rate of convergence of the integrated failure rate to a Wiener process has been shown to
be the integral of the autocorrelation function.

It is important to note that the rate of convergence to a Wiener process is one af the parameters
characterizing the reliability of the system under study. Consider two identical systems, A and B, such
that the failure rate of system A is white noise, while the failure rate of system B is some other
Gaussian process. Although both systems can do the same amount of work in the same time (in the
sense that the expected value of the integrated failure rate is the same) system A is mare reliable than
system B. The integral of the failure rate for system A is a Wiener process no matter how short the

66 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

v
-~

integration interval is. Therefore, system A reaches the gsymptotic (minimum) value of its hazard
function instantly. This point will be elaborated [atepdfn in the thesis and will be illustrated with
numerical examples. <

The analysis of systems under periodic/wo’rkload has not resulted in so concise results. However,
an important property of cyclostationary ‘failure processes is that, for systems operating after many
cycles, the distribution of the systenffailure time over one cycle converges to the periodic component
of the failure rate. This fact will fead in Chapter 7 to the establishement of cost functions on which
cost-benefit analysis of fault-tolerance can be based.

/’

Throught the Chaptér it has been assumed that the failure rate can be approximated by a
deterministic function of time plus a zero mean Gaussian process,

’

Xt = q(t) +y, ‘ (4.82)

However, from chapter 3 it is known that

R =P, + 7 PP, +PIM(Y + x) (4.89)

where m(t) + X, is the fraction of time in kernel mode in the interval [t-W/2,t + W/2] and P, Py Pg are
the coefficients establishing the sensitivity of the system to different failures depending on the system
state. Therefore, Xr can be rewritten as

Xt =K, + xz(m(t) + %) (4.84)

Hence, the failure process can be characterized by a doubly stochastic Poisson process with
intensity

X, = f(m(t)x,x) _ (4.85)

where () is an arbitrary function and & is a vector of coefficients. In all cases, the PFD of the time to
failure can be expressed as_

h(t) dt

P, Sty = 1-0 4 (4.86)

where h(t) is the hazard function of the equivalent nonhomogeneous process.

FAILURE PROCESS ANALYSIS OF A REAL SYSTEM 67

Chapter b
Failure process analysis of a real system

P

5.1. System characteristics and measuring tools

In order to verify that the model described in Chapter 3 leads to a better fit to failure processes than
previous work, an experiment was designed. Data was acquired for both the failure processes and

the load of a general purpose time sharing system. The system chosen was the CMU-A, a PDP-10
used by the Computer Science Department at Carnegie-Mellon University as its main general purpose
computational system. The system consists of a KL-10 processor, one megaword of memory, eight
disk drives totaling 1600 megabytes of online storage and two magnetic tape drives. The system runs) §
a slightly modified version of the standard TOPS-10 operating system [Belf 78].

The software packages used to instrument the experiment are illustrated in Figure 5-t. Information
about failures is obtained from an online error log file maintained by a system program, which records
the information produced by different error formatting routines. Entries are made to this file for each
hardware error detected in the system, for system reloads, for disk performance statistics, and so on
[Digital 78]. The error log is later processed by SEADS, a FORTRAN package which lists the times of
detection of errors associated with a particular resource. In order to obtain accurate information

about the use of the system, a special SAIL program, SYSMON, was written that periodically samples
the values of 30 system parameters. The files generated by SYSMON are later processed by another
SAIL package, READSY, which computes the periodic component and autocorrelation. function of the
utilization function of a particular system resource. The information generated by SEADS and
READSY is then processed by an APL package (POWELL) which estimates the maximum likelihood
parameters of the pdf of the time to failure of a particular resource. Finally, in a separate SAIL
package, C2TST, the values predicted by the cyclostationary model and other models described in
Section 4 are compared with the information stored in the error log according to a X2 goodness-of-fit
test.

€8 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MQODEL

The value of the accumulated time spent in kernel mode is abtained by executing a Monitor Call
and includes the time spent in clock queue proce_ssing. short command processing, swapping and
scheduling decisions, and software context switching [Digital 77]. This value does not include
Monitor Call execution nor 1/0 interrupt times. The sampled value is not exactly the time that the

system is executing in kernel mode, but it is close enough for our purposes.

5.2. Model parameterization

According to the results presented in Chapter 3, the failure process of a Time Sharing computing
system can be characterized by a doubly stochastic Poisson process with intensity process

X

. f(m(t).xt,?) (5.1)

where

K,

m(t) + X, 5.2)

is the average fraction of time spent in kernel mode in an interval of duration W centered at time t and
x is a vector of parameters. In order to parameterize our model, the values of Xt must be sampled from
real systems, and frbm these samples m(t) and the autocorrelation function of X, must be estimated.
Further, methods for estimating the maximum likelihood values of x must also be provided.

5.2.1. Sampling the intensity process

The operating system automatically measures the cumulative time spent in kernel mode. That
means that the value of

t
ko= [kor | 63)
S
can be easily sampled. {f the value of K: are sampled at times {'n-w s Y ewro the 1w /2,...} samples of
the observable intensity process are immediately available as
k =K, -K, (5.4)
n n+W/2 n-W/2

where t,= t, + nAt and ty is the system start time.

FAILURE PROCESS ANALYSIS OF A REAL SYSTEM

Z

SYSMON

SYSTEM
UTILIZATION

FILES

READSY

N

PDP-10
(KL- 10)

GENERIC
UTILIZATION
FILES

TOPS-10

(" INTER.

e
ERROR

ROUTINES

FORMATTING

ERROR
LOG

SEADS

7

LISTING
FILES

POWELL

N

CHIZ
TEST

/

PDF

Figure 5-1: Software packages used in the validation of the cyclostationary

modeling methodology.

69

70 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

5.2.2.Estimating the deterministic component

The expected value of Kp m(t), is a deterministic function of time with period T =24 hours. Thus,

m(t) can easily be estimated from the samples kt . If data has been collected for N days, let
n

N
) =~ 2ok L (5.5)
n

m(t) will be then approximated by a finite Fourier series expansion, that is,

N) :
mt) =m+ 2una cnsm(nwt + ‘Pn) (5.6)

where the following constants have been used

T

=27 =1 ,
=2 | m=— £ m'(t) dt (5.7)
1/2 a
c, = (@2 + b)) ¢, = arctan (5.8)
o
T T
3, = % /0 m'(t) cos(nat) dit b, = £ /D m'(t) sin(nat) dt (59)

5.2.3. Autocorrelation function estimation

Given an ergodic and stationary process z, the probiem is to estimate the function
T

. 1
R zz('r) = lim dt {5.10)

e 2T)y etk
For a finite record of observed values ztn. n=1,...,N,, the autocorrelation function is usually estimated
using the expression

N-n

1
RN = — Luiz12y 2

5.11
N i+n ti ()

This estimate is intuitive except for the factor 1/n. Since N-n terms are summed, it seems that 1/(N-n)
would be more exact. In fact (5.11) is a biased estimator of the real autocorrelation function. However,

its expected error is smaller than the expected error that would be obtained using the (unbiased)
estimator with factor 1/(N-n) [Jenkins 68].

FAILURE PROCESS ANALYSIS OF A REAL SYSTEM 71

In tive cases presented in this thesis the values of z, are not directly observable. For the sampling
n
of the fraction of time in Kernel mode, what is measured is the average fraction of time in Kernel mode

during a period of duration W. The measured values are not the values of z, . but the values of the
n

tn+W/2
Z = / zldt : (5.12)
t

t
n n~W/2

process

As will be shown in the following sections, in the two cases studied in this thesis the autocarrelation
function suggests an approximation of the form

'ﬂ1m Bzm
Ru(t) =a® + a,e (5.13)
The problem is then to estimate the values of the a;, 8, from the observed values of it U
n
, B , B
Rz = a’,e +ae (5.149)
it is easy to show that
- B -BM
R) =ae " +ape ? (5.15)
where
B.za.'
o (5.16)

o= 2[cosh(BW) - 1]
The problem is then to estimate the values of the a’ Bi using (5.11) and the observed values of iil ,

n
and use (5.16) to obtain the values of a of the autocorrelation function of z,

Unfortunately it will not always be possible to follow this procedure. The accuracy of the estimated
autocorrelation function is limited basically by two factors : the sampling frequency and the length of
the available record, N. Although many techniques exist for power spectrum estimation that take into
account these two factors [Oppenheim 75] (the power spectrum is the Fourier transform of the
autocorrelation function), no techniques are available for correcting the estimates of the
autocorrelation function itseif. if the sa}np!ing frequency is comparable to the bandwidth of the power
spectrum, the power spectrum estimate may be poor due to aliasing. Under these conditions, the
estimate of the autocorrelation function given by (5.11) may take negative values.

72 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

5.2.4. Maximum likelihood estimation of model coefficients

The general problem of parameter estimation for doubly stochastic Poisson processes can be
stated as follows. Let {N(t);t)to} be a doubly stochastic Paisson counting process with intensity
)\(t,xt.'&'), where x, is a stochastic process and k = | (I AR ,xm) is a vector of unknown parameters.
The occurrence density function that a given realization of the process has a failure at time t if it has

been started at time t, is, given by

- .)\(T.x .3 dr . .
PItIR Xt <r<t) = }\(t,,xtf.i) e[T (5.17)

If n failures are observed at times t,t, with associated starting times ty e A the probability
1 n 1 n
density function of observing such set of events is

n - i)\(-r.x X dr
p™t ety [RX R <Pl i=1,00) = Hi=1 P(t,) At x, & e[T (5.18)
1 n i i i i f i
1

where P(t&) is the a priori probability that the system is started at time t s - Taking the expectation with
] [)
respect the statistics of x, we can obtain,

i
A(‘r.x,r,;sdf }

P oty [yt) = e{ IT., ey At xe)® e'l:_' (5.19)

The maximum likelihood estimate ' = (x;.x'z,x;“) of k in terms of a particular realization of the
process is by definition the value of k that maximizes the above density function [Melsa 78]. That is,
p(")(t'1. ,t'"]:?‘,ts‘,i =1,.....,n) will be maximum for ¥ = k. As it has been shown in Chapter 3, the pdf
of the time to failure can be written as

p(t) = hit,R) e’[e (5.20)
the function to be maximized is then y
p(n)(t,1. 4= I, P, et) e[: Prdar . (5.21)
Note that this problem is equivalent to minimizing the function
L@ = (2 [nerdar) - (o, infht, 1) | (5.22)
s

subject to the constraints

FAILURE PROCESS ANALYSIS OF A REAL SYSTEM 73

h(t, @0 i=1....n (5.23)
1

Since closed form expressions for the components of k at the minimum are not generaly available,
this is a typical nonlinear programming problem, subject to nonlinear inequality constraints. Since this
probiem will have to be solved every time that the failure process of a resource has to be modeled for
a real system, particular care has been taken in finding an efficient procedure for the location of
minimums of functions of the type (5.22). The algorithm used is a slightly modified version of a
variable metric algorithm proposed by [Powell 78]). The original Powell algorithm occasionally
requires the evaluation of the objective function outside the constraints and has been madified such
that the maximum step size at each iteration never leads to a point outside the ccnstraints. The
algorithm has been implemented as an APL package that requires the definitions of the objective
function, gradient, and constraints. Several objective functions corresponding to different

distributions were given in [Castillo 80b].

5.2.5. Error correction

The last practical consideration to be treated in this section deals with the approximation of kx asa
Gaussian random variable. If k‘ is a Gaussian random variable with mean m{t) and variance a2, there
is a finite probability that k <O '

-my) 2,2

Pk <0) 1 f Ry o (5.24)
2 ce—— (7] X .
t (2")1/20 .00 .

However, since k‘ is the sum of positive random variables, it can never actually be negative. i kt can
never be smailer that a nonnegative value k min’ & better approximation of kz is

mt) + X, if m(t) + xt>kmin
ky = { Kpn Otherwise (5.25)
Define then
k, = m() + x, - xf' . (5.26)
where .
mi{t)+x -k _. it m{t) +x<Kk
c t min t min
X = { 0 e +x 2K (8.27)

The problem is therefore to evaluate the expectation

i

FPRT

e e es

RN

74 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

T
xSt ' :
E{el; Ty : ' ‘ (5.28)

Note that the integral

T :
/ xCdt : i (5.29)
ts '\
is squal to the excess area under the peaks of X, below a threshold k min-m(t) (see Figure 5-2).

kt = m(t) + xt

\

Kmin . 7T ""V' A;l{u

Figure 5-2: Relationship between x, and "‘::'

it is shown in [Stratonovich 67] that if the duration of the peaks is much smaller than the time
between peaks, the occurrence times of peaks above a threshold c(t) can be approximated by a
Poisson process with intensity
R,)"2 e-c’m/m,2

) = 5 (5.30)
where
?R_(1)
R«) 5.31
2 a2]"0 ©3n

and ¢ is the variance of X, Since the presence of peaks can be characterized as a Poisson process,
the excess areas under the peaks can be viewed as a marked Poisson process (see [Snyder 75], Ch.
7) with nondenumerable mark space. Let s, denote the area under the i-th peak in the intervat {s,t]. 8,
will be the mark associated with the i-th point (peak) in (s.t].

FAILURE PRGCESS ANALYSIS OF A REAL SYSTEM 75

The statisiics of the sum of the areas under the peaks are equivalent to the siatistics of the mark.

accumulator process, , ‘
T N
{t..rl
/ X = Zm? s (5.32)
t
S

where N[t a is the number of peaks in [ts.f]. The above expectation can therefore be rewritten as
([Snyder 75].p1131)

n

C .
E{e xtdt} = PNy =0 + 211 p(N[ts,f]“‘")E{e '=1SilN[ts-11="} (5.3%)

Note that

E{eZ;LI&.

P
'Nlt,-fl=n} = E{E[e i=18 | N['s.ﬂ:n;t"t?""’ tN[' i] INlts.ﬂ:" } (5.34)
-

Given NIt J=N bty | are a collection of independent, identically distributed random variables
s’ t..
([Snyder 75], p. 65), the cdmmon distribution being
p 0= —28 ¢ <xgr (5.35)
] .
7(t) dt

's

Therefore, if. the areas under different peaks are mutually independent,

[y gty 1< [l T
Ele]N“s'_rl=n,t‘, ""t“lt,nl = | E{e (6.36)

and, if the i-th peak occurs at time t,

T
E{esi} = / pt‘(x) E[estilt‘sx] dx (5.37)
t
S
T -) X
= / P, (x) / Ps 1t (xlt,=x)e dxdx (5.38)
ts i 0 Lot}
where) '
1 3¢(r) . 1712 _,1/3
2 73 - s =R, %]
Py (X) = -;13- [Selo) (?] x1Pe 2 g8 2 (5.39)
T 30
and
c(r) = km‘n - m(t) (5.40)
if 31‘«1 for all i, the following approximation can be made
s T
E{e '} =14+ [pt-(x)E[stilti=x]dx (5.41)
s 1
and

76 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

o

E[s‘ilt.=xl = /0 ' xpsx(x) dx

3 on 1/2

g

= c2(x) R

2
Define then

E{esi} =21+ I(ts,f)

where

3(2,”/R2)1/2 /. -C (1’)/0

/" < (1)/20 c(r)
t

f(t,nf) =
Therefore,

x€ dt . ©
E {e‘l; t } = P(Nl‘s'ﬂ = 0) + Zn: 1 P(N[ts.fl = n) [1 + f(ts-‘r)]n

and, since N(t o is a Poisson process with intensity n(t),
o

T Cov + te,m f ' awat] [
c -
E{e,[; x'dt} =Z:°.o A tiTl's o, n(Y) dt

T
St [(0 dt
=@

Note that if c(;r) = ¢ independent of r and X, is stationaiy,

E {e . xfdt} - ep‘(t:)('r-t’)

where

03(’/2,'/2
¢

p(c) =

(5.42)

(5.43)

(5.449)

(5.45)

(5.46)

(5.47)

(5.48)

o

FAILURE PROCESS ANALYSIS OF A REAL SYSTEM 77

5.3. Characterization of the time to System Failure

In this section the modeling methodolog{/ presented in Chapter 3 will be applied to characterize the
reliability of the system described in Section 4.1. All the necessary techniques to parameterize the
mode! have been given in Section 4.2. An exact characterization will be developed in Section 4.3.1,
where the periodicity of the workload ié taken into account. In Section 4.3.2 the model is simplified
giving the characterization that would result from assuming a constant workload, and therefore a
stationary intensity process. Figures 5-3 through 5-7 summarize the behavior observed of the CMU-A.

Figure 5-3 gives the actual values of the average fraction of time in kernel mode, kt , averaged aver
one second and sampled every five minutes for five consecutive weekdays. The periodicity of the
mean is clear from this figure. As a further indication that kt can be approximated by a cyclostationary
process, Figure 5-4 shows the estimated autocorrelation function of k,, R, (t), according to equation
(5.11). Rkk(‘l’) is obviously periodic with a period of 24 hours. The estimated autocorrelation function

was obtained from a record of samples k, covering 60 days of normal system operation.
n

Figure 5-5 shows the estimated average fraction of time in kernel mode m'(t), and its Fourier series
expansion, m(t), obtained as described in Section 5.2.2. Figure 5-6 shows the histogram of system
failures as a function of time of day. To study the properties of the stochastic component, x, , a piot of
the variance of(t) as a function of time of day is given in Figure 5-7. The variance is about two orders
of magnitude smaller than the mean m(t). Therefore, the error correction term given in Section 5.2.5.
should be very small. Note aiso that the variance is approximately constant over a one day period. The
peak between 9:00 and 10:00 is probably due to the fact that the system is started between those
times after daily preventive maintenance . Therefore, x, can be approximated by a stationary Gaussian
process (aithough the results given in Chapter 4 predict a periodic variance, this periodicity is not
noticeable here).

In summary, the instantaneous fraction of time in kernel mode can be approximated by

kt = mit) + X, . (5.49)

where m(t) is periodic, X, stationary, and K, cyclostationary.

78 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

0.6,

k(t)

0.5}

0.4%

10 11 12 13 14 15

Figure 5-3: Fraction of time in kernel mode for five consecutive weekdays

g

$ 0.042}

0.041}

Estimated Aut. Fun.

§

0.039

0.038t

A -y -

0 s 12 18 24 20 36 2 28
Time (hours)

Figure 5-4: Autocorrelation function of k'

FAILURE PROCESS ANALYSIS OF A REAL SYSTEM 79

o 030,
E
-
bt
[
£
[]
é
1
0.05}¢
0 - 5 10 15 20 25
t (hours)
Figure 5-5: Fraction of time in kernel mode avéraged over a one day period
2 12,
2 ol
QO
o |
3 8 F
€
>
Z gl
4} E
u L
2t
0 15 18 21 24
Time (Hours)

Figure 5-8: Number of system failures as a function of time of day I

Var(t)

A COMPATIBLE HAROWARE/SOFTWARE RELIABILITY PREDICTION MODEL

0.030,
0.025}
0.020}

0.015

s

0.010}

o005y WNWJ\{W |
3 6 9 12 15 18 21 24

t (Hours)

Figure §-7: Variance of Xy averaged over a one day period

0.005
0.004

Autocorrelation function of the overhead
0.003 time after substracting the periodic component

0.002

0.001

o

o 3 6 ¢ 12

24 27 30 33 36 39 42 45 48
Time (hours)

15 18 21

Figure 5-8: Estimated and approximated autocorrelation function of the
process x,

FAILURE PROCESS ANALYSIS OF A REAL SYSTEM

5.3.1. The cyclostationary model

With the notation developed in Chapter 3, recall that if X is the failure rate of a Time Sharing
system,

R, =p, + (0P, +pJK, (5.50)

where k, is the fraction of time in kernel mode averaged in an interval [t-W/2,t + W/2] and P, Py and
p, are different parameters reflecting the sensitivity of the system to transient fauits and software
faults. To remember the meaning of each parameter, T\t will be rewritten as

Xy = Crw + (8 + Sk, (5.51)

hw hw

Chw is a constant (workload independent) failure rate due to hardware transient faults, Shw is a
sensitivity coefficient relating the kernel usage with the (workload dependent) failure rate due to
transients, and Sqw is an analogous sensitivity coefficient for the failure rate due to software faults.

The autocorrelation function of the process x. is shown in Figure 5-8 suggesting that an

t
approximation of the form

B

R =ae’ "+ ap (5.52)

is appropriate to describe it. Using the results given in Chapter 3, the PDF of the time to failure

[l oy -B1(t'-ts)’. 92 [,.G-B.‘-(tf-ts)

m(t) dt - — [1-e]

conditioned to a starting time 1_ is given by

{c, -0, -C N4t) s)
Pttty =1-¢ ™ 1 2 %y . B, B, (5.53)
where the following constants have been defined

ssy = Sw * Shw (5.54)
2 4

o, = S ~—— . (5.55)
1 sy 31
a
2 "2

O, = 85 (5.586)

2

sy BZ

and the unconditional PDF is given by

82 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

Isy1 '31'1_ Tsy2 .. By

{a_-0_ -6)r-—I—I1-e —r{1-e 1 _
P St) = 1-p (rje ¥ & "»F B, 8, (6.57)
where
asy = (shw+ssw) m + chw'p (shw+ssw'kmin) (5.58)
- (2% | 5.59
Usy1 = st+shw) -F‘- (5.)

a
USYQ = (ssw + shw)2 ~B—:- . (5.60)

T+t
‘Psy(t) = —H m(r) e.v[M(S)dsd'r (5.61)
L m(t) dt _

5.3.2. The stationary approximation

Some approximations can be made leading to simpler expressions tor the PDF of the time to failure.
In particular, the periodicity of the workload will be neglected and the system failure rate will be y

assumed to be
X, =c +sk . (8.62)
where
ky = m + %, (5.63)
and X, is a stationary Gaussian process with autocorrelation function
Rulr) = 3 n(lrh (5.64)
If this autocorrelation function is of the form)
R () =ae’ " +aed" (5.65)
using the results of section 3.5.1.2 the following expressions are obtained for the POF and hazard
function of the time to system failure

FAILURE PROCESS ANALYSIS OF A REAL SYSTEM 83

P(t'gr) =1 -exp{ -(c + sm-sz% -32 ;z)1'
223 [1e77]. 22 [1.e77]] (5.66)
B2 B2
2 % Byr 2 % BT
h)=c+sm-s2—1 [1.e "]2 2 [1.¢ "] (5.67)

Table 5-1 shows the méximum likelihood values for both the Stationary and Cyclostationary
approximations computed from a history of 243 system failures (crashes) from December of 1979 to
May 1980. After performing a X2 goodness-of-fit test between the predicted and observed distribution
of failures, both approximations gave levels of confidence larger than 0.05, suggesting the
acceptance of both distributions as good characterizations of the PDF of the time to failure.

Figure 5-9 shows the hazard function of the equivalent nonhomogeneous process Poisson process
for both the Cyclostationary and Stationary approximations.. The periodic component of the failure
rate has been dampened so much that only the exponentially decreasing effect can be observed, and
the Cyclostationary and Stationary hazard functions are undistinguishable.

A further approximation can be made. If the autocorrelation function is simpfified to a single

exponential,
-Bl+l) _
R xx('r) = a® (5.68)
then
{c+sm- sz—a-)T 32—2—41 -e-pT]
Pt<r)=1-e B 2 (5.6¢)
h(t) =c + sm-s23- |1 -e"e’] (5.70)

B

5.3.3. A further refinement of the cyclostationary model

Equation (5.51) implies that, while the system is in kernel mode, the probability of observing a
failure due to software on a time interval At is

psw(At) = sswAt (5.71)

which is a constant independant of the state of the system. This can hardly be a reasonable

AD-A113 590 CARNEGIE=MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER =-=ETC F/6 9/2 " .
A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL, (U)
JUL 81 X CASTILLOs T D SMITH DASG60~80-C=0057

UNCLASSIFIED CMU-CS=81-138

SEEEREENENEN
ERRRREREEEE

ey« A ——— pr—

Cyclostationary and Stationary models for

84 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL
= 0.09¢
< (s Xo":] Slninininfninii i
0.07
0.06
0.05H
0.04¢
0.03¢t
0.02}+
0.01}
0 3 6 9 12 15 18 21 24
t (Hours)
Figure 5-9: Hazard function of the equivalent nonhomogeneous Pcisson
process describing the system failure process in both the Cyclostationary and
Stationary forms. The two dashed lines indicate the values of the hazard
function at zero and infinity.
Model Parameter Degrees of x2 value Xg.os Level of
Values Freedom Confidence
Cyclostat. s, =223 18 15.89 27.869 0.6
sy
Cpw = 0.082
Stationary a_ =008 14 15.89 23.68 0.31
sy
Oet =0.073
o, =0.0041
sy2
B, =028
Bz =0.0039 .
Table 5-1: Results of applying a x2 goodness-of-fit test for the

system failures (crashes). Both

models give levels of confidence larger than 0.05, therefore confirming their
validity as accurate system characterization tools

approximation. If, as described in Chapter 2, software unreliability is mainly due to persistent errors

FAILURE PROCESS ANALYSIS OF A REAL SYSTEM 85

deriving from oversimplifying the complexity of the data to be processed, Sg should not be a
constant. In effect, the instantaneous probability of observing a failure due to a software fauit should
increase when the system is processing data with large complexity and should decrease when
processing simple data. Thus, Sqw should be a time varying function S, (1) whose instantaneous value
will depend on the average complexity of the data to be processed at time t. The problem is therefore
how to characterize data complexity since, if ¢(t) is a suitable descriptor of the compliexity of the data
attime t,

s = flett)

where f(x) is a nondecreasing function of x. The most easily measurable descriptor of data complexity
is the average time spent in kernel mode, m(t). In effect, a large value of m(t) indicates a highly loaded
system, impliying therefore a large number of decisions to be taken by the kernel per unit time and
continuous updating of its data structures. A small value of m(t) indicates a lightly loaded system, with
relatively static and half empty data structures. Note that the instantaneous value of the fraction of
time in kernel mode, k, is not a good descriptor of data complexity because the fact that for a second
the kernel has been executed a very short period of time is not meaningful (perhaps a farge number of
jobs were just waiting for 170 completion).

ssw(t) will therefore be assumed to be a nondecreasing function of m(t). Again for simplicity a linear
relationship will be assumed such that

ssw(t) = ssw1m(t) + ssw2 (5.72)

Ky = Coy * [5g, + ssw1m(t)][m(t) + x] (5.73)

where Shw * Ssw has been noted Sy if
2

= t 5.74
alt) = s, + s“1m() (5.74)
then
Xt = ¢, +aim() + q(t)x, {(5.75)
= m'(tK) + X (%) (5.76)

sy’ "3
and hazard function of the time to failure are easily obtained. Juts note that

where «x, =C o Ko =8y K =ssw1, and k = (x1.x2.x3). Using the results given in Chapter 3, the PDF

86 ' A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL
oelsit) = E[x X t] (5.77)
= q(s)a(hEfxx] ' (5.78)
= o' (s)a’, (in(ls-H) (5.79)

where
o' () = a(t)e, (5.80)

Therefore the PDF of the time to system failu.re is given by (4.67) evaluated by substituting m(t) by
m'(t)and o (t) by a'x(t) in (4.64) and (4.65). Given a set of n observations of system starting and failing
time {[t, t,] i =1,...,n}, according to section 5.2.4, the maximum likelihood estimators of ¥ is the value
of x whtch minimizes the function

L(k) = Zi":, H(tsi.t,i,?) . Z?=1 ln[h(tsi.tfi,?:‘)] (5.81)
subject to the constraints

hety t, ®)>0i=1,.,n | . (5.82)

x>0i=1,..3 ‘ (5.83)

The values of h(ts t, x)and H(t, t, &) can be obtamed from the results presented in Section 3.6.

h(t t',x) = m(t) o (t)/ o’ () n(lt -rf) dr ‘ (5.84)

Y Y Y

HEt 4 %) = /: 'mmdt- 2) /t Lo Oy ot + o) [L' 0) ot (5.85)
S, 9.

where '

b
' (ab) = / o’ (1) dt (5.86)
a N
andm', o’ , 9, 2', are functions of X .
The minimization of I(x') in (5.81) is a well defined non linear programming problem. However, the

relationships between the affected variables are cumbersome. A simpler method to evaluate a good
estimate of x would be heipful.

.

i
i
1
!

FAILURE PROCESS ANALYSIS OF A REAL SYSTEM 87

5.3.4. A computational shortcut

In Section 3.6.2 it was shown how for a systém under periodic worklcad the distribution of the
system failure time (system start time) as a function of time of day should approach the average
intensity, a linear function of the average workload. Thus, one would expect that for an observation
interval sufficiently long, a histcgram of the system faiiure time as a function of time of day should

approach m'(t). Assume that such a histogram has been evaluated in C(t)

Ct) = n if the number of failuresin [t/Att/At+ At]=n (5.87)
Recall that the system failure rate‘ can be expressed as

X = f(m®),%) + x(&) (5.88)
Therefore, a possible estimate of & is the value of & which minimizes the norm

N®) = ||ca)fmm @) | (5.89)

defined ina sﬁitable functional space. [n particular, if the norm chosen is Lfo T the estimate of k will

be that value of ¥ which minimizes the function

R T L2 .
N(x) = / [C(t)-f(m(t).n)] dt (5.90)
0 ,
Differentiation with respect to «, . the following system of equations is obtained
T - T -,
2 l oy SHMME) / fm(t),®) 2HMOK) 4 o4, 0 (5.91)
ox. o ox.

)]
where n is the number of components of ¥ . In particular, if f(m(t),&) is a polynomial of order n-1 on

m(t),

n .
Hm@.R) = e ¢ kO (5.92)
the following system of n equations is obtained .
n .
Xi = Ziz 1 Ki“i+i-1 j=1,..,n (593)
where
T
X, = A cHme} dt j=1,..0 (5.94)

T
B = / [m@)"' dt i=1,.,2n-1 (5.95)
0

88 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

If f(m(t),x") is of the torm-given in (5.73), a system of three equations is obtained with « 1= Chw 2= ssy.

x3=sw1.

12¢

10 ~—— Number of crashes
!'] - -~ Hm(t)k)

0 3 6 9 12 15 18 21 24
Time (Hours)

Figure 5-10: Periodic failure rate component compared with a real
histogram of failures over a one day period.

The values of ¢, Sy’ ands,, were obtained from the histogram of failure data shown in 5-6 and
2
m(t), the average fraction of time in kernel mode. Figure 5-10 shows the histogram of failures and the
function f(m(t),x)

Hm@®.R) = € + (S + 8,) MO + 5, m?(t) (5.96)

This result will be used in Chapter 7 to evaluate the contribut.on of software to system unreliability.

5.4. Probability Distribution Function of the Time to Failure of a
File System

The modeling methodology presented in Chapters 3 and 4 can be used to characterize the
reliability of other systems or resources besides a complete Time Sharing system. As a final example
{which will be also validated) the PDF of the time to failure of a file system will be evaluated.

For a file system, the reasoning is that errors can be detected only when accessing it. The
assumptions are that all errors are hardware transients and that the instantaneous failure rate value is

b sy stbms a0 m e

FAILURE PROCESS ANALYSIS OF A REAL SYSTEM 89
A% f(m*), x0*, %) (5.97)
where
b, = m() + x* (5.98)

is the number of blocks accessed in the interval [t-W/2,t+ W/2]. Again, it is assumed that m% is
periodic, X, stationary and that

A% = e, + s, [m™) + P (5.99)

is cyclostationary.

Figure 5-11 shows the results of compiling five days of disk utifization samples into a single 24 hour
period. Along with the estimated average, this figure shows the function m(t) obtained from a finite
Fourier series expansion. After substracting from bt the value of md"(t). the sampled values of the

dk

processx, are available for estimation of its autocorrelation function.

The estimated autocorrelfation of x‘t”‘ also suggests that an approximation of the form

B -8,
R =ae ' +ape ? (5.100)
would be appropriate to approximate the real autocorrelation function.
o -p.t O -3 Lt
dk1 . Bt %2 By
{a,- o6, 0 I ———l-e]- [te ©])
PuK7) = 1- g, (r)e o dki a2 g, B, (5.101)
where the following constants and functions have been defined
@ = SokMa + Car * Pak{SaxPrmin) (5.102)
o, = —l.g2 (5.109)
k1 k . .
d T1 d
a
.92 L2
Tax2 = B, Sax (5.104)
2
T+t
1 T [mdk(s) ds
Pyll) = —p———— [e dr (5.105)

ma%(t) ot

S0 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL :

- i e s e o L.

3 0.6, 1
@ One day average.
$ 0.5} Millions of Blocks Accessed per 5 min,
<
7]
K4
Q
2
o
) 3 6 9 12 15 18 29 24
Time (hours)
Figure 5-.1 1: Estimated and approximated value of md"(t)

o 80,

; e

| 2]
o
x 8ot
K]
a

40L

21 24
Time of Day

20} I ')
, e L 1] , L |
12 15 18

Figure 5-12: Histogram of disk failures as a function of time of day.

FAILURE PROCESS ANALYSIS OF A REAL SYSTEM

The hazard function is given by

91

bt . b o b A M. s B e

| Byt Bty 1 g
hy(m = ag -y, [1-6" "] ay,[1-¢72] T (5.106)
Model Parameter Degrees of x? value X205 Level of :
Values Freedom Confidence
Cyclostat. s, = 14.00 8 8.69 15.07 0.36 :
c. =201]
[
Stationary a, =213 6 8.642 12.592 0.19
O = 1.42 ‘ _ 1
O =4.03 1
B1 =0.59 T
B, =0.21

Table 5-2: Results of applying a x2 goodness-of-fit test for the
Cyclostationary and Stationary models with the file system failure data. The
hypothesis that the models are good abstractions for the system behavior is
confirmed since the level of confidence is larger that 0.05 in both cases.

Table 5-2 gives the results of applying a x2 goodness-of-fit test to the file system failure data.
Again, although the Cyclostationary model gives a superior level of confidence the Stationary
approximation also preforms very well. Therefore, if great accuracy is not necessary, some of the
complexity involved in the manipulation of the cyclostationary expressions can be saved by
neglecting the periodic component. Figure 5-13 shows the hazard functions of for both the .
Cyclostationary and Stationary approximations. Note the small range of variability due to the periodic

component of the failure rate.

92 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

2.5,

h(t)
=Z
e

[T RS S I T it St

Time (Minutes)

Figure 5-13: Hazard function of the equivalent non homogeneous Poisson
process characterizing the statistics of the time to failure of a file system.
Both hazard functions (according to the Cyclostationary and Stationary
approximations) have been plotted. The Mean Time To Failure is 7 minutes,
that would correspond to a constant hazard function of 0.7 according to the
Exponential model. The two dashed lines at the bottom of the graph enclose
the range of variability of the hazard function due to the periodic component
of the failure rate m3¥(t). Note that this range of variation can be neglected
and that the main factor characterizing the hazard function is its decreasing
effect due to the integral of the autocorrelation function Rxdkxdk('r).

5.5. Summary

Both the Cyclostationary and Stationary models have been validated as suitable descriptions of
failure processes in Time Sharing computers. Validation has been performed by applying x2
goodness-of fit tests to the PDF of the time to failure of each model with failure data obtained from a
real system. Two failure processes have been used for this validation : a file system failure process,
and the complete sysfem failure process describing the statistics of the time to crash. The main
conclusions are :

o Predominance of the decreasing hazard function effect due to the integrated
autocorrelation function of the stochastic part of the failure rate.

e Marginal importance of the periadic component of the failure rate with respect to
reliability prediction.

FAILURE PROCESS ANALYSIS OF A REAL SYSTEM 93

o Exponentially decreasing hazard function since the measured autocorrelation functions
are exponentials.

e Predominance of the periodic component of the failure rate in the PDF of the system
failure time as a function of time of day.

Obviously, if the decreasing rate of the hazard function is accepted to be exponential and the
periodic component is neglected, it is not necessary to estimate the resource utilization functions.
Instead, the values of a, 0,0, B,. and 132 can be estimated directly from a history of failures. Thisis
what was done with the Stationary approximations presented in this Chapter.

The properties of the Cyclostationary and Stationary models are further discussed in the following
Chapter, where these two models are compared (numerically and qualitatively) with the other three
models described in Chapter 2 : Exponential, Weibuil, and Perigdic.

94 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

DISCUSSION ac

Chapter 6
Discussion

6.1. Reliability modeling

The different models currently used to characterize the reliability of digital computing systems were
summarized in Chapter 2. In this section, the predictions of those models, the predictions of the
Cyclostationary and Stationary models, and the observed behavior of the system described in Chapter
4 are compared. In Section 6.1.1 the predictions of the different models with the observed system
behavior are compared by means of numerical statistical tests. In Section 6.1.2 the assumptions made
by each model are compared, along with some of their most general properties. The main
conclusions of this Chapter are summarized in Section 6.3. The Reliability function and hazard
function of each of the five models (Exponential, Weibull, Periodic, Cyclostationary, and Stationary)

are summarized in Table 6-1.

6.1.1. Numerical comparisons : statistical tests

Table 6-2 shows the results of applying a x2 goodness-of-fit test between the actual failure data of
the CMU-10A file system and the distributions predicted by the Exponential, Weibull, Periodic,
Cyclostationary, and Stationary models using appropriate maximum likelihood estimates for each
model. A x2 value smaller that 0.05 (i.e., a level of confidence greater than 0.05) indicates a good fit
between predicted and observed behavior and suggests the acceptance of the hypothetical
distribution as the real distribution characterizing the failure process.

As can be seen from Table 6-2 only the Cyclostationary and Stationary models show a clear good fit
with the experimental data. Neither the Exponential nor the Periodic models seem to be able to
describe the failure process with significant accuracy. The Weibull and simplified Stationary models
(obtained by approximating the autocorrelation function by a single exponential) give levels of
confidence close to 0.05, which suggests that these two models can be used when it is desired to
trade some accuracy for model simplicity.

; 96 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL
Xpon |

AT .

Ry(r) = e e 6.1)

ho(r) = A, (6.2)

Weibuil

(AT

R/(r)=¢ " %w) ‘ (6.9)
a A

h,(r) = —% (6.4)
(J\wt)1'“w

Periodic

AT Foul :

R =e e P (6.5)

- du(r)
hn = (A +F, ol] , (6.6)
| ion B B * 1
[+3 -p.r © BLT .

A . S e 282 1T 2 gt

RC(T) = e(c + 6C1 acz)‘r B1 [e] B2 [e] + n¢() . (6,7)

Byr BT 1 et
htr) = A -a (1-e" ']-o 16" 2]-¢—(t)—_‘.g§’— 6.8)
Stationary 8 8
{a o -0 f-u31 e 1" ~-a—s—2- e 2"
Ry(r) = o \%s%er el B, [t-e ’4182 [re =1 (6.9)
hy(r) = a-a_,[1 P Jt-e77] (6.10)

Table 6-1: Reliability and Hazard functions of the five compared models.

DISCUSSION 97

The Cyclostationary model, taking into account both the periodic worklioad component and the
integrated autocorrelation function, gives the best description of the failure process. Figure 6-1

shows the hazard functions of the above five models in the case of file system failures.

Table 6-3 gives the results of applying a x2 test to the five models in the case of system failures
(crashes). Again, only the Cyclostationary and Stationary models give levels of confidence larger than

0.05. The hazard functions of the five models are shown in Figure 6-2.

REMARK: Note that the predominant effect is that of having a decreasing hazard function due to the
integrated autocorrelation function. Indeed, neglecting the periodic component still leads to an
acceptable level of confidence for the Stationary model. On the other hand, neglecting the integrated
autocorrelation function and taking into account only the periodic workload component leads to a

characterization that has to be rejected, as the level of confidence of the Periodic model indicates.

6.1.2. Qualitative comparisons

As it has been shown in the previous section, the methodology presented in this thesis seems to
lead to a more accurate characterization of system reliability than other more traditional models. Its
widespread use, however, is doubtful due to the complexity of the math involved. Although the
relevance of the results presented in this thesis is discussed in Section 5.3. and later on in Chapter 7,
a comparison of the implicit assumptions and general properties of each model may help to decide

when each model is appropriate.

6.1.2.1. Failure rate

Table 6-4 lists the assumptions made by each model concerning the failure rate of digital
computing systems. The main difference between the Cyclostationary and Stationary modeis and the
three traditional models is that traditional models assume the failure rate to be a deterministic

function of time, while the Cyclostationary and Stationary models assume the failure rate to be a

stochastic process.

s g

98 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL
Model " Parameter Degrees of x2 value X3 05 Level of
Values Freedom Confidence
Exponential A e = 0.67 7 130 14.067 0
Weibull)\w =091 8 17.717 15.507 0.026
a, =068
Periodic s =125 12 1007 21.026 0o
¢ =0.28
[+
Cyclostat. S, = 14.00 . 8 8.69 15.07 0.36
c. =201
[+
Stationary a, = 2.13 6 8.642 12.592 0.19
g, =142
s1
o 2 = 4.03
B, =059
B 2= 0.21
Stationary a, = 1.69 8 19.434 15.507 0.013
(Simplified) Oy = 1.38
1 = 1.38

Table 6-2: Results of a x2 goodness-of-fit test with the Exponential, Weibull,
Periodic, Cyclostationary, and Stationary models for file system failures. Only
the Cyclostationary and Stationary models give levels of confidence greater
than 0.05. The Weibull and simplified Stationary models give smaller levels of
confidence but close to 0.05. The hypothesis that the time to failure can be
characterized with Exponential or Periodic models has to be rejected. The
data used was obtained from five weekdays of system operation during which
877 (transient) failures were detected. The MTTF value is 7 minutes. The file
system is composed of 8 RPO6 disk drives totaling 1600 megabytes of on line
storage.

T—r—

DISCUSSION 99

a o
=
‘,—’
e
./
.~
-/
L~
2.00 /',-’
-/
-,',
-
e
"
L
.~
_’
‘/
L
_/
: -
i .-
1.80} L
”’-
B _"’.’ e Exponential
- =« - Weibull
\ ———— Cyclostationary
N e Stationary (1 exponentiaf)
Y .—..~ Stationary (2 exponentials)
1.00} Y --—- Periodic
........ ‘ L O T OO OO OSSOSO OUR P RURPORt
0.50¢
0 8 10 15 20 25 30 35 40 45 50 55 60
t (Minutes)

Figure 6-1: Hazard functions predicted by Exponential, Weibull, Periodic,
and Cyclostationary models for file system failures.

e L

i

100

A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

-

Model Parameter Degrees of x? value X3 05 Level of
Values Freedom Confidence
Exponential)\e =0.0097 18 120 28.869 4]
Weibull)\w =0.0137 17 28 27.587 0.045
@, =0.61
Periodic s_ =0.01172 17 119 27.587 0
¢ =0.0074
p
Cyclostat. s, =223 18 15.89 28.869 0.6
~ . 0.0082
chw' =
Stationary a, = 0.082 14 15.89 23.685 0.3
g, =0.073
o , =0.00413
B, =0.285
B, =0.0039
Stationary ag = 0.074 17 13.61 27.587 0.7
(1 exp.) U4y = 0.067
B, =022

Table 6-3: Results of a x2 goodness-of-fit test with the Exponential, Weibull,

Periodic, Cyclostationary, and Stationary

models for system failures

(crashes). Again, the cyclostationary and Stationary models give the best fit.
The data used was obtained from 6 months of system operation during which
243 crashes due to transients or software were detected (Nov. 1979 to Apr
1980). The MTTS (Mean Time To reStart) value is 8 hours.

rcndnsnile

DISCUSSION

h(

0.080¢
0.076}

0.072
0.068
0.064
0.060
0.056
0.052
0.048
0.044
0.040
0.036
0.032

0.028}
0.024}

0.020
0.016
0.012
0.008
0.004

)

g

v~

- —— =

101

Exponential

- -~ Weibult

—— Cyclostationary

——— Stationary (1 exponential)
Stationary (2 exponentials)
--—- Periocdic

o ——

e e ——

.......
................

12 15

t (Hours) 1

Figure 6-2: Hazard functions predicted by Exponential, Weibull, Periodic,

and Cyclostationary models for system failures.

102

A COMPATIBLE HARDWARE/SQOFTWARE RELIABILITY PREDICTION MODEL

Model Failure Rate Hazard Function

Exponential A Constant A Constant

Weibull Aa Decreasing Aa Decreasing

(Ap® An*

Periodic m(t) Periodic m(t) Periodic

Cyclostationary m(t) + X, Cyclost. process | k m(t) 9(t) Decr. modulated
by per. function

Stationary m+ X, | Stat. process 7(t) Decreasing

Table 6-4: Failure rates and hazard functions assumed by each of-the five
modeis

6.1.2.2. Hazard function

Loosely speaking, the difference between failure rate and hazard function is the difference between
what actually happens and what can be easily observed. The evaluation of the exact failure rate at a
particular time in a computer may be an interesting mathematical exercise (that of statistical inference
of the value of a random variable from some of its after effects, i.e., failures). But conceptually,
reliability characterization is easier in terms of the hazard function.

This distinction between failure rate and hazard function is not usuaily made in the Exponential,
and Weibull models. Failure rate and hazard function are identified with the same time functions for
those two models. A hazard function can be derived for the periodic mode! by averaging the value of
the failure rate for all possible system starting times (a simple calculation will show that the hazard
function for the periodic model is proportional to the squared failure rate).

Recall that if h(t) is the hazard function, h(t)At is the probability of observing a failure in the
infinitesimal interval [t,t+ At]. Thus, for the exponential mode! any interval has the same probability of

DISCUSSION 103

containing a failure. For the Weibull modei, the probability decreases with time. For the periodic
model! this probability is also periodic. Both for the cyclostationary and stationary models this
probability is decreasing. The point is that for the cyclostationary and stationary mcdels the hazard
function has been obtained after computing the expectation for all possible realizations of the failure

rate.

Therefore, it is not maintained here that the probability of observing a failure in an infinitesimal
interval actually decreases with time. What is maintained here is that if the behavior of many systems
is observed, or if the behavior of a single system is observed for a sufficiently long time interval, the
measured parameters will look as if the infinitesimal probability would decrease with time. But the
actual infinitesimal probability for a particular system at a particular moment in time is a random
variable, namely, its failure rate at that moment.

6.1.2.3. Reliability Function

Further insight into the implicit implications of using each of the five models can be gained by
comparing their Reliability functions. Recall from Chapter 2 that the Reliability function is the
probability that no failure will be observed before time t. Only three Reliability functions will be
compared : Exponential, Weibull, and Stationary, given in (6.1), (6.3), and (6.9). Figure 6-3 shows the
above three reliability functions for the file system failure data. Only these three models are compared
to provide a clear idea of their main differences and similarities. The Exponential model is the most
widely used in reliability theory. The Stationary model gives a good fit with experimental data while not
being as complex as the Cyclostationary model. And the Weibull model is the closest previous
approximation to the methods presented in this thesis. Note from Figure 6-3 that for values of t
smaller than 14 minutes (about twice the MTTF value) the Stationary and Weibull models essentially
agree in their predictions while the Exponential model predicts reliability values larger than the other
two models. For values of t larger than 14 minutes, the Exponential model predicts reliability values
smaller than the predictions of the Stationary and Weibull models, the larger predictions
corresponding to the Weibull. Figure 6-4 shows the same three reliability functions for the case of
system failures. Again, the Exponential model gives reliability predictions up to 20% larger than the
other two models for small values of t, and too small reliability values for large values of t. In this case
crossover occurs at t = 13 hours, about 1.5 times the MTTF value.

If the Stationary model is accepted as the best descriptor of the file system reliability (which is a
reasonable thing to do after examining the vaiues of the x2 test shown in Section 6.1.1) the following

two conclusions are reached :

104

A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

R(t)

075

0.70

0.65

~—— E&xponential
........ - Welibull

0.60

¥ \ —-—} Stdtionaty

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

Ty

-

-\“\1\

0.0

20 40 80 80 100 120 140 160 180 20.0 220 240 26.0 280 30.0 32.0 340 360 38.0 400

Figure 6-3: Reliability functions according to the Exponential, Weibull and

Stationary models for file system transient failures.

t (Minutes)

DISCUSSION

1.00

R(t)

0.95

—

0.90

0.80

t \
0.75 |-

0.70 }—

Expong

pntial

0.65

0.60 i \

Statiorjary

0.55 —

0.50 -

0.40

0.35

0.30

025

0.20

Q.15

0.10

0.05

0.0 20 4.0 8.0

Figure 6-4: Reliability functions predicted by the Exponentiai, Weibull, and
Stationary models for system failures {(crashes).

18.0

20.0

106 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MOOEL

e For small values of t, the reliability predictions of the Exponential model are essentially
too optimistic. The actual reliability is lower than predicted by the Exponential model.

e For large values of t, the reliability predictions of the Exponential model too pessimistic.
The system is actually more reliable than predicted by the Exponential model.

« The differences in reliability prediction are specially important for values of t smaller than
the Mean Time To Failure, where the Exponential model differs by almost 20% with the
Weibull and Stationary modeis.

o Reliability predictions of the Stationary and Weibull models are within 5% through all
range of values of time.

Overall, the results presented here are consistent with the results presented in [McConnel 81). This ‘
is important because the analysis done by [McConnel 81] with the Weibull distribution was extended '
to redundant systems (duplex, triplex and TMR) for which the same behavior was observed.

6.2. A possible new design parameter

Assume now that the autocorrelation function of the fraction of time in kernel mode is somehow

under the control of 'system designers. Maximum reliability would be obtained if

Rudmli = (o5, +0y) ' (6.11)

That is, the stochastic component of the system failure rate would be white noise. In this case, the

PDF of the time to failure would become an exponential with parameter

A=za- (asy1 . "syz) (6.12)
The system wouid still be able to do the same amount of work in the sense that the average fraction of

time in kernel mode is independent of the shape of its autocorrefation function.

If such an autocorrelation function could be obtained on the CMU-10A, the MTTF value would be
16 hours, compared with the real MTTF value of 9 hours obtained with an exponentially decreasing
hazard function. Figuire 6-5 shows the reliability functions obtained from the Stationary approximation
considering both an exponentially decreasing hazard function and a delta function (white noise).
Although pure white noise is impossible to obtain physically (it has an infinite bandwidth), the fact that
faster decreasing rates for the autocorrelation function means also more reliable systems is a new

factor to take into account.

DISCUSSION 107

Recall from Section 4.1.2.1 that the distinctive property of white noise is that it is unpredictable.
Thus, designing a system with a faster decreasing hazard function means also removing some
predictability from its behavior. Clearly, this indicates a tradeoff between performance and reliability
since many algorithms to enhance system perfarmance (for instance, in scheduiling and paging) are
precissely based on predicting future system behavior. However, it is not clear at present how the rate
at which the hazard function decreases (that is, the shape of the failure rate autocorrelation function)
can be controlled.

6.3. Summary

Three different known model used to characterize the reliability of digital computers have been
compared with the two main modeling methods presented in this Thesis (Cyclostationary and
Stationary) and with actual failure data collected on the computing system described in Chaper 5.
Statistical test performed with two different failure processes clearly suggest :

e Acceptance of the Cyclosiationary and Stationary modeling methods as suitable tools to
characterize system reliability.

o Rejection of the Exponential and Periodic models as accurate descriptions of computers
failure processes. The only exception may be the use of the Exponential model when
simplicity has absolute priority.

e Acceptance of the Weibull and simplified Stationary modeis as marginally accurate
descriptions of system reliability. They are not as good as the Cyclostationary or
stationary models nor as bad as the Exponential or Periodic.

o Introduction of a possible new desigh parameter: the rate at which the hazard function
decreases to its asymptotic value. :

Qualitative comparisons between the Exponential model and the Stationary and Weibull models
have confirmed the findings of [McConnel 81}, that is,

o The Exponential model is too optimistic when predicting reliability for small values of t.

o The Exponential model is too pessimistic when predicting reliability for large values of
t. The Weibull model has been found too aptimistic when predicting reliability for large t.

Clearly, the validity ot a modeling methodology cannot be confirmed or denied by the resuits of a
single experiment. However, the results obtained so far are encouraging and justify a more detailed
study. Therefore, the next Chapter is dedicated to elaborate some applications derived from the

108 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

100y

g N

: 0.95 |
; \

0.90 f}—

0.85 AN :

A |
0.80 A :
\
0.75 \‘v
\
0.70 _. pv——— sfaho hary t ‘
\ \, —-.—- | Statiohary (White Ncise pro¢ess)

'_/f'

0.65
N

~

\\

7\‘\‘

6.0 80 100 120 140 160 180 200 220 240 260 280 300 320
t (Hours)

Figure 6-5: Reliability functions obtained from the Stationary model by
considering the real autocorrelation function and white noise.

DISCUSSION 109

Cyclostationary and Stationary modeling methods. in some cases, these applications will be

independent of the results obtained until now. However, they are included because they are natural

extensions to the philosophy used through the Thesis.

110 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTICN MODEL

AR

r'-_——““"-_-—“-—--.._—-'.--—'-H-ﬂfﬂnn-

APPLICATIONS 1M

Chapter 7
Applications

The previous Chapters have shown how the Cyclostationary and Stationary modeling methods are
the correct approach to characterize computing systems reliability operating under periodic or
constant workload respectively. Further, it has been shown how the Stationary model may be just
enough to predict reliability even for systems under periodic workload, since the effect of having a
periodic workload in the failure rate is minor compared with the effect of considering the failure rate

to be a Gaussian process, and therefore having a decreasing hazard function.

Nevertheless, as will be shown in Sections 7.1 through 7.3, that workioad periodicity can still be
used to obtain some new results related to reliability characterization. The first contribution is

presented in Section 7.1, where it is shown how the contributions of software and hardware errors

can be easily evaluated.

it was stated in Chapter 2 that one of the main problems associated with the acceptance of fault-
tolerance as a more desirable attribute of general purpose computing systems was the fact that
performance evaluation and reliability characterization are unconnected. Thus, in Section 7.2 an

attempt is made to elaborate an integrated Performance/Reliability model.

In Section 7.3 the problem of determining the optimum checkpointing interval in a transaction
pracessing system is revisited and refined. The purpose of this section is to determine if the modeling
methods presented in this thesis in any way invalidate or confirm previously obtained resuits.

Finally, in Section 7.4 a first step is given in a completely new area: modeling the effects of
hardware transients, software fauits, and permanent hardware faults. The main conclusions of the

Chapter are summarized in Section 7.5,

At

112 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

7.1. The impact of unreliable software on the observed system
reliability

As it was described in Chapter 2, current software reliability modeling and measurement efforts
concentrate in the evaluation of static software attributes. Some of these attributes are the number of
bugs present in a software package, or the mean time between software failures of a set of programs
operating in a controlled environment. Here, however, the evaluation will refer to the observed
behavior of systems operating in the field under dynamically changing conditions. Further, software
reliability models usually refer to parameters of interest to the software development team, while here
an effort will be made to quantify the impact of software unreliability to the average user of a Time

Sharing system and to the user community.

Perhaps the simplest question to be asked is whether a given system failure is due to a hardware
transient or to a software fauit. Most operating systems provide some tools to help answering such
question. The most primitive tool is just a memory dump that has to be manually analyzed to resolve
the cause of the failure. Other systems provide more information in an error log. And some systems
even attempt to automatically classify all failures. However, some experience using such tools soon
teaches the difficulty of the problem. Except for a few clear hardware failures (a hard memory parity
error while accessing one of the kernel data structures) most failures usually remain unresolived.
Assume that a system is hung in an infinite loop in the kernel and the system has to be manually
crashed by the operator. How can it be known if a part of code was overwritten by the software itself

or if an undetected transient altered the destination address of a jump instruction?

The method proposed here to resolve such ambiguities is probabilistic. Although each system
failure is due to a particular cause, to learn the exact cause for each failure with a reasonable level of
confidence may be extremely costly. The method proposed here will give only expectations and

averages. But it is substantiaily cheaper.

it was shown in Section 5.3.3 how the instantaneous system failure rate at each moment in time is

given by
X:V =c,, *+ (s, + S (DK, , (7.1)

which can be viewed as the superposition of the hardware and software failure rates,

APFLICATIONS 113

sw
Xt (st 1

m(t) +s, Wz)kt (7.-2)

K™ =c,,+s (7.3)

hw hwkt

Since k, =m(t) + x,, itis convenient at this point to indicate the dependency on x, more explicitly

Xlsw(x!) = (st1

m(t) + sswz)(m(t) +x) (7.4)
KM™(x) = Gy, + Sy, (MD)+x) (7.5)
such that the system failure rate is given by
X¥(x) = AMx) + XP(x) (7.6)

The system failure process can therefore be viewed as a marked doubly stochastic Poisson process,
each failure being associated with a mark specifying if it is hardware or software related. Given that a

failure has occurred at time t, the probability that this failure is due to software is

1

o (t) = E { X S*x,) .7
Wt Yo X Sx) + X, "(x,)
v o Y
where the expectation is taken with respect the statistics of X, and
§
Prlt) = 1-Pg, () » ' (7.8)
Hence,
0 2,, 2
(s.. mt)+s_ Mmit)+u u“/20
Paulty) = ———— / s,)+ S)+] e *du (7.9)
(@725 Foigmit) Cry* R ssw1m(tf) + ssw2][m(t,) +u]

where the restriction of having a strictly positive failure rate has been taken care of in the lower limit of

the integral.

Figure 7-1 shows the probability that a crash is due to a software error as a function of the time of
day for the CMU- 10A after computing the maximum likelihood values of the coefficients according to
Section 5.3.4. Since the linear term in the failure rate Sey cannot be separated in its software and
hardware components (s’sw1 and Shw) Figure 7-1 shows the upper and lower bounds obtained by
assuming ssw, =ssy and ssw’ =0. On the average, it seems that software accounts for 0% of the
crashes while the remaining 40% is due to hardware. This is a misleading interpretation because the

114 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL
1.0
Hardware
0.9
0.8
0.7 L ——_ /
I\ 4 ———
0.5 e~
N~
0.4
0.3
Software
0.2
0.1
0 3 6 9 12 15 18 21 24

Figure 7-1: Probability that a crash is due to software or hardware as a
function of the time of day
system does not crash at any time with equal probability. Consider a set of failures observed at times

teoenty The expected number of failures due to software is
1 N

. Z"
E[nswlN't|1"""fN) = k=1 psw(t'k) (710)

This expectation has been computed for the set of 243 crashes observed in six months of operation
of the CMU-10A. Since the system crashes more often at the times that the contribution of unreliable
software is larger, 67% of the crashes are due to software. But it is still possible to refine this number.
The impact of each crash depends on the number of jobs being executed at the time of crash. Figure
7-2 shows the average number of jobs executing in the CMU-10A as a function of time of day. Given
that a crash occurs at time t,, the expected number of jobs crashed due to software, E[J7], is

EV™I] = Py () B,] (7.11)

where E[J"] is the expected number of jobs executing at time t,. Given a set of N failures at times
t, ...t , the expected number of jobs aborted due to software is
1 N

N
EMIN, oty] = Dot Pault) ELY, | (7.12) L

k
The value obtained for the CMU-10A is that 70% of the jobs aborted in system crashes do so because

of soltware errors. A percentage substantially higher than the 60% originally computed for the !

probability that a single crash is due to software. These results are summarized in Table 7-1.

APPLICATIONS

60.00
50.00t

40.00

Number of Jobs

30.00

20.00

10.00¢

e, A, Y

115

A,

0 3 6 9 12 15 18

Figure 7-2: Average number of jobs executing as a function of time of day

t (hours)

21 24

Range of variability of the probability
that a crash is due to software depending on 45%-75%
the time of day at which the crash occurs

Probability that a crash is due to software
averaged over one day period 60%

Expected percentage of crashes due to
software during 6 months of operation 67%
of the CMU-10A _

Expected percentage of jobs aborted due to
software during 6 months of operation 70%
of the CMU-10A

Table 7-1: Different views of the impact of software in system unreliability

<,

116 A COMPATIBLE HAROWARE/SOFTWARE RELIABILITY PREDICTION MODEL
7.2. Performance/Reliability evaluation

7.2.1. The user’s viewpoint

From a user’s viewpoint, working with an unreliable system has an added cost that would not be

present in a failure free system. This added cost due to unreliability is mainly due to two factors:

e A possible delay in finishing the user’s task. The system may fail, remain unavailable for a
while, and parts of the programs being executed may have to be repeated afterwards.
The expected time required to compiete a task is therefore longer in an unreliable system
than in a failure free system

e The cost associated with repeated computations. That is, the cost associated with the
use of resources that effectively may be useless, since the system may fail and some
computations may have to be repeated.

Thése costs will be quantified for a CMU-10A user in this section. The approach is essentially the
same that as in [Castillo 80a]. The problem of evaluating the added cost due to unreliability is
visualized in Figure 7-3.

End of
Start Restart Restart Restart execution
t t t t Time
0 1 2 3
Trec Treal

Figure 7-3: Typical system of events illustrating the unreliable behavior of a
computing system from a user viewpoint

A program is started at time 'o and failures occur at times t1, t2 ..., Such that after each failure the

P""_"—mm” ™

APPLICATIONS 117 B

pragram has to be restarted. Complete execution terminates alter the system has been operating

continuously for a time Tre al’

The total elapsed time since the user starts the program until the the program correctly completes
execution, T, is equal to Treal plus T, ec' lime during which the program was executing but wasted
because the system failed before the program finished execution.

T"eal is a random variable whose statistics depend on the resources needed by the program to
ccmplete execution (CPU time, storage requirements, etc.) and on the system workload during
program execution (i.e., at which rate are these resources provided by the operating system i
depending on competing requests by other users). Tr ec IS another random variable whose statistics
depend on Treal and and on the statistics of the time to failure. The total expected cost (in terms of

time) incurred in executing the program is

E[CT] = E[T_] + E[T

rec real] (7.13)

where the first term in (7.13) is obviously the added cost due to unreliability in the sense that it would
be zero if the program were executed in a failure free system. The failure process will be assumed to
be stationary and the average workload will be assumed to be constant. The expected cost is then

given by
00
E[CT] = / Pr () E[T o [T oq=x1dx + E[T] (7.14)
(] real
Given T oar the expected value of T rec is
2o

E[TmlTreaﬁx] = n=1 PONg=n[T =) E[T IT ., =xiN;=n] (7.15)

P(n, = nIT"a al = x) is the probability that the program is restartad n times given that it requires x units of

time of continuous system operation and is given by given by
Pin=n[T ,=x) = [P,(r<x]"P(r>x) (7.16)
1€ t is the time from restart to failure,

ElT ec =xiNy=n] = nEQRIT , =x] (7.17)

Treas

Substituting now (7.17) and (7.16) in (7.15)

EIT [T, =X] = EINJT _ =x]E[IT _ =x] (7.18)

al real

That is, the expected value of Tm is equal to the expected number of failures muitiplied by the
expected time from restart to failure given that Tre al =X The expected number of failures is

r-,r,. It At e et e i Mt bt i e sl

118 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

- :

EINIT o =X] = 220 0 [Pyr<]" P (r5%) (7.19)
P(r<x) '

“ B (7.20)

The distribution of the time from restart to failure given that a failure occurs before x units of time is
equal to the distribution of the time to failure truncated at time r = x, that is,

1
T =x) = ———w— t) (U(t) - - 7.21
p,r(l ceat =X) P70 p,'()[(t) - U(t-x)] (7.21)
where p"(t) is the pdt of the time to failure and U(t) is the step function
UO {5 inerwiss (7.22)
Therefore,
-}
ERIT o0 =] = l £, T g T rqqy =) dx (7.23)
- P(o (e E[t',(x)]] (7.24)
where
m - -
E[t,(x)] = / tpt'(t) dt (7.25)
Substituting now (7.24) and (7.20) in (7.18) the following result is obtained
real * pTreal(X) E[t"(x)] |
= E[t] f Fir <x]) dx - /; Wx) dx (7.26)

Figure 7-4 shows the expected elapsed time required to execute a program at three ditferent times
of day for different values of Tmi o For each curve, the straight line represents the second term in
equation (7.13), that is, it is the expected elapsed time due to workload only. The solid line represents
the total expected elapsed time. At 12:00, the contribution of unreliability to the expected elapsed time
of a program requiring 30 minutes of CPU is of 30%. The curves were obtained by actually measuring
the distribution of the elapsed time required to execute a CPU bound program at the three times of
day in the absence of errors. The mean time to failure at each time of day was measured by counting
the number of crashes occurred in two hour time slots centered at each of the three times
considered.

ISP

APPLICATIONS 119

Expected Elapsed Time E[T[Tmin] (Minutes)

@
Q
o

450

€ H
b

W
o
o

250t

200}

150}

100}

15 20 25 30
Tmin (Minutes)

5 10

Figure 7-4: Expected elapsed time required to execute a program at three
different times of day

120 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

7.2.2. The manager’s viewpaoint

In the previous section it has been shown how the added cost due to unreliability can be evaluated
for a user trying to complete a task given the resources needed by his task and the system workload
patterns. Here, a measure will be developed of potential use to system administrators. The idea is to

evaluate the cost due to unreliability of a computer system operating as a server of computing utility.

Let Jt be the number of active jobs at time t. For fixed t, J, will be, in general, an integer valued
random variable. Jt is therefore an integer valued stochastic processes. Assume that a system failure

occurs at time t . The added cost due to that failure can be evaluated as,
1 .

J
C(t,) = Jq1cd + Zir‘, C, (7.27)

where Jt' C is the cost associated with the time that the system is down (which will be assumed to be
fixed for faulures due to transients and software) and C is the cost associated with the recovery of the
i-th job. Assume now that the system has been operatmg for N days, during which N failures have

occurred at times t, , The expected added cost due to unreliability during these N, days is

CININGty -ty).E{Zk 9, Cq }ee{ ,Z c.} (7.28)

If the recovery cost for any job is mdependent of the number of jobs active at the time of failure, and

the Cf_ are assumed to be identically distributed random variables,
]

N N,
CINGINGty -ty = 2, E(Y, }Cq + 2o, EQ, }E{Cr'} (7.29)

According to the results presented in Chapter 3, given that N failures have occurred, each of the tt
has a distribution over a one day period equal to the periodic component of the failure rate, f(m(t),x)
Thus

;
cngNy =N [c, + E(C,}] /O f(m(1).&) E {J,} dt : (7.30)

where it has been assumed that a stationary distribution exists for the C . Finally, since neither C,.
i i
m(t), or J, depend on N,

T .
ey = ety [¢, + ECY] /0' fm(t).8) E(J,} ot (7.31)

For a system administrator, the interesting question is whether the policies regulating the use of the
system can be modified such that the above cost is minimum, while simultaneously executing, on the
average, the same number of jobs per unit time.

APPLICATIONS 121

E{Nf} is the expected number of failures in N d days and can be reduced only by improving the
hardware or the operating system. Cd is the cost associated with the system down time after a failure,
which presumably will already be as small as possible. E{Cr_} is the cost associated with the abortion
of user jobs, and depends on users patterns of use, prograr;wming style, and so on. The only term left
for the administrator to play with is the variable cost associated with the system workload variations.

Let Cu be equal to the added cost depending on workload variations
T

C,= / f(m(t).c') E[J,] ot (7.32)
0

Since {(m(t),X) is a polynomial on m(t), Cu will be minimum when m(t) = m, the mean value of m(t).
Thus, allowing the workioad to vary around its mean value has an associated cost in itself. For the
CMU-10A the periodic variations actually increase the cost due to unreliability by 8% in the sense that
Cu =0.13 and for constant workload C‘:i" =0.12. Obviously, the number of jobs processed in one day
is the same in both cases.

Dividing (7.31) by N,, the added cost due to unreliability per unit time is obtained

MTTF

This expression is important as it includes all factors for which unreliability has an associated added

c=-nt- [c,+ E(C,) 1e, (7.33)

cost. From (7.33) is seen that doubling the MTTF value actually decreases the added cost in half. it
has already been shown how C increases this cost as a conseguence of workload periodicity.
Finally, C g is usually going to be small compared with E{Cri}. the recovery cost associated with each .
job. Thus, one way to reduce the added cost due to unreliability is to reduce the expected recovery
cost from failures. The next section shows how the recovery costs can be reduced by introducing
checkpointing.

7.3. On the optimum checkpointing interval

To diminish the added cost due to unreliability several alternatives are possible according to
expression (7.31). Assuming that hardware and operating system reliability are given and that the
workioad patterns cannot be changed there is still a way by which the cost associated with delays and
repeated computations can be reduced. Assume that at certain points in time called checkpoints a
copy of the program memory image and data structures is made and stored in some secondary

storage medium. Figure 7-5 shows a typical sequence of events when checkpointing is possible. If a

failure occurs before the program completes execution, the copy of the program image at the most

122 A COMPATIBLE HARDWARE/SOFTYWARE RELIABILITY PREDICTION MODEL

Crash Recovery

Checkpoint Checkpaint Checkpoint Time

Figure 7-5: Typical sequence of events in a system with checkpointing ‘

facilities. The total added cost due to unreliability is the cost associated with

the checkpoint operation, plus the cost due to system unavailability due to

tailures, plus the cost of recovering after each failure to the state given by the

last checkpoint.
recent checkpoint is restarted. Thus, only the computations performed since the last checkpoint have
to be repeated. Since the checkpoint operation has also an associated cost, the problem is to
estimate the time between checkpoints such that the overall added cost (cost due to checkpoints and

cost due to failures) is minimized.

Checkpointing is rarely used in Time Sharing systems except in programs where loss of data due to
a failure is specially inconvenient (such as editors or electronic mail programs). However, it is
extensively used in Real Time systems and in transaction processing systems, where at each
checkpoint a copy of the database is made, and recovering from a failure means to bring the
database to the last consistent state and reprocess the transactions arrived since the last checkpaoint.

Because of its importance, the problem of determining the optimum checkpointing interval has
received considerable attention. Table 7-2 is a summary of the most relevant models proposed for the
evaluation of the optimum checkpointing intervai. For each model a reference is given, the main
assumptions in the model, and the decision criteria used to determine the optimum checkpointing

interval. Most of these models have been surveyed in [Chandy 75b].

The purpose of this section is to investigate if the modeling methodology presented in this thesis
confirms or invalidates the results given by the models presented in Table 7-2 and to study if a refining

of these results is possible.

APPLICATIONS 123
Reference Assumptions Goal
[Young 74] - Constant workload Maximize
- Constant failure rate Availability

- No errors during check.

{Chandy 75a) - Constant workload Maximize
- Constant failure rate Availability
- Errors occur during check.

[Chandy 75b] - Periodic Workload Maximize number

- Periodic failure rate of transaction processed
[Gelenbe 78] - Constant workload Minimize

- Constant failure rate response time

- Errors occur during check,

Table 7-2: Four proposed models to evaluate the optimum checkpointing
interval in a transaction processing system

7.3.1. Constant workload

If the workload is constant the failure process becomes a renewal process. The ti}r\es between
successive failures form a sequence of independent identically distributed random variables.
Following the same approach as in Section 7.2, the added cost due to unreliability per unit time will be
evaluated. If the checkpointing interval is assumed to be Tck, the added cost is given by

E[CTeN] = T‘ [, +Echm,)] (7.34)
ck

E[CRITck] is the axpected cost dut to recoveries from possible failures given that the checkpoint

interval is T K’ Repeating the same reasoning as in Section 7.2,

[> o]
E[CRT] = Z,, =1 PTCk(Nf =n) E[CRIT_ N, =n] (7.35)
T
=T [cFo e kg] | (7.36)

where it has been assumed that the recovery cost after each failure is equal to a fixed cost cFo plus a
variable cost proportional to the time since the last checkpoint. The expected variable cost is chk/2.

Also, for a renewal process, the expected number of failure during the time Tck is Tck divided by the
Mean Time To Failure (MTTF). Hence,

124 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

ECHT,] = 3 [cRo+ k] (7.37)

and

T
gcTeo) == [, + VT‘TF (cfo s k)] (7.38)

The expected cost wuH be minimum when its derivative with respect to Tck is zero. The optimum
checkpointing interval is therefare given by
(2C d MTTF) 172
k
which is exactly the resuft obtained by [Young 74].

Ty = (7.39)

indeed, since the failure process is a renewal process, the expected cost depends on the expected
number of renewals (failures) per unit time, but it is independent of the PDF of the time to failure.
Therefore any result obtained under the assumptions of this thesis will agree with previously obtained
results if the average workload is assumed to be constant.

7.3.2. Periodic workload

If the average system workload is given by w(t) and the average tailure rate is A(t) [Chandy 75a} has
given a recursive algorithm to determine the optimum sequence of checkpoint times to minimize the
added cost due to unreliability. The solution given by [Chandy 75a] is based on discretizing m(t) and
A(t) in intervals during which they can he assumed to be constant. Graph theory can then be used to

determine the optimum collection of checkpoint times.

The problem was originally stated by [Chandy 75a]} as follows. If the last checkpoint was performed
attime Tc , the cost due to a possible failure at time tis

[T, ! ‘
c 1. cPo + k / w(s) ds (7.40)
Y Tk)
if the time required to perform a checkpoint is C , the total expected cost in [Tck,t] is
T,+C t
ck d ,
E[Crrck'ﬂ] = / w(t) dt + / ?f't‘ Alr)dr (7.41)
T ,+C f
ck cd d

Although according to the resuits presented in Chapter 4 A =m(t) + x,, the expected cost is equal to
(7.41) since E[Kt]=m(t). The optimum checkpointing interval is the interval which minimizes the
above cost. By discretizing m(t) [Chandy 75a] gives a recursive algorithm to compute the instants at

which checkpoints must be done. The way in which the problem is stated is precisely the main

APPLICATIONS 125

obstacie to obtain a concise solution. Instead, assume that the system is started at time tg due to a

failure or that a checkpoint finalized at time t, Then
T T +C
ck ck d
g[cltsTex)) = k' / ClyI) dr + [w(t) dt (7.42)
t 1
] ck
Difterentiating with respect to Tck. the following equation is obtained. -

T
k'CRO + k|k A(Tck) [c:v(s) ds = ‘N(Tck) " w(TCk.Cd) (7‘43)
S

The difference between the value of Tck satislying (7.43) and the solution proposed by [Chandy 75a]
is that the value of T ok satistying (7.43) can be computed by the system "on the fly". The first term on
the left hand of (7.43) is the fixed cost due to recovery from a crash. The second term is the variable

cost and increases as T increases. The right hand side is the cost associated with the

-t
ck 's
checkpointing operation. Thus, the above equation indicates that checkpointing must be performed
when the expected recovery cost exceeds the cost associated with checkpointing. Let the system be

sampling the values of w(t) and A(t) at regular intervals At. Then,

t
[W(s) ds = Z:ﬂ wit) At (7.44)
S

where the first sample is taken immediately after a checkpoint has been performed or a crash has
occurred. The system has only to keep track of the variables

Chlt)) = Cqlt.) +KK Aft) wit) At (7.45)

C(t,) = wit) - w(t_-C) (7.46)
where

Cp=K CRo . (7.47)

A checkpoint must be performed whenever Cn(tn)>Cck(tn). In this way, the optimum checkpointing
interval adapts itself to system behavior, by resetting the time scale every time that a checkpoint or a

crash occurs.

126 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

7.4. Reliability modeling including transient hardware faults,
software faults, and permanent hardware faults

As a final elaboration of the present modeling methods, a model will be presented which includes
the effect of permanent hardware faults, in addition to hardware transients and software faults. The
modeled system is a nonredundant system under constant average workload. Recall from Chapters 5
and 6 that the Stationary model still gives a much better characterization than the any other model,
even for systems under periodic workload. The assumptions regarding the statistics of the time to
permanent fault will be the traditionai ones, i.e., the time to permanent failure will be assumed to be

exponentially distributed
. AT
Pt,Sr)=1.e° (7.48)

where Pp(t psr) is the probability that a permanent fault will occur before time r. The PDF of the time
to failure due to transients and software will be assumed to be any of the distributions given in
Chapter 4 under the constapt workload assumption

PothsT) = 1- e nee ‘ (7.49)

where h(t) is any of the hazard functions given in Section 4.1.

7.4.1. Markov processes

Reliability modeling for permanent faults is often characterized by means of Markov processes.
Central to the theory of Markov processes are the concepts of state and state transition. The state of a
system represents all that it is needed to know to describe the system at any instant. in the course of
time the system passes from state to state and therefore exhibits a dynamic behavior. if the system
can be characterized by its continuous time evolution thorough a discrete state space, at any instant
the system is in one of N states, and transitions between states occur at random times. The
distinguishing property of Markov processes is that they must satisfy the following property

P(stn = snlst =S,,...,8

‘ =8)= P(stn|st"_1 =s_,) ' (7.50)

‘n-1

where s, denotes the state occupied at time t - The above equality has the following implications:
n
o The probability of occupying any state in the future depends only on the state presently
occupied.

o The pdf of the time to the next transition does not depend on how long the present state
has been occupied nor on the destination state

APPLICATIONS 127

For continuous time Markov procasses, the above property in fact imphes that the time to transition
must be exponentially distributed ([Howard 71]. A stationary Markov process is then completely
specified by its transition probability matrix

P = {pii=1....N} (7.51)
where

D = P{next state is j|present state is i} (7.52)
An equivalent characterization of a Markov process is in terms of the transition rates matrix A

A = {Aii=1,...N} (7.53)
where

Ayt
gii(t) = }\iie (7.54)

is the pdf of the time to transition to state k given that the process enters state i at time 0.

State : 1.0 Operational
2:F Failed

Figure 7-6: Characterization of the reliability of a nonredundant system
subject to permanent hardware faults by a Markov process. A_ is the rate at
which permanent failures occur and)\r is the rate at which repairs take place.

Figure 7-6 summarizes the characterization of a nonredundant system subject to permanent
hardware faults only. Since the system can be only operational or failed, the failure process is

characterized as a 2 state Markov process. The times to failure and to repair are exponentially
distributed. The MTTF and MTTR values are 1/ 0 and 1/A respectively.

128 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

7.4.2. Semi-Markov processes

Markov processes are not appropriate to characterize the reliability of systems subject to
permanent, transient, and software failures. The PDF of the time to failure due to transients or
software has been shown to have a decreasing hazard function, and according to the statistical tests
performed in Chaper 6, it is not properly described by an exponential distribution. Hence, for a system
subject to the three types of failures the PDF of the time to transition depends on the destination state.
This PDF will be exponential if the destination state is failed due to a permanent failure, or it will be of

the form given in (7.49) if the destination state is failed due to a transient or software error.

This dependency of the pdf of the time to transition on the destination state is precisely the
distinguishing property of the so called Semi-Markov processes. A system characterized by a Semi-
Markov process is always in one of N states. Successive state occupancies are governed by the
transition probabilities of a Markov process. At transition instants, the system behaves as a Markov
process, and the process determining such transitions process is called the embedded Markov
process. The imbedded Markov procéss is completely described by a NxN matrix of transition
probabilities P as defined in (7.51). In addition, in a Semi-Markov process, whenever the system
enters state i it is imagined that it determines the next state j according to state i's transition
probabilities {pn,...,piN}. After j has been chosen, the system "holds" for a random time T in state
i. The pdf of . is given by qii(t). obtaining therefore a vector of pdf’s for each state i. Hence, a Semi-
Markov process is completely determined only if both the matrix P and the pdf's matrix Q(t)

Q@) = {qii(t);i,i=1,...,N} . (7.55)

are available.
Figure 7-7 synthizes how a non redundant computing system can be characterized by a Semi-
Markov process incorporating the effects of permanent hardware failures, transient hardware failures,
and software failures. The system is operational when in state 1. The system selects then the next

state according to the transition probabilities p,,. Pya- If the destination state is state 2 (Failed due to
transients or software), the system selects

. [h(s) ds '
q12(t) = hit)e (7.56)

as the pdf of the time to transition. If the next state is 3 (failed due to a permanent hardware failure) an
exponential distribution with parameter A o is selected as the PDF of the time to transition

APPLICATIONS 129

State : 1.0 ' Operational
2:F " Failed due to transients or software

3:F Failed due to permanent failures

Figure 7-7: Characterization of a non redundant system subject to
permanent and transient hardware failures, and software failures

At
g4t =)\pe P (7.57)

The other transitions are similarly characterized. If the system is in state 2 (failed due to transients or
hardware) it will become operational after a fixed recovery time t and therefore the pdf of the time to
restart is q,,(t) = 5t). A permanent hardware failure may also occur while the system is recovering
from a transient. The pdf of the time to such event is an exponential distribution truncated at t=t r._!f
the system is in state 3 (failed due to a permanent hardware failure) it will always recover after a
random time exponentially distributed with parameter }\r and '
At

a3, () = A e f (7.58)

Note that A_is not the rate at which permanent failures occur, but the rate at which permanent

tailures are observed since the /ast system restart.

ot et ca

130 A COMPATIBLE HARDWARE/SOQOFTWARE RELIABILITY PREDICTION MODEL

7.4.2.1. Limiting behavior

Define now the following matrix of time varying functions
o) = {p,(t)ii=1,...N} (7.59)

where ‘Paim is the probability that the system will occupy state j at time t given that it entered state i at
time 0. Then it can be proven that

0 N t
Q“(t) = 8" qi(f) dr + Zk=1 pik‘lJ‘ Q“(T) ‘Pii(t.f) dr (760)

Equation (7.60) requires the solution of a system of integral equations whenever numerical values of
®(t) are required. Although this system of equations can sometimes be solved by using Laplace
transform methods (see [Howard 71}) it is cumbersome. However, if the desired knowledge is only on
the average, a simpler result can be used. Let

p; = lim @) (7.61)
t—+Q0

Then ?; is the average fraction of time spent in time | given that the system entered state i at time 0.
Far example, the value of ¢ " for the system described in Figure 7-7 is the system availability, since it
is equal to the fraction of time that the system is operational given that the system was first started at
time 0. A basic resuit of Semi-Markov theory is

ij[fi]
2w i)

wiE[‘ri]
Efr]
where 7 = (7 ey is the limiting state probability vector of the embedded Markov process. Such a

(7.62)

P =

(7.63)

vector can be obtained by solving the system of equations

TaT ' (7.64)
subject to the condition
ZN
LR (7.65)

Equation (7.63) is important in that it implies that the only statistic of the holding times that affects the

limiting behavior of states occupancies is the expected value.

APPLICATIONS

131

AS a simple example consider the CMU- 10A. Repair takes place with a frequency smaller than once

a month. Since the system crashes on the average every 9 hours,
p,, = 0.999
p13 = 0001

Also, it will be assumed that

Py =1
Py =0
Py =1
P = 0

n, =05

w, = 0.4995

w4 = 0.0005
Assuming

E[r,] = 9 hours (Mean Time To Failure)
E['rz] = 15 minutes (Mean time to recover from transients)
E[rsl = 2 hours (Mean Time To Repair)

then

Availability = @, = 0.97

7.4.2.2. Reliability prediction

(7.66)

(7.67)

(7.68)
(7.69)
(7.70)

(7.71)

(7.72)
(7.73)

(7.74)

(7.75)
(7.76)

(7.77)

(7.78)

Let the pdf of the time to failure, pﬁ(t) be the unconditional pdf of the time to transition from state 1,

independently of the destination state. Thus,
p“(t) = 912 Q12“) + p13 q13(t)

and the reliability function becomes

(7.79)

132 ' A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

g R(t) = P(t,>1) (7.80)
[+ o]
| = P Ryp() + pyg Ryglt) (7.82)

| where R1 2(t) is the reliability function due to transients and software
} - [h(s)ds) ’
R,=e {(7.83)

and R 13 is the reliability function due to permanent failures
At
R, =e p (7.84)

Since p12>>>p13, the system reliability is essentially the reliability function discussed in Chapter 6 for
transients and software according to the Stationary model.

7.5. Summary

The modeling methodology introduced in Chapters 3 and 4 has been extended in this chapter to
derive some important applications to Refiability modeiing and cost/beneﬁt analysis of ‘fault-
tolerance. In particular, the following extensions have been considered:

e Decomposition of the failure process in its software and hardware components. Although
on the average the probability that a crash is due to software may be of 0.6, the impact of
unreliable software may be much more important due to the fact that the system crashes
more often in periods of high load when the contribution of uncorrect software is iarger
than average.

o Evaluation of the added cost due to unreliability both from a user's viewpoint and from a
system manager's viewpoint. Curiously, the fact of having a periodic workload (as
opposed to constant) has an associated cost in itseif.

o Study of previous resuits to evaluate the optimum checkpointing interval. A new resulit
has been presented in the case of periodic workload.

e Introduction to models incorporating the effects of software errors, transient hardware
fauits, and permanent hardware faults.

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 133

Chapier 8
- Conclusions and suggestions for further research

Through the thesis, the two main questions for which a simuitaneous answer has been sought are

Question 1: What is it desirable to know about computing systems reliability?

Question 2: What variables can be easily measured from real systems?

If a simultaneous answer for both questions exists, it must obviously a compromise, since the answer
to the first question is "everything". And this will never be known. Prehaps the closest answer to the
above two questions are the results presented in Chapter 7, were methods to evaluate the impact of
unreliability, and methods to trace the impact of each cause of unreliability (permanent hardware
failures, transient hardware failures, and software failures) have been presented.

it was in Chapter 2 that it was claimed that an apparent conflict would be solved. The fact that a
system fails more during prime time is widely accepted. And no statistical tests can contradict the fact
that the Weiubull distribution characterizes is a better distribution to charac-terize the time to failure
than an Exponential or Periodic model, even though the Weibull model does not include periodicity
concepts. The answer to this apparent conflict seems to be to consider the failure rate to be a
Gaussian process with periodic statistics, i.e., a cyclostationary process. The after effects of this
approach have been

e Derivation of the general properties of the class of Doubly Stochastic Poisson process
whose failure rate is a Gaussian process (Chapter 3).

e Characterization of doubly stochastic Poisson process whose intensity is either a
stationary or a cyclostationary Gaussian process. In particular a complete family of
distributions commonly used in statistical analysis of failure date have been shown to be
special cases of this approach (Chapter 4). As a side effect, the general properties of the
unreliable behavior of computing systems operating under periodic or constant workioad
have been established.

o Elaboration of the necessary techniques for model parameterization and validation
(Chapter 5).

134 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

e Validation of the model by comparison with the actual behavior of a real system, and
comparison of its predictions-with the predictions of other modeis (Chapter 6). In
particular, stablishment of ranges for which other modeis may lead to over optimistic or
over pessimistic expectations.

o Establishment of cost and benefit measures of fault-tolerance derived from the modeling
methodology (Chapter 7).

Since the main results presented in Chapters 3,4, and 7 are original, a cautious approach must be
taken in deriving conclusions from these results until further proofs of their validity are available. With
caution and the two above questions in mind, the following sections summarize the preliminary
conclusions derived from this thesis and pose some interesting unanswered questions. Traditionally,

these new questions will require some more research to be answered, or they will be forgotten.

8.1. Reliability modeling

Through the thesis a reliability modeling methodology has been developed starting from basic
principles of operation of Time Sharing systems. Nevertheless, it should be noted that the original
MULTICS design dates from the early 1960's. Model validation has been done with the TOPS-10
operating system, already more than 10 years old. Why then bother to study such systems? Would not
it be better to study state of the art Time Sharing systems, multiprocessors, multicopmuters, or
collections of personal computers operating in Local Area Networks ?

The fact is that current systems still adopt the basic conventions of the original MULTICS design.
For example, the IBM 4341 processor executing the operating system VM/370 does not attempt to
recover from transient hardware failures if these failures occur while the system executes in kernel
mode [Ciacelly 81]. The system attempts to recover when transient failures occur in other modes,
which is one of the central hypothesis of work of the present thesis. As for the extension of similar
modeling methods to other systems such as multiprocessors or multicomputers, note that the
methods followed in this thesis are oriented to the steady state system characterization relying heavily
on operating system measuring system facilities such as error logs, system tables with accounting
information, and so on. These measuring tools are available in operating systems for purposes of
accounting, maintenance aids, or system tunning facilities. But these measuring facilities have been
used here for reliability characterization purposes.

Few multiprocessors are available today for general use and experimentation. Of the

CONCLUGIONS AND SUGGESTIONS FOR FURTHER RESEARCH 135

multiprocessors available, most are experimental systems (such as C.mmp [Wulf 81] and Cm* [Jones
80)) are far from being general purpose systems or are dedicated to the execution of relatively simple
real time functions (such as Pluribus [Ornstein 74] whose only function is that of packet switching, or
other multiprocessors dedicated to telephone switching functions). Obviously, in most experimental
systems the concept of steady state operation is not defined, and teing vehicles of experimentation,
the software is usually changing continuously. Further, no system available for experimentation has
the necessary measuring tools required to validate theoretical models. The emphasis given in
Tandem systems [Katzmanu 77] to instrumentation problems is significant [Blake 80}, since Tandem
systems are at present the only multiprocessors offering high reliability in generai purpose
applications. Further, before attacking the problem of characterizing the unreliable behavior of
multiprocessors due to hardware transients and software, it seems reasonable to solve first the
problem for simpler, more accessible systems such as Time Sharing computers.

Nevertheless, it is expected that several of the new results presented in this thesis will be applicable
to other systems. In Local Area Networks, expensive facilities such as centralized file systems or
expensive peripherals are likely to operate in Time Sharing mode, their reliability characterization
being characterized by the same principles exposed in this thesis.

The model presented in Section 7.4 incorporating permanent hardware failures, transient failures,
and software failures can be viewed as a first step in the characterization of the unreliable behavior of
multiprocessor systems. The extension of this model to muitiprocessoars is desirable but not at all an
easy task. First, note that model parameterization is possibie only after detailed knowledge about the
relationships between resource uéage and unreliable manifestations. Remember how the PDF of the
time to failure due to hardware transients and software has been derived. Secondly, the - roduction
of redundancy in hardware, software, or both may lead to unexpected results since the failure
processes due to software and transients are not independent, but both depend on workload time
varying patterns. Thus, care is necessary when elaborating the model to systems with some degree of
redundancy.

A problem that has been systematically ignored through the thesis is the distinction between
transients and intermittent faults. While transient failures are manifestation of changing
environmental conditions (such as cosmic rays) or consequences of limitations in manufacturing
processes (such as the presence of radioactive materials in packaging materials), intermittent faults
are manifestations of physical degenerative processes (for instance, oxidation in a terminal contact).

Still, much of the results presented in this thesis should be valid, since an intermittent fauit can only

136 A COMPATIBLE HARDV/ARE/SOFTWARE RELIABILITY PREDICTION MODEL

be detected when exercising the component affected by the degenerative process. However, the
distinction between transients and intermittents is useful for diagnosis and replacement policies.
Current eftorts in this direction have been reported by [Bossen 81].

Finally, a sensitivity analysis should be performed establishing levels of confidence of the reliability
predictions of the Stationary and Cyclostationary models depending on the parameter estimation

procedures and sample size.

In summary, the main topics in which further research is to be expected are :

e Incorporation in state of the art systems of exhaustive measuring capabilities to allow
system characterization and model validation with relatively minor effort.

o Extension of the present modeling methods (i.e., hardware/software prediction models)
to systems having some degree of redundancy at the subsystem level such as
multiprocessors.

e Better understanding in the differences in the manifestations of transients and
intermittent faults.

o Sensitivity analysis of reliability predictions.

8.2. Performance/Reliability modeling

The above considerations are specially relevant to Performance/Reliability modeli;'mg techniques of
systems having some degree of redundancy such as multiprocessors. While in a (uniprocessor) Time
Sharing system singularities are easily identified (i.e., the hardware and the kernel of the operating
system) for a multiprocessor singularities may form a dynamicaily changing coilection of resources.

Some Performance/Reliability models were referenced in Chapter 2. Most of those models assume
that upon failure detection the system may reconfigure itself and continue operating in a degraded
performance state until repair takes place. These models attempt then to characterize how system
performance is likely to evolve in time depending on the presence cf different types of failures. The
main assumption comhon to all these existing models is that they all use Markov models as the
underlying abstraction. That means that all the times between state transitions are exponentially
distributed. However, it has been shown in this thesis that the distribution of the time to failure due to
transients and software cannot be approximated by an exponential distribution. Therefore,
Performance/Reliability models will have to evolve into Semi-Markov models where the distributions
of failures due to software and transients are of the type derived in Chapter 4.

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESCARCH 137

if all it 1s needed to know about the system is ils steady state behavior, the distinction bctween
Markov and Semi-Markov modeling is not important. As it has been shown in Section 7.4 steady state
characterization for a Semi-Markov model depends only on the expected times between transitions.
However, if some more detailed knowledge is required, Semi-Markov modeling is unavoidable. Recall
from Section 6.1.2 that the differences in reliability predictions between the exponential distribution
and the distribution predicted by the Stationary approximation are not neglectable for values of time
smaller than the MTTF value. Therefore, the distiction between Markov and Semi-Markov modeling is
especially relevant for systems having exceptional reliability requirements during periods of time
smaller than the expected MTTF value. This is the case, for example, of SIFT [Wensley 78] and FTMP
{Hopkins 78].

8.3. Software reliability evaluation and the design of reliable
software

The central argument of this thesis with respect to software reliability is that the observed software
reliability depends on the instantaneous complexity of the data to be processed. Certainly, when a
software package is implemented it is expected to cope equally well in all situations for which it has
been designed to work. However, given that the software is subject to imperfections, it is more likely
the such imperfections will be noticed while processing data describing situations of high complexity
than processing data describing simple situations. This is so because simpler situations are easier to

understand, the software for them is easier to design, and easier to debug.

This discussion is in rather loose terms because the lack of a suitable descriptor for the meaning of
“complexity". But note that here complexity is an attribute of the world as seen by the software, not
an attribute of the software itself. However, the world seen by the software is just the state of its data
structures. If the only descriptors that can be obtained about the complexity of a situation to be
processed by the software is by means of the state of its data structures, such descriptors will be very
much representation dependent. By dependency on representation it is meant that different situations
with the same inherent complexity may lead to different software reliability characterizations
depending on the representation adopted in the data structures to represent such complexity.
Consider, for instance, the problem of deadlocks. Several processes request the allocation of several
resources, If some processes are processing for each other’s resources but all are waiting and none
is able to release a resource, dead!ock occurs. However note that the number of processes. requests,

and resources (which together determine the complexity of the situation to be processed) deadiock

138 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTIOM MODEL

will occur only under certain ordering of requests, while sequences with different orderings may be
handled properiy. The argument now is that on the average data describing more complex situations
will be harder to process, and therefore more prone to the manifestation of a software fault.

This representation dependency of the complexity of the world seen by the software, and its
relevance to software reliability manilestations has however some potential advantages. Consider a
piece of code that operates on certain data structures in such a way that, the same code, fed with the
same input data, uses different internal representations in its data structures according to some

random factor. Then code replication to increase reliability makes sensel . ' !

Indeed, consider a software package operating over a variety of data structures such as lists,
queues, and arrays. Assume that the code has been written in such a way that data structure
initialization (and even perhaps allocation) is random. That is, no two initialization sequences lead to
the same representation of the same situation. This can be accomplished, for instance, by chosing

the header for the queues at random in a circular buffer. Consider now two copies of the same code 1
running in parallel in separate processbrs (or sequentially in the same processor). As the code is
feeded with external input data, both copies will use different representations in their internal data
structures. Thus, in some cases, one copy may manifest a software fault due to a particular
representation, while the other copy may be able of handling the same situation without problem.

The above arguments are highly speculative and their validation wouid require (at least) the design]

of a complete experiment and background study as it has been done in the present thesis. However,
this potential approach to the design of reliable software has been presented here because it is a

natural extension of the methodology followed in this thesis.

REFEREIICES

139

References

[Anderson 67]

[Anscombe 52]

[Avizienis 75]

[Avizienis 77]

[Barlow 75])

[Beaudry 78]

[Beaudry 79]

[Beaudry 80]

J.E. Anderson and F.J. Macri.

Multiple Redundancy Applications in a computer.

In Proceedings of the 1967 Annual Symposioum on Reliability, pages 553-562.
January, 1967.

F.J. Anscombe.
Large sample theory of sequential estimation.
Proc. Camb. Phil. Soc. 48:600-607, 1952.

A. Avizienis.

Fault-Tolerance and Fault-Intolerance: Complementary Approaches to Reliable
Computing.

In Proc., 1975 (nt. Conf. Reliable Software, pages 458-464. |EEE Comp. Soc., April,
1975.

A. Avizienis and L. Chen.

On the Implemenation of N-Version Programming for Software Fault-Tolerance
During Execution.

In Proc., COMPSAC 77, pages 149-155. IEEE Comp. Soc., November, 1977,

R. E. Barlow and F. Proschan.
Statistical Theory of Reliability and Life Testing: Probability Models.
Holt, Rinehart, and Winston, Inc., 1975.

M.D. Beaudry.
Performance Related Reliability Measures for Computing Systems.
IEEE Trans. Computers C-27(6):540-547, June, 1978,

M. D. Beaudry.
A Statistical Analysis of Failures in the SLAC Computing Center.
In Digest of Papers, COMPCON Spring 79, pages 49-52. IEEE Comp. Soc., 1979.

M.D. Beaudry.

Stochastic Behavior of Failures in Computing Systems.

Technical Report 172, Center for Reliable Computing, Stanford University,
February, 1980.

140 A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

[Bell 78] C.G. Bell, A. Kotok, T.N Hastings, and R. Hill.
The Evolution of the DECsystem 10.
Communications of the Association for the Computing Machinery 21(1):44-63,
January, 1978.

[Berger 74] R.W. Berger and K. Lawrence.
Estimating Weibull Parameters by Linear and Nonlinear Regression.
Technometrics 16(4):617-619, November, 1974.

[Billingsley 56] P. Billingsley.
The invariance principle for dependent random variables.
Trans. Amer. Math. Soc. 83:250-268, 1956.

[Billingsley 63] P. Billingsley.
Limit theorems for randomly selected partial sums.
Ann. Math. Stat. 33:85-92, 1963.

[Billingsley 79] P. Billingsley.
Probability and Measure.
Wiley, 1979.

[Blake 80] R. Blake.
Xray: Instrumentation for Multiple Computers. .
In Proc. Performance 80, pages 11-25. ACM Sigmetrics 9(2), May, 1980.

{Bossen 81] D.C. Bossen and M.Y. Hsiao.
ED/FI: A Technique for Improving Computer System RAS.
In Proc. FTCS-11, pages 2-7. IEEE Comp. Soc., June, 1981.

[Bouricious 69] W.G. Bouricious, W.C. Carter, and P.R. Schneider.
Reliability Modeling Techniques for self-repairing Computer Systems.
In Proceedings of the 24th National Conference of ACM, pages 295-383. 1969,

[Breiman 68] L. Breiman,
Probability.
Addison Wesley, 1968.

[Butner 80] S.E. Butner and R.K. lyer.
A Statistical Study of Reliability and System Load at SLAC.
Technical Report, Center for Reliable Computing, Stanford University, January,
1980. ‘ .

(Castillo 80a] X. Castillo, D.P. Siewiorek. .
A Performance-Reliability Madel For Computing Systems.
Technical Report, Carnegie-Mellon University, Computer Science Department,
1980.

REFERENCES

[Castillo 80b]

{Chandy 75a]

[Chandy 75b]

[Cheung 75]

[Cheung 80]

[Chou 80]

[Ciacelly 81)

[Cinlar 72]

[Corbato 74]

[Costes 78]

[Digitat 77}

[Digital 78]

141

X. Castillo.

Workload, Performance, and Reliability of Digital Computing Systems.

Technicai Report, Carnegie-Melion University, Computer Science Department,
December, 1980.

K.M. Chandy, J.C. Browne, C.D. Dissly, and W.R. Uhrig.
Analytic Models for Rollback and Recovery Strategies in Data Base Systems.
IEEE Trans. Soft. Eng. SE-1(1):100-110, March, 1975.

K.M. Chandy.
A survey of Analytic Models of Rollback and Recovery Strategies.
Computer 8(5):40-47, May, 1975.

R.C. Cheung and C.V. Ramamoorthy.
Optimal Measurement of Program Path Frequencies and its Applications.
In Proc. 1975 Int. Fed. Automat. Contr. Congr.. August, 1975.

R.C. Cheung.
A User-Oriented Software Reliability Model.
IEEE Trans. Software Engineering SE-6(6):118-125, March, 1980.

T.C.K. Chou and J.A. Abraham.
Performance/Availability model of Shared Resource Multiprocessors.
IEEE Trans. Reliability R-29(1):70-74, April, 1980.

M.L. Ciacelly.
Fault-Handling of the IBM 4341 Processor.
In Proc. FTCS-11, pages 9-12. |IEEE Comp. Soc., June, 1981.

E. Cinlar.

Superposition of paoint processes.

In P.A.W. Lewis (editor), Stochastic Point Processes Statistical Analysis, Theory,
and Applications, pages 549-606. Wiley, 1972.

F.J. Corbato, J.H. Saltzer, and C.T. Clingen.
MULTICS-The first seven years.
In AFIPS Conf. Proceedings, pages 571-583. 1974.

A. Costes, C. Landrauit, and J.C. Laprie.

Reliability and Availability Model for Maintained Systems Featuring Hardware
Failures and Design Faults.

IEEE Trans. Computers C-27(6):548-560, June, 1978.

TOPS- 10 Monitor Calls Manual
Digital Equipment Corporation, 1977.

TOPS-10 and TOPS-20 SYSERR Manual
Digital Equipment Corporation, 1978.

142

[Ferdinand 74)

[Fitzsimmons 78]

[Fuller 78]

(Gardner 75]

[Gardner 78]

[Gay 79]

[Geilhufe 79]

[Gelenbe 78]

[Glass 81]

(Goldstine 72]

[Grnarov 80)

[Harris 68]

A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

A.E. Ferdinand.
A Theory of Systems Complexity.
Int. J. Gen. Syst. 1:19-33, 1974.

A. Fitzsimmons and T. Love.
A review and evaluation of Software Science.
ACM Computing Surveys 10(1):3-18, March, 1978.

S.H. Fuiler and S.P. Harbison.

The C.mmp multiprocessor.

Technical Report, Carnegie-Mellon University, Computer Science Department,
October,, 1978.

W. A. Gardner, L. E. Franks.
Characterization of Cyclostationary Random Signal Processes.
IEEE Trans. Information Theory IT-21(1):4-14, January, Year = 1975.

W. A. Gardner.
Stationarizable Random Processes.
IEEE Trans. Information Theory 1T-24(1).8-22, January, 1978.

F. A. Gay and M. L. Ketelsen.

Performance Evaiuation for Gracefully Degrading Systems.

In Digest of Papers, Ninth Annual international Conference on Fauit-Tolerant
Computing, pages 51-58. IEEE Comp. Soc., 1979.

M. Geilhufe.
Soft errors in semiconductor memories.
In Digest of Papers, COMPCON Spring 79, pages 210-216. I[EEE Comp. Soc., 1979.

E. Gelenbe and D. Derochette.
Performance of Rollback Recovery Systems under Intermittent Failures.
ACM Comm. 21(6).483-499, June, 1978.

R.L. Glass.
Persistent Software Errors.
IEEE Trans. Software Engineering SE-7(2):162-168, March, 1981.

H.H. Goldstine. : .
The Computer from Pascal to Von Newmann.
Princeton University Press, 1972,

A. Grnarov, J. Arlat, A. Avizienis.
On the Performance of Software Fault-Tolerance Strategies.
In Proc. FTCS-10, pages 251-253. IEEE Comp. Soc., October, 1980.

C.M. Harris and N.D. Singpurwalila.
Life Distributions Derived from Stochastic Hazard Functions.
IEEE Trans. Reliability R-17(2):70-79, June, 1968. : ‘

REFERENCES

[Hecht 76)
(Hodges 77]
[Hopkins 78]
[Horowitz 75]
[Howard 71)

[Jelinsky 73]

[Jenkins 68]

[Jones 80]

[Katzmanu 77]
[Ketler 76]
[Keyes 81]

[Kieinrock 75)

143

H. Hecht.
Fault-Tolerant Software for Real-Time Applications.
ACM Computing Surveys 8(4):391-407, December, 1976,

D.A. Hodges.
Progress in Electronic Technologies for Computers.
Technical Report, National Bureau of Standards, March, 1977.

A.L. Hopkins, T.B. Smith, and J.H. Lala.
FTMP-A Highly Reliable Fault-Tolerant Muitiprocessor for Aircraft.
IEEE Proc. 66(10):1221-1239, October, 1978.

E. Horowitz.
Practical Strategies for Developing Large Scale Systems.
Addison-Wesley, 1975.

R. A. Howard.
Dynamic Probabilistic Systems.
Wiley, 1971.

A. Jelinsky and P.B. Moranda.

Applications of a probability Based Method to a Code Reading Experiment.

In Proceedings of the 1973 Symposioum on Software Reliability, pages 78. |EEE
Comp. Soc., 1973. -

G.M. Jenkins and D.G. Waltts.
Spectral Analysis and its Applications.
Holden-Day, 1968.

A.K. Jones and E.F. Gehringer, Eds.

The Cm* Multiprocessor Project: a Research Review.

Technical Report CMU-CS-80-131, Carnegie-Mellon University, Computer Science
Department, July, 1980.

J. A. Katzmanu,
A Fault-Tolerant Computing System.
Technical Report, Tandem Computers inc., 1977.

T.W. Keller.
CRAY-1 Evaluation Final Report.
Informal Report LA-6456-MS, Los Alamos Scientific Laboratory, December, 1976. .

R.W. Keyes. .
Fundamental Limits in Digital Information Processing.
IEEE Proc. 69(2).267-268, February, 1981.

L. Kleinrock.
Queuing Systems.
Wiley, 1975.

144

[Lee 79]

[Littlewood 79)

[Lynch 75]

[May 79]

[McConnel 79a]

[McConnel 79b]

[McConnel 81]

[Melsa 78]

[Meyer 79]

[Miyamoto 75]

[Mohanly 73]

A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

P.A.Legetal.

A Recovery Cache for the PDP-11,

In Prac., 1979 Int. Symp. Fault-Tolerant Computing, pages 3-8. |IEEE Comp. Soc.,
June, 1979.

8. Littlewood.
How to Measure Software Reliability and How Not To.
IEEE Trans. Reliability R-28(2):103-110, June, 1978.

W.C. lynch, W. Wagner, and M.S. Schwartz.
Reliability Experience with Chi/OS.
IEEE Trans. Software Engineering SE-1(2):2563-257, June, 1975.

T.C. May. }
Soft errors in VLS! - Present and Future.
In Proc., 29th Electronic Components Conference, pages 247-256. |EEE, 1979.

S. R. McConnel, D. P. Siewiorek, and M. M. Tsao.

Transient Error Data Analysis.

Technical Report CMU-CS-79-121, Carnegie-Mellon University, Departments of
Electrical Engineering and Computer Science, May, 1979.

S. R. McConnel, D. P. Siewiorek, and M. M. Tsao.

The Measurement and Analysis of Transient Errors in Digital Computing Systems.

In.Digest of Papers, Ninth Annual International Conference on Fault-Tolerant
Computing, pages 67-70. IEEE Comp. Soc., 1979.

S.R. McConnel.
Analysis and Modeling of Transient Errors in Digital Computers.
PhD thesis, Carnegie-Melion University, June, 1981.

J.L. Melsa and D.L. Cohen,
Decision and Estimation Theory.
McGraw-Hill, 1978.

J. F. Meyer, D. G. Furchtgot, and L. T. Wu.

Performability evaluation of thh SIFT computer. _

In Digest of Papers, Ninth Annual International Conference on Fauit-Tolerant
Computing, pages 43-50. IEEE Compter Society, 1979.

1. Miyamoto.

Software Reliability in Online Environment,

In Digest of Papers, 1975 International Conference on Software Reliability, pages
194-203. IEEE Comp. Soc., 1975.

S.N. Mohanly.
Modeils and Measurements for Quality Assesment of Software.
ACM Computing Surveys 11(3):250-275, September, 1973.

REFERENCES

[Moreira 80]

[Morganti 78]

[Musa 75])

[Nelson 73]

[©Ohm 79]

[Oppenheim 75]

{Organick 72]

[Ornstein 74]

[Papoulis 65]

[Phister 79]

[Powell 78]

[Randell 75]

145

J. Moreira de Souza.
A unified method for the benefit analysis of Fauit-Tolerance.
In Proc. FTCS-10, pages 201-203. IEEE Comp. Soc., 1980.

M. Morganti, G. Coppadoro, and S. Ceru.

UDET 7116 - Common Control for PCM Telephone Exchange - Diagnostic Software
Design and Availability Evaluthation. '

In Proc. FTCS-8, pages 16-23. IEEE Comp. Soc., 1978.

J.D. Musa.
A Theory of Software Reliability and its Applications.
IEEE Trans. on Software Engineering SE-1(1):312-327, September, 1975.

E.C. Neison.
A Statistical Basis for Software Reliability Assesment.
Technical Report, TRW, March, 1973.

V.J. Ohm,
Reliability Considerations for Semiconductor Memories.
In Digest of Papers, COMPCON Spring 79, pages 207-209. IEEE Comp. Soc., 1979.

A.V. Oppenheim and R.W. Schafer.
Digital Signal Processing.
Prentice-Hall, 1975.

E.l. Organick.
The MULTICS System - An examination of its structure.
MIT Press, 1972.

S.M. Ornstein et al.
Pluribus - A Reliable Multiprocessor.
In Proceedings of the 1974 Computer Conference, pages 551-559. 1974.

A. Papoulis.
Probability, Random Variables, and Stochastic Processes.
McGraw-Hill, 19685.

M. Phister Jr.
Data Processing Technology and Economics.
Digital Press, 1979.

M.J.D. Powell.
Algorithms for Nonlinear Constraints that use Lagrangian Functions.
Mathematical Programming 14(2):224-248, 1978.

B. Randell.
System Structure for Software Fault-Tolerance.
IEEE Trans. Software Eng. SE-1(2):220-232, June, 1975.

146

[Randell 78]

[Reynolds 75]

[Romano 77}

[Russell 78]

{Saleh 74]

[Schick 78]
[Sheppard 62]

[Shooman 73]

[Siewiorek 78]

[Siewiorek 80)]

[Smith 81]

A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

B. Randell, P.A. Lee, P.C. Treleaven.
Reliability Issues in Computing System Design.
ACM Computing Surveys 10(2):123-165, June, 1978.

C.H. Reynolds and J.E. Kinsbergen.
Tracking Reliability and Availability.
Datamation 21(11):106-116, November, 1975.

A. Romano.
Applied statistics for Science and Industry.
Allyn and Bacon Inc., 1977.

R. M. Russell.

The CRAY-1 Computer System.

Communications of the Association for the Computing Machinery 21(1):63-72,
January, 1978.

Saleh.

Probability Distribution of Time of Arrival of Photoevents for a Stationary Optical
Field.

IEEE Trans. on Informar:on Theory IT-20(2):262-263, March, 1974.

G.J. Schick and R.W. Wolverton.
An Analysis of Compiting Software Reliability Models
(EEE Trans. on Software Engineering SE-4(2):104-120, March, 1978.

C.W. Sheppard.
BAsic Principles of the Tracer Method.
Wiley, 1962.

M.L. Shooman.

Operational Testing and Software Reliability Estimation During System
Development.

In Proceedings of the 1973 Symposioum on Computer Software Reliability, pagec
51-57. IEEE Comp. Soc., April, 1973.

D.P. Siewiorek, V. Kini, H. Mashburn, S.R.McConnel, M.M.Tsao.

A case study of C.mmp, Cm*, and C.vmp - Part | - Experiences with Fauit-Tolerance
in Multiprocessor Systems.

IEEE Proc. 66(10_):1 178-1199, October, 1978.

Dan Siewiorek and Dave Rennels.
Workshop Report - Fault-Tolerant VLS! Design.
Computer 13(12):51-53, December, 1980.

A.L. Smith.
Hard and Soft Failures in Dynamic RAM Fault Tolerant Memories.
IEEE Trans. Reliability R-30(1):58-60, April, 1981.

REFERENCES

[Snyder 75]

[SRC 81]

147

D. L. Snyder.
Random Point Processes.
John Wiley & Sons, 1975.

Software Reliability Committee.
AdCom Committee Reports.
IEEE Reliability Society Newsletter 27(2):7, April, 1981.

[Stratonovich 67] R. L. Stratonovich.

[Thayer 78]

[Thoman 69]

[Turnbuli 74]

Topics in the Theory of Random Noise, Vol. Il
Gordon and Breach, 1967.

T.A. Thayer, M. Lipow, and E.C. Nelson.
Software Reliability.
North-Holland Publishing Co., 1978.

D.R. Thoman, L.J. Bain, and C.E. Antle.
inferences on the Parameters of the Weibull Distribution.
Technometrics 11(3):445-460, August, 1969.

8.W. Tumbuit, B.W. Brown Jr., M. Hu.
Survivorship analysis of heart transplant data.
J. Amer. Statist. Assoc. 69:74-80, March, 1974.

[Von Newmann 63]

[Weibuit 51]

[Wensley 78]

[Wong 79]

(Wulf 81}

[Young 74]

John Von Newmann.

Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable
Components.

In A.H. Taub (editor), Collected Works, pages 329-378. Pergamon Press, 1963.

- W. Weibull.

A distribution of wide applicability.
J. Appl. Mech. 18(3):293-297, 1951.

J.H. Wensley et al.
SIFT: The design and Analysis of a Fault-Tolerant Computer for Aircraft Control.
IEEE Proc. 66(10):1240-1254, October, 1978.

E. Wong.
Stochastic Processes in Information and Dynamical Systems.
Krieger, 1979.

W.A. Wulf, R. Levin, and S.P. Harbison.
HYDRA/C.mmp - An Experimental Computer System
McGraw-Hill, 1981.

J.W. Young.
A First Order Approximation to the Optimum Checkpoint interval.
ACM Comm. 17(9):530-531, September, 1974.

148

[Yourdon 72}

[Ziegler 79]

A COMPATIBLE HARDWARE/SOFTWARE RELIABILITY PREDICTION MODEL

E. Yourdon.

Reliability Measurements for Third Generation Systems.

In Proceedings of the 1972 Annual Reliability and Maintainability Symposium,
pages 174-182. |IEEE Comp. Soc., 1972.

J.F. Ziegler and W.A. Lanford.
Effect of Cosmic Rays on Computer Memories.
Science 206:776-788, November, 1979.

