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FOREWORD

This document presents the models, analysis
and results obtained for the National Weather Service
under Contract No. NA79SAC00668, "Applications of
Kalman Filtering and Maximum Likelihood Parameter
Identification to Hydrologic Forecasting".

A computer program, "SUBROUTINE REDO-UHG",
and a report entitled "Reduced Order Unit Hydrograph
Program Documentation' providing information on the
design and use of the program have been previously
delivered to the National Weather Service as part of
the same contract.

This study has benefited from several
conversations with E.A. Anderson, E.R. Johnson and
G. Smith of the Hydrologic Research Laboratory of
the National Weather Service and with Professor R.L.
Bras of MIT and his assistants. Their cooperation
is gratefully acknowledged.
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l ABSTRACT

The applications of the canonical variate,
Kalman filtering and maximum likelihood parameter
identification techniques to the requirements of the
National Weather Service in river flow forecasting
are investigated.

State space reduced-order models for unit
hydrographs are obtained with the use of canonical
variate methods. A complete state-space model for a
catchment consisting of the Sacramento model as the
soil moisture system and the basin's unit hydrograph
as the channel routing system is constructed. This
model is used in the design of extended Kalman fil-
ters for the prediction of the channel discharge and
the state of the system, and also in the design of
an algorithm for the identification of catchment
model parameters through the use of maximum likeli-
hood techniques. The performance of the algorithms
is demonstrated with synthetic data generated with
.the models for the Bird Creek and White River basins
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1. INTRODUCTION

1.1 BACKGROUND

The National Weather Service (NWS) has the responsi-
bility for hydrologic forecasting in the United States. This
responsibility includes the production of both flood warnings
and stream-flow forecasts. Accurate and timely flood warnings
are required for a wide variety of flood classes including
flash floods as well as floods of longer duration. Stream-flow
forecasts are required for diverse applications including the
planning of irrigation, the prediction of available hydroelec-
tric power, the maintenance of water quality standards, and
the planning of river navigation.

There is a continuing need for new techniques useful
for creating more accurate and cost-effective flood warning
and stream-flcw predictions. It is highly desirable to in-
crease the amount of automation used in the creation of hydro-
logic forecasts and to be able to take advantage of newly-
developing advances in computer and communications capabilities

and in computational and algorithmic techniques. i

1.2 STUDY OBJECTIVES

The objective of this study was to investigate the
application of Kalman filtering, canonical variate and maximum
likelihood parameter identification techniques to the require-
ments of the National Weather Service in improving hydrologic

forecasting. The work was organized into three principal tasks:

1-1
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| Task 1 ISSUES IN FILTER DESIGN

i Under this task, the differential equations corre-

‘ sponding to the Sacramento Soil Moisture model

were derived and several theoretical modifications
were developed. The equations of the soil moisture
model were combined with a reduced-order state-
space model for a unit hydrograph and an extended
Kalman filter that produces six-hour lead forecasts
of a basin's discharge was designed and implemented.
The details of the analysis and a set of results
obtained with the SSM model parameters of the

Bird Creek and White River drainage basins are
included in this report.

Task 2 STATE-SPACE MODEL DEVELOPMENT FOR UNIT HYDROGRAPHS

Under this task, a computer program has been
developed for applying the canonical variate
technique to the development of discrete-time
reduced-order state-space models for the approx-
imation of unit hydrographs. The computer pro-
gram (Subroutine REDO-UHG) accompanied with sup-
porting documentation (Ref. 1) has been delivered
to NOAA/NWS for use as an operation in the Version
5.0 NWSRFS Forecast Component. The principles

on which the design of the computer program was
based are described in this report together with
some examples of their application.

Task 3 PARAMETER IDENTIFICATION FOR CATCHMENT MODELING

Under this task, an initial investigation of the

applications of the technique of maximum likeli-
hood parameter identification to the problem of
catchment calibration has been performed. Pa-

rameter estimation algorithms appropriate to the
catchment model of the National Weather Service
have been developed and tested with simulated
data to determine parameter estimation error,
parameter identifiability and numerical behavior
of the algorithms.

Figure 1.2-1 presents the hierarchical structure of
the outputs of the three tasks described above. The state-
space models of unit-hydrographs obtained with the canonical

variate technique under Task 2 have direct application to the

1-2
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simplification of the processing of channel-inflow time series.
These models for unit hydrographs are used in Task 1 to create
complete state-space models for catchments which, in turn,

form the basis for the design and operation of Kalman filters
for the prediction of a basin's channel discharge and for the

estimation of the state of the system.

The maximum likelihood parameter identification proce-
dure of Task 3 is an iterative algorithm which uses a Kalman
filter as one of its main constituents. The filter innovations
(differences between actual and predicted measurements) are
used in the evaluation of the likelihood function. An optimi-
zation procedure utilizes the values of the likelihood function
and its functional gradient computed by symbolically differen-
tiating the operations of the filter to evaluate a vector param-
eter increment in the direction that maximizes the likelihood
function. The catchment model parameters are modified and the

process repeated until a convergence criterion is satisfied.

1.3 REPORT ORGANIZATION

The organization of this report is as follows: Sec-
tion 2 deals with the catchment model and the design of ex-
tended Kalman filters for the prediction of a basin's channel
discharge. Section 3 presents the canonical variate technique
and its application to the synthesis of reduced-order state-
space models for unit hydrographs. Section 4 describes the
algorithms for maximum likelihood identification of the param-
eters of the catchment model and presents some examples of
their application. Section 5 contains a review of the infor-
mation contained in this report. An appendix containing sowmc
technical considerations on the constraint on the ratio of
free to tension water for the upper zone of the soil moisture

model is also included.

1-4
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For the sake of completeness, some of the material
contained in previous progress reports (Refs. 2 through 5) is

also included in this report.

1-5
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2. 1SSUES IN FILTER DESIGN

This section presents the details of the analysis and
synthesis of an Extended Kalman Filter (EKF) for improving the
estimation of the state and channel discharge of a basin. The
basin's model considered in this study consists of the Sacramento
model as the soil moisture system and a unit hydrograph as the

channel routing system.

Pioneering work on the applications of Kalman filter-
ing to the National Weather Service's river flow forecasting
system is described in Ref. 6. The present work differs con-
ceptually from that of Ref. 6 in that the soil moisture proc-
ess is viewed as occurring in continuous-time rather than in
discrete-time as in Ref. 6.* In addition, channel routing is
modeled by the basin's unit hydrograph while in Ref. 6 a linear

reservoir with variable outflow rate is used.

The Kalman filtering formulation requires that the
system be modeled in state-space form. The state-space dit-
ferential equations of the Sacramento Soil Moisture (SSM) model
were derived in Refs. 2, 3, and 4. To complement these equa-
tions, channel routing was modeled by a suitable order state-
space model approximation to the basin's unit hydrograph ob-
tained with the methods described in Chapter 3 of this report.

The basic idea behind the EKF formalism is to approxi-

mate the system behavior. for a short time interval, by the

*A comparison of the state-equations of Ref. 6 and those used
in the present study is given in Ref., 2. Other differences
between the two studies are also noted in Ref. 2.

2-1
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linearized form of the state-equations about the operating
point at the beginning of the interval. The optimal filter
for the resulting linear system is used to propagate the state
estimates and their covariance matrix during the time interval
under consideration. A detailed treatment of extended Kalman

filtering is given in Ref. 7.

In order to test the performance of the filter and
the consistency of the formulation, synthetic data was gener-
ated using the model in the simulation mode. These data were
then used as input to the filter, and the state and discharge
estimates sc obtained were compared to the truth values previ-
ously generated. The SSM model parameters and unit hydrographs
used in these tests were those of the National Weather Service
River Forecasting Svstem (NWSRFS) calibration of the Bird Creek
and White River drainage basins.

This chapter is organized as follows: Section 2.1
discusses the overall model structure and the interface be-
tween the soil moisture model and the system associated with
the unit hydrograph. Section 2.2 presents the state-equations
of the continuous-time part of the model including the SSM
model and a simple precipitation model. Section 2.3 discusses
the discrete-time equations associated with the unit hydrograph
system. Sections 2.4 and 2.5 describe in detail the operation
of the model in the simulation and filtering modes, respectively.
Section 2.6 presents a collection of representative results

obtained with the techniques described in previous subsections.

2.1 MODEL STRUCTURE

Traditionally, NWS has used deterministic models in

forecasting river flows based on meteorological data. Thus,

2-2
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necessarily, the intrinsic rate at which the soil moisture

model operates has been the same as the rate at which precipi-
tation data are collected. When a stochastic conceptual model

is used, however, the input rate to the soil moisture model

need not be the same as the rate at which accumulated channel
inflow estimates are produced. In fact, with a continuous-time
stochastic soil moisture model, the best estimate of the channel-
inflow rate given all previous measurements of precipitation

and channel discharge can be computed at any time.

Thus, even though the SSM model is a discrete-time
model, it was necessary to derive a continuous-time model
whose discretized version was in congruence with the SSM model.
In addition to the advantage of being able to compute state-
estimates at any time, there were two other reasons for model-
ing the soil moisture process in continuous-time. First, the
physical processes, in themselves, take place continuously in
time. For example, the effects of a severe storm of short
duration cannot be properly modeled using a predetermined
equally spaced sequence of times. Evidence for the need of
considering the dynamic behavior of the system in continuous-
time is found in the LAND subroutine. There, depending on the
availability of free water in the upper zone, the basic time
interval is partitioned into a number of subintervals for the
computation of the percolation function. This computation
determines the distribution of water to the lower zone, the
amount of surface runoff, etc. Secondly, the threshold values
associated with many of the variables can be attained at times
which, in general, do not coincide with the endpoints of arbi-
trarily chosen time intervals. These thresholds determine

when the system switches from one mode of operation to another

and are of fundamental importance in the analysis.

>
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Channel routing, on the other hand, is modeled as a
discrete-time system. A k-hour unit hydrograph yields instan-
taneous discharge rates when given an input sequence consisting
of k-hourly accumulated channel inflow values. For most of
the unit hydrographs used by NWS the input sample rate is equal
to the output sample rate; i.e., estimate? of the discharge

rate are produced at intevals of k hours. All hydrographs

considered in this chapter belong to this category.

In the present analysis measurements of accumulated
precipitation are assumed to occur at an f£k-hourly rate and
observations of mean discharge occur every mg£k hours. For
example, the situation in which k=6, £2=1, m=1 represents the
case where continuous estimation of the state of the system is
performed given 6-hour measurements of accumulated precipita-
tion and instantaneous discharge; k=6, 2=1, m=4 corresponds to
6-hour measurements of precipitation and daily observations of

mean discharge. Figure 2.1-1 summarizes the above convention.

In order to combine the state-space model of the soil
moisture accounting procedure, which yields continuous-time
estimates of the channel inflow rate, with the unit hydrograph
system, which requires k-hourly accumulated channel inflow at
its input, it is necessary to introduce an additional state.
The role of this state is to integrate the channel inflow rate
for periods of k hours. A schematic diagram depicting the
interrelation between the different components of the model is
given in Fig. 2.1-2. The additional state mentioned above can
be visualized as a reservoir, labeled Channel Inflow Accumu-
lator in Fig. 2.1-2, whose contents are dumped into the unit

hydrograph system every k hours.

*In some instances., NWS uses unit hvdrographs for which the
output rate is higher than the input rate (see Section 3.4.3).
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Two more accumulator states are needed to account for
the memory-type measurements. The rainfall accumulator in the
upper right corner of Fig. 2.1-2 integrates the rainfall rate
for periods of £k hours and the discharge accumulator in the
lower left corner of Fig. 2.1-2 adds up the mf discharge rates

whose average yields the mgk-hour mean discharge.

The basin's state-space model contains 10+M states
where M is the order of the state-space model approximation to
the unit hydrograph system. A description of the states is
given in Table 2.1-1. It was shown in Ref. 2 that six states
suffice to represent the SSM model. The first six states in
Table 2.1-1 correspond to the SSM model. Their equivalents in
the LAND subroutine are indicated in parentheses in the table.
States 7, 9, and 10+M are associated with the accumulators
previously described. State 8 provides the basis for the rain-
fall model which is presented in detail in Section 2.2.2. The
remaining states (10 through 9+M) correspond to the unit hydro-

graph system.
It is convenient to partition the state-vector, X. as

S
X = (2.1-1)

X4
where x . and x, stand for the first 9 and last M+l components
of x, respectively. The subvector X. evolves continuously in
time while Xy changes only at times which are multiples of the
hydrograph rate, k. These times (vk; v=0,1,...) are referred

to as critical times in the sequel.

The operation of the filter can be described in general

terms as follows. Between critical times there are no measure-
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TABLE 2.1-1
BASIN MODEL STATE DESCRIPTION

STATE DESCRIPTION
1 Upper-zone tension-water content (UZTWC)
2 Upper-zone free-water content (UZFW()
3 Lower~zone tension-water content (LZTWC)
4 Lower-zone primary free-water content (LZFPC)
5 Lower-zone supplementary free-water content
(LZFSC)
6 Excess of the additional impervious storage

over the upper-zone tension-water content
(ADIMC-UZTWC)

7 Channel-inflow accumulator content
8 Rainfall generator model

9 Rainfall accumulator content

10

sUnit hydrograph model

9+M
10+M Chanrel discharge accumulator
ments. The continuous part of the state estimate, Sc‘ is

preopagated in accordance with the associated differential equa-
tions, but the discrete part, Sd' remains unchanged. When a

critical time is reached, the channel routing portion of the

model is updated taking into account the accumulated channel-
inflow during the past k hours. At this point, if there are
any measurements, the Kalman gains are computed and used to

modify all the state values bv incorporating optimally all of

1

“ 8 is the estimate of x.
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the information contained in the measurements. Finally, the
contents of the appropriate accumulators are reset to zero and
propagation of the continuous part of the state for the next k

hours begins.

It is convenient to introduce a notation of super-
scripts to be affixed to the critical times in order to dis- i
tinguish the various state values computed at these times. 1If
t is a critical time, §(t_) stands for the state vector immedi-
ately after propagation of the continuous part for the last k
hours has been completed, x(t®) represents the state after the
discrete transition for the unit hydrograph part of the model
has taken place, §(t+) denotes the value of the state following
a Kalman update and g(tr) is the state after resetting any
accumulator to zero. Table 2.1-2 summarizes the behavior of
the state values for a full cycle of operation of the model i
(mgk hours) using symbolically the notation introduced above.
For example, the notation - = 0 # + # r means x(t ) = x(to)

# x(th) 7 x(th).

Thus, the transition from t to t© only affects the
discrete states of the model (last two columns in Table 2.1-2).
The transition from t° to t+ corresponds to a Kalman update.
Since all state estimates can be expected to improve following
a Kalman update, Table 2.1-2 indicates 0 # + far all states at
the times at which there is at least one measurement. The 1
transition from t' to t¥ only affects the accumulator states.
State seven, the channel-inflow accumulator, is reset to zero
at all critical times. State nine, the rainfall accumulator,
and state 10+M, the discharge accumulator, are set to zero
following a rainfall or discharge measurement, respectively.
The arrows in the last two columns of Table 2.1-2 indicate
that the d.screte part of the model does not vary between
critical times, i.e., if ti and [i+l are two successive criti-

cal times, then

2-8
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" r., _ _ - -
id(ti) = id(ti+1) (2.1-2)

2.2 MODEL EQUATIONS - CONTINUOUS TIME COMPONENTS

The state-equations for the complete basin model are
of the form (v=0,1,...)

X () = F(x ,t) + G L(t) (2.2-1)
sl vk = A x vk T+ B ox [ (vK)T] (2.2-2)

where F (x_,t) is a nonlinear time-varying vector function of
the continuous part of the state, the time dependency being

through the potential evapotranspiration demand, uz(t). GC is
a 9x1 matrix and { is a scalar gaussian white noise input that
drives the rainfall model (see Section 2.2.2). Thus, the only
nonzero entry in GC appears in row eight. The factors A and B

are (M+1)x(M+1) and (M+1)x9 constant matrices, respectively.

In addition to Egs. 2.2-1 and 2.2-2, the accumula-

tors' contents are reset to zero at the appropriate times

x5 1)) =0 : n=0,k,2k,... (2.2-3)
xgl(m)] = 0 i n=0,2k,2¢k,. .. (2.2-4)
X10eyl (M1 =0 . n=0,mek,2mek, ... (2.2-5)

Changes in the discrete part of the state vector, Ny
occur only at the critical times. 1If vk < t < (v+1)k the state-

equations for X4 can be thought of to be

L2-60)

—~
[
1

xq(t) =0

2-10
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Let Y1 and Yo be the measured values of precipitation

and mean discharge, respectively. The measurement equations are
y (vek) = xgl(vﬂk)ol + Ep(ve) (2.2-7)
y2(vm2k) %E x10+M[(vm£k)O] + gz(vmﬂ) (2.2-8)

where §1 and §2 represent the errors in the measurements mod-

elea as white noise sequences.

This section presents the individual differential
equations associated with Eq. 2.2-1. It is organized as fol-
lows: Subsection 2.2.1 treats the SSM model equations., Sub-
section 2.2.2 introduces the rainfall model equations, and
Subsection 2.2.3 gives the equations for the channel-inflow
and rainfall accumulator states, Section 2.3 presents the

discrete equations corresponding to Eq. 2.2-2.

2.2.1 SSM Model Equations

The state equations corresponding to the Sacramento
Soil Moisture model were derived from the NWSRFS LAND subrou-
tine documentation (Ref. 8). Six states (labeled one through
six in Table 2.1-1) are necessary to represent the model: two
states for the upper zone, three for the lower zone and onc
for the additional impervious area content. The parameters of
the model are listed in Table 2.2-1. The relationship given
in Table 2.2-1 between the instantaneous drainage coefficients,
du, dé and d; and their counterparts in the LAND subroutine,
UZK, LZPK and LZSK was derived in Ref. 2.

The SSM model contains several threshold-tvpe non-
lincarities associated with the bounds on the contents of the

elements of the upper and lower zones and with constraints on

N

-11
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TABLE 2.2-1
SSM MODEL PARAMETERS

T-3536
NOTATION EQUICALENT DESCRIPTION
b =z — S

.\‘I' UZTWM Upper-zone tension-water capacity (mm)

x‘; U7 FWM lipper-zone free-water capacity (mm)

\‘: LZTWM Lower-zone tensjon-water capacity (mm)

:: L7FPM Lower-zone primary freec-water capacity (mm)

x'.-: LZFESM Lower -zone secondary free-water capacity (mm)

‘lu -en(1-U7K)/24 tipper-zone instantancous drainage coefficient (1t}

dg' -en(1-LZ21'K), 24 Lower-zone primary instantaneous drainage coctficient (1 b

d"l' ~tn{)-L2SKY, 24 Lower-zone secondary instantancous dra‘nage coefticient (1 -hr)

y ZPERC Parvameter an percolation function

« REXP Exponent in percolation function

Py PFREF Fraction of percolated water assigned tao the lower zone
free water aquiters

[ SIDE Fraction of basellow not appesnring in river {low

a ADIMP Fraction of basin that becomes aimpervions when tension water
tequirements are melt

Ay PCTIM Fraction of basin permanent iy tmperviooas

r RSFERY Fraction of the lower Fate teec-waler capactty unavailable
to supply lower zone tenston requarement s

s RIVA Fraction of residual evapotranspitation demand actually
caontributed by qtream curfaces and riparian vegetation

ratios of free to tension-water content for the two zones. A
derivation of the implications of these const -1ints in a
continuous-time SSM model was included in Ref. 2. For the
upper~-zone, the constraint can be written as

o . L0 —
Xo/Xoy & X1/Xy (2.2-9)

and for the lower-zone,

X, + X X

1 -2 25 (q-nf1-2 (2.2-10)
\{O + \_O— \()
Xy * Ng 3

Furthermore, at any time, t, when equality holds in Eq. 2.2-9

or in Eq. 2.2-10, the right derjvatives of the states must satisty

2-12
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%, (1) /x5 < k(e /x] (2.2-11)
or
. + . + . +
X,(t ) X, (t ) + xX.(t )
(1 -r) =2 > 4 2 (2.2-12)
x9 x0 + x9
3 4 5
respectively.

In addition to the threshold-type nonlinearities there
are other nonlinearities in the SSM model. The most important
nonlinearity is associated with the percolation function. At
any given time, the percolation rate from the upper to the

lower zone is given by

o
X X + X + X
p=p® 2|1+ yf1 -3 T4 75 (2.2-13)
XO Xo + XO + XO
2 3 4 5
with
p° = dg xZ + dy xg (2.2-14)

Let Zqs 2y and Zg be the percolation rate inflow into

the lower zone's tension-water, primary free-water and supple-

mentary free-water elements respectively. In the SSM model,
under normal operation (i.e., no threshold active)., the total
percolation is divided into the lower zone's elements das
zg = (1 - pf)p (2.2-15)
o
X 2(1 X, /X))
_ 4 . 4774 5 5.
Zy < <0+ x© X, Xg P¢P (2.2-16)
4 5 2 - — - —=
x? X0
4 5
1
2-13
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O o)

X 2(1 - x,/x,)
“ . YA e (2.2-17)
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Thus, a fraction, (1 - pf), of the total percolation is as-

signed to the tension-water element and the remainder of the

percolation is divided between the free-water aquifers accord-
ing to Egqs. 2.2-16 and 2.2-17.

In Refs. 2 and 3 the exact differential equations
of the SSM model were derived. The equations given there cor-
respond to the distribution of the percoclation rate indicated
by Eqs. 2.2-15, 2.2-16 and 2.2-17. There is a difficulty asso-
ciated with the use of this distribution of the percolation
rate: if xZ > xg, the fraction of P¢P assigned to the primary
free-water aquifer, Eq. 2.2-16, is larger than 1 and the frac-
tion assigned to the secondary free-water aquifer, Eq. 2.2-17,
is negative for a certain range of values of Xy, and Xg. Ac-
cordingly the distribution of the percolation rate to the lower
zone was slightly modified. The modification (Ref. 4) is

described below.

The percolation function, Eq. 2.2-13 can also be

written as

w
>

= ' ° _2. no O —2 D -
p=d Xy, o + d2 X o + P (2.2-18)
2 2 1
with
o
X X, + X + X
p=p®y 21 o3 T4 5 (2.2-19)
<© O 4+ x° + x©
2 3 4 5
2-14
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With the aid of Eq. 2.2-18 the total percolation rate can be
interpreted as consisting of two parts. One part, correspond-
ing to the first two terms in Eq. 2.2-18, depends on the maxi-
mum baseflow rate from the free water aquifers and on the
availability of water in the upper-zone free-water element.
The other part, corresponding to the term p in Eq. 2.2-18,
depends on the lower zone's deficiency ratio as well as on the

upper-zone free-water normalized content.

The modified distribution of the total percolation is

zq = (1 - pf) p (2.2-20)
o X2 XZ T ¥y
z, = d2 X4 o + > > — P¢P (2.2-21)
X5 Xy = Xyt Xg - Xg
o}
X Xe - X
- aqn (O 2 5 5 ~ 0 h -
zg = d2 Xg 5 * 5 5 peb (2.2-22)
Xy X, = Xy No - Xg

instead of Egqs. 2.2-15, 2.2-16 and 2.2-17. Thus, each of the
free water aquifers receives a part of the percolation which
is proportional to its maximum outflow rate and to the availa-
bility of water in the upper-zone free-water element, and a
second part which depends on the element's deficiency as a
fraction of the total deficiency in the free water elements

and, also, on the lower zone's deficiency ratio.

With the aid of the functions

(1 if n > 0
he(n) = (2.2-23)
' 0 ifn <0
and
he(n) =1 - hf(q) (2.2-24)
2-15
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The state equations of the SSM model with the modified distribu-
tion of the percolation rate to the lower zone can be written

as.

X
. _ 1 ., . O _ .0 .
X; = (”1 - Uy T‘) [he(xy = X)) + he(x) = x7) he(uy = up))

1
Q.
v

o
X X X X
1 1 o 2 ,
M + x° Yy T %2 <© ut2 P hf(,o _o)he(g )
2 *1 Y2000M
(2.2-25)

o - - . - O - - e -
Xy = [(up - uy) helxy - x3) h(uy - uy) - dx, - pl

x tho(xy = x5) + he(x, = x3)

o o © -
< heldxy +p - (uy - uy) he(xy-xy) h Cuy-uy

X X X X
2 1 2 1 '
’ *‘(— ' “‘) “f(:-6 ' :o)*‘f‘g !
2 1 -2 ~1

O
X N X N
=2 1 ! 2 1 .
* + © Yy T W o du:\2 L hf(;?) B ~:0)h(‘(§, )
1

:© X X
*1 2 X *20N
(2.2-26)
: o X3
X3 = |-upll = xy/xy) o= 4 (1 - pp)P
hl + 33
., - .O . - .() . , '
x Ihe(‘\3 33) + hf()\3 33) hf(m)llhe(h) + h{(“)hv(g )

O O

.- (1= 5y /50 — B 4y
[ UZ .\1 .\l ) g
.‘(1 + X,

2-16
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) . O .

X [he(x3

-dzx4

x5 = [-dzx5 +

X Ihe(x3 -

* {'dzxs

- x3) he(m)] he(w) he(g")

(2.2-27)
X Xo - X
0 X2 4 " %4 .
Wa ot o o, PP
2 Xu T Xy T X5 T %s
[o] [o] R ) "
- x3) + hf(x3 x3) hf(m)][he(W) + hf(k) h (g )]
X )(0 - X
v ,0 2 4 4 ~
* dﬂxé o * o _ + %0 -« (p z)
o A 5 5
- x2) + h(x, - x3) h(m)] h (w) h, (gM]
X3 TplXg T Xg) heim £ £'8
X Xo - X X
v O _2 [‘ 4 ~ (o] 3_“
+ dQXA o * o _ + <0 - [p “z(l x]/xl) x0 + x
Xy Xy T X, T Ry T Xy 1
h_ (m) (2.2-28)
X ° - X
00 2 5 = % ~
d x5 o * o _ + x° - X pfp}
Xy Xy T X, T g 5
2) + h(x, = x2) h (m1{h_(w) + h_(w) h_(g")]
3 gi¥g T Xg) MetmIlth, f e B

X x2
n, 0 2 5
+ =
d2x5 xo * o _
2 X, X

)

3

0 0 "
x Ihe(x3 x3) + ho(xy = x3) hf(m)] he(w) h (g")
‘ o X2 xg T Xg X
M I e e S L L e L
R T ] %
X h_(x,) h (m)
re (2.2-29)
2-17
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X
s _ A - T _ o« 4.0 6
Xg = (up = up) helxy - x7) - uy(l - xy/%7) ———p
x, + X
1 3
- (u, - )fézh« - x9)
Yr T W o £iX] T X
X
3
2
- (u, - d x Y1 - "6 he(x; - x2) he(x, - X9
1 - W u¥2 ° P O 4% T X1/ Dl )
3

(2.2-30)

In the above equations Uy and u, stand for the instantaneous
precipitation and potential evapotranspiration demand rates,

respectively. In addition

1

g' = o
1

X

1 Ko) i Ko}

(“1 - Uy ;5>[he(xl - X7) * he(xy = x7) heluy - up)d
1

1 o _ e
- ;g [Cup - uy) helxy - x7) h(uy - up) - dxy - pl

x {ho(xy - x5) + he(xy - x3)

.O _ . _ 0 _
X heldxy + p - (up - up) helxy = xpdh (uy - up)

(2.2-31)
X, + X
wz (1 - r)(1 - xq/x%) -f1 - 403 (2.2-32)
R R
z = ! (1 - r) (xz + xg) uz(] - xl/x(])) _i& -
x0 + (1 - r)(x0 + xo)Q X0+ %0
3 4 5 1 3
0 ¥ i . . YD
+ x3(p - dzxz‘ - dgxs)‘ (2.2-33)

2-18
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m—
1}

z - (1 - pelp (2.2-34)

and

1

mo= uy(l - xl/x?) - (1 - pe)b (2.2-35)

The propagation of state values in the simulation
model and the EKF technique are both based in successive lin-
ear approximations to the state-equations. For a short time
interval the nonlinear vector function F_ in Eq. 2.2-1 is re-
placed by its tangent hyperplane at the point corresponding to
the state value at the beginning of the time interval. The
choice of the length of the time interval is discussed in Sec-
tion 2.4. The inference is that the present approach to simu-

lation and filtering imposes restrictions on the form of the

state-equations: the nonlinear function F. must possess con-

tinuous partial derivatives with respect to all states.

The function F. that results from using the differen-
tial equations 2.2-25 through 2.2-30 directly in Eq. 2.2-1
does not have continuous derivatives. In fact, it is not e¢ven
continuous. The discontinuities arise from the threshold val-
ues associated with the elements of the upper and lower zones
as well as from the constraints on ratios of free to tension-

water present in the SSM model.

Use of the EKF technique on the reduced SSM model
requires modification of the state-equations 2.2-25 through
2.2-30 to eliminate the threshold discontinuities. This iIs a
step of cardinal importance in the analysis. Some of the most
essential features of the SSM model such as the supply of water
to the upper-zone frec-water element, the distribution ot water
to the lower zone and the appearance of surface runotf ar

critically affected by the approximation. Arbitrary swmoothing

2-19
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of the discontinuities in the state-equations may yield to
physical inconsistency (the principle of mass conservation may
be violated) and mathematical inconsistency (a solution may

fail to exist).

An analogy with electric circuits was used in Ref. 5
to obtain a set of smoothed equations corresponding to the SSM
model with the constraints on ratios of free to tension water
removed from the model. It is shown in the Appendix that for
all basins examined the constraint for the upper zone is super-
fluous. Even though situations in which the lower-zone con-
straint is activated cannot be ruled out a priori, they have
not been observed in the results obtained to date. When the
lower-zone constraint is introduced, the smoothed equations of
the SSM model become

c - . ,.0 _ .0
Xp 5y upXy/¥g g(xy.xy)
M L —
moisture evapotranspiration excess upper-zone
input from the upper zone tension-water supply
(2.2-306)
X X,
. _ . 'o _ i _ ' VO ‘_2‘ _ " 0 __é oo
%) B(x1.x7) dy %, dy x4 5 - dy X5 5 = P
BN X
. N
excess from interflow percolation to lower zone

tension-water

- g(xz,x(z)) (2.2-37)
e’

surface

runof f
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u
< - ~ - 2 _ O, _ . .0
Xy = (1 pf)p .o (1 xl/hl)x3 g(x3,33)
X, X,
1 73
\—\~ -~
: percolation evapotranspiration excess lower-zone
: supply from the lower zone tension-water supply
+ f(z,(1 - pf)ﬁ) h(w) (2.2-38)
. I

-~
effect of lower-zone
constraint

o

X, -X N
- S A N .0 v L0 2
Xg4 = o - o \PeP relgxgpl rdy Xy g

X" T X57 g 2

e e —
moisture supply (percolation + excess tension-water)

o
X=X
- R 4 4 - ~ .
- dg X, o ..o f(z,(1 pf)p) h(w)
TR, TR, ]
N, o’ ~—~—— —TEEER——
baseflow from effect of lower-zone constraint
primary
(2.2-39)
x-x X
< = ‘5 5 a4 - .O 1" _O :_2
‘\5 - ’O_‘{ +'O- ] [pfp + g<4\39-\3)] + dg -\5 0
Ry ™% ¥57 X5 i
R e ————

moisture supply (percolation + excess tension-water)

Xg-Xg
- dQ Xg - fgjf—:igjf— f¢(z,(1 - pf)p) h(w)
Xy "X, N -Ng

baseflow from vffect of lower-zone constraint

supplementary
(2.2-40)

where w and z are given by Egs. 2.2-32 and 2.2-33 respectively

< .

and where the functions f, g and h are given by
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‘ if 0 o< A-6
. +6- . o .
f(n.,R) = if A-6 < n < A+ (2.2-41)
l if n > A+o
s 0 if n<n°
g(n.,n®) e o (2.2-42)
l—g (n-n®)% if n >
n
0 if n < -6
2
h(n) = (2.2-43)
2
1 -0 =820 e 52 < <0

1 ifn>0
where 6 and e are constants, typical values of which are 6
= 0.01, e = 100. Graphs of the functions f, g and h are given

in Figs. 2.2-1, 2.2-2 and 2.2-3, respectively.

R-51647

f(n,n)

Figure 2.2-1 Graph of the Function f(n,f)
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R-51646

gin,n) A

Figure 2.2-2 Graph of the Function g(n,qo)

R-59516

hin)

Figure 2.2-3 Graph of the Function h(n)

As a consequence of the approximation the upper
bounds on the state values may, on occasion, be slightly ex-

ceeded. Examples of this behavior are given in Section 2.6.
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By increasing the value of the constant e in Eq. 2.2-42, the
possible excess of state values over their bounds may be re-
duced. Even though in the results obtained to date the lower-

zone deficiency ratio, p, defined by

X + X + X
p=1 - 24 5 (2.2-44)
Xg * X, ¥ ¥y

has always been greater than zero, there is the possibility
that it may become negative during extreme flood periods.
This ratio appears in the percolation function and if its
value is negative, p given by Eq. 2.2-19 is undefined. The

definition of P is completed by setting

e

2
P Y | P p >0
X2
p = (2.2-45)
o M2 o
PY —§ (-p) p <0
X9

with p as in Eq. 2.2-44. Thus, when the lower zone deficiency
ratio is negative, water is drawn out of the lower zone into

the upper-zone free-water element. If the latter is full, the
amount of water drawn out of the lower zone contributes to the

surface runoff.

The equation for Xg s the excess of the additional im-

pervious storage over the upper-zone tension-water content, is

: 2
Xg = lg(xl.X?) - g(xz.xg)] n - (xb/xg) J
o 6
- Uz(l - Xl/.\l) T——; (.Z..Z-/o(\)
Xp Xy
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The equations for the moisture input uy in Eq. 2.2-36

are discussed in the following section.

2.2.2 Rainfall Model

The Kalman filtering formulation assumes that random
inputs driving a system are solutions of stochastic differen-
tial equations. The simplest such input is the so-called first-

order Markov process (Ref. 7) which is generated by the equation
Xg(t) = - B xg(t) + {(t) (2.2-47)

where B is a real number and { is a Gaussian white noise proc-
ess with constant spectral density q. If Xg is interpreted ag
a rainfall rate with units of mm/hr, the units of { are mm/hr-,
those of q are (mm/hrz)z/(l/hr), and the units of B are 1/hr.

I1f B>0 a stationary solutign, x8(t), to Eq. 2.2-47 exists, and

its covariance function is

Elxg(t+1) xg(t)] = %3 e BITI (2.2-48)

The quantity 1/B is called the correlation time of the process.

The process x8(t) has a mean value of zero. Its sam-
ple functions oscillate about the time axis, and even though
values much larger than the standard deviation, (q/ZB)l/z.
have a low probability of occurrence, there is no actual upper
or lower bound on the values the process may take. A precipi-
tation model should reflect the existence of periods in which
there is no rain and the fact that rainfall rates are never
negative. Thus, Eq. 2.2-47, per se, does not constitute an

appropriate precipitation model in a simulation. However, a

* E denotes the mathematical expectation operator.
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simple nonlinear trans{ormation of the process x8(t) yields a
useful precipitation model for simulation purposes. Consider

the precipitation rate defined as

ul(t) = %(Xg(t),ig) (2.2-49)

~

where the function f is given by

- ‘ 0 ifn<d
f(n.,A) = (2.2-50)
[ n-d if n> 4

Whenever the values of the process Xg are less than the thresh-
old value ig, the precipitation rate is zero. If Xg is larger
than ig, their difference is taken as the precipitation rate.
An example of a typical realization of six-hour accumulated
rainfall obtained with this model is given in Fig. 2.2-4.

Other examples are given in Section 2.6.

Six-Hour Accumulated Precipitation

0

-
g o ' |
ad 1
P
ad
3
=
-
3 4

2+

o A RS

T T T .
o} -] 10 1) 20 -] 30
TIME (days)
Figure 2.2-4 Example of Accumulated Precipitation Produced

with the Rainfall Simulation Model
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The fraction of time during which rain occurs is equal

to the probability that x8(t) is greater than §8 and is given by

P[ul(t) >0) =1 - ¢(§8/0) (2.2-51)
where
a 2 ,.
o(a) = = [ &5 /? as (2.2-52)
Jan -«

1s the standardized normal distribution funcrion, and
o = (q/28)1/? (2.2-53)
is the standard deviation of x8(t). The expectation and vari-

ance of the precipitation rate given that it is actually rain-

ing can be computed to be

E[ul(t)|ul(t) > 0] = Ao - &g (2.2-54)
oﬁl(t)|”1“’ , o = 9°11-A%] + Aoy (2.2-55)
where
-%5/20%
A= & /i2n (2.2-56)

1 - 0(?&8/0)

Equations 2.2-51, 2.2-54, and 2.2-55 may be used in
tfitting the model parameters, B, g, and §8’ to data records.
The seasonal variation of rainfall can be modeled by letting
the model parameters vary with time. For the results included
in Section 2.6 corresponding to the Bird Creek basin and for
the precipitation record of Fig. 2.2-4 the correlation tiwme,
1/8. was taken to be one day, q = 0.285 (mm/hrz)z/(l/hr) and

Xg = 2 mm/hr. And for the results corresponding to the White
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River basin in Section 2.6, the parameters are 1/8 = 12 hr, q

= 0.015 (mm/hrz)z/(l/hr) and §8 = 0.153 mm/hr. These parame-
ters were chosen on the basis of NWS values of mean areal pre-
cipitation (MAP) for the Bird Creek and White River basins
corresponding to the periods between April 19, 1959 and May

19, 1959 and between May 1, 1968 and June 1, 1968, respectively.
These periods were chosen because the relatively high quanti-
ties of precipitation that were recorded served to illustrate
the nonlinear behavior of the model in the results presented

in Section 2.6.

The function E in Eq. 2.2-49 does not have a deriva-
tive when Xg = is. Since the operation of the simulation model
requires the existence of derivatives for the linearization of
the equations, the function E was replaced by f as defined by
Eq. 2.2-41.

The above model is useful only for simulation pur-
poses. It is referred as rainfall simulation model in the
sequel. For reasons that were discussed in Ref. 5, this model

is inappropriate for the filtering formulation.

Instead of the above simulation model, the model used

in the filtering formulation is a linear rainfall rate model
that has the same first and second-order moments as the rainfall H
simulation model. The rainfall rate is
t ~ 1 ) _f k
ul(t) = uy + x8(t) (2.2-57) i

where Gl is the average rainfall rate given by

Gl = p|u1(t) > 0] E[ul(t)'u]([) > 0] (2.2-98)
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or, in terms of the quantities previously introduced, by
G = 11 - 0(%g/@)] (Ao - &g (2.2-59)

The process xé(t) is a first-order Markov process satisfying

the stochastic differential equation
xé(t) = - B xé(t) + () (2.2-60)

where {'(t) is a Gaussian white noise process with spectral

density
q' = {ll - 9(%g/0)] (1 + (%0707 - A%g/0]
8 "8 ~8
- {1 - 0(&g/0) 1% A - Sgr01%g (2.2-61)

The values of ﬁl and q' associated with the rainfall
simulation models previously introduced are uy = 0.132 mm/hr
q' = 0.0165 (mm/hr2)2/(1/hr) for the Bird Creek basin and Gl =
0.0583 mm/hr, q' = 0.00254 (mm/hr2)2/(l/hr) for the White River

basin. The rainfall model corresponding to Egs. 2.2-57 and

2.2-60 is called rainfall filtering model in the sequel.

2.2.3 Equations for the Channel-Inflow and

Rainfall Accumulator States

The contributors to the channel inflow accumulator
are: rainfall over permanently impervious areas, direct run-
off from the additional impervious area, surface runoff from
the upper zone and from the additional impervious arca, inter-
flow and baseflow. To all these contributions the evapotlrans-

piration from stream surfaces and riparian vegetation is sub-

tracted. The equation for Xy is easily found to be
&7 = f(y,0) (2.2-62)
2-29




THE ANALYTIC SCIENCES CORPORATION

where f is given by Eq. 2.2-41 and

X_6

O

2
N ) + (l-az)g(xz,xg)

y = ajup + aplg(x),x7) - g(xz'xg)’<

[*Y
w

+ (l-a,-a,) [d X, + —é- X, * gi— X
1792 u¥2 T THp Y4 7 T+n s

X,
.0 _ 3 5 g
- 5 u2(l - xl/xl) (1 5 .0) (2.2-63)
xl+xx

The equatiorn for the rainfall accumulator is, simply,

&9 = uy (2.2-64)

2.3 MODEL EQUATIONS - DISCRETE TIME COMPONENTS

In contrast with the equations for the continuous part
of the model, those of the discrete part are linear. Let the

state-space model of the unit hydrograph be (see Section 3.4.4)

vh(j) Hy §h(j) (2.3-2)

where Xy is the state vector, up the input, vy the discharge
rate, ¢h the MxM one-step transition matrix, Gh the Mx1 input
matrix and Hh the 1xM output matrix of the unit hydrograph and
where time (j=0,1,...) is measured in multiples of tne unit

hydrograph rate.

It is convenient to express the discharge at time j
in terms of the state vector at time j-1. Replacing xh(j) in

Eq. 2.3-2 by the expression on the right of Eq. 2.3+1 yields
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Vh(J) = Hh ¢h ’ﬁh(_]‘l) + Hh Gh Uh(_]) (23'3)

The matrices A and B of Eq. 2.2-2 can be easily de-
rived from Eqs. 2.3-1 and 2.3-3 as follows. Let vk be a crit-
ical time. The first M states of X4» those corresponding to
the unit hydrograph, are governed by Eq. 2.3-1 when j is re-
placed by (vk)®, j-1 by (vk)™, and u, (j) by x;[(vk)"], the
latter being the current value of the accumulated channel in-
flow. The last state of x,, the accumulated channel discharge
at time (vk)o, can be written as the sum of the previous con-
tents of the accumulator, xlo+M[(vk)-], and the present con-
tribution from the channel routing system given by Eq. 2.3-3,

i.e.,
X9 0epl (VKYTY = %0 W [GK)TT + Hp 0 x [(vk)T]
+ Hy Gy x50 (vk) 7] (2.3-4)

The matrices A and B are

(2.3-5)

>
H
©
=
R N
[ e
]
'

0 0 00 _]_
o b . i
. :Gh L. . M
B = - . . (2.3-6)
0 0! ‘00
.......... R A
0 0 H G 0 0
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2.4 OPERATION OF THE MODEL IN THE SIMULATION MODE

Between two consecutive critical times (v-1)k and vk.

The equations for the continuous part of the system,
§C(t) = EC(§C(t),t) + GCC(t) (2.4-1)

are linearized at the operating point corresponding to time

to=vk. The resulting linear equations

Sc(t) = Fc‘§c(t) - §C(to)] + b + Gcg(t) (2.4-2)
with
. 9F |
Fo= —g (3.(t,0),t) (2.4-3)
Ix
=c
and
h = F (x.(t ), ty) (2.4-4)

are used to obtain a first approximation to the state values

at time tO+A with A = vk - (v-1)k = k.

The state vector at the end of the time interval of
length A is the value of the solution to Eq. 2.4-2 at time
t,*¥A. This value, denoted by x'(t_+a). is found to be

1

XL *8) = x (t) + (& (8)-1) FI' h + &' (2.4-5)

where [ is the identity matrix, ¢C(s) the transition matrix

for an interval of length s given by

1}
T

(2.4-0)

¢C(S)
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and §' a vector randonly chosen from the multivariate normal

distribution with mean zero and covariance matrix

i} LT, T
Q = q/(; ¢ (A-5) G G, (A-s) ds (2.4-7)

The vector &' accounts for the contribution of the random input,
{, of the rainfall simulation model to the change in the state

values during the time interval of length 3.

Because of the strong nonlinearities present in the
model, it is possible that the behavior of the linearized svs-
tem, Eq. 2.4-2, departs considerably from that of the nonlinear
system, Eq. 2.4-1, during the time of propagation: i.e.., the
length of the time interval, A, may be inappropriately large
for a valid approximation. 1In order to avoeid this ditficulty,
the length of the time interval for propagation of the linecar
system is chosen adaptively. The simulation utilizes a nominal
step length of A = k hr, but if any of a collection of inequal-
ities, W(x_,x1) < 0, is violated, the length of the time inter-
val is halved and propagation is attempted anew. When propa-
gation for a subinterval is successfully completed, Eq. 2.4-1
is linearized at the new operating point, A is set equal to
the time step necessdary to reach the next critical time and

the procedure is repeated.

Four inequalities were used in the simulation. The
first two place limits on the changes in the contents of the
upper-zone tension-water and free-water elements: these dif-

i
ferences are not allowed to exceed 1 mm ; i.e.,
X t
1((

)) - Xi([o'*.ﬁ) <1 (2.4-8)

*This amount is a conservative choice. Good results were
obtained with its use.
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|x5(t ) - x3(t +a) | < 1 (2.4-9)

The third inequality concerns the percolation. It is required
that

Px(t ) + px'(t _+a))
2

A <1 (2.4-10)

The expression on the left in Inequality 2.4-10 is Simpson's
integration formula applied to the instantaneous percolation
rate, p. Thus, 2.4-10 can be interpreted as a limit on the
total percolation during the time interval of length A. The

last inequality sets a limit on the amount of surface runoff:

[g(xz(to),xg) + g(xé(to+A),xg)]
2

A< 1 (2.4-11)

When the critical time vk is reached, the last value
of the continuous state vector, Xoo obtained by the propagation
of Eq. 2.4-1 is interpreted as §C[(vk) ]. The corresponding
value of the discrete state is §dl(vk)-l = §d[((v-l)k)rl. The

discrete part of the model is updated next according to
x L VO] = A x (VKT + B x 1(vk)T] (2.4-12)
where the matrices A and B are given by Egs. 2.3-5 and 2.3-6.
At this point in the simulation the output measurements,
Eqs. 2.2-7 and 2.2-8, are evaluated. It is convenient to intro-
duce a matrix notation for this computation. Equations 2.2-7

and 2.2-8 can be represented as

y(vk) = H(vk) x[(vk)?] + £(vk) (2.4-13)
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where the quantities y, H and ¢ are given by

Y1
y = (2.4-14)
Y2
! 8 |k M =
0 L0110 .01 0
H = P :
0. . .0:0:0 . 0 ,1/mg
(2.4-15)
£
£ = 1 (2.4-16)
&)
when v is a multiple of mg; i.e., when there are raintfall and
discharge measurements, and given by
y =¥y, (2.4-17)
—8—d ]
H=4(0 .. .0:1'0 010) (2.4-18)
£ =& (2.4-19)

when v is not a multiple of m¢ but is a multiple of ¢, i.e.,

when there is only a rainfall measurement. If v is not a wmul-
tiple of 2 there are no measurements computed. In the above
equations gl and £2 represent measurement noise. Their values

are independent samples from the normal distribution with zero

mean and variances 0% and 0%, respectively.

Since the filter is not in operation, the definition

of time (vk)+ is superflous in the simulation wode. Equiva-
lently,
x[(vk)T] = x[(vk)®] (2.4-20)
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As a final step of the state propagation correspond-
ing to a critical time, the contents of the appropriate ac-

cumulators are reset Lo zero, i.e.,

x7[(vk)r] =0 vz 0,1, 2, (2.4-21)
xgl(vk)r] =0 v =0, 8, 2¢,... (2.4-22)
X10+M[(Vk)r] =0 s v = 0, mg, 2me.,... (2.4-223)

and propagation of the continuous part of the state vector to

the next critical time begins.

2.5 OPERATION OF THE MODEL IN THE FILTERING MODE

The operation of the filter follows in the same lines
as the simulation procedure described in Section 2.4. The
system equations are identical to the equations used in the
simulation mode except that the rainfall filtering model is
used instead of the rainfall simulation model. The state-

estimates, X, are propagated according to the equations

X.(t) = F (X (t),t) ;i t e ((v-1)k,vk) (2.5-1)
Xq(t) = 0 ; t e ((v-1)k,vk) (2.5-2)
Sdl(Vk)o] = A gdl(vk)—] + B SC[(VR)-] (2.5-3)

However, in order to compute the Kalman gains, it is necessary
to propagate the state error covariance matrix, P(t), defined

by

P(E) = ESIR(E) - x(e)) ] [&(1) - x(t)] 1} (2.5-4)
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| Following the subdivision of the state-vector into

its continuous and discrete parts, x_ and X4, define

—C
; P.(1) = ELIR (1) - x ()] [§,(1) - x_(0)] 7} (2.5-5)
| Fogt) = ELIS (0 - x ()] [8,(0) - x,(0) 1T (2.5-6)
: Py () = PL0) (2.5-7)
Py(t) = E{IR4(0) = xq(0 ] 15,0 - x0T (2.5-8)

Thus P(t) is partitioned as

Py (t) ! Py(t)

The operation of the filter is best described in the
form of an algorithm.

Filtering Algorithm

1. [Initialize elapsed time, state-estimates and error covari-
ance matrix|j

Set £« 0, & « %(0), P« P_(0), P4« P_(0), Py« P, (0)
2. {Initialize step size, A, and time to reach next critical
time, &.]
Set A « k, & « Kk
3. [Linearize Eq. 2.5-1 about current operating point |
- 3F,
Compute F_ = T (X..t), h = F (&_..,0)
IX
=c
4, [Evaluate transition matrix|
FCA
Compute ¢C = e
2-37
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10.

11.

12.

13.

[Compute tentative state-estimate]

Set &' « &+ (¢ -1) F1
—C —-C C C

h
[Verify suitability of step size]

If none of the inequalities W(X_,X/) < 0 is violated go to
step 8 (W is defined by Eqs. 2.4-8 through 2.4-11)

[Redefine step size]
Set A « A/2 and go to step 4

[Update state-estimate, elapsed time and time to next
critical time]

Set X « X', t « t+A, X « K - A
—C —C

[Propagate covariance matrix to account for continuous
transition]

Set P« 6 P&l +Q, P .« & P
C c ¢ ¢C

cd ¢ cd

where Q is the matrix defined by the expression on the right
of Eq. 2.4-7.

[Verify if critical time has been reached]

I1f 8 # 0 set A « X and go to step 3

[Propagate discrete part of state vector)

Compute state vector at time t© by setting

X, « AX, +BxX
=d =d =c
[Propagate covariance matrix to account for discrete
transition]
T

Set Pd « A Pd A+ BP

and Pcd « Pcd

in the above order

T

Al + (B v, T T

A) +BP_ B

cd d c

al + p_ BT
c
[Determine if there is a precipitation measurement |
If t is not a multiple of 2k then
13.1 |Reset channel inflow accumulator]
State at time t' obtained by setting R7 <0
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14.

15.

16.

17.

18.

19.

13.2 [Modify covariance matrix to reflect reset])
Set the seventh row and column of P equal to zero
13.3 Go to step 2
[Determine if there is a discharge measurement |
1f t is a multiple of mek set FLAG « TRUE
If t is not a multiple of mfk set FLAG « FALSE
(FLAG = TRUE indicates the presence of a discharge medsurcment )
[Define measurement equations]

I1f FLAG = TRUE define H as in Eq. 2.4-15 and set

vy 02 0

1 1

y € , R « 2
Yo 0

92
1f FLAG = FALSE define H as in Eq. 2.4-18 and set
2
Z(—yl R(—OI

(y1 and y, are the values of the rainfall and mean discharge

measurements, R is the covariance matrix of the errors in
the measurements)

[Compute Kalman gains]

T -1

Evaluate K = P HT(HPH + R)
|Perform Kalman update on state-estimate]
State at time t+ is obtained by setting
R < & + Kly-HS]
[Modify covariance matrix to account for Kalman update]
Set P <« P - KHP
[Reset accumulators]
19.1 Set §7 « 0 and &9 < 0

19.2 If FLAG = TRUE set 0

X10+4M °
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20. [Modify covariance matrix to account for reset]

20.1 Set the seventh and ninth rows and columns of P
equal to zero

20.2 1f FLAG = TRUE set the last row and column of P
equal to zero

21. [Continue operation]

Go to step 2

2.6 RESULTS

The parameters of the SSM model for the Bird Creek
and White River basins were used in testing the behavior of

the simulation and filtering algorithms described in Sections
2.4 and 2.5.

In all instances data were generated using the model
in the simulation mode. These data were then used by the fil-
ter to obtain six-hour lead forecasts under several assumptions
on the filter parameters. The results so obtained were then
compared to the true values obtained in the simulation. Excel-
lent agreement between true and predicted discharge was obtained

in all test cases.

The Bird Creek basin model was used to investigate
the sensitivity of the filter behavior to changes in the meas-
urement error covariance matrix, R, and to changes in the ini-
tial state error covariance matrix, P(0). The White River
basin model was used to illustrate the filter response for a

different set of SSM parameters.

The parameters of the SSM model for the Bird Creck

and White River basin are listed in Table 2.6-1. In addition

2-40




THE ANALYTIC SCIENCES CORPORATION

TABLE 2.6-1

; SSM MODEL PARAMETERS FOR BIRD CREEK
i AND WHITE RIVER BASINS

% PARAMETER BIRD CREEK WHITE RIVER
‘ 7 (mm) 120 50
x5 (mm) 15 30
x5 (mm) 160 250
x; (mm) 140 80
xg (mm) 14 170
d, (1/hr) 1.486E-2 1.486E-2
‘ d; (l/hr) 5.452E-4 5.875E-4
? dy (1/hr) 5.612E-3 ; 2.578E-3
* y 48 | 25
o 2.1 4.9
% Pe 0.02 0.4
p 3.55 0.0
a; 0.17 0.0
a, 0.001 0.0
r 0.3 0.3
s 0.0 0.2 l

to the parameters given in the table, constant rates of u, =
1.375E-2 mm/hr and u, = 4.583E-2 mm/hr were used for the in-
stantaneous potential evapotranspiration demand for the Bird

Creek and White River basins, respectively.

2
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Fifth-order state-space models for the six-hour unit
hydrographs for the Bird Creek and White River basins were
used. These models were obtained with the subroutine REDO-UHG
(Ref. 1) delivered to NOAA/NWS for use as a constituent of
the Version 5.0 NWSRFS Forecast Component. The theoretical
basis underlying the operation of this subroutine is described

in Chapter 3 of this report. Figure 2.6-1 compares the origi-

i L3t i

nal Bird Creek hydrograph (solid line) with the approximation

used in the simulation and filtering algorithms (dashed line).

! The White River basin hydrograph (Fig. 2.6-2) contains five
‘ lags and, thus, agrees exactly with the fifth-order state-

space model used in the simulation and filtering algorithms.

For the Bird Creek basin the initial state values
were chosen arbitrarily as X1(0> = 100 mm, x2(0) = 12 mm, XB(O)
= 130 mm, xa(O) = 110 mm, x5(0) = 11 mm, and xi(O) = 0 for
i > 5. These values were the same in the simulation and fil-

tering operations.

For the Bird Creek model, different random number
sequences were used in testing the sensitivity of the filter
response to changes in the measurement and initial state error
covariance matrices. The particular precipitation records
included in this section are not typical of the results pro-
duced by the rainfall simulation model. They werce chosen be-
cause the substantial amounts of rainfall obtained with the
particular random number sequences excite extreme dynamical
responses in the system and serve to illustrate the behavior
of the filter in the noulinear operating region for the upper-

zone elements.

The precipitation record of Fig. 2.6-3 for the Bird
Creek basin was used in determining differences in {ilter re-
sponse to changes in the measurement error covariance matrix,

R. This precipitation record is referred as BCl in the sequel.
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Six-Hour Accumulated Precipitation
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Figure 2.6-3 Precipitation Record BCl

For the comparisons of filter performance under dif-
ferent assumptions on the measurement noise level, simulated
values of accumulated precipitation and instantaneous discharge
were produced at six-hour intervals. Thus, in the notation of
previous sections, the values of k, £, and m were k=6, 2=1 and

m=1.

Results for two different measurement error covari-
ance matrices are illustrated in Figs. 2.6-4 through 2.6-19,
Solid lines represent the values obtained in the simulation
while dashed lines correspond to the cne-step ahead (six hour)
filter prediction. Even numbered figures correspond to the

measurement covariance matrix

0.0054 0
R, = (2.6-1)
0 0.083
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Upper-Zone Tension-Water Element

Figure 2.6-4
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Upper-Zone Free-Water Element
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Lower-Zone Tension-Water Element
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} Lower-Zone Primary Aquifer
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Lower-Zone Supplementary Aquifer
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MILLIME TERS

Figure 2.6-16
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Figure 2.6-17
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Discharge Rate
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The root-mean-square (rms) errors associated with R1 are o,=
0.073 mm for the precipitation measurement and 02=O.29 m3/sec
for the discharge rate measurements. These values correspond
to errors of round-off to the closest 1/100 of an inch for
precipitation and 1 m3/sec for discharge. 0dd numbered fig-

ures correspond to the covariance matrix
R2 = (2.6-2)

for which the rms errors are five times larger than those of
R

1

The predicted values of instantaneous channel dis-
charge obtained with the use of the covariance matrices R] and
R2 are presented in Figs. 2.6-18 and 2.6-19, respectively.

The predicted discharge agrees better with the true values
when the larger covariances are used. The rms difference be-
tween predicted and true discharge is 7.8 m3/sec for Rl and
7.2 m3/sec for R2. The same type of observation applies to
all states of the SSM model (Figs. 2.6-4 through 2.6-17) ex-
cept for the lower-zone supplementary free-water content (Figs.
2.6-12 and 2.6-13) where the fi. obtained with the use of Ry

is slightly better than that obtained with R,.

The fact that larger measurement error covariances
produce better results can be explained as follows: With a
small measurement error covariance the measurements are pre-
sented to the filter as being extremely precise. As a conse-
quence small differences between the predicted and measured
values are heavily weighted by the filter (i.e., the Kalman
gains are very large). The filter responds guickly to dif-
ferences between estimated and observed values and tends to

have a fast oscillatory response. This behavior is particu-
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larly well exemplified in the estimates of the upper and lower
zone's tension-water content (Figs. 2.6-4 and 2.6-8). Note
that these oscillations happen to occur when the upper-zone
tension~water element is full and in some instances (see Fig.
2.6-6) when surface runoff is being produced. When the meas-
urement error covariance is increased, the filter places more
trust in the estimates it is computing and small differences
between predicted and measureed values are given less emphasis.
The response of the filter is somewhat slower but its overall

performance is improved.

The initial state covariance matrix, P(0), used in
obtaining the results given in Figs. 2.6~4 through 2.6-19 was
taken to be a diagonal matrix, P', whose elements along the dia-

gonal were pil = 1.44 mmz, péz = 0.0225 mmz, pé3 = 2.56 mmz.
2

pl’#[; = 1.96 mm s PéS = 0.0196 mn|2, péb = 2.56 mm2 and pil = 0
for i > 6. These values correspond to an initial state uncer-

tainty of 1% of the capacity of each of the elements of the
SSM model.”

In order to examine the behavior of the filter for
different assumptions on the initial state uncertainty, a com-
parison was made of the results obtained for the Bird Creek
model with the use of the initial state covariance P' and those
obtained with a larger covariance matrix, P", with diagonal
144 mm2, Py, = 2.25 mmz, phe = 256 mmz‘ p;

) 22 9 33 44
» PEg = 1.96 mm”, Pie = 256 mm~ and pyi = 0 for i > b,

"

elements pyl
196 mm?

corresponding to an rms uncertainty of 10% of the capacity of

*The maximum value of Xg s the excess of the additional imper-
vious area content over the upper-zone tension waler content

; o , - .
Is xq, the capacity of the lower-zone tension water clement.
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the states of the SSM model. Six-hour measurements of pre-
cipitation and instantaneous discharge were used by the fil-

ter. The measurement error covariance matrix was R2.

To prevent the state-covariance from changing sig-
nificantly from its initjal values before abrupt changes in
the system occur, the precipitation record BC2, shown in Fig.
2.6-20, was used in the comparison. The results are presented
in Figs. 2.6-21 through 2.6-36. 0dd numbered figures corre-
spond to results obtained with the initial state covariance
P', even numbered figures to those obtained with P". As be-
fore, true values and one-step-ahead filter predictions are

indicated by solid and dashed lines, respectively.

Six-Hour Accumulated Precipitation
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Figure 2.6-20 Precipitation Record BC2
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Upper-Zone Tension-Water Element
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Lower-Zone Tension-Water Element
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Lower-Zone Primary Aquifer

20 Y
|
™ | !
0 4 !
- {
£ s - BN i :
- N | |
fow \\ 1 H
Z 1004 \ E
o N > . |
() N '/ S e :
\\ ' ‘\ [
95 \\/\ - .
\‘ \\‘ . i
N )
~ 4
90 o N
N
|
as T T T T
3 s 10 ® 20 25 30
TIME (davs)
Figure 2.6-27 Lower-Zone Primary Free-Water Content
for Precipitation Record BC2: True
Values (Solid Line) and Predicted
Values With P(0) = P' (Dashea Line)
Lower-Zone Primary Aquifer
120
[
) |
s 4 .
h j
"°\.~\
€ TN |
E 054 ' N
— ~N
a \ ‘
= 1004 | . |
o 1
© | \,'\ |
. NS ?
35 \ ! N ! R ;
VAN ! ‘\{/r\ |
\\ . ,, N ‘\\» 1
%0 - / N
y
|
#s r . ,
Q H 10 -3 20 25 v
TIME (days)
Figure 2.6-28 Lower-Zone Primary Free-Water Content for

Precipitation Record BC2: True Values
(Solid Line) and Predicted Values with
P(O) = P" (Dashed Line)

2-59




THE ANALYTIC SCIENCES CORPORATION

Lower-Zone Supplementary Aquifer
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MILLIMETERS

Figure 2.6-31
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Surface runoff occurred on three different occasions:
on days two, three and twenty (see Figs. 2.6~23 and 2.6-24).
Instantaneous discharge plots are given in Figs. 2.6-35 and
2.6-3b. For both initial state covariance matrices, the rms
differences between the predicted and true discharges are very
close: 7.2 m3/sec for the case in which P' was used and 7.3
m3/sec for the case in which P" was used. The one-step-ahead
prediction of the values of the upper-zone states obtained ;
with the use of P' and P" (Figs. 2.6-21 through 2.6-24) are ‘
practically identical and agree very well with the true values.
However, for the rest of the states of the SSM model (Figs.
2.6-25 through 2.6-32), the agreement between predicted and
true values is much better for the estimates obtained with the
use of P', the smaller covariance matrix. In fact, the same
input sequences were used in a filter in which the initial rms
values for the uncertainty in the values of the states of the
SSM model was set equal to 20% of the maxima of the state values.

This filter became unstable during the fifth day of operation.

Therefore, it is recommended that in practice, on-
line operation of the filter be started when there is little
uncertainty as to the correct values of the states (e.g., dur-
ing the dry season) or that previously collected precipitation
and discharge data be used to carry the filter into steady-
state. Another alterndtive is to try to identify the initial

state. This possibility is discussed in Section 4.

The White River basin model was used to test the re-
sponse of the filter for a set ¢f parameters other than those
of the Bird Creek basin. The initial state values in the sim-
ulation and filtering algorithms were arbitrarily chosen as
xl(O) = 40 mm, x2(0) = 20 mm, x3(0) = 200 mm, XA(O) = 40 mm,
XS(O) 100 mm and xi(O) =0 for i > 5, For the filter, the

rms uncertainty in the initial states was taken to be 1% of

-064
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the element's capacity for the first six states and zero for

the remaining states.

Measurements produced by the simulation were precipi-
tation at six~-hour intervals and mean discharge at 24-hour
intervals. Thus, k=6, £=1 and m=4. The precipitation record
produced by the simulation is depicted in Fig. 2.6-37. The
measurement error covariance matrix used by the filter, R3,
was that implied by the covariance matrix R2 for mean dailv

discharge, i.e.,

Six-Hour Accumulated Precipitation

25

20 4

MILLIME TERS

=5 I — — =T

2 s 0 1
TiME (days)

Figure 2.6-37 Precipitation Record for White River Rasin
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The results obtained are presented in Figs. 2.6-37
through 2.6-45. The excellent fit between the one-step-ahead
(six hours) predicted mean daily discharge and the true dis-
charge shown in Fig. 2.6-45 is typical of the results obtained
for both the Bird Creek and White River basins when there is no
surface runoff. The rms difference between the predicted and

true mean daily discharge is only 1.4 m3/sec.

It was not possible to obtain simulation results for
the White River basin in which surface runoff appeared. Note
that even with the substantial amount of rainfall produced
during the last four days of simulation,* the drainage and
percolation rates from the upper-zone free-water element (Fig.
2.6-39) preclude the value of the state from reaching its maxi-

mum and, thus prevent the appearance of surface runoff.

The same random sequence that was used in the simu-
lation to produce the precipitation record of Fig. 2.6-37 and
the mean daily discharge indicated by the solid line in Fig.
2.6-45 was used in a simulation in which the precipitation
record of Fig. 2.6-37 was reproduced but values of instantan-
eous discharge instead of mean daily discharge were generated
(k=6, 2=1, m=1). These results served as measurements for d
Kalman filter in which the initial covariance matrix was the
same as in the previous case and the measurement error covari-
ance matrix wds R2. The results for the instantancous dis-
charge rate prediction are given in Fig. 2.6-46. The rms dif-

ference between predicted and true discharge is 3.8 mj/sec.

*The expected monthly precipitation is 42 mm. Total precipi-
tation for the record of Fig. 2.6-37 is 86 mm. For the last
four days, the amount of precipitation is 53.7 mm.
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Upper-Zone Tension-Water Element

52
S0
o 0
£ :
£ !
S oy |
(] \
= 1
=z 1
S :
“q |
24 |
A |
‘o Ll 1 ¥ RN T
[} 5 10 B 20 25 M
TIME (aays)

Figure 2.6-38 White River Basin. Upper-Zone Tension-Water
Content: True Values (Solid Line) and Pre-
dicted Values (Dashed Line)
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Lower-Zone Supplementary Aquifer
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Six-Hour Channel-Inflow
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Figure 2.6-44 White River Basin. Six-Hour Accumulated
Channel-Inflow: True Values (Solid Line)
and Predicted Values (Dashed Line)
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The results obtained show that notwithstanding the
strong nonlinearities of the soil moisture model, the extended
Kalman filtering technique described in Section 2.5 performs
extremely well on the combined basin model. The occurrence of
the peaks of the predicted discharge and their magnitude agree

very well with the simulation results.
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3. STATE-SPACE MODEL DEVELOPMENT FOR
UNIT HYDROGRAPHS

The objective of the work performed under this task

y was to develop a computer program which will create state-

: space models approximating the impulse response of a unit hy-
} drograph. This computer program is intended to be included in
r the NWSRFS forecast component. A users manual documents the i
computer program and its operation in detail (Ref. 1). The

computer program has the following capabilities.

' Creation of a discrete-time state-space
model (with selectable output time step)
based on the input of a unit hydrograph

) Production of an output file of river

i discharge predictions calculated from
the state-space model and an input file
g of channel inflow values

) Output of graphical summaries and tabula-
tions of the state-space model impulse
response, and the squared magnitude spec-
trum and phase spectrum of the transfer
function.

The canonical variate method is used in the approxi-
mation of unit hydrographs by reduced-order models of state-
space form. This section describes the mathematical method by
which the state-space models are created and presents some
results based on unit hydrographs supplied by NOAA/NWS to TASC

for use in this study. Section 3.1 formulates the problem of

unit hydrograph approximation as a reducced-order filtering
problem. Section 3.2 presents the concept of canonical variate
‘ decomposition of the past and futurce of 4 random process.  The

optimality of several canonical variate procedures arce discusscd
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in Section 3.3. The decomposition of past and future is used
in Section 3.4 to compute explicitly the optimal reduced-order
state-space model. Section 3.5 presents results of the appli-

cation of this method to unit hydrograp.us supplied by the NWS.

3.1 FORMULATION OF THE PROBLEM

Consider the problem in which a unit hydrograph h(rt)
is given that specifies the response at lag 1 to a unit input
at time zero. It is desired to find a state-space model, pref-
erably of low order, which is a good approximation in some
sense to the given unit hydrograph. This problem cannot be
separated from the characteristics of the input process since
the modes of h(1) that are excited and, hence, the output de-
pend strongly upon the input process. Nominally, it will be
assumed that the input process is white noise which e¢xcites
all frequencies proportionately. If the typical input signal
power spectrum is known and different from white noise, this
fact can be easily included in the method described below and
would lead to an alternative approximating state-space model.
It will be shown in Section 3.5 .hat the white noise¢ assumption
leads to excellent approximations of the unit hydrograph with

low order state-space models.

A schematic Jdescription of the problem is shown in
Fig. 2.1-1. The problem of determining a state-space model
which does a "good" job of predicting the output v(t) from the
input u(t) can be viewed as a reduced-order filicring problem.
Consider u(t) and v(t) as two related random processes. (In
Section 3.4.3 we will consider the case of a vector output
process v(t).) Given the past of u(t) for t=0,-1,..., It is

desired to predict the future evolution of v(t) for t=1,2....

A recursive or state-space filter of some specificd state order
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R—45964
u(t) -WHITE CHANNEL UNIT
NOISE INPUT HYDROGRAPH ——>v(t) OUTPUT
REDUCED-ORDER
STATE-SPACE A
f— V(1) ESTIMATE
FILTER v
Figure 3.1-1 Approximation of Unit Hydrograph

by a Reduced Order Filter

will be derived from the unit hydrograph. The approach and
criterion of approximation is described in the next two sec-

tions, and the filter derived in the following section.

3.2 CANONICAL VARIATE DECOMPOSITION OF PAST AND FUTURE

The central concept in the approach involves use of
the canonical variate decomposition of the past of one randon
process and the future of ancther process (Refs, 9, 10, and
11). This corresponds to a particular coordinatization of the
predictor space (Ref. 12) in a way that leads very natural'y
to the selection of reduced-order models and filters which are

optimal in several senses discussed in Section 3.73.

Suppose u(t) and v(t), for t an integer, arc time

series which are jointly stationary in the wide sense. We are
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primarily interested in prediction of the future evolution of
v(t) based upon the past realization of u(t) and so consider

the two vectors of random variables

u(t) v(t+l)
u(t-1) v(t+2)
z;(t) = : v zy(t) =T (3.2-1)
u(t-p+1) v(t+p)
where p is some specified number of shifts. We call gl(t) the

past of u(t) and gz(t) the future of v(t). The integer p is
generally somewhat larger than the maximal "state" order to be

considered but, in theory, may be infinite.

In the reduced-order filtering prchlem, the relation-
ship between the past z;(t) and the future z,(t) is to be ap-
proximated by a Markov process model of specified state order
k. In particular, the kth-order state expressible as k linear
combinations of the past gl(t) that best predicts the future
gz(t) is to be determined. For the immediate discussion "best"
means best percent error prediction which corresponds to maximal
reduction in error in prediction of gz(t) on a percent error
basis as given by the canonical correlation criterion discussed
in Section 3.3. The best k linear combinations of gl(l) tor
predicting gz(t) are those having maximal correlation with
gz(t). Finding these best linear combinations of gl(t) having
maximal correlation with z,(t) is precisely the classical canoni-
cal correlations and variates problem of mathematical statistics
(Refs. 13, 14). The more general canonical prediction criterion
is discussed in Section 3.3.2 as a simple modification of the
classical canonical correlations and variate problem. The
solution to the canonical variate problem is obtained by put-

ting the covariance structure of gl(t) and z,(t) in a canonical
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form. Nonsingular transformations, J and L, of the past z;
and future z, to new sets a and b of canonical variables or

variates

a = Jzy, b = Lz, (3.2-2)

are to be found such that in this new basis the correlations

between the past a and future b have a canonical structure

cov(a,a) = 1, cov(b,b) =1

cov(

Y
Ic
S
]
~
-
w
>
)
w

’

| Vv

with the canonical correlations ry > ry > 0 in descending
order. Thus, the components of the past a are mutually uncor-
related as are those of the future b. Of all linear combina-
tions of z; and Zy. the first component of a has maximum cor-
relation with the first component of b. 1t can be shown., for
any order k, that the first k components of a (i.e., corre-
sponding linear combinations of the past gl) lead to the best
prediction of the future z,. The canonical correlations
Cpepre - 0 by corresponding to the neglected variables give a

measure of the amount of information lost in using k rvather

than £ components. The requirements of 3.2-3 are ecquivalent
to finding J and L such that
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(3.2-4)

|
a1

T _
J Cov(gl,gz)L

J cov(gl,gl)JT =1, L cov(gz‘gz)LT =1 (3.2-5)

This is easily accomplished using a singular value decomposi-
tion (Ref. 15) which is computationally very efficient and nu-
merically very accurate and stable. Dimensions of gl(t) and
§2<t) as high as several hundred can be handled efficiently

and accurately using these computational techniques.

3.3 OPTIMALITY OF CANONICAL VARIATE ANALYSIS

The canonical variate analysis described above provides
an optimal choice of a restricted number of random variables
from one set for prediction about a second set of random vari-
ables. As classically formulated in Ref. 13, this involves a

canonical correlation criterion which is optimal in the sense

of

Maximizing correlation between the ob-
served set and the predicted set of
random variables

Maximizing the mutual information be-

tween the chosen variates used for pre-
diction and the variables pred.icted.
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A new generalization, the canonical prediction criterion, is

also discussed below which is optimal in the sense of

. Minimizing the expected weighted squared
prediction error.

The canonical prediction criterion applied to unit hydrographs
gives much lower order state-space models which adequately
approximate the unit hydrographs. Comparisons of state-space
models fitted using both the canonical correlation and pre-

diction criteria are given in Section 3.5.1.

3.3.1 Canonical Correlation Criterion

The canonical variate problem was originally formu-
lated (Ref. 13, also see Ref. 14) as a sequential selection
procedure. As discussed in Section 3.2, the procedure is con-
cerned with the optimal selection of k linear combinations of
a vector z; of random variables for optimal prediction of a
related vector z, o% random variagles. First a pair of linear
combinations a; = jyz; and b; = 2:29 of the respective vectors
of random variables z; and z, are determined which have maximal
correlation. Next, a second pair a, = iggl and b, = &552 are
found which are uncorrelated with ay and bI and which have
maximal correlation. The procedure continues up to the speci-
fied number k of linear combinations of 2, which are permitted.
Thus the canonical variate procedure finds the k mutually uncor-
related components of z; which are maximally correlated with
z,. Hotelling (Ref. 13) defines an intuitive scalar measure
of correlation between the two vectors of random variables z,

and Zys called the vector correlation coefficient, which is

simply expressed in terms of the non-zero canonical correla-

tions r,,...,r_ as
1’ *"n

w
'
~

S, T .
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Q2 = ryry...ry (3.3-1)

It can be shown that the choice of k linear combinations of z,
which have maximal vector correlation coefficient are the first
k canonical variates.

The canonical correlation method maximizes the mutual
information. Shannon and Weaver (Ref. 16) define the informa-
tion in one random vector zy about another random vector z,,
now commonly called mutual information, by

- Py(2y,2))
Hzy32p) = [Py (2102)) 108 5y, (,) 21 %2

(3.3-2)

where the base of the logarithm is arbitrary and determines

the particular units of information, and where P12 is the joint
and Py and Py the marginal probability densities. Gelfand and
Yaglom (Ref. 17) showed that the mutual information is simply

expressed in terms of the canonical correlations ISRERIS o8
between the two vectors by
J(zy32,) = - 1 f& log (1 - r2) = .1 log w (3.3-3)
_l’_2 2 j:l g j 2 ‘

where Hotelling (Ref. 13) defines the vector alienation coef-
ficient

- 2 g -
w=(1-r7) ... (1-rp) (3.3-4)

as a measure of independence of z, and z,. Gelfand and Yaglom

(Ref. 17) extend the definition of mutual information to vectors
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of infinitely many random variables, e.g., random processes in
both continuous time and discrete time. This development also
provides the basis for extending canonical variates to random

processes (Ref. 18).

Now, if a restricted number k of linear combinations
(al,....ak) of one random process u(t) are used to predict
another random process v(t), then the choice maximizing the
mutual information is the first k canonical variates and the
mutual information is expressed by the first k canonical cor-

relations

N —

max J(al,...ak;y(t)) = - log 2; (1 - r)
al,...,ak j=1
(3.3-5)
Thus the canonical correlation method provides an optimal pro-
cedure in terms of mutual information for choosing a finite
state representation of one random process for prediction of

another.

3.3.2 Canonical Prediction Criterion

A more general criterion of prediction error is the

expected weighted square prediction error

h(g2 - 22) = E(§2 - 22) 8 (= (3.3-6)
where 6 is an arbitrary positive definite symmetric weighting
matrix, 22 is the minimum variance estimate of Z based upon
the k selected linear combinations of z;, and E is expectation.
The optimal choice of k linear combinations of 2, that mini-
mizes h corresponds to the first k canonical variates for a

canonical correlation analysis with the "correlation"” structure

3-9
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z 2 2
E (‘1)<g¥ zy) = ( 1 12) (3.3-7)
2y 221 ®
although this is not, in general, a covariance matrix. That

is, the true covariance 222 of zy is replaced by the weighting

matrix 6. The minimum prediction error is simply expressed by

+...+r2

1 2 ‘ .
1 k) (5.3-8)

min h(z, - 22) = tr 8 259 = (r

in terms of the canonical predictors r, which play the same

role as the canonical correlations.

i Thus is can be seen that when 6 is set equal to 222,
j

i the canonical correlation problem can be viewed as weighting
the squared error by the inverse covariance so that the per-
cent error or error relative to the variance of each variable,
is the criterion considered. The criterion given by Eq. 3.3-7
is more general than that usually considered in the canonical
variate method and permits arbitrary quadratic weighting of

the prediction errors.

Such weighting is particularly useful in reduced-order
state-space modeling of unit hydrographs and permits weighting
the more important variables to be estimated. In particular,
it is found that the criterion of the expected sum squared
prediction error

- - ~ T
hiz, - 25) = E(zp - 2))

of the predicted future 22 gives markedly improved state-space
model approximations to some unit hydrographs. This corre-

sponds to setting 6 equal to 1, the identity matrix.

3-10
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3.4 OPTIMAL REDUCED-ORDER MODELING

The canonical variates and correlations analysis is
used in this section to derive optimal reduced-order filters.
In the reduced-order filter problem, a process u(t) and a re-
lated process v(t) are given, and predictions of v(t) based
upon past observations u(t), u{(t-1),... using a reduced-order
filter are required. As in the canonical variate analyis in
Section 3.2, let z;(t) be the past of u(t) and gz(t) be the
future of v(t) (e.g., Eq. 3.2-1).

3.4.1 State Vector Determination

For a given order k for a reduced-order filter, find-
ing a best k-element state is equivalent to finding the k linear
combinations of the past g? = (uT(O),uT(—l),...) which have
the best ability to predict the future zy = (v1(1),v1(2),...).

I1f the best predictive ability means to minimize percent error

in predicting all components of 2y, then this problem is pre-
cisely the canonical variates and correlations problem of Section
3.3.1. Or more generally we can use the canonical prediction
criterion of Section 3.3.2. To solve this problem, nonsingular

transformations of the past z; and future z, are determined

a=Jz;, b =Lz, (3.4-1)
such that in this new basis the past a and future b have a ca-

nonical structure as in (3.2-3).

Once the canonical variate problem is solved, an op-
timal reduced-order filter of order k can be determined for
each k<2 with the minimal-order realization given for k=g2. If
k linear combinations of the past z, are to be used to predict

the future Zys then the optimal choice is the first k canonical

3-11




THE ANALYTIC SCIENCES CORPORATION

variates. These k linear combinations specify the optimal
state vector of the kth-order filter. Specifically, the state

vector is

x(t) = Jpz,(t) where J, = (1,,0)J (3.4-2)

k k’

with Ik the kxk identity matrix.

3.4.2 State-Space Realization

The remainder of the problem is to obtain a state-
space realization of the optimal reduced-order filter. In
particular, expressions for the calculation of the state-space
matrices in terms of the canonical variate analysis are needed.

The desired state-space form of the filter is

x(t) = ox(t-1) + Gu(t) (3.4-3)

{1

Y(t) = Hx(t-1) (3.4-4)

with the output ¥(t) the optimal reduced-order filter estimate
of v(t). The output v(t) is related to the state x(t-1) at
time t-1 to insure a lag between the input and output, i.e.,
so that an input does not produce an instantaneous output.
This is a conventional discrete time system description - sce

Section 3.4.4 for the modification involved when the input

u(t) is a continuous accumulation of channel inflow over the

time interval (t-1,t). By calculating the covariance of x(t)
with x(t-1) and u(t) using Eq. 3.4-3, the matrix ¢ and G must
satisfy
A - . . . LA
(XX, ) ¢ Z(Qt_l.ét_l) + G2(u X, ) (3.4-95)
Z(§t‘ut) = ¢ Z(§t_l.ut) + G Z(ut,ut) (3.4-6)
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where 2( , ) denotes the covariance matrix between two vectors

and the shorthand x 2 x(t) is used.

[ Figure 3.4-1 Partial Innovations Representation of
P

|

|

! t

These equations are easily solved for ¢ and G explicit-
ly in terms of the various covariance matrices. The filter
(3.4-3) and (3.4-4) can be put into feedback form

x(t) = A x(t-1) + K(u(t) - C x(t-1)) (3.4-7)
where the matrices A, K, and C are

1

A = A(_)_\t .“‘St‘]) Z (-‘_(l_]o-\.'t_]) (.3.14'8)
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1

=
1l

12(-5[;”() - z(§t9§t_l) 3 (-Et_lo_)it_l) Z(§t‘1’ut)]

] -1, . . -1
[2Cui,up ) - 2Cuiaxg ) 3 (8 _ysXp) 2(x _qhu) ]

(3.4-9)

- . -1
C=2(u.,x, _4)2

(Et-1’5t-l) (3.4-10)
The state-space form (3.4-3) through (3.4-4) has matrices ¢
and G given by

¢ = A - KC, G =K (3.4-11)

These matrices have a simple interpretation as regression coef-
ficients. The matrix A is the regression of x(t) on x(t-1),
i.e., the best prediction of x(t) given x(t-1). The term C
x(t-1) is the best prediction of u(t) based upon x(t-1). The
feedback gain matrix K is the regression of the conditional
random variables x(t) given x(t-1) on the conditional random
variable u(t) given x(t-1). This gives the best prediction

of x(t) based upon u(t), having already accounted for the de-

pendence upon x(t-1). The quantity u(t) - ¢ x(t-1) can be
called the partial innovations of the process u(t) with re-
spect to the past of the process x(t-1) (i.e., the new infor-
mation in u(t) uncorrelated with the past reduced-order states
x(t-1), x(t-2),...). The remaining quantity to be specificd
is the prediction gain matrix

- . -1

(X¢_p19Xe-1) (3.4-12)
for predicting v(t) based upon x(t-1). The partial innovations
realization of the optimal reduced-order filter is illustrated
in Fig. 3.4-1 and has the same structure as the Kalman filter
in terms of optimal extrapolation, prediction of the measure-
ment, calculation of the partial innovation and update (Ret.

19). The matrices can be explicitly computed using Eq. 3.4-2,

3-14
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the covariance structure between El([) and §2(t)’ and the ca-

nonical form, Eq. 3.2-3.

3.4.3 Multirate Unit Hydrographs

There are a number of situations in which the channel
inflow is the result of accumulations of water over a time
interval greater than the time between discharge measurements.
For example accumulated channel inflow may be calculated every
12 hours corresponding to the precipitation measurements and
channel outflow is measured every 6 hours. To accommodate
this situation, a multirate state space model is needed which
has inputs every 12 hours and outputs every 6 hours. By prop-
erly setting up the unit hydrograph as a single input multi-
output unit hydrograph, the above algorithms apply exactly as

they are.

We make the following conventions. Let u(t) be the
input channel inflow, t=1,2,..., with the input sample rate
normalized to 1 time unit. Let v(t), t an integer, be the
vector of output channel outflow occurring at times [s-1] < s
< [s] where [s] denotes the least integer greater than or cqual
to s. Figure 3.4-2 gives an illustration of the input, the
output grouping and labeling, the unit hyvdrograph and the pulse

input used in its definition.
If At is the output sample rate then

output (t-1 + at)
v(t) = : (3.4-13)

output (t-1 + rat)

where r = 1/at. The vector unit response function g(rv),

r=1,....9, is defined in terms of the unit hydrograph h(t) by

3-15
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INPUT | { R-59560
LABEL 1,(¢.9) ult) ule1)
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—P- TIME ¢t

a1 22) gla)

Figure 3.4-2 Multirate Unit Hydrograph

h{(t-1 + At)
g(1) = : (3.4-14)

h(t-1 + rat)

Once the conventions of v(t) as a vector output and
g(t) as a vector unit hydrograph are made, the canonical vari-
ate analysis and reduced order state space models are derived
as in Section 3.4.2. Note that the state space model operates
at the input sample rate so that the state vector only changes
when there is a new input.

The transfer function is a useful tool in studying a

multirate discrete time system. It can be used to describe

the response of the system to a sampled sine wave at the input.

In Section 3.5.2, an example will show that situations arise
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where the response to a sampled si..e wave input at a given

frequency may include a substantial sampled sine wave compon-
ent at much higher frequency than the input. While this is a
difficulty in the present forecasting system due to multirate
unit hydrographs, it is completely avoided when using the con-

tinuous catchment model as in Section 2.

Consider the multirate system where u(t), t =
ce.=2r,r,o,r,..., up = u(kr) is the input and v(t), t =
-2,-1,0,1,2,... is the output with r an integer. Let k and ¢
be integers so that the output at time t = (k-1)r+g, 0 < 2 < r,
is related to the input by the finite unit hydrograph function
g, (1) as

q
v{kr+2-r) = 2& gy (1) u(kr-1r) (3.4-15)
‘[':

To find the transfer function, we compute the Fourier

transform V(w) of v(t) for -n < w < n

oo . r o . k +9 )
Vw) = X w(e) e = B v(kreeer) e iw(kr+e-r
t=-o 2=1 k=-»
r . [«3 q ) )
- -iw(g-r) - iwrk
i zzz:l ) k}_:.w Tzz:l By (1) Moy €
o~ _iw(r-2) 1
= 2 e G, (wr) + Ulwr) (3.4-16)
2=1

where GQ(A) and U(A) are the Fourier transforms of gQ(k) and

uy respectively.
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The transform U(A), - n < A < n, of the input process
up = u(kr) is periodic with period 2n and in (3.4-16) repeats
up to frequency A = inr. This is the Fourier extension or
Nyquist interpolation of the input to a higher sample rate.

The transfer function
r o (r-2)
Gw) = Y e G, (wr) (3.4-17)
£2=1

is then applied to this interpolated input function to obtain
the output function. 1f the input is a sine wave U = sin(Ak+¢)

for 0 < A < n, then the output time function is

vit) = ¥ ‘G(w){ DsinCuwt + arg Gw) + 0 ) (3.4-18)
we

where Q is the periodic repetition of A in terms of the output
sample rate

, ]w] < m, minteger} (3.4-19)

3.4.4 Continuous Accumulation of Channel Inflow

There is a minor inconsistency between the usual way
of specifyving a discrete time and a continuous time system in
terms of the unit pulse response and that of implementing a
continuous/discrete time filter. This requires a minor modi-

fication of the reduced order filter given by Eqs. 3.4-3 and
3.4-4,

Figure 3.4-3(a) shows a constant pulse input and the
resulting continuous unit pulse response in (b). A discrete

response is shown in (d) which is conceptually considered as
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R-59559

(a) CONTINUOUS PULSE INPUT

—

(b) CONTINUOUS PULSE RESPONSE

A
(c) DISCRETE PULSE INPUT
o
®
[ J
®

[ ® o
T —, T ' v l’ L —*7 4“ ?

(d) DISCRETE PULSE RESPONSE

Figure 3.4-3 Relationship Between Continuous and Discrete

Time Unit Pulse Response

the response to an input (c) at time t = 0, i.e., the pulse
has been accumulated and applied at the time corresponding to
the pulse beginning. The discrete time system is constrained
so that there is no instantaneous output and hence no effect

occurs until the end of the pilse.
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The inconsistency occurs when a usual continuous/dis-
crete time filter is implemented as in Chapter 2. It is natural
in such recursive schemes to associate the end time of the
pulse with the accumulated channel inflow rather than the start
time of the pulse. If this convention is adopted then the
state space representation (Egqs. 3.4-3 and 3.4-4) is modified
to

x(t) = ¢ x(t-1) + Gu(t) (3.4-20)
v(t) = Hx(t) (3.4-21)

where the quantity Hx(t-1) of Eq. 3.4~4 has been shifted one
time step. This applies to both the cases of single output
and multirate output unit hydrographs. Note the convention
that time is normalized so that the time between inputs is

unity.

Associating the input time with the end time of the
pulse also introduces a phase shift in the transfer function
(3.4-17) of eiwr' Consequently the transfer function is modi-
fied from (3.4-17) to

r .
Gw) = ¥ e ™ G, ur) (3.4-22)
£=1

3.5 RESULTS

The reduced-order state-space modeling described above
has been applied to unit hydrographs for a number of basins
supplied by NWS. The character of the reduced-order models is
illustrated in Section 3.5.1 and described in more detail in
Refs. 2 and 4. The problem of spurious high frequency behavior

inherent in some multirate unit hydrographs is discussed in

Section 3.5.2.

3-20
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3.5.1 Reduced-Order State~-Space Models

The differences in reduced-order models obtained from
the canonical correlation and canonical prediction criteria
depend very strongly upon the spectral shape of the hydrograph
transfer function. A striking comparison in fit using the two
criteria was obtained for the Bird Creek basin. The six-hour
unit hydrographs based upon the input hydrographs and the ca-
nonical correlation procedure are shown in Figs. 3.5-1 and
3.5-2 for 4- and 8-state models respectively. The respectively
squared magnitude transfer functions are shown in Figs. 3.5-3
and 3.5-4. Fits obtained using the canonical prediction proce-
dure are illustrated by the unit hydrographs in Figs. 3.5-5
and 3.5-6 and by the squared magnitude transfer functions in
Figs. 3.5-7 and 3.5-8. Note that even the 8-state unit hydro-
graph from the canonical correlation procedure has a signifi-
cant nonzero tail whereas the 4-state unit hydrograph from the
canonical prediction procedure produces an excellent fit.
Figures 3.5-3 and 3.5~4 clearly illustrate the tendency of the
canonical correlation procedure to fit all frequencies with
nearly equal percent error, whereas from Figs. 3.5-7 and 3.5-8
it is seen that in the canonical prediction procedure frequency
bands of highest energy are emphasized. Thus for a hvdrograph
with a large spectral peak and couplicated spectral shape,
i.e., requiring a high order rational function for a good ap-
proximation, the canonical prediction criterion can be expected

to excel.

3.5.2 Multirate Unit Hydrographs

The reduced-order modeling of multirate unit hvdrao-
graphs produces results very similar to those described in

Section 3.5.1 for unit hydrographs with the same input and

output rates. The major diftferences encountered for multirate
3-21
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Figure 3.5-1

Figure 3.5-2
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unit hydrographs is inherent in their multirate nature and
involves the production of components at the output which are

of substantially higher frequency than the input.

For example, consider the unit hydrograph with input
every 6 hrs and output every 3 hrs shown in Fig. 3.5-9 with
transfer function shown in Fig. 3.5-10. As expressed in Eq.
3.4-18, an excitation by a sampled sine wave at frequency f
cyc/day for 0 < f < 2 produces at the output the sum of two
sine waves

A1 sin(2nf + ¢1) + A2 sin(2n(4-f) + ¢2)
where A% and A% come from Fig. 3.5-10 at frequencies fl and
4-f1 cyc/day respectively. 1If a 0.5 cyc/day diurnal component
is exciting the unit hydrograph, then the output is the sum ot
a 0.5 cyc/day and a 3.5 cyc/day with amplitude about one-c¢ighth
the 0.5 cyc/day component. The input and output are illustrated

in Figs. 3.5-11 and 3.5-12 where the boxes denote the sampling
times.

The problem of spurious high frequency components in
the output of some multirate unit hydrographs occurs in the
present NOAA/NWS forecast system because the catchment model
operates at the same rate as the precipitation weasurement.
This difficulty is completely avoided by implementing the con-
tinuous catchment model as discussed in Section 2 so that a
channel inflow is produced at the same rate as the channel

discharge.
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4. PARAMETER 1DENTIFICATION FOR CATCHMENT MODELING

The NWS has developed a general conceptual hydrologic
model for catchment modeling including a soil moisture ac-
counting program. In Section 2, a continuous time dynamical
model of catchment dynamics was derived and discussed in de-
tail. To "tune" this model for specific catchmunt systems, it
is necessary to identify parameters within the structure of
the NWS model (Ref. 8). 1In the calibration of the NWS catch-
ment model, problems of convergence have been encouniered.
These difficulties are typical of problems arising in similar
applications of parameter estimation in many dynamic systems.

The objective of this task is to perform an initial analysis

of the potential application of maximum likelihood methods to

the catchment model parameter estimation problem.

While other methods are useful in particular situa-
tions such as recursive online processing or preliminary anal-

ysis, the most powerful and robust technique developed to date

is the maximum likelihood (ML) method. Important advantages

of the maximum likelihood method not generally available in

other procedures include:

o Parameter estimates are unbiased and of
minimum variance for large samples

o Tests of hypotheses about model struc-
ture or order based upon ML estimates
are optimum for large samples

o Distributions of the estimation error
and test statistics are readily computed
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® Computation of the ML estimates is an
optimization problem with many different
ways available to take advantage of sparse
model structures.

The major computational problem is to obtain maximum
likelihood estimates of the model parameters using numerical
optimization. The early development of system identification
techniques was plagued by ill-conditioned optimization prob- .
lems caused by "nonidentifiable"” parameters. Models often
include parameters which have little or no effect upon the
measurements. Although the statistical problem of estimating
such parameters is still well defined and meaningful, severe
numerical problems can arise in the optimization procedure.
As discussed below, these problems can be largely avoided by
inspecting the Fisher information matrix which defines the
parameters or combinations of parameters that are not identi-
fiable. The optimization is then constrained to those param-

eters which are identifiable.

In Section 4.1.1, a general description of the dy-
namical model of a river basin for the purpose of parameter
identification is given. A more detailed description is given
in Section 2 and previous progress reports (Refs. 2, 4, 5).
Section 4.1.2 is devoted to evaluation of the likelihood func-
tion using a Kalman filter and to related computations used in
optimization. A detailed description of the Kalman filter for
the hydrologic model was given in Chapter 2 of this report.

The parameter sensitivities of the state estimate and its error
covariance which are required in the optimization are detailed
in Section 4.1.3. In Section 4.2, optimization considerations
are discussed including a new identifiability theory which
avoids ill-conditioning due to nonidentifiability of parameters.
Details of a quadratic optimization algorithm and statistical
convergence c¢riterion are described. Finally reparameteriza-

tions which will accelerate convergence are considered. In

4-2
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Section 4.3, results from determining parameter identifiability
and demonstrating the algorithms on simulated precipitation and

channel discharge data are presented.

4.1 LIKELIHOOD FUNCTION FOR DYNAMICAL MODELS

To apply the maximum likelihood method to estimate
the parameters of a dynamical hydrological model from observa-
tion data requires a procedure for evaluation of the likelihood
function for such models. First, the form of the parametric
dynamical model is described, and then computational procedures
for evaluation of the likelihood function and related quanti-

ties needed in the optimization procedure are discussed.

4.1.1 Dynamical Parametric Models

The dynamical model of a basin described in Chapter 2
can be regarded as parametric in the parameters 6§ as listed in
Table 2.2-1. This model is described by the dynamic relation-
ships

x(t) = f(x

g
k=
kS

6, t) (4.1-1)

with initial condition §(to) = X, at time lo where X(U) is the
state vector, u(t) is a known deterministic input, w(t) is

white noise with covariance matrix Q(t) and t is time. The

initial condition X  can be considered as a fixed but unknown
constant and included in the vector of parameters to be esti-

mated. The measurement model is of the form

z(t,) = h(s, u, v, 8, t) (4.1-2)
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where v(t) is white measurement noise with covariance matrix
R(t). The noise covariance matrices Q(t,8) and R(t,8) can
also be considered as functions of unknown parameters to be

estimated.

These equations and the correlation structure of the
system noise terms imply a correiation structure among the ob-
servations gT = (§$,....g£). To determine maximum likelihood
estimates of the parameters 6 given the observations z requires

a procedure for evaluating and maximizing the likelihood function.

4.1.2 Likelihood Function Calculations

The optimization method outlined in section 4.2 re-
quires, for a specified value of the parameters 6, calculation
of the

° Log likelihood function In p(z,8)
° Gradients 91ln p(g,g)/aei, i=l.... .k
° Fisher information matrix with elements
-E[82 In p(;,g)/aeiaej] , 1oj.=1o0 0k
where p(z,0) is the probability density of the medasurcments z.
These computations are performed by the modular and
general PARAIDETM (parameter identification) computer software

for maximum likelihood parameter identification. The calcula-
tions are structured as follows and described in more detail

in following sections:

° Linearize the differential and measure-
ment equations (4.1-1) and 4.1-2) u-ing

PARAIDE is a trademark of The Analytic Sciences Corporation.
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symbolic differentiation to obtain the
state space matrices F, G, H specifying
the linear state space equations about
each filtered state estimate 31/1'

; ° Implement a Kalman filter using the line-
arized state equation model to propagate
the state estimate and its error covari-
ance matrix P. ,..

i/1

) Calculate the innovations sequence from
the Kalman filter and the resulting error
covariance matrices. Evaluate the log
likelihood function.

° Calculate the sensitivity functions
9F/26, 9G/36, dH/368, 9Q/36, dR/36 by
further symbolic differentiation of the
differential and measurement equations
(4.1-1) and (4.1-2).

—_——

Implement a Kalman~type algorithm to
propagate 8§i/i/36j and 3Pi/i{iej for
each ej and to evaluate the j gradi-
i ent component of the log likelihood
function 31n p(;,g)/aej.

® Evaluate the Fisher information matrix
using the gradient calculations.

A method is described for evaluating the joint like-
lihood function p(z.,8) of the observations gT = (g{.....gg)
for the model described in Eqs. 4.1-1 and 4.1-2 with a parti-
cular assumed value 8 for the parameters. The approach is to
take advantage of the independence properties of the innova-

tions of a Kalman filter.

Consider a value of 6 for which evaluation of the
likelihood function is desired. 1If the observations z were
produced by the model Egqs. 4.1-1 and 4.1-2 with true param-
eters equal to 6 _, then the Kalman filter based upon this

: model would produce an innovations sequence ViseeooVy with

4-5
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Vi T2yt MRy 50 (4.1-3)
such that Vi is independent of Y for i # j with the covariance

of v,
-i

By = HP, ; jHI + R, (4.1-4)
For a linear model the innovations have a Gaussian distribu-
tion, and for mild nonlinearities the model is approximately
Gaussian. In any case, the quadratic term in Eq. 4.1-5 gives
a weighted squared measure of the innovations vi- Assuming a
Gaussian distribution for the innovations leads to the expres-

sion for the logarithm of the probability density

1 T o-1
In p(z,8 ) = - 3 2: (ln B, + v, B, v.) + constant

- 1 -1
i=1 (4.1-5)

where the constant depends only on N and not z or 8 . This
expression was arrived at by taking 8 to be the true value 6
of the process generating the actual observations z. However,
this is not significant since a formula for evaluating the
probability density p(z,8 ) as a function of both z and ¢
must yield the correct result for any possible z whether or
not it in fact came from a model with 6, the true parameter

value.

To maximize the likelihood function, gradients of the
log likelihood function are needed. This is obtained by dif-
ferentiating the log likelihood function with respect to each

component ej of 8

4-6
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9 1n p(z,08) N 9B, 9B,
2.8 -1 9% T -1 9P -1
56 . 5 2 ltr(B;" 557) - v; Bi" 55— BT v,
J i=1 J J
oV,
+ 2 vi B 52 (4.1-6)
J

The sensitivities 881./86j and axi/aej are expressed for a given
/1./86j and d§1./l./86j of

the state estimation error covariance and state estimate by

Gj in terms of the sensitivities aPi

differentiating Eq. 4.1-3 and 4.1-4., This gives

oV oH,; %4 /i-1
a6, = " 8. Yisi-1 C M Tae (4.1-7)
J J J
aB.  OH P, oM ok
1 - _1p T + g, =0 uT Loyop S R
56, - 0. Lisi-1 i Y Py oty My MR 0 st s
J J J J J
(4.1-8)

The sensitivities of the state estimate and its covariance
matrix needed in the above equations are obtained in Section
4.1.3 by straightforward but lengthy differentiation of all the
Kalman filter equations with respect to 6, This results in a
set of equations similar in form to the Kalman filter (and in
order of computation) except that instead of propagating the

state estimate Si/i and its covariance matrix P, the sensi-

i/1°
tivities a§i/i/aej and api/i/aej are propagated.

Finally, an approximation to the Fisher information
matrix is obtained from the gradient calculations. The (i.j)

element of the Fisher information is approximated as (Ref. 20)
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E

ij 56 50
)> Bvy .1 2w -1 9B -1 9By
:(k 56, Pk 38, T2 "By 5 By 5w.)
1 J 1 J
3B aB
1 1 9%k -1 2%k
+ A tr(Bk ﬁ:) tr(Bk a—J)) (4.1-9)

4.1.3 Propagation of State and Covariance Sensitivities

Propagation of sensitivities of the state estimate
d9X. ,./80 i i i X . . i -
51/1/ j and its error covariance matrix apl/l/aeJ with re
spect to a parameter ej are detailed in this section. This
involves straightforward differentiation of the Kalman filter
equations detailed in Section 2. First the state sensitivites

are discussed and then the covariance sensitivities given.

To begin with, we note that the nonlinear differential
equations (2.4.1) are parameter dependent so that we write
EC(EC,g,t) as dependent upon the parameters 8. To avoid pos-
sible confusion in differentiation, all derivatives of F_ with
respect to x . are considered with X, as independent of 6 - the
chain rule is used to take into account subsequent dependence

of X on 6.
—C —

The discrete and continuous state estimates X, and X_
are propagated according to (2.5-3) and (2.4-5) with the term
§¢' deleted. Straightforward differentiation with respect to

ej, noting that A and B are not functions of ej, gives
& + e
AR _(t _+a) : ak (t.) LoD, g ?__b_, 110
96 . an . 96 . - a0 . )
J J J J
4-8
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%4 [ (vK)®] % 4 [(vk)7] a% [ (vk)7]
56 . = A 56 . B —55— (4.1-11)
J J J
where
h = Ec(gc(to)_e_)’ 6; t— ) ([4-1"12)
- oF .
FC = ;X—T (4.1-13)
_—C A
(x.(t ), 8, t )

~-1

and D is the matrix function (exp(FCA) - I)FC Partial deriv-

atives ah/aej are computed by the chain rule

OF, 25, OF,
X, | J J
(%,, 8, t)

Denoting F = FC, the computation of ¢(t.ti_]) and

D(t,t, ;) can be done along with their partial derivatives as

L n
o(at) = 1+ ¥ {FAL) (6.1-15)
n=1 ‘
ol n
_ _ (Fat)
D(at) = 1 + nzz:l (n1)7 Ot (4.1-16)

3 (at) _ f: 1 a(kat)”

1
i n=1 n! BGJ

(4.1-17)

with a(FAr)“/aej computed recursively as

n oo n-1
a(ggt) = At gF (Fac)"" 1 4 pac 2(FAU T 7
J S

(4.1-19)

an .
J
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To accelerate convergence of these series, ¢ and D can be com-

puted using these series for a time increment At 2" and then
¢(At) and D(At) computed recursively by
oot 27%) = [ecar 27K 1))? (4.1-20)
Dat 27%) = F (1 - ecar 27K 1)) (1 + wqar 27K 1))
= pear 27Ky (1 + e(ar 27K Ly) (4.1-21)

and the partial derivatives 3¢ (At z'k)/aej and 3aD(at 2'k)/86j

computed by differentiating these two recursive relations.

Sensitivities of the state estimation error covari-
ance matrix can be conveniently propagated along with the
state sensitivities. The partials of the state covariance
matrices aPC/aej, an/aej, 3PCd/aej are obtained by differ-
entiating items 9 and 12 of the Filtering Algorithm in Section
2.5 as

T
_c ai T _ ¢ T (___S) .
88 * (39j) Pbe * % (ae.) Pt 4P 5 +9Q (4.1-22)
oP o¢ ap
cd c cd '
aej 56, Fea ¥ % aej (4.1-23)

for time transition (v(k+1)) ™ to (v(k+1))° and

ap ap T
d _ oA T d),T dA 3 T
. ( )PdA + A( )A + APd(aej) + 55~ (BP_,A")

28, 30 . 30,
J J J J
3 T.T d T S
+ 56} (BP_A°) 4 56; (BP _B') (4.1-24)
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Fea e(——aPCd) AT +p (24 T+ e BT +p (2B ! (4.1-25)
36j 36j cd Bej 36j c aej )

for time transition (v(k+1)) to (v(k+1))o.

The remaining relations concern the Kalman update.

The Kalman gain sensitivity is

T T
ok _fop v, pan® o ocvam v, e 1 oren T ek
36, - [ae. R* + P gg- - (HPH" + R) © 5~ PH + H 5 H + ”P(ae.)+ ae.}
J ] J J J R} J
pHt + )L (4.1-26)

Sensitivities of the updated state estimate and its error co-
variance matrix are given by differentiating items 17 and 18
of the Filtering Algorithm in Section 2.5:

56, “ 38, T 6. Yt Kspo (4.1-27)
J J J J

P op 9K 9H 3P

56 < 6. ~ e, Nf - Kgg— P - KH &5 (4.1-28)
J J J J 3

4.2 OPTIMIZATION

One of the greatest challenges in parameter identi-
fication has been the solution of numerically ii!-conditioned
or even ill-posed maximization problems. This is a problem
receiving considerable attention in least-squares methods and
much less attention in the maximum likelihood case. The de-
sign of general purpose algorithms which work reliably and
efficiently is necessary for the general application of maxi-

mum likelihood theory. This is particularly relevant for the
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identification of catchment parameters where the differential
equations are time varying and involve saturation effects with
structural changes in the equations at overflow of various
reservoirs. Because of these complications, a general and

reliable procedure is required.

Described below is an approach based upon a new small
sample theory of identifiability which is usable even when
5 some functions of the parameters are nonidentifiable, i.e.,
when perturbations of some combinations of the parameters 6
| produce no change in the likelihood function. In this approach,
1 the nonidentifiable parameters are first determined by inspect-
ing the Fisher information matrix. Then a Levenburg-Marquardt
optimization procedure is used in the subspace of parameter
space that is orthogonal to the nonidentifiable parameters to

compute an identifiable set of parameters.

4.2.1 ldentifiability Theory

The introduction of parametric statistical inference
concepts and methods by R.A. Fisher (Ref. 21) was one of his
major contributions to statistics. Unfortunately, a major
difficulty in identifiability problems has been an overemphasis
by many researchers on inference about a paramcter vector o
rather than inference about the class F = {p(z.,0)} of probabil-
ity densities indexed by the parameter 8. Most definitions of
identifiability concern properties of the resulting parameter
estimates rather than intrinsic properties of the c¢lass F in-
dexed by the parameter 6. Indeed, some definitions require a
hypothetical infinite sample and define identifiability in terms
of asymptotic convergence of the estimates to the true parameter

values.

This overemphasis on the parameter values rather than

the class of probability densities indexed by the parameters
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has developed despite the early and fundamental contribution

of Ref. 22. This paper explicitly defines identifiability of
the class F if unique parameter values produce unique probabili-
ty densities. This formulation of the problem of specifying
probability models for statistical inference includes the iden-
tifiability problem - i.e., whether or not the specified models
are "observationally" unique. Later developments in the litera-
ture seem to have largely overlooked this basic concept except

for a few econometric papers (see Ref. 23 and cited references).

In the approach selected for this study, the properties
of the parameterized class {p(z,8), 6 ¢ 0} are the central
issue. The above definition of identifiability (Ref. 22) as

formulated for the parametric case by Ref. 23 is adopted:

Two parameter points 8, and 92 are said to be observa-

tionally equivalent if p(z,8,) = p(z,8,) with probabil-
ity 1. A parameter point 91 is said to be globally
identifiable if there is no other 8 ¢ 0 which is ob-

servationally equivalent. A parameter point 64 1s

said to be locally identifiable if there exists an

open neighborhood of 91 containing no other 6 in 0

which is observationally equivalent.

This approach exploits the equivalence between local
identifiability and full rank of the Fisher information matrix
as in Ref. 23. To extend this connection much more generally,
a powerful new result on existence of identifiable reparameter-

izations is used (Ref. 24).

Reparameterization Theorem - [f the Fisher information

matrix F9 of a parameterization & of the likelihood function
has constant rank h in a neighborhood of a point 6 of parame-

ter space, then there exists a reparameterization g(0) such
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that (wl,...,wh) is locally identifiable and the likelihood
function is not a function of (wh+1,...,¢h). Furthermore the

gradient vectors
T .
(awj/ael,...,awj/aek) for j = h+1,....,k

span the null space of Fe.

By using reparameterizations resulting in a nonsingu-
lar Fisher information matrix, a complete characterization of
local identifiability by the Fisher information is possible in
the singular case. Previous results have carefully avoided
reparameterizations where existence is not trivially guaran-
teed by constraints, etc. Such a reparameterization seems to

be necessary to obtain these general results.

Another aspect of the identifiability approach is to
exploit the special structure involving the Fisher information
matrix to devise efficient and numerically well conditioned
methods for maximizing the likelihood function. Using the
general results on reparameterizations, it is possible to gen-
eralize and to make precise a procedure for using generalized
inverses in the method of scoring when the Fisher information
matrix is singular (Ref. 25). Specifically how the reparamc-
terization result is useful in studying the special structure
of the maximum likelihood optimization problem is discussed in

detail in the following section.

4,2.2 Maximization of likelihood Functions

Lack of uniqueness, i.e, nonidentifiability, manifests
itself as ill-conditioning in computation of least squares or
maximum likelihood estimates. Even when the parameters are

identifiable, ill-conditioning often arises because of the
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considerable difference in sensitivity of the likelihood or
squared error functions to changes in different parameters.
Some past work used the special structure of least squares
problems to devise efficient optimization methods which recog-
nize any nonuniqueness or illconditioning and solve for the
parameters within the equivalence due to the nonuniqueness
(Refs. 26, 27). Very little progress along these lines has
been made in the maximum likelihood problem although a very
general method has been proposed (Ref. 25). The maximum like-
lihood method provides practical parameter estimation and test
of hypothesis procedures for many complex random processes,
and also provides the needed approximate distribution theory
which is not generally available with alternative procedures.
Most maximum likelihood methods require that the class of mod-
els be reparameterized uniquely so all parameters are identifi-
able. There are no conditions given for when such a reparame-

terization is possible. To answer questions of existence and

to actually reparameterize involves solving a syvstem of nonlinear

partial differential equations.

The method proposed in Ref. 25 presumes that there
exists a reparameterization for which the Fisher information
matrix is nonsingular and evidently equates such nonsingularity
to identifiability although any rigorous discussion or even
definition of identifiability in the nonlinear case is lacking.
It is argued that the method of scoring (using the Fisher infor-
mation matrix in place of the Hessian in a Newton type algorithm)
can be implemented entirely in the original nonidentifiable
parameterization using the pseudoinverse of the Fisher infor-
mation matrix to restrict the maximization to a locally identi-
fiable subspace of parameter space. This would avoid anv need
to reparameterize in terms of an identifiable set of parameters.
Presently the only alternative method to preclude identifiability

difficulties is to actually carry out such a repdrameterizdation
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which is often exceedingly difficult if at all feasible cowmputa-
tionally. Because of the complexity of the catchment model
discussed above, determining such a reparameterization almost

certainly would not be feasible.

One of the objectives of the present approach is to
use the special structure of the maximum likelihood estimation
problem to devise efficient, numerically accurate and stable
maximization methods. In particular the method of Ref. 25 can
be shown to work very generally utilizing the new result de-
scribed in Section 4.2.1 which guarantees the local existence
of an identifiable reparameterization whenever the Fisher in-
formation matrix has constant rank locally. This also general-
izes the equivalence of identifiability and full rank of the
Fisher information matrix (Ref. 23) to the reduced r -k case

(the null space is the local equivalence class).

The method of scoring is not only attractive in re-
moving identifiability problems, but it has several other at-
tractive computational features. In a number of problems the
Fisher information can be computed from the gradient computa-
tions with little additional work. Thus Hessian information
is obtained from the gradients without additional computation.
1t has been found in practice that this Hessian approximation
gives excellent approximation to the eigenvectors which domi-
nate the numerical behavior of approximate Hessian methods.
This suggests further special structure of the problem since
Hessian approximations in illconditioned cases usuallyv result
in poor algorithm performance unless there is some special

structure,

4.2.3 Quadratic Algorithm for lder ifiable Parameters

The above theory provides a basis tor an efficient

and well behaved algorithm even though there mav be nonidenti-
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fiable parameters present. The first step is to perform an
eigenvalue-eigenvector decomposition of the Fisher information

matrix F in the form

F=UAh UT (4.2-1)
where the columns of U are orthogonal vectors so UTU = I and

where A is diagonal with elements arranged in descending order
Ap 2 e 2A 2 0. The algorithm should automatically check
that F is positive definite to detect numerical difficulties
that might have occured in computing F. To determine identi-
fiability, a threshold ¢, say 10-12 for double precision with
15 decimal places, is set and any eigenvalues Ai < eAl are
modified as
‘A. if Ai > CA]

Ai mod ' .

[0 if A, < er,
The eigenvectors corresponding to the modified eigenvalues set
to zero specify the locally nonidentifiable linear combinations
EIQ of the parameters. The optimization is constrained to the
subspace of linear combinations of parameters that are ortho-
gonal to these nonidentifiable combinations, i.e., constrained
to the subspace of parameter space spanned by the eigenvectors

Up--oaly corresponding to the unmodified eigenvalues.

A quadratic algorithm is one which uses local quadrat-
ic information about the log likelihood function, i.e., the
gradient (first partial derivatives) and the Hessian (second
partial derivatives). The identifiability theory guarantees
that the null space of the Hessian will exactly coincide with
that of the Fisher information matrix so that perturbations of
linear combinations in the null space of the Fisher information

matrix will have no effect upon the likelihood function. Since
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the log likelihood function is in general only locally quadratic,
some procedure is needed to constrain the step A8 in parameter
space to a region in which this quadratic approximation 1is

a reasonable one. An excellent procedure is the so-called
Levenburg-Marquardt procedure (Ref. 28) which is discussed in

a statistical setting in Ref. 29 as an optimal step that maxi-
mizes the quadratic approximation subject to a fixed step length.
If, in addition, the optimization is constrained to be orthog-

onal to the nonidentifiable parameters, then the algorithm has

the form
- t i
Af = -(Fmod + AImod) Vinop (4.2-3)
where
V 1ln p = vector of gradients @ In p(;,g)/aei
- T
Food = U Mnod u
- T
Imod =uUQUu
1 if A, > 0
Q is diagonal with w. . =‘ imod
o ode A, =0
imod

A is a step length parameter

t is the pseudoinverse operation
The calculation is implemented using only vector products as

k. u; (Y In p)
20 = - X TR Y (4:2-4)
i=1 i

where V In p is the gradient vector 3 1n p/36.

Trial steps are made with an initial value of A from

initialization of the program or from the last iteration. For
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the trial step 8,41 = 8; * 48, the log likelihood function is
evaluated and the quadratic prediction criterion

predicted log likelihood
actual log likelihood

(4.2-5)

is calculated where the predicted log likelihood ln p is based
upon the quadratic approximation
In p(6.,:) = In p(8.) + 46" ¥ In p + 281 F__ . A8
PiZi+1 Py - - P =  "mod T~
(4.2-6)

The step length parameter A is adjusted by powers of 2 until
.25 < p < .75 (4.2-7)

or until A < Ak/8 in which case A is set equal to zero and a
modified Newton step results.

The above optimization procedure is implemented in
the PARAIDETM computer software. This procedure has been used
on a number of very complex nonlinear parameter identification
problems in the past with very good numerical behavior and
convergence.

4.2.4 Acceleration of Convergence by Reparameterization

The rate of convergence of the quadratic algorithm
depends upon the goodness of the quadratic approximation to
the log likelihood function. This quadratic approximation can
be improved by choice of an appropriate parameterization of
the likelihood function which stabilizes the Fisher information
matrix, that is, which results in a nearly constant matrix
with changes in the parameters (Ref. 30). Such a stabilizing

parameterization also improves the approximate distribution
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theory on the parameter estimates and results in very nearly
normal distributions of the estimates even for quite small
samples (Ref. 31). This is true in spite of the very nonline-
ar nature of the catchment model so that with an appropriate

reparameterization the problem is nearly quadratic.

Stabilizing reparameterizations are obtained from a
given parameterization 6 and its Fisher information matrix F8
by finding a reparameterization ¢(6) of 6 with a gradient A
such that

8¢

-1T 1

F = (vem) (4.2-8)

A Fg(Fg0)

is nearly constant independent of the point ¢ of parameter
space, where V6¢ is the matrix of partial derivatives with
(i,j) element ami/aej. This is in general difficult to do,
but in many cases there are simple reparameterizations which
will yield considerable improvement. Two examples are the
variance parameter 02 and the correlation coefficient p which
are improved by the reparameterizations

2

¢(02) =1lno (4.2-9)

o(p) = % 1n %;% = arc tanh (p) (4.2-10)

In general for a single parameter 6 the stabilizing reparame-

terization is given by integrating Eq. 4.2-8 as

0
0(8) =‘/’ (Fg)1/2 do (4.2-11)
(5]

O

4.2.5 Statistical Convergence Criterion

A convergence criterion is used to decide when the
maximum of the likelihood function has been found with suf-
4-20
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ficient precision. The objective is to make the error 6,-6
between the computed value 8, at iteration k and the true maxi-
mum 6 small relative to the expected error in 6 due to sampling

variability. Thus the convergence measure

-\T ~y-1 N N N PR
(4.2-12)
is used, where the inequality follows from the Cramér-Rao lower
bound (Ref. 32). Since the function is usually nearly quadratic

close to the solution, we have

| >

3] -

6, -8 z6

- t .
kK - 8re1 = - Fp ¥ (n p) (4.2-13)
and using the notation Yk =V k(ln p) yields

~ ol o1 -
6 =v, F v, (4.2-14)
Also the error in computing the value of the function
In p(8) is

tn p(8) - 2n p(8,) = TL(8-8,) * (8-8,)7 H(8-8,)

. ol - - T -

F U Opam8) F (Bpm8y ) HE8 -0
T T )

T U Opa178 ) T (Bt ) A8yt
_ Tt Tty ot oope
= virfy, + vFTurty, (4.2-19)

where H denotes the Hessian matrix. Thus on the average, the

maximum value £n p(8) is underestimated by

Elen p(8) - 2n p(o,)] = 2 v, F' v = 25 (4.2-16)
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The quantity -22n p(é) is basic in tests of hypotheses. It
can be shown that the addition of each unnecessary parameter
to the Todel will decrease the value of the test statistic
-2¢2n p(8) by a chi-square random variable x% on one degree of
freedom SRef. 16). Since Var(x%) = 2, the error in computing
=2 2n p(8) as -2 ¢n p(8,) is 46. Thus for 6 = 102, the error
in computing 2 2n p(®) is small compared with the expected

sampling variation.

4.3 RESULTS

The maximum likelihood parameter estimation methods
are demonstrated on precipitation and discharge measurements
simulated using a NWS supplied catchment model. The parameter
identifiability question is discussed, and then the local be-
havior of the algorithms and nature of the parameter estimates

described.

4.3.1 Parameter Identifiability

The identifiability of catchment model parameters is
illustrated in this section for two contrasting cases of heavy
and moderate rainfall. The rainfall and channel discharge
data was simulated for Bird Creek basin over a one-month period.
The hydrologic structures excited by these rainfall records
are compared in Table 4.3-1. The rainfall records are illus-
trated in Figs. 2.2-4 and 2.6-3 for the moderate and heavy
rainfall cases respectively. The various catchment model
state histories for the heavy rainfall case are illustrated in
Figs. 2.6-4 through 2.6-19,
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TABLE 4.3-1
COMPARISON OF MODERATE AND HEAVY RAINFALL CASES

CASE | MODERATE HEAVY

CATCHMENT RAINFALL RAINFALL

ELEMENT

Maximum upper-zone

tension water content 1 time 6 times
Surface runoff none 3 times
Maximum lower-zone 1 time none
tension water content

Upper-zone free-water very nonzero
content little half of time

The identifiability of parameters for the heavy rain-
fall case is shown in Table 4.3-2. The first two columns show
the catchment model parameters and their true values used in
the simulation of channel discharge data. The approximate
standard deviations and correlations of the parameter estima-
tion errors were calculated from the inverse Fisher information
matrix. When all fifteen parameters are simultaneously esti-
mated, only x? and xg have standard deviations around 1 percent,
while the parameters xz. du‘ dé, dz, p, and a, are less than
about 10 percent, and the remaining parameters have errors of
the order of the parameter values themselves. 1f however all
parameters but one were known or presumed known, then the stan-
dard deviation due to sampling variability in estimating only
that one parameter is reduced as shown in column 4. In sowme
cases the reduction is nearly two orders of magnitude 4and gen-
erally involves high correlations with other paramcters when
estimating all fifteen parameters. These high correlations
indicate near deterministic dependence between the parametoers

involved and implies that corresponding changes in these pardm-

eters have almost no effect upon the predicted observations.
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TABLE 4.3-2

IDENTIFIABILITY OF CATCHMENT PARAMETERS
FOR HEAVY RAINFALL CASF

STANDARD DEVIATION HIGH
CORRELATIONS,
PARAMETER TRUE 15 PARAMETERS | 1 PARAMETER 15 PARAMETERS
VALUE ESTIMATED ESTIMATED ESTIMATED
x? 120 mm 1.08 0.984
xg 15 mm .188 0.019
xg 160 mm 9.8 1.20 .
° 0.87 (x:. xA)
X, 140 mm 57 0.88
[e] (¢}
Xg 14 mm 9.1 0.19 0.88 (xa, Y)
d 1.486 E-2 1/hr 3.9 E-4 5.1 E~5 o
-0.90 (XS’ dz)
dj 5.452 E-4 1/hr 5.8 E-5 5.0 E~6
dj 5.612 E-3 1/hr 1.1 E-3 7.0 E-~5 0.92 (xz. a)
y 48 42 1.4
0.993 (y, o)
a 2.1 1.2 0.022
Py 0.02 0.009 0.0078
u 3.55 0.33 0.043
a 0.17 0.015 0.0046
a, 0.001 0.00094 0.00049
s 0.0 0.88 0.30

In the case of estimating only one parameter with all others
known, the error is less than about 1 percent in all parameters
except Pes a5 and ay. The more difficult to determine param-
eters are associated with the percolation function (2.2-18) in
both cases of estimating one parameter alone or all fifteen

simultaneously,
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The identifiability of parameters for the moderate
rainfall case is shown in Table 4.3-3. 1t is qualitatively
similar to that of the heavy rainfall case except that the
estimation error standard deviations are larger, by orders of
magnitude in some instances, and the high correlations are
more numerous and some very high (greater than 0.99). When
all fifteen parameters are estimated, only x? can be deter-
mined to about 1 percent, xg to about 25 percent, and the rest
! are not identifiable. Much of this difficulty is due to the

inability to differentiate between the effects of perturbations
in different parameters upon the discharge measurement. This
is apparent since individual estimation of a parameter with

; the others known results in an error of less than several per-

‘ cent except for the parameters Pg and a,. Note as before that
the most dramatic reduction in estimation error between the
cases of estimating only one parameter and estimating all fif-
teen simultaneously occurs when very high correlations are

involved.

The conclusions apparent from the identifiability
results for the moderate and heavy rainfall cases above are
that:

® Sufficient rainfall to excite all basin
dynamics is required if parameters are
to be estimated simultancously

° Some of the parameters associated with
the percolation function are not identi-
fiable even if all other parameters were
known exactly.

The identifiability of parameters for a given basin will thus
depend very strongly upon the available records of storms or
high snowmelt. Just increasing the length of the data used
will not significantly improve the identifiability., What is
needed is more data involving the excitation of the basic

dynamics in different ways.
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TABLE 4.3-3
IDENTIFIABILITY OF CATCHMENT PARAMETERS
FOR MODERATE RAINFALL CASE

f STANDARD DEVIATION HIGH
| CORRELATIONS ,
} PARAMETER TRUE 15 PARAMETERS | 1 PARAMETER 15 PARAMETERS
} VALUE ESTIMATED ESTIMATED ESTIMATED
' x? 120 mm 1.4 1.0 o .
0.80 (x,, x,)
‘ o 2 4
X, 15 mm 3.5 0.56 o
: 0.84 (x5, d ) ;
x3 160 mm 3600. 2.6 o o
o -0.87 (x3‘ xa)
x4 140 mm 3200. 2.1 o
o -0.89 (x3, db)
X 14 mm 120. 0.72 o
0.83 (xa, dé)
d 1.486 E-2 1/hr 14.8 E-2 0.077 E-2
u O
-0.85 (x3, M)
d’ 5.452 E-4 1/hr 7.6 E-4 0.06 E-4
2 o
0.84 (x3, a])
dE 5.612 E-3 1/hr 5.7 E-3 0.21 E-3
~0.86 (v, al)
Y 48 2200. 3.1
0.95 (y, u)
o 2.1 56. 0.042
<0.998 (d_, )
| Py 0.02 0.42 0.063 .
| 0.88 (dj, w)
| " 3.55 50. 0.039
| -0.998 (, )
| a1 0.17 7.9 0.007
(0.99494 (a] . d”?
82 0.001 0.0025 - 0.0009 o
-0.98 (x., &)
s 0.0 8.7 0.22 2

4.3.2 Demonstration of Algorithm

The local behavior of the parameter identification
algorithm near the maximum of the likelihood function is de-

scribed. The global behavior from various initial paramcter
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estimates will require more extensive investigation but is
expected to reproduce the generally robust and efficient be-
havior of quadratic hill climbing methods (Ref. 33).

The case considered is the heavy rainfall case dis-
cussed in Section 4.3.]1 and the precipitation record is shown
in Fig. 2.6-3. To reduce the computer time required, only the
first 10 days were used and the three parameters x9, xg. and
du were simultaneously estimated. The computer CPU ti;e on 4an
IBM 370/3031 using a PL/]1 optimizing compiler was about 3 min
per iteration on the parameter values and was approxXimately
the number of parameters estimated (3 in this case) times the
CPU time for a Kalman filter run. There is great potential
for considerably reducing the required CPU time by exploiting
the special problem structure especially in the initial stages
where the parameter estimates are far away from the maximum
likelihood estimates. When the maximum is approached, the log
likelihood is approximately quadratic and convergence acceler-
ates very rapidly as discussed below. Thus few iterations are

needed near the solution.

Table 4.3-4 gives the result of four iterations of
the algorithm starting from the true parameter values. These

starting values are about 1Y%, 15%. and 10Y% respectively from

. . . O o
the maximum likelihood for X7 Xy,

. . o” O
ations show little change for Xy but moderate change for x;

and du' This suggests that the errors in estimating xz and du

and du . The standard devi-

have a probability distribution slightly different from normal.

A reparameterization may hei ; this problem.

The changes in the likelihood function value are due
almost entirely to changes in the quadratic term which is the
sum of normalized innovations. 1f the parameter estimates
were noramlly distributed, then twice the difference of the

log likelihood functions evaluated respectively at the true
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values and maximum likelihood estimated values of the parameters
would be a chi-square random variable on 3 degrees of freedom
(Ref. 32). This difference is 12.45 which is statistically
significant at the 0.01 level, i.e., a departure this large
would occur less than 1 percent of the time under the normal-
ity assumption. This indicates significant non-normality and/
or a nonzero mean due to nonlinearities in the catchment and
rainfall models. Also, the quantity (Q-Q)TF(Q-Q) would be a
chi-square random variable on 3 degrees of freedom if the param-
eter estimates were distributed normally with zero mean. This
quantity is 18.17 and 9.68 respectively for the Fisher informa-
tion matrix evaluated at the true parameter 6 and at the maximum
likelihood estimates 8. This further indicates some departure
from the theoretical distribution of the estimates. These
quantities would be expected to be smaller than about 7.8 ninety-
five percent of the time. Such a departure is easily caused

by a standard deviation being wrong by a factor of 2. The

above discussion indicates that the computed sampling distribu-
tion as indicated by the Fisher information and standard devia-

tions are accurate within a factor of 2.

Further nonlinear effects are apparent in the discharge
and precipitation innovations. The precipitation innovations
in Fig. 4.3-1 show large departures around 4 days. These large
departures are due to the nonlinear, nongaussian precipitation
model whose probability density has heavy tails so that devia-
tions of 5 standard deviations are not too unlikely. This
accounts for the two large peaks in Fig. 4.3-4 which displays
the innovations normalized by their inverse covariance matrix.
Due to nonlinearities in the precipitation and catchment models,
a deterministic filtering error appears in the discharge innova-
tions as shown in Fig. 4.3-2 at the true and estimated parameteor
values., This deterministic function is somewhat obscured by

the innovations noise as shown in Fig. 4.3-3, however in other
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PRECIPITATION INNOVATIONS
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Figure 4.3-2 Deterministic Component of Channel Discharge
Innovations for True (Solid Line) and Esti-
mated (Dashed Line) Parameter Values
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i DISCHARGE INNOVATIONS
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cases it can be expected that, relative to the noise, very
large deterministic components can occur in the discharge in-
novations due to nonlinearities. Except for the peaks due to
these nonlinearities, the normalized innovations look quite
reasonable.

The convergence behavior of the algorithm is indi-
cated by the convergence criterion and confirmed by the
gradients and gradient norm (root mean square of gradients).
The convergence criterion exhibits a characteristic linear
convergence where the convergence criterion 6 is reduced by
approximately the same factor 10-2 on each iteration. Con-
vergence is achieved for practical purposes on the second
iteration (6 < 10-2), but the algorithm was continued to
demonstrate the character of the convergence and precision
of the computations.

The demonstration of the maximum likelihood algorithm
shows the potential for its use in NWS river forecast systewm.
The algorithm behaved efficiently and robustly in the presence
of nonlinear dynamics and nongaussian noise. Reasonable values
for the parameter estimates were obhtained which were close to
the error predicted by the approximate sampling distribution
theory. More extensive testing of the algorithm is required

to determine how general these conclusions are.
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’ 5. SUMMARY AND CONCLUS1ONS

Applications of modern estimation and filtering theory f
to the requirements of the National Weather Service (NWS) were
investigated to assess their potential for improving river
flow forecasting and catchment model calibration. i

The work was organized into three principal tasks:

) Issues in filter design

® State-space model development for unit
hydrographs

) Parameter identification for catchment
modeling.

5.1 ISSUES IN FILTER DESIGN

The applications of Kalman filtering techniques to
hydrologic forecasting required the development of catchment

state-space models. These were obtained by

) Developing continuous-time nonlinear
state-space equations for the Sacramento
Soil Moisture model

® Modifying the distribution of the perco-
lation to the lower zone to avoid slight
inconsistencies in the Sacramento model

° Modeling channel routing with reduced-
order state-space models for unit hydro-
graphs

5-1
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° Using state augmentation techniques to
combine the soil moisture and channel
routing systems to generate a complete
catchment model.

An extended Kalman filter for the estimation of the
state of the catchment system and the prediction of the dis-
charge to the channel was designed and its performance tested
with simuiated data. Excellent agreement between true and
forecasted flows was obtained even under surface runoff condi-
tions. The results indicate that the extended Kalman filter-
ing technique constitutes a very well behaved procedure for

the practical forecasting of the discharge from a basin.

5.2 STATE-SPACE MODEL DEVELOPMENT FOR UNIT HYDROGRAPHS

The canonical variate method of deriving reduced-

order state-space models of unit hydrographs gives

° Optimal reduced-order models in terms of
weighted squared prediction error

° An automatic procedure suitable for com-
puter implementation

® A computationally efficient and numerical-
ly stable algorithm.

The modeling of NOAA/NWS supplied unit hydrographs indicates
that

[ The sum square error criterion is superior
to the correlation criterion in producing
good low order approximations to the
unit hydrograph

e Considerable reduction in state order
was typical - from order ten or twenty
to order three or five

5-2
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° Multirate unit hydrographs were no more
difficult to approximate than those with
the same input-output rate.

This reduced order state space modeling effort was highly suc-
cessful in achieving the objectives of the study. One inherent
difficulty in multirate unit hydrographs was discovered - cer-
tain particular unit hydrographs introduce spurious high fre-
quencies in the output as a result of a low frequency sampled
sine wave input. The need for multirate unit hydrographs is
completely avoided by using the continuous catchment model de-
rived in this report and integrating to obtain a discrete time
model operating at the same rate as the channel routing model.

5.3 PARAMETER IDENTIFICATION FOR CATCHMENT MODELING

The application of maximum likelihood methods to the
catchment model parameter identification problem provides an
initial evaluation of its potential use by NOAA/NWS. The maxi-
mum likelihood methods described in this study provide

® A determination of parameter identifi-
ability
) A robust optimization algorithm which is

immune to parameter nonidentifiability

o Estimates of the identifiable parameters
and their estimation error covariances

) An automatic procedure suitable for com-
puter implementation.

These methods were used on simulated precipitation and channel
discharge data generated using a NOAA/NWS supplied catchment
model for the Bird Creek basin. Identification of the catch-
ment model parameters indicates that

5-3
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° Parameter identifiability is determined
by the extent to which the data excites
the relevant hydrologic structures

° The ortimization algorithm converges
very rapidly near the solution.

The maximum likelihood method has been demonstrated as a power-
ful, automatic procedure with potential for wide spread use in
the fitting of NOAA/NWS catchment models.

5.4 RECOMMENDATIONS

There are several important areas for future investi-
gation suggested by this study in the identification of catch-
ment model parameters

® Initialization and improved computational
efficiency in recursive refinement of
parameter estimates

° Tests of hypotheses between alternative
hydrologicai model structures

® Use of robust methods on data for han-
dling outliers

° Application of both the Kalman filtering
and parameter identification to a number
of data sets for a variety of basins.

Such future study would demonstrate the generality with which

these methods apply to the NOAA/NWS operational hydrologic
forecasting.
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APPENDIX A

The constraint on the ratio of free to tension water
for the upper zone is analyzed in this appendix. It is shown

below that this constraint is superfluous for all basins examined.

When the constraint is removed, the state-equations
for the upper zone can be derived as follows (Ref. 2). Con-
sider first the tension-water element. Two quantities can
affect the rate of increase of the contents of the tension-
water element: the instantaneous moisture input and the evapo-
transpiration demand. The evapotranspiration rate from the
upper-zone tension-water element is u2(x1/x?). The moisture
input rate, up to the point when tension-water requirements
are met, is ug- At the time when Xy = x?, two possibilities
arise:

® The moisture input rate is larger than
or equal to the evapotranspiration demand

' The moisture input rate is smaller than
the evapotranspiration demand.

In the first case, part of the input moisture replaces the
amount of water which is being lost through the evapotrans-
piration process. The tension-water content remains at its
maximum value and the free-water element receives the excess
moisture input (see discussion below). In the second asec,

the net rate of increase of the tension-water content is nega-

tive and X4 starts to diminish. Summarizing,
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xX

. 1 o 0

X = (“1 - Yy ;B)Ihe(xl - X)) F he(xy - xp) he(uy - up)]
1 (A-1)

where he and hf are given by Eqs. 2.2-23 and 2.2-24.

The moisture input rate available for the upper zone
free water element is (u1 - u2) hf(x1 - x?) he(u2 - ul). At
any given time the upper-zone free-water element loses water
through interflow at a rate of dux2 and supplies the lower
zone through percolation at a rate p given by Eq. 2.2-13. 1If
the net inflow rate to the upper-zone free-water element is
positive for a prolonged period of time, X5 will attain its
maximum value and surface runoff will start to occur. The
rate at which surface runoff occurs is the excess of the mois-
ture input, (ul - u2) hf(x, - x?) he(u2 - ul), over the sum of
interflow and percolation rates, dux2 + p. When this quantity

is negative, the upper-zone free-water content starts to diminish.
Thus,

s _ o o

Xy = [(ul - uy) he(xy = x7) h (u, - up) - d x, - pl
Ke) . _ O

X {he(x2 - xz) + hf(}\2 x2)

O _ - R o _
x hf[dux2 + p (u1 uz) h{-(:\1 xl) he(u2 ul)l
(A-2)
Recall the constraint on the ratio of free to tension
water: the normalized free-water content should not exceed

the normalized tension-water content, i.e.,

- v() . .O -
A2/k2 < x]/xl (A-3)
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If at some time, t,

xz(t)/xg = xl(t)/x(l) (A-4)

then
%y (tT)/x§ < xR (A-5)

Next, it will be shown that when Eq. A-4 holds, Ilnequal-
ity A-5 is automatically satisfied with the SSM model parameters
for 17 different basins. Thus if the state of the system is
initialized at a point at which constraint A-3 is satisfied,
the constraint will be satisfied from then on.

Suppose Eq. A-4 holds at time t and set

x,(t) X,(t)
gz =2 (A-5)
X(l) X2

Three different possibilities arise

[ ] Xl(t) = Xz(t) =0, (y = 0)
° 0 < x (1) < x(l) and 0 < x,(t) < \(2’ (O<y<1)

0

° x;(t) = x? and x,(t) = x5, (4 =1).

In the first case, the inflow rates to the tension
and free-water elements are

xl(t) uy (A-7)

and

]}
<

xz(t)

(A-8)
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Therefore, Inequality A-5 is automatically satisfied.

Consider, next, the second alternative. The state

equations for the upper-zone elements become

H

. o
xl(t) uy - ule/x1 (A-9)

x2(t) = -dux2 -p (A-10)

Therefore, the normalized inflow rates are

X (t) u u
1 | 2
0 = 5" U] o (A-11)
1 X1 X1
and
X,(t)
2 - - . b .
5 = du U O (A-12)
2 2
In this case, lnequality A-5 is equivalent to
u u
d oy - B Loy 2 (A-13)
u X0 T © %0
2 1 1
which can be rewritten as
u u
2 i p_
-(d, - :5) b5t (A-14)
Xy Xy X5

Since the expression on the right hand side of last inequality

is nonnegative, the inequality will certainly hold if
d » u2/x1 (A-10)
Table A-1 compares the values of the interflow param-

. . . . O
eter du with the maximum evapotranspiration rate, U, norma] -

ized by the capacity of the upper-zone tension water elcement,

A-4
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TABLE A-1
COMPARISON OF EVAPOTRANSPIRATION AND DRAINAGE RATES

(o}

(o]

BASIN "2 "1 it %
(mm/hr) (mm) (1/hr) (1/hr)

White River 5.8333E-2 50 1.1667E-3 1.4861E-2
French Broad 5.0000E-2 85 5.8824E-4 1.4861E-2
Bird Creek 2.7850E-2 120 2.3958E-4 1.4861E-2
Leaf River 5.6250E-2 20 2.8125E-3 1.7949E-2
Meramec River 5.3333E-2 93 5.7347E-4 1.7313E-2
Danville, VA 1.9250E-1 249 7.7309E-4 4.6194E-2
Ariton, Ala. 1.9167E-1 75 2.5556E-3 9.2976E-3
Fulton, Miss. 2.2917E-1 70 3.2739E-3 3.3271E-2
Culloden, Ga. 1.9583E-1 132 1.4836E-3 1.7949E-2
Northside, NC 2.6458E-1 78 3.3921E-3 3.5555E-2
1.4583E-1 10 1.4583E-2 1.4861E-2

Eagle River
1.8333E-1 20 9.1665E-3 1.4861E-2
S. Yamhill River 1.1875E-1 120 9.8958E-4 1.7949E-2
Clear Boggy Creek 4.1667E-2 25 1.6667E-3 3.6103E-3
Illinois River 8.3333E-2 28 2.9762E-3 ' 8.11066E-3
Beaver Creek 5.4167E-2 27 2.0062E-3 1.3457E-2
Baron Fork 8.3333E-2 21 3.9282E-3 1.1107E-2
Shoal Creek 6.2500E-2 20 3.]250éi3 1.5521E-2
x?, for 17 different basins. 1In all instances Inequality A-150

is satisfied.
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Finally, for the last possibility, xl=x? and x2=xg.
The state equations become

;(l(t) (u]. - u2) hf(uz - ul) (A‘16)

X,(t) = [(u; = uy) h (u, - uy) - duxg - pl
x hf(duxg +p - (u - uy) h(u, - u)] (A-17)

If up > uy, Egqs. A-16 and A-17 reduce to

él(t) 0 (A-18)

i

. o 0
xz(t) (u1 - uy - dux2 - p) hf(du}\2 + p - Uy + u2)

(A-19)

Thus, iz(t) < 0 and, consequently, Inequclity A-5 must be satis-
\ fied. 1If up < uy, the state-equations ar. identical to Eqgs.
' A-9 and A-10 and the same analysis used for the case 0 < ¢ < 1
! shows that the normalized inflow rates into the upper-zone
elements satisfy Inequality A-5.

[ Therefore, for all basins listed in Table A-1, the

constraint on the ratio of free to tension-water for the upper-

zone is ineffective.
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