Report Documentation Page

1. Report Number
#3

2. Date

3. Report Date
March 31, 1982

4. Title (and Subtitle)
Theoretical Models for the Electronic Structure of Hydrogenated Amorphous Silicon II: Three-Center Bonds

5. Type of Report & Period Covered
Interim

6. Performing ORG. Report Number
N00014-81-K-0499

7. Author(s)
M.E. Eberhart, K.H. Johnson, and D. Adler

8. Performing Organization Name and Address
Center for Materials Science and Engineering,
M.I.T., Cambridge, Massachusetts 02139

9. Contract or Grant Number

10. Program Element, Project, Task Area & Work Unit Numbers
Task No. Nr 056-757

11. Controlling Office Name and Address
Office of Naval Research
Department of the Navy
Arlington, Virginia 22217

12. Report Date
March 31, 1982

13. Number of Pages

14. Security Classification (of this report)

15. Distribution Statement (of this Report)
Approval for public release; distribution unlimited.

16. Key Words (Continue on reverse side if necessary and identify by block number)
Electronic structures; hydrogenated amorphous silicon II; three-center bond.

17. Distribution Statement (of the abstract entered in Block 20, if different from Report)

18. Supplementary Notes

19. Security Classification (of this report)

20. Security Classification (of this report)

Abstract
SCF-Xc-SW molecular-orbital calculations have been carried out for several configurations of hydrogenated silicon clusters in order to determine the contribution of three-center bonding to the electronic structure of hydrogenated amorphous silicon. Three-center bonding of dissociated molecular hydrogen is shown to stabilize Si-Si bonds over a wide range of Si-Si distances. It can be concluded that hydrogenation can in principle, saturate all strained as well as dangling bonds in a-Si. The results further indicate that a single hydrogen...
three-center bond is unlikely in a-Si:H alloys.
THEORETICAL MODELS FOR THE ELECTRONIC STRUCTURE OF HYDROGENATED
AMORPHOUS SILICON II: THREE-CENTER BONDS

by

M. E. Eberhart, K. H. Johnson, and D. Adler
Center for Materials Science and Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

March 31, 1982

Reproduction in Whole or in part is permitted for
any purpose of the United States Government
Approved for Public Release: Distribution Unlimited
SCF-Xα-SW molecular-orbital calculations have been carried out for several configurations of hydrogenated silicon clusters in order to determine the contribution of three-center bonding to the electronic structure of hydrogenated amorphous silicon. Three-center bonding of dissociated molecular hydrogen is shown to stabilize Si-Si bonds over a wide range of Si-Si distances. It can be concluded that hydrogenation can in principle, saturate all strained as well as dangling bonds in a-Si. The results further indicate that a single hydrogen three-center bond is unlikely in a-Si:H alloys.
I. Introduction

The discovery that a-Si:H alloys can be doped either n-type or p-type\(^1\) and can be used as the active material in high-efficiency solar cells\(^2\) has stimulated a great deal of interest in the electronic structure of these semiconductors. Despite this enormous interest, however, many unanswered questions remain.\(^3,4\)

It is clear that pure a-Si contains large defect concentrations including both strained and dangling bonds, and that both of these are compensated by the addition of hydrogen. Sol et al.\(^5\) have shown that a-Si deposited via the thermal decomposition of SiH\(_4\) contains the order of \(10^{19}\) unpaired spins /cm\(^3\), but that these are eliminated by introducing approximately the same concentration of hydrogen. Furthermore, they were able to incorporate over 100 times more hydrogen into such films after removal of the unpaired spins. This is strong evidence that spinless defects are present in a-Si films. Further evidence comes from effusion experiments which indicate that about 100 times as much hydrogen is given off than unpaired spins are created.\(^6\)

There are several possible explanations of the spinless defects. The most straightforward of these is simply an array of strained bonds, either with stretched distances or distorted bond angles. Other possibilities include charged pairs of dangling bonds,\(^7,8\) doubly coordinated silicon atoms,\(^9\) or three-center bonds with a negative correlation energy.\(^10\) These proposed defects have very different electronic structures, which might allow for an experimental determination of their concentrations. Strained bonds would be expected to yield valence and conduction band tails, doubly coordinated silicon centers should provide two different EPR lines upon n and p doping, and negatively correlated defects should tend to pin the Fermi energy. However, at present, no experiments have been carried out which can unambiguously eliminate any of the proposed spinless defects.
In a previous paper, the results of self-consistent-field X_α scattered-wave (SCF-X_α-SW) molecular-orbital calculations on silane molecules and silicon-hydrogen clusters demonstrated that such clusters serve as models for the local electronic structure of a-Si:H alloys. However, the clusters investigated only contained terminal hydrogen atoms. In this paper, we present the results of SCF-X_α-SW calculations on clusters containing three-center bonds. The results of these calculations are presented in Section II. In Section III, we discuss the insights that these results yield with regard to the electronic structure of a-Si:H alloys.

II. Results

Before an evaluation of three-center bonding in a-Si:H is possible, we must model the Si-Si bond in these alloys. In order to do this, we use the cluster Si_2X_6 where X represents a saturator; Si_2H_6 is a disilane-like molecule saturated by six hydrogen atoms at a Si-H distance equal to the crystalline Si-Si nearest-neighbor separation of 2.35Å. If such a cluster is to serve as a good model for the Si-Si bond in a-Si:H, the molecular-orbital energy levels should be insensitive to the conformation of the saturators yet highly sensitive to the Si-Si distance. In order to test the model, we calculated the molecular-orbital energy levels for both the eclipsed and staggered conformations of the saturators with the Si-Si distance being held at 2.35Å, and then recalculated the energy levels using a staggered cluster with a varying Si-Si distance. The results are shown in Fig. 1. It is clear from a comparison of Fig. 1(a) and 1(b) that the energy levels are completely insensitive to the saturator conformation, while Fig. 1(c) strikingly shows their extreme sensitivity to a changing Si-Si bond length. A separate calculation demonstrates that an increase of the Si-saturator bond length parallels the behavior of an increasing Si-Si bond length. Thus, these clusters serve as good models for the Si-Si bond...
in tetrahedrally coordinated a-Si alloys.

Since we are modeling only the Si-Si bond rather than the local atomic configuration, we can restrict our attention to those molecular orbitals that have appreciable electronic density in the region between the silicon atoms. These are indicated in Fig. 1 by solid lines (The molecular orbitals corresponding to the dotted lines are primarily located near the saturators.). Four molecular orbitals are thus of interest. The lowest-lying is gerade and is composed predominantly of silicon 3s orbitals. Since the energy of this orbital is independent of the Si-Si bond length, it is nonbonding. The next-lowest-lying molecular orbital is ungerade, but is also composed predominantly of silicon 3s orbitals and is nonbonding. The other two are the Si-Si bonding and antibonding orbitals. It is clear from Fig. 1 that for Si-Si separations larger than the crystalline value of 2.35Å these can have energies within the band gap. When the Si-Si distance is less than 3.1Å, the bonding orbital is occupied and the antibonding orbital is empty, resulting in weak bonds. Alternatively, for Si-Si separations greater than 3.1Å, the antibonding orbital is the occupied one, yielding dangling bonds.

It is generally assumed that hydrogenation of pure a-Si results in the saturation of the dangling Si-Si bonds via the dissociation of molecular hydrogen to form two Si-H bonds. This process is sketched in Fig. 2. The H-H bonding orbital mixes with the Si-Si gerade orbitals to form type1 and type3 molecular orbitals, while the H-H antibonding orbital mixes with the Si-Si ungerade orbitals to form type 2 and type 4 molecular orbitals. The relative energies of these molecular orbitals depends on the fraction of nonbonding character in the original orbitals, in turn a sensitive function of the interatomic distances. Fig. 3 shows the energies of the molecular orbitals which arise from the dissociation of a hydrogen molecule to saturate the dangling bonds.
of a pair of silicon atoms 3.2Å apart. The H-H bonding orbital mixes with the unoccupied Si-Si bonding orbital, yielding a low-lying type 1 molecular orbital which tends to widen the valence band of the a-Si. The second-lowest-lying molecular orbital is type 4 and results from the mixing of the ungerade Si-Si nonbonding and the H-H antibonding orbitals. The gerade Si-Si nonbonding orbital and the H-H bonding orbital mix to produce a type 3 molecular orbital. Finally, the Si-Si antibonding orbital mixes with the H-H antibonding orbital, yielding a type 2 molecular orbital. The overall result is the occupation of two H-H bonding and two H-H antibonding orbitals, yielding a nonbonding H-H interaction, but simultaneously inducing a strongly bonding Si-H interaction. Contour plots of the four molecular orbitals are shown in Figs. 4 through 7. It is clear that these results are consistent with the idea of hydrogen saturating the dangling bonds of pure a-Si.

For Si-Si separations less than 3.1Å, it might appear that there is insufficient room to insert a hydrogen molecule between the Si-Si bond. However, since the hydrogen orbitals are of s character, they are insensitive to the angular position of the atoms. In fact, by rotating the hydrogen atoms off the Si-Si axis, thus varying the Si-H-H bond angle, the equilibrium Si-H and H-H bond lengths can be preserved over a wide range of Si-Si distances. The molecular-orbital levels for fixed Si-H separations of 1.35Å and H-H separations of 0.8Å is shown in Fig. 8 as the Si-Si distance varies from 3.4Å to 2.5Å. At all Si-Si separations, the introduction of hydrogen stabilizes the orbitals that would lie in the band gap in pure a-Si. Thus, hydrogen can compensate stretched as well as dangling bonds in a-Si.

A contour plot of a stabilized bonding orbital for a Si-Si separation of 3.2Å is given in Fig. 9. The stabilization results from increased bonding between the silicon atoms and the more distant hydrogen atoms, i.e. increased
three-center-bonding activity. Note that when the hydrogen atoms are not
located along the Si-Si axis, at least two completely equivalent positions
exist for them, and we should expect rapid oscillations between these equivalent
conformations.

Fisch and Licciardello10 suggested that a single hydrogen atom could
bridge between two silicon atoms in a-Si:H, and they identified two occupied
molecular orbitals with appreciable electron density in the region between the
two silicons. In Fig. 10, we show the molecular orbital levels which would
result from a single hydrogen atom between two silicon atoms 3.2\AA\ apart. Clearly,
four rather than two molecular orbitals are important. The lowest-lying is
bonding between both silicon atoms and the hydrogen atom via the Si 3s orbitals.
The second-lowest-lying is bonding between the hydrogen atom and the nearest
silicon atom but weakly antibonding between the two silicon atoms (When the
hydrogen atom is half-way between the two silicons, this molecular orbital is
Si-H nonbonding). The third-lowest-lying molecular orbital is bonding between
both silicon atoms and the hydrogen atom via the Si 3p orbitals. Finally, the
highest-lying occupied molecular orbital is antibonding between the silicon
atoms and nonbonding between the hydrogen atom and both silicon atoms when the
hydrogen is half-way between the two silicons. However, if the hydrogen atom
is displaced toward either silicon atom, this molecular orbital remains anti-
bonding between the silicons but becomes bonding between the hydrogen atom and
the nearer silicon atom. This additional bonding interaction stabilizes the
asymmetric displacement of the hydrogen.

III. Discussion

The molecular-orbital stabilization described at the end of Section II
has been interpreted10 as leading to a negative effective correlation energy
for the Si-H-Si defect center in a Si:H However, the existence of a negative
effective correlation energy requires that the energy to place a second
electron in the molecular orbital be lower than that of the first. Our
results suggest that even if the molecular orbital is singly occupied the
hydrogen atom is displaced from the center because of the increased bonding
interactions. This stabilization has nothing to do with a negative effective
correlation energy. Although doubly occupying the molecular orbital may result
in an additional stabilization from an increase in the "hydrogen bonding" con-
tribution, it would appear unlikely that this could overcome the extra repulsion
from the presence of two electrons in the same orbital. In any event, the
much greater stabilization from the presence of two hydrogen atoms between
the separated silicon atoms should lead to a negligibly small density of the
single-hydrogen centers, particularly in view of the fact that film growth in
a-Si:H almost certainly takes place primarily via SiH$_2$ reactions.12 In fact,
the concerted cleavage of hydrogen molecules to form metal-hydrogen bonds, as
exemplified by the process sketched in Fig. 3, is common in many homogeneous
catalytic processes.13 All of these homogeneous processes require that the
metal expand its valence shell. It is well known that silicon reacts almost
exclusively by expanding its valence shell and passing through a
transition state of the type shown in Fig. 3.14 This, coupled with the fact
that the concerted addition of hydrogen molecules can stabilize Si-Si bonds over
a wide range of Si-Si separations, supports the conjecture that three-center
bonds in a-Si:H alloys almost exclusively involve hydrogen molecules rather than
individual atoms.

The possibility of significant densities of three-center bonds of the
type described here has not heretofore been considered in a-Si:H alloys.15 A
major consequence of our results is that stretched bonds can be compensated by
hydrogen removing states from the valence and conduction band tails. This
is consistent with the sharp absorption edges observed in a-Si:H alloys. It further suggest that mechanisms other than the breaking of stretched bonds be sought to account for the observed photo-induced changes which characterize these materials.

Three-center bonds could well be the origin of one of the peaks observed in hydrogen effusion studies. The residual bonding component after release of a hydrogen molecule from the centers considered here suggest that effusion can occur at a lower activation energy than from either Si-H$_2$ or Si-H centers.

We have not calculated the vibrational structure of the three-center bonds proposed herein. There have been problems with unambiguous identification of the 2000 cm$^{-1}$ infrared absorption with Si-H centers and the 2090 cm$^{-1}$ absorption with Si-H$_2$ centers. It is important to consider the additional infrared absorption from three-center bonds before such problems can be fully resolved.

IV. Acknowledgments

M.E. Eberhart and K.H. Johnson are grateful to the Office of Naval Research for supporting this research. D. Adler was supported by the National Science Foundation, Grant No. DMR-78-24185.
References

*Department of Materials Science and Engineering.
+Department of Electrical Engineering and Computer Science.

15. However, see S. R. Ovshinsky and D. Adler, Contemp. Phys. 19, 109 (1978).
Figure Captions

Figure 1: SCF-Xα-SW molecular-orbital energy levels of an Si_2(sat)_6 cluster having the following configurations:
A. Staggered conformation with Si-Si distance = 2.35Å
B. Eclipsed conformation with Si-Si distance = 2.35Å
C. Staggered conformation with Si-Si distance = 3.2Å
The highest occupied molecular orbitals are indicated by arrows, and orbitals with appreciable density between Si atoms are shown as solid lines.

Figure 2: Bond types for the formation of a Si_2(sat)_6H_2 complex. Vertical lines denote nodes and horizontal lines indicate bonding.

Figure 3: SCF-Xα-SW molecular-orbital energy levels of an Si_2(sat)_6H_2 complex as a function of H-H distance, with the Si-Si distance held at 3.2Å.
A. Staggered conformation of Si_2(sat)_6 cluster shown for comparison (same as Figure 1C).
B. H-H distance = 0.53Å
C. H-H distance = 0.80Å
D. H-H distance = 1.00Å
The highest occupied molecular orbitals are indicated by arrows, and orbitals with appreciable density between Si atoms are shown as solid lines.

Figure 4: Contour map for the Si_2(sat)_6H_2 molecular-orbital wave function of lowest energy in Figure 3C. This orbital is bonding between the hydrogen atoms.

Figure 5: Contour map for the Si_2(sat)_6H_2 molecular-orbital wave function of second-lowest energy in Figure 3C. The solid and dashed contours represent positive and negative values, respectively, of the wave function. This orbital is bonding between the hydrogen atoms.
Figure 6: Contour map for the $\text{Si}_2(\text{sat})_6\text{H}_2$ molecular-orbital wave function of third-lowest energy in Figure 3C. The solid and dashed contours represent positive and negative values, respectively, of the wave function. This orbital is antibonding between the hydrogen atoms.

Figure 7: Contour map for the $\text{Si}_2(\text{sat})_6\text{H}_2$ molecular-orbital wave function of fourth-lowest energy in Figure 3C. The solid and dashed contours represent positive and negative values, respectively, of the wave function. This orbital is antibonding between the hydrogen atoms.

Figure 8: SCF-Xa-SW molecular-orbital energy levels of an $\text{Si}_2(\text{sat})_6\text{H}_2$ complex as a function of Si-Si distance and H_2 molecular orientation, with the H-H and Si-H distances held at 0.8Å and 1.35Å, respectively.
A. Si-Si distance = 3.4Å
B. Si-Si distance = 3.2Å
C. Si-Si distance = 2.5Å

The highest occupied molecular orbitals are indicated by arrows, and orbitals with appreciable density between Si atoms are shown as solid lines.

Figure 9: SCF-Xa-SW molecular-orbital wave function of lowest energy in Figure 8B. The solid and dashed contours represent positive and negative values, respectively, of the wave function. This orbital is bonding between the hydrogen atoms.

Figure 10: SCF-Xa-SW molecular-orbital energy levels of an $\text{Si}_2(\text{sat})_6\text{H}$ complex as a function of the position of the H atom between the Si atoms, with the Si-Si distance held at 3.2Å.
A. Si-H distance = 1.6Å
B. Si-H distance = 1.34Å
C. Si-H distance = 1.2Å
D. Si-H distance = 1.07Å
The highest occupied molecular orbitals are indicated by arrows, and orbitals with appreciable density between Si atoms are shown as solid lines.